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Kurzfassung

Die akute lymhoblastische Leukdmie (ALL) ist die haufigste Krebserkrankung bei Kindern.
Bei bosartigen Erkrankungen kénnen sich abnorme Zellen unkontrolliert teilen und auf
umliegende Zellen iibergreifen. Die Chemotherapie ist die haufigste Behandlung der
ALL. Da jeder Patient anders auf die Therapie anspricht, muss sie kontrolliert und
individuell angepasst werden. Die minimale Restkrankheit (Minimal Residual Disease,
MRD) gibt Aufschluss iiber das Ansprechen des Patienten auf die Behandlung. Anhand
dieses Wertes kann die Intensitit oder Dauer der Behandlung angepasst werden. Die
Durchflusszytometrie ist eine laserbasierte Methode, mit der die MRD nachgewiesen
werden kann.

Es gibt mehrere Methoden zur automatischen Erkennung von Krebszellpopulationen
auf der Grundlage von Durchflusszytometriedaten mit beeindruckenden Ergebnissen,
die jedoch einen entscheidenden Nachteil haben: die mangelnde Interpretierbarkeit der
Verfahren. In dieser Arbeit wenden wir eine Bildsegmentierungsmethode, das U-Net
Modell, an, um dieses Problem auf visuelle Weise zu l6sen, so dass alle Schritte des
Gating-Verfahrens leicht nachvollzogen werden kénnen.

Die Ergebnisse entsprechen dem Resultaten der State-of-the-art mit dem zuséitzlichen
Vorteil, dass die visuelle Darstellung des Gating-Verfahrens leicht nachvollziehbar ist.
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Abstract

Acute lymphoblastic leukemia (ALL) is the most common type of malignant disease among
children. In the case of malignant diseases, abnormal cells can divide uncontrollably
and spread to surrounding cells. Chemotherapy is the most common treatment for ALL.
Since every patient responds differently to the therapy, it needs to be controlled and
individualised. Minimal Residual Disease (MRD) indicates the patient’s response to the
treatment. Based on this value the intensity or length of treatment can be modified.
Flow cytometry is a laser-based method which can detect MRD.

There are several methods for the automatic detection of cancer cell populations based on
flow cytometry data with astonishing results but have only one striking disadvantage: the
lack of interpretability of the processes. In this thesis, we apply an image segmentation
method, the U-Net model, to solve this problem in a visual manner so that all steps of
the gating procedure can be easily comprehended.

The results meet the performance of the state-of-the-art methods with the additional
advantage of easy tractability through the visual representation of the gating procedure.
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CHAPTER

Introduction

The second most frequent cause of death worldwide is cancer [HD17]. Cancer research is
key to understanding the mechanisms of cancer and developing new treatments, tests,
and prevention measures for cancer [CRU|. Many different types of cancer exist. 3% of
cancer diagnoses are leukemia cases, however, this rate is significantly higher (33%) for
children under 15 years of age [PRL08]. Childhood leukemia cases are curable in 80% of
the cases [PRLOS] therefore early detection and treatment are essential.

Leukemia is a cancer of the blood cells which starts in the bone marrow. In leukemia
patients, there is an uncontrolled growth of abnormal, immature white blood cells, called
blasts, which flood the bone marrow and prevent the production of other vital cells such
as red blood cells and platelets, which are essential for survival [Bail7]. Leukemia can be
divided into different types based on the type of white blood cells are affected and the
speed of progress: chronic lymphocytic (CLL), chronic myeloid (CML), acute myeloid
(AML), acute lymphocytic (ALL), monocytic (ML) as well as other types [HSLB12]. In
this thesis, we will focus on acute lymphocytic leukemia (ALL), which occurs when too
many stem cells become abnormal lymphocytes [Bail7].

Every patient responds differently to the therapy; therefore, it is crucial to control and
individualise it. Based on the Minimal Residual Disease (MRD) value of the patient,
treatment length and intensity can be determined |[Cam09]. MRD) is defined as the
number of remaining cancer cells measured in bone marrow samples after chemotherapy.
Evaluating MRD) has become a proven diagnostic tool for treatment monitoring [BYVT09].

There are several different methods for MRD monitoring, such as cell-culture systems,
fluorescent in situ hybridisation, southern blotting, immunophenotyping, and polymerase
chain reaction (PCR) techniques. Unfortunately, most of these methods have either
low sensitivity, specificity, or applicability. PCR-based methods and multiparameter
flow-cytometric immunophenotyping reach a high sensitivity and are generally applicable
ﬂm. In this thesis, the focus lies on flow-cytometric immunophenotyping.
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1.

INTRODUCTION

Flow cytometry is a technique during which light is beamed onto a sample flowing in
a liquid stream and the scattered light signals are then measured. This technique is
frequently utilized in the analysis of blood and bone marrow samples. Flow cytometry is
applied in many fields such as cancer biology, monitoring of infectious diseases, immunol-
ogy, and virology, and is the basis of immunophenotyping, a technique to mark protein
expressions of a cell population by applying fluorescent compounds to categorize the cell
[HM22]. Flow cytometry will be described in Section [2.1 in more detail.

The data collected by flow cytometry can then be used to identify cancer cell populations.
By a process called gating, medical experts draw multiple polygons between different cell
populations on 2D images to hierarchically sub-select and detect cancer cell populations.
This process is repeated until the filtered data consists only of cancer cells. These
annotations are used as a basis for training automatic prediction models [RRKT16].

This task is highly dependent on the medical expert since it requires an advanced
understanding of the properties of the flow cytometry cells and samples. Additionally,
the gating procedure is very time-consuming. In light of these challenges, there is an
emerging need for the automation of the procedure. Through automation, the process
can be accelerated, the resources of medical experts can be optimized, and the possibility
of human error can be reduced. Therefore, many methods have been developed with one
goal in mind: to detect cancer cell populations in an automated way.

In this thesis, we will use two-dimensional projections of the data space as they are
employed by medical experts in the gating procedure. The reasoning behind this approach
is to recreate the gating procedure and hence the way the ground truth is generated
since the gating procedure relies only on two-dimensional projections as well. We will
use the U-Net architecture for segmentation in order to detect cancer cell populations
in 2D images. A description of the U-Net architecture and an explanation of why the
U-Net architecture is suitable for this problem will be outlined in Section 4.8.

This thesis aims to automatically identify cancer cells using flow cytometry data of acute
lymphoblastic leukemia (ALL) patients based on 2D plots created as part of the gating
procedure. Based on the labelled data from medical experts, a model can be trained by
hierarchically dividing the cancer cell populations. The gating procedure performed by
medical experts uses a fixed sequence of 2D images to detect blast cells. This process
will be replicated using our Neural Network model.

There are several automated methods that have been proposed to detect cancer cells in
flow cytometry data. Most of them work with multidimensional data and assign a class
label to each event of the sample, but do not provide additional information as to why

a particular cell was classified as a cancer cell [RRK™16] [WRW 22| [ANHB11] which

would be essential information in order to gain trust and transparency.

The proposed approach offers the advantage that by using two-dimensional projections,
medical experts are enabled to directly follow the process of cancer cell detection in
the gating procedure. Moreover, the use of two-dimensional projections, as opposed
to multidimensional alternatives, leads to a significant increase in process efficiency by
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1.1. Research Questions

reducing computational complexity. Based on this visual approach using the U-Net
architecture, cancer cells can be traced in a supervised manner. By making this method
interpretable through the visualization of each step of the process, additional information
regarding the automated gating procedure can be obtained.

We aim to achieve this goal by developing a Deep Convolutional Neural Network. Deep
Convolutional Neural Networks in particular have proven to be highly effective on spatial
data like images or audio. Experts manually identify cancer cell populations in a flow
cytometry sample using a combination of 2D plots. Therefore, it would seem natural to
process flow cytometry samples as 2D images for automated analysis as well.

One property of CNN5 is translation invariance, which is not suitable in our case because
the location of each pixel is crucial. Each pixel may contain cells that are either selected
for the next gating step or not. Hence, we need an extension of the ordinary |[CNN| which
considers the location of each pixel, such as the U-Net architecture. The output of this
network architecture is a segmentation mask of the input image. These masks contain
information on whether a pixel contains the cells of interest. This type of problem can
be considered a classification task, in which every pixel of the image will be assigned to a
class [REB15]. The U-Net is capable of automatically identifying cancer cell populations
in the given flow cytometry data with the additional advantage of a visual representation
of the process that is easy to interpret.

We compare the proposed U-Net method for automated cancer cell detection with the
transformer architecture proposed by Wédlinger et al. [W E@+22], which serves as the
baseline method in our experiments. It works in higher dimensional data spaces whereas
the proposed method is restricted to sequentially classifying 2D images.

The main advantage of our method lies in the interpretability of the output of the network.
The result of the proposed approach is similar to the gating procedure and is therefore
comprehensible for medical experts. Working with two-dimensional projections could
offer the additional advantage of reducing the amount of training data required, thanks
to the smaller number of dimensions and the reduced model complexity. Since medical
data is difficult to obtain, this could be a great benefit for further research.

1.1 Research Questions

The scope of this thesis is the implementation, application, and evaluation of the U-Net
architecture for the automated identification of cancer cells based on flow cytometry data.
The following research questions will be addressed:

1. What is the optimal U-Net architecture in terms of layers and kernel parameters
for automating the gating procedure in flow cytometry data?

What preprocessing steps are essential to prepare the input for the U-Net architec-
ture’s gating procedure replication? This question investigates the efficacy of the
U-Net architecture in addressing the specified task and identifies the most suitable
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1.

INTRODUCTION

architectural parameters. Furthermore, it explores the application of segmentation
masks generated by the U-Net for data filtering and cancer cell detection. Addi-
tionally, it assesses the impact of employing separate models for each hierarchical
level against using a single model across all hierarchy levels, examining whether
false predictions are easier to detect.

2. What distinct advantages does the proposed method offer in comparison to state-
of-the-art techniques for identifying cancer cell populations?

The main objective of this thesis is to evaluate whether we need multidimensional
flow cytometry data to identify cancer cells or if two-dimensional projections can
also provide accurate results. This question will highlight both the strengths and
limitations of the proposed architecture. Performance evaluation will compare the
proposed U-Net architecture against established methods, using metrics such as F1
score, precision, and recall. Furthermore, we will ascertain whether the proposed
method outperforms alternatives when dealing with varying proportions of cancer
cells (MRD) and outline situations where this is the case.

1.2 Contribution and Overview of the Thesis

The key contribution of this thesis is the adaptation of the U-Net architecture to the
sequential 2D images generated from flow cytometry data, the implementation of the
hierarchical sub-selection of the sub-populations and the evaluation and comparison of
the results with the current state of the literature in automated cancer cell detection
using flow cytometry data.

While several methods have already been proposed to automatically detect cancer cells,
the main difference between the existing methods and the proposed method is the reduced
complexity due to the use of 2D image data rather than multidimensional datasets and
the explainability of the results. The proposed method provides additional insights into
related research on cancer cell detection. Additionally, we would like to investigate,
whether a Convolutional Neural Network-based approach is capable of identifying cancer
cell populations meeting state-of-the-art performance.

This thesis has the following structure: In Chapter 2, the clinical background will be
elaborated upon. It begins with an introduction to flow cytometry, its history and
applications, followed by the gating procedure. In the last part of the chapter, the
state-of-the-art methods for automated cancer cell detection using flow cytometry data
will be introduced and evaluated.

Chapter 3 introduces the related work in the automated identification of cancer cells using
flow cytometry data for the detection and monitoring of MRD of Acute Lymphoblastic
Leukemia patients.

Chapter 4 summarises image segmentation methods, the fundamentals of Convolutional
Neural Networks, and the U-Net architecture.

In Chapter 5, the implementation of the automated gating procedure using the U-Net
architecture will be presented. In this part of the thesis, the data preparation, generation
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1.2. Contribution and Overview of the Thesis

of input images, as well as the creation and usage of segmentation masks will be described.
Additionally, the network architecture, the model training itself, the implementation and
challenges of the hierarchical approach, as well as the experiments conducted will be
further elaborated.

In Chapter 6, the evaluation methods and metrics will be introduced, followed by
additional insights gathered from the experiments.

In Chapter 7 the proposed research questions will be answered and the limitations will
be addressed.
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CHAPTER

Clinical Background

Acute Lymphoblastic Leukemia (ALL) is the most common type of malignant disease
among children, hence the detection of |ALL became a vital and emerging research
area. Currently, 80% of childhood ALL can be successfully cured [PRLOS] with intensive
combination chemotherapy regimens, which in some cases need to be combined with
radiotherapy and/or hematopoietic stem cell transplantation [SS09].

The risk of early relapse of leukemia patients significantly correlates with the number
of detected residual leukemia cells [CvdWTBS"98]. Minimal Residual Disease (MRD)
indicates the response of the patient to the treatment even in early stages and additionally
enables the recognition of relapse (see Figure 2.1). Further strategies for treatment
(modifying intensity or length) are based on the number of remaining leukemia cells that
can be detected in the bone marrow or blood cells of the patients. A well-established
method for detecting MRD is flow cytometry [Cam09].

There are other methods introduced for the detection of Minimal Residual Disease, for
instance PCR-based methods and sequential flow cytometry analysis using the gating
method [ch913]. There are various studies (eg. [VAVBVWVDO04]) that try to separate
patients into different risk groups: MRD|low risk, MRD) high risk and MRD) intermediate
risk. Based on these studies within 8 to 15 days of treatment, high MRD) risk patients
(more than 10% MRD)) or low-risk patients (less than 0.01 %) can be detected.

In the following sections, flow cytometry, a technology used to analyse individual cells in
order to detect leukemia cells will be introduced (Section [2.1) and the gating method
performed manually by medical experts will be explained (Section 2.3).

2.1 Flow Cytometry

Flow Cytometry is a comprehensive technology that biologists have at their disposal to
study cell populations with high precision. Its main benefits are the statistical aspects as

7
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CLINICAL BACKGROUND
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Figure 2.1: Disease burden based on number of MRD [ch913]

well as the opportunity to separate sub-populations [PGLVKB12].

The foundation of flow cytometry is not new; its history leads back to the seventeenth
century when microscopes were used to analyse cells and tissues. In the early twentieth
century, stains were developed in order to examine various cellular components. For the
first time, fluorescence microscopy was applied for the detection of malignant cells in the
middle of the twentieth century. Around the 1980’s, it was proven that flow cytometry
had had a great impact on clinical diagnostics and Flow Cytometers have been already
used in numerous hospitals. One of the main reasons for the popularity of this technique
is its simplicity because it can be maintained with little human effort and the results can
be read without extensive knowledge of flow cytometry technology and without expertise
in data analysis [Giv13]. It can be used for numerous applications such as fluorescent
protein, cell counting, or MRD detection. Flow cytometers measure the scattered light
and fluorescence emissions as the cells pass through the laser beams [PGLVKB12].

A Flow Cytometer is compromised of three key parts:

The Fluidics System (1) consists of the cell-by-cell application of the input sample to the
laser.

The primary goal of the Optical System (2) is to extract information from the scattered
light. It contains two parts: excitation optics with focusing lenses as well as prisms and
collection optics where the scattered light is collected and gathered by special optical
detectors. When the cell reaches the interrogation point, the scattered light of the
laser beam is collected by several specific detectors, thereby gaining information about
the physical properties of the cell such as size and granularity. In this process, the
Forward Scattered Light (FSC) and Side Scattered Light (SSC) are collected, which
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2.1. Flow Cytometry

allows differentiation between heterogeneous populations (See 2.2). In order to gather

Side scatter detector

Forward scatter
detector

Light source

Figure 2.2: Forward Scatter and Side Scatter Light |ch213]

information on the biochemical properties of the cell, dyes of fluorochromes are used and

the brightness of the fluorescence intensity is recorded.

The Computer/Electronic System (3) converts the light into numerical data. This data

is stored and displayed in numerous ways, for example with histograms or scatter plots
h21

With its rapidly increasing applications, flow cytometry has been used for decades to
support the diagnosis of haematological diseases. This technology is widely used for the
detection of leukemia, characterisation and prognostics for children, and even during
therapy. The previous approach for identifying leukemia was based on the leukemia’s
morphology. The problem with this method is that its success depends heavily on
the haematologist as well as the fact that it is very difficult to distinguish between
leukemic cells and normal lympho-haematopoietic progenitor cells, which in turn has a
major impact on the treatment required. Given the above limitations of morphology,
immunophenotyping of cancer cells is gaining importance and is frequently used in
research nowadays. This technology examines antigens on the cell surface in order to
identify the cell type and the stage of differentiation. Leukemia detection includes the
detection of white blood cells in blood or bone marrow. With a flow cytometer, the
labelled cells can be analysed in a short time and it is now possible to detect even a small
number of cells, which would not be feasible using solely morphology [Wan14].

The use of flow cytometry has been shown to be extraordinarily important for the
detection of Minimal Residual Disease among post-therapy patients. The major idea for
MRD]| detection by flow cytometry is based on the identification of antigens which are
expressed differently between leukemic populations and their normal counterparts in the

bone marrow [Wool3].
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2.2 Data

The light signals generated by the Flow Cytometer are read by detectors. After being
converted into electronic signals, they can be analysed by computers and saved in a
standard format for flow cytometry (FCS file format) [Giv01].

In this thesis, we use bone marrow samples for detecting residual leukemia cells analysed
by Flow Cytometers. These samples were collected from leukemia (B-ALL) patients
15 days after induction therapy in three different countries: Austria, Germany, and

Argentina [JS12].

e Vienna: 519 samples were collected in the St. Anna Children’s Cancer Research
Institute between 2009 and 2020.

These samples were separated into two datasets:

1. viel4 contains samples gathered between 2009 and 2014 (200 samples)
2. vie20 holds data from the years 2015-2020 (319 samples)

e Berlin: 79 samples were gathered at Charité Berlin in 2016.

e Buenos Aires: 65 samples were obtained in the years 2016 and 2017 at the Garrahan
Hospital in Buenos Aires.

Each sample within these datasets contains approximately 300.000 events. The samples
were manually labelled by at least two medical experts (so as to provide a reliable ground
truth), using the gating procedure [RDS*19]. Three out of the four datasets are accessible
at the [FlowRepository website. The website does not provide access to the samples that
were collected in Vienna between 2016 and 2020.

The resulting data was further filtered by the selection of certain cell populations based
on their biological features. Properties such as size (light scattering at the forward
angle) and internal complexity (right-angle scattering) can distinguish between specific
cell populations [BW00]. Additionally, the cluster of differentiation (CD) values, which
summarize the surface characteristics of the different cells, are given. For example, CD19
and CD20 are B-cell markers [Giv01].

2.3 Gating procedure

The main goal of the gating procedure is to separate single populations in a heterogeneous
sample. It allows the analysis of sub-populations to hierarchically trace cancer cells
(ch213).

Generally, the gating procedure is performed manually by medical experts based on a
hierarchical sequence of 2D images. This procedure has several limitations, as it strongly
depends on the scientist’s knowledge and is extremely time-consuming [LRD¥18].
Figure 2.3 illustrates the hierarchy of the manual gating procedure. The blue dots are
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2.3. Gating procedure

cells within the polygon drawn by medical experts. These cells will be used for the next
2D representation of the data. The grey cells (outside of the polygon) will not be taken
into consideration for the next gating stages.

The first gate is the Syto+ gate which contains all events corresponding to cells. In the
image of the first gate, Front Scatter Area (FSC-A), values of each cell are displayed on
the x-axis and Syto 41 values on the y-axis. In this step, the events which are neither
cells nor debris are rejected. The second gate is the Singlets gate, where cells, which
are too large are discarded. The third gate, the Intact gate, is where dead cells (small
cells) are dismissed. The CD 19 gate selects the cells which are not B cells, and the final
gate is the Blasts gate, where the leukemic cells are selected. Three different images are
used in order to detect blasts since many cells overlap (cancer cells cannot be clearly
separated from non-cancer cells). The intersection of the detected cells on these three
images is labelled as cancer cells at the end of the gating procedure [RRK*16].

o o
© O
® o
<L <
Y 5 %
Syto 41 FSC-W
®
Syto (-0

FSC-A

<D 20 D 38
Figure 2.3: Manual gating procedure ﬂm

Following the gating procedure, the percent of Minimal Residual Disease is calculated in
the samples in the following way [ch913]:

Number of cancer cells
MRD% = Total number of cells x 100 (2.1)

The goal of this thesis is not only to implement the proposed algorithm, but also to
compare it with the existing state-of-the-art methods (see Chapter . In order to allow

11
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2. CLINICAL BACKGROUND
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Figure 2.4: Visualisation of the last steps of the manual gating procedure. Image a
shows the 4th gate while images b, ¢, and d are parts of the 5th gate. The images are
two-dimensional projections of a sample [JS12] gathered in Vienna. The cells within the
red dashed polygons are the cells, labelled by medical experts.
a fair comparison with the performance of these methods, we used all events from the
Intact gate (third gate) in the same way as it was described in the studies. This means
that only the last two gates (see Figure [2.4) will be taken into consideration for the
overall evaluation of the proposed method.
12
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CHAPTER

Related Work

To address the limitations of manual gating by medical experts, various approaches
have been proposed that allow for automated identification of cell populations in flow
cytometry data. This chapter gives an overview of the state-of-the-art methods relevant
for this thesis. The focus lies on methods for the automated identification of cancer
cells using flow cytometry data of Acute Lymphoblastic Leukemia patients. Common
advantages and limitations of the previous research will be pointed out in order to enable
a good comparison between the proposed method as well as the state-of-the-art methods.

Recent research papers suggest numerous unsupervised and supervised approaches for
this task. In comparison to the manual gating procedure, these methods are applied
directly to the multidimensional flow cytometry data [WRW+22].

The main challenges of the previously applied methods are the large sample sizes (approx-
imately 300.000 cells per sample and more than 10 features) and the unbalanced design
seeing as the number of cancer cells is below 0.01% in some samples [RRK*16]. The
datasets collected in Berlin and Buenos Aires, as described in Section [2.2, both contain
less than 80 samples, which is a relatively small sample size, hence the risk of overfitting
is high. Due to this, the application of machine learning methods is not straightforward.

3.1 State-of-the-art Methods

There are various flow cytometry data analysis methods that have shown good results
for the automatic identification of cancer cell populations. Manual gating works with the
two-dimensional projections of the flow cytometry data, but the proposed automated
methods use the entire parameter space. These methods attempt to assign a label (blast
or non-blast cell) for each event of the multidimensional dataset without any specific
explanation or traceability of the results. These methods will be separated into two groups

13
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based on the type of machine learning approach applied: unsupervised or supervised
methods.

3.1.1 Unsupervised Methods

Examples of unsupervised methods, that were used in the state-of-the-art literature, are
clustering and density estimation. These methods do not require any labelled data; they
function based on the similarity of the different events corresponding to the cells.

K-Means clustering for flow cytometry data (FlowMeans) models the data as a single
population which contains various clusters with mode detection using kernel density
estimation. To determine the number of clusters, a change point detection algorithm is
used [ANHB11]. FlowClust [LBG08] and FlowMerge [FBBGQ9] are both model-based
clustering algorithms which use the Box-Cox transformation combined with the Expec-
tation Maximisation (EM) algorithm with the distinction that FlowMerge additionally
applies a cluster merging algorithm. These methods face major challenges when applied
to new datasets, since cluster size, shape, and position can vary largely across various

laboratories [RREKT16].

3.1.2 Supervised Methods

Supervised methods require data labelled by medical experts which serves as ground
truth for training the algorithms. There are many different approaches such as Support
Vector Machines, Gaussian Mixture Models, or Bayesian approaches.

The main goal of Support Vector Machines is to find a hyperplane that separates cancer
cells from non-cancer cells [RRK*16]. Gaussian Mixture Models (GMM) can be used in
combination with the Expectation Maximisation algorithm ﬂm where each sample
is represented by a GMM. The parameters of this (GMM are determined by a linear
combination of multiple reference GMM based on the training samples. Furthermore,
Reiter et al. proposed another (GMM-based approach where the combination
of a Gaussian Mixture Model with a parametric density model is used for predicting
cancer cell populations. The aim is to find the weights of a linear combination of several
GMDMs to represent new samples by interpolation of the stored samples. A hierarchical
Bayesian model [JWF16] was developed to classify cancer cells using latent modelling.
The main advantage of this model is that expert knowledge can be added through priors.

A transformer architecture (a supervised classification technique that directly identifies
blast cells of a sample) has been proposed M] While it is capable of capturing
global information, this entails increased model complexity in terms of memory and
time. A transformer is an Encoder-decoder based architecture which uses a stacked
self-attention layer and pointwise fully-connected layers ﬂm Transformer models
are very successful and are commonly used in computer vision tasks, such as object
detection or segmentation, as well as Natural Language Processing (NLP) [HWC*22|.
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3.2. Evaluation of the state-of-the-art Methods

3.2 Evaluation of the state-of-the-art Methods

The transformer model by Woédinger et al. [W E@+22] outperformed existing methods
in terms of median F1l-scores using the four datasets introduced in Section 2.2. For
all experiments performed (except two edge cases), a median Fl-score of > 0.86 was
obtained, which constitutes quite a breakthrough as a stable performance across all
experiments was reached.

The main advantage of the transformer model is the ability to classify all cells of a
sample at once relating each cell to all other cells of the sample, owing to the attention
mechanism. For further explanation of the transformer architecture, see [WRW¥22]. The
attention mechanism is one of the major differences compared to other deep learning
based approaches which use the input data in a sequential manner . This in
turn leads to an improvement in performance in terms of computational complexity and
runtime.

The results of the best performing state-of-the-art methods are displayed in Table 3.1.

In the columns of the table, the precision (p), recall (r), average Fl-score (avg F1),
and median Fl-scores (med F1) are presented using the transformer model proposed by
Wodinger et al. [W E§§+22] compared to the results using Gaussian Mixture Models by
Reiter et al. [RDST19]. The first two columns contain information as to which training
and test sets were used for the experiment. The remaining two datasets were used as
validation sets for the evaluation.

train test p r avg F1 med F; med F{[RDST19)
vie vie 0.81 0.83 0.81 0.94 =
bln bue 0.63 0.84 0.66 0.87 0.68
bln vield 0.77 0.83 0.77 0.90 0.35
bln vie20 0.79 0.77 0.74 0.87 0.48
bue bln 0.56 0.92 0.62 0.77 0.5
bue vield 0.76 0.88 0.79 0.90 0.84
bue vie20 0.79 0.74 0.72 0.88 0.86
viel4  bln 0.7 0.82 0.75 0.9 0.81
vield  bue 0.82 0.81 0.78 0.95 0.84
vield  vie20 0.81 0.74 0.73 0.89 0.86
vie20  bln 0.64 0.87 0.66 0.81 0.25
vie20  bue 0.82 0.69 0.71 0.86 0.81
vie20  vield 0.82 0.69 0.71 0.86 0.89

Table 3.1: Results of the state-of-the-art literature [WRWT22)

The GMM model showed very reliable results with median F1l-score > 0.5 in more
than 95% of the samples; nevertheless, the transformer model outperformed the GMM

15
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approach in terms of the median F1 score in all but one case. In the cases, where the
Buenos Aires or Berlin dataset (smallest dataset) were used for training, the results are
worse compared to when the Vienna dataset was used.

The transformer model achieved higher performance for samples with a higher MRD
fraction, for samples with a very low MRD fraction, the predictions were overestimated
rather than underestimated.

3.2.1 Summary

Several different approaches were proposed in the literature for the automated identifica-
tion of cancer cells in flow cytometry data. There are supervised as well as unsupervised
methods; the common characteristic of these models is that they are all applied directly
to the multidimensional data.

In conclusion, the proposed methods reached a high performance based on the median
F1-score in automated cancer cell detection where the Transformer model proposed by
Wodinger et al. ﬂm outperformed the previously introduced methods. The lack
of explanatory ability of the models is a defining characteristic of these approaches. By
replicating the manual gating procedure we want to close this gap in the literature.

The next chapter introduces the basics of image segmentation methods and convolutional
neural networks and concludes with the U-Net architecture itself.
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CHAPTER

Method

This chapter introduces the model we used in our approach to automate the gating
which is based on the U-Net architecture. The U-Net architecture is a convolutional
neural network that was proposed by Ronnenberger et al. for biomedical image
segmentation. First, image segmentation (Section 4.1), especially biomedical image
segmentation methods (Section 4.2) will be summarized. Next, the foundation of neural
networks can be found in Section 4.3, followed by an overview of the convolutional neural
networks 4.4. Afterward, the next sections cover the training 4.5, regularisation 4.6 and
optimisation 4.7 of neural networks. This chapter will close with a detailed explanation
of the U-Net architecture (Section |4.8).

4.1 Image segmentation

Image segmentation is a fundamental field within computer vision. The main objective
of this process is to divide images into several segments and then add semantic labels to
each pixel of the image.

Image segmentation methods can be split into different categories, e.g. semantic segmenta-
tion, instance segmentation, and panoptic segmentation. In case of semantic segmentation,
pixels are classified using semantic labels yet this method does not discriminate between
distinct instances within the same category. In turn, instance segmentation detects
individual objects on an image (e.g. each person). Panoptic segmentation combines
image segmentation with semantic segmentation, i.e. in addition to assigning class labels
to each pixel, it also identifies which specific instance it belongs to ﬂm

Image segmentation can be defined as an image processing technique that divides images
into meaningful regions or segments. It can additionally be considered as a way of defining
boundaries between various semantic units in an image [GDDM19]. It allows a better
understanding of the image and identification of objects.

Image segmentation methods can be useful for numerous applications, some of the most

17
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common applications being understanding scenes, medical image analysis, robot percep-
tion, augmented reality [MBPT21], security monitoring, and remote sensing [KKR14].
There are various methods for image segmentation, e.g. thresholding, edge detection,
region-based methods, or clustering methods such as k-Means Clustering. In recent years,
several deep-learning-based image segmentation methods have been developed and gained
a lot of attention due to their breakthrough performance. Some well-known examples are
fully Convolutional Networks [LSD15], Encoder-decoder based models [BKC17], Region-
based Convolutional Neural Networks (R-CNN) (for instance segmentation) [RHGS15],
and Recurrent Neural Network-based models

4.2 Biomedical image segmentation

Healthcare is a broad and vital application area for image segmentation. One of the most
difficult tasks in medical image analysis is the segmentation of medical images and the
identification of pixels of organs or lesions from medical images, such as CT or MRI images,
so as to provide important information regarding the form and volume of these organs.
The main challenge in this field is the variation of image quality and the unavailability
of a vast amount of labelled data for some diseases [GDDM19]. Biomedical image
segmentation methods are widely used in various fields such as diagnostic, localisation of
tumours or other pathologies, planning of various treatments, and computer-integrated
surgery [PD13]. The most frequent application is the segmentation of tissues in order to,
among other things, count or detect cancer cells [GDDM19].

Doctors typically examine the medical images manually, which is not only time-consuming,
but also subjective [PD13]. In order to overcome these limitations, various image
segmentation techniques have been introduced to enable the automatic analysis of a large
number of medical images.

In recent years, Artificial Neural Networks and Deep Learning have attracted more and
more attention and achieved many significant improvements and breakthroughs in this
field [MBP™21].

Over the past years, the U-Net architecture has achieved remarkable results in a wide
range of biomedical image segmentation areas, such as the application of U-Net in X-ray
imaging , ultrasound imaging ﬂm, or CT imaging .
Further explanation of the U-Net architecture can be found in Section 4.8. Based on
the promising results of the U-Net architecture in biomedical image segmentation, we
presume that it may work well on flow cytometry data.

In order to understand the essential building blocks of the method, the basics of Neural
Networks are presented in the next chapter.

4.3 Fundamentals of Neural Networks

This section gives an overview of the background of neural networks, starting with the
basics of feed forward neural networks.
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4.3. Fundamentals of Neural Networks

The history of neural networks leads back to 1958 when Rosenblatt [Ros58] implemented
the perceptron, which is a single layer neural network. The book of Minsky et al. [MP69]
demonstrated the computational limitations of the single-layer perceptron. As a linear
model, the perceptron can learn limited classes of non-linear mappings by using non-linear
feature transformations that are fixed prior to training. However, it is not able to learn
general non-linear mappings from training data, because the dimensionality of the feature
space would grow too fast with the number of training data (curse of dimensionality). In
order to address this shortcoming, the Multi Layer Perceptron (MLP, or feed forward
neural network), which is capable of learning non-linear functions, was introduced. In
1989, Hornik et al. [HSW89] proved with the Universal Approximation Theorem, that
any Borel measurable function can be approximated with an MLP.

We refer to these models as feed forward seeing as information passes through the function
of x, through the intermediate computations used to define f, and finally to the output y
[GBC16]. These networks contain an input layer, hidden layers, and an output layer (see

Figure 4.3).

2
OxO

Figure 4.1: A simple feed forward network with one hidden layer containing two units

[GBC16]

For the output of each unit of a feed-forward network, an activation function is applied.

Activation functions usually map an input to an output using a non-linear function
ﬂm. Non-linear activation functions are commonly used if the underlying data
structure is complex or difficult to learn. An important factor in choosing an activation
function is that it has to be differentiable so as to allow the weights to be optimised

using gradient descent [SSA1T].

Some frequently used activation functions include:

o Sigmoid: When the sigmoid activation function is used, the output is an S-shaped
function between 0 and 1.
1

19
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o ReLU: The ReLu (rectified linear unit) activation function is defined as follows:
ReLu(x) = max(0, z) (4.2)

The outputs of the function are positive values. A benefit of the ReLu function is
that it only activates some neurons and not all at once since negative values are
set to 0 ﬂm An additional benefit of the ReLu function is, that it is partly
linear, which means it is easy to optimize with gradient based methods |[GBC16]

e Softmax: Multiple sigmoid functions combined to solve classification problems with
multiple classes:

e

Yoo e

It provides for each data point the probability that it belongs to a particular class.

DV*17]

Softmax(z); = forj=1,...,K (4.3)

4.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN5s) have attracted a lot of interest over the last decade
due to their breakthrough performance [AMAZ17]. The history of (CNNs leads back to
the 1980s when Kunihiko Fukushima introduced the convolutional and downsampling
layers [FM82]. The name refers to the fact that the network implements a mathematical
operation called convolution, a special type of linear operation [GBC16]. One major
assumption of a CNN is that the features do not have spatial dependencies )
A Convolutional Neural Network is a feed forward network.

There are numerous reasons as to why Convolutional Neural Networks are beneficial for
solving image classification tasks. The three most important characteristics, which may
in turn help to improve a machine learning system, are sparse interactions, parameter
sharing (or weight sharing), and equivariant representations [GBC16]. [CNN5 share these
weights, i.e. they use them more than once, which reduces the number of parameters as
well as the computational complexity. Sparse interactions indicate, that the kernel size
used has smaller dimensions than the input image. |CNNs have the property of being
translation equivariant, i.e. if the input changes, the output changes correspondingly
IGBC16]. An additional advantage is spatial invariance; the location of an object is often
irrelevant for image classification tasks given that we are solely interested in detecting

the object [ZLLS21].

4.4.1 Layers

Convolutional Neural Networks consist of multiple layers with different functionalities, i.e.
convolutional layers (see Section |4.4.1), pooling layers (Section 4.4.1) and fully connected
layers (Section 4.4.1). In this section, all 3 layers will be elaborated upon.
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4.4. Convolutional Neural Networks

Convolutional layer

In Convolutional Neural Networks, the convolutional layer is the main building block
consisting of kernels (also referred to as convolutional filters) [AZH21].

To generate a feature map, a kernel, consisting of learnable weights, is shifted over the
input vector. This operation is called a convolution operation. We will focus on the
convolutional operation for 2D images since this will be used in our implementation. The
2D convolutional operation can be written as:

S(i,j) = (K« 1)(i,j) =>_ Y I(i —m,j—n)K(m,n). (4.4)

where I is a 2D input and K is a 2D kernel [GBC16].

Figure |4.2 illustrates the first step of a 2D convolutional operation, where the kernel
strides through the input matrix and generates a feature map.

Input
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Figure 4.2: Visual representation of a 2D convolution [GBC16].

The output of a convolutional layer can be calculated as follows:

Qjj =0 ((K * X)ij -+ b) (45)
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where a;; is the output for location (i,j), K is a kernel which slides over the input (X), b
is the bias, * represents the convolution operation and o is the activation function (see

Figure 4.3) [IGMA18].

Kernel

Ir.'npu t : bx Feature map

Figure 4.3: Visual representation of a convolutional layer [FLL*17]

Note that pixels located close to the border of an image may be neglected when applying
the convolutional operation. A solution for the problem is padding, which means new
irrelevant pixels (usually zeros) are added to the edge of the image. By doing so, all the
important information will be preserved. In addition, including padding changes the
number of pixels in the output, which is commonly used to receive an output image of
the same size as the input image. [ZLLS21].

When calculating the convolutional operation, the kernel moves over the input matrix
starting from the top left corner. In each step, the kernel moves x pixels horizontally.
When the kernel cannot move any further to the right, it jumps y pixels vertically and
back to the first column. x and y are referred to as stride parameters. Not only the
parameter padding but also stride changes the size of the output image [ZLLS21]. The
default value for stride is usually 1. An example with a vertical and horizontal stride of 1
and padding of 0 is illustrated in Figure 4.4.

Convolutional Neural Networks can be divided into three parts: feature extraction, which
is performed by the convolutional layer and the pooling layer, and classification, where
the fully connected layer converts the features into the desired output [YNDT1S].

Pooling layer

The main task of the pooling layer is dimensionality reduction [AMAZ17], which is ac-
complished by combining the feature maps [AZH™21]. In comparison to the convolutional
layer, the pooling layer replaces the output with some summary statistics of the nearby
outputs [GBC16], it has neither a kernel nor parameters [ZLLS21]. Well-known pooling
methods are average-pooling, min-pooling, and max-pooling, where max-pooling is the
most frequently used method [IGMA1S].

It divides the image into sub-region squares and returns only the maximum value within



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

4.4. Convolutional Neural Networks
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Figure 4.4: Convolution operation using kernel size 3x3, no padding, and stride 1

NDT18

that sub-region [AMAZ17]. The main idea of max pooling is downsampling to reduce
the dimensionality (i.e. the resolution) of the images.

Fully connected layer

The previous layers can be considered as the feature extraction part of the CNN, where
the fully connected layer in combination with a softmax activation function is responsible
for the classification. The objective of the fully connected layer is to learn the mapping
between the feature maps and the class probabilities. One (or more) fully connected layer
is applied to the features which were detected by the convolutional and pooling layer, in
order to calculate the class probabilities or any other downstream tasks [WBAK20].

FealureMaps FC
Figure 4.5: Fully Connected layers

The output of the last convolutional layer is connected to each hidden unit of the first
fully connected layer (see Figure 4.5). It should be noted that a major disadvantage of
fully connected layers is that they are prone to overfitting.
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4.5 Training a neural network

When training a network, the goal is to find kernels and weights that minimise the given
loss function. A frequently used training procedure is gradient descent, an optimisation
algorithm. It updates the weights in such a way that the loss function (cost function)

E(x) is minimised [YNDT18].

E(w) =

N =

N
Z HY(XTL’W) _tn||27 (46)
n=1

where x,, is the input data and ¢, is the corresponding target variable. The primary goal
of the gradient descent algorithm is to find a weight vector (w), so that the loss function
is minimized. If we vary the weight vector by a step-size w + dw, then the error function
changes by 0F ~ 6wV E(w) where VE(w) (the gradient of the loss function) points in
the direction of the greatest increase [BNO6].

Since F(w) is a smooth continuous function of w, it will reach its minimum at the point
VE(w)=0.

An iterative procedure is used for solving this equation, which starts with an initial value
wo and updates w the following way:

w() = w4 Aw(™), (4.7)

where 7 stands for an iteration step.

Gradient descent uses the parameter 1 (n > 0), which is the learning rate:

w = w( —yVE (w(T)) (4.8)

In such an iterative way, a new weight vector will be calculated in each step. This method
is called gradient descent (steepest descent) seeing as the weight vector is moving in the
direction of the largest rate of decrease of the error function [BNOG].

The gradient of the error function E(w) still needs to be evaluated with a method called
backpropagation. The first step (propagation of errors backward through the network) is
to calculate the derivatives of the error function with respect to the weight vector. In
the second phase (weight adjustment), the derivatives are then applied to compute the
adjustments to be made to the weights [BNOG].

The network training can be summarized in the following steps:

Step 1: Provide input vector to the network.

Step 2: Perform convolution using filters in order to obtain a feature map, use an activation

function and pooling operations

Step 3: Before classification, a fully connected layer is applied on the feature map
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Step 4: This resulting output is passed to a classifier (eg. softmax).
Step 5: Compute loss function and calculate gradient
Step 6: Backpropagate the error component and update the parameters.

Step 7: Perform the forward pass and repeat Steps 2 to 6 using updated parameters until

the network converges [IGMA18].

In the case of a differentiable function, gradient descent works efficiently. In many machine
learning applications, the objective function consists of a sum of sub-functions, each of
which is evaluated for a subsample of the training data. For such stochastic objective
functions, stochastic gradient descent can be more efficient by performing gradient steps
with respect to the individual subfunctions [KB14].

4.6 Regularisation of a Neural Network

A common challenge in machine learning is to train models which not only work well
on the given data but also generalise for unseen data. There are several strategies that
are used to decrease the test loss, even if it partially increase the training loss. These
methods are called regularisation methods [GBC16].

Two main challenges in machine learning are overfitting and underfitting. Overfitting
means that the method performs well on the training data but performs poorly on the
test data, whereas underfitting occurs when the method cannot reach a good performance

on the training set [GBC16].

The best strategy to make a neural network generalise better is to use more training
data, which can be achieved by data augmentation methods.

4.6.1 Data Augmentation

The performance of machine learning and deep learning models depends largely on
the proper quality and quantity of training data. In several tasks, such as biomedical
applications, it is very difficult or even impossible to collect enough data for training. If
the amount of data used for training is not sufficient, the trained model may very well fit
properly the data used, but not perform well on new, unseen data, hence overfitting.
To address this problem, several methods have been introduced which can generate
new images with the help of "simple" transformations using the given labelled data
[MG18] These methods are called Data Augmentation methods. The extended training
set (including the generated transformed images) can help the model to learn less specific
characteristics of the data, so that the trained model is more generalised and performs
better on the independent test set [CM §+§I] In computer vision, data augmentation is
essential so as to reduce the generalisation error and achieve sufficient results, given that
CNN5 commonly contain millions of parameters [HGYR17].
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Traditional, straightforward methods of data augmentation such as rotations and shifts
are frequently used in computer vision tasks. Affine transformations such as scaling,
rotation, and colouring have proven to perform reliably in generating augmented training
images with high quality [MG18].

Ronnenberger et al. [RFB15] suggest using random elastic transformations to generate
annotated images. The main idea is to use smooth distortions with random displacement
vectors (on a 3 x 3 grid). The displacements are obtained from a Gaussian distribution
with a standard deviation of 10 pixels.

The choice of data augmentation methods heavily depends on the use case and therefore
it requires additional domain knowledge and will be further described in Chapter |5.

4.6.2 Early stopping

In many cases, the training error decreases steadily over time, but after a few epochs, the
validation error starts to increase again (see figure |4.6). This indicates that the model
with the lowest training error does not necessarily perform well in the validation and
testing set. Furthermore, continuing training after the point where the validation loss
once again increases does not significantly improve model performance. Instead, an early
stopping criterion can be used, which saves the model with the lowest validation loss
[GBC16]. Another advantage of early stopping is that it can drastically reduce training
time compared to simply terminating after a certain number of epochs. An example of
an early stopping criterion would be stopping when the validation loss does not improve
for a predefined number of epochs, the so-called patience.

0.20 T T I I
e—e 'Training set loss

0.15 —— Validation set loss |

0.10

0.05

(negative log-likelihood)

Loss

0.00 : “
0 50 100 150 200 250

Time (epochs)

Figure 4.6: Illustration of the need for early stopping. The negative log-likelihood loss
was visualised for the training and a validation set |[GBC16].
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4.7 Optimisation of a Neural Network

In order to find the most suited model, the empirical risk which is the expected training
error needs to be minimized. The choice of the different loss functions and the search for
the best model parameters will be discussed below.

4.7.1 Loss function

A Loss function (cost function) measures the discrepancy between target values and
network output. The main goal is to have predictions which lie as close as possible to

the ground truth, which means the expected loss function needs to be minimised [BNQG].

During the training, the training loss and its derivative (gradient) are calculated and
then used for the propagation part of the training, followed by the update of the weights

with their respective gradients [WBAK20).
The choice of a loss function highly affects the model performance, and the choice of the

"best" loss function highly depends on the data itself [Jad20]. The most commonly used
loss function for regression tasks is the Mean Squared Error.

E—ln 2 4.9
ni:l

where e; represents the difference between the target output and the prediction [WBAK20].
Cross Entropy Loss is a commonly used loss function for classification tasks and can be
calculated in the following way:

CrossEntropyLoss = — Y _ y;log (;) (4.10)
i

where y; is the true label and g; is the estimation of class i.

Image segmentation tasks can be considered as a classification problem, but instead

of classifying the entire image, the prediction is performed for each pixel individually.

According to a survey by Shruti Jadon [Jad20], binary cross entropy is best suited for
image segmentation tasks when the classes are balanced.

The evaluation metric Dice Similarity is a frequently used evaluation metric for solving
image segmentation problems. The Dice Loss is a Loss function based on this evaluation

metric [m .

Intersection of the predicted mask and the ground truth

DiceLoss =1 — (4.11)

Union of the predicted mask and the ground truth

The minimum of the dice loss is 0, which indicates a perfect fit since the predicted mask
perfectly matches the ground truth.

Cross Entropy Loss and Dice Loss are well suited for the U-Net architecture. Both
are capable of measuring the discrepancy between a target segmentation mask and a
predicted segmentation mask.
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4.7.2 Parameter tuning

There are numerous parameters in the case of training an artificial neural network
which highly affect the performance of the model. Learning rate, batch size, depth of
the network, and the number of hidden units are among the parameters that must be
carefully selected.

The learning rate is an important parameter to optimise when training a neural network,
it determines the step size in each iteration [Murl2].

Using adaptive learning rates, the model performance can be further improved. ADAM
(Adaptive Moment estimation) is a commonly used algorithm for stochastic optimisation
due to its efficiency when working on a large amount of data, a vast amount of parameters,
and low memory demand. It computes an adaptive learning rate for various parameters
using estimates of the first and second moments of the gradients [KB14].

Optimization algorithms for machine learning commonly update the parameters based
on an expected value of the cost function. Calculating this value for all samples is usually
computationally expensive and therefore only a subset of the samples will be used for
this calculation. Batch size indicates the number of training instances used before the
weights are adjusted. Algorithms that use all the training sets at once are called batch
methods, only part of the samples minibatch methods and only one sample stochastic
methods [GBC16]. The higher the batch size, the more accurate the results in each step,
although it entails higher computational complexity.

The choice of batch size, the initial learning rate, as well as architectural parameters such
as the depth of the network and the number of hidden units, are selected before the actual
training process of a model begins. It is common practice to explore the performance
of the model using different combinations of those parameters. This process is called
parameter tuning. There are several methods used to tune the parameters, e.g. grid
search or random search. When using Grid search for parameter tuning, all combinations
of each parameter in a given range will be explored and compared. The model with the
lowest loss function will be used as the final model [Benl2]. Random search uses random
variations of the parameters in order to reduce computational complexity.

4.8 U-Net Architecture

In this Section, the main characteristics of the U-Net architecture will be introduced. The
main motivation behind the choice of the method is the goal to implement the hierarchy
of the gating procedure (see Section 2.3). In order to select the remaining data for the
next level of the hierarchy, the cell’s pixel-wise location is crucial. Therefore, a common
CNN is not well suited for our task.

We decided on a method that showed great results for solving biomedical image segmen-
tation problems (see Section 4.2), the U-Net architecture. Due to the downsampling and
upsampling part of the U-Net, the pixel-wise location of information will be preserved,
which is essential for the implementation of the hierarchical gating procedure. The
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input of a U-Net architecture is an image and segmentation mask pair. Given the flow
cytometry data labelled by medical experts, introduced in Section 2.2, the scatterplots
and corresponding segmentation masks can be easily generated. It serves as the ground
truth for the model. The prediction of the model is a segmentation mask for a given input
image, which allows for the partitioning of the data for the next level of the hierarchy.

Convolutional neural networks are frequently applied to image classification tasks. With
some minor modifications, they are also well suited for image segmentation tasks.

To solve a classification task, the required output is a probability distribution over
the classes. To achieve this, the images are flattened, which is not the appropriate
approach for image segmentation tasks. Through flattening, the images lose their spatial
relationships in the image. To solve this problem, fully Convolutional Layers can be
used [GDDM19]. Fully Convolutional Networks (FCN) are a special type of CNN| which
preserve the spatial relationships between the image pixels, which makes it suitable for
solving image segmentation tasks m

FCNs compared to |[CNN| have upsampling layers to restore the spatial resolution of
the input image in the output layer. Since max pooling layers lead to resolution loss,
skip connections will be used between the upsampling and downsampling part of the
network. This uses stored information from the downsampling path in the upsampling
path [JDVF17].

Since the aim of this thesis is to solve an image segmentation task in order to detect
cancer cells, a fully Convolutional Network, the U-Net, developed by Ronnenberger et al.
will be introduced in this section. See Chapter 5 for a detailed description of
the U-Net implementation for flow cytometry data.

4.8.1 The Network Architecture

The U-Net architecture is an encoder-decoder-based network. In [REB15], the architec-
ture was described as follows: The architecture consists of a contracting path to capture
context and a symmetric expanding path that enables precise localisation. The encoder part
compresses the input image into a latent spatial representation (capturing the semantic
information of the input image) and the decoder part predicts the output using the com-
pressed representation [MBPT21]. The left part of the architecture, shown in Figure 4.7, is
the contracting path (encoding), which can be considered as a normal (CNN. It consists of
convolutional layers (3x3) with a ReLU activation function followed by max pooling (2x2)
as a downsampling operation with stride 2, which are repeated numerous times [SPED21].

The right side of Figure 4.7 corresponds to the expansive path (decoding), where each
step consists of an upsampling convolution (2x2) in combination with convolutional
layers (3x3) with a ReLu activation function [SPED21]. The upsampling convolution
(transposed convolution, see Figure 4.8)) is used to reverse the effect of the convolutional
operation used in the encoding part of the network [GDDM19].

Figure 4.9 illustrates how a 2x2 dimensional feature map will be upsampled to a 3x3
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Figure 4.8: Comparison of a convolution and transposed convolution [GDDM19]

dimensional feature map. Each element of the feature map will be multiplied with the
kernel and added up, resulting in a 3x3 feature map.

Finally, a 1x1 convolution (i.e. convolutional operation with kernel size 1x1) is applied
to the final layer in order to obtain the correct dimensions. By doing so, a segmentation
map as output will be generated [SPED21].
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Figure 4.9: 2x2 dimensional example for the upsampling convolution, or with other words,
transposed convolution [ZLLS21]

Pooling operations are frequently used to reduce the dimensions (see Section 4.4.1)). These
operations are used in the encoding part of the network. We now apply an operation
called max unpooling. It reverses the previous effect of dimensionality reduction by
decompressing the given pixel into more pixels(decoder part of the network). For example,
2x2 unpooling generates four pixels of one (see Figure 4.10) [GDDM19]. Max unpooling
uses the information saved by max pooling, i.e. the indices of the pixel with the maximal
value of each pooling operation. In the case of max unpooling, the elements will be
placed on these indices, while all other values will be replaced by 0.

---------------------------------------------------------
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Figure 4.10: Max Pooling and Max Unpooling [GDDM19

U-Net works with skip-connections, in order to take different levels of abstractions into
account and recover the information lost by downsampling [GDDM19] (see arrow copy
and crop on Figure [4.7).

One of the main advantages of the U-Net architecture is that, due to context-based learn-
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ing, the U-Net is also much quicker to train compared to the most common segmentation
models [SPED21].

For our application of the U-Net architecture, we have different inputs, namely, the gates
of the gating procedure described in Section 2.3. There are various possibilities regarding
how we can deal with this challenge. We can train multiple models (one for each gate)
or we can use only one model to learn all gates by applying an extension of the U-Net
architecture, called conditioned U-Net.

4.8.2 Conditioned U-Net

A special control mechanism, as described in the work of Perez et al.[PSDV*18]|, allows
the usage of a single U-net model for different sources. The inclusion of such contextual
information enables the U-Net model to distinguish between samples from different
sources.

Conditioned U-Nets use a one-hot encoded vector which contains the information of the
source of the sample. FiLM (Feature-wise Linear Modulation) layers were introduced
to condition the neural network with feature-wise affine transformations which can be

adaptively learned [PSDV*18].

FiLM(z) =~(z) -z + B(z) (4.12)

where x is the input, which will be scaled and shifted on the basis of z. z is a vector
indicating the source of data. In our implementation, z denotes the gate from which the
input image was generated (see Section 2.3). The parameters v and (3 are learned when

training the model [MBP19].

This linear conditioning method involves an additional domain-specific contextual infor-
mation (metadata) into the model, which makes the model more robust and leads to an
increased model performance as discussed in . By training a single model for
different sources, the amount of training data is automatically increased.

The forthcoming chapter details the description of the implementation of both the U-Net
architecture and the conditioned U-Net architecture for the automation of the gating
procedure.
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CHAPTER

Application of the U-Net for
cancer cell detection in flow
cytometry data

This chapter presents the application of the U-Net architecture for the automatic detection
of cancer in cells in flow cytometry data based on a sequence of 2-dimensional scatter plots
used by medical experts for the manual gating procedure. Firstly, the workflow of the
proposed method for automated cancer cell detection will be described in detail in Section
5.1, including data preparation in Section 5.1.1 as well as the creation of 2-dimensional
projections of the multidimensional flow cytometry data |5.1.2 and segmentation masks
using the labelled data by medical experts in Section |5.1.3.

In Section [5.2|the training process will be described, followed by the implementation of the
network architecture 5.2.1. Section |5.2.2 describes the data augmentation methods used
to increase the number of training samples, model parameter optimization (Section 5.2.4),
and hierarchical sub-selection of flow cytometry data using the predicted segmentation
masks (Section 5.2.5).

The chapter ends with a description of the experiments (Section [5.3) used for the
evaluation of the models and for the comparison with the state-of-the-art literature and
with an elaboration of the evaluation methods (Section 5.4)).

5.1 Workflow for implementing the automation of the
gating procedure

The workflow of the implementation can be summarized in the steps shown in Figure [5.1.

As mentioned in Section 2.3 we represent the input data by 2D projections along axes
which are known to be informative and which are used in the manual gating procedure.
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Figure 5.1: The implementation workflow

These representations are chosen a-priori and we must therefore define the image size,
resolution, and plot type. Generating the input and target plots and choosing the optimal
image size is crucial for the successful automatic detection of cancer cells. Using larger
image sizes in Convolutional Neural Networks (CNNs) offers benefits such as capturing
richer spatial information and context for improved feature extraction and generalization,
but it also introduces challenges like increased computational complexity, memory usage,
and potential overfitting risks.

Scatter plots could be used to represent these 2D projections, but we have observed that
cells heavily overlap in some areas. A scatter plot displays overlapping cells as there
where only one cell, in other words, we lose information regarding the density of cells.
Thus, we chose a plot type that is able to capture the density of cell populations, namely
the scatter density plot. The target plot represents the segmentation masks that capture
all cells of the associated gating step which were selected by medical experts.

The second step is the actual implementation of the U-Net model architecture. The
implementation is based on the Github repository [Per21] with adaptations regarding the
number of channels of the images, the size of the feature maps, and the initial weights.

The implementation of the U-Net model architecture is followed by the training of the
model. In this part, a U-Net model will be trained separately for each step of the gating
procedure. There are several parameters (e.g. number of layers, size of the feature map,
learning rate, loss function, and number of epochs) needed for the training which must
be tuned to find the best possible model.

Once the models are trained, for each image in the test set a segmentation mask can be
predicted analogous to the polygons outlined by medical experts in the gating procedure,
which serves to exclude irrelevant cells for subsequent stages. Using the predicted
segmentation masks this can be easily reproduced and the new (reduced) test image for
the next gate can be generated. The last step is the evaluation which will be further
elaborated upon in Chapter |6.

The implementation of the hierarchical approach to reproduce the gating procedure is
summarized in Figure 5.2.

5.1.1 Data preparation

Bone marrow samples of leukemia patients can be found and downloaded from the
FlowRepository [JS12] in fcs (Flow Cytometry Standard) form.
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Figure 5.2: Implementation of the hierarchical approach for the automated gating
procedure.

gate label X y
Syto FSC-A  Syto4l
Singlets  SSC-A  FSC-W
Intact SSC-A  FSC-A
CD19 SSC-A  (CD19
Blasts CD10 CD45
Blasts CD10 CD20
Blasts CD10 CD38

Table 5.1: Features and gate labels used for the creation of input images in the various
gating level.

As mentioned in Section 2.2, the FlowReprository is a database for flow cytometry
experiments. The flowmepy [DWWK] python package was used to convert the data from
fcs form into a pandas data frame. Each sample contains on average 300.000 events as
well as the corresponding gates labelled by medical experts. Since the datasets come
from different sources and were labelled by different doctors, the column names of the
different datasets needed to be translated back to a consistent form.

The gathered flow cytometry samples were normalized feature-wise before the creation of
the 2D scatterplots (which can be considered as the input of the U-Net model) with the
min-max scaling method. In this case, variables with different ranges will be re-scaled
into an interval of [0,1]. Normalising the data before creating the images is an important
step as it allows the algorithms to reduce (irrelevant) variability of the training set and
learn the pattern in flow cytometry faster. [TPX19]

X — Xmin

Xscaled = Xmax — Xmin (51)

5.1.2 Input image preparation

For each level of the gating hierarchy, different input images will be generated. Table |5.1
contains the different x and y features for each gate.

The events (cells) of the 2-dimensional projections of the flow cytometry data were
visualized via the matplotlib [Hun07] package in combination with the mpl-scatter-density
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package [mpl20] using a scatter density plot. In this way, not only the x- and y-values
but also the density can be displayed. In such a way it is easier to recognise the different
clusters (cancer cell populations), see Figure |5.1.2.

The correct image size and resolution of the 2D input images is a crucial point for training
the U-Net model. If the resolution is too high, the computational complexity and the
time required for training explode. Images that are too small help to reduce the training
time for the models, but can lead to individual pixels containing many target cells and
non-target cells simultaneously, which would consequently make it difficult for the model
to separate the two groups.

Since in many cases, several cancer cells are located at the edge of the image, data
augmentation methods such as shifting or scaling could remove important cancer cells
from the image. Therefore, the images were padded before saving.

* »

Figure 5.3: Example of an input image of the Vienna 14 dataset. The image belongs to
Gate 4; the x-axis represents the SSC-A and the y-axis the FSC-A of the given cells.

In Figure 5.3 it is easy to recognise that there are two sub-populations. To know which
cells will be rejected at this stage of the gating procedure, the corresponding segmentation
mask in Figure |5.4| needs to be considered.

5.1.3 Generating segmentation masks

The target image of a U-Net model is a (binary) segmentation mask, where pixels with
a value of 1 indicate that a pixel belongs to cancer cells and pixels with a value of 0
belong to non-cancer cells. These masks can be considered as ground truth, where the
background is coloured black and the foreground white [RFB15]. These masks represent
the smallest convex set that contains all the cells that have been labelled as cancer cells
[BDHOG).

The size of the input image and the size of the segmentation mask are the same, such
that each pixel in the input image of the segmentation mask has a corresponding label.
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Samples that do not contain cancer cells are a rare and special case (bue dataset 5
samples, viel4 dataset 10 samples, vie20 dataset 29 and the bln dataset contains no such
samples). Since it is not possible to construct a convex hull in these cases and since they
are relatively rare, we excluded these samples from both the training and evaluation
phases of this work.

Figure 5.4: Example of a segmentation mask of the Vienna 14 dataset (it belongs to
the input image in Figure 5.3). The image belongs to Gate 4; the x-axis represents the
SSC-A and the y-axis the FSC-A of the given cells.

The predicted segmentation masks of the U-Net are not binary, but take on values from
the continuous interval from 0 to 1. Figure 5.5/ shows an example of the raw predictions
for Gate 4. Pixels shown in grey are pixels that cannot be clearly assigned to one of the
two groups and therefore indicate the uncertainty of the prediction. One can see that
most of the grey pixels are near the boundaries of the selected cells. We need a binary

classification to specify cells to be extracted for the next step in the gating procedure.

Hence, raw predictions below 0.5 are treated as 0, meaning a pixel that contains no cells
of interest. Raw predictions greater than or equal to 0.5 are classified as 1, implying that
the pixel belongs to the selected cell population.

Figure 5.5: Raw predictions for a segmentation mask in the continuous interval from 0
to 1.
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5.2 Training of the network
The model is trained by a supervised learning approach using the generated 2D images
(see Section |5.1.2) and the segmentation masks based on the data annotated by medical

experts (see Section [5.1.3). The experiments were conducted using a fixed seed in order
to allow the experiments to be reproducible. In order to find the best model for each gate,

Input image

. @

Update model based on the S

difference of the predicted [/ U-net mpdel
and the ground truth

segmentation mask

Predicted segmentation mask Ground truth

Figure 5.6: Training of the U-Net model.

the Dice loss (see Section |4.7.1) which is frequently used for solving image segmentation
problems, was used as a similarity measure. The U-Net was implemented based on the
original U-Net paper of Ronneberger et al. [RFB15| and its adaptation in the U-Net
model implemented by Aladdin Persson [Per21]. For the entire training process, Pytorch
[PGM™19] was used.

5.2.1 The Network Architecture

As introduced in Chapter 4.8, there are several versions of a U-Net architecture, it always
depends on a specific problem to find the most suitable one. The depth of the network
(number of layers), the kernel size, and the number of feature channels are the parameters
that need to be explored.
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Figure 5.7: Modified version of the U-Net architecture proposed by Ronnenberger et al.

[REB15]

In Figure 5.7 the network architecture is presented. The network architecture has 2 paths,
the contracting path (left) and the expanding path (right). The contracting path contains
padded convolutions in order to keep the spatial dimensions of the input image (in the
original U-Net paper, unpadded convolutions were used) followed by a ReLu activation
function as well as a max pooling operation with stride 2 and kernel size 2. This max
pooling step can be considered a downsampling step. The number of input and output
channels is 1 since we only work with one colour (greyscale) in the segmentation mask.
In order to find the most appropriate network architecture and the optimal values for
the number of layers, feature channels, and kernel size, we perform a grid search using
the parameters described in Table |5.2.

The parameters proposed by Ronnenberger at al. [REB15] were used as initial values
for the number of layers. We decreased the size of the feature channels due to the
lower resolution of the input image. Since the complexity of the problem described in
the original work is assumed to be different from the proposed problem, we perform
experiments with increasing and decreasing these parameters (see Table 5.2).

The best-performing model architecture uses a kernel size of 3x3, number of layers 5
and feature channels starting with 8 and doubled at each level of the contracting path
of the U-Net architecture and the respective inverted features on the expanding path,
as described in Table |5.2. The size of the input image is resized to 200x200 (for the
explanation and causes see Section 6.1.1), so the input image has the dimensions of
200x200x1. After the first two convolutional layers and max pooling operations, the
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kernel size number of layers feature channels med Fl-score med precision med recall

3x3 3 4 0.0 0.0 0.0
OXD 3 4 0.0 0.0 0.0
3x3 3 8 0.58 0.55 0.94
OXD 3 8 0.23 0.15 0.98
3x3 3 16 0.31 0.2 0.97
5xH 3 16 0.72 0.64 0.97
3x3 3 32 0.39 0.36 0.96
5xH 3 32 0.57 0.5 0.97
3x3 4 4 0.29 0.17 0.96
5x5 4 4 0.79 0.76 0.97
3x3 4 8 0.66 0.53 0.97
5x5 4 8 0.72 0.61 0.93
3x3 4 16 0.66 0.6 0.98
5x5 4 16 0.52 0.47 0.97
3x3 S 4 0.0 0.0 0.0
5x5 5 4 0.84 0.81 0.98
3x3 5 8 0.92 0.91 0.96
5x5 5 8 0.8 0.78 0.96
3x3 6 4 0.79 0.88 0.91
5x5 6 4 0.16 0.74 0.12

Table 5.2: Grid search for the best fitting model structure using the viel dataset.

image has a size of 100x100x8. On the bottom part of the architecture two convolutional
layers are used but without any max pooling operation. In the expanding path, the
downsampling path can be reversed using transposed convolutions. The result of the
transposed convolutions and the result of the corresponding convolutional layer in the
downsampling path is concatenated. The concatenated data is then used as input for the
next layer in the expanding path. Finally, a 1 by 1 convolutional layer is used to change
the number of channels to binary.

The input images will be used to iteratively improve the model performance with the
stochastic gradient descent algorithm |4.5. For the training, the weights and the bias need
to be initialised, which was done as proposed in the original U-Net paper of Ronneberger
et al. [REB15]. The initial values for the weights were drawn from a normal distribution

with a standard deviation of \/ 2

number of input nodes*

Conditioned U-Net architecture

We used a Conditioned U-Net Architecture to investigate the question of whether one
model for all gates or separate models for each gate are required to learn the detection of
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cancer cells. The conditional U-Net architecture allows for a single model to be trained
and still distinguish between the different gates by using the source of the sample as an
one-hot encoded vector. We trained a conditioned U-Net model on the last steps of the
gating procedure (as in Figure 2.4) in order to compare the results with state-of-the-art
methods. We chose [1,0,0,0] as the one-hot encoded vector for Gate 4, [0,1,0,0] for Gate
5, and so on.

5.2.2 Data Augmentation

Data augmentation is an important part of the work in order to increase the amount
of training data and improve regularization. This is particularly important for small

datasets such as bue (65 flow cytometry samples) and bln (79 flow cytometry samples).

The albumentations package ﬂm was used to create several augmentations on the
training set with the probability parameter p=0.5, which means that the transformation
was only applied on roughly 50% of the samples in each epoch. The augmentation
methods were not applied to the validation or test set. The applied methods are:

o Scale: The selected cells usually form a cluster. The variance of the cluster is part
of the patterns which we want to learn. We observed that the variance of the
cluster is similar across instances. If we allow extremely large scaling, we would
generate samples that do not represent the input data. Therefore, the variation of
the cluster size should not differ too much from the original one, so we choose a
scaling limit of 0.1 for the x and y-axis.

o Shift: Since the location of the selected cells is essential information for the model
to learn, we do not want the augmentation to shift the cells out of a region, which
we would normally consider a region of interest. We tried several parameters and
found that values significantly above 0.1 push the cells too far away and values
below 0.1 make no noticeable difference. We, therefore, chose a shift parameter of
0.1.

While scaling and shifts maintain the content of the original image, elastic transformations
introduce localized deformations and alterations to the shape. Elastic transformations
have proven to perform well on several image segmentation tasks, such as the MNIST

dataset [SSPT03] or cell segmentation tasks performed by Ronnenberger at al. [RFB13].

In our case, these distortions made the input images useless, due to the contextual
disruption of the patterns that we want to learn. Therefore, we did not use the elastic
transformation augmentation method for training the model.

5.2.3 Training implementation

Image and segmentation masks need to be considered as a pair in order to train the
image segmentation model. The default data loader from pytorch does not allow loading
pairs of images. We had to perform a slight modification of the loader class so that the
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Hyperparameter Description Values

Batch size The number of instances used = 30
before the model weights are adjusted. ’

Loss function Name of the loss function. CrQSsEntropyLoss
DiceLoss
Learning rate Learning rate for the optimization. le-3, le-4, 1le-5, le-6, 1e-07

Table 5.3: Values used for the hyperparameter tuning.

image and mask pair can be loaded and augmentations can be performed simultaneously.
The input images have a size of 500x500, but they were resized during the preprocessing
to a dimension of 200x200, since it is the most suitable size considering the trade-off
of image size and run time (see Section 6.1.1). Therefore, the dimension of the output
images is 200x200.

The choice of the loss function is an important part of the training. We used the DiceLoss
function, which is often applied in image segmentation tasks. We also conducted trials
with alternative loss functions, including Binary Cross Entropy with Logits Loss. However,
the results did not match the performance achieved when utilizing Dice Loss as the
selected loss function.

5.2.4 Optimizing model parameters

In order to explore how to achieve the best possible performance, the training image
with the ground truth and predicted segmentation mask is continuously visualised (see
Figure|5.2). In the initial diagram (epoch 0), the predicted segmentation mask is depicted
through scattered individual points spread across the image. By the third epoch, the
segmentation mask begins to exhibit a form that is akin to the ground truth. Remarkably,
by the 35th epoch, the segmentation mask attains a shape closely resembling the ground
truth.

As mentioned in Section [4.7.2, there are numerous parameters when training an artificial
neural network which highly affect the performance of the model and there are several
methods for the exploration of the parameters (see Section 4.7). We used the Grid search
method in this thesis in order to find the best combination from our set of parameters.

The learning rate is an important parameter to optimise when training a neural network.
The learning rate was used in combination with the Adam optimizer for the training,
which is an adaptive learning rate optimization method [GBC16]. To avoid overfitting, a
stopping criterion is used for the training. As discussed in Section 4.6.2, the training loss
can continuously improve with each epoch, but the model is too tailored to the training
set. To address this concern, we adopted a widely employed stopping criterion. This
criterion involves monitoring the validation loss, and if there is no improvement observed
after 20 iterations, the training process is stopped and the model associated with the
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(a) First epoch (b) Third epoch

(c) 35th epoch

Figure 5.8: The input images and the predicted segmentation mask (white area) for three
different epochs using the validation set of the vie dataset.

lowest validation loss is saved as the best model. We used an epoch size of 4000 to allow
for a long learning process in case the validation loss still improves.

5.2.5 Partitioning via segmentation masks

The main goal of this thesis is to automate the gating procedure, and one part of the
gating procedure that has not yet been addressed is the extraction of the cells between
two gating steps. The result of our U-Net model is a segmentation mask that can be used
to partition the data. The input data can be partitioned into as many bins as there are
pixels in the output of the model. This allows us to determine for each pixel whether it
contains cells of interest (labelled 1) or not (labelled 0). Cells located on pixels labelled 0
(black pixels) are discarded for the next step of the gating procedure. After partitioning,
the input image for the next gating is generated from the remaining cells.

5.3 Experiments

To allow for a good comparison, the same experiments are used as in the state-of-the-art
literature. As described in Section |3, Wodinger et al. [WRW*22] used a transformer
model on the multidimensional flow cytometry samples.
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(a) Input data for Gate 4 binned. (b) Mask for Gate 4 binned.

Figure 5.9: Imitation of the partitioning of the input data based on the predicted
segmentation mask. The cells which lie on a black pixel on the right visualisation will
be rejected for the next gate. The blue marked cells will be selected and used for the
next gate. This example uses a 40x40 grid for visualisation purposes, in the experiment
200x200 pixels and grids will be used.

The four datasets containing bone marrow samples of leukemia patients 15 days after
therapy (see Section 2.2) will be used. For the evaluation of the proposed method, these
datasets are divided into the following parts: training set, validation set and test set (see
Figure 5.10). The state-of-the-art methods use only the last two gates for the evaluation
of the experiments. For comparison, we therefore only evaluate our experiments on the
last two gates as well.

In this experiment, we have four datasets. One dataset will be used as training, two as
validation and one as the test set. Each model trained with one of the available datasets
will be evaluated against one of the other datasets, see Table |5.4L The only exception is
the [vie dataset, which contains samples from the viel4 and vie20 datasets. These samples
will be randomly split into train, test and validation sets. In this case, the dataset will
be considered new or unseen data without any labels. Once the model is trained, the
labels of the test set will be used for the evaluation. For each experiment, the datasets
were scaled by the variables of the training set (feature-wise) in order to achieve better
performance and comparability.

5.4 Evaluation of the model performance

To identify the best fitting model based on the annotated flow cytometry data, a
comparative analysis of the model performance using the median F1 score was performed.

Cancer cell population detection is fundamentally a classification problem. Nevertheless,
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Figure 5.10: Training, validation and test data split [YNDT18]

our strategy employs image segmentation as the method of choice for addressing this
task. Therefore we need to reformulate the output of the segmentation problem into a
classification problem [HS15], which entails shifting the focus from assessing pixel-wise
classification accuracy within the segmentation mask to quantifying the number of cells
captured within the image segmentation mask.

5.4.1 Evaluation metrics

Binary classification tasks are usually evaluated using a confusion matrix, see Table [5.5.
In this table, the predicted classes (rows) and the "true" classes (columns) are compared.

True positives and true negatives are the correctly classified instances, while false positives
and false negatives are the misclassified instances. These can be used to evaluate the
performance of a binary classification method.

The following matrices will be used for the evaluation of the classifiers:
F1 score is the harmonic mean between recall (r) and precision (p)

2%xpkr
Fl-score = — 2= (5.2)
p+r
Precision: The ratio of correctly positive and all the positive predicted patterns
tp
p (5.3)

Ctp+fp
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training set test set
vie vie
bln bue
bln vield
bln vie20
bue bln
bue vield
bue vie20
vield bln
vield bue
vield vie20
vie20 bln
vie20 bue
vie20 vield
Table 5.4: Experiments conducted in this thesis.
Actual Positive Class Actual Negative Class
Predicted Positive Class True positive (tp) False negative (fn)
Predicted Negative Class ~ False positive (fp) True negative (tn)
Table 5.5: Confusion matrix [HS15]
Recall: The ratio of positive patterns and all correctly classified patterns
r= (5.4)
tp+1in
The flow cytometry samples are highly imbalanced, indicating that the occurrence of
the target variables, i.e., either cancer cells or non-cancer cells, is not evenly distributed
across the data set. Such imbalances can cause problems in analysis and modeling, as
learning algorithms have difficulty adequately capturing the minority class (in this case,
non-cancer cells), often leading to biased predictions. Addressing this imbalance and
choosing appropriate evaluation metrics are critical to ensuring accurate and reliable
results when analyzing flow cytometry data. In order to deal with this challenge and
reduce the influence of outliers, the median F1-score was used for the comparison.
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CHAPTER

Results

In this chapter, the results of the automated cancer cell detection using the U-Net
architecture will be presented. They are compared to the baseline method, namely the
Transformer model proposed by Wédinger et al. [WRW22].

The first part of this chapter summarises the insights gained through the implementation,
training, and evaluation of the models with a focus on the flow cytometry datasets
introduced in Section [2.2. As explained in Section 5.4, the evaluation of the proposed
approach is based on the number of correctly detected cancer cells. However, to gain a
better understanding and identify potential weaknesses of the model, it is important to
evaluate each gate separately.

In the next step, we will examine whether the model performance depends on the number
of cancer cells, by comparing ground truth and predictions for different MRD values.
The last part of this chapter consists of the evaluation of the overall results of the
automated gating procedure using the U-Net architecture.

6.1 Descriptive analysis

In this section, the insights gained through the implementation of the proposed approach
are presented. In this thesis, the manual gating procedure was automated for the detection
of cancer cells. The results of the proposed method differ in various scenarios. In this
section, the impact of factors such as the image size, the different gates and the number of
cancer cells per sample are examined. In addition, the information obtained by evaluating
each gate separately is presented.

6.1.1 Analysis of quantization error

The size of the predicted masks used for the partitioning of the cancer cell populations
has a great influence on the results of the proposed method. As described in Section
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width x height median F1l-score median precision median recall

15x15 0.289855 0.985618 0.170068
25x25 0.829283 0.993312 0.743786
50x50 0.988822 0.997113 0.985047
100x100 0.993346 0.998868 0.989283
200x200 0.995951 0.999210 0.995539
500x500 0.996786 0.999866 0.996290
1000x1000 0.998522 0.999633 0.999261

Table 6.1: The effect of image size on the performance of the evaluation using the ground
truth.

5.2.5, the partitioning is accomplished pixel-wise using the binning method.

With a low resolution/image size, more and more cells fall into one pixel, which in turn
worsens the performance of the algorithm. In fact, cancer and non-cancer cells cannot be
separated if they fall into one pixel. In order to show this effect, we used the original
input images with the corresponding segmentation masks (ground truth, labelled by
the medical experts) with different image sizes and evaluated the performance based on
median F1l-score, median precision, and median recall (see Table |6.1)).

Although the Fl-score is not 1, as would be desirable, the errors made in pixel-wise
evaluation via binning are negligible with an appropriate image size. The F1l-score is
above 0.99 for image sizes above 100x100, as shown in Table 6.1. In terms of execution
time and complexity, it is desirable to use a small image size. Therefore, we choose the
smallest image size for which precision and recall are above 0.99, i.e. 200x200.

After examining the results, we can see that most of the misclassified cells lie on the
convex hull (see Figure |6.1). Hence, we added padding around the segmentation mask
(one pixel), which improved the performance marginally. It increased the recall to 1 but
reduced the precision slightly to 0.9990. In the automatic detection of cancer cells, both
measures, precision and recall, are relevant, with recall being marginally more important.
Thus, the algorithm detects more cancer cells than present in the ground truth, which is
preferable compared to detecting fewer than are actually present. Therefore, we used the
padding of one pixel.

6.1.2 Hierarchical gating as consecutive classification tasks

As introduced in Section 2.3 in the manual gating procedure medical experts track down
cancer cells hierarchically by drawing polygons around different cell populations, where
in each step all events outside the gate are considered as irrelevant background events
and are thus discarded. Hence, the scatter plot used in the next step shows only a subset
of events, allowing for more accurate positioning of the next gate. Finally, the target
population consists of all remaining events after the last gate which correspond to the
events passing through all gates of the hierarchy (Boolean AND-operation). In each
step of the gating hierarchy, different scatter plots with different specific markers (e.g.,
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Figure 6.1: Sample with a low amount of MRD, containing only 5 cancer cells (viel4
dataset). The red dots are the cancer cells and the white area is the ground truth
segmentation mask. Due to the low number of cancer cells, they all lie on the edge of the
convex hull.

CD19 vs. SSC-A for finding mature B-cells) are used. In our automated procedure, this
corresponds to finding decision regions in each of these scatter plots, i.e., predicting the
segmentation mask of each scatter plot consecutively, where each plot shows only events
that were not filtered out in the previous step. Since the gates of a particular step (e.g.,
gates in the CD19 vs. SSC-A scatter plot) have their own characteristic location, shape,
and size variations, we train and evaluate each step separately. As input, the scatter

plots with all events removed by the manually drawn gates of previous steps are used.

As shown in Figure 2.3, cancer cells and non-cancer cells are more easily separable in
some steps of the gating procedure than in others.
To compare the different gates, the vie| dataset was used.

The models were trained separately for each gate and we used the ground truth, i.e. the
remaining cells of the previous gates selected by medical experts, as input data. This
allowed for a valid comparison of the individual gates and avoided the effects of error
propagation from one gate to the next. In other words, previous errors are ignored and
we tested each gate as if it was a separate instance. This section provides an overview
of potentially problematic steps in the gating procedure and how these gates affect the
overall performance of the proposed method.

The results of the first four gates are similarly good (see Figure 6.2) based on the scoring
metrics used, Fl-score, precision and recall (see Section 5.4.1 for more details). For
the first four gates, the problem of overlap between cancer and non-cancer cells does
not exist, thus, the performance is quite balanced between the three evaluation metrics
mentioned. The last gate is more complex; in this case, the samples overlap, i.e. three
different images must be taken and the intersection of these selected cells is considered
as cancer cells in the evaluation. The main challenge with this gate is the small number
of cancer cells in some samples (see figure 6.3). As the number of cells in the selected
subsamples decreases from gate to gate, the problem of unbalanced precision and recall
worsen in the last gate.
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Figure 6.2: Gate-wise evaluation using the vie dataset. The columns show the median
values of the performance metrics over the entire test set. The gradient colours span
from the minimum to the maximum values.

In gate 5, recall is almost 1, which means that all cancer cells were found. However,
the mean precision is rather low (0.75), suggesting that we had identified more cells as
cancer cells than the ground truth. In the case of individualised therapy, this may lead
to a problem, as it would mean that patients receive higher doses of radiation than they
should.

This gatewise evaluation has only an exploratory advantage, given that the results based
on the hierarchical approach are not equal to those presented (see Chapter 6.2). The high
median value of recall (see Figure|6.2) could be advantageous for hierarchical sub-selection,
as this means that we always keep more cells than we should. If too many cells were
discarded in the early stages of gating, we might also drop cancer cells at earlier stages.
This effect worsens the error propagation through the five gates.

6.1.3 Evaluation of the Conditioned U-Net model

We propose two alternative ways to model the hierarchical sequence of gating: either
using separately trained models (one for each gating step) or training a single model for
all steps, using a conditional U-Net model introduced in Section |4.8.2.

To address the question of whether we need separate models for each gate or can use a
single model, both approaches were implemented and evaluated using the same state-of-
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6.1. Descriptive analysis

Datasets Separated U-Net models Conditioned U-Net model
train test median  median median | median  median median
set set Fl-score precision recall Fl-score precision recall
vie vie 0.92 0.91 0.96 0.93 0.93 0.98
bln bue 0.69 0.65 0.95 0.93 0.95 0.99
bln vield | 0.36 0.70 0.37 0.87 0.88 0.96
bln vie20 | 0.85 0.91 0.95 0.42 0.35 0.97
bue bln 0.40 0.26 0.98 0.52 0.49 0.91
bue vield | 0.35 0.97 0.21 0.78 0.69 0.97
bue vie20 | 0.65 0.62 0.92 0.79 0.68 1.00
viel4  bln 0.84 0.86 0.98 0.94 0.96 0.94
vield  bue 0.95 0.96 0.98 0.96 0.96 0.99
viel4  vie20 | 0.91 0.91 0.98 0.85 0.90 0.94
vie20  bln 0.87 0.87 0.95 0.79 0.72 0.93
vie20  bue 0.78 0.71 0.99 0.94 0.95 0.98
vie20  vield | 0.87 0.78 0.99 0.95 0.97 0.97

Table 6.2: Comparison of the different approaches: training different models for each
gate and a conditioned model for all gates at once

the-art models as Wodinger at al. [WRWT22]. The conditional U-Net model has the
additional advantages of being sparse, easier to use and we do not need to store multiple
models for a given evaluation scenario. The results and comparison of the experiments
can be seen in Table 6.2, The numbers in bold indicate which model performed better in
which experiment.

Table 6.2 shows that the U-Net models perform worse when trained with the small Berlin
and Buenos Aires datasets. This result is consistent with a recent paper by Kowarsch
et al. . Based on this study, this could be caused not only by overfitting,
but also by the shape of the polygons (target masks) predicted for the smaller datasets,
which differ from the polygons in the Vienna data for Gate 5 (while the Vienna dataset
contains horizontal and vertical polygons for Gate 5, the datasets collected in Buenos
Aires and Berlin contain only vertical ones). Therefore, the models trained with the
smaller datasets do not learn to predict horizontal polygons.

Based on the results in Table|6.2| we can see a gap in performance between the approaches.

The conditioned U-Net model outperformed the approach with the separated models in
10 out of 13 cases. Therefore the conditioned U-Net model will be compared with the
state-of-the-art methods in Section 6.2. As shown in Table 6.2, the performance of the
different experiments based on the median F1-score, median precision, and median recall
varies greatly. This can be the result of numerous factors such as the size of the training
dataset or the number of cancer cells per sample. The latter will be explored further in
the next section.
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6.1.4 Evaluation based on the MRD

In this section, we relate the performance of our model to the amount of MRD. The
MRD varies significantly across different samples. Figure 6.3 shows the statistics of the
MRD contained by the samples of the datasets introduced in Section [2.2l

ber{ | — ooo o o ooO

wl T E—

T T T T T LIRS | T AL | T T T T LA |
103 104 103 102 101 100
MRD

Figure 6.3: MRD| contained in the bone marrow samples of the four datasets. On the
x-axis, the MRD)| in absolute number of cancer cells on a logarithmic scale can be seen.
The samples that do not contain cancer cells were discarded beforehand.

The variation of MRD in the different datasets is shown in Figure 6.3, The range of the
proportion of cancer cells varies between 1.205e-05 and 0.847, meaning there is a wide
variation between the different samples in terms of the amount of MRD. The datasets
collected in Vienna contain on average a higher median of cancer cells per sample, see
6.3). The minimum amount of cancer cells in a sample is also different in the datasets.
The samples gathered in Berlin had a lower minimum MRD compared to the others. In
this section, the vie dataset will be used.

Imbalanced designs can make classification problems challenging [FARCH17] and a lower
number of cancer cells can be harder to detect. In order to examine whether the MRD%
of a sample has an influence on the results, the Fl-score of the samples of the vie dataset
will be visualised based on the number of cancer cells (see Figure 6.4).
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6.1. Descriptive analysis

The performance of the estimations of the model based on the median F1-score strongly
depends on the MRD in the samples (see Figure |6.4).
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Figure 6.4: Evaluation based on the proportion of cancer cells contained by the samples
of the dataset gathered in Vienna. On the x-axis, the number of cancer cells contained
in each sample is represented on a logarithmic scale. On the y-axis, the corresponding
F1l-score is represented. The blue line indicates the average Fl-score for all samples
having a MRD greater or equal to x.

The amount of cancer cells per sample varies strongly. The cancer cells can be detected
more accurately in samples with a larger amount of cancer cells. Based on Figure 6.4 the
samples, which contain at least 0.001 % MRD have an average F1-score above 0.8.

Figure 6.5/ shows the concordance between predicted and true MRD. The samples, which
lie on the straight line, are classified correctly, the samples outside the dashed lines are
not acceptable predictions according to ﬂm This problem occurs more frequently
in cases with a lower MRD. The samples in which most cells were misclassified are found
on the upper left side of the image. This indicates that we tend to predict more cells
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than are actually present in the ground truth (this phenomenon was also indicated by
the high recall beforehand).
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Figure 6.5: Percent of the ground truth (x-axis) and predicted cancer cells (y-axis) on
a logarithmic scale for each sample of the vie dataset. According to Dworzak et al.
[DGR*08], a prediction can be considered accurate if the amount of detected cancer cells
lies within a range of 1/3 and 3 times of the MRD. The colour of the points indicates the
F1-score reached after the evaluation of the test set (between green and red, where red
indicates an F1l-score of 0 and green F1-score of 1.

In order to see the differences between the predictions and the ground truth labelled by
medical experts, we ordered the samples by ascending F1l-scores. For the visualisation
in Figure |6.6, we used an image with two different scales: the scale on the left shows
the Fl-score of the samples and the scale on the right the MRD)|in the samples on a
logarithmic scale. The dependence between the number of cancer cells and the errors
made by the proposed method are visible. The higher the MRD in a given sample, the
better the predictions based on F1l-score.

6.2 Overall evaluation

In this section, the results of the models trained on the datasets collected in Vienna,
Berlin, and Buenos Aires are compared to the best results of the state-of-the-art literature

by Wodinger et al. [WRW*22] and Reiter et al. [RDS*19].

In the first experiment (vie), the two datasets gathered in Vienna (viel4 and [vie20) are
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6.2. Overall evaluation
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Figure 6.6: The relationship between the number of cancer cells in a sample, represented
on a logarithmic scale, and the Fl-score achieved by the U-Net model using the samples
collected in Vienna. The blue line corresponds to the number of MRD, the green line to
the predicted amount of MRD and the red dots represent the Fl-score of each sample.

mixed and randomly split into a train (70%), validation (15%), and test set (15%). In
every other experiment, one dataset is used for training and another one for testing, see
Table 6.3. The U-Net model used for the overall evaluation is a conditioned U-Net model
based on Section [6.1.3. For each train and test set combination, we used the remaining
two datasets as validation sets.

In Table 6.3 the results of the evaluation can be seen. The results indicate that the
performance of the Transformer model and the U-Net approach are similar. Error
propagation may be responsible for most cases, where the state-of-the-art significantly
outperforms the proposed method. In numerous examples, Gate 4 detects far more cells
than there are in the ground truth (low precision and high recall), so the following images
appear quite unusual and/or do not contain all the cancer cells.

Our main goal is not to outperform the state-of-the-art method but to meet the same
performance with the additional advantage of explainability gained through visual rep-
resentation. In order to test, whether there is a significant difference between the
performance of the two approaches, we used a two-sided Wilcoxon sign-rank test.
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6. RESULTS

train test med Fl-score med med med Fl-score med Fl-score

set set U-Net precision recall Transformer |GMM

vie vie 0.93 0.93 0.98 0.94 -

bln bue 0.93 0.95 0.99 0.87 0.68

bln vield | 0.87 0.88 0.96 0.9 0.35

bln vie20 | 0.42 0.35 0.97 0.87 0.48

bue bln 0.52 0.49 0.91 0.77 0.5

bue vield | 0.78 0.69 0.97 0.9 0.84

bue vie20 | 0.79 0.68 1.00 0.88 0.86

vield  bln 0.94 0.96 0.94 09 0.81

vield  bue 0.96 0.96 0.99 095 0.84

vield  vie20 | 0.85 0.9 0.94 0.89 0.86

vie20  bln 0.79 0.72 0.93 0.81 0.25

vie20  bue 0.94 0.95 0.98 0.86 0.81

vie20  viel4d | 0.95 0.97 0.97 0.86 0.89
Table 6.3: Results of the evaluation:
The results are compared with the results of Wodinger at al. [WRW™22] and with the
results of Reiter et al., based on the median precision, median recall and the
median Fl-scores of the models evaluated on the test sets. Bold numbers highlight the
highest performance achieved using a specific training and test set.
The Wilcoxon Signed-Rank test is a non-parametric test which is used when dealing with
dependent samples. The assumption of the normal distribution required to use a paired
t-test is not fulfilled and the sample size (in this case, the number of experiments, 13) is
too marginal to rely on asymptotic results, hence we use a non-parametric version of the
paired t-test [WB02].
Null hypothesis Hy:
The median F1-scores of the U-Net models - median F1-scores of the Transformer models
[WRW22] are symmetric around p = 0.
Two-sided alternative hypothesis H;
The median F1-scores of the U-Net models - median F1-scores of the Transformer models
are symmetric around p # 0.
The test returns a p-value of 0.861, which indicates that the null hypotheses cannot be
rejected. This means that there is no significant difference between the results of the two
approaches. In other words, the results obtained by using the proposed method meet
the performance of the state-of-the-art methods. However, there are some cases, e.g.
the data from Buenos Aires, where the state-of-the-art methods performed significantly
better.
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CHAPTER

Conclusion

In this chapter, this thesis is summarised, the research questions described in chapter |1
are answered, the limitations of the proposed algorithm are indicated and the future work
is addressed. In this thesis, a new approach for the automated detection of cancer cells
was presented using an image segmentation model, the U-Net architecture. As shown
in Section 6.2, the proposed method aligns with the performance of the state-of-the-art
methods.

7.1 Conclusion of research questions

The main goal of this thesis is to detect cancer cells automatically based on a sequence
of 2D images of flow cytometry data using an image segmentation method, namely, the
U-Net architecture. To achieve this, it has been essential to generate the input images
with the most appropriate size and resolution, to implement a hierarchical sub-selection
of cancer cell populations, and to compare the results with outcomes in the current
literature. The main focus of this thesis lies on the following points:

What is the optimal U-Net architecture in terms of layers and kernel param-
eters for automating the gating procedure in flow cytometry data?

As described in Table 5.2, the best performing model architecture for the automation of
the gating procedure contains 5 layers, a 3x3 convolutional kernel and a reduced number
of feature channels compared to the original model developed by Ronnenberger et al.

[REB15].
Alongside the selection of the most appropriate algorithm for the automation of the
gating procedure, the significance of the data preparation should not be underestimated,

since it can significantly enhance the algorithm’s performance. This entails tasks such
as normalizing and visualizing the samples (see Section 5.1.1). The input data is
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visualised using a scatter density plot as described in Section 5.1.2. For each scatterplot,
a segmentation mask (target mask) is generated (see Section 5.1.3), which can be
considered as the ground truth. As introduced in Section [5.2.5, cancer cells are tracked
down hierarchically using the predicted segmentation masks. The cells, which lie outside
the predicted segmentation mask are discarded and not used for the next step of the
hierarchical gating procedure.

To investigate the question as to whether we need to train different models for the different
phases of the gating procedure, we trained and evaluated two different approaches: the U-
Net architecture trained separately for each gate and a conditioned U-Net model that can
be applied to every gate and which uses a one-hot encoded vector as additional information
about the source of the data. In this case, the source indicates the gate number. As
shown in Section |6.1.3, the conditioned U-Net model significantly outperformed the
approach with the separated models.

The trained models tend to detect more cancer cells than the medical experts (higher
recall and lower precision). This scenario might be preferable because failing to detect
cancer cells could result in the patient not receiving treatment.

What distinct advantages does the proposed method offer in comparison to
state-of-the-art techniques for identifying cancer cell populations?

The main advantage of the proposed method is the ease of understanding the automated
gating procedure due to the visual representation based on the input images and the
corresponding segmentation masks.

The effort required for data preparation, such as cleaning as well as normalising the
samples and creating the input images and masks, can be seen as a disadvantage seeing
as it is very time-consuming and prone to errors. In comparison, state-of-the-art methods
which work with multidimensional data can be applied directly to the samples.

Based on Section 6.1.4, we can say that the performance of the proposed method depends
on the number of cancer cells contained in the sample; it performs better in samples
with a higher MRD)| (see Figure 6.5). As the implementation is based on a hierarchical
sub-selection of cancer cell populations, it is vital to determine at which stages of the
hierarchy, in which gate, we make errors. If errors occur at early stages, the error
propagation could be so high that this approach would then be ineffective. Fortunately,
the first gates work very well, the greatest challenge is the last gate which consists of
three images, and the overlaps of the detected cells need to be considered (see Figure
6.2).

In order to investigate the question as to whether the results of the proposed method
differ significantly from the baseline method, a Wilcoxon signed-rank test was applied.
Based on the results shown in Section 6.2, the performance of the proposed method
meets the results of the state-of-the-art methods.
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7.2. Limitations

7.2 Limitations

Three limitations of this work that we would like to highlight are the amount of training
data, the hierarchical sub-selection of cell-populations, and the influence of the number
of remaining cancer cells in the samples.

The availability of data, especially labelled data is generally a significant challenge for
biomedical studies [GDDM19]. The low amount of training data used for this thesis
can be considered as one of the biggest limitations. The total amount of data used for
this work is almost 650 samples. We attempted to solve this issue with the help of data
augmentation methods, but a training size of fewer than 100 data may not be enough to
train a robust model.

Finding the most appropriate method for partitioning the input data using the predicted
segmentation masks in order to reproduce the hierarchical gating procedure was among
the most challenging aspects of this thesis. The chosen approach, pixel-wise binning,
makes small errors even when evaluating the ground truth. Each sample of the datasets
contains a very high amount of cells (approximately 300.000), which was visualised on
a scatter-density plot of size 500x500 or lower. Therefore, many cells fall within one
pixel of the image. When partitioning the original data using the predicted segmentation
masks, the algorithm makes pixel-by-pixel decisions. This means that all data points
that fall within a pixel are retained or discarded for the next step in the gating hierarchy.
In the case that both cancer cells and non-cancer cells are found within one pixel, the
cells in one of these groups will be misclassified. The evaluation on the ground truth
has the highest F1-score of 0.99, which gives an upper bound for the performance of the
proposed method.

The main goal of this thesis was to automate the gating procedure with scatterplots as
input using the U-Net architecture. For this purpose, we used a sequence of 2-dimensional
images. Through this sequential approach, error propagation becomes a significant factor,
which highly influences the performance of the algorithm. False negatives in previous
gates can have a significant impact on the output of the following gate. This is a major
disadvantage of this method when compared to the methods used in state-of-the-art
literature which work with multidimensional data simultaneously.

The amount of MRD in a sample highly affects the performance of the algorithm (see
Figure 6.4). In cases of low MRD, the convex hull was constructed around the cancer cells
(see Figure 6.1). Such cases are major challenges given that the border pixels are very
hard to learn for an image segmentation model. Since we generated the segmentation
masks as a convex hull around the cancer cells labelled by medical experts, we are not
able to draw a convex hull if there are fewer than 3 cells marked in a sample since it is
the smallest convex set of cells [BDHI6].

Although our proposed approach aims to achieve a wider acceptance among medical
professionals due to the visual representation and the reproduction of the gating procedure,
it lacks an explanation of why certain cells are included in one gate and others are not.
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There is no model and algorithm which is perfectly suited for solving this problem. There
are many edge cases where other algorithms would achieve even better results.

The above limitations could lead to further research directions for automated cancer cell
detection using the U-Net architecture. Additionally, experiments could be conducted
with other versions of the U-Net architecture which might perform better, such as

U-Net-++ [ZRSTLIS], Residual U-Net [ZLW18] and Attention U-Net [OSF*18].

7.3 Contributions and Future Work

The experiments conducted in this thesis show that the proposed method is well suited
for the detection of cancer cell populations using bone marrow samples from the patients
15 days after chemotherapy. The proposed method achieves a high F1-score (above 0.85)
in most cases, especially for models trained with the Vienna datasets; the performance is
in line with the results of state-of-the-art methods. In this scenario, the most significant
benefit stems from the number of samples available and from the shapes of the polygons
in the last gates, since the Vienna datasets contain both horizontal and vertical polygons,
but the other datasets contain only vertical ones.

For future work, increasing the number of annotated samples can open many doors of
opportunity.

At this point, the automated generation of the input images as segmentation masks, the
U-Net architecture, and the evaluation on the test set were implemented in this thesis.
Nevertheless, this framework might not be easily accessible to medical professionals who
lack proficiency in the Python programming language. In order to allow doctors easier
usability, an application could be developed where new datasets (test sets) could be
loaded and, based on the pre-trained models, the detected cell populations of the various
gating steps could be visualised.
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