
D I P L O M A R B E I T

Enhancements in CGM Forecasting:
Robustness Against Domain Shifts and Safer

Predictions

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

András Sass
Matrikelnummer 01527290

ausgeführt am

Chair of Information Management
ETH Zürich

unter der Betreuung von

Prof. Dr. Michael Feischl

unter der Beratung von

Ph.D. Simon Föll

Wien, am 17.10.2023

T H E S I S

Enhancements in CGM Forecasting:
Robustness Against Domain Shifts and Safer

Predictions

written at

Chair of Information Management
ETH Zürich

under the supervision of

Prof. Dr. Michael Feischl

under the advisement of

Ph.D. Simon Föll

by

András Sass

Vienna, on 17.10.2023

Kurzfassung

Die weltweite Zahl der Diabetiker wächst, mit geschätzten 536 Millionen betroffenen Personen
im Jahr 2021 und Prognosen von bis zu 783 Millionen bis 2045. Eine genaue Glukoseprognose
ist im Diabetes-Management von großer Bedeutung, da diese rechtzeitig vor gefährlichen
Glukoseabweichungen warnt und somit Komplikationen verhindert. Obwohl zahlreiche
Glukosevorhersagemethoden existieren, sind diese selten auf klinisch relevante Vorhersagen
optimiert und die Herausforderungen im Zusammenhang mit Verteilungsverschiebungen
über Patientenpopulationen aufgrund von Faktoren wie neuen Diabetesbehandlungen führen
zu einer mangelnden Robustheit. Diese Arbeit adressiert diese kritischen Lücken und schlägt
verbesserte Modelle vor, welche klinisch bedeutsame Fehler minimieren als auch robuster
gegenüber sich verändernden Verteilungen sind.

Unser diverser Datensatz beinhaltet unterschiedliche Diabetes-Profile. Wir nutzen long short-
term memory (LSTM) und attention-basierte Ansätze für probabilistische continuous glucose
monitoring (CGM)-Prognosen und implementieren den Parkes error grid (PEG)-loss zur
Reduktion klinisch relevanter Fehler. Durch die Integration von gated-domain-units (GDUs)
wird die Modellrobustheit erhöht. Die Bewertung erfolgt sowohl über klassische Metriken
wie negative log-likelihood (NLL) und root-mean-square error (RMSE) als auch über den
PEG.

Die Verwendung des PEG-loss resultiert in einer signifikanten Reduktion von medizinisch
relevanten Vorhersagefehlern bei beiden Architekturen. Der Einsatz von GDUs verbes-
sert die Performance der Vorhersagemodelle für Individuen mit zuvor nicht gesehenen
Diabetes-Behandlungen. Die GDU-Modelle zeigen eine verbesserte Robustheit gegenüber
Verteilungsverschiebungen der Daten und übertreffen Ensemble-Modell-Benchmarks. Die-
se Modelle erhöhten auch die Interpretierbarkeit der Daten und beleuchten verschiedene
Subdomänen innerhalb des Feature-Raums.

Insgesamt stellt diese Arbeit einen bedeutenden Schritt zur Entwicklung von CGM-Prognose-
modellen dar, die nicht nur eine hohe technische Leistung aufweisen, sondern auch klinischer
Signifikanz gerecht werden. Obwohl die Modelle lobenswerte Domänengeneralisierungsfä-
higkeiten aufweisen und sie an vielfältige Diabetes-Behandlungen anpassbar machen, sind
sie nicht ohne Limitationen. Die inhärenten Komplexitäten der CGM-Daten stellen einige
Herausforderungen dar, welche zusätzliche Aufmersamkeit benötigen. Dennoch ebnen die Er-
gebnisse den Weg für vielversprechende zukünftige Forschungen und praktische Anwendungen
und könnten das Diabetesmanagement für eine vielfältige Bevölkerung verbessern.

Abstract

The global diabetic population is increasing, with an estimated 536 million individuals
affected in 2021 and projections rising to 783 million by 2045. Accurate glucose forecasting
is paramount in diabetes management, as it provides timely warnings against dangerous
glucose deviations, thus preventing complications ranging from retinopathy to death. While
numerous glucose prediction methods exist, they are seldom optimized towards clinically
relevant predictions and the challenges related to distribution shifts across patient populations
due to factors like new treatments lead to a lack of robustness. This research addresses
these critical gaps, proposing enhanced models that are both safer, by minimizing clinically
consequential errors, and more robust, accommodating shifting distributions in glucose
monitoring data.

In our study, we use a diverse dataset of individuals with varying diabetes profiles. We
employ an LSTM and an attention-based architecture for probabilistic CGM forecasting.
We introduce the PEG loss to train deep learning architectures towards making less clinically
relevant errors. Integration of GDUs ensures model robustness. Model performance is
assessed using both classical metrics, i.e., NLL and RMSE, as well as clinical error evaluations
based on the PEG.

Our novel PEG loss function, tailored for reducing clinically significant errors, demonstrates
its efficacy when applied to both LSTM and attention-based models, achieving a marked
reduction in clinically relevant prediction errors. This is achieved without a significant
increase in computational complexity. The adaptability offered by the PEG loss enables
performance optimization across various clinical scenarios. Furthermore, using gated-domain-
units (GDUs) enhances domain generalization capabilities to new treatments. The integrated
gated-domain-units (GDU) models exhibit improved robustness against data distribution
shifts, surpassing ensemble model baselines in performance. These models also enrich model
interpretability, shedding light on diverse subdomains within the feature space.

Overall, the research presents a significant step towards developing CGM forecasting models
that not only offer high technical performance but also adhere to clinical significance.
While our models show commendable domain generalization capabilities, making them
adaptable to diverse diabetes treatments, they are not without limitations, particularly
concerning the inherent complexities of CGM data and challenges in model design as well as
evaluation. Nonetheless, the findings pave the way for promising future research and practical
applications, potentially improving diabetes management for a diverse population.

Acknowledgement

Words cannot express my gratitude to my supervisor, Ph.D. Simon Föll, for his invaluable
patience and feedback. I want to thank Ph.D. Eva van Weenen, who generously provided
knowledge and expertise. I also could not have undertaken this journey without my supervisor
from TU Wien, Prof. Dr. Michael Feischl, who generously guided my efforts from my home
university.

I am also grateful to my parents, girlfriend, and my brother. Their belief in me has kept my
spirits and motivation high during this process.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 17.10.2023
András Sass

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Related work . 2
1.3. Research questions and approach . 3

2. Materials and methods 5
2.1. Glucose data from multiple domains . 5
2.2. Probabilistic CGM forecasting . 8
2.3. Development of the Parkes error grid loss for clinically relevant predictions . 14
2.4. Domain generalization in CGM forecasting with gated-domain-units 17
2.5. Implementation overview . 21

3. Results 23
3.1. Clinical relevance of the Parkes error grid loss 23
3.2. Domain generalization capabilities . 25
3.3. Ablation study . 26

4. Discussion 30
4.1. Interpretation of results . 30
4.2. Limitations . 35

5. Conclusion and outlook 38
5.1. Conclusion . 38
5.2. Outlook . 39

Bibliography 41

A. Appendix 45

G

1. Introduction

1.1. Motivation

Diabetes mellitus, a chronic condition characterized by an inability of the body to sufficiently
produce or effectively utilize insulin, is an increasingly prevalent health concern [1]. In
2021, the International Diabetes Federation reported an estimated 536 million individuals
aged between 20 and 79 years old affected by this condition, with projections rising to 783
million by 2045 [2]. Effective management of diabetes necessitates consistent maintenance
of blood glucose (BG) concentration within specified limits through behaviors such as BG
monitoring, insulin administration, and dietary control. Deviations from these thresholds
can lead to hypo- or hyperglycemia, conditions which predispose individuals to a spectrum
of complications, including retinopathy, nephropathy, neuropathy, coronary heart disease,
cerebrovascular disease, peripheral vascular diseases, unconsciousness, and death [3].

Recent advancements in therapeutic strategies seek to enhance glycemic control, with notable
efforts directed towards the development of an artificial pancreas (AP)—a fully autonomous
glucose management system designed to maintain BG and consequently mitigate associated
health risks [4, 5]. CGM sensors, which enable the continuous tracking of interstitial fluid
glucose concentration, are integral components of these modern diabetes treatments. Despite
their utility, most treatments relying on CGM data suffer from latency, inherent in the
delayed response of glucose and insulin action, and the physiological lag of the CGM readings
behind actual BG levels [4]. Thus, the imperative need for accurate CGM forecasting models
emerges, aimed at reducing treatment response time and maintaining BG within safe ranges
as elucidated by Ma et al. [5].

The first problem we are tackling in this work is the minimization of clinically consequential
CGM prediction errors, such as falsely predicting the rise of blood glucose when it is
already dangerously low. Avoiding clinically consequential errors results in overall safer
CGM predictions. While considerable work has been invested in the construction of glucose
prediction models leveraging CGM data, the primary focus has largely been on enhancing
technical performance rather than mitigating clinically consequential errors [6, 7]. Erroneous
forecasts in conditions of hypo- and hyperglycemia can result in grave health outcomes
[3], which underscores the importance of our endeavour to develop a framework capable of
identifying models that minimize such critical errors.

Secondly, we are addressing the problem of distribution shifts in the population’s CGM data,
thus making prediction models more robust and more widely applicable. As stated by Vapnik
[8], statistical learning algorithms fundamentally depend on the assumption that source and
target data are independent and identically distributed (i.i.d.). Thus, an agent trained on

1

1. Introduction

source data typically experiences substantial performance declines when confronted with
target data that is not identically distributed [9]. This scenario is called distributional shift
or domain shift. A recent example of a case in medicine where a domain shift resulted
in a significant performance drop is described by Wong et al. [10]. A proprietary sepsis
prediction model suffered substantial performance losses when applied in hospitals that
were not part of the development process. Other cases of domain shifts in medical machine
learning applications lead to the publication of potential sources of distribution shifts in
healthcare settings [11]. One of the potential sources is the introduction of new treatments or
standards of care. Hence, in the context of the ongoing evolution of therapeutic measures for
individuals with diabetes, it is reasonable to assume that the population’s CGM trajectories
exhibit a shifting distribution. Existing models, primarily trained and tested using CGM
data central to the used datasets, are vulnerable to distribution shifts induced by novel
treatments. This necessitates rigorous evaluation and enhancement of model robustness
against distribution shifts when developing glucose prediction models to prevent potential
performance drops that could have serious medical implications for large diabetic populations.
Our work, thus, prioritizes the development of models with robust generalizability to unseen
domains, such as novel treatment protocols, underscoring the critical importance of our
research in this evolving landscape of diabetes management.

1.2. Related work

Extensive research has been conducted in recent years focusing on glucose prediction,
employing a range of techniques and methods [6, 7, 12–24]. Existing literature categorizes
CGM forecasting models into three predominant categories: physiology-based (knowledge-
based), data-driven (empirical-based), and hybrid approaches—a combination of the previous
two [6, 7]. Recent findings suggest that data-driven models consistently outperform white-box
models with well-structured physiological parameters, even when individualized, indicating
their superiority in glucose prediction tasks [24].

The dynamics of BG are influenced by several factors including carbohydrate intake, insulin
administration, physical activity, and stress [5]. The integration of such factors as additional
inputs improves the performance of prediction models [25]. However, the acquisition of such
information imposes an additional burden on users in real-world scenarios [23], motivating
a focus on prediction models that rely solely on CGM data [7]. Among these, the most
commonly employed for CGM forecasting are neural network models. LSTM models,
a particular type of recurrent neural network (RNN) specifically designed for sequence
modeling, have been widely utilized, outperforming traditional machine learning models like
auto-regressors, random forests, and support vector machines [18–20, 23]. Attention-based
architectures, which have demonstrated superior performance in various sequence-to-sequence
modeling tasks [26], have led to the design of specific architectures for time series forecasting
[27–29]. These architectures, however, have yet to be employed in CGM forecasting.

Error-grid-analysis, developed to assess the accuracy of BG meters such as CGM devices,
is commonly used for patient self-measurement [30, 31]. In this method, self-monitoring
device measurements are compared to the actual BG levels obtained via blood samples, with

2

1. Introduction

the resulting two-dimensional points falling within specific risk zones within a grid. This
analysis also facilitates the assessment of the clinical relevance of CGM forecasting models
[7], thus providing a methodology to evaluate model errors in terms of clinical severity ex
post. To the best of our knowledge, only one previous study [15] has attempted to measure
and improve a model’s clinical performance during model training, aiming to identify models
with increased clinical relevance. However, the Clarke error grid (CEG) utilized in their
methodology is outdated, suggesting the need for newer error grids such as the PEG [31] for
a more accurate model identification process.

In recent years, substantial research has been conducted on domain generalization (DG) in
statistical learning, leading to the development of numerous methods to increase machine
learning models’ out-of-distribution (OOD) test performance, and thereby enhancing their
robustness against domain shifts [9]. Ensemble learning is a commonly studied DG method,
wherein a prediction is derived from an aggregation of multiple learners’ predictions. This
method has demonstrated improved OOD performance in several tasks [32, 33]. Notably, the
GDUs developed by Föll et al. [33] offer a novel approach for averaging predictions, based on
the premise that distributions are composed of elementary distributions, and that weighted
averaging should consider a given sample’s similarity to learnable domains representing
these elementary distributions [33]. This method outperformed state-of-the-art DG methods
across a variety of DG tasks. Within the realm of CGM forecasting, however, the problem
of domain shifts has received limited attention. While transfer learning methods proposed in
Yu et al. [16] and Luo and Zhao [17] aim to adapt models to new individuals for whom only
limited CGM data is available, they are not concerned with the issue of large-scale CGM
data domain shifts in the population of diabetics that can occur with the introduction of
new treatments like a novel insulin pump or type of insulin. Our analysis of prior works
shows a research gap, which is the identification and reduction of performance drops of
CGM prediction models due to large-scale domain shifts resulting from the development of
diabetes treatments.

1.3. Research questions and approach

Probabilistic forecasts play a vital role in quantifying the uncertainty in predictions and
are key components of decision-making [34, 35]. Therefore, predicting future CGM levels
involves not only generating accurate forecasts but also understanding the model’s certainty
about each prediction. We consider probabilistic forecasts [20, 29], which take the form of
probability distributions over future quantities, thereby providing insight into the model’s
certainty about its predictions. Aliberti et al. [18] highlighted that the common practice
until now is to calibrate models to individuals. While this individualized approach might
lead to performance gains for some individuals, it requires a significant amount of individual
data and individual calibration, and also carries the risk of overfitting. Thus, our choice is to
train our models on a large heterogeneous dataset that includes individuals of various ages,
using different devices, and with different types of diabetes and treatments. According to
[12, 18], this approach leads to more robust models that can be applied to new individuals
immediately.

3

1. Introduction

This thesis aims to bridge the research gaps identified in CGM forecasting, as substantiated
by the following two research questions:

RQ1 How can we integrate the clinical severance of erroneous predictions into a
loss function for CGM forecasting deep learning models and to what extent
does this loss reduce the amount of clinically severe errors?

RQ2 To what extent can existing robust deep learning methods be utilized to
make existing CGM forecasting models robust against distribution changes
resulting from the population’s diabetes treatment?

To address the first question, we develop a novel loss function, the PEG loss. This loss
function aligns with the clinical severity of a model’s prediction errors. Our approach is
founded on the idea of optimizing the models towards making fewer clinically severe errors,
given that neural networks’ training procedure is grounded on gradient descent variants. We
apply the PEG loss to the state-of-the-art LSTM architecture for CGM forecasting from [20]
and an attention-based architecture optimized for time series forecasting [29] to measure the
change in the amount of clinically relevant errors. We also measure the added complexity
and classical forecasting metrics with and without the novel PEG loss.

The second research question is addressed by enhancing the DG capabilities of our models
using GDUs. Specifically, we test our models’ generalization ability in situations where no
training data is available from individuals undergoing a certain treatment type. We consider
several modes of training for the GDU models and compare the generalization performances
to a ensemble model baseline. Finally, we measure the added complexity and interpret the
learned GDU bases.

The structure of this thesis is as follows: Chapter 2 introduces the dataset, models, metrics,
and training procedures. Chapter 3 presents the design of the experiments and their
results, along with an ablation study. Chapter 4 offers an interpretation of the results and
outlines the limitations. Finally, Chapter 5 concludes the thesis and suggests future research
directions.

4

2. Materials and methods

This chapter presents all materials and methods used in this work. Specifically, we will
describe the dataset and preprocessing, the CGM forecasting task, models, loss functions as
well as the training and evaluation procedures used.

2.1. Glucose data from multiple domains

2.1.1. Data description

The dataset analyzed in this study comprises a total of 29,371 days of raw CGM readings,
from 370 individuals diagnosed with diabetes mellitus. The Department of Diabetes,
Endocrinology, Nutritional Medicine, and Metabolism at Inselspital, Bern, Switzerland,
collected this data during four open-label field studies from 2013 until 2021. Table A.1
describes and lists the individual participants’ characteristics.

For inclusion in the studies, participants needed to be older than 16 years and diagnosed
with diabetes mellitus. The studies allowed participants to take part in multiple trials,
and each participant was equipped with a CGM sensor. Participants’ measurements were
excluded from the final dataset if they failed to provide CGM readings for at least 50% of
the data collection period.

The data was organized into four domains, based on treatment type, as determined by
Inselspital’s medical staff. These treatment types are basal insulin only (BI), multiple
daily injections (MDI), continuous subcutaneous insulin infusion (CSII), and artificial
pancreas (AP) treatments, detailed in A.1. As evident from Figure 2.1 and Table 2.1,
the CGM data exhibits variance across these treatment types. Despite some similarities,

Table 2.1.: CGM data characteristics across domains. The four domains display clinically relevant differences in
their characteristics, with the AP domain differing the most from the other domains. The largest values
are highlighted in bold. (BI = basal insulin only, MDI = multiple daily injections, CSII = continuous
subcutaneous insulin infusion, AP = artificial pancreas)

all BI MDI CSII AP

days of data 29371 3892 12873 9229 3377

average CGM 8.85 9.06 8.97 8.81 8.23

glucose variability 3.61 3.77 3.76 3.54 2.86

time in range [%] 35.53 62.24 62.31 64.44 75.32

hypoglycemia [%] 3.86 3.78 4.35 3.92 1.95

hyperglycemia [%] 31.67 33.98 33.34 31.64 22.73

5

2. Materials and methods

structural differences are discernible, with the AP domain diverging most significantly
from the others. As patients transition to new, previously unencountered treatment types,
the importance of developing forecasting systems robust to these distribution shifts is
underscored. Hence, our study emphasizes analyzing forecasting models for their robustness
against distribution shifts.

Figure 2.1.: Average daily CGM curves across domains. As new treatments are a potential source of distributional shifts
[11], the apparent difference in average daily CGM trajectories supports the claim that distributional shifts
are present in the CGM data. We omitted further methodology to indicate differences in distributions,
such as the Kolmogorov-Smirnov test or the Wasserstein metric, owing to sufficient visual evidence and
the expertise of Inselspital’s medical staff. (BI = basal insulin only, MDI = multiple daily injections,
CSII = continuous subcutaneous insulin infusion, AP = artificial pancreas)

2.1.2. Data preparation

Due to the data collection under field conditions and the large size of the dataset extensive
data preparation was necessary. Through data exploration five types of artifacts were
identified: Scans, backward time jumps, pressure-induced sensor attenuations (PISAs),
missing measurements, and irregular sampling times. These artifacts were addressed with
the following different strategies maximizing data quality whilst minimizing data loss.

Figure 2.2.: Example of an excluded in-
consistent scan measurement.

Scans. Individuals equipped with a FreeStyle Libre sen-
sor had the capability to execute unscheduled measure-
ments, referred to as scans, in addition to the regular,
periodic measurements taken by the CGM sensor. The
introduction of these scans led to discrepancies within the
data sequence. This manifested as CGM measurements
that did not align with the surrounding regular readings.
At times, these inconsistencies even surpassed physiolog-
ical feasibility thresholds, indicating readings that were
not just irregular but also potentially implausible. Due to
these issues, we made the decision to exclude these scans
from our analysis. Consequently, this decision led to a
data volume reduction of 3.3%.

6

2. Materials and methods

Figure 2.3.: An instance of a backward
time jump leading to overlapping time
series. Such artifacts constitute 0.7% of
the total measurements and were removed
during data preparation.

Backward time jumps. Medtronic sensor-derived CGM
readings were not chronologically sequenced by their re-
spective timestamps, but by their recording order. This
sequence irregularity, attributed to factors such as daylight
saving time, travel across time zones, or device time setting
errors, resulted in overlapping time series. Backward time
jumps, i.e., measurements timestamped earlier than their
preceding reading, were identified. Together with their
immediately previous readings, these instances established
time intervals in which measurements reported CGM lev-
els for different moments. These intervals were removed
from the dataset to maintain the time series’ sequential
integrity, resulting in a 0.7% data volume reduction.

Figure 2.4.: Example of a detected PISA.
The detected PISAs were removed, result-
ing in CGM readings that are represent-
ing the true BG of the individuals more
reliably and a data loss of 5.1%

Pressure-induced sensor attenuation (PISA). CGM
measurements are prone to artifacts, resulting from pres-
sure applied to the site of the sensor [36]. Generally, the
start of a PISA is characterized by a sudden decrease
in CGM levels that violate physiological rate-of-change
limits. The end of a PISA generally occurs at least 15
minutes later and has a negative rate of change. Several
methods to identify PISAs exist [37–39] and all of them
come with their respective (dis-)advantages. Considering
that a model in production should be able to perform the
same data cleaning steps as during model training, the
cleaning algorithm has to be able to classify each new
CGM reading from a live data stream as being not PISA,
the onset of PISA, or the end of PISA, all the while not
excluding a prohibitive amount of measurements. The
algorithm from Baysal et al. [38] fulfills these criteria and has therefore been chosen in this
case. The detection algorithm uses two sets of rules to detect the entering and leaving
of a PISA event. From the four modes of parameter settings, which define the cleaning
algorithm’s aggressiveness, the nominal set of parameters was used for a balanced trade-off
between the amount of true and false positive PISAs classifications (for details see A.2). By
applying this cleaning method 5.1% of measurements were excluded from the dataset.

Missing measurements. By nature and through the previous cleaning steps, temporal gaps
between the CGM measurements were present. To ensure informative inputs and measurable
targets for modeling, temporal gaps larger than one hour were marked. The data was then
cut into windows with a duration of 24 hours such that the marked temporal gaps were not
included in any of the resulting 24-hour windows, ensuring that the windows did not contain
temporal gaps larger than one hour. The time of each window’s start was randomized to
ensure that the samples represent the population’s CGM trajectories throughout the whole

7

2. Materials and methods

day. Each window represents a sample encapsulating both the input and the subsequent
target period.

Irregular sampling times The CGM devices produced measurements at irregular sampling
times as shown in Figure 2.5. In order to obtain data with a constant 5-minute sampling
time two imputation methods were implemented: Gaussian process regression (GPR) and
linear interpolation. The initial method entailed training and fitting a Gaussian process (GP)
to the CGM data. Despite rigorous effort considering numerous kernel and hyperparameter
combinations, this approach failed to provide viable interpolations and was consequently
abandoned (see A.3 for further discussion). To avoid look-ahead bias, the inputs and
targets were re-sampled separately. To circumvent look-ahead bias, inputs and targets were
re-sampled independently. The interpolated CGM measurements were then re-sampled at
5-minute intervals to ensure consistent CGM value count for each sample.

Figure 2.5.: An example of linear interpolation of measurements and re-sampling of input and target data. The
measurements, originating from a FreeStyle Libre sensor, are sampled approximately every 15 minutes,
while inputs and targets are re-sampled precisely every 5 minutes. To prevent look-ahead bias, the last
input point always aligns with a measurement.

2.2. Probabilistic CGM forecasting

2.2.1. Problem statement

Based on previous CGM forecasting works surveyed in Oviedo et al. [6] and Woldaregay
et al. [7] we aim to forecast CGM values 30, 60 and 120 minutes into the future in 5-minute
increments based on the CGM values of the last 6 hours. With the input duration of
6 hours and prediction horizons (PHs) of 30, 60, and 120 minutes, along with 5-minute
interval sampling, the input data falls into the set X ⊆ R72 while the output resides in
the set Y ⊆ Rh, with target lengths given by h ∈ 6, 12, 24. For a given input-target-
pair (x, y) ∈ X × Y a probabilistic forecasting the model f maps the input x ∈ X to a
probability distribution f(x) = P over Y. The objective is to identify a model f such that
for every x ∈ X the corresponding target y is likely to be sampled from the probability
distribution f(x) = P to which x is mapped. In the context of CGM forecasting, it has been
demonstrated that independent normal distributions are efficacious for this purpose [20, 40].

8

2. Materials and methods

Since f(x) = P = N (µ, Σ), with µ, σ2 ∈ Rh and Σ = diag(σ2), is uniquely defined by µ
and σ2 we can identify the space of all independent normal distributions with Rh × Rh

+, the
space of possible values for µ and σ2. As a result, the models under consideration adopt the
form

f : X → Rh × Rh
+ (2.1a)

x �→ (µ, σ2) (2.1b)

A loss function Ly(µ, σ
2) is utilized to measure the unlikelihood of y ∈ Y being drawn from

N (µ, , diag(σ2)). The chosen model f ∈ F resides within a model space F . The potential
model spaces F are discussed in 2.2.2 and 2.4.1, with the loss L being represented by the
sum of Gaussian NLLs, elaborated on in 2.2.3.

With the aforementioned notation, the task of probabilistic CGM forecasting can be stated as
a special case of empirical risk minimization (ERM), where we seek to find an optimal model
within the given model space, that minimizes the mean loss for the provided dataset:

Definition 2.2.1 (Empirical risk minimization). For a given training set with n ∈ N samples
D ⊆ X × Y and a model space F , find a model f∗ ∈ F that minimizes the empirical risk
Remp(f) :=

1
n

�
(x,y)∈D Ly(f(x)) if a minimum exists, i.e.,

f∗ = argmin
f∈F

Remp(f).

2.2.2. Baseline models

Tackling the task of probabilistic CGM forecasting, we assume a general model f of the form
(2.1). This section details three models: the t−1 model, an LSTM model, and a transformer
model adapted for time series forecasting. The LSTM and transformer architectures represent
model spaces in the sense of 2.2.1, since they are neural network architectures and as such
they come with tunable parameters, where every set of given parameters constitutes a model
within the respective model space.

Baseline t−1. The model t−1 is a simple model that sets the stage for evaluating the
improvements brought in by the more complex models. It is motivated by the naive forecast
which is used as a baseline in non-probabilistic forecasting [41], but adapted to incorporate
a prediction for the uncertainty based on the uncertainty of the naive forecast on the
training data. Let Dtrain ⊆ D ⊆ X × Y denote a training set and for an input x ∈ X let
t−1(x) = (µ(x), σ2) be the baseline model’s output. At each prediction time i = 1, . . . , h the
mean prediction µi(x) is the last known input value and the variance is the variance over
the train set Dtest, i.e.,

µ(x)i := x72

σ2
i :=

1

|D|
�

(v,w)∈Dtrain

(µ(v)i − wi)
2

for i = 1, . . . , h.

9

2. Materials and methods

LSTM model architecture
Layer type Output shape

LSTM (256)
Linear (512)
ReLU (512)
Linear (256)
ReLU (256)
Linear (2, h)

Softplus (2, h)

Figure 2.6.: The LSTM model’s ar-
chitecture for probabilistic CGM
forecasting. It was developed
by Martinsson et al. [20] through
hyperparameter optimization and
it showed state-of-the-art perfor-
mance while being computationally
inexpensive to train.

Long short-term memory (LSTM) model. The original
LSTM architecture was developed by Hochreiter and Schmid-
huber [42] to learn short and long-term dependencies in time
series data. This property was the choice of an LSTM model
for the task of CGM forecasting. The LSTM architecture we
use was developed by Martinsson et al. [20], where a grid search
over the LSTM hyperparameter space was performed to derive
an optimal architecture in terms of RMSE on the Ohio T1DM
dataset [43] for probabilistic CGM forecasting. The architec-
ture is presented in Table 2.6. It incorporates a single LSTM
layer with a hidden state size of 256. The output of the LSTM
layer is fed through a feed-forward network with two fully-
connected layers. The two layers’ output sizes are 512 as well
as 256, respectively and each is followed by a rectified linear
unit (ReLU) activation. Finally, the resulting feature vector
x̃ ∈ R256 is fed into the regression head. In the regression head
the feature vector x̃ is duplicated and both copies are linearly
transformed to match the target length h, where h ∈ {6, 12, 24}
represents the PH (one prediction every 5 minutes), resulting
in two vectors o1, o2 ∈ Rh. The first vector’s entries are the
predictions of the means µ = o1, whereas to the second vector
o2 a softmax function softmax(x)i := exi /

��h
j=1 e

xj

�
is ap-

plied to produce the non-negative predictions of the variances
σ = softmax(o2). This architecture is used as a standalone
model and as a feature extractor (FE) (without the regres-
sion head) for the more advanced ensemble and GDU models
discussed in 2.4.1.

Table 2.2.: The transformer model’s architecture
for probabilistic CGM forecasting. The archi-
tecture is based on the transformer model (TM)
developed by Li et al. [29].

TM architecture
Layer type Output shape

Concatenation (72, 9)
1D Convolution (72, 9), (72, 9), (72, 9)
Multiplication (72, 72), (72, 9)

Softmax (72, 72), (72, 9)
Multiplication (72, 9)

Linear (72, 9)
Normalization (72, 9)

Linear (72, 36)
ReLU (72, 36)
Linear (72, 9)
ReLU (72, 9)

Normalization (72, 9)
Linear (2, h)

Softplus (2, h)

Transformer model (TM). The adapted trans-
former architecture we use was first introduced by Li
et al. [29] in a successful attempt to make the classic
transformer architecture [26] less prone to anomalies
and thus a viable option for time series forecasting.
We utilize the convolutional self-attention presented
in Li et al. [29]. The transformer architecture was
modified for probabilistic CGM forecasting and the
modified version is depicted in Figure 2.7. The main
modification to the TM as presented in Li et al. [29]
is that the output of the model is transformed into
two vectors µ, σ instead of one and that the sparse
propagation of information is not utilized in this work,
because of the shorter input length of our data. The
architecture consists of three parts. First, the inputs
are embedded using learnable position embeddings, since the following attention module

10

2. Materials and methods

Figure 2.7.: The transformer model architecture for probabilistic CGM forecasting. The architecture consists of three
main parts: The input time series is processed by the learnable position embedding before it runs iteratively through
the convolutional attention block. Lastly, the outputs are transformed by the regression head to fulfill the requirements
of CGM forecasting.

of the architecture is position-insensitive. The learnable position embeddings are learnable
parameters WPE ∈ Rn×p of length p for every one of the n input positions, that are con-
catenated to the input entries x = (x1, . . . , xn)

T ∈ Rn to capture the notion of each input’s
position in the time series [44], resulting in the embedding matrix X ∈ Rn×(p+1). Following
is the attention module stacked N times. It utilizes multi-head convolutional self-attention
with H head, which is briefly described here. For every head i ∈ {1, . . . , H}, the module’s
input matrix X is simultaneously convolved along the temporal dimension with kernel size
k, stride s, p+ 1 channels, and the necessary padding to obtain the attention head’s query
Qi ∈ Rn×(p+1) and key Ki ∈ Rn×(p+1) matrices. The value matrix Vi = W V

i X ∈ Rn×(p+1)

is computed as the matrix product between the learnable parameters W V
i ∈ Rn×n and X.

These linear operations are followed by the scaled dot-product attention

Oi = Attention(Qi,Ki, Vi) = softmax

QiK

T
i�

(p+ 1)
·M

�
Vi,

with M ∈ Rn×n a lower triangular mask matrix that filters out rightward attention to
avoid future information leakage. The attention matrices from every head O1, . . . , OH

are concatenated and projected to the size of the attention module’s input X ∈ Rn×(p+1)

11

2. Materials and methods

to produce the attention. The module’s input X is added to the attention and layer
normalization is performed [45]. The normalized attention is fed through a 2-layer perceptron
with output dimensions (n, 4(p + 1)) and (n, (p + 1)) which are separated by a ReLU
activation. To the perceptron’s output, the normalized attention is added before another
layer normalization concludes the attention module. Lastly, the same regression head as for
the LSTM model is applied.

The novelty from the TM used in this work is convolutional self-attention, which takes a
convolution for the query and key in the attention mechanism as described and depicted in
2.7. Whether an observed point is an anomaly, change point or part of a pattern is highly
dependent on its surrounding context, which is captured through the convolution [29]. The
application for CGM forecasting is further motivated by the superior performance of TM
over other state-of-the-art time series forecasting algorithms on a variety of datasets. The
selection of hyperparameters is based on the experiments and ablation study presented in the
paper. The input length of n = 72 stems from the given CGM data and for the dimension
of position embeddings p = 8 is set. The convolution size is k = 4 with stride s = 1. The
number of attention heads is H = 1 and the attention module is stacked once, N = 1.

2.2.3. Evaluation measures

Given a training and test split of the dataset D containing input-target CGM samples, each
model’s efficacy was evaluated on the test set using several metrics to ascertain both its
clinical and technical significance.

Root-mean-square error (RMSE). The RMSE is the predominant metric employed in
CGM prediction as it provides a straightforward and interpretable measure of model perfor-
mance [7, 20, 40, 46, 47]. RMSE quantifies the error between targets and predictions as for

two vectors y, ŷ ∈ Rh it is defined as L(y, ŷ) :=
��h

i=1(yi − ŷi)2. In the case of probabilistic
forecasting with a multivariate Gaussian distribution of the form N (µ, Σ) as a model’s
output, the prediction of y is defined as the mean vector of the distribution ŷ := µ ∈ Rh.
We used the RMSE to evaluate our trained models’ technical performances on the hold out
test data. Note, that the RMSE does not make use of the predicted variance σ2. We report
it since it serves as an intuitive metric which is regularly used in CGM prediction research
[18, 19, 23].

Negative log-likelihood (NLL). The Gaussian negative log-likelihood constitutes a measure
of how unlikely it is for a given vector y ∈ Rh to be sampled from a Gaussian distribution
N (µ, diag(σ2)) with (µ, σ2) ∈ Rh × Rh

+. The NLL loss of a model’s prediction (µ, σ2)
w.r.t. a given target vector y is derived from the NLL Ly(µ, σ

2) by dropping constants and
introducing a variance clamp ϵ = 1e−6 for numerical stability. The NLL loss is defined

12

2. Materials and methods

as

Ly(µ, σ
2) :=

1

2

h�
i=1

log
�
max(σ2

i , ϵ)
�
+

(µi − yi)
2

max(σ2
i , ϵ)

(2.2)

and we used it for model training, validation as well as testing.

Error grid analysis. CGM devices are prone to inaccuracies and to gauge the clinical
precision of these devices, error grid analyses are performed. in which the true glucose values
are plotted against the measured CGM values. his process entails plotting the actual glucose
values against the CGM measurements, with each measurement falling into one of several
predefined areas on the two-dimensional plane, which signify the clinical significance of the
measurement error.

Introduced in Clarke et al. [30], the CEG outlines five zones as shown in Figure 2.8a:

A clinically accurate,

B incorrect, but benign treatment might be given,

C an over corrective treatment might be given,

D an error was not detected,

E severe erroneous treatment might be given.

The PEG shares the same zone labels as the CEG, but the zone boundaries were redefined to
more accurately reflect the medical outcomes of measurement errors [31], as depicted in Figure
2.8b. Conducting an error grid analysis is a standard practice in CGM prediction, measuring
the percentages of predictions falling into zones A-E to yield a numerical assessment of the
clinical severity of errors made by the models [6, 7]. We evaluated the clinical performance
of the trained models on the reserved test data using the percentages per PEG zone, and
based on the PEG, we developed a novel PEG loss to enhance the optimization towards
clinically relevant CGM prediction models.

(a) The CEG regions. (b) The improved PEG regions.

Figure 2.8.: The Clarke error grid (CEG) and Parkes error grid (PEG) regions, describing the clinical severity of
errors in CGM measurements.

13

2. Materials and methods

2.3. Development of the Parkes error grid loss for clinically
relevant predictions

On a non-trivial task, every model makes erroneous predictions. Depending on the use case,
but certainly true when the model’s outputs inform medical interventions, the errors the
model makes, can be categorized by severance. Therefore it is common practice to employ
loss functions, which take into consideration the severance of a prediction’s error [15, 48].
This approach holds particular relevance for CGM forecasting, as inaccurate prediction of
high CGM values during a hypoglycemic episode could prompt interventions that further
decrease blood glucose levels. Since by definition the NLL does not differentiate between
the direction of an error, there is a need to identify a loss function that does.

2.3.1. Introduction of the Parkes error grid loss

In pursuit of clinically relevant models, some research [15] has utilized the CEG to develop
a loss function for model training, thus quantifying the clinical implications of a model’s
predictions. Given that the CEG is now outdated [31], we opt for the more applicable PEG
as the foundation for our novel loss function formulation.

In search of a loss function that is interpretable and compatible with the setting of proba-
bilistic CGM forecasting, a loss of the form

L(y, (µ, σ)) = Ly(µ, σ
2) + λPEGL̂PEG(y, µ)

is desired, were Ly is the NLL loss (2.2), λ > 0 is a weight and

L̂PEG(y, µ) :=
1

h

h�
i=1

LPEG(yi, µi)

is an additional term based on the PEG. We derive desired properties of the PEG loss LPEG

from the desired properties of loss functions in regression tasks [49]. The desired properties
are the following:

(i) It takes its global minimum 0 on the diagonal µ = y, i.e., LPEG(y, y) = 0 for all
y ∈ R+ and LPEG(y, µ) ≥ 0 for all y, µ ∈ R+,

(ii) it grows in value with the clinical danger of the prediction µ,

(iii) it is continuous and piecewise differentiable in the direction of the prediction µ to
ensure that variations of gradient descent are applicable,

(iv) its partial derivative with respect to µ, namely ∂LPEG
∂µ grows in absolute value with

the clinical danger of a prediction to result in fast convergence during model training,

(v) the calculation of the loss and its partial derivative with respect to µ should be
computationally efficient.

We denote with A+, B+, C+, D+, E+ the subareas above and with A−, B−, C−, D− the
subareas below the diagonal. Additionally, we define the slopes 0 ≤ sA ≤ sB ≤ sC ≤ sD ≤ sE .

14

2. Materials and methods

Candidates for the PEG loss LPEG are the functions that are continuous in µ-direction and
are zero on the diagonal. The loss is uniquely defined by enforcing that for every point (y, µ)
and the subarea it is an element of X ∈ {A±, B±, C±, D±, E+} the slope in µ-direction
should be ±sX . The visualization in Figure 2.9 outlines the alignment with the PEG and
visualizes the desired properties. By definition this continuous and piecewise linear loss
function LPEG satisfies the properties (i) - (iv). The formulae for the loss and its partial
derivative as well as property (v) are detailed in the following.

(a) Surface plot of the PEG loss LPEG

(b) Contour plot of the PEG loss LPEG in alignment
with the PEG

(c) Surface plot of ∂LPEG
∂µ

(d) Contour plot of ∂LPEG
∂µ

in alignment with the
PEG

Figure 2.9.: The visualization of the PEG loss 2.9a, its partial derivative 2.9c, and their alignment with the PEG 2.9b,
2.9d. The PEG loss was defined, such that itself and its partial derivative take large absolute values in regions of the
PEG that indicate clinically relevant mistakes. These two properties shall ensure faster convergence to models that
make less clinically significant errors.

15

2. Materials and methods

In order to derive a formulaic expression for the PEG loss, the definition of the borders of
the subareas A±, B±, C±, D±, E+ are necessary:1

bA+(y) = bA−(y) = y

bB+
(y) =

������
2.77, y ≤ 1.66

1.09y + 0.96, 1.66 < y ≤ 7.77

1.5y − 2.22, 7.77 < y ≤ 15.54

1.13y + 3.48, 15.54 < y

bB−(y) =

������
0, y ≤ 2.77

0.96y − 0.99, 2.77 < y ≤ 9.43

0.72y + 1.24, 9.43 < y ≤ 21.36

0.91y − 2.77, 21.36 < y

bC+
(y) =

������
3.33, y ≤ 1.66

y + 1.66, 1.66 < y ≤ 2.77

1.5y + 0.28, 2.77 < y ≤ 3.88

2.31y − 2.89, 3.88 < y

bC−(y) =

��
0, y ≤ 6.66

0.71y − 3.09, 6.66 < y ≤ 14.43

0.41y + 1.24, 14.43 < y

bD+(y) =

������
5.55, y ≤ 1.39

y + 4.16, 1.39 < y ≤ 2.77

3y − 1.38, 2.77 < y ≤ 4.44

7.44y − 21.12, 4.44 < y

bD−(y) =

�
0, y ≤ 13.87

0.37y − 2.87, 13.87 < y

bE+
(y) =

�
0.14y + 8.32, y ≤ 1.94

26.33y − 42.54, 1.94 < y
bE−(y) = 0.

The height of a subarea X ∈ {A±, B±, C±, D±} at a given glucose value y is then expressible
by

hX(y) := |bs(X)(y)− bX(y)|,

where s(X) denotes the area that is following area X in terms of clinical severity, e.g.,
s(A) = B or s(D) = E. Consistently, M(X) denotes the set containing all areas that are
clinically milder than area X, e.g., M(E) = {A,B,C,D} or M(A) = ∅. Using this notation,
the PEG loss of a point (y, µ) in subarea X± can be written as

LPEG(y, µ) = ±sX(µ− y)−
�

Y ∈M(X)

(sX − sY)hY±(y).

Therefore, the partial derivative w.r.t µ is easily computable as

∂LPEG

∂µ
(y, µ) = ±sX ,

which allows the fast computation of the loss and its gradient for variations of gradient
descent during model training, satisfying property (v).

For model training, the hyperparameter λ is initially set to 1 and in the ablation study in
Section 3.3, the resulting models’ sensitivity to the parameter is shown.

1Note that the coefficients in the definition are calculated from the provided coordinates of the lines defining
the areas of the PEG [31].

16

2. Materials and methods

2.3.2. Training and evaluation procedure

In order to examine the advantages of applying the PEG loss for model training, both LSTM
and TM, as described in Section 2.2.2, are trained and assessed with and without the PEG
loss term.

To accurately evaluate the models’ performance on unseen data, we employed individual-
based 5-fold cross-validation. Each individual in the dataset was assigned a unique ID,
barring 20 individuals whose data files were given two separate IDs due to an unnoticed error
from the data provider. The data was divided according to the individuals’ IDs, ensuring
each fold contained an equal number of samples, and that data from a single ID was present
only in one fold. The dataset D, comprising input-target CGM samples, was partitioned
into five folds D1, . . . ,D5 of equal size, such that each individual’s data is encapsulated in
just one of the folds. For every test fold Dtest := Di the remaining data

�
j ̸=i

Di is randomly

split into training Dtrain and validation data Dval following an 80/20-split. The splitting of
training and validation data conformingly took into account each individual’s data.

The same hyperparameters for model training were set to achieve comparability between the
results of [20] and us. The batch size was fixed at 1024 and the initial learning rate was set
to 10−1. We used an exponentially decaying learning rate with a multiplicative decay rate
of γ = 0.999, in conjunction with an Adam optimizer. The maximum number of training
epochs was set to 10000 and early stopping was utilized, halting model training if the loss
on the validation data Dval did not improve for 200 epochs.

The performance of the trained models was assessed on the test fold Dtest using the RMSE,
NLL, and the PEG metrics. For every test sample (x, y) ∈ Dtest the respective metric was
calculated for every time point within the PH. The metrics of each time point of a sample
were averaged before calculating the average over all test samples. Finally, the calculated
metrics of every testing set Dtest ∈ {D1, . . . ,D5} were averaged to obtain the final values
reported in 3.

2.4. Domain generalization in CGM forecasting with
gated-domain-units

Visual, numerical, and medical evidence depicted in Figure 2.1, Table 2.1, and provided by
the staff at Inselspital suggest that the distribution of CGM trajectories changes over time
due to variations in influencing factors, such as diabetes treatments, devices, and insulin
types. These distributional shifts may diminish the performance of the developed forecasting
models. To counteract the adverse effects of distribution shifts, we measured and improved
the DG capabilities of the models.

In DG, we consider M source domains Dtrain = {Dm}Mm=1 with Dm = {(xmi , ymj)nm
i=1} ∼ Pm

for m = 1, . . . ,M and a target domain Dtest ∼ Ptest, such that the distributions are in pairs
different, i.e., Pj ̸= Pk for j ≠ k. The objective is to obtain a model from the M source
domains Dtrain that minimizes the loss on the test domain Dtest.

17

2. Materials and methods

The setting of DG by definition violates the i.i.d assumption, which is crucial to statistical
learning algorithms [8]. This violation can lead to diminished model performance on the
test domain, as evidenced in the literature [9, 50]. Notably, the complexities of DG have
been under rigorous academic scrutiny for over a decade [9]. In healthcare domains, the
challenges posed by these distributional shifts, and the underlying factors that contribute to
them, have been meticulously examined [11]. Given the indications that novel treatment
modalities could be driving these shifts in our dataset, we are poised to implement a novel
solution: the GDUs approach [33].

2.4.1. Introduction of gated-domain-units

For the DG experiments, the LSTM model served as the baseline and is henceforth referred
to as the ERM single in the context of DG. The models addressing DG presented in this
section are two ensemble models that utilize the LSTM module as a feature extractor.

Figure 2.10.: The ERM ensemble architecture for probabilistic CGM
forecasting. The architecture uses an LSTM module as a feature
extractor. The extracted features are passed through M = 9
regression heads in parallel and the M outputs are averaged to
obtain the final predictions for µ and σ.

Empirical risk minimization (ERM)
ensemble. Ensemble learning is a
common technique to increase the
OOD performance [9] and it yields
maximal comparability with the GDU
model due to its similar structure.
The ERM ensemble model is built
on top of the LSTM module, which
is used as a FE, see Figure 2.10.
Let the feature vector x̃ ∈ R256 de-
note the output of the FE, then in-
stead of applying a linear layer to ob-
tain µ and σ, the feature vector is
copied M = 9 times and fed through
M linear layers in parallel to obtain
µ1, . . . , µM and σ1, . . . , σM . The fi-
nal output of the ensemble model is
given by the pointwise average of the
M outputs, i.e., µ = 1

M

�M
j=1 µ

j and
σ = 1

M

�M
j=1 σ

j .

Gated-domain-units (GDU) model. GDUs were introduced by Föll et al. [33] and are based
on the assumption that real-world distributions are composed of elementary distributions
that remain invariant across different domains. This assumed consistency across domains
can facilitate knowledge transfer to previously unseen domains (e.g., treatment strategies,
hospitals, countries, etc.). The utilization of GDUs has shown substantial improvements in
performance across numerous DG tasks when compared to the ERM ensemble architecture
and other baselines.

18

2. Materials and methods

Figure 2.11.: The gated-domain-units (GDU) model architecture for probabilistic CGM forecasting. The architecture
uses an LSTM module as a feature extractor. The extracted features are passed through M regression heads and
their respective GDUs in parallel to obtain M outputs (µi, σi) with their corresponding weights βi. The weighted
averages are the final predictions for µ and σ.

Structurally, the GDU model echoes the ERM ensemble model, with the key distinction being
that the outputs µ1, . . . , µM and σ1, . . . , σM are assigned weights during averaging,

µ =
1

M

M�
j=1

βjµ
j ,

with weights β1, . . . , βM ∈ [0, 1] and
�M

j=1 βj = 1. Each weight βj quantifies the similarity
between the feature vector x̃ ∈ R256 and the elementary domain’s distribution Pj which is
approximated by the so-called elementary domain basis Vj = (vj1, . . . , v

j
N) ∈ R256×N of a

learnable N -dimensional subspace of the feature space X̃ ⊂ R256.

The interpretation of the learnable bases V1, . . . , VM and calculation of the weights β1, . . . , βM
are detailed as follows: The overall objective is to identify elementary domains and quantify
similarities between them and samples. To this end let H be a reproducing kernel Hilbert
space (RKHS) of real-valued functions on the feature space X̃ with a reproducing kernel
k : X̃ × X̃ → R [51]. Given the samples x̃1, . . . , x̃n from an elementary domain’s distribution
P, the distribution can be approximated in the RKHS as ϕ(P) ≈ 1

n

�n
i=1 k(x̃

i, ·). To
overcome the non-accessibility of samples from the elementary distributions, a set of proxy
vectors v1, . . . , vN is sought to replace the samples x̃1, . . . , x̃n. This elementary domain
basis is collected into a matrix V = (v1, . . . , vN) and used to approximate ϕ(P) ≈ ϕ(V) =
1
n

�n
i=1 k(vi, ·).

For a given sample x̃ the sought-after weights β1, . . . , βM are defined as the similarity between
the sample and the respective elementary domain basis V1, . . . , VM . The computability of

19

2. Materials and methods

products in the RKHS, as detailed in A.4, enables the calculation of similarity measures to
calculate the sought-after weights β1, . . . , βM . Two similarity measures are considered in
the following: the cosine similarity (CS) HCS(u, v) =

⟨u,v⟩H
∥u∥H∥v∥H is an angle-based similarity

measure, whereas the negative maximal mean discrepancy (MMD) HMMD(u, v) = −∥u−v∥H
is distance-based. Once the similarities between a sample and the elementary domain bases
is calculated, a softmax is applied to the resulting values to ensure the resulting weights
β1, . . . , βM are non-negative and sum to 1, i.e.,

βj = γ (ϕ(x̃), ϕ(Vj)) =
exp (κH (ϕ(x̃), ϕ(Vj)))�M
k=1 exp (κH (ϕ(x̃), ϕ(Vk)))

.

During training of a GDU-model g, two additional loss terms with corresponding coefficients
are introduced,

L(y, (µ, σ), g) = Ly(µ, σ
2) + λOLSΩ

OLS
D (∥g∥H) + λL1Ω

L1
D (∥γ∥), λOLS , λL1 ≥ 0. (2.3)

The term ΩOLS
D (∥g∥H) := ∥ϕ(x̃)−�M

j=1 βjϕ(Vj)∥2H ensures that the distances between the
feature mapping ϕ(x̃) and the associated representations

�M
j=1 βjϕ(Vj) are minimized and

therefore, the elementary domain bases Vj are able to represent the elementary domains
Pj in the RKHS. Lastly, sparsity in the weight vector β = (βj)

M
j=1 = (γ(ϕ(x̃), ϕ(Vj)))

M
j=1 is

enforced by applying the L1-norm in the term ΩL1
D (∥γ∥) := ∥β∥1. A visualization of the

GDU-model is given in Figure 2.11.

As a kernel k we chose the radial basis function (RBF) kernel k(x, y) = exp
�−∥x− y∥22/2σ2

�
and set the parameter σ2 with the median heuristic as in Föll et al. [33] and Muandet et al.
[51], i.e., σ2 = median{∥x̃− ỹ∥22 : x, y ∈ Dtrain}. The number M = 9 of learning machines
and GDUs, respectively was set as proposed in Föll et al. [33] by clustering the output of
a feature extractor with the k-means algorithm and selecting the number of clusters that
maximizes the Calinski-Harabasz score. Lastly, the dimension N of the elementary domain
bases was set to N = 10 as in Föll et al. [33].

In the experiments conducted, we utilized two distinct modes of training: one being fine
tuning (FT), wherein the feature extractor is a pre-trained model with its weights remaining
fixed, and the other being end-to-end training (E2E), in which the feature extractor is
simultaneously trained with the GDUs, without any prior training.

2.4.2. Training and evaluation procedure

To measure and augment the DG performance of the LSTM model, we carried out a series
of experiments as delineated in this subsection. Based on the guidance from the Inselspital’s
medical team, the available CGM dataset D ⊂ R72 × Rh was partitioned according to the
treatment types into four separate domains: basal insulin only DBI , multiple daily injections
DMDI , continuous subcutaneous insulin infusion DCSII , and artificial pancreas DAP . For
each domain Dtest ∈ {DBI ,DMDI ,DCSII ,DAP }, model training was conducted using only
the remaining three domains Dtrain = D \ Dtest. The models were subsequently evaluated
on the test domain Dtest.

20

2. Materials and methods

The evaluation metrics incorporated for these assessments include RMSE, NLL, and the
percentage of measurements within specific areas of the PEG. To mitigate the effects of
randomness, the entire process of training and evaluation was replicated five times, each
instance employing a unique random seed for model initialization. The derived metrics’
mean and standard deviation are documented in 3.2.

Maintaining consistency with the model training hyperparameters from 2.3.2 allowed for
comparability and negated the requirement for hyperparameter tuning, thus saving compu-
tational resources. A batch size of 1024 was used alongside the loss function detailed in 2.3.
The training also involved the application of the Adam optimizer, coupled with a learning
rate experiencing exponential decay at a multiplicative rate of γ = 0.999. The maximum
epoch limit for the training was set at 10000, with the incorporation of early stopping to
halt the training process if there was no improvement in the validation data loss for 200
consecutive epochs.

2.5. Implementation overview

The investigation of the PEG loss’ and the GDU models’ influence on CGM forecasting
resulted in a comprehensive codebase. It was developed to preprocess raw CGM data, train
and evaluate the models described, as well as analyse the results.

Our implementation2 was developed in Python 3.9 [52] and is modularized into three key
components.

Preprocessing This module loads the raw CGM dataset, executing the artifact handling
methodologies elucidated in Section 2.1.2. Post-cleaning, the data is split—either
into 5 folds at random or based on the intrinsic treatment classifications of the
individuals. This processed data is subsequently saved, ready for the forecasting
module’s consumption.

Forecasting Centralized within this module are the model architectures, metric definitions,
loss function formulations, and training protocols. Given the appropriate model
architecture, hyperparameters, and data partitioning scheme, the system trains the
models, subsequently computing the evaluation measures. Both the refined models
and their evaluative performance metrics are stored for subsequent analysis.

Analysis This module undertakes the systematic aggregation and comparison of performance
metrics across diverse model trainings. It’s equipped to compute and represent distances
amid feature vectors and bases of GDU models. Moreover, it facilitates the generation
of visual interpretations, showcasing exemplary forecasting outcomes, performance
differences, and t-distributed stochastic neighbor embedding (t-SNE) embeddings.

Several libraries played crucial roles in the implementation of our methodologies. Pandas [53]
was essential for CGM data preprocessing, while NumPy [54] handled array computations and
metric calculations. Gaussian interpolation was handled by GPytorch [55] while scikit-learn

2https://github.com/andras-s/CGM-Forecasting-Robustness-and-Safety

21

2. Materials and methods

[56] contributed to data preprocessing and t-SNE-based visualization of the GDU feature
vectors and bases. Deep learning architectures. metrics, and loss functions were realized
with PyTorch [57], complemented by CUDA’s [58] GPU acceleration on NVIDIA’s RTX
3090. Finally, visual findings were illustrated using Matplotlib [59] and Seaborn [60].

22

3. Results

3.1. Clinical relevance of the Parkes error grid loss

To determine if the extra efforts dedicated to implementing the PEG loss genuinely yield
models with less clinically severe predictions, we trained the models detailed in Section 2.2.2
using both the NLL loss and the PEG loss. By employing a 5-fold cross-validation strategy,
the LSTM and TM were initialized, trained, and evaluated on each fold. Details regarding
the model and training hyperparameters are available in 2.2.2 and 2.3.2, respectively. As a
point of reference, the performance of the t0 model is also considered in the forthcoming
results.

Given a model f , a sample (x, y) with y = (y1, . . . , yh), and the model’s predictions
µ = (µ1, . . . , µh) and σ = (σ1, . . . , σh) a prediction (µi, σi) is classified as belonging to
an area X ∈ A,B,C,D,E of the PEG if the mean prediction µi falls within area X,
i.e., (yi, µi) ∈ X. On each iteration of the 5-fold cross-validation the predictions on the
reserved test data were categorized into the PEG areas A,B,C,D,E and the corresponding
percentages of predictions per area were recorded. The mean and standard deviation of these
percentages, calculated across the five folds, are reported in Table 3.1. We also provide the
relative changes in percentages when transitioning from NLL loss to PEG loss, underscoring
the clinical performance disparity between the two loss functions. Notably, no predictions
fell into area E, so this area has been excluded from Table 3.1. To demonstrate the models’
technical performance, we computed the mean and standard deviation of the trained models’
RMSE and NLL using the same procedure described above for calculating percentages of
predictions in the PEG areas. These results are presented in Table 3.2 and Table 3.3.

We summarize the results in Table 3.1, which shows the PEG percentage results of the models
trained with and without the PEG loss. The introduction of the PEG loss significantly
improved the mean percentage of predictions landing in the clinically severe area D, with a
concurrent decrease in standard deviation. Almost universally, the use of the PEG loss also
enhanced the mean percentage of predictions in area C. However, in the clinically benign
areas, A and B, the mean percentages experienced only negligible changes.

Table 3.2 shows, that in terms of mean RMSE, the LSTMs outperformed the TMs, with both
surpassing the t0 baseline. The adoption of the PEG loss induced only marginal alterations
to the mean RMSE. On shorter PHs of 30 and 60 minutes, models trained with the PEG
loss generally displayed a minor improvement, while a slight increase in mean RMSE was
observed for the 120-minute PH. The standard deviation improved for the TMs, although it
increased for the LSTMs.

The mean NLL results are presented in Table 3.3. In the context of mean NLL, the LSTMs

23

3. Results

Table 3.1.: 5-fold cross validation PEG percentage results. The mean test percentage per PEG area (standard
deviation) and the relative change of the mean are reported. Best results according to the mean percentage are
highlighted in bold.

A B C D

30-min PH

t0 96.104 (.225) 3.836 (.215) 0.059 (.020) 0.000 (.000)

NLL 97.222 (.215) 2.726 (.216) 0.053 (.018) 0.000 (.000)

TM NLL+PEG 97.276 (.118) 2.675 (.105) 0.048 (.015) 0.000 (.000)

rel change 0.1 -1.8 -8.0 0.0

NLL 97.432 (.099) 2.501 (.100) 0.066 (.018) 0.000 (.001)

LSTM NLL+PEG 97.437 (.111) 2.494 (.113) 0.068 (.011) 0.000 (.000)

rel change 0.0 -0.3 3.7 0.0

60-min PH

t0 89.070 (.400) 10.408 (.326) 0.511 (.093) 0.011 (.006)

NLL 90.812 (.347) 8.645 (.333) 0.537 (.060) 0.006 (.003)

TM NLL+PEG 91.003 (.309) 8.493 (.263) 0.498 (.080) 0.006 (.002)

rel change 0.2 -1.8 -7.2 -7.9

NLL 91.118 (.352) 8.327 (.318) 0.548 (.059) 0.007 (.004)

LSTM NLL+PEG 91.121 (.344) 8.369 (.300) 0.507 (.089) 0.003 (.002)

rel change 0.0 0.5 -7.6 -59.1

120-min PH

t0 77.633 (.672) 20.155 (.404) 2.052 (.268) 0.160 (.014)

NLL 79.671 (.518) 18.019 (.344) 2.171 (.212) 0.139 (.031)

TM NLL+PEG 79.692 (.362) 18.169 (.213) 2.025 (.181) 0.114 (.016)

rel change 0.0 0.8 -6.7 -18.1

NLL 80.084 (.556) 17.622 (.353) 2.157 (.209) 0.137 (.018)

LSTM NLL+PEG 80.177 (.693) 17.739 (.509) 1.982 (.204) 0.102 (.016)

rel change 0.1 0.7 -8.1 -25.6

Table 3.2.: 5-fold cross validation RMSE results. The mean (standard deviation) test RMSE is reported. Best results
according to the mean RMSE are highlighted in bold.

30-min PH 60-min PH 120-min PH

t0 0.724 (.014) 1.216 (.034) 1.922 (.059)

TM
NLL 0.634 (.019) 1.091 (.026) 1.700 (.034)

NLL+PEG 0.623 (.014) 1.077 (.023) 1.708 (.031)

LSTM
NLL 0.609 (.006) 1.062 (.022) 1.680 (.040)

NLL+PEG 0.604 (.007) 1.062 (.023) 1.685 (.043)

again outshone the TMs, but the t0 model demonstrated a strong baseline, besting all
other models on shorter PHs of 30 and 60 minutes. While the application of the PEG loss
improved the mean NLL of the TMs on shorter PHs, the mean NLL marginally deteriorated
for the TM on the longer PH and for the LSTM across all PHs. The NLL standard deviation

24

3. Results

for the TMs improved with the use of the PEG loss, while there were no consistent changes
for the LSTMs.

Table 3.3.: 5-fold cross validation NLL results. The mean (standard deviation) test NLL is reported. Best results
according to the mean NLL are highlighted in bold.

30-min PH 60-min PH 120-min PH

t0 -0.803 (.010) 0.089 (.034) 1.081 (.078)

TM
NLL -0.255 (.137) 0.287 (.062) 0.816 (.026)

NLL+PEG -0.324 (.117) 0.221 (.038) 0.828 (.020)

LSTM
NLL -0.490 (.026) 0.133 (.042) 0.752 (.037)

NLL+PEG -0.466 (.031) 0.153 (.032) 0.765 (.040)

3.2. Domain generalization capabilities

To assess and enhance the LSTM model’s robustness against changes in the population’s
diabetes treatment, we trained and evaluated the model and its adaptations as outlined
in 2.4.1. Henceforth we refer to the LSTM model as the ERM single model to distinguish
it from the LSTM ensemble model and the four versions of the GDU model (FT or E2E
with CS or MMD). The preprocessed CGM data was split by the individuals’ treatment
types (BI, MDI, CSII, AP) into 4 distinct folds. Each fold, in turn, was set aside as test
data, with the remaining folds used for training. This allowed us to evaluate how well the
trained models would adapt to an unseen domain. Each training and evaluation procedure
was performed five times with different random seeds to initialize the models. The mean and
standard deviation of the NLL and RMSE are reported in Tables 3.4 and A.3, respectively.
Model and training hyperparameters are provided in 2.4.1 and 2.4.2.

The results in Table 3.4 reveal that all models perform better in the DG setting when the
unseen domain comprises BI or MDI and worse when the unseen domain is CSII or AP.
Ranking the models’ performance on different hold outs from best to worst yields: BI, MDI,
AP, and CSII. The larger ERM ensemble model outperforms the ERM single model in
all but one cases. In the exceptional case, a substantial surge in the standard deviation
of the ERM single model’s results suggests that the superior result might be attributed
to an outlier in model performance. The GDU models trained via fine-tuning consistently
outperformed the ERM ensemble model on the 30- and 60-minute prediction tasks, except
for one instance. Regardless of the similarity measure used, the fine-tuned models surpassed
the ERM ensemble models, with the most exceptional results achieved by models using
negative MMD. For the 120-minute PH, the fine-tuned models excelled over the ERM single
model but did not consistently surpass the ERM ensemble model. The difference in mean
NLL between the fine-tuned GDU models and the ERM ensemble model on the 120-minute
prediction task was minimal. The GDU models trained end-to-end (E2E) lagged behind all
other models.

25

3. Results

Table 3.4.: Cross domain NLL results. The mean (standard deviation) test NLL is reported. Best results according to
the mean NLL are highlighted in bold.

BI MDI CSII AP

30-min PH

ERM
Single -0.6726 (.0507) -0.5260 (.0718) -0.3204 (.0315) -0.3816 (.0620)

Ensemble -0.6756 (.0154) -0.5640 (.0316) -0.3642 (.0212) -0.3600 (.0168)

FT
CS -0.7008 (.0230) -0.5882 (.0382) -0.3696 (.0208) -0.3782 (.0241)

MMD -0.7138 (.0211) -0.5994 (.0402) -0.3742 (.0299) -0.3888 (.0259)

E2E
CS -0.5912 (.0247) -0.4698 (.0453) -0.2676 (.0159) -0.2852 (.0090)

MMD -0.5918 (.0198) -0.4594 (.0242) -0.2714 (.0096) -0.2790 (.0210)

60-min PH

ERM
Single -0.0286 (.0171) 0.0974 (.0233) 0.2760 (.0056) 0.2466 (.0080)

Ensemble -0.0618 (.0106) 0.0554 (.0121) 0.2456 (.0038) 0.2346 (.0097)

FT
CS -0.0692 (.0112) 0.0534 (.0133) 0.2396 (.0045) 0.2314 (.0085)

MMD -0.0760 (.0130) 0.0504 (.0136) 0.2366 (.0052) 0.2250 (.0086)

E2E
CS 0.0052 (.0072) 0.1234 (.0067) 0.2894 (.0059) 0.2808 (.0035)

MMD 0.0110 (.0078) 0.1118 (.0188) 0.3004 (.0174) 0.2866 (.0120)

120-min PH

ERM
Single 0.6260 (.0088) 0.7302 (.0097) 0.8844 (.0080) 0.7938 (.0077)

Ensemble 0.6044 (.0045) 0.7110 (.0082) 0.8734 (.0106) 0.7816 (.0059)

FT
CS 0.6050 (.0054) 0.7120 (.0099) 0.8728 (.0122) 0.7820 (.0053)

MMD 0.6044 (.0059) 0.7124 (.0101) 0.8782 (.0134) 0.7856 (.0055)

E2E
CS 0.6398 (.0069) 0.7326 (.0038) 0.8922 (.0026) 0.8222 (.0141)

MMD 0.6352 (.0047) 0.7396 (.0071) 0.8928 (.0075) 0.8110 (.0054)

3.3. Ablation study

When employing the PEG or GDU loss, as delineated in 2.3.1 and 2.4.1, respectively, the
weight of the loss terms play a pivotal role in shaping the performance metrics of the
resultant models. In this ablation study, we elucidate the interplay between the weights of
loss terms and the performance metrics of the models exemplary for a 60-minute PH. We
begin by examining the implications of varying the PEG loss weight (λPEG) on different
model metrics before delving into the impact of the GDU loss weight parameters for domain
similarity (λOLS) and sparse coding (λL1).

Effect of the PEG loss weight. The magnitude of the PEG loss weight λPEG, determines
the contribution of the PEG term in the total loss, given by

L(y, (µ, σ)) = Ly(µ, σ
2) + λPEGL̂PEG(y, µ). (3.1)

26

3. Results

We contrast models having λPEG ∈ {2−6, 2−5, . . . , 26}1 with the model devoid of the PEG
loss, i.e., λPEG = 0, and portray how the test metrics’ means – NLL, RMSE, and percentages
per PEG area – alter. The bar plots in Figure 3.1 illustrate the mean relative changes of
these metrics.

Figure 3.1.: Ablation study results depicting the impact of fluctuating PEG weight (λPEG) values from 2−6, 2−5, . . . , 26

on model performance. The bar plots represent mean relative changes in the NLL, RMSE, and percentage distribution
across PEG areas (A, B, C, and D) compared to the respective metrics of a reference model without the PEG loss
component (λPEG = 0). The influence of the PEG loss on model performance is illuminated, underlining the trade-offs
between different metrics.

Our findings show that the mean NLL generally escalates when the PEG loss is employed,
with this increase becoming more pronounced as the weight, λPEG, grows. This NLL rise is

1Starting with the initial value of λPEG = 1 the range was symmetrically increased until trends were not
only visible, but confirmed with further range increases.

27

3. Results

anticipated since a larger PEG weight in the total loss Equation 3.1 prioritizes minimizing
L̂PEG(y, µ) over the NLL term Ly(µ, σ

2) during loss minimization. The relative change of
mean NLL remains below 20% for weights ≤ 1 and exceeds 20% for weights > 1, reaching
its peak of nearly 120% for a weight of 26 = 64.

Similarly, the RMSE generally inflates with the weight, albeit at a lesser scale with a
maximum increase less than 1%. Interestingly, for weights ≤ 1, the mean RMSE has
improved compared to models not employing the PEG loss. The most significant reduction
of −0.6% is achieved for λPEG = 2−1, which appears to be an outlier, since neighbouring
RMSE changes are of much smaller scale.

The mean relative change in the percentage of predictions in area A remains under 0.1%2 for
all weights, with no discernible pattern evident. The mean percentage of predictions in area
B subtly hints at an increase with growing weight. For weights > 2, the mean percentage in
area B surpasses that of the baseline models, with the maximum absolute change reaching
1.25% at λPEG = 25.

The mean percentage of predictions in area C is distinctly on a decline with the enlargement
of the weight λPEG, hitting a maximum decrease of over 12.5% at the largest weight 26.
The bar plot indicates that weights ≤ 2−4 lead to an uptick in the metric, whereas larger
weights induce a decrease.

While the employment of the PEG loss generally results in a decrease in the mean percentage
of predictions in area D, no consistent correlation with the weight magnitude is observable.
The most substantial reduction of 59.1% is recorded at λPEG = 1.

Effect of the GDU loss weights When training a GDU model g, the loss reads as

L(y, (µ, σ), g) = Ly(µ, σ
2) + λOLSΩ

OLS
D (∥g∥H) + λL1Ω

L1
D (∥γ∥), λOLS , λL1 ≥ 0.

Here, the term ΩOLS
D (∥g∥H) quantifies the distances between the elementary domain bases

Vj and the elementary domains Pj in the RKHS. Therefore, the weight λOLS modulates the
importance of this approximation during the model training process. The weight λL1 dictates
the sparsity of the weight vectors β, resulting in fewer GDUs being active during prediction.
Following Föll et al. [33], we manipulated the weight parameters λOLS , λL1 ∈ 0, 0.01, 0.1, 1, 10,
tested the models using the AP data, and recorded the resultant mean test NLLs. The
findings are visually represented as heatmaps in Figure 3.2.

Figure 3.2 shows that for both similarity metrics—CS and negative MMD—the resulting
NLLs are robust across the entire parameter range, with only subtle differences noted. In
both instances, the parameter λOLS exerts a greater influence than λL1 , suggesting that the
approximation of the elementary domain bases is more critical than the sparse coding. As
λOLS increases, the relevance of sparse coding diminishes. The optimal results are obtained
for higher values of λOLS , specifically, λOLS = 10 for CS and λOLS = 1 for MMD.

2The scales of the relative changes for all metrics is differing, hence the relative changes in area A seem
large visually while numerically they are insignificant.

28

3. Results

(a) Mean NLL of GDU models utilizing CS (b) Mean NLL of GDU models utilizing MMD

Figure 3.2.: The visualization of the test NLL of the GDU models with varying GDU loss weights λOLS and λL1
.

The models were tested on AP data as the holdout with 5 randomized restarts. The reported NLL values are the
averages over the 5 restarts. A 60-min PH was selected to represent the average case. Stable results across the whole
parameter range are present. The significance of λOLS before λL1

as well as the increase in performance with the size
of λOLS can be read from the visualizations.

29

4. Discussion

4.1. Interpretation of results

4.1.1. Evaluation of the PEG loss

The comparative experiment on CGM forecasting performance, with and without the
application of the PEG loss, demonstrated that models trained incorporating the PEG loss
consistently produce fewer predictions that fall into the clinically severe areas C and D.
The impact of this loss function is particularly evident in the longer PHs of 60 and 120
minutes, with a modest improvement observed for the shorter PH of 30 minutes. Further
investigation of model performance within clinically severe PEG regions led to the sample
forecasts depicted in Figure 4.1. Beyond merely numerical evidence of augmented prediction
capacity in high-risk regions, this figure vividly exhibits a behavioral shift in the forecasts
generated by the models. It demonstrates the prediction made by models trained with and
without the PEG loss when facing scenarios with a potential for clinically severe predictions,
such as low CGM levels at the last input times. In these situations, the models trained
exclusively with the NLL tend to predict a convergence to a mean CGM level. However,
models trained using the PEG loss yield more accurate predictions under the same conditions.
Although these are merely representative forecasts, this behavioral shift was consistently
observed during a comparative visual analysis of the forecasts, further highlighting the
improved performance of the models in potential clinically severe scenarios.

The nature of the PEG loss suggests that the resulting models improve in terms of clinically
severe predictions at the cost of overall technical performance. The PEG loss is appended
to the NLL, enabling the model during training to minimize the overall loss by partially
disregarding the NLL. As hypothesized, models trained with the PEG loss displayed
enhanced performance in terms of clinical severity, with negligible variations in mean NLL,
and even an observed improvement in mean RMSE.

The ablation study in Section 3.3 analyzes the impact of the magnitude of the PEG loss
weight λPEG on the resulting LSTM model performance metrics for a 60-minute PH. For
the majority of λPEG magnitudes, the application of the PEG loss leads to a decrease
in the mean percentage of predictions in area D, as these predictions result in large loss
values coupled with significant loss gradients due to the design of the PEG loss. The low
percentage of samples falling into area D demonstrates the high variability characteristic of
this region. A clear trend is discernible in the more common and clinically relevant area
C, where a consistent and significant reduction in prediction errors can be attained as the
loss weight increases. While the expected increase in mean NLL can be confined to less
than 20% for weights equal to or less than 1, a minor improvement in RMSE is observed

30

4. Discussion

(a) An improved 30-minute forecast through the utilization of the PEG loss.

(b) An improved 60-minute forecast through the utilization of the PEG loss.

(c) An improved 120-minute forecast through the utilization of the PEG loss

Figure 4.1.: Visual representation of three sample forecasts from the LSTM model, with and without the PEG loss on
the test set. In conditions that present a potential for severe predictions, the PEG loss trained models tend to predict
more accurately. In contrast, the base models predict a convergence of the CGM values back to a mean level.

31

4. Discussion

for weights equal to or less than 2. Consequently, the PEG loss weight range from 2−3

to 2 is considered optimal as it yields a desirable reduction in clinically severe predictions
while maintaining a satisfactory technical performance level. The parameter λPEG offers
a trade-off between the volume of clinically severe predictions and a potential decline in
overall technical performance.

The added experimental computational complexity resulting from calculating the PEG loss
instead of the NLL is detailed in Table 4.1. The runtime of each training epoch and the
required number of epochs until model convergence were measured during the training
of the models responsible for the results in Section 3.1. The models were trained on a
NVIDIA Gigabyte GeForce RTX 3090. Despite a minor increase in the epoch runtime
when implementing the PEG loss, it remains well within one standard deviation for both
the transformer and the LSTM model. The number of epochs until convergence shows no
consistent trend, indicating that the additional computational complexity associated with
the PEG loss is negligible.

Table 4.1.: 5-fold cross validation runtime results. The mean (standard deviation) training time in seconds and the
number of epochs until convergence are reported. Best results according to the mean are highlighted in bold.

runtime per epoch [s] number of epochs total runtime [s]

TM
NLL 1.25 (.12) 1188 (522) 1481 (639)

NLL+PEG 1.26 (.14) 1504 (126) 1910 (153)

LSTM
NLL 1.49 (.15) 1169 (127) 1743 (201)

NLL+PEG 1.57 (.15) 1103 (248) 1738 (373)

4.1.2. Evaluation of the GDU results

Section 3.2 demonstrated the OOD performance disparities of various LSTM model mod-
ifications across different domains. It was observed that the prediction of CGM levels in
individuals receiving modern treatments such as CSII and AP was more challenging when
these treatment groups were not included during model training. Conversely, prediction
was more accurate for older treatments like BI and MDI, when utilized as the hold out test
data.

Comparing the daily CGM curves in Figure 2.1 and the domain characteristics in Table
2.1, it is clear that the BI domain, despite representing only 13% of the dataset, exhibits
similarities with the MDI domain, which accounts for 44% of the data. This similarity likely
contributes to the more accurate predictions in the BI domain, even when it was not directly
trained upon. Conversely, the AP domain, comprising 11% of all data, displayed the largest
disparity in terms of its characteristics and average daily CGM curve compared to the other
domains. Nevertheless, model performances were better in AP than in CSII, likely due
to the reduced glucose variability in the AP domain, making predictions generally more
straightforward as major glucose level fluctuations are less common.

Ensemble methods, as stated in Wang et al. [61], can enhance the OOD performance of
models, which is reflected in the superior performance of the ERM ensemble model compared

32

4. Discussion

to the single ERM model. However, this improvement comes with the trade-off of increased
complexity and longer runtimes, as detailed in Table 4.2. Against these ERM baselines,
the GDU model was tested with both fine-tuning and E2E training. The fine-tuned model
consistently outperformed the ERM ensemble model in 30- and 60-minute prediction tasks,
suggesting that the performance boost is not solely due to the added complexity of the GDU
model. In contrast, E2E trained models failed to deliver competitive predictions in terms of
mean NLL, indicating that further refinement of model training hyperparameters may be
necessary.

The robustness of the GDU model’s performance to the specific choice of the parameters in
the GDU loss λOLS and λL1 , as demonstrated in the ablation study, suggests its suitability
for DG in CGM forecasting without the need for additional hyperparameter tuning. The
study indicated that the magnitude of λL1 , therefore, sparse coding, wasn’t particularly
critical. This suggests that a subset of the available GDUs may be sufficient for accurate
predictions. A comprehensive analysis of the learned elementary domains can be found in
Section 4.1.3. The importance of λOLS in the accurate approximation of elementary domains
in the RKHS is emblematic of its relevance to overall OOD performance.

The added DG performance of the methods outlined so far, comes at the cost of additional
computational complexity. Table 4.2 collects the average runtimes during model training
of all models on the-60 minute prediction task using CSII as a hold out with 5 restarts.
Since for the fine-tuning of models pre-trained FEs are necessary, the reported metrics
for FT do not directly compete with the other models’ metrics. The ERM single model
has the lowest computational cost and has the fastest computation time per epoch. The
fine-tuning of GDU models is slower, but comparable to the ERM ensemble model, while
the E2E GDU training has the longest average training time per epoch. Due to the constant
improvement of the model to the overall best performance, the FT model takes the most
epochs to converge.

The enhanced DG performance of the methods discussed comes at the expense of increased
computational complexity, as highlighted in Table 4.2. Here, we presented the average
training runtimes for all models on the 60-minute prediction task using CSII as a holdout,
with 5 restarts. As the fine-tuning process necessitates pre-trained FEs, the metrics for FT do
not directly compete with those of the other models. The ERM single model has the lowest
computational cost and has the fastest computation time per epoch. The fine-tuning of GDU
models is slower, but comparable to the ERM ensemble model, while the E2E GDU training
has the longest average training time per epoch. As the FT model consistently improves to
achieve the best overall performance, it requires the most epochs to converge.

4.1.3. Interpretability of elementary domains

The learned parameters V1, . . . , VM of the GDU model can be interpreted as the learned
representations of the elementary domains P1, . . . ,PM of the feature vector space in the
RKHS. To understand what elementary domains the GDU model is approximating and
how these relate to the feature vectors we visualize the MMD between each domain basis Vj

and domains in the feature vector space as well as a representative t-SNE of the bases and

33

4. Discussion

Table 4.2.: 5-fold domain generalization runtime results on the CSII data averaged over 5 restarts with different
random seeds. The mean (standard deviation) training time in seconds and the number of epochs until convergence
are reported. Best results according to the mean are highlighted in bold.

runtime per epoch [s] number of epochs total runtime [s]

ERM
Single 1.48 (.16) 846 (176) 1253 (240)

Ensemble 1.83 (.19) 928 (195) 1697 (402)

FT
CS 2.06 (.18) 3382 (1054) 6959 (2144)

MMD 2.05 (.18) 5925 (939) 12166 (1954)

E2E
CS 3.03 (.14) 719 (105) 2177 (340)

MMD 3.10 (.17) 748 (108) 2315 (377)

feature vectors. A more detailed description of t-SNE, the parameters we used are provided
in A.5. We visualize the feature vectors and bases of the GDU model that was fine-tuned
to predict on a 60-minute PH with CSII as the hold out domain utilizing negative MMD
as a similarity measure. The feature vectors of the training, validation and test data were
calculated and visualized together.

Figure 4.2’s heatmap (left) suggests that the feature vectors, produced by the feature
extractor, are not significantly divergent across treatment domains. Figure 4.2 (right) shows
that except for the bases V0 and V2 the bases lie outside of the feature vector cluster,
indicating that the bases V0 and V2 approximate distributions within the feature vector space
that the feature vectors from their neighbourhoods stem from. The bases V1, V3, V5 and V6

lie furthest away from the feature vector cluster, suggesting that they do not represent a
certain population within the feature vectors, but rather an elementary domain shared by
the feature vectors.

(a) MMD between learned bases and feature vectors (b) t-SNE embedding of learned bases and feature vectors

Figure 4.2.: The visualizations of the similarity between the learned approximations of the elementary domain bases
and the feature vectors of the GDU model categorized by treatment type. The FE does not differentiate between
samples from the different treatment types. Bases outside the cluster approximate elementary distributions within the
feature vector space, while bases enclosed by feature vectors represent the neighbouring samples.

34

4. Discussion

Both Figures 4.3 (left) and (right) demonstrate that the feature extractor differentiates
according to the last CGM measurement. The feature vectors are segregated into three
categories based on the last CGM value in the input: in range, low, and high. The categories
are determined by BG thresholds for being in range (3.9 to 10 mmol/l). The bases V0 and
V2 are surrounded by feature vectors originating from inputs that were in range. These
bases represent some subcategories within the in range category. The group of bases outside
of the feature vector cluster is far from all categories as suggested by Figure 4.3’s MMD
heatmap (left), but closest to the high category. The t-SNE visualization in Figure 4.3 (right)
accurately represents the property that these bases lie outside the feature vector cluster.
The fact that the bases are far, in terms of MMD, from all categories suggests that the bases
do not represent subcategories of feature vectors, but instead a more elementary property
common to feature vectors across all categories. The visual proximity of these bases to the
low category in the t-SNE plot might be due to a small subcategory within the low category
that exceeds the proximity of all other subcategories. Given that very low CGM levels have
a natural lower limit and high CGM values are unbounded and might fluctuate significantly,
the model might reasonably focus on enhancing accuracy in a subcategory of very-low CGM
levels which are easier to predict.

(a) MMD between learned bases and feature vectors (b) t-SNE embedding of learned bases and feature vectors

Figure 4.3.: The visualizations of the similarity between the learned approximations of the elementary domain bases
and the feature vectors of the GDU model categorized by the magnitude of a samples last CGM value. The FE
does differentiate between samples with different CGM levels. Bases outside the cluster approximate elementary
distributions that are present mainly in the low CGM category, while bases enclosed by feature vectors represent a
subcategory of the in range category.

4.2. Limitations

Dataset. CGM data represents the glucose concentration in the interstitial fluid, inherently
lagging behind the true BG concentration by an average of 4 minutes [4]. Additionally,
CGM devices’ readings are prone to errors, with the mean absolute relative difference to the
blood glucose being up to 9.8% for modern devices [62]. Therefore, the optimal prediction of

35

4. Discussion

CGM data is a slightly lagging and error-prone representation of the true BG trajectory. In
applications such as an alert system or AP, the decisions made based on these predictions
are continually influenced by these prediction errors, which could result in subtle alterations
in the subsequent decisions [63].

The collected CGM data was collected under real-world conditions in open-label field studies,
where individuals were monitoring and intervening based on their BG levels. Consequently,
the models trained on this data are tailored to predict future CGM levels under the
assumption that individuals are actively influencing their BG. However, when striving for
fully autonomous BG management via an AP, CGM predictions would benefit from training
on data that depicts glucose dynamics without human intervention.

In the preprocessing of the CGM data, we employed the algorithm from Baysal et al. [38] to
filter out PISAs. The false-positive and true-positive rates for this process are 3.36% and
81.05%, respectively. This process results in data smoothing, potentially removing some
rare, yet crucial scenarios. Models trained on such data may perform suboptimally when
encountering situations similar to those discarded. Therefore, applications reliant on these
models’ predictions would need to identify and pause in these situations. For this reason, we
chose a preprocessing method capable of detecting this rare scenarios in real-time, ultimately
enhancing the overall practicality of our approach.

The split of the data into different domains according to the individuals’ treatment types
was suggested by Inselspital’s medical staff and is in line with the recommendations from
Finlayson et al. [11]. The analysis of model performance across these domains provides
insight into the potential performance decrease of prediction models that comes with the
introduction of new treatment types. The medical reasoning, the analysis of metrics as well
as average daily CGM trajectories 2.1.1 indicate that these domains are in fact affected by
domain shifts. Also the change in model performance when testing on an unseen treatment
type suggests that the domains are inherently different, but a closer analysis of the magnitude
of the shifts between the domains remains to be conducted.

Modeling. The LSTM model architecture was initially developed and tuned on the Ohio
T1DM dataset [20, 43], which contains only individuals with type 1 diabetes, contrasting
with our diverse dataset with various diabetes types. Further, the architecture was originally
designed for individual-level training and testing, while we sought broader applicability,
employing a population-wise approach. Although hyperparameter tuning might enhance
the performance of the LSTM and TM for our dataset and tasks, we avoided it to prevent
overfitting and to maintain the models’ general applicability.

PEG evaluation. As a result of the open-label study design the performance evaluation
using the PEG does not include predictions in area E, since standard CGM devices do
not record measurements below 2.5 mmol/L, which is necessary for a prediction to fall
into this area. Moreover, the high standard deviation of results in area D results from a
scarcity of data in these clinically dangerous situations. Any production-level model should
be thoroughly trained and tested in these scenarios.

36

4. Discussion

GDU. In this work our aim was to show the general applicability of the methods to the use
case of CGM forecasting and therefore potentially overfitting models to the given dataset
was avoided at the cost of performance. Additional hyperparameter tuning may yield better
performance for the GDU models [64], especially for the E2E model. The superiority of the
fine-tuned models even in this case is strong evidence for the applicability of the proposed
methods. The performance of the GDU models comes with added complexity as is showcased
in 4.2.

The GDU models were trained initialized with 9 learning machines and therefore 9 domain
bases as a result of finding the optimal number if clusters to cluster the FE output following
the framework of Föll et al. [33]. The visualizations in 4.1.3 show, that some of the learned
bases are very similar in terms of MMD. This indicates that unnecessary complexity is
present with potentially marginal additions in performance. Remedying this are propositions
for methods in 5 that result in only a necessary amount of bases that additionally are spread
further apart from each other, representing more diverse elementary domains.

37

5. Conclusion and outlook

5.1. Conclusion

Within the expansive corpus of glucose prediction literature, our analysis discerns a critical
need for predictions that transcend mere statistical relevance and bear direct clinical
pertinence. Concurrently, an under-explored research gap has been discerned, rooted
in the domain shift inherent to CGM data patterns, instigated by the advent of novel
treatments.

Extensive research exists on glucose prediction, yet we identified the need for clinically more
relevant predictions and the research gap characterized by the shifting domain of CGM
data, due to the introduction of new treatment types. In response to these challenges, this
research delineates two pivotal research questions.

RQ1 How can we integrate the clinical severance of erroneous predictions into a
loss function for CGM forecasting deep learning models and to what extent
does this loss reduce the amount of clinically severe errors?

In this thesis we derived 5 desirable properties of a loss function for CGM forecasting that
accounts for the clinical severance of prediction errors in terms of the PEG. Based on
the desired properties we developed the PEG loss with the aim to reduce the number of
predictions that may result in clinically critical actions. Integrating this function into the
training process of cutting-edge CGM forecasting models has proven successful in consistently
reducing clinically severe errors. While the PEG loss does introduce an additional complexity
and a small change in technical performance, these are negligible compared to its clinical
benefits. The PEG loss also incorporates an interpretable parameter, offering a trade-off
between technical and clinical performance, with our findings indicating a particular range
for this parameter where both performances stay within acceptable bounds.

RQ2 To what extent can existing robust deep learning methods be utilized to
make existing CGM forecasting models robust against distribution changes
resulting from the population’s diabetes treatment?

Our investigation further extends to the robustness of an LSTM model against distribution
shifts caused by changes in diabetes treatment across the population. We found that the
models exhibit limited generalization performance when trained without data from individ-
uals undergoing specific treatment types. To enhance the models’ domain generalization
capabilities, we tested the performance of GDU models, trained in different modes, against
a baseline ensemble model. The results demonstrated that fine-tuning GDU models with
pre-trained LSTM feature extractors consistently improved robustness against distribution

38

5. Conclusion and outlook

shifts. Additionally, an ablation study of the GDU models’ extra parameters suggested that
the model’s results are stable across a wide range of hyperparameters, thereby rendering
hyperparameter tuning unnecessary.

While the GDU model does bring an increase in computational complexity, it compensates
with greater interpretability. The learned bases of the GDU model represent subspaces of
the feature vector space. Visual analysis of the similarity between the FE output and the
GDU bases revealed that the FE consistently prioritizes an input’s last glucose measurement
and does not distinguish between treatment domains. The learned GDU bases either denote
elementary domains in the feature vector space or highlight specific common subcategories
of feature vectors.

In conclusion, the findings of this study emphasize the potential of the PEG loss and the
GDU models to significantly improve the reliability and robustness of CGM forecasting
systems. Future research should build upon these results to further refine these models,
potentially leading to even better management of diabetes treatments.

5.2. Outlook

To enhance the applicability of the PEG loss and to further optimize the performance of
CGM forecasting models in medically critical situations, we need more data in extreme
scenarios such as glucose readings below 2.5 mmol/l. To create fully autonomous glucose
management systems, these situations must be thoroughly explored to mitigate the risks of
system failure during critical circumstances. Furthermore, data illustrating glucose dynamics
without any individual or system intervention is required for the development of completely
automated systems. However, the collection of data from potentially hazardous situations
or instances without interference should be conducted under strict supervision from medical
experts to safeguard the participating individuals.

The probabilistic forecasts produced by our models carry information regarding the models’
certainty about a prediction, yet this (un)certainty is currently not incorporated into the
PEG loss. To refine this, predictions with severe medical implications made with high model
certainty should incur an increased loss, while those with significant uncertainty should have
a reduced loss. One method to achieve this could involve calculating the probabilities for a
prediction’s distribution to generate a sample falling into the PEG areas and subsequently
deriving a weighted sum of these probabilities.

The general applicability of the GDU models was shown by the superior performance of the
fine-tuned models which in theory suggests that the poor performance of the E2E trained
models could be improved using hyperparameter tuning, since the set of trained models
through E2E training is a superset of the fine-tuned models. Hyperparameter optimization
was omitted, but might be considered in future work.

The general applicability of the GDU models was demonstrated by the superior OOD
performance of the fine-tuned models. This suggests that the underperformance of the
E2E trained models might be improved through hyperparameter tuning, as the set of

39

5. Conclusion and outlook

models trained through E2E training encompasses the fine-tuned models. Although we
omitted hyperparameter optimization in this study, it might be worth considering in future
work.

The computed distances and visualizations 4.2 between the learned bases of the GDU model
indicate that some bases are closely situated, hinting at potential redundancy in the resulting
models. Conversely, some elementary domains may lack representation. To address this,
future work could introduce a loss term that quantifies the proximity of bases to each other,
i.e., during model training, one could aim to maximize the distance between bases up to
a point. To further eliminate redundancies, one could start with a minimal set of GDUs
and dynamically expand the model with additional GDUs during training until the variance
between bases reaches a plateau.

40

Bibliography

[1] Gojka Roglic. „WHO Global report on diabetes: A summary“. In: International Journal
of Noncommunicable Diseases 1.1 (2016), pp. 3–8.

[2] Hong Sun et al. „IDF Diabetes Atlas: Global, regional and country-level diabetes
prevalence estimates for 2021 and projections for 2045“. In: Diabetes research and
clinical practice 183 (2022), p. 109119.

[3] Edward W Gregg, Naveed Sattar, and Mohammed K Ali. „The changing face of
diabetes complications“. In: The lancet Diabetes & endocrinology 4.6 (2016), pp. 537–
547.

[4] Roy W Beck et al. „Advances in technology for management of type 1 diabetes“. In:
The Lancet 394.10205 (2019), pp. 1265–1273.

[5] Rui Ma et al. „Recent advancements in noninvasive glucose monitoring and closed-loop
management systems for diabetes“. In: Journal of Materials Chemistry B 10.29 (2022),
pp. 5537–5555.

[6] Silvia Oviedo et al. „A review of personalized blood glucose prediction strategies
for T1DM patients“. In: International journal for numerical methods in biomedical
engineering 33.6 (2017), e2833.

[7] Ashenafi Zebene Woldaregay et al. „Data-driven modeling and prediction of blood
glucose dynamics: Machine learning applications in type 1 diabetes“. In: Artificial
intelligence in medicine 98 (2019), pp. 109–134.

[8] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999.

[9] Kaiyang Zhou et al. „Domain generalization: A survey“. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2022).

[10] Andrew Wong et al. „External validation of a widely implemented proprietary sepsis
prediction model in hospitalized patients“. In: JAMA Internal Medicine 181.8 (2021),
pp. 1065–1070.

[11] Samuel G Finlayson et al. „The clinician and dataset shift in artificial intelligence“. In:
New England Journal of Medicine 385.3 (2021), pp. 283–286.

[12] Clara Mosquera-Lopez et al. „Leveraging a big dataset to develop a recurrent neural
network to predict adverse glycemic events in type 1 diabetes“. In: IEEE journal of
biomedical and health informatics (2019).

[13] MZ Wadghiri et al. „Ensemble blood glucose prediction in diabetes mellitus: A review“.
In: Computers in Biology and Medicine 147 (2022), p. 105674.

[14] Taiyu Zhu et al. „IoMT-enabled real-time blood glucose prediction with deep learning
and edge computing“. In: IEEE Internet of Things Journal 10.5 (2022), pp. 3706–3719.

41

Bibliography

[15] Simone Del Favero, Andrea Facchinetti, and Claudio Cobelli. „A glucose-specific
metric to assess predictors and identify models“. In: IEEE transactions on biomedical
engineering 59.5 (2012), pp. 1281–1290.

[16] Xia Yu et al. „Deep transfer learning: a novel glucose prediction framework for new
subjects with type 2 diabetes“. In: Complex & Intelligent Systems (2021), pp. 1–13.

[17] Shengwei Luo and Chunhui Zhao. „Transfer and incremental learning method for blood
glucose prediction of new subjects with type 1 diabetes“. In: 2019 12th Asian Control
Conference (ASCC). IEEE. 2019, pp. 73–78.

[18] Alessandro Aliberti et al. „A multi-patient data-driven approach to blood glucose
prediction“. In: IEEE Access 7 (2019), pp. 69311–69325.

[19] Touria El Idriss et al. „Predicting blood glucose using an LSTM neural network“. In:
2019 Federated Conference on Computer Science and Information Systems (FedCSIS).
IEEE. 2019, pp. 35–41.

[20] John Martinsson et al. „Blood glucose prediction with variance estimation using
recurrent neural networks“. In: Journal of Healthcare Informatics Research 4.1 (2020),
pp. 1–18.

[21] Iván Contreras et al. „Using Grammatical Evolution to Generate Short-term Blood
Glucose Prediction Models.“ In: KHD@ IJCAI. 2018, pp. 91–96.

[22] Josep Vehí et al. „Prediction and prevention of hypoglycaemic events in type-1 diabetic
patients using machine learning“. In: Health informatics journal 26.1 (2020), pp. 703–
718.

[23] Francesco Prendin et al. „Forecasting of glucose levels and hypoglycemic events: head-
to-head comparison of linear and nonlinear data-driven algorithms based on continuous
glucose monitoring data only“. In: Sensors 21.5 (2021), p. 1647.

[24] Giacomo Cappon et al. „Individualized Models for Glucose Prediction in Type 1
Diabetes: Comparing Black-box Approaches To a Physiological White-box One“. In:
IEEE Transactions on Biomedical Engineering (2023).

[25] Chiara Zecchin et al. „How much is short-term glucose prediction in type 1 diabetes
improved by adding insulin delivery and meal content information to CGM data? A
proof-of-concept study“. In: Journal of diabetes science and technology 10.5 (2016),
pp. 1149–1160.

[26] Ashish Vaswani et al. „Attention is all you need“. In: Advances in neural information
processing systems 30 (2017).

[27] Qingsong Wen et al. „Transformers in time series: A survey“. In: arXiv preprint
arXiv:2202.07125 (2022).

[28] Haoyi Zhou et al. „Informer: Beyond efficient transformer for long sequence time-series
forecasting“. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35.
12. 2021, pp. 11106–11115.

[29] Shiyang Li et al. „Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting“. In: Advances in neural information processing
systems 32 (2019).

[30] William L Clarke et al. „Evaluating clinical accuracy of systems for self-monitoring of
blood glucose“. In: Diabetes care 10.5 (1987), pp. 622–628.

[31] Andreas Pfützner et al. „Technical aspects of the Parkes error grid“. In: Journal of
Diabetes Science and Technology 7.5 (2013), pp. 1275–1281.

42

Bibliography

[32] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.
[33] Simon Föll et al. „Gated Domain Units for Multi-source Domain Generalization“. In:

arXiv preprint arXiv:2206.12444 (2022).
[34] Tilmann Gneiting and Matthias Katzfuss. „Probabilistic forecasting“. In: Annual

Review of Statistics and Its Application 1 (2014), pp. 125–151.
[35] Daniel Sarewitz, Roger A Pielke, and Radford Byerly. Prediction: science, decision

making, and the future of nature. Island Press, 2000.
[36] Brett D Mensh et al. „Susceptibility of interstitial continuous glucose monitor perfor-

mance to sleeping position“. In: Journal of diabetes science and technology 7.4 (2013),
pp. 863–870.

[37] Nihat Baysal et al. „Detecting sensor and insulin infusion set anomalies in an artificial
pancreas“. In: 2013 American Control Conference. IEEE. 2013, pp. 2929–2933.

[38] Nihat Baysal et al. „A novel method to detect pressure-induced sensor attenuations
(PISA) in an artificial pancreas“. In: Journal of diabetes science and technology 8.6
(2014), pp. 1091–1096.

[39] Zeinab Mahmoudi et al. „Fault and meal detection by redundant continuous glucose
monitors and the unscented Kalman filter“. In: Biomedical Signal Processing and
Control 38 (2017), pp. 86–99.

[40] Kezhi Li et al. „GluNet: A deep learning framework for accurate glucose forecasting“.
In: IEEE journal of biomedical and health informatics 24.2 (2019), pp. 414–423.

[41] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[42] Sepp Hochreiter and Jürgen Schmidhuber. „Long short-term memory“. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[43] Cindy Marling and Razvan Bunescu. „The OhioT1DM dataset for blood glucose level
prediction: Update 2020“. In: CEUR workshop proceedings. Vol. 2675. NIH Public
Access. 2020, p. 71.

[44] Jonas Gehring et al. „Convolutional sequence to sequence learning“. In: International
conference on machine learning. PMLR. 2017, pp. 1243–1252.

[45] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. „Layer normalization“. In:
arXiv preprint arXiv:1607.06450 (2016).

[46] Kevin Plis et al. „A machine learning approach to predicting blood glucose levels
for diabetes management“. In: Workshops at the Twenty-Eighth AAAI conference on
artificial intelligence. 2014.

[47] Chiara Zecchin et al. „Jump neural network for real-time prediction of glucose concen-
tration“. In: Artificial Neural Networks. Springer, 2015, pp. 245–259.

[48] Rishi J Desai et al. „Comparison of machine learning methods with traditional models
for use of administrative claims with electronic medical records to predict heart failure
outcomes“. In: JAMA network open 3.1 (2020), e1918962–e1918962.

[49] Qi Wang et al. „A comprehensive survey of loss functions in machine learning“. In:
Annals of Data Science (2020), pp. 1–26.

[50] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary envi-
ronments: Introduction to covariate shift adaptation. MIT press, 2012.

[51] Krikamol Muandet et al. „Kernel mean embedding of distributions: A review and
beyond“. In: Foundations and Trends® in Machine Learning 10.1-2 (2017), pp. 1–141.

43

Bibliography

[52] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[53] Wes McKinney et al. „Data structures for statistical computing in python“. In: Pro-
ceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010, pp. 51–
56.

[54] Charles R. Harris et al. „Array programming with NumPy“. In: Nature 585 (2020),
pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[55] Jacob Gardner et al. „Gpytorch: Blackbox matrix-matrix gaussian process inference
with gpu acceleration“. In: Advances in neural information processing systems 31
(2018).

[56] Fabian Pedregosa et al. „Scikit-learn: Machine learning in Python“. In: Journal of
machine learning research 12.Oct (2011), pp. 2825–2830.

[57] Adam Paszke et al. „PyTorch: An Imperative Style, High-Performance Deep Learning
Library“. In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

[58] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89. 2020.
url: https://developer.nvidia.com/cuda-toolkit.

[59] John D Hunter. „Matplotlib: A 2D graphics environment“. In: Computing in science &
engineering 9.3 (2007), pp. 90–95.

[60] Michael Waskom et al. mwaskom/seaborn: v0.8.1 (September 2017). Version v0.8.1.
Sept. 2017. doi: 10.5281/zenodo.883859. url: https://doi.org/10.5281/zenodo.
883859.

[61] Jindong Wang et al. „Generalizing to unseen domains: A survey on domain generaliza-
tion“. In: IEEE Transactions on Knowledge and Data Engineering (2022).

[62] Viral N Shah et al. „Performance of a factory-calibrated real-time continuous glucose
monitoring system utilizing an automated sensor applicator“. In: Diabetes technology
& therapeutics 20.6 (2018), pp. 428–433.

[63] Charlotte K Boughton and Roman Hovorka. „New closed-loop insulin systems“. In:
Diabetologia 64 (2021), pp. 1007–1015.

[64] Rémi Bardenet et al. „Collaborative hyperparameter tuning“. In: International confer-
ence on machine learning. PMLR. 2013, pp. 199–207.

[65] Eric Schulz, Maarten Speekenbrink, and Andreas Krause. „A tutorial on Gaussian
process regression: Modelling, exploring, and exploiting functions“. In: Journal of
Mathematical Psychology 85 (2018), pp. 1–16.

[66] Laurens Van der Maaten and Geoffrey Hinton. „Visualizing data using t-SNE.“ In:
Journal of machine learning research 9.11 (2008).

[67] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. „How to use t-SNE effectively“.
In: Distill 1.10 (2016), e2.

44

A. Appendix

Contents

A.1. Participant characteristics . 45
A.2. PISA parameter analysis . 45
A.3. Interpolation with Gaussian process regression 45
A.4. Calculation of products in a RKHS 47
A.5. t-SNE of feature vectors and GDU bases 48
A.6. RMSE results of domain generalization experiment 49

A.1. Participant characteristics

The dataset is large compared to the well-studied and publicly available dataset Ohio T1DM.
Additionally, it represents a broader range of individuals with diabetes by including a range
of different types of diabetes, treatments, and CGM devices as presented in Figure A.1. The
dataset contains data from individuals with type 1, type 2 and other types (pancreatogenic,
MODY, GDM, MIDD, IDM and posttransplant) of diabetes. The diabetes treatments were
categorized by the Inselspital’s medical staff as follows: BI = basal insulin only, MDI =
multiple daily injections, CSII = continuous subcutaneous insulin infusion, AP = artificial
pancreas (individuals equipped a MiniMed 670G, 770G, or 780G insulin pump).

A.2. PISA parameter analysis

The method for PISA detection presented in Baysal et al. [38] and used in this thesis
introduces the three parameter sets: trial, nominal, and cautious. The parameter settings
result in algorithms differing in their trade-off between true and false positive rates as
shown in Table A.2. The algorithm with all three sets was applied to our dataset and the
resulting data loss is also reported. We selected the nominal set to minimize data loss,
whilst maximizing the true positive rate.

A.3. Interpolation with Gaussian process regression

Gaussian process regression is a Bayesian method for regression that can be used to ap-
proximate a wide range of functions [65]. Assume an unknown signal function f : Rn → R

45

A. Appendix

Table A.1.: Categorization of the 370 individuals in the dataset and size of each category in percent. (TXDM =
Type X diabetes mellitus; BI = basal insulin only; MDI = multiple daily injections; CSII = continuous subcutaneous
insulin infusion; AP = artificial pancreas)

category %

sex
male 65

female 35

age

16 - 25 12

25 - 50 50

50 - 75 34

75 - 87 3

diabetes type

T1DM 78

T2DM 15

other 7

treatment

BI 11

MDI 31

CSII 29

AP 27

other 2

HbA1c [%]

non-diabetic (≤ 6.0) 8

in control (6.0 - 7.0) 30

monitor closely (7.0 - 8.5) 47

elevated (8.5 - 10.5) 10

seriously elevated (≥ 10.5) 5

CGM sensor

Medtronic 49

FreeStyle Libre 33

Dexcom 18

Table A.2.: Parameter sets and the resulting true and false positive rates in Baysal et al. [38] as well as the data
loss in our dataset. (True positive rate, TPR = TP/P = TP/(TP + FN), and false positive rate, FPR = FP/N =
FP/(FP + TN))

parameter set TPR (%) FPR (%) data loss (%)

trial 82.3 5.0 6.4

nominal 81.1 3.4 5.1

cautious 63.6 1.7 2.4

46

A. Appendix

and some noise ϵ ∼ N (0, σ2
ϵ), the objective is to estimate y = f(x) + ϵ at different inputs

x ∈ Rn. Previously collected observations {X,y} with X = (x1, . . . , xt) and y ∈ Rt are used
to update the belief about the unknown signal f . An estimation for f(x) a point x, given
previously observed data {X,y} is given by the weighted sum

mt(x)
t�

i=1

wik(xi, x)

with a chosen kernel function k : Rn × Rn → R and weights collected in the vector
w =

�
K(X,X) + σ2

ϵ I
�−1

y, where

K(X,X) =

k(x1, x1) . . . k(x1, xt)
...

. . .
...

k(xt, x1) . . . k(xt, xt)


and I = diag(1, . . . , 1). For more detail, the interested reader is referred to [65]. Parameter
optimization via some version of gradient descent is necessary to fit the values for σ2

ϵ and
the parameters of the chosen kernel function to the given data.

We used the GPyTorch [55] implementation’s Adam optimizer with an exponentially decaying
learning rate with several kernels (i.e., RBF, Matérn and spectral mixture) to identify
interpolations of our irregularly sampled CGM data. In all cases the quality of interpolation
at a given point x was related to the amount of available data points surrounding x. So the
CGM sequences were interpolated very well at the center of each sequence, but the behavior
at the first and last sequence points was poorly captured due to the lack of surrounding
CGM measurements. Considering that the last sequence points together with the slope at
that point is crucial for short-term forecasting, this method resulted in interpolated data
that later yielded forecasting models that were performing poorly compared to the models
that were trained with the linearly interpolated data. Additionally, through the interpolation
with the GP the interpolated time series was smoothed to some extent due to the assumed
noise ϵ that comes with the method. Since we also had to tackle the irregular sampling times
of the target CGM sequences, the interpolation method had to be applied to the target
sequences as well, leading to smoothed targets. Smoother targets might lead to unrealistic
forecasting results, because of the reduced variability, which in turn might suggest unrealistic
results compared to real-world scenarios.

For these reasons and the added complexity reduction, we decided to only pursue linear
interpolation for the re-sampling of the irregularly sampled CGM data.

A.4. Calculation of products in a RKHS

Given the RKHS H of real-valued functions on the feature space X̃ with a reproducing
kernel k : X̃ × X̃ → R and the vectors u, v ∈ X̃ the scalar product between u and v in H
can be calculated as

⟨ϕ(u), ϕ(v)⟩H = k(u, v).

47

A. Appendix

Furthermore, given V = (v1, . . . , vN) with v1, . . . , vN ∈ X̃ , the product between u and V in
H is

⟨ϕ(u), ϕ(V)⟩H =
1

N

N�
i=1

k(u, vi).

Lastly, given W = (w1, . . . , wN) with another set of vectors w1, . . . , wN ∈ X̃ , the product
between V and W in H reads as

⟨ϕ(V), ϕ(W)⟩H =
1

N2

N�
i,j=1

k(vi, wj).

A.5. t-SNE of feature vectors and GDU bases

In theory, as stated in Föll et al. [33] the learnable GDU bases V1, . . . , VM will approximate
some underlying elementary distributions P1, . . . ,PM of the feature vector space in the
RKHS. In practice, we want to understand the structure of the feature vector space and how
the learned bases Vi relate, i.e., how (dis-)similar they are, to certain regions of the feature
vector space, to make the learned bases and therefore the GDU model more interpretable.
Since the basis vectors and the feature vectors are 256-dimensional, standard visualization
techniques to visualize the data’s structure are not applicable. We resort to t-SNE to
visualize the high-dimensional output of the FE together with the learned GDU bases
V1, . . . , VM . In the original publication [66] the ability of the method to reveal structure
at many different scales and the importance thereof for high-dimensional data is outlined,
which motivates the application of this method for our use case.

The set of vectors V = {w1, . . . , wK} we want to visualize together consists of the train
and test set’s feature vectors x̃ as well as the GDU basis vectors vji . We aim to learn
2-dimensional representations W of the vectors in V that maintain the pairwise similarities
between the original vectors and can be visualized in a 2-d plot. This is achieved by
minimizing the cost defined as the Kullback-Leibler divergence between the distribution P
of V and the distribution Q of W . For details the interested reader is referred to [66]. The
similarities between any two vectors and therefore the cost is dependent on the perplexity
parameter, which can be interpreted as a measure of the effective number of neighbours
a vector has. Minimization is performed via gradient descent and therefore the learning
rate and the number of iterations have to be set. We set the number of iterations to 5000,
because in this use case convergence is always achieved after 5000 iterations. As suggested
in Wattenberg, Viégas, and Johnson [67], we consider a range of perplexities and learning
rates to find structure in our data. The perplexity and learning rate ranges considered are
{25, 50, 100, 150, 250, 500, 1000} and {50, 100, 150, 250, 500, 1000}, respectively.

We perform the analysis for the GDU model utilizing negative MMD as a similarity measure
that was fine-tuned with the challenging CSII data as the hold-out test set. The resulting
t-SNEs are visualized in Figure A.1 where the feature vectors were categorized by their
treatment types. In most cases the embeddings form one large cluster with only some bases

48

A. Appendix

outside of it. There is no visual indication that the distribution of feature vectors stemming
from different treatment types are differing, from which we conclude that the FE is not able
to capture the distribution shifts between the treatment types. This observation aligns with
the results from Figure 4.2a. While the bases V0 and V2 are enclosed by neighbourhoods of
the feature vectors, the remaining bases are located at the border or outside of one end of
the feature vector cluster.

A more clear segmentation of the feature vectors becomes visible, when categorizing them by
the input’s last measurement as can be seen in Figure A.2. The bases enclosed in the feature
vectors represent subcategories within the observations with last glucose measurements that
are in range. The remaining bases lie outside the feature vector cluster. The bases outside
of the cluster learn to approximate elementary distributions that are not representing a
certain subcategory of the feature vectors, but an elementary attribute that is present in
observations in all categories.

A.6. RMSE results of domain generalization experiment

For completeness we provide the supplementary RMSE results of the DG experiment detailed
in 3.2. Similarly to the NLL results 3.4, the ERM single model shows decreasing performance
on the newer treatment types CSII and AP. As expected, the ERM ensemble model
outperforms the ERM single in almost all cases. Generally, the GDU models outperform the
ERM ensemble model except for a small number of cases. In contrast to the NLL results the
E2E models show competitive RMSE performance on all PHs, suggesting that the estimation
of the mean CGM is of high quality, while the predicted variances are not accurate.

49

A. Appendix

Figure A.1.: t-SNE visualizations of feature vectors and GDU bases at varying perplexity and learning rate parameters.
The 2-dimensional representations illustrate the spatial relationships between feature vectors (categorized by treatment
types) and the GDU bases V1, . . . , VM . Despite differences in perplexity and learning rates, the visualizations
consistently show one large cluster with a few outlying bases. Note the specific positioning of bases V0 and V2 within
the feature vector neighborhoods, while the remaining bases tend towards the border or beyond the main cluster.

50

A. Appendix

Figure A.2.: t-SNE visualizations of feature vectors and GDU bases categorized by the input’s last glucose measurement.
The 2-dimensional representations highlight a more distinct segmentation of the feature vectors. Bases enclosed
within these clusters represent distinct subcategories within the observations. The bases outside the main cluster are
presumed to approximate elementary distributions, representing an attribute that transcends individual categories
and is present across all observations.

51

A. Appendix

Table A.3.: Cross domain RMSE results. The mean (standard deviation) test RMSE is reported. Best results according
to the mean RMSE are highlighted in bold.

BI MDI CSII AP

30-min PH

ERM
Single 0.4970 (.0018) 0.5634 (.0034) 0.6962 (.0062) 0.6850 (.0039)

Ensemble 0.4970 (.0017) 0.5628 (.0023) 0.6956 (.0065) 0.6840 (.0029)

FT
CS 0.4968 (.0015) 0.5620 (.0024) 0.6966 (.0069) 0.6852 (.0032)

MMD 0.4972 (.0015) 0.5622 (.0026) 0.6962 (.0067) 0.6848 (.0036)

E2E
CS 0.4960 (.0028) 0.5592 (.0015) 0.6992 (.0086) 0.6848 (.0016)

MMD 0.4940 (.0015) 0.5600 (.0019) 0.6874 (.0038) 0.6834 (.0024)

60-min PH

ERM
Single 0.9218 (.0031) 1.0164 (.0012) 1.1626 (.0064) 1.1424 (.0028)

Ensemble 0.9214 (.0029) 1.0176 (.0012) 1.1580 (.0052) 1.1414 (.0030)

FT
CS 0.9198 (.0032) 1.0158 (.0012) 1.1540 (.0046) 1.1448 (.0033)

MMD 0.9196 (.0030) 1.0160 (.0011) 1.1532 (.0048) 1.1440 (.0028)

E2E
CS 0.9160 (.0027) 1.0140 (.0018) 1.1566 (.0050) 1.1482 (.0034)

MMD 0.9180 (.0037) 1.0178 (.0024) 1.1592 (.0062) 1.1506 (.0042)

120-min PH

ERM
Single 1.5320 (.0040) 1.6506 (.0035) 1.8064 (.0085) 1.7168 (.0116)

Ensemble 1.5380 (.0032) 1.6490 (.0023) 1.8052 (.0058) 1.7198 (.0075)

FT
CS 1.5360 (.0027) 1.6502 (.0017) 1.8034 (.0061) 1.7184 (.0088)

MMD 1.5334 (.0031) 1.6502 (.0016) 1.8008 (.0050) 1.7170 (.0081)

E2E
CS 1.5366 (.0037) 1.6456 (.0031) 1.7978 (.0050) 1.7200 (.0102)

MMD 1.5344 (.0045) 1.6480 (.0024) 1.8008 (.0073) 1.7140 (.0076)

52

A. Appendix

BG blood glucose . 1
CGM continuous glucose monitoring . C
CEG Clarke error grid . 3
PEG Parkes error grid . C
BI basal insulin only . 5
MDI multiple daily injections . 5
CSII continuous subcutaneous insulin infusion . 5
AP artificial pancreas . 1
PISA pressure-induced sensor attenuation . 6
GP Gaussian process . 8
GPR Gaussian process regression . 8
PH prediction horizon . 8
ERM empirical risk minimization . 9
RNN recurrent neural network . 2
LSTM long short-term memory . C
TM transformer model . 10
FE feature extractor . 10
ReLU rectified linear unit . 10
RMSE root-mean-square error . C
NLL negative log-likelihood . C
OOD out-of-distribution . 3
DG domain generalization . 3
GDU gated-domain-units . D
GDUs gated-domain-units . C
CS cosine similarity . 20
MMD maximal mean discrepancy . 20
FT fine tuning . 20
E2E end-to-end training . 20
RKHS reproducing kernel Hilbert space . 19
RBF radial basis function . 20
t-SNE t-distributed stochastic neighbor embedding 21

53

