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A B S T R A C T   

Selecting the best model of sequence evolution for a multiple-sequence-alignment (MSA) constitutes the first step 
of phylogenetic tree reconstruction. Common approaches for inferring nucleotide models typically apply 
maximum likelihood (ML) methods, with discrimination between models determined by one of several infor-
mation criteria. This requires tree reconstruction and optimisation which can be computationally expensive. We 
demonstrate that neural networks can be used to perform model selection, without the need to reconstruct trees, 
optimise parameters, or calculate likelihoods. 

We introduce ModelRevelator, a model selection tool underpinned by two deep neural networks. The first 
neural network, NNmodelfind, recommends one of six commonly used models of sequence evolution, ranging in 
complexity from Jukes and Cantor to General Time Reversible. The second, NNalphafind, recommends whether 
or not a Γ-distributed rate heterogeneous model should be incorporated, and if so, provides an estimate of the 
shape parameter, ɑ. Users can simply input an MSA into ModelRevelator, and swiftly receive output recom-
mending the evolutionary model, inclusive of the presence or absence of rate heterogeneity, and an estimate of ɑ. 

We show that ModelRevelator performs comparably with likelihood-based methods and the recently published 
machine learning method ModelTeller over a wide range of parameter settings, with significant potential savings 
in computational effort. Further, we show that this performance is not restricted to the alignments on which the 
networks were trained, but is maintained even on unseen empirical data. We expect that ModelRevelator will 
provide a valuable alternative for phylogeneticists, especially where traditional methods of model selection are 
computationally prohibitive.   

1. Introduction 

Modelling the process of sequence evolution is a necessary step in 
carrying out phylogenetic inference. Jukes and Cantor, (1969) intro-
duced the first model of sequence evolution (JC), based on the as-
sumptions that frequency of bases, and pairwise substitutions between 
each of them, were equally likely. Since then modelling the evolutionary 
process has been an area of continual and ongoing development and 
hundreds of models are now available to choose from (K2P (Kimura, 
1980), F81 (Felsenstein, 1981), HKY (Hasegawa et al., 1985), TN93 
(Tamura and Nei, 1993), and GTR (Tavaré et al., 1986) to name a few). 

Systematically discriminating between the available models is a prob-
lem that has been approached in a variety of ways, including likelihood 
ratio tests, Bayes factors, and cross validation. Endorsed by Posada and 
Buckley (Posada and Buckley, 2004), the most common current 
approach is to carry out maximum likelihood (ML) inference under a 
selection of different models, then use an information criterion such as 
Akaike’s Information Criterion (AIC), or the Bayesian Information Cri-
terion (BIC) (Abascal et al., 2005; Darriba et al., 2012; Johnson and 
Omland, 2004; Kalyaanamoorthy et al., 2017; Posada, 2008; Posada and 
Buckley, 2004; Posada and Crandall, 1998). Model selection software 
such as ModelFinder (Kalyaanamoorthy et al., 2017) automate the 
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process to a large extent by evaluating models based on BIC (by default), 
and are employed as a matter of course as part of most phylogenetic 
analyses. However, there is considerable discussion within the literature 
about the suitability of information criteria as a discriminating tool 
within phylogenetics (Crotty and Holland, 2022; Grievink et al., 2010; 
Jhwueng et al., 2014; Seo and Thorne, 2018; Susko and Roger, 2020). 
Many of the concerns raised in these articles amount to foundational 
assumptions of information-theory-based model selection that are 
necessarily violated within a phylogenetic inference framework. Un-
burdened by these foundational assumptions, a machine learning 
approach to the problem is therefore immune to the inherent theoretical 
complications of the information theory approach. 

Theoretical shortcomings aside, the rapid expansion of the size of 
multiple sequence alignments (MSAs) typically available to empiricists 
means the computational cost of traditional model selection methods is 
becoming increasingly prohibitive. Large phylogenomic alignments, 
consisting of many concatenated genes, should not be assumed to have 
evolved homogeneously. To address this, different models are often 
assigned to different sections of the alignment (typically genes or codon 
positions). Methods like PartitionFinder (Frandsen et al., 2015; Lanfear 
et al., 2012) accomplish this, but they require the repeated estimation of 
the appropriate model, sometimes across thousands of genes (Faircloth 
et al., 2012; Jombart et al., 2014; Lemmon et al., 2012). Thus, model 
selection can become a computational bottleneck. 

Although machine learning methods have found broad application in 
biology (Kan, 2017; Kandoi et al., 2015; Leung et al., 2016; Silva et al., 
2019; Tarca et al., 2007), within the field of phylogenetics, they have 
thus far only been applied to a very limited extent (Leuchtenberger et al., 
2020; Suvorov et al., 2020; Tao et al., 2019; Zou et al., 2020). Further 
refining the scope to model selection within phylogenetics, ModelTeller 
(Abadi et al., 2020), which utilises a random forest-based machine 
learning approach, is the only current contribution, although it does not 
focus primarily on model selection. 

To address these issues, we have developed ModelRevelator, a ma-
chine learning approach to the model selection problem that is based on 
neural networks with many layers (deep learning) (LeCun et al., 2015), 
with the focus on finding the best model of sequence evolution. Further, 
in the case that the alignment is best modelled incorporating a 
Γ-distributed rates across sites component (Yang, 1994), Mod-
elRevelator provides an estimate of the shape parameter. To show the 
applicability of deep learning in phylogenomics, we compare the results 
offered by ModelRevelator to ModelFinder (which is representative of 
current standard practice) as implemented in IQ-Tree (Minh et al., 2020; 
Nguyen et al., 2015). Using simulated alignments, we assessed the 
performance of the two methods based on how often they correctly 
identified the generative model, as well as the accuracy of topological 
inference carried out using their recommendations. We find that Mod-
elRevelator can estimate the model of sequence evolution as well as the 
parameter α at a comparable accuracy to ModelFinder, with potential 
for significant reduction in computational expense. 

2. Methods 

2.1. Empirical Lanfear dataset 

For testing and evaluation of the neural networks and ML+BIC on 
empirical data, we used a database of MSAs, collected from the literature 
by Rob Lanfear, and available at https://github.com/roblanf/Bench 
markAlignments. This collection consists of protein and nucleotide 
MSAs, from which we selected alignments consisting of DNA alignments 
of multiple genes. These alignments originated from 31 publications, a 
full list of which can be found in the supplementary material. We split 
the 31 multi-gene alignments by gene, resulting in 1,843 individual loci 
alignments, ranging from 3 to 4,836 taxa. Table 1 shows the distribution 
of trees with different taxa, trees with 3 to 100 and 101 to 200 taxa being 
the most frequent trees in the dataset. The length of the individual 

alignments range from 12 bp to 11,049 bp with a median length of 261 
bp (see Table 2). 

We used stable IQ-Tree release 1.6.12 to carry out ML inference on 
the 1,843 loci alignments under a GTR model of evolution. From the 
results of these analyses we constructed distributions for the five relative 
substitution rate parameters (G<->T is fixed to a value of 1, with the 
remaining rates expressed relatively), the empirical base frequency pa-
rameters, and the internal and external edge length parameters. We fit 
splines to these distributions using the AstroML Python package (Van-
derPlas et al., 2012), as shown in Supplementary Figures 14–16. 

2.2. Simulation of training and test datasets: 

We simulated all MSAs used for training and testing the neural net-
works using Seq-Gen (Rambaut and Grassly, 1997). We generated 
alignments using six models of sequence evolution with continuous 
Γ-distributed rate heterogeneity across sites (Rhet): JC+G, K2P+G, 
F81+G, HKY+G, TN93+G, and GTR+G; and their rate-homogeneous 
(Rhom) versions: JC, K2P, F81, HKY, TN93 and GTR. We ensured that 
an equal number of training alignments were simulated for each of the 
12 models of sequence evolution considered. 

We simulated trees by generating a random tree topology with 8, 16, 
64, or 128 taxa. We then added internal and external edge lengths drawn 
randomly from the edge length distributions constructed from the Lan-
fear data. Depending on which model of sequence evolution was being 
used to generate the MSA, we drew substitution rate and base frequency 
parameters as required, from the appropriate Lanfear-based parameter 
distributions. For NNmodelfind, all training MSAs were of length 1kbp. 
We also tried using 10kbp MSAs for training NNmodelfind but this did 
not result in better performance compared to 1kbp MSA training data. 
For NNalphafind, all training MSAs were of length 10kbp. 

Table 1 
Distribution of tree sizes in the empirical Lanfear data-
set. Column ‘# of taxa’ indicates the range of a tree size 
bin, column ‘# of trees in bin’ indicates the number of 
trees in each bin.  

# of taxa # of trees in bin 

3–100 877 
101–200 910 
201–300 31 
301–400 2 
401–500 4 
501–600 8 
601–700 1 
701–1000 1 
1001–2000 4 
2001–5000 5  

Table 2 
Distribution of MSA length of original Lanfear 
MSAs. Median length: 261 bp, Minimum length =
12 bp, Maximum length = 11,049 bp. Column ‘# of 
bp‘ indicates the range of MSA length bin, column 
‘# of MSAs in bin’ indicates the number of MSAs in 
each bin.  

# of bp # of MSAs 

12–100 50 
101–200 483 
201–300 548 
301–400 231 
401–500 166 
501–600 91 
601–700 75 
701–1000 100 
1001–2000 64 
2001–4000 16 
4001–12000 3  
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For simulating the 6 Rhet models (JC+G, K2P+G, K81+G, HKY+G, 
TN93+G and GTR+G), we used a continuous Γ-distributed rate het-
erogeneity model of Seq-Gen with 17 distinct alpha parameter values 
(0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) (using 
the -a command line parameter). We generated an equal number of 
MSAs for each of those individual alpha parameters. 

To test NNmodelfind, NNalphafind, as well as ML approaches, a 
common test dataset was created. This test dataset consisted of 8, 16, 64 
and 128 taxa MSAs, and sequence lengths of 100 bp, 1kbp, 10kbp and 
100kbp. For the 1kbp test dataset, we also generated MSAs with 256 and 
1,024 taxa. For all combinations of taxa and sequence lengths, 512 MSAs 
were generated for each Rhom model. For Rhet models, we generated 
2,048 MSAs per Rhet model and sequence length combination. These 
2,048 MSAs were then divided among the 4 taxa levels and then 
randomly distributed among the 17 distinct alpha parameter values, 
yielding, on average, 30 MSAs per taxa level and distinct alpha 
parameter combination. This resulted in a total of 98,304 MSAs in our 
test dataset. 

2.3. Model selection, alpha estimation and tree reconstruction by ML: 

Two different analyses have been performed using the classical ML 
approach, namely model selection and parameter estimation. 

For model selection, we ran ModelFinder as implemented in stable 
IQ-Tree release 1.6.12 but restricted the pool of available models to the 
12 models on which the networks were trained: JC, K2P, F81, HKY, 
TN93, GTR, JC+G, K2P+G, F81+G, HKY+G, TN93+G, and GTR+G 
(using options -mset JC,K2P,F81,HKY,TN,GTR and -mrate E,G). 
Furthermore, we avoided any identical sequences to be discarded from 
the alignment using option -keep-ident. To infer rate heterogeneity, we 
used discrete Γ-distribution approximation with 4 rate categories which 
is the default in IQ-Tree for Γ models. 

As the decision criterion, we used BIC as is default in IQ-Tree. To 
explicitly estimate the alpha parameter, we ran ModelFinder for each 
alignment, but restricted the pool to include only the heterogeneous 
models. We then took the reported alpha value from the best hetero-
geneous model as our estimate of alpha. 

According to the IQ-Tree documentation, IQ-Tree applies a lower 
limit of 0.02 for the shape parameter alpha. To allow the estimation of 
lower alpha values we reset this limit to 0.0001 using the command line 
flag -amin 0.0001. For some alignments there were errors caused by 
numerical issues especially for very low alpha values. We resolved these 
by re-running with the -safe option as suggested by the error message of 
IQ-Tree. 

In order to reconstruct trees for comparison, we ran IQ-Tree inde-
pendently with the model of sequence evolution chosen by Mod-
elRevelator and ML+BIC respectively. If the model chosen by 
ModelRevelator included heterogeneous rates then the alpha parameter 
was fixed to the recommended value. If the model chosen by ML+BIC 
included heterogeneous rates then the alpha parameter was optimised in 
the tree reconstruction process. 

2.4. Data preprocessing for NNs: 

To be able to use the variably-sized simulated MSAs as input for 
training and testing of NNmodelfind and NNalphafind, we converted 
each alignment into a format of fixed-sized. 

For NNmodelfind, we used summary statistics of sequence pairs of an 
MSA. To maximise the information in the input, we decided to use 
10,000 randomly drawn sequence pairs, ensuring that the same 
sequence was not chosen for both sequences of a summary statistic to be 
calculated. These 10,000 summary statistics consisted of 26 features 
each (substitution counts: A-C, A-G, A-T, C-G, C-T, and G-T, in both di-
rections = 12 features; invariant site counts: A-A, C-C, G-G, T-T = 4 
features; 4 nucleotide counts per sequence = 8 features; total transition 
count and total transversion count = 2 features). This yields a total 

feature count for each MSA of 10,000 × 26. All of these summary sta-
tistics are normalised by the sequence length of the MSA. For more 
efficient processing of the convolution layers of the ResNet-18, we 
reshaped these input features into an input tensor of shape 40 × 250 ×
26. 

For NNalphafind, we generated normalised base composition pro-
files of 10,000 sites and the 4 possible bases, yielding an input size of 
10,000 × 4. We also experimented with summary statistics incorpo-
rating column-wise transitions and transversion, however this yielded 
worse performance than just base counts. 

For both networks, for all MSAs which were smaller or larger than 
10,000 positions, we randomly over- or undersampled the MSA to 
achieve the required dimension for the input. 

2.5. NNmodelfind architecture 

Fig. 1 shows the architecture of NNmodelfind. It is based on a 
ResNet-18 architecture (He et al., 2016), but with an adapted input 
strategy. The input, as described above, has dimensions 40 × 250 × 26. 
We replaced the initial pooling layer of a ResNet-18 with 4 encoding 2D 
convolution layers, with 2x1 kernels and 32, 64, 96 and 96 channels. 
The output of the last 2D encoding layer is then passed to 4 standard 
ResNet-18 blocks with 3x3 convolutions and 96, 192, 384 and 768 
channels. The output layer has 6 categories, one for each generative 
model (JC, K2P, K81, HKY, TN93, GTR). The loss function used was a 
categorical cross entropy loss function. We applied Batch Normalisation 
(Ioffe and Szegedy, 2015) before each ReLu activation function and L2 
Regularisation (Cortes et al., 2012), for all convolution layers to improve 
ResNet-18 training. Additional parameters used were a learning rate of 
1x10^-5, Adam optimiser (Kingma and Ba, 2014) for gradient descent, 
He Normal initialisation (He et al., 2015b) for the weights and zeros 
initialisation for biases. 

2.6. NNalphafind architecture 

As shown in Fig. 2, NNalphafind is a combination of 1D convolutions 
for feature encoding and a bidirectional LSTM with an Attention layer 
(Raffel and Ellis, 2015). The input consists of profiles of 10,000 positions 
by 4 base frequencies. The 3 layers of 1D convolutions have 256, 512 
and 768 channels, followed by a bidirectional LSTM with 1,200 steps, a 
1D pooling layer with a pooling window of 4, and an Attention layer 
with a step dimension of 2,498. NNalphafind has 2 outputs, a categorical 
output and a scalar output. The categorical output estimates whether an 
MSA should be modelled with or without rate heterogeneity. The loss 
function is also a categorical cross entropy loss function. The scalar 
output estimates the alpha parameter, achieved by a mean absolute 
percentage error function. 

Weights of NNalphafind were initialised using Glorot Uniform ini-
tialisation (Glorot and Bengio, 2010) and biases were initialised with 
zeros. 

2.7. Training NNmodelfind and NNalphafind 

We trained NNmodelfind, as well as NNalphafind, with the training 
dataset described above, using a batch size of 40 and a learning rate of 
1x10^-5 for both neural networks. For NNmodelfind, we required 76 
epochs for convergence and for NNalphafind, we required 341 epochs 
for convergence. We used Tensorflow 2.4 (Abadi et al., 2016) as a 
framework for training and testing of our neural networks. As GPUs for 
training, we used Nvidia Tesla V100 with 32 Gb of memory, or Nvidia 
RTX2080Ti with 11 Gb of memory. 

To avoid overfitting, we performed early stopping when:  

1. there was no improvement in accuracy on the validation dataset for 5 
epochs for NNmodelfind and for 15 epochs for NNalphafind; and 
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2. the divergence of training and validation accuracy was not higher 
than 4% for NNmodelfind and 6% for NNalphafind. 

In total 242,688 MSAs were used to train the networks. 

2.8. Testing NNmodelfind and NNalphafind: 

For testing the neural networks, we used the datasets described 
earlier and the trained models for NNmodelfind and NNalphafind. 

Fig. 1. Schematic of NNmodelfind. The architecture follows a ResNet-18, with a modified input strategy.  

Fig. 2. Schematic of NNalphafind.  
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Testing was either performed using the Keras predict() function or 
ONNXRuntime 1.6.0 (https://github.com/microsoft/onnxruntime). 
ONNXRuntime is a dedicated neural network execution library for the 
open ONNX neural network exchange format (https://onnx.ai/). In 
order to use ONNXRuntime, we first exported the Keras/Tensorflow 
neural network graphs to the ONNX format using the tools keras2onnx 
and tf2onnx of the Python package onnx 1.9.0. 

2.9. Comparing ModelTeller and ModelRevelator 

For running ModelTeller, we downloaded the latest version from 
GitHub (https://github.com/shiranab/ModelTeller, commit hash 
897bd6925606416071dcf3c1a03422f8e7a4e7b7; ModelTeller trained 
models downloaded 2021-06-06) and followed the installation guide-
lines. Then, we ran ModelTeller on a subset of (100 bp, 1kbp and 10kbp 
MSAs) our common Lanfear test set MSAs, using the -m command line 
parameter of ModelTeller to just provide the MSA files which should be 
processed. We then took the top ranked model ModelTeller output for all 
further analysis. We also used the trees which ModelTeller estimated 
with PhyML, which is distributed as an integral part of ModelTeller, for 
comparison with ModelRevelator. The branch score distances as well as 
the Robinson-Foulds distances were calculated using Treedist of the 
PHYLIP package (https://evolution.genetics.washington.edu/phylip/). 

2.10. Time measurements for ModelRevelator and ML 

For the neural networks, we performed all measurements using 
ONNXRuntime 1.6.0 for CPUs, thus no GPU was used for inference. For 
comparison to single-threaded IQ-Tree, we forced ONNXRuntime to 
only run on a single core by using the Linux tool taskset. All benchmarks 
were run on the same machine equipped with two 32 core AMD Epyc 
7551 CPUs on the operating system OpenSuSE Linux 15.0. 

All IQ-Tree analyses were run on the same hardware as the neural 
network runtime measurements, using only one CPU core each. All 
runtime measurements for ModelRevelator as well as ML+BIC were 
performed using a 10% representative subset of alignments sampled 
from the test dataset. The reported runtimes are the averages of the 
measured runtimes. 

2.11. Data availability 

Python source code for executing ModelRevelator, generating 
training, validation and test datasets and the Tensorflow implementa-
tions of NNmodelfind and NNalphafind of ModelRevelator are available 
from https://github.com/cibiv/ModelRevelator/. NNmodelfind and 
NNalphafind of ModelRevelator are also available in ONNX format in 
the same repository. Due to the amount of data (240,000 MSAs of 
training data, 170,000 MSAs of test data, 603 GB in total), the MSAs in 
phylip format and the corresponding tree files from the common test 
dataset are available upon request from the authors. 

ModelRevelator will also be made freely available as part of the 
forthcoming version of IQ-Tree (https://www.iqtree.org), 

3. Results 

We introduce ModelRevelator, a machine learning-based approach 
to model selection for phylogenetic inference. Users can input their 
MSAs to ModelRevelator. ModelRevelator will then advise which model 
of sequence evolution should be used, whether a Γ-distributed rate 
heterogeneity component should be included, and if so, an estimate of 
the shape parameter. ModelRevelator consists of two neural networks 
which operate independently to provide model recommendations that 
can be adopted to significantly accelerate inference time. The first 
network, NNmodelfind, was trained to select a model of sequence evo-
lution prior to phylogenetic inference, thereby bypassing the computa-
tionally expensive procedure of performing model selection via ML and 

information criteria. The second network, NNalphafind, was trained to 
make recommendations with respect to rate heterogeneity, and its 
output is two-fold. NNalphafind will first recommend whether the 
alignment is characteristic of substitution rate heterogeneity, or whether 
a rate homogeneous model will suffice. If the network recommends that 
a Γ-distributed rates across sites model is appropriate, it will then pro-
vide an estimate of the shape parameter which can be incorporated into 
the inference. Both networks were trained on simulated data based on 
empirical alignments. We show here that the networks have comparable 
accuracy to traditional model selection methods, and have significant 
advantage in terms of computational expense. 

3.1. Generating testing and training data 

In order to train our neural networks a large number of simulated 
multiple sequence alignments (MSAs) were required. However, we were 
mindful that ultimately, we require the neural networks to be useful 
tools for the analysis of empirical data, and thus we needed our training 
MSAs to be broadly representative of empirical datasets. To this end we 
obtained a large database of empirical MSAs made available to us by the 
Lanfear group of Australian National University (https://github.com/ro 
blanf/BenchmarkAlignments). From the Lanfear MSAs we reconstructed 
trees via maximum likelihood inference with the stable IQ-Tree release 
1.6.12, under six different models of sequence evolution, with and 
without accounting for rate heterogeneity. We thus obtained empirical 
distributions for internal edge lengths, external edge lengths, substitu-
tion rates, and base frequency parameters. We fit cubic splines to these 
empirical distributions, enabling us to sample random values as 
required. 

We then generated random tree topologies of varying sizes, and 
allocated edge lengths to these topologies by randomly sampling from 
the external and internal edge distributions. We also constructed models 
of sequence evolution by randomly sampling from the substitution rate 
and base frequency distributions. These tree topologies and substitution 
models were then used as input to Seq-Gen (Rambaut and Grassly, 
1997), in order to generate MSAs of 1kbp length for training of the 
neural networks. We also generated MSAs incorporating the continuous- 
Γ model of rate heterogeneity, with alpha parameters ranging from 
0.001 (extreme rate heterogeneity) up to 10 (mild rate heterogeneity). 
Testing data was generated in essentially the same way, although we 
tested a wider range of alignment sizes, ranging from 100 bp up to 
100kbp. 

Fig. 3 illustrates the procedure we adopted for generating align-
ments. A fuller account of the precise parameter settings and volume of 
MSAs generated can be found in the methods section. 

3.2. Estimating the evolutionary model 

Our first objective was to train a neural network, which we have 
called NNmodelfind, to successfully estimate the correct model of 
sequence evolution. As described in the methods section, we trained 
NNmodelfind on a wide variety of simulated MSAs. The training MSAs 
were generated according to one of 6 models of sequence evolution (JC, 
K2P, F81, HKY, TN93, and GTR). We incorporated an equal number of 
MSAs that were simulated under rate homogeneous (Rhom) and rate 
heterogeneous (Rhet) conditions. Rate heterogeneous alignments were 
simulated with the shape parameter, alpha, taking one of 17 potential 
values between 0.001 and 10. MSA size was either 8, 16, 64, or 128 taxa, 
with each size equally represented in the training data. The length of all 
training MSAs was 1kbp. Experiments using training data of 10kbp 
length did not show improvements in NNmodelfind accuracy over 1kbp 
training data. 

Having trained NNmodelfind, we generated test MSAs to evaluate its 
performance. Test MSAs were generated using the same parameter set-
tings as the training MSAs, with additional MSAs generated with higher 
numbers of taxa (256, and 1024), and different sequence lengths (100 
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bp, 10kbp, and 100kbp) in order to evaluate the generalisability of 
NNmodelfind. 

By way of comparison we used a traditional method of model se-
lection via maximum likelihood inference to choose the model of 
sequence evolution for each test MSA. We used the ModelFinder 
approach within IQ-Tree, with BIC set as the discriminating criterion. 
We refer to this method of model selection as ML+BIC. 

Fig. 4 shows the accuracy for Rhom test MSAs of length 1kbp. Fig. 4a 
displays the accuracies separately for the individual models and taxa 
levels. Fig. 4b shows confusion matrices for each method and taxa level, 
detailing the distribution of the inferred model for each true model. 
Fig. 5 shows the analogous information to Fig. 4, for Rhet test MSAs. 
Overall, Figs. 4 and 5 indicate that NNmodelfind and ML+BIC are able to 
estimate the generative model of sequence evolution with similar ac-
curacy. There are modest differences between the two methods, for 
example ML+BIC is more accurate when the true model is GTR or TN93, 
whereas NNmodelfind is more accurate when the true model is F81 or 
HKY. 

Fig. 4b and 5b show the confusion matrices associated with the 1kbp 
test alignments. The confusion matrices reveal an interesting phenom-
enon in relation to the performance of ML+BIC. For low numbers of 
taxa, when ML+BIC infers the incorrect model, it almost exclusively 
selects a model of lower complexity than the true model. Conversely, 
when the MSAs contain a high number of taxa, ML+BIC tends to err in 
the direction of more complex models. This is likely a result of the fact 
that as the number of taxa increases, the log likelihood scores grow and 
the influence of the penalty term in the BIC formula is reduced. Thus 
ML+BIC tends to more complex models as the number of taxa increases. 
By way of comparison, the error structure displayed by NNmodelfind 

does not show any strong pattern of preference for models of lower or 
higher complexity, and this appears to be the case independent of the 
number of taxa in the alignment. This is likely a result of the fact that the 
input size of NNmodelfind is fixed and so increasing the number of taxa 
does not influence the error structure. 

3.3. Generalisation of NNmodelfind 

Although NNmodelfind was trained strictly on MSAs of length 1,000 
bp, if it is to be of use to empiricists then it must be reasonably gen-
eralisable on MSAs of various lengths. To investigate its capabilities in 
this regard we generated test alignments that were both shorter (100 bp) 
and longer (10kbp and 100kbp) than the training alignments. Supple-
mentary Figs. 1 - 6 show the performance of NNmodelfind and ML+BIC 
for these data, in the same format as Figs. 4 and 5. For short sequences of 
100 bp, the performance of NNmodelfind is poor for all models except 
GTR. The confusion matrices suggest that NNmodelfind selects GTR for 
most MSAs, independent of the model used to generate the alignment. 
Conversely, ML+BIC performs poorly for more complex models such as 
GTR, but is very reliable for simpler models such as JC and K2P. The 
confusion matrices suggest that ML+BIC has a tendency to select a 
simple model regardless of the model used to generate the alignment. 
The poor performance of both methods is likely a reflection of the high 
amount of stochastic noise within the short datasets, and is not unex-
pected. The performance of both ML+BIC for long alignments of 10kbp 
and 100kbp was excellent. Supplementary Figs. 5 and 6 show that for 
100kbp MSAs, ML+BIC identified the generative model with accuracies 
approaching 100%, across all taxa and model combinations. This is not 
unexpected, as ML is known to be statistically consistent (Truszkowski 

Fig. 3. Schematic illustration of the workflow followed to produce training and testing data for the neural networks. (1) Edge lengths, substitution rates, and base 
frequencies are inferred using maximum likelihood for 1,842 empirical MSAs, to form empirical distributions of these parameters. (2) For the specified number of 
taxa a random tree topology is generated following a Yule process. (3) Edge lengths for the tree are drawn randomly from the distribution of internal and external 
edges obtained in (1). (4) For a given substitution model, the appropriate model parameters are drawn from the distributions obtained in (1). (5) For a given 
alignment length an MSA is simulated based on the tree and model of sequence evolution obtained from (3) and (4) respectively, using the program seq-gen. 
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and Goldman, 2016), and we would therefore expect ML+BIC to 
perform well for very long sequences. NNmodelfind however saw no 
appreciable improvement for these longer sequences. The rate at which 
NNmodelfind correctly inferred the generative model was similar for 
10kbp and 100kbp as it was for 1,000 bp. One obvious explanation for 
this observation is that, irrespective of the actual length of the MSA, the 
input size for NNmodelfind is fixed. Thus, for long alignments, NNmo-
delfind samples sites from the alignment up to the required input size, 
and therefore does not make full use of all the information contained 
within the alignment. 

In addition to generalising over a wide range of sequence lengths, the 
performance of NNmodelfind on varying numbers of taxa is also of in-
terest. NNmodelfind was trained on MSAs which ranged in size from 8 to 
128 taxa. To investigate whether the performance of NNmodelfind could 
be extrapolated to larger datasets, we simulated test MSAs with 256 and 
1024 taxa, using the parameters estimated from the Lanfear MSAs as 
before. The results are displayed in Figs. 4 and 5. Fig. 4a and 5a show 
that the performance of NNmodelfind is not compromised by increasing 
the number of taxa beyond that used to train the network. For all 
generative models, NNmodelfind identified the correct model at rates as 
good as or slightly higher than for the smaller MSAs. For ML+BIC 
however, increasing taxa had a detrimental effect on the success rate 
when the generative model was F81, HKY, and to a lesser extent TN93, 
both with and without rate heterogeneity. The confusion matrices in 
Fig. 4b and 5b suggest that with these generative models, ML+BIC 
tended to select more complex models, most often choosing GTR. 

3.4. Estimating the presence and degree of rate heterogeneity 

The assumption that all sites in an MSA mutate at the same rate has 
long been regarded as biologically implausible. Rate heterogeneity has 

become an essential component of models of sequence evolution, and is 
typically modeled by the discrete Γ-distribution (Yang, 1994). The alpha 
parameter of the Γ-distribution determines its shape and thus the extent 
of rate heterogeneity. In conjunction with NNmodelfind, a neural 
network which can accurately estimate the alpha parameter could 
further expedite phylogenetic reconstruction. We trained a second 
neural network, NNalphafind, to first estimate whether a rate homoge-
neous model was appropriate for the MSA, and if not, to then estimate 
the alpha parameter of the Γ-distributed rate heterogeneity component. 

As described in the methods section, NNalphafind was trained on 
MSAs containing 8, 16, 64 and 128 taxa. Each training MSA was 10kbp 
long, as opposed to the 1kbp MSAs that were used to train NNmodelfind. 
NNalphafind was tested on the same test MSAs simulated to test 
NNmodelfind, but for clarity we reiterate the simulation procedure here 
with the added detail of the alpha parameter levels. The generative 
models of sequence evolution used were JC, K2P, F81, HKY, TN93, and 
GTR. The amount of rate heterogeneity in the MSAs was varied by 
controlling the rate parameter, alpha. In total there were 17 levels of 
rate heterogeneity, represented by 17 distinct alpha values (0.001, 0.01, 
0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10). Small values of 
alpha correspond to a high degree of rate heterogeneity, whereas large 
values of alpha correspond to a low degree of rate heterogeneity. With 4 
taxa levels, 6 generative models, 4 sequence length levels, and 17 levels 
of rate heterogeneity, there were 4 × 6 × 4 × 17 = 1632 parameter 
combinations. For each of these parameter combinations we simulated 
30 test MSAs. 

Preliminary analysis suggested that there was no relationship be-
tween the generative model of sequence evolution and the accuracy of 
the alpha inference. Therefore, for simplicity, we did not stratify the 
results by generative model. This meant we had 1632/6 = 272 param-
eter combinations of interest, with each parameter combination having 

Fig. 4. Model selection accuracy of NNmodelfind and ML+BIC on 1,000 bp long Rhom MSAs. (A) Blueish colours indicate results from NNmodelfind, reddish colours 
indicate results from ML+BIC. Darkening bars distinguish increasing number of taxa from left to right (8, 16, 64, 128, 256 and 1024). (B) Confusion matrices for 
NNmodelfind and ML+BIC. Entries along the diagonal indicate the percentage of alignments for which the correct model was identified. 
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180 (30 MSAs for each of the 6 different generative models) test MSAs 
available to evaluate performance. For each of the 272 parameter 
combinations we calculated the mean alpha value inferred by NNal-
phafind, and also by ML+BIC. Given the range of true alpha values 
spanned several orders of magnitude, to enable a simple comparison we 
calculated the ratio of the mean inferred alpha values and the true alpha 
values. A ratio of 1 would therefore correspond to perfect inference (on 
average), while scores above or below 1 would correspond respectively 
to an overestimation or underestimation of the true alpha. The perfor-
mance of the two methods at estimating the true value of alpha in the 
generative models are summarised in heatmap form in Fig. 6. The colour 
scheme of the heatmap distinguishes between good inference (white), 
underestimation (grey), and overestimation (red). In general, the lighter 
the shading the better the inference of alpha. 

Fig. 6 indicates that NNalphafind generally performs better than 
ML+BIC at estimating the true alpha value used to generate the data. 
NNalphafind was able to accurately infer the true alpha, particularly 
when alpha was less than 1, indicating strong rate heterogeneity. 
Conversely, ML+BIC performs particularly poorly for low alpha values 
(<0.3) and performance in this range is not strongly improved with 
increasing sequence length. Interestingly, the performance of NNal-
phafind does clearly improve as sequence length increases, in contrast to 
the performance of NNmodelfind. This is likely due to the fact that the 
input size of NNalphafind is larger, and the network was trained on 
10kbp alignments, as opposed to 1kbp alignments for NNmodelfind. As 
such, NNalphafind has the capacity to utilise the additional information 
in the longer test MSAs. 

3.5. Generalisation of NNalphafind 

As with NNmodelfind, the results indicate that NNalphafind also 

generalises well to sequence lengths that it was not trained on. NNal-
phafind was trained on 10kbp alignments, and although its performance 
does deteriorate somewhat for 1kbp alignments, and then further for 
100 bp alignment, this is to be expected considering the comparative 
lack of information contained within these shorter alignments. The same 
effect is evident in the performance of ML+BIC and, regardless of 
sequence length, NNalphafind is always more accurate for low values of 
alpha, and similarly accurate to ML+BIC for higher alphas. Fig. 6 does 
not indicate any parameter combinations where NNalphafind is clearly 
inferior to ML+BIC. 

NNalphafind also generalised well to higher numbers of taxa, 
although perhaps not as well as NNmodelfind. NNmodelfind saw no 
drop in performance when tested on 256-taxon and 1024-taxon align-
ments, whereas the accuracy of NNalphafind’s estimates was increas-
ingly compromised with higher taxa. That said, even at high taxa levels 
NNalphafind outperformed ML+BIC for small alpha values, and was 
similarly accurate elsewhere. 

3.6. Influence of model selection on phylogenetic inference 

The primary goal of phylogenetic inference is to reconstruct accurate 
trees. In order to compare the performance of ModelRevelator to 
ML+BIC, we reconstructed trees using the models recommended by the 
two methods. When reconstructing trees using the output of Mod-
elRevelator, we fixed the alpha parameter (when rate heterogeneity was 
recommended) to the value estimated by NNalphafind, rather than 
allowing it to be optimised. For each MSA, we then compared the trees 
inferred via ModelRevelator and ML+BIC to the tree used to simulate 
the alignment. For this, we calculated the normalised Robinson-Foulds 
distances (Robinson and Foulds, 1981) between the three trees. Fig. 7 
shows that when comparing the Robinson-Foulds distances of the 

Fig. 5. Model selection accuracy of NNmodelfind and ML+BIC on 1,000 bp long, Rhet MSAs. (A) Blueish colours indicate results from NNmodelfind, reddish colours 
indicate results from ML+BIC. Darkening bars distinguish increasing number of taxa from left to right (8, 16, 64, 128, 256 and 1024). (B) Confusion matrices for 
NNmodelfind and ML+BIC. Entries along the diagonal indicate the percentage of alignments for which the correct model was identified. 
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simution tree (TSIM) vs the reconstructed trees (T̂NN and T̂BIC for Mod-
elRevelator and ML+BIC respectively), we observed similar distribu-
tions for both methods. Furthermore, Fig. 7 also shows that the 
reconstructed trees are typically much closer to each other than they are 
to the simulation trees. This effect is most obvious for short sequences, 
with the difference diminishing as sequence length increases. Thus, 
reconstructed trees, irrespective of the reconstruction method, appear 
more in concordance with each other than they are with the generative 
trees that were used to simulate the alignment, pointing to the same type 
of error being made by both model estimation methods. An alternative 
viewpoint would be that both methods are equally hindered by sto-
chastic variation in the simulation process, resulting in inaccurate tree 
reconstruction, independent of the model chosen by each method. 
Reinforcing this view, Fig. 7 clearly indicates that sequence length is a 
strong indicator of the accuracy of tree reconstruction. 

3.7. Generalisation to unseen empirical alignments 

In addition to generalisation towards large numbers of taxa in an 
MSA, we also wanted to test generalisation of ModelRevelator to other 
empirical datasets. This is of obvious practical relevance, but is also 
important as generalisation of neural networks to potentially differently 
distributed test datasets is a topic of constant discussion (Ganin and 
Lempitsky, 2015; Sagawa et al., 2019). We used 6,453 MSAs from the 
original PANDIT dataset (Whelan et al., 2006) to perform parameter 
estimation and tree reconstruction by ML under a GTR+G model, with 
IQ-Tree. Supplementary Figs. 7 to 9 show the distributions of the edge 
length, substitution rate, and base frequency parameters for both the 
Lanfear and PANDIT datasets. The parameters are clearly differently 
distributed between the two datasets, most notably in regard to the edge 
lengths. 

For each PANDIT MSA, using the inferred tree and model parameters 
(including the shape parameter, alpha), we then used Seq-Gen to 

Fig. 6. Ratio of mean inferred alpha value and true alpha value, stratified by inference method (ML+BIC or NNalphafind), number of taxa (8, 16, 64, and 128), 
sequence length (100 bp, 1kbp, 10kbp, and 100kbp), and true alpha value (17 levels ranging from 0.001 (very strong heterogeneity) up to 10 (very weak het-
erogeneity)). Values close to 1 indicate accurate inference. Colour scale indicates degree of bias in estimation. A ratio of 5 indicates a five-fold overestimation of 
alpha, a ratio of 0.2 indicates a five-fold underestimation of alpha. 
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simulate 10 MSAs (with GTR+G as the generative model) of the same 
length as the PANDIT MSA, creating 64,530 simulated PANDIT-type 
MSAs in total. On these PANDIT type MSAs we performed model esti-
mation using both ML+BIC and ModelRevelator. Fig. 8 shows a 
concordance matrix for the results of model selection with the two 
methods. Overall, ML+BIC inferred the correct model of GTR+G in 69% 
of alignments, compared to just 61% for ModelRevelator. To investigate 
these results in more depth, we compare the two methods on three 
measures: (1) the binary determination of whether a rate heterogeneous 
model should be employed; (2) the decision of which of the six models of 
sequence evolution should be adopted; and (3) the resulting topological 
accuracy of trees inferred. 

With regard to the recommendation to include a rate heterogeneous 
component in the model, ML+BIC has performed better than Mod-
elRevelator on these alignments. ML+BIC correctly recommended rate 
heterogeneity in approximately 97% of alignments, compared to 
approximately 79% for ModelRevelator. This means ModelRevelator is 
more likely than ML+BIC to make a Type II error, that is to fail to detect 
the true presence of rate heterogeneity in the data. It is worth consid-
ering here that rate heterogeneity is modelled very efficiently by the 

Γ-distribution, at a cost of only one parameter. This means the penalty in 
the BIC calculation is quite small, but it gives increased flexibility to the 
model to fit more of the variability in the data (whether that variability 
be phylogenetic signal or stochastic noise). The resulting increase in 
likelihood is likely to dwarf the small penalty and result in an improved 
BIC score. We expect that if we generated a complementary cohort of 
alignments without the rate heterogeneity component, compared to 
ModelRevelator ML+BIC would have made more Type I errors, that is, 
falsely detecting the presence of rate heterogeneity in the data. We chose 
not to do this however, primarily because it is commonly recognised that 
rate homogeneous models are not expected to provide a good fit to 
empirical alignments. One can also envisage that the signal for rate 
heterogeneity would not have been strong in many alignments, due to 
the short sequence lengths in the PANDIT data, and possible high alpha 
values in some datasets (corresponding to weak rate heterogeneity). 

With respect to the recovered model of sequence evolution (ignoring 
whether or not rate heterogeneity was recommended), ModelRevelator 
recovers the correct GTR-model for 75.49% of alignments, whereas 
ML+BIC recovers the correct model for 69.74% of alignments. However, 
the intersection of these groups, where both methods identified GTR, 

Fig. 7. Estimating concordance in tree reconstruction by calculating the normalised Robinson-Foulds distances of trees reconstructed using the model recommended 
by ModelRevelator (T̂NN) or ML+BIC (T̂BIC), and comparing these results to the trees used to simulate the MSAs (TSIM). Results for MSAs of length 100 bp, 1kbp and 
10kbp are shown in the top, middle and bottom panel, respectively. 
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amounts to only 54.67% of the alignments. This means that the correct 
generative model was solely identified by ModelRevelator in 20.85% of 
alignments, and solely identified by ML+BIC in 15.08% of alignments. 
Interestingly, the two methods clearly diverge on the type of error they 
make when the alternate method is correct. When NNmodelfind is solely 
correct, ML+BIC predominantly selects K2P or HKY, and to a lesser 
extent TN93. These are all models which contain differential pairwise 
substitution rates between nucleotides. Conversely, when ML+BIC is 
solely correct ModelRevelator predominantly selects F81 or JC, models 
that assume the same pairwise substitution rates between all 
nucleotides. 

With respect to topological inference, we again calculated the nor-
malised Robinson-Foulds distances between the simulation tree, TSIM, 
and the trees inferred under the models selected by ModelRevelator and 
ML+BIC, T̂NN and T̂BIC respectively. As before, where ModelRevelator 
recommended the inclusion of a rate heterogeneous model, the esti-
mated alpha parameter was fixed during the inference, so that only other 
model parameters and edge lengths were optimised. In order to more 
clearly visualise any difference between the methods, we omitted the 
alignments for which both methods resulted in the same topology 

(64.4%). This left 22,990 (35.6%) alignments for which the two 
methods returned different trees. Fig. 9 displays boxplots of normalised 
Robinson-Foulds distances for these alignments. The boxplots show that 
the results are similar between the two methods, although a marginal 
advantage to using ModelRevelator over ML+BIC is observed as 
sequence length increases. Given the fact that the PANDIT datasets were 
dissimilar to the Lanfear training data (in terms of distribution of 
generating parameters), this is a very encouraging sign that Mod-
elRevelator may perform well on new empirical alignments generally. 

3.8. ModelRevelator on empirical, gapped alignments 

So far, we have demonstrated the performance of ModelRevelator on 
simulated alignments under empirical parameters. We now intended to 
use real world, empirical alignments, also containing gaps. For that, we 
used data from the EvoNAPS project within our lab (https://github. 
com/Cibiv/EvoNAPS), a collection of empirical alignments from 
PANDIT, Lanfear, TreeBase and OrthoMaM, in total 22,678 alignments. 
We tested these alignments using IQ-Tree (BIC and AIC) and 
ModelRevelator. 

Fig. 8. Concordance matrix of ModelRevelator and ML+BIC estimates for MSAs simulated under PANDIT trees and parameters. The generative model for all MSAs 
was GTR+G. Column and row sums indicate proportion of alignments inferred for each model by ModelRevelator and ML+BIC respectively. 
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Table 3 shows the results for ModelRevelator and IQ-Tree (BIC and 
AIC). IQ-Tree has a strong tendency for selecting GTR+G and K2P+G 
when using BIC. In general, BIC strongly favours rate heterogeneity 
models. When using AIC, we observe an even stronger tendency towards 
GTR+G, but a lower tendency towards rate heterogeneous models with 
fewer parameters like K2P+G. ModelRevelator however seems to be 
much more balanced, still favouring more parameter-rich, rate-hetero-
geneous models but also taking into account rate homogeneous models 
like GTR. 

3.9. Comparing ModelRevelator to ModelTeller 

ModelTeller (Abadi et al., 2020) is another recent, machine learning 
based approach for model selection, based on random forests. We per-
formed a comparison of ModelTeller and ModelRevelator using the 
Lanfear test data (for details on the test data, see Methods), to see how 
accurately each method was able to recover the model used to simulate 
an alignment. As ModelTeller supports 24 models of sequence evolution 
(JC, K2P/K80, F81, HKY, SYM, GTR, with modifications+I, +G, +I+G) 
and ModelRevelator supports 12 models of sequence evolution, for our 
comparison, we chose the intersection of what is supported by both 
methods (10 models of sequence evolution). When comparing Model-
Teller estimates to the true model of sequence evolution of the simulated 
data, we found that ModelTeller rarely returned the correct model of 
sequence evolution (Fig. 8; Supplementary Figs. 8-11). Furthermore, the 
confusion matrices show a strong dependency on the number of taxa in 
the MSAs (Supplementary Figs. 8-11), as the number of taxa increases so 
does the complexity of the models recommended by ModelTeller. 

Fig. 10 also shows that there is very little consistency in the models 
recommended by ModelTeller. In fact, the greatest success rate in 

Fig. 9. Robinson-Foulds distances to the simulation tree for the PANDIT-based simulations. Only MSAs for which use of ModelRevelator and ML+BIC led to 
discordant tree reconstructions were included. MSAs were binned into three groups according to sequence length. MSAs shorter than 100 bp were omitted. 

Table 3 
Estimates of model of sequence evolution with ML+BIC, ML+AIC and Mod-
elRevelator on 22,678 empirical alignments.   

ML+BIC ML+AIC ModelRevelator 

GTR+G 14,368 20,347 5,331 
K2P+G 3,848 919 1,318 
HKY+G 2,118 547 5,054 
TN93+G 1,906 699 4,385 
GTR 36 53 3,937 
Other 402 113 2,653  
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correctly identifying the simulation model came for GTR-simulated 
alignments, at just 6.17%. No particular error patterns are obvious, 
rather the models chosen by ModelTeller appear to be somewhat 
random. It is important to make clear the distinction between the two 
methods at this point. ModelRevelator is trained to identify the model 
that best fits the data. On the other hand, ModelTeller aims to choose the 
model that leads to the most accurate branch length estimates. It makes 
no claim on being able to recover the model used to simulate the data. 
Therefore, its failure to reliably do so is not unexpected and should not 
be viewed as a criticism of the method’s performance. The two methods 
have different goals, and this should be kept in mind when making 
comparisons between them. With this in mind we further compared the 
two methods based on the accuracy of the trees (in terms of both to-
pology and branch length estimates) that are inferred using the recom-
mended models. For topological accuracy we compared the normalised 
Robinson-Foulds distances between the simulation tree (TSIM) and the 
trees inferred under models recommended by ModelTeller (T̂MT) and 
ModelRevelator (T̂NN). Similarly, to compare branch length estimates 
we calculated the branch score distance (Kuhner and Felsenstein, 1994) 
instead of the normalised Robinson-Foulds distance. Supplementary 
Figures 12 and 13 indicate that both methods are similarly accurate with 
respect to both topology and branch length estimates. 

These results indicate that while ModelTeller and ModelRevelator 
both lead to comparable tree reconstruction and branch length estimates 
(for these data at least), only ModelRevelator is able to infer the sub-
stitution model used to simulate the data to a reasonable degree of 
accuracy. 

3.10. Time measurements for ModelRevelator vs ML+BIC 

Given a fixed input size, the computational expense of inference 
using a trained neural network is only dependent on the size of the 
network (number of parameters and operations). Consequently, the time 
required for performing inference with NNmodelfind and NNalphafind 
is independent of alignment size. Considering ModelRevelator in its 
entirety however, the same cannot be said. Prior to carrying out infer-
ence with the networks, the MSA needs to be preprocessed in order to 
convert it into the correct format for input. As described in the methods 
section, this entails calculating summary statistics for randomly sampled 
taxon pairs, and the computation cost of this step grows with sequence 

length. By comparison, computation time for ML+BIC theoretically 
grows linearly with sequence length, and exponentially with number of 
taxa in the alignment. In Fig. 11, we show the computation time for 
ModelRevelator (MSA preprocessing+NNmodelfind infer-
ence+NNalphafind inference) and the ML+BIC method. 

We observe that for small MSAs (100 bp to 1kbp and 8 to 16 taxa), 
ML+BIC is typically faster than ModelRevelator, but the difference is 
somewhat negligible. For large alignments (100kbp and 128 taxa) 
ModelRevelator is approximately 14 times faster than ML+BIC. In a real 
world application setting, highly parallel neural network inference 
would be performed on a GPU or several CPU cores. Also, for partition 
models, neural network batch inference would allow for inference of 
many partitions at the same time. 

4. Discussion 

The neural network-based ModelRevelator appears to perform 
comparably to the well-established approach of using ML inference and 
an information criterion (in this case BIC) to discriminate between 
models. Phylogenetic estimation was found to marginally improve using 
the neural networks compared to ML+BIC, with the additional benefit of 
significant potential savings in computation time, depending on the size 
of the alignment. 

Encouragingly, both neural networks which underpin Mod-
elRevelator were found to generalise well when tested on alignments 
that differed to those on which they were trained. No appreciable 
deterioration in performance was observed when performing estimation 
on longer sequences, or with larger numbers of taxa. Although we 
observe that, compared to ML+BIC, NNmodelfind does not extract in-
formation as well from longer alignments, this does not have an impact 
on tree topology. Additionally, our method outperformed ML+BIC (in 
terms of accuracy of phylogenetic reconstruction) when tested on the 
PANDIT alignments, a set of empirical alignments that the networks had 
not seen during training. This finding is of particular interest, as it is an 
indication that ModelRevelator can be used with confidence by the 
community more broadly. 

When comparing the estimates for ML-BIC, ML-AIC and Mod-
elRevelator on our aggregated EvoNAPS empirical dataset, we observe 
substantial divergence of the preferred model of sequence evolution for 
each method. ML-BIC and ML-AIC both strongly favour more parameter- 

Fig. 10. Results for ModelTeller on our Lanfear test data of 100 bp, 1kbp and 10kbp MSAs. The rows show the true simulation model of the Lanfear test data and the 
columns show the percent of alignments that ModelTeller estimated each model. The final column displays the number of alignments for which ModelTeller 
analysis failed. 
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rich models, whereas ModelRevelator tends to also select models with 
fewer parameters. This observation might be partially explained by the 
different ways rate heterogeneity is determined by ML-BIC and ML-AIC, 
compared to ModelRevelator. In general, performance of ML-BIC or ML- 
AIC is strongly dependent on conditions (Liu et al., 2023). Combined 
with the lack of ground truth for the EvoNAPS dataset, use of ML-BIC, 
ML-AIC or our proposed method ModelRevelator, the debate on the 
ideal method to use is still open. 

One area in which we envisage a particular benefit of our approach is 
in conjunction with partition models. Large alignments are often parti-
tioned by gene, and/or codon position, into hundreds or even thousands 
of independent blocks. PartitionFinder (Lanfear et al., 2012) relies on 
information criteria to merge blocks that can be effectively modelled 
together, and selects models of sequence evolution to be applied to each 
block. Selecting a model on a large number of blocks can be accom-
plished efficiently by NNmodelfind running on a GPU, but ML+BIC 
would require parallelisation on available CPU cores. Depending on the 
hardware available, it is likely that the ML+BIC would be significantly 
slower for large projects. 

Before deciding on the final architecture for NNmodelfind and 
NNalphafind, we experimented widely with a range of architectures. For 
NNmodelfind we tried conventional multi-layer perceptrons and con-
volutional neural networks as architectures, before settling on the final 
ResNet-18 architecture (He et al., 2016). For NNalphafind, we tried 
LSTMs with or without convolution layers for encoding, or with or 
without the attention layer. We found that both the convolution 
encoding layers and the attention layer were crucial for achieving 
reasonable estimates for alpha. 

Another aspect which lent itself to experimentation was how to 
represent MSAs of varying size and length so that they could be input to 
the networks. We restricted ourselves to a fixed input size for both 
networks, but experimented with different input sizes, as well as 
different ways of transforming variably-sized MSAs into a fixed size 
input. An obvious drawback of the fixed size input is that it is not always 
possible for the network to utilise all the information available in large 
alignments. A promising avenue to address this might be networks that 
accept graph-based representations of MSAs as their input, as explored 
in (Drucks, 2021). 

The only other tool currently employing a machine learning 
approach for model estimation is ModelTeller (Abadi et al., 2020). Our 
simulation-based analysis of ModelTeller suggests that it struggles to 
recover the actual model of sequence evolution, although that is not the 
primary aim of the software. When performing a direct comparison to 
ModelRevelator, we find that although the actual model of sequence 
evolution is rarely found by ModelTeller, there is no appreciable dif-
ference in the accuracy of the resulting tree reconstructions. However, 
the focus of both methods is different. ModelRelevator is concerned with 

estimating the model of sequence evolution and the shape parameter 
alpha of the Γ-distribution, and is trained and tested only on this basis. 
ModelTeller focuses on finding the model that yields the most accurate 
edge lengths, and is trained and tested on this basis. 

While some have argued that model selection is not a critical step in 
phylogenetic reconstruction (Abadi et al., 2020), this view is by no 
means the consensus (Hoff et al., 2016; Ripplinger and Sullivan, 2008). 
It may be true that phylogenetic inference is robust to misspecified 
substitution models in a majority of cases, nevertheless it is in the mi-
nority of cases where this is not the case that model selection can be 
pivotal. Where there are contentious topologies with conflicting evi-
dence, having confidence in a model selection methodology can add 
support to a hypothesis. 

Notwithstanding our extensive explorations, we recognise the 
available options for potential neural network architectures is vast. It is 
therefore likely that neural net architectures exist which might yield 
better performance than those we present here. This fact, combined with 
the recognised shortcomings of information theoretic approaches, and 
the absence of directly comparable tools currently available, suggests 
that machine learning approaches to model selection represent fertile 
ground for ongoing investigation and development. 
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