
Man of Steal: Exploring Model
Stealing Attacks against Image

Classifiers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Logic and Computation

eingereicht von

Daryna Oliynyk
Matrikelnummer 11932433

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Univ.Lektor Mag.rer.soc.oec. Dipl.-Ing. Rudolf Mayer

Wien, 1. Februar 2023
Daryna Oliynyk Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Man of Steal: Exploring Model
Stealing Attacks against Image

Classifiers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Logic and Computation

by

Daryna Oliynyk
Registration Number 11932433

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Univ.Lektor Mag.rer.soc.oec. Dipl.-Ing. Rudolf Mayer

Vienna, 1st February, 2023
Daryna Oliynyk Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daryna Oliynyk

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Februar 2023
Daryna Oliynyk

v

Acknowledgements

Accomplishing this degree would be impossible without my family. I am very grateful to
my parents, who encouraged me to take this journey, supported me at every single step,
and always believed in me. I am also thankful to my grandmother for her help and the
inspiration she gave me through her example. I am grateful to my sister for cheering me
up and reminding me how joyful life can be. And I am very thankful to my husband,
who was always there for me and probably knows my topic better now than he has ever
wished.

I sincerely appreciate the guidance and support of my supervisors. I am grateful to
Andreas Rauber for all the discussions that we had and his ability to clarify things I have
been struggling with for weeks in a few minutes. I am also very thankful to Rudolf Mayer
for his incredible support, spending hours on "just 5-minute" talks with me, providing
tons of feedback on my work and encouraging my further research.

Lastly, I would like to mention all the people in Ukraine who are fighting these days for
freedom and their future. I admire their courage and am grateful that they reminded me
to be brave and not give up.

vii

Abstract

Machine learning models offered as a service are the most common targets for a model
stealing attack that aims to reproduce a model’s behaviour without its owner’s consent.
Such attacks lead to intellectual property violations and unfair competition, bringing
more attention to the topic. This work analyses the most significant group of model
stealing attacks against black-box image classifiers. We categorise relevant work based on
the considered attacker’s profile, and highlight inconsistencies in experiment design and
attack evaluation that lead to comparability issues. Further, we conduct experiments
against CNN image classifiers and investigate how different attacker’s capabilities and
attack optimisation techniques impact the attack’s performance. In particular, we propose
a novel data-free attack, which is significantly more efficient while having comparable
performance with the state-of-the-art. Subsequently, we study three data-perturbation
defences as countermeasures against model stealing attacks and investigate how they
affect the utility of the target model. Finally, we re-visit the related work issues and
propose solutions for each to ensure comparability in future work.

ix

Contents

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem Statement and Research Questions 2
1.2 Methodology . 6
1.3 Structure of the Work . 8

2 Background 9
2.1 Machine Learning for Image Classification 9
2.2 Deep Learning . 20
2.3 Adversarial Machine Learning . 24
2.4 Active Learning . 27

3 Model Stealing 29
3.1 Definition . 29
3.2 Threat Model . 33
3.3 Attacks . 36
3.4 Defences . 45

4 Attack Design and Implementation 51
4.1 Attacker’s Knowledge and Capabilities 51
4.2 Data-free Attack . 52
4.3 Query Optimisation . 52

5 Defence Design and Implementation 57
5.1 Input Perturbation . 57
5.2 Output Perturbation . 58
5.3 Input-output Perturbation . 60

6 Experiment Design 61
6.1 Datasets . 61
6.2 Target Model Training . 67

xi

6.3 Defence Configuration . 72
6.4 Substitute Model Training . 75
6.5 Experiment Summary . 87

7 Evaluation of Attacks and Defences 89
7.1 Attack analysis . 89
7.2 Defence Analysis . 100

8 Discussion 105
8.1 Insights and Issues . 105
8.2 Contributions and Main Results . 109
8.3 Research Questions . 110
8.4 Future Work . 114

A Appendix 117

List of Figures 121

List of Tables 123

List of Algorithms 125

Bibliography 127

CHAPTER 1
Introduction

Building a well-performing machine learning solution is a complicated process that usually
requires a significant amount of high-quality data, computational power and human expert
knowledge. As data gathering and model training are highly time-consuming processes,
finding a model configuration that will reach the desired performance could take months
or even years. Considering the amount of time, resources, and expert knowledge invested
in developing a machine learning model, it can be considered as intellectual property
(IP) of its owner. Therefore, if the model becomes publicly available, the owner should
take action to prevent intellectual property infringements. While publishing a license
will define legal model exploitation, it can not prevent unauthorised usage of the model.
The problem of protecting machine learning models becomes more important with the
rising popularity of Machine Learning as a Service (MLaaS), a cloud-based technology
for creating and running machine learning algorithms. On the one hand, MLaaS allows
users to overcome computational power limitations and train their models on a cloud.
More relevant to this work, they also offer ready-to-use machine learning solutions, i.e.
models that were trained to reach a certain performance score on a particular task. These
models can be fully public, so anyone can download and re-use them, or they can be
provided with limited access, e.g. as black boxes that allow only input-output (query)
interactions. For the latter, the model owner can further reduce access to the model
by setting query limits and fees. If a malicious user wants to omit those limitations
and obtain an (illegitimate) copy of the model, they can launch a model stealing attack
[TZJ+16].
Model stealing attacks aim to extract characteristics of a target model such as its
(hyper)parameters and architecture or obtain a model that copies the behaviour of the
target model. Recently, those attacks were investigated in fields like image classification
[OSF19], image-to-image translation [SDGA21], natural language processing [KTP+20],
and reinforcement learning [CGZ+21]. A stolen model can be used to launch a competitive
service, causing unfair competition. However, model stealing can also be utilised as a

1

1. Introduction

preparation stage for other attacks. For instance, the majority of methods for crafting
adversarial examples [SZS+14] require access to model weights, which are not available
under black-box access. However, it was shown that adversarial examples crafted for
a stolen model are transferable, i.e. they could also fool the target model [PMG+17].
Therefore, an adversary can launch an evasion attack against the target model by
exploiting a stolen model. Consequently, the model can be compromised, and the
integrity of a system that relies on that model can be affected.

The rise of model stealing attacks led to the development of countermeasures that aim to
detect an ongoing attack [JSMA19], mitigate an attack [OSF20], or prove that a model
was stolen [SAMA21]. However, nearly all defences make certain assumptions about an
attacker, either about their knowledge or the strategy they apply. Moreover, they have
limitations: if a defence can only detect an attack or prove that it was performed, the
target model is not actually protected and can still be stolen; and defences that mitigate
attacks usually affect the utility of the model, causing discomfort even for benign users.

A recent survey study [OMR23] showed that the current state of model stealing attacks
and defences requires deeper investigation in both directions. On the one hand, there is no
unified way of attack evaluation, which leads to the inability to compare different attacks
using only metrics reported by corresponding papers. On the other hand, proposed
defences usually rely on specific attackers’ behaviour and are estimated only against a
small subset of defences. Currently, there is an ongoing competition between defences and
attacks: while earlier defences are mostly broken, newer ones have since been published
and showed resistance to those attacks that breached the previous defences. Moreover,
only a minority of papers consider an adaptive attacker, which is widely studied for other
categories of attacks, for instance, evasion attacks [TCBM20].

1.1 Problem Statement and Research Questions
This work delves into the largest category of model stealing attacks, which concerns image
classification models, namely convolutional neural networks. At first, it analyses current
state-of-the-art and classifies relevant attacks based on the attacker profile, highlighting
major non-comparability issues caused by inconsistency in attack design and evaluation.
Those observations are further used for designing an experiment setup for this work,
ensuring that effectiveness and efficiency metrics characterise the attack performance
completely. Then it empirically compares six attack scenarios corresponding to different
attacker profiles. Two scenarios represent a novel data-free attack, which turns out to be
significantly more efficient than the current state-of-the-art. Finally, it explores three
attack mitigation techniques and shows their utility against considered attacks.

An attack starts with constructing a dataset labelled by the target model (thus acting as
an oracle). An adversary can either use original data samples used to train the target
model or, if the original data is unavailable, any publicly available dataset. In an extreme
data-free scenario, an attacker is assumed to have no datasets available, so the data is
synthesised. The adversary can also use an advanced method for picking samples for

2

1.1. Problem Statement and Research Questions

labelling, e.g. active learning. Active learning dynamically selects samples out of a pool
for labelling, so that only a subset of data is used for training. This can become crucial
when there is a limit on the number of queries the adversary can send to the target
model. The next step is to train a so-called substitute model using the data labelled by
the target model, to achieve a similar performance as that target model. To make the
training faster and more effective, the attacker can leverage transfer learning, i.e. use a
model pre-trained on another dataset to speed up the convergence. After the training
is finished, the attack needs to be evaluated and potentially adjusted to reach better
performance.

The usability of an attack is measured by its performance in terms of effectiveness and
efficiency. The following metrics correspond to effectiveness measures:

• Accuracy measures how well the stolen model performs on the original classification
task. In other words, it measures the similarity between predictions of the stolen
model and original labels.

• Fidelity measures similarity in predictions of the stolen and the target models. It
shows to which extent they agree on (original) data samples, which means that
they predict the same value and solve the corresponding classification task in the
same way.

• Transferability measures how similar the decision boundaries of the target and
the stolen models are. To evaluate that, one should first generate some adversarial
examples for the stolen model and then measure how many of them can also fool
the target model.

Depending on the attacker’s intention, they could prioritise one of the metrics above. If
the goal is to obtain the model that solves the original classification task, the accuracy of
the stolen model should be high. If obtaining the same behaviour as the original model
is the goal, fidelity or transferability may be more valuable.

The efficiency of a model stealing attack is measured using the following two metrics:

• Query budget corresponds to the number of queries an adversary used to perform
an attack. It directly affects the performance of a substitute model, as it needs
enough training data to reach the desired performance. However, since this metric
does not consider the complexity of the stealing task, and more complex models
generally require more training data, it can only be used to compare attacks against
one particular model.

• Efficiency score combines query budget with the complexity of the target model.
It is defined as the average number of queries needed to steal a single trained
parameter of the target model. In contrast to the query budget, it allows, to some
extent, comparing attacks performed against models of different complexity.

3

1. Introduction

Since an owner of a model can limit the number of queries available to a user, an adversary
is interested in optimising the usage of queries to perform more efficient attacks.

To reduce the success of behaviour-stealing attacks, a model owner can apply either a
reactive or proactive defence. The former includes defence strategies that can either detect
an ongoing attack, or, when given a stolen model, prove that it is an illegitimate copy of
the target model. The latter refers to defences that aim to mitigate the performance of
model stealing attacks by limiting or perturbing information revealed about the target
model. Our primary focus is on proactive data perturbation defences that perturb either
a data sample before the target model makes a prediction on it, or modify an output
predicted for that sample.

The scope of the thesis can be summarised with the following research questions:

1. To what degree are model stealing attacks effective?
We measure the utility of model stealing attacks under different assumptions regard-
ing the attacker’s capabilities and a stealing approach. To gauge the performance,
we use accuracy, fidelity, and transferability for effectiveness evaluation, and query
budget and efficiency score for efficiency evaluation.

a) To what extent does the effectiveness of attacks depend on its query
budget?
This question aims to reveal how many queries it takes to create a substitute
model with comparable performance to the target model and how the per-
formance is changed depending on query limitations. We also aim to explore
how the ratio of substitute training data to target training data correlates
with the performance of the substitute model.

b) To what extent do the effectiveness and efficiency of attacks change
depending on the complexity of the target model?
The complexity of the model corresponds to the number of trainable parameters
of this model. Since more complex models could require more data and time
to reach a certain performance, one may assume that they also need more
queries to be stolen.

c) To what extent does the effectiveness of model stealing attacks
change when the target model architecture is not known?
Black-box access implies that the target model architecture is unknown. An
adversary then has to make a guess and can select substitute architectures
more or less complex than the target architecture. We want to examine how
(mis)matching the target architecture impacts the attack performance, while
keeping the query budget constant.

d) How does the effectiveness of model stealing attacks change if the
target model is trained with transfer learning?

4

1.1. Problem Statement and Research Questions

Transfer learning speeds up a training process and can be used by both
parties. However, target and substitute models might be trained from weights
obtained while training on the same dataset (e.g. ImageNet [DDS+09]). It
gives additional similarity between target and substitute network behaviour
even before an attack is performed. With this question, we want to verify if
this is an advantage for an attacker that leads to a better-performing substitute
model.

e) To what extent does the effectiveness of model stealing attacks
change depending on the availability of data?
We discern four attack cases, depending on the availability of data for an
adversary. The strongest assumption corresponds to the case when the original
data used for target model training is available. A weaker assumption is the
availability of problem-domain data, which preserves features of the original
data but might come from a different distribution. The case of non-problem
domain means an attacker that can only collect unrelated data of the same
modality. The weakest overall assumption stands for the data-free case, when
no data is available, and a substitute model has to be trained on artificially
generated data. This question aims to compare (some of) the listed scenarios
to examine the advantage an adversary gets with higher availability of data.

f) To what extent does query optimisation of model stealing attacks
improve their effectiveness?
The owner of a target model can put severe limitations on the attacker’s query
budget. Hence, we want to explore which techniques the attacker can use to
make an attack more effective, preserving the same efficiency score, and to
which extent those techniques are helpful.

2. To what degree are data perturbation defences against model stealing
attacks useful?
Various defence approaches against model stealing have been proposed. However,
many of them can not mitigate an attack, but rather only state that an attack is
happening or took place in the past. We aim to explore a category of defences that
aim to mitigate attacks by trying to reduce the performance of a substitute model.
Namely, we look at data perturbation defences, which modify inputs or outputs of
the target model, with the intention to add noise to the information an adversary
obtains.

a) To what extent does the effectiveness of model stealing attacks
decrease when a certain defence is applied?
The main goal of a defence is to reduce the performance of a substitute model.
We aim to explore if the effectiveness of an attack changes while the query
budget remains fixed. Moreover, we want to find out if any performance
metrics (accuracy, fidelity, transferability) are more sensitive than others to
an applied defence.

5

1. Introduction

b) To what extent does the utility of the target model change when a
data perturbation defence is applied?
Applying a defence that adds noise to predictions can harm the performance
of the target model. Hence, we want to measure how the performance changes
when the inputs or outputs of the target model are modified.

c) To what extent does the utility of defences change when attacker’s
knowledge about the target model is limited?
Within this research question, we aim to examine if there is any difference in
defence utility when an attacker meets the limitations considered in Question 1.
We assume that some defences that are ineffective against a stronger attacker
(who has more knowledge) can still be effective against a weaker one (who has
less knowledge).

1.2 Methodology
1.2.1 Literature Review
The literature review is based on the restricted version of Kitchenham’s guidelines
[KPB+09] applied to the recent survey paper on model stealing attacks and defences
[OMR23]. It summarises more than 100 related works, including recent articles published
in 2022. We use the survey to get an overview of the attacks and defence approaches and
select papers relevant to image classification models for further in-depth analysis. The
review process is organised as follows.

1. Gather information about attack techniques applicable to image classification
models;

2. Select state-of-the-art papers that exploit those techniques;

3. Analyse threat models, attack varieties and experimental setup of the selected
papers;

4. Gather information about defence techniques;

5. Select and review state-of-the-art papers focusing on attack performance mitigation.

Additionally, we analyse some papers on crafting adversarial examples as they can be
utilised for model stealing attacks [OMR23].

1.2.2 Threat Modelling
Threat modelling is an essential step in security analysis. It describes the attacker’s
incentives, goals, and capabilities [BR18]. The incentives and goals remain unchanged
within the scope of this thesis and match the ones considered in behaviour-stealing papers.

6

1.2. Methodology

However, the attacker’s capabilities, e.g. knowledge about the target model, might differ
significantly. We define a threat model for each scenario considered in this thesis, aligning
it with previous work.

1.2.3 Experiment Design and Evaluation

Following the CRISP-DM process [WH00], the subsequent steps are selected for conduct-
ing the experimental part of this thesis and evaluating its outcomes.

Design and implementation of target model training
Designing a target model training process is necessary to imitate ownership of a model
and develop countermeasures. We base our architecture and training dataset choice on
the papers selected in Step 3 during the literature review to ensure comparability with
related work.

Design and implementation of model stealing attacks
During threat modelling, we define the attacker’s capabilities, e.g. the knowledge about
the target model or its training data. At this stage, we investigate advanced techniques
that could potentially improve an attack’s performance. For instance, an adversary can
use different query optimisation techniques to reduce the number of queries needed. Then
we configure attack settings comprising a dataset used for querying the target model, an
architecture used for substitute model, query budgets, etc.

Evaluation of model stealing attacks
Each implemented attack is evaluated using three effectiveness metrics: accuracy, fidelity,
and transferability; and two efficiency metrics: the number of queries and the efficiency
score. Based on the evaluation, one can conclude how the attacker’s knowledge and
applied attack strategy affect attack performance.

Design and implementation of defences
The choice of defence strategies is based on their ability to protect against behaviour-
stealing attacks. For instance, if a defence was created to protect the target model
architecture, it might not be applicable for behaviour protection. At the same time,
some defences designed to protect tabular data classifiers can be adapted to other data
domains, e.g. for image data considered in this thesis.

Evaluation of defences
The main evaluation criteria of countermeasures is the capability to decrease the attack
performance. A defence can decrease the effectiveness of an attack by reducing its
accuracy, fidelity, and transferability, or make the attack less efficient by forcing an
attacker to use more queries. Another important aspect is that applying the defence
should not decrease the utility of the target model more than acceptable.

Analysis and comparison of attacks and defences
For every considered attack and defence, their effectiveness and efficiency are measured
as described in the research questions. Then, we explore the impact of attack and defence

7

1. Introduction

settings on the attack performance. Finally, we compare the results of this thesis with
the state-of-the-art.

1.3 Structure of the Work
The rest of the thesis is structured as follows. Chapter 2 provides general information
about machine learning, which is necessary for understanding the scope of the thesis.
Then, Chapter 3 describes state-of-the-art attack and defence approaches, highlighting
the category of attacks focused on image classification stealing. Chapter 4 describes in
detail the attack scenarios implemented in this work, followed by a description of the
considered countermeasures Chapter 5. Chapter 6 details the experimental setup, while
Chapter 7 summarises and analyses the main results of experiments. Finally, Chapter 8
concludes the work by summarising the contributions, answering the research questions,
and providing directions for future work.

8

CHAPTER 2
Background

This chapter provides the necessary background for understanding the rest of the thesis.
We explain the basics of Machine Learning, focusing on its application for image classifi-
cation tasks. At first, we focus on simpler (shallow) models to illustrate relevant learning
concepts. Then we switch to Deep Learning, covering architectures used in this thesis.
We conclude the chapter with an overview of adversarial machine learning.

2.1 Machine Learning for Image Classification

Machine Learning is a powerful tool that has been applied to solve a vast diversity of
problems, from spam email detection to autonomous driving. As this thesis focuses
on one particular problem, namely image classification, most of the terminology and
explanations are narrowed down to this topic.

2.1.1 Dataset

A dataset consists of a set of pairs (x, y), where x ∈ Rn is an image and y ∈ C =
{c1, c2, . . . , ck} is a corresponding label. Figure 2.1 depicts samples from MNIST [Den12],
one of the most common image datasets for digit classification problem. In this dataset,
x is a grayscale image of size 28 × 28, and y can be any of ten digits.

A dataset defines the task that a machine learning algorithm should solve. Usually, the
data is split into three parts which are training, validation, and test set. The training set
is used for creation of a machine learning solution. The validation set is used to evaluate
different hyperparameter configurations and select the most feasible solution. The test
set is used for final evaluation, and, in particular, for comparing results with the dataset
benchmarks.

9

2. Background

Figure 2.1: MNIST dataset [Den12].

2.1.2 Data Preprocessing
Data preprocessing includes diverse techniques that aim to prepare data for future use.
This work only focuses on image data, so we describe typical image preprocessing methods
below.

1. Normalisation, also known as min-max scaling, re-scales each input feature x(f)

such that it lays within the range [0, 1] by applying the following transformation

x
(f)
normalised = x(f) − x

(f)
min

x
(f)
max − x

(f)
min

(2.1)

Here, x
(f)
min stands for the minimum value of feature x(f) in the considered (training)

dataset, and x
(f)
max for the maximum value.

Since pixel minimum and maximum values for each RGB channel are 0 and 255
correspondingly, image normalisation is done by dividing each pixel value by 255.

2. Standardisation is another data transformation technique that makes mean values
of features to be 0 and standard deviation values to be 1. For a feature x(f) its
mean x

(f)
mean and standard deviation x

(f)
std are calculated using the training data.

Then, the following transformation is applied:

x
(f)
standardised = x(f) − x

(f)
mean

x
(f)
std

(2.2)

For image data, standardisation is performed channel-wise for each pixel. We use
image standardisation based on the recommendation of LeCun et al. [LBOM12],
who suggest to use scaled data samples with zero mean to improve the convergence
of a model.

3. Resizing is an image-specific data preprocessing step, which consists in changing
the width and height of an image. It is mainly used to ensure (by downsampling
or upscaling) that all samples in a dataset have the same size and can fit into a
model. In particular, resizing may lead to a changed aspect ratio of some images.

10

2.1. Machine Learning for Image Classification

2.1.3 Data Augmentation
To increase the variety of available data without gathering new data samples, data
augmentation is used. It includes diverse data modification techniques, which preserve
the content (and hence the associated label) of a data sample, but generate new samples
with different input features. We list some image augmentation techniques below.

1. Rotation of an input image by a specified angle. This transformation should be
done carefully for images with distinctive bottom and top parts not to ruin spatial
features.

2. Flipping of an image horizontally or vertically. Similarly to rotation, in some cases
should be avoided. For instance, a vertically flipped face is much harder to recognise
than the original unflipped version.

3. Zooming an image in or out while preserving its actual size.

4. Shifting of an image on axes x and y, while preserving its actual size.

2.1.4 Machine Learning Model
A classification machine learning model is a function f : Rn → C = {c1, c2, . . . , ck} that
maps each data sample x ∈ Rn into a class c ∈ C. A parameter-based model f = fw

is dependent on some parameters w that are optimised in order to fit the task better.
The process of finding optimal values for w from a training set (xi, yi), i ∈ {1, . . . , n} is
called training of the model. The process of making a prediction fw(x) = ŷ on an unseen
sample x is called inference.

2.1.5 Shallow Machine Learning
Shallow machine learning includes models that learn to predict labels for data represented
through pre-defined features. However, for non-tabular data, a feature extraction, which
aims to extract numerical meaningful characteristics from data, is needed. Below we
briefly describe some shallow machine learning approaches for classification problems.

• Logistic Regression (LG) is a binary-classification model that predicts the probability
of a sample belonging to a (positive) class. For a sigmoid function σ:

σ(z) = 1
1 + e−z

(2.3)

and an input sample x = (x1, x2, . . . , xn), logistic regression is defined as

fw(x) = σ(w1x1 + w2x2 + . . . + wnxx + b) = σ(wT x + b) (2.4)

Here w = (w1, w2, . . . , wn) and b are trainable parameters of the model, also called
weights (w) and bias (b). Generalised for multiclass classification problems, the
algorithm is called Multinomial (or Multiclass) Logistic Regression.

11

2. Background

• Decision Tree (DT) is a non-parametric tree-based model that consists of internal
(decision) nodes and leaves. Each internal node corresponds to a specific rule which
defines a data split. Each split corresponds to tree branches that lead to another
internal node or leaf. Leaf nodes correspond to predictions, i.e., all samples in the
same leaf belong to the same class.

• An ensemble of decision trees is called Random Forest (RF).

• Support Vector Machine (SVM) is a maximum-margin-based approach for binary
classification. It aims to create a hyperplane that separates positive and negative
classes with the largest possible distance to both classes. Like Logistic Regression,
Support Vector Machines can be generalised for multiclass classification problems.

2.1.6 Fully-connected Feedforward Neural Networks
One of the most widespread machine learning models is a neural network. It consists
of nodes organised into layers, such that nodes from one layer are connected to nodes
from other layers. The first layer is called input layer. Each node of the input layer
corresponds to one feature of a sample x. In Figure 2.2, the input layer consists of two
nodes, which correspond to features x1 and x2. The last layer is called output layer.
The number of nodes in the output layer corresponds to the number of classes. In the
example, we have three outputs y1, y2, and y3. All layers between input and output
are called hidden layers. A network with more than one hidden layer is called a deep
neural network. In a feedforward neural network, nodes are only connected to nodes from
successive layers. Each node in a fully-connected feedforward neural network is connected
to all nodes in the following layer. A fully-connected feedforward neural network is also
called Multilayer Perceptron (MLP) [Ros58].

We now explain how an MLP makes predictions using the example from Figure 2.2. The
network has two inputs: x1 and x2. Each of them is connected to each node in the
first hidden layer. Connections from the inputs to the first node correspond to a pair of
weights (w1, w2) and a bias b. With this, each node computes a value z = w1x1 +w2x2 +b.
Then a so-called activation function is applied to z, for instance, a Rectified Linear Unit
(ReLU) function (Equation (2.5)).

ReLU(z) = max(z, 0) (2.5)

The primary purpose of an activation function is to bring non-linearity into a neural
network, making an approximation of complex non-linear functions possible. ReLU also
decides if a current node should impact the final decision (if the value of z is smaller
than 0, the node outputs 0, making no contribution to the further inference). The
sigmoid function, mentioned as the function used in logistic regression, (Equation (2.3)) is
another example of an activation function used in neural networks. Hence, a computation
within one node with a sigmoid activation function looks just like Logistic Regression
(Equation (2.4)).

12

2.1. Machine Learning for Image Classification

Figure 2.2: A feed-forward fully-connected neural network.

Above, we described the computation that happens in a single node, and now we generalise
it for an arbitrary MLP that solves a multiclass classification problem. We consider
an n0-dimensional input x = (x1, . . . , xn0)T that is passed through the MLP to obtain
a k-dimensional output ŷ = (ŷ1, . . . , ŷk)T , where ŷi corresponds to a probability of x
belonging to a class i. This process is called forward propagation. Each hidden layer
l ∈ {1, . . . , d}, where d stands for the total number of hidden layers, consists of nl

neurons. For the ith neuron of the lth layer, we denote as z
[l]
i a weighted sum that

comes into the neuron and as a
[l]
i an activation which the neuron outputs. We define

z
[l]
i in Equation (2.6) and a

[l]
i in Equation (2.7). For convenience, we set a

[0]
i = xi,

i ∈ {1, . . . , n0} and a
[d+1]
i = ŷi, i ∈ {1, . . . , k}.

z
[l]
i = (w[l]T

i a[l−1] + b
[l]
i), (2.6)

where l ∈ {1, . . . , d + 1}, w
[l]
i =

��
w

[l]
i1
...

w
[l]
inl−1

�� and b
[l]
i are weights and biases that correspond

to network connections leading from layer l − 1 to node i,

a[l−1] =

��
a

[l−1]
1
...

a
[l−1]
nl−1

�� is the vector of neuron outputs of the (l − 1)th layer.

The activation of a neuron is then calculated as follows:

a
[l]
i = g(z[l]

i), (2.7)

13

2. Background

where g is an activation function, for instance, ReLU (see Equation (2.5)). For the output
layer, a typical activation function for multiclass classification is a softmax function,
defined as:

Softmax(z[d+1])i = ez
[d+1]
i

nl�
j=1

ez
[d+1]
j

, i ∈ {1, . . . , k} (2.8)

The outputs of softmax activation ŷi = Softmax(z[d+1])i, i = 1, . . . , k correspond to
probabilities that a given input sample belongs to corresponding classes 1, . . . , k.

2.1.7 Loss and Cost Functions
A loss function L defines an error between the ground-truth label y of a sample x and the
corresponding prediction of a model ŷ = fw(x). A cost function C measures accumulated
error over the whole dataset. During the training process, parameters w are optimised
such that the value of C is minimised, and, in the optimal scenario, is equal to 0.

One of the most common loss functions for classification problems is cross-entropy, which
measures the similarity between two probability distributions. For each sample x with
its associated ground-truth label y, we can consider its ground-truth label distribution
defined by probability function p(ci), i ∈ {1, . . . , k} as follows:

p(ci) =
�

1, if ci = y

0, otherwise.
(2.9)

Then the predicted probability function p̂(·) is defined by outputs of the model, for
instance, by softmax outputs of the last layer of a neural network, as was discussed above:

p̂(ci) = ŷi (2.10)

The cross-entropy loss for sample x and its ground-truth label y is calculated as

L(x, y) = −
k�

i=1
(p(ci)log(ŷi) (2.11)

If a model predicts a correct class with probability 1, the loss equals 0. The corre-
sponding cost function calculated on the whole dataset X = (x1, . . . , xn) with labels
Y = (y1, . . . , yn) is then defined as the average loss value of the dataset (Equation (2.12)).

C(X, Y) = 1
n

n�
i=1

L(xi, yi) (2.12)

14

2.1. Machine Learning for Image Classification

2.1.8 Gradient Descent
The process of optimising parameters of a machine learning model, also referred to as
model training, is performed using an optimisation algorithm called gradient descent. It
aims to gradually minimise a cost function until its value reaches the global minimum.
After computing the cost function (Equation (2.12)), its gradient is calculated for each
parameter of the model. The gradient consists of partial derivatives of the cost function,
calculated for each of the learned parameters of the model. The parameters of the model
are changed towards opposite to the gradient direction, by a predefined magnitude called
the learning rate, denoted as α. The calculation is done gradually from the last layer
towards the input layer, which is why this process is called backward propagation. For
the cross-entropy cost function, we have the following dependency from the model’s
parameters:

C(w) = 1
m

m�
i=1

L(xi, yi) = 1
m

m�
i=1

(−
k�

j=1
(p(cj)log(fw(xi)j)) (2.13)

Then for each parameter w of model f , its value is changed as shown in Equation (2.14).
Such an update happens for each step of gradient descent. One training cycle through
the whole dataset is called an epoch.

w = w − α
∂

∂w
C(w) (2.14)

Depending on the number of samples used for updating the model’s parameters, there
are three variations of gradient descent.

1. (Batch) Gradient Descent ((B)GD) uses the whole dataset for a single parameters
update. In other words, one epoch corresponds to one gradient descent step. This
approach gives the most precise direction of cost function optimisation, since it
considers all prediction errors on each step. At the same time, it is the slowest
approach and, for this reason, is usually not applicable for training image classifiers.
In Equation (2.13), BGD corresponds to the case when m = n, i.e. the size of the
training dataset.

2. Stochastic Gradient Descent (SGD) makes an optimisation step for each data sample.
SGD is the most efficient and the least precise approach, which requires carefully
selected learning rate to converge. It corresponds to m = 1 in Equation (2.13).
Thus, during one epoch, SGD makes as many steps as there are samples in the
train set.

3. Mini-batch Stochastic Gradient Descent takes a mini-batch of samples to make a
single optimisation step. Its size b is called the (mini-)batch size and usually equals
a power of 2, e.g. 16, 32, 64, to align with memory storage on GPUs. Mini-batch
SGD combines the advantages of the two approaches above: it is significantly faster

15

2. Background

than BGD, but more precise than SGD. In Equation (2.13), it corresponds to m = b.
In one epoch, mini-batch SGD makes ⌊n

b ⌋ steps, where n is the size of the train
set. If n is not divisible by b, the last batch can either be smaller, resulting in one
additional step, or it can be skipped.

In this work, we utilise mini-batch SGD as the most prominent approach for image
classifiers. However, even being more stable than regular SGD, the mini-batch size is
usually relatively small compared to the dataset size, which leads to a certain degree of
stochasticity. Another challenge is picking a proper learning rate α. Large values can
result in stepping over and non-ability to land into a global (local) minimum as shown in
Figure 2.3a, whereas a small learning rate can make a convergence process unreasonably
slow (Figure 2.3b). Besides that, different parameters of a model might require different
magnitudes of change, which can not be achieved with a constant learning rate value.

(a) Large learning rate. (b) Tiny learning rate.

Figure 2.3: Optimising cost function with different learning rates. With a large learning
rate, gradient descent steps over the optimal value, whereas with a tiny learning rate the
optimisation process is very slow.

In the rest of the work, we use the term gradient descent as synonym for mini-batch
stochastic gradient descent.

2.1.9 Advanced Optimisation Algorithms
Different optimisation algorithms can be implemented to improve the convergence of
gradient descent. We describe only the ones relevant to this work; more examples
and explanations can be found in e.g. in the overview paper by Ruder [Rud16]. For
convenience, we denote a modification done at the tth step of gradient descent as δt.
Hence, parameters update can be written as follows:

w = w − δt, (2.15)

where
δt = α

∂

∂w
C(w). (2.16)

16

2.1. Machine Learning for Image Classification

In the following part, we discuss how δt can be modified to improve the convergence.

1. Momentum modifies the parameters of a model, taking into account the update
from the previous gradient descent step. It prevents model training from "forgetting"
the direction it has moved previously and the magnitude of the last step taken.
Momentum is implemented by adding an additional component to δt:

δt = βδt−1 + α
∂

∂w
C(w) (2.17)

Here β is the momentum term that controls the influence of the previous step δt−1.
The most common value for β is 0.9.

2. Adaptive Moment Estimation (Adam) addresses the need for different model pa-
rameters to be updated with different magnitudes. It uses estimations of the first
and the second moments of the gradients, mt and υt respectively, at each step t:

mt = β1mt−1 + (1 − β1) ∂

∂w
C(w) (2.18)

υt = β2υt−1 + (1 − β2)(∂

∂w
C(w))2 (2.19)

Here β1 and β2 are decay parameters responsible for the computation of running
averages. Usually, values 0.9 and 0.999 are used for them, respectively. It was
spotted that calculated in such a way moments are biased towards 0. Hence they
were corrected as shown in Equation (2.20) and Equation (2.21).

m̂t = mt

1 − βt
1

(2.20)

υ̂t = υt

1 − βt
2

(2.21)

The final update of weights combines both bias-corrected moments m̂t and υ̂t,
learning rate α and some small parameter ε, used for numerical stability:

δt = α√
υ̂t + ε

m̂t (2.22)

2.1.10 Training Hyperparameter Optimisation
The optimal training process depends on model characteristics and the training dataset.
To find the optimal model parameters, such hyperparameters as e.g. learning rate,
mini-batch size, and optimisation algorithm must be tuned. Besides, different data
preprocessing or data augmentation techniques can be tested to find the most promising
combination. In this thesis, the following procedure is used for hyperparameter tuning.

17

2. Background

The training hyperparameters, along with their possible values, form a grid representing
all possible hyperparameter combinations. Those combinations are then evaluated on a
validation set, and the best-performing combination of hyperparameter values is selected.
The process of going through the whole grid, trying every single combination, is called
(full) grid search. Another method to perform the hyperparameter search is to try random
combinations from the grid. This approach is called random search.

2.1.11 Evaluation
As mentioned above, evaluation can be done on two parts of a dataset: validation and test
sets. The former is used for determining the most optimal hyperparameter configurations,
and the latter is done for the final performance evaluation to compare the model with,
e.g., a state-of-the-art solution. The performance of each system can be characterised by
two criteria: effectiveness and efficiency. Effectiveness is usually represented by metrics
that measure the predictive power of a model, whereas efficiency corresponds to, for
example, execution time, i.e. the training time of a model and time required for inference,
or other computational aspects, such as memory requirements.

We now describe in detail how the effectiveness of classification models is usually evaluated.
We consider a dataset (x, y)i, i ∈ {1, . . . , n} of size n as validation or test set, on which
we measure the performance of model f .

• True positive TPj shows how many samples of class cj , j ∈ {1, . . . , k} are correctly
classified by f :

TPj =
n�

i=1
1(f(xi)=cj∧yi=cj) (2.23)

• False positive FPj shows how many samples of the dataset are misclassified by f
as class cj :

FPj =
n�

i=1
1(f(xi)=cj∧yi ̸=cj) (2.24)

• True negative TNj shows how many samples of the dataset that do not belong to
class cj are correctly classified by f :

TNj =
n�

i=1
1(f(xi)=yi∧yi ̸=cj) (2.25)

• False negative FNj shows how many samples of class cj are misclassified by f :

FNj =
n�

i=1
1((f(xi) ̸=yi∧yi=cj)) (2.26)

18

2.1. Machine Learning for Image Classification

• Precision Pj shows how many samples classified as cj belong to that class:

Pj = TPj

TPj + FPj
(2.27)

• Recall Rj shows how many samples from class cj are correctly classified:

Rj = TPj

TPj + FNj
(2.28)

• F1-Score F1j stands for the harmonic mean of precision and recall:

F1j = 2PjRj

Pj + Rj
(2.29)

There are two ways in which precision, recall, and f1-score can be aggregated for the whole
dataset: micro- and macro-averaging. A micro-averaged metric considers contributions
of true (false) positives (negatives) from each class while computing the total score. For
instance, micro-averaged precision is then calculated as follows:

Pmicro =

k�
j=1

TPj

k�
j=1

TPj +
k�

j=1
FPj

(2.30)

A macro-averaged metric is calculated as the mean value of metric scores per class. For
precision, we have the following:

Pmacro = 1
k

k�
j=1

Pj = 1
k

k�
j=1

TPj

TPj + FPj
(2.31)

The above-mentioned metrics should be prioritised if a dataset is imbalanced, i.e. the
amount of samples in each class is unequal. However, the datasets used in this work have
the same number of samples for each category. Hence, we use accuracy as the primary
metric for measuring model performance on solving a given classification task. Accuracy
Acc shows how many samples from the dataset are correctly classified:

Acc = 1
n

n�
i=1

1(f(xi)=yi) (2.32)

2.1.12 Overfitting and Underfitting
We distinguish the following cases depending on a model’s performance on training
and test (or validation) sets. We note here that "poor" and "good" performance are
data-specific terms that should be defined for each task individually.

19

2. Background

1. The model performs poorly on the train set, i.e. it did not learn the representation
of the training data. In this case, we say that the model is underfitting the data.
Usually, it means that the complexity of the model is too low for the given task.

2. The model performs well on the train set, but poorly on the test set. In this
case, the model overfits the data, i.e. it learned well the training set but lacks
generalisation abilities. More complex models tend to overfit due to larger learning
capacity. To reduce overfitting, various regularisation techniques which control, for
instance, the magnitude of the learned weight update can be applied.

3. The model performs well on the train and test set. This is the state we want to
achieve while training a machine learning model.

2.2 Deep Learning
Shallow machine learning approaches can be very efficient, but are often not capable of
capturing sophisticated data structures. One bottleneck of shallow classification is feature
extraction, which is a difficult task on its own. Therefore, some special types of neural
networks have been developed to also extract features from raw data. Depending on the
data domain, different types of neural networks have been proposed: Convolutional Neural
Networks (CNN) for image data, Recurrent Neural Networks (RNNs) for sequential data,
Graph Neural Networks (GNNs) for graph data, etc. Below we introduce neural network
architectures relevant to this work.

2.2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) can capture spatial data characteristics, which
is an essential property for solving tasks in the image domain, where neighbouring pixels
together form structures. There are three main categories of layers used in CNNs.

1. Convolutional layers are the main component of CNNs. They consist of filters (also
called kernels), which aim to detect if a particular pattern is present in the image.
The convolution process is shown on Figure 2.4. A filter for each channel moves
like a sliding window from the top left corner to the bottom right, while the dot
product of the filter and the captured input values (the so-called receptive field) is
computed. The step size of the sliding window is called stride. Since pixels on the
border are only captured once, sometimes an additional frame, a so-called padding,
is added to increase the border pixels’ impact. In Figure 2.4, a 2 × 2 filter is applied
to a single-channel input of size 4 × 4 with stride 2 and no padding. As a result,
the filter produces four output values, one per filter slide. After the convolution,
an activation function is usually applied.

2. Pooling layers aim to reduce the dimensionality of an input. They also consist
of a filter, which moves over the input values. However, that filter computes an

20

2.2. Deep Learning

Figure 2.4: A convolution process.

aggregated value over the corresponding receptive field using a function that does
not depend on trainable weights. The most common aggregation functions are
maximum and averaging, and the corresponding layers are aptly called max pooling
and average pooling layers. Figure 2.5 shows an application of a max pooling layer
with a 2 × 2 filter to a single-channel input of size 4 × 4 with stride 2 and no
padding.

Figure 2.5: An application of a max pooling layer.

3. Fully-connected layers, the same as used for MLPs, are usually placed as the last
layers of a CNN to perform a classification task.

We now describe several advanced techniques proposed to improve neural network training
and utilised in the CNNs considered in this work.

Dropout
Dropout is a regularisation technique that randomly drops several nodes during forward
and backward propagation for each mini-batch. For fully-connected layers, it means that
some nodes do not contribute to a prediction, as if their weights were 0. For pooling

21

2. Background

layers, dropout means that some values of the receptive field are not taken into account
while computing the aggregated value [WG15]. For convolutional layers, some of the
activations calculated after a convolution are dropped [WG15].

Batch normalisation
During training, weights of a model are constantly changing, consequently changing
the distribution of inputs to hidden layers and causing a covariate shift [IS15]. Batch
normalisation [IS15] normalises the inputs to hidden layers, similarly to how data is
normalised before feeding into a model. While it was initially developed to resolve the
problem of covariate shift, a follow-up work [STIM18] showed that it is not the case.
However, batch normalisation is still useful for speeding-up training.

Using the same notation for equations as in Section 2.1, i.e. z(l) denoting the output of
layer l before applying the activation function, on each mini-batch, for each layer, we
calculate the mean µ as

µ = 1
nl

nl�
i=1

z
(l)
i (2.33)

, and the standard deviation σ as

σ =

	

� 1
nl

nl�
i=1

(z(l)
i − µ)2 + ε (2.34)

, where ε corresponds to a small number, added for numerical stability. Using these
estimated mean µ and standard deviation σ values, the output of layer l is normalised as
follows:

z
(l)
inorm

= z
(l)
i − µ

σ
(2.35)

As the result, all layer outputs have mean 0 and standard deviation 1.

However, since having all z
(l)
i , i ∈ {1, . . . , nl} within the same range produces limited

activation values, normalised values are usually scaled using two trainable parameters
β(l) and γ(l):

z̃
(l)
i = γ(l)z

(l)
inorm

+ β(l) (2.36)

Skip connections
A neural network is called plain if its layers are connected consecutively, i.e. the output of
a layer is the input to the consecutive layer. He et al. showed that from a certain network
depth on, a plain network performs worse [HZRS16]. As a solution for training deeper
networks, they introduced residual blocks, as shown on Figure 2.6. For three consecutive
layers, l, l + 1, and l + 2, the regular activation of layer l + 2 is a(l+2) = g(z(l+2)). In a

22

2.2. Deep Learning

Figure 2.6: A residual block, introduced in [HZRS16].

residual block, an additional skip connection leading from layer l to layer l + 2 is added,
so that the activation of layer l + 2 is calculated as a(l+2) = g(z(l+2) + a(l)).

Residual blocks are building components of Residual Networks, also known as ResNets,
as well as other architectures. Compared to plain networks, the performance of ResNets
is improving with adding more hidden layers [HZRS16].

2.2.2 Transfer Learning
Features extracted by a CNN become more complex and task-specific towards the last
layer. In contrast, earlier layers extract more generic features that can be useful for
different image tasks [YCBL14]. Hence, learned weights can be reused for another
classification task, even if data distribution and categories significantly differ from the
original data used to obtain those weights [YCBL14]. This approach is called transfer
learning, as knowledge acquired from one dataset is transferred to another. We can
distinguish three patterns for transfer learning layer training.

1. Layers trained from scratch are initialised with random weight values and have to
learn the task from zero. Usually, the final, fully-connected layer is trained from
scratch, as it performs the final classification and is dataset-specific, and might
often not even fit the required architecture, as the number of classes might be
different.

2. Fine-tuned layers are initialised with learned weights and are also updated during
further training, called fine-tuning. Sometimes, a smaller learning rate value is used
to train those layers to prevent the complete erasing of previously learned patterns
and control the deviation from original weights. It was also shown that fine-tuning
a network initialised with pre-trained weights leads to a better generalisation of
the network compared to random initialisation [YCBL14].

23

2. Background

3. Frozen layers are also initialised with learned weights, but are not updated during
training. It is assumed that these layers have learned to extract features required
for a new task and do not need to be changed. Besides making training more
effective, freezing layers also makes training more efficient, as these layers do not
require training.

2.2.3 Diffusion Models
Diffusion models were first introduced by Sohl-Dickstein et al. in 2015 [SDWMG15]. Their
main idea was to gradually apply a diffusion process to destroy the data structure and
then learn a reversed diffusion process to generate new data instances from unstructured
inputs. In the case of image data, the data structure is destroyed by gradually adding
Gaussian noise until the image becomes noise itself. During the reverse diffusion process,
denoising autoencoders are sequentially applied to recreate the image structure from
the noise, as shown in Figure 2.7. Rombach et al. [RBL+22] showed that diffusion
models reach state-of-the-art performance for image generation tasks such as text-to-
image synthesis, super-resolution (i.e. increasing the resolution of an image), and image
inpainting (i.e. reconstructing missing regions in an image).

Figure 2.7: Denoising process. The image is taken from [HJA20].

This work uses diffusion models to create data for performing a data-free attack, which
is discussed later in Section 4.2.

2.3 Adversarial Machine Learning
Adversarial machine learning considers potential security threats occurring during devel-
opment and usage of machine learning models. A malicious party, also called attacker or
adversary, can attack a machine learning model to target any of the aspects subsumed
in the so-called CIA triad: confidentiality, integrity, or availability. Table 2.1 shows a
categorisation of attacks against machine learning models from [BR18], structured along
the goal and capabilities of the attackers. Below, we describe attack categories relevant
to this work.

2.3.1 Adversarial Examples
Adversarial examples belong to evasion attacks (Table 2.1). They aim to compromise
the integrity of a model, intervening in the prediction phase, and forcing the model to
make mistakes. Szegedy et al. [SZS+14] observed that neural networks, while being able

24

2.3. Adversarial Machine Learning

Table 2.1: Categorisation of attacks against machine learning (by Biggio and Roli [BR18]).

Attacker’s capability Attacker’s goal
Integrity Availability Confidentiality

Test data
Evasion (e.g.,
adversarial
examples)

-

Model stealing,
model inversion,

membership
inference, ...

Train data

Poisoning for
subsequent

intrusions (e.g.,
backdoors)

Poisoning to
maximise error -

to classify test samples correctly, can be easily fooled if images are slightly modified.
They showed that imperceptible non-random perturbations can force a neural network to
predict arbitrary labels for the same image. Such perturbed samples are called adversarial
examples.

For dataset sample x and model f , we denote as xadv an adversarial example, such
that f(x) ̸= f(xadv) and xadv = x + δ. Here δ is a small (imperceptible) perturbation
that depends on an adversarial crafting algorithm. We can distinguish two categories of
adversarial examples depending on the desired model prediction on xadv. If the goal is to
make the model predict any different from f(x) label, i.e. f(xadv) ̸= f(x), we say that
xadv is an untargeted adversarial example. If the goal is to force the model to predict
a specific label c ̸= f(x), i.e. f(xadv) = c, we call xadv a targeted adversarial example.
Depending on the adversarial examples used, we can also categorise evasion attacks into
targeted and untargeted.

We now describe an adversarial example crafting algorithm relevant to this work. The
Deepfool algorithm, proposed by Moosavi et al. [MDFF15], was initially designed
to measure quantitatively the robustness of a classification model by an approximate
calculation of the minimal perturbation required to change its prediction. They showed
that such perturbation can be explicitly calculated for linear classifiers, and further
proposed an iterative process for linearisation for an arbitrary (non-linear) model by
approximating the model’s decision boundary with hyperplanes. We provide the Deepfool
algorithm in Algorithm 2.1. The algorithm requires two inputs: a classifier f and a sample
x, for which an adversarial example has to be found. At first, predicted probabilities
fk(x) are calculated for each class k. The top-1 predicted class that corresponds to the
label of x is denoted as y0. Then, the algorithm enters an iterative process of finding the
minimal perturbation required to flip the label y0. At each iteration, the distance to the
closest approximated decision boundary is estimated (lines 7-10), and a perturbation ri

required to bypass this distance is calculated (line 11). If the perturbation is large enough
to change the prediction of f , the algorithm stops. Otherwise, a further perturbation is
calculated. The algorithm returns the accumulated perturbation over all iterations.

25

2. Background

Algorithm 2.1: Deepfool [MDFF15]
Input: classifier f , data sample x
Output: perturbation r̂

1 f(x) = (f1(x), . . . , fd(x)) ; /* d = #classes */
2 x0 ← x ;
3 y0 ← arg max

1≤k≤d
fk(x0) ;

4 i ← 0 ;
5 while yi = y0 do
6 for k ̸= y0 do
7 ω′

k ← ∇fk(xi) − ∇fy0(xi) ;
8 f ′

k ← fk(xi) − fy0(xi) ;
9 end

10 l̂ ← arg min
k ̸=y0

|f ′
k|

∥ω′
k∥2

;

11 ri ← |f ′
l̂
|

∥ω′
l̂
∥2

2
ω′

l̂
;

12 xi+1 ← xi + ri ;
13 yi+1 ← arg max

1≤k≤d
fk(xi+1) ;

14 i ← i + 1 ;
15 end
16 r̂ = �

i
ri ;

2.3.2 Model Inversion

Model inversion attacks belong to confidentiality-violating attacks (Table 2.1). They
aim to reconstruct training data of a machine learning model [FJR15], raising threats
of leaking sensitive information. While originally Fredrikson et al. introduced various
scenarios applicable for different models and input data, we focus only on a single case
introduced as a model inversion reconstruction attack applied to reconstruct image data
[FJR15]. The authors aimed to reconstruct training data of a facial recognition model.
Namely, given a unique identifier of a person from the training set, they aimed to recreate
an image of that person. The reconstruction was assumed successful if it was possible
to identify the target person from a set of images, knowing the reconstructed image.
During the attack, an adversary starts with a random input of the size of an input image
and uses gradient descent to optimise this input to maximise the probability that the
input belongs to the desired class. Additionally, image manipulation techniques such as
denoising and sharpening can be applied. Model inversion attacks can be used as an
approach to gather data of a higher quality (e.g. [GCY+21]).

26

2.4. Active Learning

2.3.3 Model Stealing
Model stealing (model extraction) attacks, first introduced by [TZJ+16], violate the
confidentiality of machine learning models. They are applied to reveal different properties
of a model, or copy its entire behaviour [OMR23]. Behaviour-stealing attacks are the
target of this thesis, and are described in detail in the following chapters.

2.4 Active Learning
Active learning was investigated for supervised learning tasks with a large amount of
unlabelled data, which can be labelled by querying an oracle (in most cases, a human
expert). The most straightforward approach is to label the whole dataset and train a
model on it. However, as labelling can be expensive, an optimisation technique is needed.
Active learning reduces the number of requests to the oracle by sending only samples,
which can improve the performance of a model. For instance, those can be samples with
the least confident predictions, or those close to the decision boundary, etc.

We now define the terminology commonly used in active-learning-related papers. In
active learning, two instances can label data: a model f that is learning and an oracle o
that returns the ground-truth labels. Unlabelled data from which samples are selected is
called pool. Labelled data that corresponds to the training set of f is called seed. Further,
most algorithms require some initial seed, on which f is trained before active learning is
applied. An active learning selection algorithm is then repeated for one or several rounds,
during which a predefined number of samples is selected from the pool, labelled by the
oracle, and added to the seed.

Two active learning algorithms are relevant for this thesis: DFAL (DeepFool Active
Learning) and κ-center. Below, we describe each of them.

• Deepfool Active Learning (DFAL) [DP18] is a sample selection strategy based
on adversarial examples created by the Deepfool algorithm (Algorithm 2.1). We
describe the approach of DFAL in Algorithm 2.2. For each sample xi in a data pool
D, it crafts an adversarial example xadv

i for the model f using Deepfool. Then it
calculates the perturbation ∥xi − xadv

i ∥2
2 and selects the k samples with the smallest

perturbation value. Afterwards, those samples (without corresponding adversarial
examples) are labelled by the oracle o. Hence, DFAL selects samples that are the
closest to the decision boundary of the model f .

• The κ-center algorithm, proposed by Sener and Savarese [SS18], is shown in
Algorithm 2.3. The algorithm requires the existence of an initial seed S0, used as a
core-set. For each sample x in a pool D, distances between probabilities predicted
by the model f for the core-set samples and x are calculated. Then, the sample
with the largest distance to all core-set samples is selected, labelled by the oracle o,
and added to the core-set. The procedure continues until k samples are selected.

27

2. Background

Algorithm 2.2: DFAL [DP18]
Input: model f , data pool D, number of samples to select k
Output: x′

1, . . . , x′
k

1 D = {x1, . . . , xn} ;
2 for i = 1 to n do
3 xadv

i ← Deepfool(f, xi) ;
4 αi ← ∥xi − xadv

i ∥2
2 ;

5 end
6 x′

1, . . . , x′
n ← sort D in ascending order by αi value ;

7 x′
1, . . . , x′

k ← select first k samples from x′
1, . . . , x′

n ;

This way, the κ-center picks the most sparse samples, making the training dataset
of f more diverse.

Algorithm 2.3: κ-center [SS18]
Input: substitute model f̂ , initial sample seed S0, data pool D, number of

samples to select k
Output: x′

1, . . . , x′
k

1 for i = 1 to k do
2 x′

i ← arg max
xj∈D

min
xr∈Si−1

∥f̂(xj) − f̂(xr)∥2
2 ;

3 D ← D \ x′
i ;

4 Si ← Si−1 ∪ x′
i ;

5 end

28

CHAPTER 3
Model Stealing

This chapter describes the terminology relevant to model stealing attacks and depicts
a profile of an attacker that performs an attack, like their goal, actions and knowledge.
Then, different attack methods are described, including current state-of-the-art substitute
model training attacks. For this group of attacks, we introduce a new categorisation
based on the attacker’s knowledge. We conclude the chapter with a description of
countermeasures against model stealing.

3.1 Definition
Model stealing attacks (sometimes called also model extraction attacks) represent a
subcategory of adversarial machine learning that targets the confidentiality of machine
learning applications and aims to create an illegitimate copy of a model or some of
its assets. Usually, these attacks endanger Machine-Learning-as-a-Service (MLaaS)
applications, which allow their clients to utilise prepared machine learning solutions. For
instance, let there be a high-performing API that classifies given images into predefined
categories, as shown on Figure 3.1.

Any API user can send an image for classification and obtain the corresponding output,
which is, in this case, the type of animal depicted in the image. Sometimes, there might be
a limit for the number of images a client can send to the API daily without any payments.
For further access, APIs may charge fees for usage above the daily limit, making a profit
that way; note that there might also be no free daily limit, and all queries are paid from
the onset. However, malicious users might want to avoid additional expenses, or monetise
the underlying machine learning solution on their own. They can copy the behaviour
of the API by training their own model using inputs and corresponding outputs as a
training dataset. Figure 3.2 shows how a model stealing attack can be performed against
such API. Below we introduce the terminology and describe each stage of the attack.

29

3. Model Stealing

Figure 3.1: Example of an image classification API; the owner monetises the service e.g.
by charging the users per query.

We call the model under attack the target model, and denote it as f . We further assume
that the we only have black box access to the target model, which means that the only
information an adversary can retrieve are the predictions (outputs) for given input samples
(inputs). Moreover, in the context of image classifiers, we consider only target models
that output top-1 predictions (labels) for input images. In other words, the only available
action for the adversary is to send an image x to the target model and obtain a label
f(x) ∈ {c1, . . . , ck}. We call such a single request to the model a query, where x is the
query input and f(x) is the query output (or response). Using queries, the adversary can
create an attacker’s dataset (see Stage I in Figure 3.2) and then use it to train a so-called
substitute model (Stage II in Figure 3.2). The substitute model, denoted in this work as
f̂ , can e.g. further be used to launch an alternative API with lower fees, which could
lead to lower demand for the original API and profit loss for the original owner (Stage
III in Figure 3.2).

A successfully performed attack should satisfy two criteria: efficiency and effectiveness. In
terms of efficiency, an attacker should spend a reasonable amount of resources to collect
and label the data through the target model. The most crucial part of this process is the
number of queries required to perform the attack. For instance, if an API only allows 10
queries per day, and an adversary has no budget to pay fees, performing an attack that
requires 10,000 queries will become unreasonable, as the data collection process itself
would take more than 3 years. Therefore, defining the number of queries, a so-called
query budget of an attack, is an important step in attack designing. As suggested in
[OMR23], we will also report an efficiency score. This metric shows how many queries
per parameter (weight) of the target model it takes to perform an attack. This metric
allows comparing different attacks better, as attack results could be reported on the

30

3.1. Definition

Figure 3.2: Model stealing attack on image classification API. At Stage I, an adversary
labels data using the target model as an oracle. At Stage II, the adversary trains a
substitute model, subsequently monetising it. At Stage III, the owner of the target model
meets the consequences of stealing, e.g. loses the profit.

different target model architectures, targeting different complexity of a stealing task.
Let’s consider attack A, which steals a simple neural network with 100 trainable weights
using 5,000 queries. Attack B steals a more complex convolutional neural network with 5
millions of trainable weights using 50,000 queries. A simple comparison of query budgets
tells us that attack A is more efficient – but it targets a simpler target model. If we
compare the efficiency scores, it follows that attack A with the score 50 is way less efficient
than attack B with a score of 0.01. Only if the target model is the same, we suffice to
report the query budget, as it will represent the same information as the efficiency score.

For the effectiveness evaluation, the performance of a substitute model is compared with
the performance of the target model. Three metrics are mainly used for that purpose:
accuracy, fidelity, and transferability [OMR23].

• Accuracy shows how a substitute model performs on the classification task that
the target model was trained to solve. It compares the outputs of the substitute
model with the original labels of a dataset. The accuracy of the substitute model f̂
on dataset Xtest is measured as:

31

3. Model Stealing

Accuracy = 1
|Xtest|

|Xtest|�
i=1

1(f̂(xtest
i)=ytest

i) (3.1)

The main drawback of this metric is that the data on which the performance is
evaluated should be labelled. Another issue is that Equation (3.1) does not include
the target model; hence, the metric does not really show how successful stealing is.
However, one can compare the accuracy of the target and substitute models, e.g.
by computing relative accuracy, which is the relation of substitute accuracy to the
target accuracy. It shows to some extent how much of the performance of the target
model is covered by the substitute model. However, none of these approaches can
tell how similar are predictions of the models. If both models achieve, for instance,
90% of accuracy on a test set, the relative accuracy is 1.0, but these models can
still make different mistakes and output the same labels only on 80% of the test
data. For that reason, we introduce in this work a metric we call joint accuracy,
which shows how many samples are classified correctly by both the target model f
and the substitute model f̂ , as follows:

Joint Accuracy = 1
|Xtest|

|Xtest|�
i=1

1(f(xtest
i)=f̂(xtest

i)=ytest
i) (3.2)

• Fidelity measures the similarity of target and substitute prediction. It compares
the labels that the target model f and the substitute model f̂ output on test set
Xtest. Whereas joint accuracy only shows on which samples both models output the
same correct prediction, fidelity counts both correct and incorrect equal predictions,
as

Fidelity = 1
|Xtest|

|Xtest|�
i=1

1(f̂(xtest
i)=f(xtest

i)) (3.3)

Contrary to accuracy, fidelity does not require data labelled with the ground truth.
Instead, it requires labels from the target model. In a real-world scenario, that
would mean that an adversary has to spend a part of its query budget for obtaining
labels for the attack evaluation. We relax this limitation and do not count queries
needed for evaluation as a part of the query budget.
We prioritise fidelity in our attack scenarios, as it captures the behavioural similarity
of two models. If we again consider models that reach 90% on a test set, their
fidelity can vary from 80% to 100%, revealing more information than accuracy
could potentially do. Compared to joint accuracy, fidelity better represents the
similarity between two models, as it considers all equal predictions.

• Transferability is a special case of fidelity that focuses on the behavioural similarity
of two models near their decision boundaries. It uses adversarial examples, crafted
to fool the substitute model, as a test set on which the target and substitute

32

3.2. Threat Model

model outputs are compared. Papernot et al. [PMG16] were the first to show
that adversarial examples, crafted for one model, can also fool another model, i.e.
those adversarial examples are transferable. To measure the transferability, one first
needs to create an adversarial test set Xadv from a regular test set Xtest. For each
sample xtest

i ∈ Xtest, an adversarial example generation algorithm is used to craft
perturbed sample xadv

i = xtest
i + δ, such that f̂(xtest

i) ̸= f̂(xadv
i). We use Deepfool

Section 2.3.1 as the adversarial algorithm in this work.
We further distinguish two cases of transferability: targeted and untargeted. These
notions are closely related to the ones we introduced in Section 2.3.1 for targeted
and untargeted evasion attacks. Untargeted transferability measures how many
adversarial examples xadv

i are also adversarial for target model f in that sense that
they force the target model to change its prediction comparing to unperturbed
sample xtest

i ; it is computed as follows:

Untargeted Transferability = 1
|Xadv|

|Xadv |�
i=1

1(f(xadv
i) ̸=f(xtest

i)) (3.4)

Targeted transferability, similarly to targeted evasion attacks, requires that an
adversarial sample xadv

i flips the label of the target model f(xadv
i) ̸= f(xtest

i) in
the same way it flips the label of the substitute model f̂(xadv

i) ̸= f̂(xtest
i), i.e. the

perturbed labels are equal f(xadv
i) = f̂(xadv

i); this measure is computed as

Targeted Transferability = 1
|Xadv|

|Xadv |�
i=1

1(f(xadv
i) ̸=f(xtest

i)∧f(xadv
i)=f̂(xadv

i)) (3.5)

3.2 Threat Model
Above, we described the threat model considered in this work. However, in general, goals,
available actions, and the attacker’s knowledge might differ significantly. Following the
taxonomy presented in the survey on model stealing attacks and defences [OMR23], we
now briefly discuss other possible scenarios.

3.2.1 Attacker’s Goals
In this work, an adversary aims to train a substitute model f̂ , which imitates the
behaviour of the target model. However, in general, an adversary might also want to
steal some other assets of the model, like its architecture, training hyperparameters, or
learned parameters.

• An architecture stealing attack tries to reveal hyperparameters that characterise
the architecture of the target model. For instance, for a neural network, that could

33

3. Model Stealing

be the number of layers, their types, kernel size in a convolution layer, etc. There
are two reasons why an adversary might want to steal the architecture. Firstly,
having information about the architecture makes training a substitute model easier.
Typically, the adversary has to make assumptions about the type and complexity of
the target model. If the selected architecture is not complex enough, the substitute
model might not converge. Secondly, if the target model has a unique architecture,
which can be beneficial in solving other tasks, the adversary can try to reuse it for
their own goals.

• Training hyperparameters stealing aims to extract values of hyperparameters
like the batch size, optimisation algorithm, regularisation hyperparameter, etc.
Similarly to architecture stealing, the revealed information will not yield a full
substitute model, but can support its training process. An adversary can combine
those two attacks for training a substitute model with the same architecture and
training hyperparameters as the target model was trained.

• Attacks that target learned parameters aim to steal, for instance, the weights
of a neural network. To perform such an attack, an adversary needs to know the
architecture of the target model, which limits the applicability of this type of attack.
As mentioned before, the architecture can also be stolen, so this attack can be
launched against a black-box model after an architecture stealing attack. However,
the stolen architecture needs to be precise — otherwise, the weights will likely be
recovered incorrectly. A successful parameter-stealing attack leads to an identical
copy of the target model, which also means that it will behave identically to the
target model.

• Finally, as we defined at the beginning of this section, some attacks aim to copy
the behaviour of the target model. Most model stealing attacks target behaviour,
although they can be further divided into two categories, as done in [OMR23]. The
first category aims to reach the same level of effectiveness as the target model.
Achieving this goal would mean that the accuracy of the stolen model is high. For
the second category, prediction consistency with the target model is the primary
goal. In this case, fidelity and transferability are the most important metrics, and
depending on the attacker incentives, one of them can be prioritised. If an attacker
wants to attack the target model with an evasion attack, transferability should be
high. If consistency is needed in solving the original classification task, high fidelity
should is required.

3.2.2 Attacker’s Actions
Previously, we considered only one type of action – queries. They are the only available
interactions if a target model is hidden behind a cloud-based API, and an adversary has
no physical access to a device on which the model is executing. However, stealing is also
possible if an adversary has a side-channel access to the target model. Using either
hardware [BBJP19] or software [DSRB19] side channels, one can reveal the architecture

34

3.2. Threat Model

[HDK+20] or even the weights of the target model [ZCZL21]. In this work, we only
consider an API case and do not explore side-channel model stealing attacks.

3.2.3 Attacker’s Knowledge
The attacker’s knowledge is the basis on which any attack is built. Having more
information available can make an attack more effective and more efficient. Hence, we
call an adversary who knows more stronger, and one who knows less weaker. We further
describe three areas of the attacker’s knowledge: the target model, available data, and
API.

The weakest knowledge of the target model corresponds to the black-box setting,
when an attacker can only observe the inputs and outputs of the model. The strongest
attacker is the one who knows the model entirely, i.e., both its architecture and weights.
In this case, no model stealing is needed for most of the above defined assets. However,
one can still attack a white-box model to reveal which hyperparameters were used for
training [WG18]. Any state between the white and black box corresponds to a grey-box
scenario. This includes, for instance, knowledge about the architecture of the target
model.

According to [OMR23], an adversary may have access to one of the following categories
of data: original, problem-domain, non-problem domain, and artificial data.

• Original data means the target model’s training data, which corresponds to the
strongest knowledge.

• Problem-domain data correspond to the same classification task as the original
data, but its distribution can be different.

• Non-problem domain data, which constitutes weaker knowledge than problem-
domain data, stands for any (syntactically) suitable input data, e.g. any image
data for image classifiers.

• Artificial data includes any data generated or synthesised. For instance, Gaussian
noise or samples produced by a generative machine learning model are subsumed
under artificial data. Depending on the quality of artificial samples, they can be
more or less useful than other categories. Therefore, the attacker’s strength depends
on the concrete method used for crafting the artificial data.

APIs can limit information revealed to end clients. For image classification models, we
can distinguish several cases, listed below, from the weakest to the strongest attacker:

• The API provides only the top-1 label per image;

• The API provides the top-k labels, i.e. the ranking of first k potential classes;

35

3. Model Stealing

• The API provides the top-k probability scores;

• The API provides the probabilities (confidence scores, logits, etc.) for all classes.

Most works consider either the first scenario or the last scenario. Returning probabilities
for all classes can be beneficial for both sides. Benign service clients can find such a
service more informative and valuable than a restricted one, bringing more profit to the
API’s owner. At the same time, if an API provides exact scores predicted by the target
model, training a substitute model becomes easier [PGS+20, YDZ+22]. The owner of
the service can then perturb the probabilities (see Section 3.4.2) so that using them
can lead to a non-converged model and failed attack [KPQ21b, MLF22]. Usually, top-1
predictions remain unchanged after such perturbations, so an attacker can still use them
as in case (1). Since knowing in advance if probabilities are correct is an unrealistic
scenario, it might be safer to only use labels for an attack. Therefore, we only consider
the top-1 label case in this work, and thus the weakest possible assumption.

3.3 Attacks
In the previous section, we described a threat model for model stealing. This section gives
an overview of concrete methods applicable under specific conditions for various attack
goals. As we do not consider side channel attacks in this work, we describe techniques
that require only input-output access, so-called query-based attacks. We use names for
attack categories as in [OMR23].

We summarise the attacker’s goals and knowledge of each method in Table 3.1. We note
here that an attack that has learned the parameters of the target model as a stealing
goal can also lead to behaviour stealing. Hence, all attacks that have "Parameters" as
the attacker’s goal in Table 3.1 can also copy the behaviour. In the last column of the
table, if an attack is applicable for black-box image classifiers stealing, we denote it
with ✓ and with ✗ otherwise. As we only consider CNN-based classifiers, we mark as
not feasible categories of attacks which target (1) shallow machine learning models, i.e.
models that require feature extraction beforehand, and (2) deep neural networks with
specific architecture crucial for attack performance.

3.3.1 Witness-finding Attack
The witness-finding attack is the first model stealing attack, and was published by Lowd
and Week in 2005 [LM05]. It was proposed as an approach to reconstruct the weights
of a linear binary model. A linear model for every input feature f has a weight (linear
coefficient) wf , which is multiplied by the feature value during inference. To perform a
witness-finding attack, one needs one positive sample x+ (classified as class 1) and one
negative sample x− (classified as class 0). Then the feature values of x+ are changed
one by one until a sign witness (s+, s−) is found. A sign witness is a couple of samples
that are identical except for one feature value f ′, but belong to different classes (one

36

3.3. Attacks

Table 3.1: Comparison of query-based attacks.

Attack Attacker’s goal Required attacker’s
knowledge

Black-box image
classifier stealing

Witness-finding Parameters Architecture ✗

Equation-solving
Parameters,

training
hyperparameters

Architecture ✗

Path-finding Parameters (nodes) Architecture (model
type) ✗

Recovery Parameters,
architecture

Architecture (not
necessary) ✗

Meta-model
training

Architecture,
training

hyperparameters

Presence of
hyperparameters ✗

Substitute model
training Behaviour − ✓

positive, one negative). Then the corresponding weight wf ′ is set to 1 or −1 depending
on sign witness values. Afterwards, a line search is used to reveal the relative weight of
other features. The bottleneck of the attack is finding a sign witness, as it requires lots
of queries and simply does not always exist. However, a successful attack leads to exact
model extraction. Two other works later adapted this approach for stealing Support
Vector Machines [TZJ+16, RST19].

This attack is only applicable to a small number of machine learning models. It also
requires knowledge about the architecture of the target model and, therefore, cannot be
applied for stealing black-box CNN image classifiers, as shown in Table 3.1.

3.3.2 Equation-solving Attack

By querying a target model f , an API client obtains an output f(x) for each query
input x. Hence, by sending several queries x1, x2, . . . xn, a malicious user can create a
system of equations f(xi) = yi, i ∈ {1, . . . , n}, where unknowns of the system are learned
parameters (or weights) w of the target model f = fw. If the system can be solved, the
user can steal the weights of the target model as a result of an equation-solving attack.

Equation-solving attacks are usually performed against shallow machine learning models,
such as Logistic Regression, Support Vector Machines, Multi-layer Perceptron [TZJ+16],
and Support Vector Regression Machines [RST19]. As witness finding, they also require
full knowledge of the model architecture, so that an adversary is able to create a system
of equations. It was also shown that an adversary with white-box access to a model can
use an equation-solving attack to reveal training hyperparameters [WG18]. However,
none of the scenarios fits into stealing black-box CNN image classifiers, as shown in
Table 3.1.

37

3. Model Stealing

3.3.3 Path-finding Attack

The path-finding attack [TZJ+16] aims to copy Decision and Regression trees, i.e. getting
the same nodes and splitting criteria as the original trees comprise. The attack works
under the condition that an API client can observe both the prediction and a unique
identifier of the leaf node that made that prediction. Then, an adversary can vary
different feature values to find out the splitting criteria that lead to that particular node.
Thus, conditions for all leaves can be recovered. Decision and Regression trees can be
adapted to handle missing values, the attack can also be performed using queries with
only some features present. This approach can reduce the number of queries needed
for stealing [TZJ+16], although some APIs might not allow such behaviour. Being only
suitable for trees, this attack does not fit for stealing CNN image classifiers (Table 3.1).

3.3.4 Recovering Attack

Milli et al. were the first to theoretically explore stealing attacks against two-layer neural
networks with ReLU activation functions [MSDH19]. They argued that the input space
is divided by hyperplanes into small cells, such that a ReLU-NN behaves as a linear
function within each cell. The authors showed how to recover weights that correspond to
those hyperplanes using binary search.

The approach was later practically tested and extended for deeper networks by several
works [JCB+20, RK20, CJM20]. Rolnick et al. also showed how to extract the architecture
of ReLU-DNNs [RK20]. As recovery attacks only target specific DNNs, they do not fit
our goal of stealing black-box CNN image classifiers (Table 3.1).

3.3.5 Meta-model Training Attack

As mentioned in Section 3.2, many works have been published on stealing architecture
and weights using side channels. However, the task of revealing the architecture through
query-based interactions is much more complicated. The most comprehensive work in
that area was published by Oh et al. [OAFS18], whose meta-model attack aims to reveal
the architecture and training hyperparameters of convolutional neural networks.

The authors trained CNNs with different characteristics (number of layers, layer type,
kernel size, activation function, batch size, etc.). Then they crafted a specific input image
for each characteristic value such that the image can reveal if this characteristic with
this value is present in the model. For instance, they crafted a sample that indicates
the presence of a max-pooling layer. This sample is fed into a target model, and based
on the output, a meta-model decides if the target model has a max pooling layer. The
main limitation of this attack is that only single characteristics can be revealed, and an
attacker has to be sure that these characteristics make sense for the target model.

Although the authors of the meta-model attack launched it against image classifiers, the
stealing goal does not match our threat model, so we do not consider it in this work.

38

3.3. Attacks

3.3.6 Substitute Model Training Attack
As mentioned in Section 3.1, the idea of substitute model training attack is to use data
labelled through an API as a dataset for training a local model (see Figure 3.2). This
approach does not require additional information about the target model and has no
restrictions on the task domain or target model type. The first substitute model training
attack was proposed by Tramer et al. [TZJ+16]. Along with other attacks presented
in that paper, the authors launched their attack against shallow machine learning
models. Since then, more than 50 papers have been published [OMR23], targeting
Convolutional Neural Networks [PMG+17, OSF19], Recurrent Neural Networks [TYF20],
BERT language models [KTP+20], Graph Neural Networks [DR20], Encoders [LJLG22],
Generative Adversarial Networks [SDGA21], and Deep Reinforcement Learning agents
[BH19].

As this thesis focuses on image classification, we discuss aspects and approaches relevant
to that area in detail. Table 3.2 shows aggregated information from 24 relevant papers,
which were selected based on the following criteria:

• The paper introduces a new substitute training attack or extends a previous work;

• Both target and substitute models are trained on image data;

• The goal of stealing is a substitute model that reaches a high score in at least one
of the following metrics: accuracy, fidelity, or transferability.

We now explain the meaning of each column, possible options, and how it impacts the
performance of an attack.

• Attacker’s data corresponds to data categories used for querying the target model
described in Section 3.2: original, problem-domain, non-problem domain, and
artificial data. However, we look at artificial data from a different perspective now.
In previous work, some generators of artificial data are trained using, e.g. non-
problem domain data. Consequently, an attack that uses artificial data produced
by such a generator should be classified as requiring non-problem domain data.
In contrast, there are cases when artificially crafted data is the only data used
for performing an attack, and no data from any other source was used. We call
such an attack data-free, as it assumes that no data is available for the attacker.
Subsequently, in terms of knowledge and availability of data, we can group papers
into four categories, from the weakest to the strongest assumption:

– Data-free attacks;
– Attacks that utilise non-problem domain (NPD) data;
– Attacks that utilise problem-domain (PD) data;
– Attacks that utilise original data.

39

3. Model Stealing

Table 3.2: Comparison of substitute training approaches.

Reference Attacker’s
data

Data
crafting

technique

Substitute
has the same
architecture

Query
optimization

Target model outputs Metrics

Probabilities Labels Acc Fid Tr

[PMG+17] Original
or PD

Adversarial
augmentation ✗ ✓ ✓ ✓

[CSBB+18]
(CopyCat)

NPD
or/and PD N/A ✓ ✓

[PGS+20]
(Activethief) NPD ✓✗ AL ✓ ✓ ✓

[JSMA19] Original Adversarial
augmentation ✓✗ ✓ ✓ ✓ ✓

[OSF19]
(Knockoff) NPD ✓✗ RL ✓ ✓ ✓
[ASJ+20] NPD ✓ RL ✓ ✓ ✓

[PYZ18] Original Adversarial
augmentation ✗ AL N/A N/A ✓ ✓

[PGS+19] NPD ✓✗ AL ✓ ✓ ✓

[MDN19] NPD Data
composition ✗ ✓ ✓

[YDZ+22] Data-free
(Artificial) Generator ✓✗ ✓ ✓ ✓ ✓

[MSDH19]* Original ✓✗ ✓

[KPQ21a] Data-free
(Artificial) Generator ✗ ✓ ✓

[RPM19] Data-free
(Artificial) Noise ✓ ✓ ✓

[BCIP20] NPD Generator ✓✗∼ EA ✓ ✓
[YYZ+20]

(FeatureFool) PD Adversarial
augmentation ✓✗∼ ✓ ✓

[GCY+21]
(InverseNet) NPD Model

inversion ✗ ✓ ✓ ✓
[TMWP21]
(DFME)

Data-free
(Artificial) Generator ✗ ✓ ✓

[MHS21]
(MEGEX)

Data-free
(Artificial) Generator ✗ ✓* ✓

[SAB22] Data-free
(Artificial) Generator ✗ ✓ ✓

[ZFS21] Original Adversarial
augmentation ✓✗ RL ✓ ✓

[WL22] NPD N/A AL ✓ ✓
[WLL+22]
(Black-box
Dissector)

NPD ✓✗ ✓ ✓ ✓ ✓

[YHL+22]
(DTMEA) Original ✗ ✓* ✓
[XHZ+22]
(GAME) (N)PD Generator ✗ AL ✓ ✓ ✓

Our work

Original,
PD or

Data-free
(Artificial)

Adversarial
augmentation,

Generator
✓✗ AL ✓ ✓ ✓ ✓

Technically, one can easily perform an attack designed for original data using, e.g.
only PD data. However, (1) this attack may not be effective, and (2) we categorised
papers based on the data they used for attacks without considering theoretical
perspectives of an attack using different data sources. Some of the works considered
several approaches, like trying both NPD and PD data. If a paper assumed that
a small amount of original or PD data is available (even if less than 5%), we still
considered those attacks as ones requiring a corresponding type of data.

40

3.3. Attacks

Attacks implemented within this work include three different levels of data avail-
ability, from the strongest to the weakest assumption: original (for estimating the
best possible extraction rate), PD (to have reasonable scores without original data)
and data-free, for which a new approach is proposed. We describe our methodology
in detail in Chapter 4.

• Data crafting is applicable for two categories of attacks: data-free attacks, and
attacks that aim to create more (high-quality) data from the one available.

– Adversarial augmentation is the most common approach for improving the
quality of the data [PYZ18, YYZ+20, ZFS21]. The idea is to query a target
model with adversarial examples crafted for a substitute model to "correct"
predictions of the substitute model near its decision boundary. This approach
can also be helpful for high-transferability stealing, since it specifically aims
to make the decision boundaries of the target and substitute models similar
[PMG+17, JSMA19].

– Data composition is an approach proposed for increasing the quality of NPD
data by merging two images into one [MDN19].

– Model inversion is inspired by the model inversion attack [FJR15], which aims
to reconstruct training data from a model. In the context of model stealing, it
can result in more meaningful data when only NPD data is available [GCY+21].

– Generative models are common for both data-free attacks and attacks that
use data-crafting techniques to improve the quality or increase the quantity of
the attacker’s data samples. In the first case, an attack is launched assuming
that only random noise is available [TMWP21], whereas in the second case,
an attacker starts with some data, e.g. NPD [BCIP20].

– Noise can also be used as a direct input for querying a model when no data
or generative model is available [RPM19].

This characteristic of an attack does not impact the strength of the attacker’s
knowledge just by itself, and is based on the attacker’s decision to improve the data
they have. We suggest considering the information in this column together with
the previous one, as the choice of data crafting method depends on the initially
available data.
This work uses a generative model to create data for a data-free attack and adver-
sarial augmentation as an optimisation technique for all attacks (see Chapter 4).

• The target architecture is another aspect of attacker’s knowledge. If the archi-
tecture is known, an adversary can use it as the architecture of a substitute model,
simplifying the whole stealing process. In general, there are two options:

– Weaker assumption: the substitute architecture differs from the target, as the
latest is assumed to be unknown (marked as ✗ in Table 3.2).

41

3. Model Stealing

– Stronger assumption: the substitute and target architectures are the same
(marked as ✓ in Table 3.2).

We mark papers with ✓✗ if they reported both cases. Mostly those works used the
same architecture for the main batch of experiments but explored in an ablation
study the impact of different architectures on their stealing approach. If target and
substitute architectures were different in a paper only for some datasets, we mark
that as ✓✗∼. If it was unclear which strategy the authors chose, we put N/A in
the corresponding cell.
As exploring the impact of architecture choice gives a more comprehensive view of
an attack, we consider both approaches in this work.

• Query optimisation includes techniques that aim to increase the efficiency of
an attack by reducing the number of queries. The main idea is that nearly the
same attack result can be achieved by using a significantly smaller amount of
data. The most common technique is using Active Learning (AL) [PGS+20, PYZ18,
PGS+19, WL22, XHZ+22]. As mentioned in Section 2.4, active learning was
initially investigated as an optimisation for labelling data in supervised learning
scenarios with a significant amount of unlabelled data. Since for model stealing, the
situation is the similar [CCG+20] (with the API being the oracle), active learning
is widely used for query optimisation. A few other works trained Reinforcement
Learning (RL) agents to pick samples with the highest impact on substitute model
training [OSF19, ZFS21]. Barbalau et al. applied Evolutionary Algorithm (EA) to
optimise data samples crafted by their generating model [BCIP20].

• Target model outputs can be more or less detailed, revealing different amount of
information to an adversary. In Section 3.2, we discussed two output options: labels
and probabilities (confidence scores). We mark cells corresponding to the output
type(s) used in a paper as ✓. All papers that compared labels with probabilities
concluded that the substitute performance is better when probabilities are used
[PGS+20, JSMA19, OSF19, ASJ+20, PGS+19, YDZ+22, GCY+21]. However, some
works assumed that an API returns even more revealing information. Milli et al.
performed their attack assuming that gradients of the target model are available
[MSDH19]. As gradients were the only source of information in their attack,
both corresponding cells in Table 3.2 are empty. Miura et al. and Yan et al.
considered APIs that return explanations in addition to the confidence scores
[MHS21, YHL+22]. We mark those cases as ✓*. It was not possible from the
description to figure out which type of output was used in one of the papers [PYZ18]
and marked as N/A the two corresponding cells. Overall, for outputs of the target
model, we have the following scale for the attacker’s strength:

– API outputs labels;
– API outputs confidence scores;
– API outputs explanations, gradients, etc.

42

3.3. Attacks

• For each paper, we checked which metrics from Section 3.1 were reported. Most
of the papers measured accuracy of a substitute model. However, as was mentioned
before, solely accuracy is not the most explanatory metric for model stealing. One
needs to know what is the accuracy of the target model to be able to estimate how
good the performance of the substitute is in terms of accuracy. We can highlight
another issue: how well-performing the target model is. If the target accuracy
is far from state-of-the-art scores, reaching its performance level is likely much
easier. Hence, attacks that steal low-performing models with high relative accuracy
might be less effective against well-performing models. Measuring fidelity would
fix that issue, although only seven of the 24 papers have reported those scores.
Transferability was barely reported in previous works, even though it allows us to
better understands the similarity of two models around their decision boundaries.

We note that there is no single metric that is reported for every paper, which raises
a comparability issue. Moreover, even if the same metric is used for evaluation,
papers often measure it on different datasets, making the results less comparable
(see statistics on datasets in Section 6.1).

We classified the papers listed in Table 3.2 based on the attacker’s capabilities in Figure 3.3.
The figure shows the level of strength along three axes: knowledge of the target model
architecture, data used for queries, and target model outputs. The dashed vertical line
divides the figure into two parts: the left corresponds to the unknown target architecture,
i.e. the architecture used for the substitute model is not the same as the target model’s
architecture, and the right corresponds to the known target architecture, i.e. using the
same architecture as the target model. Sectors correspond to particular knowledge about
the data: the weakest assumption (data-free) is on the top, and the strongest (original)
is on the bottom. Each sector is divided into segments by three concentric circles, which
represent knowledge about target model outputs. The inner circle corresponds to labels,
the middle covers probabilities, and the outer represents explainable AI (XAI) and
gradients. We put references of papers into segments that correspond to the knowledge
considered in the paper. If a paper covers different scenarios that fit into several segments,
we put the corresponding reference in each. If some information about the knowledge is
not given, we put its reference into each potential segment with an additional question
mark. Within this work, we conduct experiments for six scenarios, covering most of the
segments of the inner circle (highlighted in green in Figure 3.3), except for non-problem
domain data.

We can make several observations based on Figure 3.3:

• Since for fair comparison, one should consider attacks within the same segment
(i.e. same attacker’s capabilities), only a small fraction of works are actually
comparable with each other.

43

3. Model Stealing

[YDZ+22]
[RPM19]

[YDZ+22]
[PGS+20]

[OSF19]
[ASJ+20]

[PGS+19]
[BCIP20]

[CSBB+18]?
[PGS+20]
[OSF19]

[ASJ+20]
[PGS+19]

[WL22]?
[WLL+22]

[YYZ+20]

[CSBB+18]?

[MSDH19]

[ZFS21]
[JSMA19]

[JSMA19]

[MSDH19]
[YHL+22]

[JSMA19]
[PYZ18]?

[ZFS21]

[PMG+17]
[JSMA19]

[PYZ18]?

[YYZ+20]
[XHZ+22]

[PMG+17]
[CSBB+18]?

[PGS+19]

[PGS+20]
[OSF19]

[BCIP20]
[XHZ+22]

[CSBB+18]?
[PGS+20]
[OSF19]

[PGS+19]
[MDN19]

[GCY+21]
[WL22]?

[WLL+22]

[MHS21]

[YDZ+22]
[KPQ21a]

[TMWP21]

[YDZ+22]
[SAB22]

Figure 3.3: Model stealing attacks against image classifiers categorised accordingly to
the attacker’s capabilities.

• Lots of configurations with additionally provided explanations from the target
model are not explored at all. We mark corresponding segments grey in
Figure 3.3.

• Almost half of the segments contain only one or two references, meaning
those scenarios need to be studied better.

44

3.4. Defences

3.4 Defences
As stated in the survey [OMR23], there are two categories of defences against model
stealing: reactive and proactive. Reactive defences can not prevent an attack, but
can detect an ongoing attack or verify the ownership of an already stolen model, i.e.
prove that an attack happened in the past. Attack detection approaches are based on
monitoring clients’ behaviour, i.e. which queries they send to an API [JSMA19]. If an
attack is suspected, the API owner can shut down the service or ban malicious clients
from using the API. To verify whether an attack was performed earlier, one needs to
take the following two steps:

• Before publishing the model, embed certain model-specific information into a model
[SAMA21], or find some unique property [LZK21] that will be transferred into a
substitute model in case of stealing.

• When an attack is suspected, check if the suspicious model contains the same
information (or property) as the original target model. If the result is positive, the
owner can claim that their model was stolen.

However, ownership verification alone can not help the owner, and some additional legal
regulations are needed.

Proactive defences aim to mitigate or completely prevent an attack by modifying or
limiting the information observable by malicious clients. These approaches include:

• Data perturbation, when either the input is modified before feeding into the target
model [Gra20], or specific noise is added to the model output [OSF20].

• Model modification, which modifies the architecture of the model [LFS20] or make
the weight less robust [SAAH20].

• Using task-specific architectures and avoiding transfer learning, as using a well-
known architecture with publicly available pre-trained weights gives an adversary a
good starting point for training a substitute model.

Any proactive defence usually decreases the utility of the target model, and hence requires
finding a trade-off to not harm benign users.

Below we describe in detail different reactive and proactive techniques and their limita-
tions.

3.4.1 Reactive Defences
In this section, we consider three reactive defences: two for ownership verification (unique
model identifier and model watermarking) and one for attack detection (monitors).

45

3. Model Stealing

Inherent Unique Model Identifier

The concept of unique model identifiers is similar to device or browser fingerprinting.
The idea is to find some specific property or behaviour unique and inherent to the target
model. Maini et al. suggested using the distances from training samples to the decision
boundary of the target model [MYP21]. They argued that training data is usually
well-learned by a model and located far away from its decision boundary. By training
a substitute model, this knowledge is transferred and hence can be used for ownership
verification. The main drawback of this approach is that the training data needs to
be secret — otherwise, any model independently trained on this dataset can be falsely
classified as stolen. This approach also does not fit into the scope of this work, as we use
publicly available data to ensure comparability with other works.

Watermarking

Watermarking is another ownership verification approach that uses intentionally embedded
information into a target model. In general, there are two categories of watermarking,
depending on the level of access to a model during verification: black-box and white-box
watermarking. In the first case, only model outputs are needed to verify the ownership.
In the second case, one needs access to the internal structure, e.g. weights values, to
check if a watermark is present. Since we consider a case when an adversary steals a
model and launches a competitive API, only black-box techniques are applicable.

Black-box watermarking is based on training a model additionally, besides the original
task, on a specific dataset (called trigger set) with specific labels. The idea is that either
data or labels of the trigger set should be unusual enough, and thus a not watermarked
model will behave differently. For instance, a trigger set can consist of images that are
out of the distribution of the original training data, and a non-watermarked model would
not be able to classify those as expected. Other approaches include mislabelling some
specific training samples or creating a trigger set by applying a particular pattern to
in-distribution data.

Initially, model watermarking was proposed as a defence against unauthorised re-
distribution of an first legally obtained model [LMR23]. In this scenario, a "stolen"
model is usually identical and contains the same watermark. With model stealing, the
situation is different, since the model is not copied, and the model owner has to rely
that the watermark is transferred during substitute model training. There have been
several approaches proposed explicitly against model stealing. Szyller et al. suggested
flipping some output labels returned by an API [SAMA21]. If a substitute model is
later trained on queried data, flipped samples can be used as a trigger set for ownership
verification; this can be seen as a "dynamic" watermarking, and implicit watermarking,
as the substitute model is not directly influenced. Chakraborty et al. proposed a similar
but less utility-harmful approach – instead of flipping labels, they perturbed confidence
scores [CXLS22]. The idea is that a specific confidence score distribution is embedded
into a substitute model and can be used for ownership verification.

46

3.4. Defences

We do not consider watermarking in this work, as we focus on attack mitigation techniques,
although watermarking is a promising direction for future work.

Monitors

On-time detection of a model stealing attack can prevent an adversary from collecting
(further) data necessary for substitute model training. It can be achieved through
monitors, which analyse the queries each client sends to API. A monitor recognises
a client as malicious if the distribution, order, or other characteristics of queries look
suspicious.

The first monitor was proposed by Juuti et al. [JSMA19] to detect attacks that use
adversarial examples for querying [PMG+17]. They showed that the distribution of
distances between samples sent during such an attack differs significantly compared to
the distribution obtained using natural data. Several other techniques were proposed to
detect adversarial queries:

• Yu et al. analysed outputs of the target model after each hidden layer to distinguish
adversarial and benign samples [YYZ+20].

• Liu et al. used a similar approach, but analysed outputs only of the penultimate
fully-connected layer of a target model [LML+22].

• Zhang et al. checked the distances between each pair of queries, and labelled ones
too close to each other as adversarial [ZCW21]. The corresponding user is blocked
if the number of adversarial queries exceeds a certain threshold.

• Pal et al. used an Autoencoder to spot the difference between benign and adversarial
data [PGKS21].

Sadeghzadeh et al. assumed that an adversary is more likely to send samples which are
harder to learn and hence designed a monitor that can spot those samples [SSDJ22]. Two
other works, by Kesarwani et al. [KMAM18] and Dziedzic et al. [DKLP22], designed
monitors that measure the information leakage of submitted queries and apply some
countermeasures if the leakage is too high.

The majority of monitors make some assumptions about the data a malicious user
would use. If an adversary uses non-adversarial problem domain data, their behaviour is
indistinguishable from benign users. Moreover, adaptive attackers, which adapt their
attack to a defence applied, are barely considered in the works mentioned above and can
likely overcome those monitoring systems. We will analyse this scenario in future work.

3.4.2 Proactive defences
This section briefly examines three attack mitigation techniques: data perturbation,
model modification, and task-specific architecture.

47

3. Model Stealing

Data perturbation

The goal of data perturbation defences is to hide the real behaviour of a target model
through modifying queries or target model’s outputs. We distinguish two categories:
input perturbation [Gra20] and output perturbation [OSF20]. If an API returns confidence
scores, both defences will perturb these scores using different mechanisms. However, to
keep the utility of the model high, a defence should preserve the ranking of the top-1
response of the target model.
Figure 3.4 shows an example of an API that classifies images into three categories: horse,
deer, or cloud. For each input image, the API returns probabilities of belonging to each
class.

Figure 3.4: An unprotected API.

Figure 3.5: An API protected by an input perturbation defence.

When applying input perturbation, an image is changed before it is fed into the target
model, as shown at Figure 3.5. As an indirect result, probability scores and the order
of classes (most likely) differ from the original. In the literature, only one approach for
protecting image classifiers by input perturbation was proposed [Gra20]. We describe it
in detail in Section 5.1.
Output perturbation directly manipulates the outputs of the target model, as shown in
Figure 3.6. It provides more control over what an end-user receives, compared to input
perturbation. Together with monitors, output perturbation is the most developed area of
defence against model stealing [OMR23]. Most works assume that a target model returns
probability scores, which an adversary uses for training a substitute. Those scores can be
perturbed without largely affecting benign clients by, for instance, preserving the order of
the top classes. However, such perturbation can be enough to mislead substitute model
training. Below we briefly discuss works that address confidence scores perturbation:

48

3.4. Defences

Figure 3.6: An API protected by an output perturbation defence.

• Orekondy et al. proposed to maximise angular deviation, such that gradients
obtained from perturbed confidence scores are as far as possible from the original
ones [OSF20];

• Lee et al. used an activation function that has collisions, i.e. it outputs the
same value for different inputs, and hence makes backward propagation difficult
[LEMS19];

• Chen et al. modified confidence scores such that the distribution of output samples
is different [CWS+20];

• Mazeika et al. introduced modifications that aim to mislead a substitute training
process while keeping the overall amount of perturbations small [MLF22]. To
do that, they solved an optimisation problem that minimises the perturbation
while maximising the gradient update of the substitute model towards a predefined
direction.

As discussed in Section 3.3.6, there could be more detailed and additional outputs, such
as the gradients, or explanations of predictions. Lee et al. [LHL22] proposed a defence
against attacks on models that return both confidence scores and gradient explanations.
They kept the order of top-k classes the same while modifying outputs to make the
obtained gradients perpendicular to the original. Protecting models that output labels
only is the most challenging case for output perturbation, as any modification also affects
benign clients. However, this scenario can be the most realistic as an adversary, aware
that confidence scores are modified, can use only top-1 outputs to train a substitute.
While this might lead to a worse effectiveness of the stolen model than if confidence
scores that were not tampered with were used, it might be more beneficial than using
perturbed outputs. We address the protection of label-outputting models in detail in
Section 5.2.

Model modification

Another approach to hide the real outputs of a target model is to modify the model itself.
One can use, for instance, knowledge distillation [HVD14] to transfer the knowledge of
the target (teacher) model into a simpler (student) model. That simpler model can then

49

3. Model Stealing

be used instead of the original target model [XSZ+18]. We note here that knowledge
distillation differs from model stealing, as it assumes full white-box access to the teacher
model. Moreover, the outputs of the student network should imitate the behaviour of the
teacher also in intermediate layers and not only in the final output. Model modification
approaches are especially applicable when the architecture of the target model is a stealing
goal. One can add some dummy layers [CDG20] or split the architecture into two parts
[LFS20] to hide how the original target model is composed.

Task-specific architecture

Training deep learning models became much easier with transfer learning, both in terms
of efficiency, but to some extent also effectiveness. However, if a target model was
obtained as a result of fine-tuning a publicly available model with pre-trained weights,
stealing it can be much easier as well. An adversary can make an educated guess about
the model architecture based on its domain and classification task, ending up using the
same architecture as the target model. In this case, an adversary has an advantageous
starting point, as they need to (and often quite closely actually do) repeat the training
(fine-tuning) process of the target model. A few works showed that using transfer learning
and well-known architectures makes a target model more vulnerable. Alti et al. showed
that the relative accuracy of a Knockoff attack [OSF19] decreases substantially if a
domain-specific architecture is used for a target model. Krishna et al. showed that
stealing a language model trained from scratch is more challenging than stealing a
pre-trained model [KTP+20].

50

CHAPTER 4
Attack Design and

Implementation

In this chapter, we describe the substitute model training attacks investigated in this
work. We start with defining the attacker’s knowledge and capabilities, covering the
choice of the architecture of a substitute model and the attacker’s data. In particular, we
introduce our novel data-free attack in Section 4.2. Then we discuss query optimisation
strategies, namely active learning and adversarial augmentation.

4.1 Attacker’s Knowledge and Capabilities
We categorised previous works based on attacker’s strength in Section 3.3.6 (Figure 3.3).
In this work, we make the following assumptions about the adversary.

Attacker’s data.
An adversary can use original, problem-domain, or no data at all. We use the first two
options as baselines to evaluate the performance of our data-free attack. We do not
consider non-problem domain data, as we launch our data-free attack as an alternative
to NPD attacks proposed in the literature.

Substitute model architecture.
We consider two available options here: either an adversary knows the architecture of the
target model and uses it for training a substitute, or they make a domain-based guess
and use a different architecture.

Target model outputs.
We limit available outputs to the weakest scenario, assuming that an adversary can only
obtain output labels.

51

4. Attack Design and Implementation

4.2 Data-free Attack
Our novel data-free attack is based on a text-to-image diffusion model: a pre-trained stable
diffusion model1. The main idea is to approximate problem domain data with artificial
images. For each dataset category, we create text prompts to generate images. Each
prompt consists of two parts: positive and negative. The positive prompt corresponds to
inclusion criteria, and the negative prompt corresponds to exclusion criteria for generated
images. Positive prompts usually include either a class label ("bird") or its subcategory
("swan"). Using subcategories makes the artificial data more diverse to approximate
the original data better. However, if no information is provided on the subcategories
appearing in the original dataset, using them can be even misleading for a substitute
model. Negative prompts aim to correct mistakes a diffusion model may make. For
instance, they can prevent occurrences of bad anatomy or visual artefacts. We describe
prompts used in this work in Section 6.1.3. In addition, we provide results from the user
study on the similarity of the generated and original data samples.

4.3 Query Optimisation
In Section 3.3.6, we described state-of-the-art query optimisation techniques. In this
section, we explain specific algorithms implemented in this thesis. We carry out two
query optimisation techniques: active learning and adversarial augmentation. We also
describe the way we combined these strategies.

4.3.1 Active Learning
In Section 2.4, we introduced the terminology related to active learning algorithms. Now,
we bring it into the context of model stealing. In active learning, there is a model that
has to be trained on data labelled by an oracle. For model stealing attacks, a substitute
model f̂ corresponds to that trainable model, and the target model f corresponds to
the oracle. Further, both seed (labelled data) and pool (unlabelled) data belong to the
attacker’s data. Hence, at each active learning round, the target model labels a certain
amount of the attacker’s data.

The active learning optimisation strategy used in this work is a slightly modified version
of an approach from previous work by Pal et al. [PGS+20]. The authors compared several
active learning strategies for image and text classification. We selected the strategy
with the best performance rate on image classification tasks. It combines two active
learning algorithms described earlier in Section 2.4: DFAL (Algorithm 2.2) and κ-center
(Algorithm 2.3). Pal et al. [PGS+20] combined the algorithms in the following way. In
each active learning round, they applied DFAL to select q samples, where q corresponds
to the total query budget. Then they applied κ-center to select k samples out of q. In
this work, in order to decrease the computation time and make the attack more efficient,

1https://huggingface.co/stabilityai/stable-diffusion-2-1

52

https://huggingface.co/stabilityai/stable-diffusion-2-1

4.3. Query Optimisation

we made the following changes: (1) reducing the number of samples selected by DFAL
to 2k, and (2) splitting the pool into several sub-pools, so that at each round data is
selected from a single sub-pool. The latter is applied to all optimisation techniques.

We summarise the stealing process with active learning in Algorithm 4.1. As for any
model stealing attack, we need target and substitute models, the attacker’s data (pool),
and the query budget. Additionally, we have two parameters specific to attacks with
query optimisation: seed size and the number of rounds. We assume that the seed is
randomly selected from the pool, and the substitute model is trained on it. The value of
k (number of samples to select per round) is calculated based on query budget, seed size,
and the number of rounds. At each round, we consequently apply DFAL and κ-center,
add selected samples to the seed, and, as suggested in previous work, train the substitute
model from scratch on the augmented dataset.

Algorithm 4.1: Active learning attack
Input: target model f , substitute model f̂ , data pool D, query budget q, seed

size s, number of rounds r
Output: f̂

1 S0 ← select randomly s samples from D ;
2 y0 ← f(S0) ;
3 f̂ ← Train(f̂ , S0, y0) ;

4 k ← q − |S0|
r

;
5 for i = 1 to r do
6 x1 . . . x2k ← DFAL(f̂ , D, 2k) ;
7 x′

1 . . . x′
k ← κ-center(f̂ , Si−1, {x1 . . . x2k}, k) ;

8 D ← D \ {x′
1, . . . , x′

k} ;
9 Si ← Si−1 ∪ {x′

1, . . . , x′
k} ;

10 yi ← yi−1 ∪ {f(x′
1), . . . , f(x′

k)} ;
11 f̂ ← Train(f̂ , Si, yi) ;
12 end

We also provide a simplified attack scheme in Figure 4.1. Compared to Figure 3.2, we
now have an additional Stage 0, during which an adversary selects data for querying.
As a result, the attack should become more efficient in terms of querying: requiring
fewer queries than a non-optimised attack to reach the same performance. The scheme is
simplified, as in general, Stages 0-II can be looped, hence representing active learning
rounds.

4.3.2 Adversarial Augmentation
The second query optimisation technique used in this work is adversarial augmentation.
Instead of selecting the most promising samples as active learning, adversarial augmen-

53

4. Attack Design and Implementation

Figure 4.1: Model stealing attack with active learning query optimisation.

tation modifies samples to make them more information-revealing. Since adversarial
examples lay close to the decision boundary, it is assumed that they should help better
approximate the target model’s decision boundary. Similarly to active learning, we
picked the adversarial example crafting strategy based on previous work. Pengcheng et al.
[PYZ18] compared different adversarial crafting techniques for model stealing targeting
image classifiers. As Deepfool performance was the most promising, we selected it for
our adversarial augmentation attack.

We summarise our implemented attack in Algorithm 4.2. The input parameters are
the same as for the active learning attack. At each augmentation round, we randomly
select samples from the pool, which are then augmented with their Deepfool adversarial
examples. Both clean and adversarial samples are then labelled by the target model and
added to the seed. The substitute model is trained from scratch after each round.

Figure 4.2 shows a simplified scheme of a model stealing attack with adversarial aug-
mentation. As with active learning, we now have a new Stage 0, during which an
adversary augments their data using adversarial examples. However, using adversarial
examples can lead to new consequences: at some point, some adversarial examples can
also become adversarial for the target model and hence will be mislabelled compared
to their unperturbed originals. That can lead to a better approximation of the decision
boundary of the target model. As adversarial augmentation can also be used in rounds,
the output of Stage II can be used as input to Stage 0. Hence, as we have seen before,
the scheme can be looped.

4.3.3 Active Adversarial Augmentation

Active learning aims to select the most meaningful samples for a substitute model to learn.
Adversarial augmentation aims to make an approximation of the decision boundary of

54

4.3. Query Optimisation

Algorithm 4.2: Adversarial augmentation attack
Input: target model f , substitute model f̂ , data pool D, query budget q, seed

size s, number of rounds r
Output: f̂

1 S0 ← select randomly s samples from D ;
2 y0 ← f(S0) ;
3 f̂ ← Train(f̂ , S0, y0) ;

4 k ← q − |S0|
r

;
5 for i = 1 to r do
6 x′

1 . . . x′
k
2

← select randomly k
2 samples from D ;

7 x′
k
2 +1 . . . x′

k ← Deepfool(f̂ , x′
1), . . . ,Deepfool(f̂ , x′

k
2
) ;

8 D ← D \ {x′
1, . . . , x′

k} ;
9 Si ← Si−1 ∪ {x′

1, . . . , x′
k} ;

10 yi ← yi−1 ∪ {f(x′
1), . . . , f(x′

k)} ;
11 f̂ ← Train(f̂ , Si, yi) ;
12 end

the target model better. We combined these two approaches to see if together they could
improve the performance of the attack, leveraging the advantages of both strategies.

The combined attack is shown in Algorithm 4.3. The algorithm repeats the behaviour
of the adversarial augmentation attack (Algorithm 4.2) with one difference: line 6 in
Algorithm 4.2 is replaced with lines 6 and 7 in Algorithm 4.3. Instead of randomly
selecting k

2 samples out of the pool, they are now selected using active learning algorithms.

55

4. Attack Design and Implementation

Figure 4.2: Model stealing attack with adversarial augmentation. At Stage 0, an attacker
crafts adversarial examples, followed by Stage I, during which the attacker’s data is
labelled by a target model. At Stage II, the attacker trains a substitute model, which
leads to a loss of profit at the model owner’s site at Stage III.

Algorithm 4.3: Active adversarial augmentation attack
Input: target model f , substitute model f̂ , data pool D, query budget q, seed

size s, number of rounds r
Output: f̂

1 S0 ← select randomly s samples from D ;
2 y0 ← f(S0) ;
3 f̂ ← Train(f̂ , S0, y0) ;

4 k ← q − |S0|
r

;
5 for i = 1 to r do
6 x1 . . . xk ← DFAL(f̂ , D, k) ;
7 x′

1 . . . x′
k
2

← κ-center(f̂ , Si−1, {x1 . . . xk}, k
2) ;

8 x′
k
2 +1 . . . x′

k ← Deepfool(f̂ , x′
1), . . . ,Deepfool(f̂ , x′

k
2
) ;

9 D ← D \ {x′
1, . . . , x′

k} ;
10 Si ← Si−1 ∪ {x′

1, . . . , x′
k} ;

11 yi ← yi−1 ∪ {f(x′
1), . . . , f(x′

k)} ;
12 f̂ ← Train(f̂ , Si, yi) ;
13 end

56

CHAPTER 5
Defence Design and

Implementation

In this chapter, we describe the countermeasures implemented in this thesis against model
stealing attacks. We aim to verify if one can mitigate a black-box substitute training
attack that uses only top-1 labels without significant utility sacrifice. For this purpose, we
focus on proactive defences that modify queries, namely input and output perturbation
defences.

5.1 Input Perturbation
Input perturbation defence aims to decrease the performance of a substitute model by
modifying an input image before it is sent to the target model. For a query sample x
and an input perturbation ip, the target model f outputs f(ip(x)), instead of f(x).

As an input-perturbation defence for image classifier, we consider an approach proposed
by Guiga and Roscoe [GR20]. They utilised a Guided Grad-CAM [SCD+17] algorithm
to define how much each pixel influenced the model prediction. Afterwards, they selected
the least important pixels and added noise to them. Such perturbations aim to keep the
top-1 prediction of a model the same, but significantly reduce its confidence.

Algorithm 5.1 describes the image perturbation process, the key steps of which are
depicted in Figure 5.1. We start with an input image x (Figure 5.1a) and pass it, together
with the corresponding label y, to the Guided Grad-CAM algorithm, which returns
attributions that correspond to the pixel importance (Figure 5.1b). In the next step,
the perturbation to be added to the image is created. We denote an attribution of a
single pixel as p and the maximum attribution value of the image as m. If p satisfies
the condition 0 ≤ p < m ∗ t for a threshold parameter t, noise drawn from the normal
distribution N(µ, σ) is added to the corresponding pixel. Figure 5.1c shows noise that is

57

5. Defence Design and Implementation

Algorithm 5.1: Input perturbation
Input: image x, label y, threshold t, noise mean µ, noise standard deviation σ
Output: perturbed image x′ = x + n

1 attributions ← GuidedGradCAM(x, y) ; /* Figure 5.1b */
2 m ← max(attributions) ;
3 mask ← (0 ≤ attributions) × (attributions ≤ m ∗ t) ;
4 n ∼ N(µ, σ2) ;
5 n ← n ∗ mask ; /* Figure 5.1c */
6 x′ ← x + n ; /* Figure 5.1d */

added to the image, and Figure 5.1d shows the final result. Parameters t, µ, and σ are
picked so that the perturbation does not affect the top-1 prediction of the model. In fact,
in the original paper, the authors focused on finding feasible values for t while fixing µ
and σ. In this work, we also considered different noise distributions to find the optimal
one.

(a) Original image (b) Guided Grad-CAM (c) Noise added (d) Noisy image

Figure 5.1: Image perturbation. The images are taken from [GR20].

Originally, the authors tested their defence against an equation-solving attack [TZJ+16]
that aims to reproduce the weights of the last fully-connected layer of a neural network,
assuming that the attacker knows the architecture, the rest of the model weights and
confidence scores predicted by the target model. In contrast, we consider this defence
against a substitute training attack, assuming that the target model is a black box that
only returns top-1 labels. As this defence mainly perturbs confidence scores and we are
only using labels, applying exactly the same strategy the authors described in their paper
will barely affect the attack. So instead of keeping all labels the same, we will add noise
such that approximately 1% of the labels are flipped on the validation set. We describe
in detail how the hyperparameters were picked in Section 6.3.1.

5.2 Output Perturbation
Output perturbation modifies the predictions of a target model, which are subsequently
sent to clients. The target model f returns an output f(x) for an input x. Then an output

58

5.2. Output Perturbation

perturbation op is applied to the output op(f(x)) and returned to the client. As with an
input-perturbation defence, the client receives a modified response; the difference is that
modifications happen at different stages, and is more directed when output perturbation
is applied.
The majority of output-perturbation defences assume that an adversary uses confidence
scores returned by the target model. Consequently, these approaches aim to modify the
probabilities while preserving the order of top-k classifications. Since this work assumes
the availability of only the top-1 labels, such perturbation techniques will not affect
outputs that the adversary will obtain. Two works have presented strategies that use
label flipping as a defence. Shi et al. [SS17] proposed to flip labels to protect the target
model against an evasion attack. However, they assumed that an attacker would send
strongly imbalanced (in terms of classes) queries, targeting the same class to find an
adversarial example. In the defence presented by Kariyappa et al. [KQ20], labels are
flipped for samples that are classified as out-of-distribution. We do not assume any
out-of-distribution or strongly imbalanced data in our attack scenarios, although we
assume that an adversary can use adversarial examples for attacking the model. Hence,
we consider a defence originally invented by Cao and Gong [CG17] for mitigating evasion
attacks.
A regular classifier returns one prediction for one data point, i.e. performs point-based
classification. Instead, Cao and Gong suggested using a so-called region-based classifier,
which predicts a label for a sample considering outputs of the model on neighbouring
samples [CG17]. For each data sample x, they consider a hypercube B(x, r) with the
centre x and edge length 2r (Figure 5.2b). In this hypercube, d uniformly distributed
samples x1, . . . , xd are randomly selected and labelled by the model f(x1), . . . , f(xd).
Then they calculate how many predictions correspond to each possible label {c1, . . . , ck},
and set the most frequent value as the prediction for x, i.e. perform majority voting:

f(x) = arg max
j

d�
i=0

1(f(xi)=cj)

In Figure 5.2, we have d = 10 and a binary classification problem, where every sample is
classified as square or circle. Figure 5.2a shows a point-based classification of (potentially
adversarial) data sample x. Contrary, Figure 5.2b depicts a region-based classifier that
"fixes" such suspicious classification, therefore smoothing the decision boundary. Since
most samples are squares in the highlighted region, the region-based classifier changes
the prediction from circle to square.
The only hyperparameter one needs to define for this defence is the distance r, which
characterises the size of the hypercube. In the original paper, the authors increased
the value of r until the accuracy of the corresponding region-based classifier was not
smaller than the accuracy of the point-based classifier. However, since we aim to keep the
outputs of the target model as similar to the original ones as possible, we used different
criteria. Similarly to the input perturbation, we require that the fidelity of region-based
to point-based classifiers is at least 99% (see Section 6.3.2 for more details).

59

5. Defence Design and Implementation

(a) Point-based classification. (b) Region-based classification.

Figure 5.2: Comparison of point-based and region-based classifications.

The defence was invented to resist adversarial examples, which are crafted by applying
minimal perturbations, and hence lay close to the original samples. In this work, we use
Deepfool [MDFF15] as adversarial-examples-crafting technique for an advanced substitute
training attack (see Section 4.3.2). We want to verify if region-based classification can
mitigate any advantage that an attacker might obtain from using adversarial examples
for querying the target model.

5.3 Input-output Perturbation
We combine the aforementioned input and output perturbation defences to investigate
if their combination can provide a stronger defence against substitute training attacks.
The combination is done in the following way. At first, we add noise to an input image
x, as described in Section 5.1, thus obtaining a perturbed image x′ = x + n. Then we
pass the perturbed image to the corresponding region-based classifier fr, as described
in Section 5.2, to get a label y′ = fr(x′). We note here that the region-based classifier
might output different labels for the same image with and without input perturbation,
i.e. it could happen that fr(x) ̸= fr(x′). The reason is that since x′ differs from x,
the regions considered for region-based classification are also different. Consequently, it
may lead to further utility decrease compared to applying solely either input or output
perturbation. Moreover, we do not fine-tune hyperparameters in the case of the combined
defence. Instead, we use the optimal values obtained for input (Section 6.3.1) and output
(Section 6.3.2) perturbations and measure the utility of the protected target model.

60

CHAPTER 6
Experiment Design

In this chapter, we describe settings and hyperparameters used for all experiments
conducted within this thesis. As we highlighted in Section 3.3.6, experiment settings of
related work are inconsistent, leading to non-comparability issues. Hence, we carefully
designed our experiments to ensure a fair comparison with related work. We begin
this chapter with an overview of the datasets used for training target and substitute
models, where we in detail describe an artificial dataset generated for a data-free attack
(Section 4.2). Next, we describe the setup for the target model training, followed by
the defence parameter optimisation procedure. Then, we cover the substitute training
process together with hyperparameter setting for attacks with query optimisation. We
conclude the chapter by summarising the experiments conducted in this thesis to answer
the formulated research questions. Most experiments in this thesis were organised and
tracked using Weights and Biases1.

6.1 Datasets
We begin with a description of the datasets used for training target and substitute models
and a justification of our choice of datasets. As stated in Chapter 4, we need three
categories of datasets: original, problem-domain, and artificial (for the data-free attack).

6.1.1 Original Dataset
As we aim to compare the results of this work with as many works as possible, we gathered
statistics over model stealing papers, targeting image classifiers, shown in Figure 6.1.
We reviewed 24 papers mentioned in Section 3.3.6. As we can see, most of them use
CIFAR10 to train the target model. Following this observation, we selected CIFAR10 for
our work.

1https://wandb.ai/site

61

https://wandb.ai/site

6. Experiment Design

Figure 6.1: Number of papers using certain datasets for target model training.

The CIFAR10 dataset [KH09] represents objects of ten classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck (Figure 6.2). Each class contains
5,000 train and 1,000 test images of size 32 × 32 pixels. As we need a validation set
for hyperparameters tuning, we split the train set into a smaller train (45,000) and a
validation (5,000) set.

Figure 6.2: CIFAR10 dataset [KH09].

6.1.2 Problem-domain Dataset
We did not find a suitable problem-domain dataset for CIFAR10 used in the related work.
The only option proposed in previous work is to use the STL-10 dataset. However, it
has nine classes in common with CIFAR10, and the tenth class differs. The authors of
the work that used STL-10 as PD data [CSBB+18] removed the tenth class from both
datasets. However, it leads to non-comparability issues as the test set of CIFAR10 is also
modified. Hence, we decided to search for an alternative dataset that contains the same
ten classes as CIFAR10.

CINIC10 [DCAS18] was introduced as an extended alternative for CIFAR10. It consists
of the same ten classes, but the total number of samples is 270,000. Each image has the
same size as CIFAR10 images, namely 32 × 32 pixels. The dataset has train, validation,
and test subsets, each containing 90,000 data samples. Since CIFAR10 is a part of
CINIC10, we had to filter it out to guarantee that our problem-domain dataset is indeed
problem-domain and not original. Filtering reduced the number of samples to 70,000 for

62

6.1. Datasets

Figure 6.3: CINIC10 dataset [DCAS18].

each split. We show an example of each class from the filtered dataset in Figure 6.3. The
presented images demonstrate that CINIC10 is more challenging than CIFAR10. For
instance, an image from the "dog" class also contains people holding a dog. Contrary, in
CIFAR10, the object to classify generally covers most of the image (Figure 6.2).

6.1.3 Artificial Dataset
We described our approach to generate the artificial dataset in Section 4.2. In this section,
we describe concrete parameters used to produce data. In Table 6.1, we summarise
prompts we used to imitate each of the CIFAR10 classes. Sometimes the generative
model was biased towards generating very similar images for the same prompt. For
instance, it constantly rendered birds of the same size and colour. Hence, we selected
and used as prompts several sub-categories for these classes, to make the dataset more
diverse. We also replaced "airplane" with "plane" in the positive prompt because the
model always generated the same type of aircraft, up in the air, for the "airplane" prompt.
In contrast, "plane" images were more diverse and contained both flying and still vehicles.
In total, we generated 5,000 images per class, resulting in a dataset of size 50,000. As
with CIFAR10, we split the data into train (45,000) and validation (5,000) sets. Since
the generative model produced all images of size 512 × 512 pixels, they all were re-scaled
to CIFAR10 image size 32 × 32 pixels.

As we do not want to have any original data leaking into our data-free attack, we have to
verify that CIFAR10 was not part of the training dataset of our generative model. The
stable diffusion model we used was trained on LAION-5B [SBV+22], a dataset designed
explicitly for text-to-image models. CIFAR10 was not a part of it; hence the generative
model has never seen the original dataset.

User study
In order to estimate to which extent the artificial dataset is visually similar to CIFAR10,

we conducted a user study. We launched a survey asking respondents which of two
images they find to be real and which artificial. The survey contained ten image pairs,
one per CIFAR10 class, each with one image coming from the original dataset and one
from artificial. We also asked participants at the beginning if they were familiar with
the CIFAR10 dataset, to test whether that influences the results. For each correctly

63

6. Experiment Design

Table 6.1: Prompts used to generate artificial dataset.
Class Positive prompt (number of generated samples) Negative prompt

airplane plane photo (5000)

3d, grid, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple images,

illustration, cropped, partial view, jpeg artifacts,
grayscale

automobile car photo (2500), automobile photo (2500)

3d, grid, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple images,

illustration, cropped, partial view, jpeg artifacts,
grayscale

bird

cassowary photo (250), ostrich photo (250), emu photo (250),
kiwi bird photo (100), owl photo (100), hawk photo (100),

grebe photo (50), loon photo (50), duck photo (50),
pheasant photo (100), tern photo (100), hummingbird photo
(100), hen photo (50), rooster photo (50), swan photo (50),
goose photo (50), parrot photo (100), bustard photo (100),

tit photo (200), sparrow photo (200), woodpecker photo
(200), pigeon photo (200), cuckoo photo (200), raven photo

(200), oriole photo (200), warbler photo (200), chickadee
photo (200), starling photo (200), dove photo (200), finch

photo (200), nuthatch photo (200), bird photo (500)

3d, bad anatomy, duplicated eyes, no eyes, extra
eyes, grid, extra limbs, close up, deformed, ugly,
mutation, mutated, blurry background, bokeh,

multiple birds, multiple images, illustration,
cropped, partial view, duplicated limbs, jpeg

artifacts, missing limb, floating limbs,
disconnected limbs, black and white, two heads

cat cat photo (5000)

3d, bad anatomy, duplicated eyes, no eyes, extra
eyes, grid, extra limbs, close up, deformed, ugly,
mutation, mutated, blurry background, bokeh,

multiple cats, multiple images, illustration,
cropped, partial view, duplicated limbs, jpeg

artifacts, missing limb, floating limbs,
disconnected limbs, black and white

deer deer photo (5000)

3d, bad anatomy, duplicated head, missing head,
extra head, grid, extra limbs, close up, deformed,

ugly, mutation, mutated, blurry background,
bokeh, multiple deers, multiple images,

illustration, cropped, partial view, duplicated
limbs, jpeg artifacts, missing limb, floating limbs,
disconnected limbs, black and white, grayscale,

painting, watermark, signature, two heads

dog dog photo (5000)

3d, bad anatomy, duplicated eyes, no eyes, extra
eyes, grid, extra limbs, close up, deformed, ugly,
mutation, mutated, blurry background, bokeh,

multiple dogs, multiple images, illustration,
cropped, partial view, duplicated limbs, jpeg

artifacts, missing limb, floating limbs,
disconnected limbs, black and white

frog brown frog photo (2500), green frog photo (2500)

3d, bad anatomy, duplicated eyes, no eyes, extra
eyes, grid, extra limbs, close up, deformed, ugly,
mutation, mutated, blurry background, bokeh,

multiple frogs, multiple images, illustration,
cropped, partial view, duplicated limbs, jpeg

artifacts, missing limb, floating limbs,
disconnected limbs

horse
black horse photo (1000), gray horse photo (1000), chestnut
horse photo (1000), bay horse photo (1000), dun horse photo

(1000)

3d, bad anatomy, duplicated head, missing head,
extra head, grid, extra limbs, close up, deformed,

ugly, mutation, mutated, blurry background,
bokeh, multiple horses, multiple images,

illustration, cropped, partial view, duplicated
limbs, jpeg artifacts, missing limb, floating limbs,
disconnected limbs, black and white, grayscale,

painting, watermark, signature, two heads

ship watercraft photo (1000), ship photo (3000), sailboat photo
(1000)

3d, grid, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple images,

illustration, cropped, partial view, jpeg artifacts,
grayscale

truck truck photo (5000)

3d, grid, deformed, ugly, mutation, mutated,
blurry background, bokeh, multiple images,

illustration, cropped, partial view, jpeg artifacts,
grayscale

64

6.1. Datasets

(a) Not familiar with CIFAR10. (b) Familiar with CIFAR10.

Figure 6.4: Percentage of respondents scored 1-10 points. None of the respondents from
both groups got 0 points.

classified real image, we awarded one point. Hence, each respondent could get between 0
and 10 points. We present the distribution of scores in Figure 6.4. In total, we received
241 responses. Figure 6.4a shows scores of 158 respondents who are not familiar with
CIFAR10. The distribution of scores is skewed towards the left side, and the average
score is 4.72. Figure 6.4b presents responses of 83 respondents familiar with CIFAR10.
Although there is a peak at 3 points, most respondents scored 5 or more points with
an average of 4.92 points. Knowing CIFAR10 dataset could potentially contribute to
recognising the real samples, although more studies are likely necessary. Another point
to consider is that the images for the survey were not picked randomly and hence may
not completely represent the datasets. Our generative model made many easy-to-spot
mistakes, like adding redundant limbs or heads. Therefore, a random selection could
lead to obvious tasks in the survey questions, whereas our goal was to investigate how
visually similar artificial and original images can get.

We now demonstrate two example questions from the survey. Figure 6.5 shows the most
frequently missed question. Only 47 out of 241 respondents (19.5%) correctly identified
the real plane. Figure 6.6 illustrates the question with the highest correct response rate:
165 or 68.5% of respondents correctly identified the real horse. We provide the rest of the
survey question in Appendix A. Although the samples for the survey were not selected
randomly, our generative model is capable of generating images that are similar for the
human eye to the original data.

Failures of generative model
The artificial samples selected for the survey are rather "successful" examples of image
generation. Figure 6.7 demonstrates several types of failures the generative model made.

65

6. Experiment Design

(a) Real plane. (b) Fake plane.

Figure 6.5: Survey question for the "airplane" class. This question has the highest
miss-classification rate among respondents. Only 19.5% of respondents identified the real
airplane correctly.

(a) Real horse. (b) Fake horse.

Figure 6.6: Survey question for the "horse" class. This question is the most often correctly-
answered question. The real horse was correctly identified by 68.5% of respondents.

N.b.: the figures provide images in their original size, so one can easily spot poorly
generated image parts.

The first category of mistakes mainly concerns animals. Despite keywords such as "bad
anatomy" (recommended by prompt creators2) and "two heads" in negative prompts, the
model sometimes generated mutated animal photos. Figure 6.7a shows a sample from
our artificial dataset of a deer with bad anatomy (two heads). Other common failures in
this category include generating redundant limbs, missing limbs, or a missing head.

The second category includes images that miss the class object or contain only its small
2https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/

7857

66

https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/7857
https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/7857

6.2. Target Model Training

unrecognisable part. Figure 6.7b shows a generated image from the "airplane" class.
Whereas a human can potentially recognise an aircraft cabin, for a model trained on plane
images, that could be a very difficult task. Similarly, sometimes the model generated
house pictures for the "cat" class, seemingly assuming that the cat should be somewhere
around.

The last category, probably the most harmful, contains images of a wrong object. A dog
image in Figure 6.7c is an output of the generative model to the "cat" prompt. Images
belonging to the previous category might be seen as just noise in the dataset. In contrast,
this category contains wrongly labelled images, which can harm the performance of a
model trained on this artificial dataset.

(a) "Deer". Bad anatomy. (b) "Plane". Part of object. (c) "Cat". Wrong object.

Figure 6.7: Failures of generative model.

All three categories of mistakes can negatively impact the quality of the artificial dataset.
However, generating a high-quality dataset was not the primary task of this thesis.
Therefore, we did not invest additional resources into improving the data quality, which
might be an interesting strand for future work.

6.2 Target Model Training
In this section, we introduce the architectures chosen for the target model training.
Then, we describe how each model was trained and which hyperparameter configurations
were used. Finally, we present the comparison of the target model accuracy to the
state-of-the-art results.

6.2.1 Architecture
Similarly to the original dataset selection, we conducted a literature study to gather
statistics on related work. We analysed the same 24 papers as mentioned above (Sec-
tion 3.3.6), and show the most commonly used architectures in Figure 6.8. ResNet-34
[HZRS16] turned out to be the most common choice. Moreover, its complexity is suitable
for the CIFAR10 classification task. One of the goals of this thesis is to verify if using

67

6. Experiment Design

transfer learning for training the target model makes it easier to steal. Therefore, we
trained two target models with ResNet-34 architecture: one was trained from scratch,
and another was trained using transfer learning. In addition, we decided to test one
simpler and less typical architecture to imitate the situation when the target model has
some secret data-specific architecture. We selected the SimpleNet [HRFS16] architecture
for that purpose. It has significantly fewer parameters than ResNet-34 and has not been
studied in the model stealing context.

Figure 6.8: Statistics of target model architectures.

ResNet-34

We schematically illustrate the architecture of ResNet-34 in Figure 6.9a. The network
uses three types of layers (convolutional, pooling, and linear, i.e. fully connected layer),
the ReLU activation function, and batch normalisation as an optimisation technique.
Repeated network parts are grouped into blocks: Basic Block 1 and 2. The structure of
each block is shown in Figure 6.10. As we can see, both blocks contain residual (skip)
connections, convolutional layers, batch normalisation and ReLU activation function. For
this work, the last layer of the network is replaced to fit a ten-class classification task.
The total number of trainable parameters in our variant of ResNet-34 is 21,289,802.

SimpleNet

The architecture of SimpleNet is shown in Figure 6.9b. As ResNet-34, SimpleNet consists
of convolutional, pooling, and fully connected layers. It also contains a repeated part
grouped into what we call a Simple Block (Figure 6.10). The block consists of a single
convolutional layer, on top of which batch normalisation and ReLU activation function
are applied. In contrast to ResNet-34, SimpleNet has no skip connections. However, it
uses dropout as a regularisation technique after each pooling layer. The total number of
trainable parameters is 5,498,378. The network was initially designed as a lightweight
alternative to CNNs with significantly more trainable parameters, such as ResNet models.

68

6.2. Target Model Training

(a) ResNet-34 architecture [HZRS16]. (b) SimpleNet architecture [HRFS16].

Figure 6.9: Target model architectures.

6.2.2 Training Strategy

There might be two points of view on the importance of the target model performance
scores. On the one hand, conceptually, there is no difference between stealing a model
with random weights and stealing a model with the same architecture but state-of-the-art
performance. In both cases, there is a model with weights, and the goal of stealing is
to approximate the behaviour those weights imply. On the other hand, if the target
model performs poorly on the original dataset, it is much easier to reach (or even surpass)
its accuracy performance. One solution could be to use fidelity as the primary metric.
However, as we (1) aim to compare the results of this thesis with related work that often
reports accuracy, and (2) use a well-known dataset, we aim to reach accuracy scores

69

6. Experiment Design

Figure 6.10: CNN building blocks used in Figure 6.9b and Figure 6.9a.

Table 6.2: Hyperparameter grid for target models trained from scratch.

Hyperparameter Values
Learning rate 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001

Batch size 32, 64, 128
Optimiser Adam, SGD with Momentum

Data augmentation True, False

close to the state-of-the-art. Therefore, we optimise the training hyperparameters of
our models. Of course, one has to consider the model complexity and training strategy
(transfer learning or training from scratch) while comparing the performance scores.

Training from Scratch

While training from scratch, all weights of a neural network were initialised randomly
and trained afterwards simultaneously. We trained both target models (ResNet-34 and
SimpleNet) from scratch. In Table 6.2, we list the hyperparameters we optimised, namely
learning rate, batch size, optimiser, and whether data augmentation is used, together
with candidate values. We performed a full grid search to find the best combination,
thus running a total of 72 experiments for each architecture. We trained a model for 25
epochs for each combination of hyperparameters and then selected hyperparameters that
resulted in the best-performing model on the validation set. Subsequently, we trained a
model with those hyperparameters for 100 epochs, with early stopping determined by
the performance on the validation set. We also reduced the learning rate by 0.1 if the
performance was not improving for 10 consecutive epochs. Table 6.3 shows the optimal
hyperparameters for each architecture, and the number of epochs the final model was
trained for.

70

6.2. Target Model Training

Table 6.3: Best hyperparameter setting for target models trained from scratch.

Model Learning
Rate

Batch
size Optimiser Data

augmentation Epochs

SimpleNet 0.001 128 Adam True 96
ResNet-34 0.05 32 SGD with Momentum True 65

Table 6.4: Hyperparameter grid for fine-tuning target models trained using transfer
learning.

Hyperparameter Values
Learning rate 0.0001, 0.00005, 0.00001

Batch size 32, 64, 128
Optimiser Adam, SGD with Momentum

Data augmentation True, False

Table 6.5: Best hyperparameter setting for ResNet-34 trained using transfer learning.

Training instance Learning
Rate

Batch
size Optimiser Data

augmentation Epochs

Last layer 0.0005 128 Adam False 15
All layers 0.00005 32 Adam True 89

Transfer Learning

For the transfer learning setup, for ResNet-34, we used weights pre-trained on the
ImageNet dataset. All layers, except for the last fully-connected layer, which has to
be adapted to the number of classes in a dataset, contain those pre-trained weights.
Therefore, we trained our network in two stages: at first, only the last layer was trained,
and then the weights were all fine-tuned together. Hence, we had to optimise the training
hyperparameters for both stages. The grid used for training the last layer of ResNet-34
consists of the same 72 hyperparameter combinations as for the models trained from
scratch (Table 6.2). The hyperparameter selection procedure and further training is
the same as for models trained from scratch. We compare the performance of different
models after 25 epochs and train a model with the selected hyperparameters for 100
epochs with early stopping and learning rate reduction. Then we unfreeze the rest of
the network and run another grid search of size 36 with the hyperparameters listed in
Table 6.4. The grid for fine-tuning is smaller, as fine-tuning requires, in general, smaller
learning rates, which lead to fewer combinations.

We again trained all models for 25 epochs to pick the best hyperparameter combination.
Finally, we fine-tune the model with the best-performing hyperparameters for 100 epochs,
using early stopping and reducing the learning rate on a plateau, i.e. when no improvement
is happening for 10 consecutive epochs. The best hyperparameters for last layer training
and final fine-tuning are shown in Table 6.5.

71

6. Experiment Design

Table 6.6: Performance of benchmarks (1-3) and our target models (4-6).
Model Test accuracy Number of parameters

1 SimpleNet [HRFS16] 95.51% ∼5M
2 ResNet-343 95.4% ∼21M
3 ViT-H/14[DBK+21] 99.5% ∼632M
4 SimpleNet 91.76% ∼5M
5 ResNet-34 (from scratch) 93.61% ∼21M
6 ResNet-34 (transfer learning) 97.14% ∼21M

6.2.3 Performance
We provide the final test scores for each target model in Table 6.6. We also include three
benchmark scores: (1) the best score obtained with a SimpleNet [HRFS16] model, (2)
the benchmark score of a ResNet-34 model3 from Hugging Face4, and (3) the best overall
score obtained for CIFAR10 [DBK+21].

We did not manage to reproduce the results of (1) [HRFS16]. Although the authors
updated the model implementation and evaluation in 2023 (the target model training of
this thesis was finished by then), the evaluation of their model was done in 2016 using
a Caffee5 implementation6 [HRFS16]. Caffee is not actively developed anymore since
2017, and the code for this thesis is written in Python using PyTorch. Although there
was an implementation of SimpleNet in PyTorch published in 2018, the code contained
mistakes7, suggesting that the PyTorch model was not tested by the authors back then.
Hence, it is unclear if those results can be reproduced using a current technology stack.

Compared to (2)3, we obtain a higher score with our pre-trained target model an a lower
score with the model trained from scratch.

We did not compare the results of our target models with (3) [DBK+21], as it has 30
times more parameters than our largest model (Table 6.6). We included it to show the
best score ever obtained for CIFAR10.

6.3 Defence Configuration
We implemented two proactive defences: input and output perturbation. We had to
find defence hyperparameters for each defence and target model so that the added noise
modifies no more than 1% of target model top-1 responses. Too little perturbation was
also not desirable, as it could not affect an attack as expected. Hence, we selected the
hyperparameters that were perturbing (close to) 1% of outputs for both defences. All
configurations were evaluated on the CIFAR10 validation set, by measuring the fidelity

3https://huggingface.co/edadaltocg/resnet34_cifar10
4https://huggingface.co/
5https://caffe.berkeleyvision.org/
6https://github.com/Coderx7/SimpleNet
7https://github.com/Coderx7/SimpleNet_pytorch/issues/5

72

https://huggingface.co/edadaltocg/resnet34_cifar10
https://huggingface.co/
https://caffe.berkeleyvision.org/
https://github.com/Coderx7/SimpleNet
https://github.com/Coderx7/SimpleNet_pytorch/issues/5

6.3. Defence Configuration

Table 6.7: Hyperparameter grid for input-perturbation defence.

Hyperparameter Values
Noise mean µ 0.01, 0.03, 0.05

Noise standard deviation σ 0.001, 0.005, 0.01
Threshold t 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45

Table 6.8: Final hyperparameter configuration for input-perturbation defence and corre-
sponding fidelity scores.

Model Threshold t Noise mean µ Noise std σ Fidelity
SimpleNet 0.4 0.03 0.01 99%

ResNet-34 (from scratch) 0.4 0.05 0.01 99%
ResNet-34 (transfer learning) 0.25 0.01 0.01 99.12%

of the non-protected to protected target model. If several hyperparameter configurations
led to the same optimal fidelity score, we selected the configuration with a larger number
of modified pixels.

6.3.1 Input Perturbation
Input perturbation relies on three hyperparameters: a threshold t that defines how
many pixels are modified, and the mean µ and standard deviation (std) σ of the noise
distribution controlling the intensity of modifications. We run a full grid search with
hyperparameter values reported in Table 6.7, trying 72 combinations per target model.

Table 6.8 shows the optimal hyperparameters and a fidelity score for each target model.
For ResNet-34 trained using transfer learning, we did not obtain the desired fidelity value.
We plot the fidelity scores for this model in Figure 6.11. The highlighted runs are the
ones closest to 99% fidelity: the one above the threshold reaches 99.12%, and the two
below each 89.68%. We selected the first run, as it is the closest to our desired score.

6.3.2 Output Perturbation
The output perturbation defence requires setting two parameters: a hypercube half-edge
length r and a number of samples d. The size of the hypercube impacts the amount of
noise added to the target model outputs: the larger it is, the more noise we add. In
contrast, increasing the number of samples taken from the hypercube can make noise
smoother. However, taking more samples negatively affects the running time of the
defence. Hence, we tested different values to determine if the number of samples can be
reduced without significantly impacting the defence performance. We also tested the
extreme case when all samples lay on the edges of the hypercube in order to get the
worst fidelity estimation. We call this scenario "discrete" and the uniformly distributed
sampling "uniform". We performed a full grid search with hyperparameter values reported
in Table 6.9, running 120 experiments per target model.

73

6. Experiment Design

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Noise mean

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

Noise std

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Threshold

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

Fidelity

Figure 6.11: Input perturbation fidelity scores for ResNet-34 trained using transfer
learning. The highlighted runs are neighbouring to the desired fidelity score of 99%.

Table 6.9: Hyperparameter grid for output-perturbation defence.
Hyperparameter Values

Sampling uniform, discrete

Half-edge length r
0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25,
0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5

Number of samples d 10, 25, 100

Table 6.10: Final hyperparameter configuration for output perturbation defence and
corresponding fidelity scores.

Model Length r
Fidelity

Uniform sampling Discrete sampling
d = 10 d = 25 d = 100 d = 10 d = 25 d = 100

SimpleNet 0.025 99.26% 99.36% 99.3% 98.9% 98.7% 98.58%
ResNet-34 (from scratch) 0.125 99.1% 99.02% 99% 98.34% 98.38% 98.16%

ResNet-34 (transfer learning) 0.025 98.9% 98.9% 98.96% 98.48% 98.58% 98.52%

We report the optimal r value and fidelity scores for different numbers of samples and
both sampling strategies in Table 6.10. For SimpleNet and ResNet-34 trained using
transfer learning, the smallest r resulted in the performance closest to the desired one. We
can also see that the number of samples selected from the hypercube did not particularly
affect the fidelity scores. Therefore, we decided to use 10 samples for further experiments.
Using the discrete sampling strategy decreased the fidelity score by 0.84%. We only use
the uniform sampling strategy for the rest of the experiments.

74

6.4. Substitute Model Training

6.4 Substitute Model Training
We now describe the configurations used to train the substitute models. We begin by
introducing the architectures used for substitute model training, followed by a description
of the training hyperparameter optimisation. Then, we report how attack parameters
were adapted for the substitute models, and for the attacker’s datasets. In particular, we
describe optimal configurations for active learning, adversarial augmentation, and the
combined active adversarial augmentation attack.

6.4.1 Architecture

As with the target model architecture, we gathered information from related work.
Figure 6.12 shows the four most commonly used substitute architectures in papers
performing image classifier stealing. The most popular architecture, ResNet-18, was
also usually used in the literature to steal ResNet-34, which will be reproduced in this
thesis. It is also a suitable option from the complexity point of view: it is simpler than
ResNet-34, but more complex than SimpleNet. In addition, it fits one of the scenarios
carried out in this thesis: different target and substitute architectures. Besides ResNet-18,
we also used SimpleNet and ResNet-34 as substitute models. Transfer learning from
ImageNet was used for both residual networks.

Figure 6.12: Statistics of substitute model architectures.

6.4.2 Training Hyperparameters

Three substitute architectures (SimpleNet, ResNet-18, and ResNet-34) are trained on
three attacker datasets (CIFAR10, CINIC10, and artificial). Hence, nine scenarios require
training hyperparameter tuning. We narrow the grid compared to the target model
training, to keep the number of experiments reasonable for our available computing
resources. Firstly, we fix the batch size to 64, and run all experiments without data
augmentation. Secondly, we try fewer values for the learning rate. Lastly, we run all
experiments using the target model with the SimpleNet architecture, which is the most
efficient target model. Table 6.11 summarises the configurations we use for each model.

75

6. Experiment Design

Table 6.11: Hyperparameter grid for substitute model training.
Model Hyperparameter Values

SimpleNet Learning rate 0.01, 0.001, 0.0001

Optimiser Adam, SGD with
Momentum

ResNet-18, ResNet-34

Last-layer learning rate 0.01, 0.001, 0.0001

Last-layer optimiser Adam, SGD with
Momentum

Fine-tune learning rate 0.0001, 0.00005, 0.00001

Fine-tune optimiser Adam, SGD with
Momentum

Overall, we run 6 experiments for SimpleNet, and 36 experiments for each of ResNet-18
and ResNet-34.

Each model from the grid is trained on 45,000 train samples for 25 epochs and subsequently
evaluated on a validation set. The validation set is always defined by the adversary’s
training data. Thus, depending on the scenario, it comes from CIFAR10, CINIC10,
or the artificial dataset. In general, one needs to add the validation set size into the
query budget, as without querying it to the target model, the adversary can not perform
hyperparameter tuning.

Figure 6.13 demonstrates fidelity scores of models from three different grids. Figure 6.13a
shows performance of Simplenet models trained on CIFAR10. As we can see, one
hyperparameter setting, namely with sgd optimiser and a learning rate of 0.0001, performs
significantly worse than others. Notably, this setting performed poorly also on the other
two datasets. The best-performing model reached 89.36% fidelity on the CIFAR10
validation set. Figure 6.13b shows the fidelity scores for ResNet-18 models trained on
CINIC10. This dataset is the most complicated for learning, so none of the models
reached a fidelity score of 76% or higher. The highest obtained score on the validation set
is 75.62%. Finally, Figure 6.13c represents the performance of ResNet-34 models trained
on the artificial dataset. For this dataset, we see the smallest difference between the
worst- to the best-performing hyperparameters and, in general, the highest validation
fidelity scores. The best-performing model reached a score of 90.78%. The artificial
dataset is thus likely the easiest of the three attacker’s datasets to learn.

Measuring fidelity on the attacker’s data is likely the most feasible scenario for substitute
hyperparameter tuning. However, if the attacker uses non-original data, the highest-
scoring hyperparameters might differ from the ones actually optimal for the stealing task.
That’s due to the fact that the attacker’s data likely comes from a different distribution
than the original data, requiring different hyperparameters for optimal learning. To have
a fair comparison setup, we evaluate all attacks also on the original CIFAR10 test set in
Chapter 7. We also compare test and validation scores to investigate how the attacker’s
observations differ from the actual performance of the attack.

Tables 6.12 and 6.13 provide the best-performing hyperparameters for SimpleNet and
ResNet models, respectively. Those hyperparameters are further used for training

76

6.4. Substitute Model Training

1e-4

2e-4

3e-4
4e-4
5e-4

1e-3

2e-3

3e-3
4e-3
5e-3

1e-2

Learning rate

adam

sgd

Optimizer

64

66

68

70

72

74

76

78

80

82

84

86

88

90

Validation fidelity

(a) SimpleNet trained on CIFAR10.

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

8e-5

9e-5
1e-4

Fine-tune learning rate

adam

sgd

Fine-tune optimizer

1e-4

2e-4

3e-4

4e-4
5e-4

1e-3

2e-3

3e-3

4e-3
5e-3

1e-2

Last-layer learning rate

adam

sgd

Last-layer optimizer

67

68

69

70

71

72

73

74

75

76

Validation fidelity

(b) ResNet-18 trained on CINIC10.

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

8e-5

9e-5
1e-4

Fine-tune learning rate

adam

sgd

Fine-tune optimizer

1e-4

2e-4

3e-4

4e-4
5e-4

1e-3

2e-3

3e-3

4e-3
5e-3

1e-2

Last-layer learning rate

adam

sgd

Last-layer optimizer

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

91.0

Validation fidelity

(c) ResNet-34 trained on artificial dataset.

Figure 6.13: Validation fidelity of different training hyperparameter configurations.

substitute models with different query budgets for 100 epochs with early stopping and
learning rate reduction on a plateau. In the following, the hyperparameters are tuned for
the largest query budget we investigate (45,000 training samples). However, we assume
that they are (nearly) optimal also for smaller attacker’s training sets, drawn randomly
from the full ones used in this section. We report the final scores later in Chapter 7.

77

6. Experiment Design

Table 6.12: Best training hyperparameter setting for SimpleNet substitute models.

Dataset Learning rate Optimiser Validation fidelity
CIFAR10 0.01 SGD with Momentum 89.36%
CINIC10 0.01 SGD with Momentum 74.60%
Artificial 0.01 SGD with Momentum 89.84%

Table 6.13: Best training hyperparameter setting for ResNet-18 and ResNet-34 substitute
models.

Model Dataset
Last-layer
learning

rate

Last-layer
optimiser

Fine-tune
learning

rate

Fine-tune
optimiser

Validation
fidelity

ResNet-18
CIFAR10 0.001 Adam 0.0001 Adam 92.34%

CINIC10 0.0001 SGD with
Momentum 0.0001 Adam 75.62%

Artificial 0.0001 Adam 0.00005 Adam 90.8%

ResNet-34
CIFAR10 0.01 SGD with

Momentum 0.00005 Adam 92.2%

CINIC10 0.0001 SGD with
Momentum 0.0001 Adam 74.8%

Artificial 0.001 SGD with
Momentum 0.0001 Adam 90.78%

6.4.3 Active Learning

The active learning attack implemented in this thesis (see Algorithm 4.1) requires setting
two hyperparameters: the seed size s and the number of rounds r. Previously, only Pal
et al. [PGS+20] explored the impact of those hyperparameters on the performance of
a substitute model. However, their study was quite restricted, as the authors set the
seed size to 10% of the total query budget and only compared two configurations, with
10 and 20 rounds correspondingly. They obtained an increase in performance of 0.03%
on the CIFAR10 dataset when using 20 rounds. As this is rather a minor improvement
and using more rounds leads to an increase in the attacker’s running time, we limited
the number of rounds in our experiments by 10. Overall, we experiment with four
seed sizes (10%, 25%, 50%, and 75%) and three round counts (1, 5, 10). As active
learning selects samples non-randomly, we assumed that there might be different optimal
hyperparameter values for different query budgets. Hence, we run a full grid search of
12 active learning hyperparameter combinations for four query budgets (1,000, 5,000,
10,000, and 20,000) for each substitute architecture (SimpleNet, ResNet-18, ResNet-34)
and each dataset (CIFAR10, CINIC10, Artificial). We only considered one target model
in these experiments, SimpleNet, to make the tuning process more efficient.

Figure 6.14 shows the impact active learning hyperparameters have on the validation fi-
delity in three different attack configurations. For CIFAR10 and SimpleNet (Figure 6.14a),
the tuning has more effect when the number of queries is smaller. In particular, all
validation fidelity scores for 20,000 queries lie between 83.8% and 85.3%, with the largest
difference between runs of 1.5%. However, for 1,000 queries, this difference is 5.52%,

78

6.4. Substitute Model Training

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

40

45

50

55

60

65

70

75

80

85

90

Validation fidelity

(a) SimpleNet trained on CIFAR10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

64

65

66

67

68

69

70

71

72

73

74

75

Validation fidelity

(b) ResNet-18 trained on CINIC10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

88.0

88.2

88.4

88.6

88.8

89.0

89.2

89.4

89.6

89.8

90.0

90.2

90.4

90.6

90.8

Validation fidelity

(c) ResNet-34 trained on artificial dataset.

Figure 6.14: Impact of different active learning configurations on validation fidelity.

79

6. Experiment Design

Table 6.14: Best-performing active learning hyperparameter configurations and corre-
sponding validation fidelity scores.

Model Dataset Query budget Seed size Number of
rounds Validation fidelity

1,000 750 5 48.34%
5,000 2,500 5 71%
10,000 2,500 5 79.22%CIFAR10

20,0000 10,000 1 85.3%
1,000 100 5 40.15%
5,000 3,750 5 56.45%
10,000 2,500 1 62.9%CINIC10

20,0000 15,000 5 69.47%
1,000 250 5 70.58%
5,000 1,250 10 83.66%
10,000 5,000 5 87.2%

SimpleNet

Artificial

20,0000 10,000 10 88.9%
1,000 500 1 84.5%
5,000 1,250 5 89.7%
10,000 1,000 5 91.86%CIFAR10

20,0000 10,000 5 91.62%
1,000 100 10 64.99%
5,000 1,250 5 70.97%
10,000 2,500 1 73.01%CINIC10

20,0000 2,000 10 74.62%
1,000 100 10 89.12%
5,000 3,750 5 90.08%
10,000 1,000 5 90.36%

ResNet-18

Artificial

20,0000 10,000 10 90.84%
1,000 100 10 81.38%
5,000 500 1 89.26%
10,000 1,000 10 91.24%CIFAR10

20,0000 2,000 5 91.82%
1,000 750 1 65.43%
5,000 3,750 1 69.75%
10,000 1,000 1 71.16%CINIC10

20,0000 2,000 5 73.12%
1,000 500 1 88.92%
5,000 500 5 90%
10,000 1,000 1 90.24%

ResNet-34

Artificial

20,0000 5,000 10 90.64%

and scores range between 42.82% and 48.34%. Figure 6.14b shows fidelity scores for
ResNet-18 models trained on CINIC10. For this dataset, the difference in performance
for the same query budget remains similar for all cases, and below 1%. In both figures,
fidelity scores are always better when the number of queries is higher. Figure 6.14c
illustrates a completely different behaviour of ResNet-34 trained on the artificial dataset.
For instance, one run with a budget of 5,000 queries outperforms a run with 20,000
queries. Another observation is that the worst-performing combination resulted in 88.14%
fidelity, which is notably higher than in CIFAR10 and CINIC10 experiments. That can
be another indication for the simplicity of the artificial dataset.

We completed a total of 412 experiments, and selected the 36 best-performing con-
figurations for each substitute architecture, dataset, and query budget. We show the
corresponding hyperparameter values and validation fidelity scores in Table 6.14. In this

80

6.4. Substitute Model Training

table, we provide the seed size as the absolute number of queries, instead of the percentage
of the total query count. As we can see, for the SimpleNet model, increasing the number
of queries leads to a notable performance increase. ResNet models gain less than 1%
fidelity when the number of queries is increased from 5,000 to 20,000, demonstrating
their ability to learn the data using fewer samples than SimpleNet. As we already saw
in Figure 6.14c, scores for the artificial dataset are remarkably higher for smaller query
budgets, compared to the other datasets.

6.4.4 Adversarial Augmentation
The adversarial augmentation attack (Algorithm 4.2) requires setting the same hy-
perparameters as the active learning attack, namely the seed size and the number of
augmentation rounds. To the best of our knowledge, no previous work report any obser-
vations about the impact of these hyperparameters on the attack effectiveness. Initially,
we aimed to test the same grid as for the active learning attack. However, for adversarial
augmentation, an even number of samples should be added to the attacker’s dataset at
each round. The reason is that half of those samples should be randomly selected from a
pool, and the second half correspond to adversarial examples crafted for those randomly
selected samples. Due to this, we had to adjust the seed size values. Hence, we conducted
the experiments with the same round count values (1, 5, 10), but slightly modified seed
sizes (0.1, 0.3, 0.5, 0.7). As in the previous section, we had 12 experiments per model
(SimpleNet, ResNet-18, ResNet-34), dataset (CIFAR10, CINIC10, Artificial), and query
budget (1,000, 5,000, 10,000, and 20,000), which means 412 experiments altogether.

Figure 6.15 shows the impact of hyperparameters on the validation fidelity for three
model-dataset configurations. The trends are similar to the ones we saw in Figure 6.14.
In particular, the performance of different hyperparameters for a fixed number of queries
gets more stable with more queries. Besides, we can observe the same difference between
the behaviour of ResNet-34 on the artificial dataset (Figure 6.15c) and the behaviours of
SimpleNet and RenNet-18 trained on CFAR10 and CINIC10 correspondingly (Figure 6.15a
and Figure 6.15b) as we have already seen for active learning. When the query budget
is 5,000 or more on the artificial dataset, models trained with less data sometimes
outperform models trained with more data. However, there are also several differences
from Figure 6.14. Firstly, for each query budget for CIFAR10 and CINIC10, the worst-
performing configurations are those where the seed size is 10% of the total number
of queries. Secondly, for CINIC10, the difference in hyperparameter performance for
the same query count is more diverse, especially for 1,000 queries. Finally, the lowest
validation score for all three grids is worse than for the active learning attack, suggesting
that this approach might be less effective.

Table 6.15 shows the best-performing hyperparameter configurations and reached valida-
tion fidelity scores. Notably, in most cases, the seed size is 70% of the total number of
queries. A potential explanation is that the adversarial examples added to the attacker’s
dataset at each round are less meaningful than the data in the pool. Hence, learning is
more effective if the substitute model gets more data from the pool to train on. However,

81

6. Experiment Design

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

30

35

40

45

50

55

60

65

70

75

80

85

Validation fidelity

(a) SimpleNet trained on CIFAR10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Validation fidelity

(b) ResNet-18 trained on CINIC10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

86.5

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

Validation fidelity

(c) ResNet-34 trained on artificial dataset.

Figure 6.15: Impact of different adversarial augmentation configurations on validation
fidelity.

82

6.4. Substitute Model Training

Table 6.15: Best-performing adversarial augmentation hyperparameter configurations
and corresponding validation fidelity scores.

Model Dataset Query budget Seed size Number of
rounds Validation fidelity

1,000 700 10 46.78%
5,000 3,500 5 69.08%
10,000 7,000 1 75.92%CIFAR10

20,0000 14,000 5 83.06%
1,000 700 10 38.77%
5,000 3,500 10 54.18%
10,000 7,000 5 62.26%CINIC10

20,0000 14,000 5 67.52%
1,000 700 1 68.38%
5,000 3,500 10 82.04%
10,000 7,000 1 85.96%

SimpleNet

Artificial

20,0000 6,000 1 88.24%
1,000 700 1 81.92%
5,000 3,500 10 87.96%
10,000 7,000 5 90.24%CIFAR10

20,0000 6,000 10 91.18%
1,000 700 1 63.87%
5,000 3,500 5 70%
10,000 7,000 5 72.07%CINIC10

20,0000 10,000 10 73.76%
1,000 500 1 87.98%
5,000 3,500 5 89.8%
10,000 7,000 1 90.46%

ResNet-18

Artificial

20,0000 14,000 1 90.54%
1,000 700 1 79.66%
5,000 3,500 5 87.52%
10,000 5,000 1 89.4%CIFAR10

20,0000 10,000 10 91.24%
1,000 700 1 64.22%
5,000 3,500 10 68.97%
10,000 7,000 1 70.64%CINIC10

20,0000 14,000 5 72.4%
1,000 100 10 88.2%
5,000 2,500 1 89.58%
10,000 3,000 1 89.92%

ResNet-34

Artificial

20,0000 10,000 1 90.2%

we draw this conclusion solely based on the fidelity measured on the attacker’s validation
set. We investigate this assumption in the following chapter, where all attacks are
evaluated based on their accuracy, fidelity, and transferability on the CIFAR10 test set.
Another observation from Table 6.15 is that the scores are lower than in Table 6.14. As
assumed above, this attack can be less effective than the active learning attacks.

6.4.5 Active Adversarial Augmentation

Lastly, we optimised the hyperparameters of our combined active adversarial augmentation
attack (Algorithm 4.3), which requires defining the same hyperparameters as active
learning and adversarial augmentation. Hence, we used the same grid as for the adversarial
augmentation attack, running another 412 experiments.

83

6. Experiment Design

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

30

35

40

45

50

55

60

65

70

75

80

85

Validation fidelity

(a) SimpleNet trained on CIFAR10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Validation fidelity

(b) ResNet-18 trained on CINIC10.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Seed size

1

2

3

4

5

6

7

8

9

10

Number of rounds

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Query budget

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

Validation fidelity

(c) ResNet-34 trained on artificial dataset.

Figure 6.16: Impact of different active adversarial augmentation configurations on
validation fidelity.

84

6.4. Substitute Model Training

Figure 6.16 presents the impact of different hyperparameters on the performance of three
models: SimpleNet trained on CIFAR10, ResNet-18 trained on CINIC10, and ResNet-
34 trained on the artificial dataset. The trends are the same as we observed for the
adversarial augmentation attack (Figure 6.15), with a slightly improved performance on
CINIC10 and the artificial dataset. We show the best hyperparameter configurations and
corresponding validation scores in Table 6.16. Similarly to active learning, the optimal
seed size is 70% of the total query count in many cases, although for CIFAR10 and ResNet
models, this is not the case anymore. The performance is less consistent, sometimes better
and sometimes worse, than the active learning and adversarial augmentation attacks.
For instance, ResNet-18 trained on 20,000 CIFAR10 samples has 92.22% fidelity when
trained with active adversarial augmentation. This score exceeds both the active learning
(91.62%) and adversarial augmentation (91.18%) attack performance. At the same time,
SimpleNet trained on 5,000 CIFAR10 samples has 71% fidelity when trained with active
learning, 69.08% when trained with adversarial augmentation, and only 67.52% when
trained with active adversarial augmentation. Such behaviour can be caused by the size
of the attacker’s data, making this attack more effective when more data is available. We
further analyse this behaviour in the next chapter.

85

6. Experiment Design

Table 6.16: Best-performing active adversarial augmentation hyperparameter configura-
tions and corresponding validation fidelity scores.

Model Dataset Query budget Seed size Number of
rounds Validation fidelity

1,000 700 5 44.84%
5,000 3,500 5 67.52%
10,000 7,000 1 77.7%CIFAR10

20,0000 14,000 1 83.7%
1,000 500 1 39.07%
5,000 3,500 1 53.69%
10,000 7,000 1 61.97%CINIC10

20,0000 10,000 1 68.11%
1,000 700 1 69.96%
5,000 2,500 10 81.86%
10,000 1,000 5 86.22%

SimpleNet

Artificial

20,0000 6,000 10 88.76%
1,000 500 1 83.12%
5,000 1,500 5 88.48%
10,000 5,000 1 90.86%CIFAR10

20,0000 6,000 10 92.22%
1,000 700 5 64.02%
5,000 3,500 10 70.16%
10,000 7,000 10 72.18%CINIC10

20,0000 14,000 10 73.94%
1,000 500 10 88.64%
5,000 2,500 5 89.96%
10,000 1,000 5 90.12%

ResNet-18

Artificial

20,0000 10,000 10 90.56%
1,000 500 5 79.74%
5,000 3,500 1 88.14%
10,000 7,000 10 90.3%CIFAR10

20,0000 2,000 10 91.42%
1,000 700 10 63.9%
5,000 3,500 10 69.5%
10,000 7,000 1 70.25%CINIC10

20,0000 14,000 1 71.75%
1,000 700 5 88.72%
5,000 3,500 5 89.62%
10,000 7,000 10 90.3%

ResNet-34

Artificial

20,0000 6,000 5 90.44%

86

6.5. Experiment Summary

6.5 Experiment Summary
So far, we described the selection procedure of hyperparameters relevant to model
training, defence and attack setups. We now summarise the experiments conducted
to study the effectiveness of attacks and defences in Figure 6.17. For each target
model (SimpleNet, ResNet-34 trained from scratch, and ResNet-34 trained using transfer
learning), we have one unprotected model and three defence strategies: input perturbation,
output perturbation, and input-output perturbation. We attack each target model by
training a substitute with three different model architectures (SimpleNet, ResNet-18,
and ResNet-34) on three dataset types (CIFAR10/original data, CINIC10/PD data, and
artificial/synthetic data) with four query budgets (1,000, 5,000, 10,000, and 20,000),
applying four querying strategies (random, active learning, adversarial augmentation,
active adversarial augmentation). In total, there are 144 substitute models trained for
these 12 target models, resulting in 1,728 experiments. In addition, we run experiments
with the "full" query budget of 45,000 queries, which is equal to the size of the CIFAR10
training set. However, for this budget, applying active learning does not make any
difference as it leads to picking all 45,000 samples from the training set. For this reason,
we do not include this group of experiments in the diagram. We provide a detailed
analysis of the experiments in Chapter 7.

Figure 6.17: Experiment setups carried out in this chapter.

87

CHAPTER 7
Evaluation of Attacks and

Defences

This chapter analyses the experiments shown in Figure 6.17 and is organised as follows.
At first, the baseline scores for attacks assuming the strongest attacker’s knowledge
are provided for each target model and query budget. Afterwards, we explore how
the different choices of target and substitute architectures influence the effectiveness
of attacks, consequently studying the importance of transfer learning for stealing. We
conclude the attack analysis by investigating the impact of the attacker’s data source
and query optimisation strategy on the attack results. Finally, we examine the effects of
data perturbation defences on the attack performance in all attack settings.

7.1 Attack analysis
We analyse the impact of different attack settings on its performance, covering the bottom
part of Figure 6.17. We used the hyperparameter settings described in Chapter 6 for
all attacks. All substitute models were trained for 100 epochs, with early stopping and
reducing learning rate on a plateau. The reported query budgets cover only training data
size; for hyperparameter selection and early stopping, the validation set size should also
be included.

7.1.1 Baselines

As baseline attacks, we consider the ones with the strongest attacker’s knowledge without
query optimisation. For each target model, we have 5 baselines of different query budgets,
as shown in Table 7.1. We report the joint and the substitute model’s accuracy, fidelity,
and untargeted transferability on validation and test sets. Below, we analyse how query

89

7. Evaluation of Attacks and Defences

Table 7.1: Baseline scores for substitute training attacks. In all experiments, substitute
models are trained on the original data (CIFAR10), and have the same architectures as
target models.

Validation scores Test ScoresTarget model Query
budget Joint Acc Acc Fid Tr Joint Acc Acc Fid Tr

Target
accuracy

1k 48.94% 50.86% 50.88% 1.28% 48.07% 50.26% 50.39% 1.52%
5k 70.58% 72.96% 73.36% 2.5% 69.84% 72.01% 73.01% 2.45%
10k 77.5% 79.54% 80.72% 3.32% 76.39% 78.84% 79.93% 3.27%
20k 83.5% 86.02% 86.84% 5.48% 82.7% 85.38% 86.33% 5.86%

SimpleNet

45k 88.02% 90.72% 91.36% 8.64% 87.02% 90.27% 90.61% 8.43%

91.76%

1k 77.5% 79.94% 79.72% 0% 76.69% 79.35% 78.74% 0%
5k 85.54% 88.7% 87.42% 0% 85.32% 88.54% 87.24% 0%
10k 89.3% 92.64% 91.12% 0% 88.51% 91.91% 90.51% 0%
20k 91.36% 95.32% 92.94% 0.04% 90.73% 94.73% 92.39% 0.01%

ResNet-34
(from scratch)

45k 92.78% 97.22% 94.02% 0.12% 92.15% 96.67% 93.5% 0.05%

93.61%

1k 81.44% 82.16% 82.4% 0.02% 80.58% 81.61% 81.79% 0.04%
5k 89.66% 90.36% 90.76% 0.06% 89.47% 90.29% 90.91% 0.1%
10k 91.94% 92.84% 92.88% 0.16% 91.3% 92.26% 92.73% 0.17%
20k 94.6% 95.38% 95.82% 0.24% 93.77% 94.79% 95.16% 0.28%

ResNet-34
(transfer learning)

45k 96.26% 97.16% 97.4% 1.44% 95.37% 96.49% 96.84% 1.22%

97.14%

budget, complexity or performance of the target model, and validation scores correlate
with the attack performance.

In all cases, increasing the query budget leads to an improvement of all reported metrics.
In particular, the highest scores are obtained when substitute models are trained on
the whole training set of the target model. However, the most notable improvement in
accuracy and fidelity scores happens when the query budget is increased from 1,000 to
5,000. The improvement is more significant than any of the following, including the one
obtained when the query budget is increased from 5,000 to 45,000. Transferability scores
are improved the most when increasing the query budget from 20,000 to 45,000 samples,
although even for 45,000 samples, they remain very low.

It is difficult to say which characteristic of the target model impacts the difference in
attack results the most. The fidelity scores correlate with the performance of the target
model – the higher the accuracy of the target model, the higher the fidelity score reached
by a substitute model. We speculate that learning mistakes a target model makes is
more difficult than learning correctly classified samples. Low transferability suggests
that substitute models poorly mimic the behaviour of target models near the decision
boundaries. This can indicate difficulties in learning to misclassify the same samples as
target models.The learning capabilities of SimpleNet and ResNet-34 are different, and
it could happen that SimpleNet can not reach any higher scores. For both variants of
training the ResNet-34 target models, the substitute model is the same, and trained using
transfer learning. However, the substitute model’s accuracy is even higher for the target
model trained from scratch, even as the target model mislabelled more samples in this
case. The substitute model probably learned to generalise better and was not making as
many mistakes as the target model. The transferability scores are higher for the target
model trained using transfer learning. Since, in this case, the target and the substitute

90

7.1. Attack analysis

Table 7.2: Performance of substitute model training attacks with different target and
substitute architectures measured on the CIFAR10 test set.

Target → SimpleNet ResNet-34
(from scratch)

ResNet-34
(transfer learning)

Substitute ↓ Metric→
QB ↓

Joint
Acc Acc Fid Tr Joint

Acc Acc Fid Tr Joint
Acc Acc Fid Tr

1k 48.07% 50.26% 50.39% 1.52% 48.95% 50.41% 51.01% 1.29% 47.32% 48.08% 48.16% 0.87%
5k 69.84% 72.01% 73.01% 2.45% 70.82% 72.28% 73.64% 1.73% 70.5% 71.44% 71.49% 0.73%
10k 76.39% 78.84% 79.93% 3.27% 77.88% 79.55% 81.05% 2.53% 78.14% 79.13% 79.27% 0.69%
20k 82.7% 85.38% 86.33% 5.86% 83.35% 85.15% 86.55% 3.37% 84.32% 85.26% 85.55% 0.75%

SimpleNet

45k 87.02% 90.27% 90.61% 8.43% 88.34% 90.45% 91.41% 4.38% 89.08% 90.12% 90.33% 0.78%
1k 78.54% 82.2% 81.31% 0% 79.89% 82.31% 82.5% 0.01% 81.54% 82.56% 82.68% 0.02%
5k 84.95% 89.33% 87.37% 0.02% 86.25% 89.11% 88.54% 0.01% 87.75% 88.73% 88.94% 0.06%
10k 87.51% 92.05% 89.95% 0.08% 88.79% 92.01% 91.01% 0.03% 91.07% 92.07% 92.31% 0.09%
20k 88.72% 93.46% 91.15% 0.05% 90.09% 93.35% 92.4% 0% 92.8% 93.87% 94.13% 0.12%

ResNet-18

45k 89.84% 95.28% 91.71% 0.18% 91.49% 95.29% 93.4% 0.06% 94.19% 95.39% 95.44% 0.24%
1k 77.72% 81.7% 80.01% 0% 76.69% 79.35% 78.74% 0% 80.58% 81.61% 81.79% 0.04%
5k 83.93% 88.37% 86.26% 0% 85.32% 88.54% 87.24% 0% 89.47% 90.29% 90.91% 0.1%
10k 87.6% 92.6% 89.69% 0.02% 88.51% 91.91% 90.51% 0% 91.3% 92.26% 92.73% 0.17%
20k 89.36% 94.64% 91.32% 0.03% 90.73% 94.73% 92.39% 0.01% 93.77% 94.79% 95.16% 0.28%

ResNet-34

45k 90.35% 96.29% 91.95% 0.12% 92.15% 96.67% 93.5% 0.05% 95.37% 96.49% 96.84% 1.22%

models started training from the same weights, they likely ended up being more similar.
However, transferability scores are negligible for both ResNet-34 target models. They are
higher for the SimpleNet model, although remaining too low for conducting reasonably
successful adversarial attacks.

As the validation set belongs to the CIFAR10 dataset, the validation scores of substitute
models are very close to the test scores. Accuracy and fidelity are lower on the test set,
but the difference is usually less than 1%. Hence, an adversary that uses the original
data can quite precisely estimate the performance of the substitute model on the test set.

7.1.2 Substitute Architecture
In this section, we analyse how the choice of architecture for the substitute model
impacts the attack performance. In addition, we investigate if there is any difference in
stealing performance when the same transfer learning approach is used to train target
and substitute models.

For this group of experiments, we use the original CIFAR10 training data as the attacker’s
dataset, and the random query strategy (i.e. no query optimisation). Hence, there are
3 target models, each attacked by 3 substitute models with 5 different query budgets.
Thus, we end up with 45 experiments; their performance scores are reported in Table 7.2.
For each experiment, the same metrics as in the previous section are reported: joint
accuracy and substitute model’s accuracy, fidelity, and untargeted transferability.

Below, we highlight the most notable trends caused by the substitute architecture
choice.

• SimpleNet has the lowest accuracy and fidelity scores for all target models and
query budgets. As stated earlier, this model has the lowest learning capability and
probably can not reach higher scores.

91

7. Evaluation of Attacks and Defences

• For the smallest query budges of 1,000 samples, ResNet-18 outperforms ResNet-34
in terms of accuracy and fidelity. This trend sometimes persists for up to 20,000
queries.

• ResNet-34 performs the best for 45,000 queries for all target models, suggesting that
for big query budgets, picking a model with a higher complexity can be beneficial
for an attack.

• SimpleNet reaches the highest transferability scores for target models trained from
scratch, compared to the other substitute models. However, while attacking ResNet-
34 trained using transfer learning, it has significantly lower scores and performs
worse than the ResNet-34 substitute model. Most likely, that is an impact of using
transfer learning, which makes the decision boundary of the target model less
dataset-specific.

Overall, depending on the query budget, either ResNet-34 or ResNet-18 can be the
optimal architecture choice for a model stealing attack. However, we will report all
further experiments for ResNet-18 architecture. While having a reasonable (the best for
some experiments) performance, ResNet-18 differs from all target architectures. Hence,
it corresponds in all experiments to the weaker attacker’s knowledge, compared to other
substitute architectures. Based on its performance, we can also conclude that having
the same architecture as the target model does not imply the best attack performance.
Besides, we note that the transferability scores are too low to conduct an adversarial
example attack regardless of the architecture used. For this reason, we do not consider
transferability while selecting the optimal architecture. For SimpleNet or ResNet-34
substitute models, we will discuss those results that exhibit behaviour that diverges from
that of ResNet-18.

Regarding the usage of transfer learning for training the target model, we have the
following observations. Except for the SimpleNet substitute model, the fidelity scores are
higher when the pre-trained ResNet-34 is attacked. It could be the case that the cause of
such behaviour is not transfer learning, but the fact that the pre-trained model performs
better on the CIFAR10 dataset. For the larger query budgets (20,000 and 45,000), the
performance of the attack is similar for both ResNet-34 target models. For smaller
budgets, stealing ResNet-34 trained from scratch is more challenging. For instance,
with a query budget of 1,000 samples, the attack is even less effective than stealing the
SimpleNet target model. Remarkably, using SimpleNet as substitute model, stealing
the ResNet-34 trained from scratch is easier in terms of fidelity scores. Based on these
observations, we can conclude that substitute models trained with the same strategy as
the target model (either with transfer learning or without) have higher fidelity scores
than those trained with a different strategy.

92

7.1. Attack analysis

Table 7.3: Performance of substitute model training attacks with different attacker’s
datasets measured on the CIFAR10 test set.

Target → SimpleNet ResNet-34
(from scratch)

ResNet-34
(transfer learning)

Dataset ↓ Metric→
QB ↓

Joint
Acc Acc Fid Tr Joint

Acc Acc Fid Tr Joint
Acc Acc Fid Tr

1k 78.54% 82.2% 81.31% 0% 79.89% 82.31% 82.5% 0.01% 81.54% 82.56% 82.68% 0.02%
5k 84.95% 89.33% 87.37% 0.02% 86.25% 89.11% 88.54% 0.01% 87.75% 88.73% 88.94% 0.06%
10k 87.51% 92.05% 89.95% 0.08% 88.79% 92.01% 91.01% 0.03% 91.07% 92.07% 92.31% 0.09%
20k 88.72% 93.46% 91.15% 0.05% 90.09% 93.35% 92.4% 0% 92.8% 93.87% 94.13% 0.12%

CIFAR10

45k 89.84% 95.28% 91.71% 0.18% 91.49% 95.29% 93.4% 0.06% 94.19% 95.39% 95.44% 0.24%
1k 65.65% 68.60% 68.76% 0% 69.14% 71.32% 71.49% 0.01% 72.19% 73.2% 73.41% 0.05%
5k 76.33% 79.6% 79.41% 0.01% 79.79% 82.19% 82.24% 0.01% 82.78% 83.81% 84.06% 0.03%
10k 80.1% 83.48% 83.23% 0% 82.25% 84.83% 84.69% 0% 85.09% 86.13% 86.38% 0.01%
20k 81.91% 85.21% 85.4% 0.01% 84.84% 87.32% 87.52% 0.01% 87.9% 89.01% 89.12% 0.06%

CINIC10

45k 84.28% 87.59% 87.83% 0.04% 86.88% 89.43% 89.64% 0.03% 90.42% 91.44% 91.76% 0.1%
1k 63.28% 66.2% 65.86% 0% 64.13% 66.06% 66.32% 0% 66.05% 66.83% 67.1% 0.03%
5k 67.9% 71.11% 70.55% 0% 67.3% 69.44% 69.52% 0% 71.12% 71.97% 72.14% 0.01%
10k 69.93% 73.04% 72.86% 0% 71.38% 73.72% 73.4% 0% 69.58% 70.46% 70.63% 0.02%
20k 73.43% 76.72% 76.42% 0.01% 73.96% 76.31% 76.19% 0.01% 68.08% 69.01% 69.16% 0.01%

Artificial

45k 75.69% 78.88% 78.78% 0.02% 74.94% 77.1% 77.28% 0% 72.96% 73.81% 74% 0.03%

7.1.3 Attacker’s Dataset
We now study how limited availability of data impacts the performance of attacks. In
particular, we evaluate our novel data-free attack using artificial data, and compare it
with attacks exploiting original and problem-domain data. For each dataset, a substitute
ResNet-18 model is trained with five different query budgets, aiming to steal three target
models. Overall, there are 45 experiments for which we report attack performance scores
in Table 7.3. We summarise our key observations below.

• For all query budgets, the accuracy and fidelity scores are the highest for CIFAR10,
and the lowest for the data-free attack using the artificial dataset. Moreover, using
only 1,000 CIFAR10 queries results in a more effective attack than using all 45,000
queries from the artificial dataset.

• For CINIC10 dataset, where the attacks effectiveness lies between the two other
datasets, we observe similar trends as for CIFAR10: the better the performance
of the target model, the higher the accuracy and fidelity scores of the substitute
model. Another common observation is that an increase in the query budget always
leads to an increase in performance (except for transferability, which is however
very low and not indicative).

• For both CIFAR10 and CINIC10 datasets, the highest substitute’s accuracy and
fidelity scores correlate with the performance of the target model. The highest
scores are reached when attacking the pre-trained ResNet-34 and the lowest when
attacking the SimpleNet model.

• In contrast, using the artificial data, the best-performing substitute is trained
based on labels obtained from the SimpleNet target model. Moreover, contrary to
CINIC10, increasing the query budget leads to a drop in performance: for ResNet-34
trained using transfer learning, a substitute trained with 5,000 queries outperforms

93

7. Evaluation of Attacks and Defences

Table 7.4: Comparison of validation and test scores of attacks using CINIC10 dataset.
Validation scores Test ScoresTarget model Query

budget Joint Acc Acc Fid Tr Joint Acc Acc Fid Tr
Target

accuracy
1k 51.34% 61.22% 66.28% 0.03% 65.65% 68.60% 68.76% 0%
5k 54.98% 65.51% 70.34% 0.03% 76.33% 79.6% 79.41% 0.01%
10k 56.44% 66.99% 72.2% 0.04% 80.1% 83.48% 83.23% 0%
20k 56.95% 66.49% 74.01% 0.08% 81.91% 85.21% 85.4% 0.01%

SimpleNet

45k 57.7% 67.24% 76.02% 0.12% 84.28% 87.59% 87.83% 0.04%

91.76%

1k 55.21% 64.3% 67.7% 0.01% 69.14% 71.32% 71.49% 0.01%
5k 58.99% 68.36% 72.16% 0.01% 79.79% 82.19% 82.24% 0.01%
10k 60.7% 70.25% 74.13% 0.01% 82.25% 84.83% 84.69% 0%
20k 61.4% 70.23% 75.89% 0.02% 84.84% 87.32% 87.52% 0.01%

ResNet-34
(from scratch)

45k 62.68% 71.02% 77.88% 0.06% 86.88% 89.43% 89.64% 0.03%

93.61%

1k 62.09% 67.16% 72.18% 0.08% 72.19% 73.2% 73.41% 0.05%
5k 67.87% 73.22% 78.65% 0.1% 82.78% 83.81% 84.06% 0.03%
10k 69.53% 74.83% 80.73% 0.12% 85.09% 86.13% 86.38% 0.01%
20k 70.45% 75.79% 81.83% 0.3% 87.9% 89.01% 89.12% 0.06%

ResNet-34
(transfer learning)

45k 71.96% 77.5% 83.48% 0.56% 90.42% 91.44% 91.76% 0.1%

97.14%

the models trained with 10,000 and 20,000 queries. However, we only spot such
behaviour for this target model. It is an open question if its cause is the dataset or
the target model.

• The transferability scores are negligible in all experiments.

For further analysis, we compare scores obtained on the attacker’s validation set with
the CIFAR10 test scores. This comparison shows the difference between the performance
estimation of the attack by the adversary, and the eventual real success of the attack.
As we have seen before in Table 7.1, for the CIFAR10 attacker’s dataset, validation and
test scores are very similar. We now compare these scores for CINIC10 and the artificial
dataset. For CINIC10 (shown in Table 7.4), the performance on the attacker’s validation
set is notably lower than on the CIFAR10 test set. Hence, using CINIC10, an adversary
tends to underestimate the power of their attacks. In contrast, the scores measured on the
artificial validation set are way higher than the test scores (see Table 7.5). For example,
with a query budget of 1,000, all substitute models reached accuracy over 93% on the
validation set. With the same query budget, substitutes trained on the CIFAR10 data
(Table 7.1) reached at most 82% of accuracy on the validation set. This further indicates
that the artificial data is not complex enough, and its quality has to be improved. Using
artificial data, an adversary will likely overestimate the performance of the attack on the
real data.

Experimenting with other substitute architectures, we observe further interesting results.
We already saw in Table 7.3 that with artificial data, the performance of substitutes
is higher when stealing simpler models. In those experiments, we used ResNet-18 as
substitute model. Using SimpleNet as substitute, we observe a similar behaviour, but
with an even more remarkable difference in fidelity scores, shown in Table 7.6. With
45,000 queries, the substitute model reached 68.35% fidelity while attacking the SimpleNet
target, but only 51.01% while attacking the ResNet-34 trained using transfer learning.

94

7.1. Attack analysis

Table 7.5: Comparison of validation and test scores of attacks using artificial dataset.
Validation scores Test ScoresTarget model Query

budget Joint Acc Acc Fid Tr Joint Acc Acc Fid Tr
Target

accuracy
1k 85.84% 93.18% 88.66% 0.02% 63.28% 66.2% 65.86% 0%
5k 86.76% 94.26% 89.76% 0% 67.9% 71.11% 70.55% 0%
10k 86.46% 93.46% 89.82% 0.02% 69.93% 73.04% 72.86% 0%
20k 86.7% 93.58% 90.22% 0% 73.43% 76.72% 76.42% 0.01%

SimpleNet

45k 86.86% 93.34% 90.8% 0.04% 75.69% 78.88% 78.78% 0.02%

91.76%

1k 89.14% 94.58% 91.22% 0% 64.13% 66.06% 66.32% 0%
5k 90.14% 95.74% 92.24% 0% 67.3% 69.44% 69.52% 0%
10k 89.88% 95.06% 92.38% 0% 71.38% 73.72% 73.4% 0%
20k 90.34% 95.58% 92.84% 0% 73.96% 76.31% 76.19% 0.01%

ResNet-34
(from scratch)

45k 90.12% 95.08% 92.94% 0% 74.94% 77.1% 77.28% 0%

93.61%

1k 94.42% 95.94% 95.5% 0.02% 66.05% 66.83% 67.1% 0.03%
5k 95.28% 96.92% 96.46% 0.02% 71.12% 71.97% 72.14% 0.01%
10k 95.82% 97.38% 97.1% 0.04% 69.58% 70.46% 70.63% 0.02%
20k 95.9% 97.58% 97.1% 0.04% 68.08% 69.01% 69.16% 0.01%

ResNet-34
(transfer learning)

45k 96.2% 97.74% 97.5% 0.08% 72.96% 73.81% 74% 0.03%

97.14%

Table 7.6: Fidelity scores of SimpleNet substitute model trained on artificial dataset.
Fidelity Target accuracy

on validation setTarget model 1k 5k 10k 20k 45k
SimpleNet 23.1% 40.77% 48.61% 58.12% 68.35% 88.46%

ResNet-34 (from scratch) 24.58% 37.78% 43.49% 54.81% 68.34% 91.4%
ResNet-34 (transfer learning) 23.57% 35.04% 38.28% 44.95% 51.01% 96.78%

To understand the cause of this behaviour, we also measured the accuracy of the target
model on the validation set, and report it in the rightmost column of Table 7.6. There
is almost a 10% difference in the accuracy of SimpleNet and the pre-trained ResNet-34
model, suggesting that these models could label the attacker’s data quite differently.
However, the model that better classifies the attacker’s data returns less relevant labels
for the original classification task and misleads the substitute training.

7.1.4 Query Optimisation

So far, we mainly investigated the impact of the attacker’s knowledge on the performance
of attacks. In this section, we evaluate query optimisation methods that can be applied
by any attacker, regardless of their knowledge. In particular, we evaluate active learning,
adversarial augmentation, and active adversarial augmentation. To demonstrate their
impact on the attacks, in Table 7.7, we report the performance scores of the attacks
optimised for the scenario of the weakest attacker. All attacks in the table are performed
with a ResNet-18 substitute model trained on the artificial dataset. In each cell in
Table 7.7, we also provide the difference to the scores from Table 7.3, which contained
attacks with the same settings but without any optimisation techniques. Therefore, a
positive number means the optimisation technique improved the performance, while
negative numbers indicate a degradation of the attack’s performance. For each target
model and query budget, we highlighted the best-performing score among the optimisation

95

7. Evaluation of Attacks and Defences

Table 7.7: Performance of the substitute model training attacks with different optimisation
techniques measured on the CIFAR10 test set. Below each score, we report the difference
with the non-optimised attack.

Target → SimpleNet ResNet-34
(from scratch)

ResNet-34
(transfer learning)

Query
optimisation ↓

Metric→
QB ↓

Joint
Acc Acc Fid Tr Joint

Acc Acc Fid Tr Joint
Acc Acc Fid Tr

1k 61.5%
-1.78%

64.62%
-1.58%

64.09%
-1.77%

0.02%
+0.02%

66.11%
+1.98%

68.3%
+2.24%

68.24%
+1.92%

0%
+0.00%

67.13%
+1.08%

68.02%
+1.19%

68.18%
+1.08%

0.01%
-0.02%

5k 67.57%
-0.33%

70.65%
-0.46%

70.39%
-0.16%

0%
+0.00%

70.46%
+3.16%

72.75%
+3.31%

72.66%
+3.14%

0%
+0.00%

68.95%
-2.17%

69.86%
-2.11%

69.99%
-2.15%

0.01%
+0.00%

10k 73.31%
+3.38%

76.64%
+3.6%

76.14%
+3.28%

0%
+0.00%

76.13%
+4.75%

78.51%
+4.79%

78.55%
+5.15%

0%
+0.00%

74.48%
+4.9%

75.39%
+4.93%

75.61%
+4.98%

0.01%
-0.01%Active

learning
20k 74.81%

+1.38%
77.98%
+1.26%

77.65%
+1.23%

0.02%
+0.01%

76.42%
+2.46%

78.91%
+2.6%

78.79%
+2.6%

0%
-0.01%

72.58%
+4.5%

73.47%
+4.46%

73.62%
+4.46%

0.05%
+0.04%

1k 60.61%
-2.67%

63.6%
-2.6%

63.03%
-2.83%

0.02%
+0.02%

63.69%
-0.44%

65.69%
-0.37%

65.83%
-0.49%

0%
+0.00%

63.75%
-2.3%

64.45%
-2.38%

64.78%
-2.32%

0%
-0.03%

5k 64.91%
-2.99%

68.16%
-2.95%

67.53%
-3.02%

0.04%
+0.04%

68.26%
+0.96%

70.75%
+1.31%

70.46%
+0.94%

0.01%
+0.01%

67.98%
-3.14%

68.84%
-3.13%

68.92%
-3.22%

0.04%
+0.03%

10k 66.24%
-3.69%

69.47%
-3.57%

69.07%
-3.79%

0.01%
+0.01%

73.92%
+2.54%

76.16%
+2.44%

76.24%
+2.84%

0.01%
+0.01%

69.42%
-0.16%

70.28%
-0.18%

70.44%
-0.19%

0.04%
+0.02%

20k 72.34%
-1.09%

75.39%
-1.33%

75.26%
-1.16%

0%
-0.01%

74.04%
+0.08%

76.29%
-0.02%

76.48%
+0.29%

0%
-0.01%

71.16%
+3.08%

72.04%
+3.03%

72.14%
+2.98%

0.01%
+0.00%

Adversarial
augmentation

45k 74.9%
-0.79%

78.05%
-0.83%

77.73%
-1.05%

0.01%
-0.01%

75.76%
+0.82%

77.96%
+0.86%

78.18%
+0.9%

0%
+0.00%

73.51%
+0.55%

74.39%
+0.58%

74.54%
+0.54%

0.1%
+0.07%

1k 60.52%
-2.76%

63.53%
-2.67%

63.03%
-2.83%

0.01%
+0.01%

63.43%
-0.7%

65.71%
-0.35%

65.44%
-0.88%

0%
+0.00%

63.49%
-2.56%

64.23%
-2.6%

64.49%
-2.61%

0.03%
+0.00%

5k 65.29%
-2.61%

68.58%
-2.53%

67.73%
-2.82%

0%
+0.00%

72%
+4.7%

74.34%
+4.9%

74.2%
+4.68%

0.01%
+0.01%

68.46%
-2.66%

69.39%
-2.58%

69.45%
-2.69%

0.01%
+0.00%

10k 70.76%
+0.83%

73.84%
+0.8%

73.71%
+0.85%

0.02%
+0.02%

73.44%
+2.06%

75.7%
+1.98%

75.72%
+2.32%

0.01%
+0.01%

73.67%
+4.09%

74.57%
+4.11%

74.86%
+4.23%

0.02%
+0.00%

20k 71.75%
-1.68%

74.84%
-1.88%

74.62%
-1.8%

0.01%
+0.00%

75.54%
+1.58%

77.9%
+1.59%

77.88%
+1.69%

0%
-0.01%

73.58%
+5.5%

74.41%
+5.4%

74.74%
+5.58%

0.03%
+0.02%

Active
adversarial

augmentation
45k 76.3%

+0.61%
79.42%
+0.54%

79.16%
+0.38%

0%
-0.02%

75.24%
+0.3%

77.41%
+0.31%

77.58%
+0.3%

0.01%
+0.01%

74.57%
+1.61%

75.5%
+1.69%

75.71%
+1.71%

0.06%
+0.03%

techniques, although sometimes these scores are lower than the baseline from Table 7.3.
Also, there is no reported active learning attack with 45,000 queries, as that is the size
of the whole dataset, and applying active learning here does not change anything. We
list below the main insights from Table 7.7 regarding the accuracy and fidelity scores, as
transferability remains too low.

• In most of the configurations, active learning performs the best, although, for the
smaller query budgets (1,000 and 5,000), it does not always improve the baseline,
and in a few cases, other optimisation techniques reach higher scores. However,
active learning improves the attack and holds the second-best score in all such
cases.

• In all configurations with a query budget of 10,000 and more, there is an optimisation
technique that improves an attack. Hence, applying those techniques, especially
active learning, is most useful for mid-range query budgets. We assume that smaller
query budgets (1,000 and 5,000) are not enough for a substitute model to learn
how to rank the most valuable samples.

• Increasing the number of queries does not always lead to a better attack performance.
We have already seen this behaviour for the artificial dataset earlier. However, even
with a "smarter" query selection strategy, this property of the dataset does not
vanish.

96

7.1. Attack analysis

• Although the scores were improved in most cases, they remain notably lower
compared to problem-domain and original datasets.

7.1.5 Comparison with the State-of-the-art
We conclude our attack analysis by comparing the performance of the attacks to the
state-of-the-art. As we shown in Section 3.3.6, 24 papers perform image classifier stealing
and are relevant to our work. However, comparing attacks that steal target models trained
on different datasets is not straightforward, as one also needs to consider the classification
task complexity. Thus, our comparison is only against papers using CIFAR10 to train
their target models. We summarise the performance scores in Table 7.8. Additionally, we
provide information about the attacker’s strength for each work. If some information was
not reported, we mark a corresponding cell as N/A. Regarding the substitute architecture,
we mark with ✗ cases when the architecture differs from the target, and with ✓ if it is
the same as the target, and ✓✗ if both options were considered. For the last category,
we report scores obtained when the architectures are the same, i.e. when the adversary
is stronger. Note that for our work, we report scores for ResNet-18 as a substitute,
hence we mark the corresponding cells with ✗. Some values are estimated based on the
information provided in the papers:

• The target and substitute accuracy for [MSDH19] and substitute accuracy for
[YHL+22] was estimated from their plots, as no actual scores were reported.

• The number of queries used by [BCIP20] was not reported. However, the authors
used CIFAR100, which contains 50,000 samples, as a starting point for their
evolutionary algorithm that creates new query images. They claimed that optimising
the query budget was not a priority, so we can assume that the number of queries
could be significantly larger than 50,000. However, as that is only a speculation,
we conservatively estimate that they used "more than 50,000" samples.

• The authors of [MDN19] also do not provide information about the total number
of queries. However, they have an iterative algorithm, which generates 1,000,000
samples at each round. Assuming that there should be at least one round, we
estimated the number of queries as "larger than 1,000,000".

• The query budget was also not given by [YDZ+22]. However, the authors estimated
the price of their attack on Amazon Web Services1 to be $360,000. Pricing from
2023 suggests that the price per query for the first million queries is usually around
$0.001, getting cheaper for the subsequent millions. That means that a million
queries cost $1000, and with this price, the authors could have made more than
300 million queries. However, since the prices could differ back then, we lowered
our estimate to 1 million.

1https://aws.amazon.com/rekognition/pricing/

97

https://aws.amazon.com/rekognition/pricing/

7. Evaluation of Attacks and Defences

• Some of the papers did not report the architecture of the target model or used
a custom architecture without reporting the number of trainable parameters. In
these cases, we could not estimate the number of parameters of the target model
and consequently not report the efficiency score of an attack. In cases when we
estimated the number of queries, we also marked the efficiency score as estimated.
In one paper [PYZ18], the authors only mention that they use a ResNet model,
referring to the paper where ResNet models were introduced. As this original paper
mainly focuses on ResNet-34 architecture, we assumed that ResNet-34 was used
as a target architecture by [PYZ18] and calculated efficiency scores based on this
assumption.

We group attacks with similar query budgets (provided in the first column) and the
same data type (the second column) used for an attack. We provide further analysis by
comparing attacks within the same group. We note that the attacks from one group are
not necessarily all equal, as the knowledge about the target architecture and output may
differ. As we do not implement an attack that uses NPD data, we compare our data-free
attack with both data-free and NPD attacks. Below, we summarise our main findings
from Table 7.8.

• As we already reported in Section 3.3.6, a lot of information on other attacks is
missing. For instance, we can not categorise some papers based on the attacker’s
strength, as authors did not report which knowledge the attacker possesses. Another
issue is that the accuracy of the target model was not always reported. Providing
fidelity scores in that case becomes crucial, but not all papers did that. Finally,
only one paper reported all three metrics for the substitute model (accuracy, fidelity,
transferability).

• In terms of accuracy and fidelity, our work outperforms all attacks from Table 7.8
that use original or problem-domain data, except for [MSDH19]. However, that
work assumed that the target model outputs gradients, which is a much stronger
assumption than label outputs considered in this work.

• Regarding transferability, all works that reported transferability scores perform
better than our attacks. However, getting high transferability scores was not the
primary goal of this thesis, and we report these values mainly for comparability.
Moreover, as there are different ways how transferability can be measured, it is
unclear if the scores from Table 7.8 are comparable. We will discuss this question
further in Chapter 8.

• For the query budget [10k, 15k], our data-free attack outperforms all NPD attacks
that use only labels for training. When other works use probability scores (a
stronger assumption than in our attack), they reach fidelity that are approximately
2% higher than our attack.

98

7.1. Attack analysis

Table 7.8: Comparison of substitute model attacks implemented in this work with the
state-of-the-art.

Query
budget Data Paper Same

archit. Outputs Target
Acc.

Sub.
Acc.

Sub.
Fid.

Sub.
Tr. Queries Efficiency

score

<2.5k
Original

[PYZ18] ✗ N/A >91% 77.47% 65.84% 1.6k 0.00007 est.
[MSDH19] ✓✗ Gradients 90% est. 88% est. 1k 0.00009
this work ✗ Labels 97.14% 84.63% 84.85% 0.05% 1k 0.00005

PD this work ✗ Labels 97.14% 74.75% 74.79% 0.03% 1k 0.00005
Data-free this work ✗ Labels 97.14% 68.02% 68.18% 0.01% 1k 0.00005

[5k, 8k]
Original

[PYZ18] ✗ N/A >91% 77.96% 72.53% 6.4k 0.0003 est.
[YHL+22]
(DTMEA) ✗

Probabilities
+XAI 92.03% 77% est. 8k 0.00034

this work ✗ Labels 97.14% 90.68% 90.94% 0.05% 5k 0.00023
PD this work ✗ Labels 97.14% 84.01% 84.18% 0.06% 5k 0.00023

Data-free this work ✗ Labels 97.14% 71.97% 72.14% 0.01% 5k 0.00023

[10k, 15k]

Original [PYZ18] ✗ N/A >91% 83.61% 73.15% 12.8k 0.0006 est.
this work ✗ Labels 97.14% 93.90% 93.88% 0.07% 10k 0.00046

PD this work ✗ Labels 97.14% 87.13% 87.20% 0.01% 10k 0.00046

NPD

[PGS+20]
(Activethief) ✓✗

Labels N/A 64.23% 10k N/A
Probabilities 77.29% N/A

[PGS+19] ✓✗
Labels N/A 71.14% 15k N/A

Probabilities 77.29% 10k N/A
[GCY+21]

(InverseNet) ✗
Labels N/A 75.40% 10k N/A

Probabilities 77.80% N/A
Data-free this work ✗ Labels 97.14% 75.39% 75.61% 0.01% 10k 0.00046

[20k, 30k]

Original [PYZ18] ✗ N/A >91% 84.12% 74.21% 25.6k 0.0012 est.
this work ✗ Labels 97.14% 94.68% 94.73% 0.15% 20k 0.0009

PD this work ✗ Labels 97.14% 90.20% 90.54% 0.08% 20k 0.0009

NPD

[PGS+20]
(Activethief) ✓✗ Labels N/A 78.36% 30k N/A

[PGS+19] ✓✗ Labels N/A 78.36% 30k N/A
[WL22] N/A Labels N/A 80.90% 30k 0.0014

[WLL+22]
(Black-box
Dissector)

✓✗ Labels 91.56% 80.47% 82.14% 76.63% 30k 0.0014

Data-free this work ✗ Labels 97.14% 74.41% 74.74% 0.03% 20k 0.0009

≥45k

Original this work ✗ Labels 97.14% 95.48% 95.50% 0.33% 45k 0.0021

PD
[CSBB+18]
(CopyCat) ✓ Probabilities 95.30% 90.00% 269k 0.002

this work ✗ Labels 97.14% 91.87% 91.94% 0.08% 45k 0.0021

NPD

[CSBB+18]
(CopyCat) ✓ Probabilities 95.30% 94.00% 3.4m 0.0253

[PGS+20]
(Activethief) ✓✗ Labels N/A 84.99% 85.76% 120k N/A

81.57% 100k N/A

[ASJ+20] ✓ Labels 94.60% 53.60% 100k 0.0047
Probabilities 88.20% 0.0047

[BCIP20] ✗ Probabilities 82.50% 79.00% >50k est. > 0.0009 est.
[MDN19] ✗ Labels 90.48% 89.59% >1m est. > 0.0074 est.

Data-free

[KPQ21a] ✗ Probabilities 92.26% 89.85% 30m 111
[TMWP21]
(DFME) ✗ Probabilities 95.50% 88.10% 20m 0.94

89.90% 30m 1.41

[MHS21]
(MEGEX) ✗

Probabilities
+XAI 95.50%

72.10% 1m 0.047
90.40% 10m 0.47
92.30% 20m 0.94

[SAB22] ✗
Labels 95.50% 84.51% 8m 0.38

Probabilities 91.24% 0.38

[YDZ+22] ✓✗
Labels 91.93% 69.64% >1m est. > 0.047 est.

Probabilities 80.79% 100% > 0.047 est.
this work ✗ Labels 97.14% 75.50% 75.71% 0.06% 45k 0.0021

99

7. Evaluation of Attacks and Defences

• For the query budget [20k, 30k], the NPD attacks outperform our data-free attack
by 4-8%.

• In the category of attacks that use 45,000 or more queries, our work outperforms
one NPD attack and two data-free attacks. However, all works in this query budget
group consider a stronger attacker (that uses probabilities, for instance) or use
significantly more queries. In general, most of the works in this category use millions
of queries, which is very inefficient and likely an unrealistic assumption.

• Two works have exactly the same weakest assumption about the attacker’s knowledge
as this thesis. The first work [YDZ+22] reaches 69.64% of accuracy using more
than a million queries, based on our estimation explained earlier. Our data-free
attack has 75.5% of accuracy, being trained only on 45,000 samples. Another work
[SAB22] has a higher accuracy score of 84.51%. However, it uses 8 million queries,
which is 177 times more than our attack.

Overall, our data-free attack shows promising results for future work. As we did not
invest time into improving the dataset’s quality, we expect to reach higher scores with
further research.

7.2 Defence Analysis
In this thesis, we test three defence approaches: input perturbation, output perturbation,
and input-output perturbation. At first, we explore to which extent they impact the
performance of the baseline attacks reported in Table 7.1. As stated earlier, those
baselines correspond to the strongest attacker’s knowledge in this thesis: they use the
original data and the target model architecture to train a substitute. We report the
performance of attacks against protected models in Table 7.9. In addition, we provide
the difference in the baseline scores for each metric. Hence, a more significant attack
mitigation means a larger negative difference. We highlight in bold the lowest scores,
i.e. indicating the strongest defence, obtained for each target model and query budget.
Below, we summarise the main observations based on changes in fidelity and accuracy
scores.

• In most cases, the lowest attack performance against defended models is lower
than the baseline. However, the difference is rather minute, especially considering
that defences modify nearly 1% of output labels. Hence, we have to investigate
further how the utility of the target model changes when defences are applied. If
it turns out that the decrease in utility is comparable with the decrease in attack
performance, applying these perturbation defences has no benefits compared to
randomly outputting wrong labels for 1% of data.

• Sometimes, only one of three defences mitigates an attack performance. Moreover,
there is no overall trend of one defence being better than others. Therefore, applying

100

7.2. Defence Analysis

Table 7.9: Performance of defences against substitute model training attacks measured
on the CIFAR10 test set. Below each score we report the difference with the baseline
results reported in Table 7.1.

Target → SimpleNet ResNet-34
(from scratch)

ResNet-34
(transfer learning)

Defence ↓ Metric→
QB ↓

Joint
Acc Acc Fid Tr Joint

Acc Acc Fid Tr Joint
Acc Acc Fid Tr

1k 47.37%
-0.7%

49.58%
-0.68%

49.75%
-0.64%

1.3%
-0.22%

77.31%
+0.62%

80.11%
+0.76%

79.28%
+0.54%

0%
+0.00%

80.83%
+0.25%

81.89%
+0.28%

81.98%
+0.19%

0.07%
+0.03%

5k 70.17%
+0.33%

72.34%
+0.33%

73.5%
+0.49%

2.48%
+0.03%

86.04%
+0.72%

89.27%
+0.73%

88.06%
+0.82%

0.01%
+0.01%

88.71%
-0.76%

89.59%
-0.7%

90.09%
-0.82%

0.1%
+0.00%

10k 76.29%
-0.1%

78.89%
+0.05%

79.69%
-0.24%

3.08%
-0.19%

88.73%
+0.22%

92.35%
+0.44%

90.62%
+0.11%

0%
+0.00%

91.46%
+0.16%

92.34%
+0.08%

92.96%
+0.23%

0.14%
-0.03%

20k 82.68%
-0.02%

85.47%
+0.09%

86.37%
+0.04%

5.53%
-0.33%

90.77%
+0.04%

94.68%
-0.05%

92.55%
+0.16%

0.01%
+0.00%

93.36%
-0.41%

94.38%
-0.41%

94.82%
-0.34%

0.42%
+0.14%

Input
perturbation

45k 86.76%
-0.26%

89.7%
-0.57%

90.63%
+0.02%

9.01%
+0.58%

92.2%
+0.05%

96.57%
-0.1%

93.64%
+0.14%

0.02%
-0.03%

95.17%
-0.2%

96.35%
-0.14%

96.57%
-0.27%

1.43%
+0.21%

1k 46.58%
-1.49%

48.72%
-1.54%

48.99%
-1.4%

1.53%
+0.01%

76.68%
-0.01%

79.42%
+0.07%

78.66%
-0.08%

0.01%
+0.01%

81.04%
+0.46%

82.08%
+0.47%

82.19%
+0.4%

0.08%
+0.04%

5k 70.76%
+0.92%

72.99%
+0.98%

74.01%
+1%

2.52%
+0.07%

85.65%
+0.33%

89.02%
+0.48%

87.74%
+0.5%

0%
+0.00%

88.93%
-0.54%

89.7%
-0.59%

90.38%
-0.53%

0.09%
-0.01%

10k 76.3%
-0.09%

78.75%
-0.09%

79.73%
-0.2%

3.23%
-0.04%

88.29%
-0.22%

91.8%
-0.11%

90.24%
-0.27%

0.01%
+0.01%

91.08%
-0.22%

92%
-0.26%

92.57%
-0.16%

0.22%
+0.05%

20k 82.29%
-0.41%

85.05%
-0.33%

85.9%
-0.43%

5.67%
-0.19%

90.64%
-0.09%

94.54%
-0.19%

92.37%
-0.02%

0.01%
+0.00%

93.71%
-0.06%

94.74%
-0.05%

95.08%
-0.08%

0.38%
+0.1%

Output
perturbation

45k 86.96%
-0.06%

90.25%
-0.02%

90.58%
-0.03%

8.5%
+0.07%

92.17%
+0.02%

96.66%
-0.01%

93.52%
+0.02%

0.04%
-0.01%

95.22%
-0.15%

96.47%
-0.02%

96.55%
-0.29%

1.31%
+0.09%

1k 47.93%
-0.14%

50%
-0.26%

50.41%
+0.02%

1.31%
-0.21%

77.42%
+0.73%

80.2%
+0.85%

79.4%
+0.66%

0%
+0.00%

80.74%
+0.16%

81.8%
+0.19%

81.93%
+0.14%

0.07%
+0.03%

5k 70.49%
+0.65%

72.76%
+0.75%

73.7%
+0.69%

2.51%
+0.06%

86.35%
+1.03%

89.58%
+1.04%

88.4%
+1.16%

0%
+0.00%

88.58%
-0.89%

89.58%
-0.71%

89.9%
-1.01%

0.1%
+0.00%

10k 76.24%
-0.15%

78.68%
-0.16%

79.71%
-0.22%

3.14%
-0.13%

88.66%
+0.15%

92.11%
+0.2%

90.53%
+0.02%

0.01%
+0.01%

91.5%
+0.2%

92.38%
+0.12%

92.96%
+0.23%

0.15%
-0.02%

20k 82.25%
-0.45%

84.91%
-0.47%

85.91%
-0.42%

5.45%
-0.41%

90.8%
+0.07%

94.64%
-0.09%

92.58%
+0.19%

0.01%
+0.00%

93.71%
-0.06%

94.7%
-0.09%

95.21%
+0.05%

0.31%
+0.03%

Input-output
perturbation

45k 86.89%
-0.13%

90.03%
-0.24%

90.55%
-0.06%

8.69%
+0.26%

92.09%
-0.06%

96.51%
-0.16%

93.51%
+0.01%

0.04%
-0.01%

95.25%
-0.12%

96.46%
-0.03%

96.65%
-0.19%

1.37%
+0.15%

only one specific defence does not seem secure from the model owner’s perspective,
as it does not promise that the attack performance will decrease.

• For some configurations, all defences actually increased the performance of the
attack, which completely contradicts their goals and raises the question whether
they are fit for purpose.

During the hyperparameters tuning, we set the limit on the number of perturbed labels to
1%. It has to be noted that those flipped labels can negatively or positively impact the
target model utility. If the label is flipped for a sample that was originally miss-classified
by the target model, its perturbed label could turn out to be correct. In that case,
the accuracy of the target model can increase, leading to no harm for benign model
clients. To measure the utility, we check the accuracy of target models of the test set
after applying a defence and compare these scores with the unprotected models. The
results are reported in Table 7.10. The difference scores can now be used as a threshold
for defence estimation. If a defence decreases the performance of a substitute model
to a lesser extent than the performance of the target model, we can call this defence
useless. Although in some cases reported in Table 7.9 the defences decrease an attack’s
performance more than they impact the target’s utility, their contributions are negligible,
and the performance is too unstable. Hence, these defences do not really protect a model
against the strongest attacker.

101

7. Evaluation of Attacks and Defences

Table 7.10: Accuracy of target models on their original task, after applying data pertur-
bation defences compared to the unprotected models.

SimpleNet ResNet-34 (from scratch) ResNet-34 (transfer learning)
Unprotected 91.76% 93.61% 97.14%

Input perturbation 91.56%
-0.2%

93.67%
+0.06%

97.18%
+0.04%

Output perturbation 91.67%
-0.09%

93.62%
+0.01%

97.21%
+0.07%

Input-output perturbation 91.42%
-0.34%

93.59%
-0.02%

97.29%
+0.15%

Table 7.11: Performance of defences against data-free substitute model training attacks
measured on the CIFAR10 test set. Below each score we report the difference with the
results for unprotected models reported in Table 7.5.

Target → SimpleNet ResNet-34
(from scratch)

ResNet-34
(transfer learning)

Defence ↓ Metric→
QB ↓

Joint
Acc Acc Fid Tr Joint

Acc Acc Fid Tr Joint
Acc Acc Fid Tr

1k 63.42%
+0.14%

66.4%
+0.2%

66%
+0.14%

0%
+0.00%

65.54%
+1.41%

67.46%
+1.4%

67.73%
+1.41%

0%
+0.00%

66.81%
+0.76%

67.61%
+0.78%

67.87%
+0.77%

0.03%
+0.00%

5k 66.55%
-1.35%

69.81%
-1.3%

69.1%
-1.45%

0.01%
+0.01%

68.15%
+0.85%

70.29%
+0.85%

70.22%
+0.7%

0%
+0.00%

69.52%
-1.6%

70.49%
-1.48%

70.56%
-1.58%

0.02%
+0.01%

10k 70.59%
+0.66%

73.75%
+0.71%

73.37%
+0.51%

0.01%
+0.01%

72.15%
+0.77%

74.38%
+0.66%

74.4%
+1%

0%
+0.00%

67.95%
-1.63%

68.91%
-1.55%

68.97%
-1.66%

0.04%
+0.02%

20k 72.72%
-0.71%

75.86%
-0.86%

75.66%
-0.76%

0.02%
+0.01%

76.67%
+2.71%

79.04%
+2.73%

79%
+2.81%

0%
-0.01%

68.27%
+0.19%

69.15%
+0.14%

69.27%
+0.11%

0.03%
+0.02%

Input
perturbation

45k 76.99%
+1.3%

80.13%
+1.25%

80%
+1.22%

0%
-0.02%

78.25%
+3.31%

80.49%
+3.39%

80.67%
+3.39%

0%
+0.00%

73.67%
+0.71%

74.51%
+0.7%

74.76%
+0.76%

0.03%
+0.00%

1k 63.46%
+0.18%

66.45%
+0.25%

66.05%
+0.19%

0%
+0.00%

65.48%
+1.35%

67.4%
+1.34%

67.71%
+1.39%

0%
+0.00%

65.63%
-0.42%

66.44%
-0.39%

66.68%
-0.42%

0.01%
-0.02%

5k 66.3%
-1.6%

69.48%
-1.63%

68.78%
-1.77%

0%
+0.00%

69.67%
+2.37%

72
+2.56%

71.85%
+2.33%

0.01%
+0.01%

68.28%
-2.84%

69.09%
-2.88%

69.31%
-2.83%

0.02%
+0.01%

10k 70.06%
+0.13%

73.26%
+0.22%

72.9%
+0.04%

0.01%
+0.01%

69.48%
-1.9%

71.69%
-2.03%

71.61%
-1.79%

0%
+0.00%

67.83%
-1.75%

68.81%
-1.65%

68.74%
-1.89%

0.01%
-0.01%

20k 72.34%
-1.09%

75.67%
-1.05%

75.29%
-1.13%

0.01%
+0.00%

73.77%
-0.19%

76.09%
-0.22%

75.98%
-0.21%

0%
-0.01%

68.57%
+0.49%

69.36%
+0.35%

69.61%
+0.45%

0.01%
+0.00%

Output
perturbation

45k 78.07%
+2.38%

81.23%
+2.35%

81.06%
+2.28%

0.01%
-0.01%

77.03%
+2.09%

79.3%
+2.2%

79.27%
+1.99%

0.01%
+0.01%

71.91%
-1.05%

72.82%
-0.99%

73.03%
-0.97%

0.03%
+0.00%

1k 63.43%
+0.15%

66.48%
+0.28%

66%
+0.14%

0%
+0.00%

65.33%
+1.2%

67.33%
+1.27%

67.5%
+1.18%

0.01%
+0.01%

66.3%
+0.25%

67.11%
+0.28%

67.37%
+0.27%

0.03%
+0.00%

5k 67.51%
-0.39%

70.76%
-0.35%

70.22%
-0.33%

0%
+0.00%

68.34%
+1.04%

70.55%
+1.11%

70.53%
+1.01%

0%
+0.00%

68.67%
-2.45%

69.46%
-2.51%

69.77%
-2.37%

0.04%
+0.03%

10k 70.53%
+0.6%

73.71%
+0.67%

73.38%
+0.52%

0%
+0.00%

72.66%
+1.28%

74.98%
+1.26%

74.87%
+1.47%

0%
+0.00%

68.33%
-1.25%

69.28%
-1.18%

69.32%
-1.31%

0.02%
+0.00%

20k 72.96%
-0.47%

76.21%
-0.51%

75.89%
-0.53%

0.01%
+0.00%

75.46%
+1.5%

77.82%
+1.51%

77.75%
+1.56%

0%
-0.01%

70%
+1.92%

70.8%
+1.79%

71.06%
+1.9%

0.05%
+0.04%

Input-output
perturbation

45k 74.58%
-1.11%

77.76%
-1.12%

77.57%
-1.21%

0.02%
+0.00%

76.26%
+1.32%

78.48%
+1.38%

78.62%
+1.34%

0.01%
+0.01%

75.33%
+2.37%

76.23%
+2.42%

76.48%
+2.48%

0.07%
+0.04%

Table 7.10 also shows that for the pretrained ResNet-34 model, all defences improved its
performance. Hence, they could be used as a post-processing step to improve the model’s
prediction quality. However, as the scores from Table 7.9 suggest, the attacker can also
learn more about the model in this case.

We conclude our defence analysis by investigating if data-perturbation defences are effec-
tive against attacks with limited attacker knowledge. In particular, we test the defences
against our weakest data-free attack that uses ResNet-18 as a substitute architecture. We
already reported the attack performance against unprotected target models in Table 7.5.
We show the impact of defences in Table 7.11. As before, we highlight the lowest scores

102

7.2. Defence Analysis

in bold. Our key observations are:

• The impact of the defences applied is more significant compared to the strongest
adversary that uses the original data and the target model’s architecture to train
a substitute model (Table 7.9). In particular, for the pre-trained ResNet-34, the
fidelity for 5,000 queries is decreased by almost 3%. At the same time, as we
have seen before, the utility of this target model only increases when defences are
applied.

• However, unwanted improvements of attacks are also more pronounced, sometimes
improving the attack performance by 3%.

• Even if the performance of an attack is decreased, it is still a relatively minor
change that does not eliminate the success of the attack. It is an open, subjective
and case-dependant question of how significantly the performance should drop to
make an attack useless, but in many cases, 3% is likely insufficient.

• The output perturbation defence results in the lowest scores in most of the configu-
rations. We did not observe that trend in Table 7.9.

Hence, although we observe more notable changes than for the baseline attacks, the
results are still too unstable and minute to recommend using these defences as mitigation
techniques. Moreover, the number of changes most likely increased, as more than 1%
of labels were flipped2. As the artificial dataset used in these experiments differs from
CIFAR10, the optimal defence hyperparameters are likely different. However, as the
model owner does not know which data is used for an attack, these hyperparameters can
not be estimated better.

2As the hyperparameters were tuned to flip 1% for the CIFAR10 validation set, a slightly different
impact on a different dataset is expected

103

CHAPTER 8
Discussion

As conclusion of this thesis, we highlight the main insights and summarise our results.
In particular, we discuss non-comparability issues and inconsistency of the related work
and propose some suggestions to address these problems. Additionally, we address the
issues of this work and explain why certain approaches could not work. Afterwards, we
summarise this thesis’s contributions and main results and answer the research questions
formulated at the beginning. We conclude our discussion by describing directions of
future work that cover both attack and defence development.

8.1 Insights and Issues
While reviewing the related work, we faced a significant lack of harmonisation and
standardisation of how model stealing attacks are designed and evaluated. In the
previous chapters, we already highlighted some of the issues. Below, we list them all
together and propose solutions for future works, so that these problems could be avoided.

• Non-comparable attack settings. As different attacker capabilities are assumed
in different papers, they need be taken into account when comparing attacks.
Moreover, information about the attacker’s knowledge is sometimes missing, leading
to further comparability issues.
Proposed solution. We suggest always defining a threat model and using our
categorisation from Figure 3.3 for substitute training attacks. It shows which group
an attack belongs to, and which other papers are most suitable for comparison.

• Non-comparable performance scores. As stated in Section 3.3.6, there is no
single metric that was reported in all papers performing substitute training attacks
against image classifiers. If the accuracy of the target model is given, one can
evaluate the performance of a substitute compared to the target model and use

105

8. Discussion

this estimation for paper comparison. However, not all works provide the target
accuracy, making such comparison impossible.
Proposed solution. We propose reporting the accuracy score for target models
and the following metrics for substitute models: accuracy on the original test set,
fidelity, and (untargeted) transferability.

• Inconsistent way of measuring transferability. We suggested above to report
transferability for every substitute training attack. However, transferability has
no unified way of measuring, unlike accuracy and fidelity. One needs to decide
which adversarial example crafting technique to use, and to set its hyperparameters.
Depending on the selected technique, adversarial examples may lay closer or further
from the decision boundary. In this work, for instance, we used DeepFool, known as
an approach to minimise the distance to the decision boundary. Hence, adversarial
examples crafted in this work were very sensitive and specific to the target model’s
decision boundary, so them being also adversarial for the target model is less likely.
If one selects a less sensitive method, it may turn out to be too strong, making a
lot of other models fooled by adversarial examples.
Proposed solution. Firstly, we strongly recommend reporting how transferability
scores are measured, including algorithm-specific hyperparameter values. Secondly,
in the perfect scenario, the adversarial crafting technique should be unified. We
suggest using DeepFool as one of the most sensitive and challenging approaches,
which is thus powerful in measuring how well the decision boundary is replicated.
We also encourage further research to investigate how transferability scores can be
put in relation to the strength of the adversarial crafting approach. We leave it for
future work to explore how the strength should be defined, although we can suggest
using, e.g. the average distance of adversarial examples to the decision boundary.

• Non-comparable original datasets. While comparing the results of this thesis
with the state-of-the-art, we met another comparability issue. Original datasets
used for target model training differ in complexity and lead to a difference in
stealing complexity. For instance, stealing a neural network trained on MNIST is
more straightforward than stealing a network trained on CIFAR10, since the first
classification task is generally simpler. Hence, we only compare results from this
work with attacks against CIFAR10 classifiers.
Proposed solution. Limiting all research in model stealing to several datasets
limits the research in general, so a recommendation to use only several benchmark
datasets is too restricting. However, launching at least a few key experiments on
some commonly used datasets from the corresponding data domain would be a
good calibration indicator. As we showed in Section 6.1, for image classification,
the most popular choice of the dataset is CIFAR10. Hence, we recommend using it
to increase comparability in this domain.

• Low-performing target models. In general, model stealing does not require
a well-performing target model, and also applies to models with random weights.

106

8.1. Insights and Issues

However, a target model may perform poorly compared to the state-of-the-art. Then,
a model stealing attack can be evaluated by comparing the accuracy of a substitute
and the target models’ accuracy. However, since reaching lower performance is
generally an easier task, such attack evaluation can be misleading.
Proposed solution. We recommend (1) always reporting fidelity and (2) training
a target model until it reaches a reproducible benchmark performance.

• Manipulations with the original test set. One must ensure that attacks
are evaluated on the same test set for a fair evaluation. However, we have seen
two categories of manipulations that lead to modifications in the test set. The
first category of papers used part of the test data for training a substitute model.
Although we can understand the motivation to do so (getting original data, but
not from the target model’s train set), it impacts the final test scores of the attack
as they are measured on the remaining part of the test set. For instance, the
distribution of classes can be different, or some of the samples more difficult to
predict can be eliminated from the test set. The second manipulation category we
encountered was removing a complete class from the CIFAR10 dataset to get the
same set of classes as in one of the PD datasets. This modification leads to an
evaluation of a different classification task than the original CIFAR10, and scores
are hardly comparable.
Proposed solution. We do not recommend modifying the original test set in any
way. In case an attack assumes such modifications, it should be considered while
comparing with other works.

• Wrongly defined data category. CIFAR100 is used as a non-problem domain
dataset for CIFAR10 in some works. However, although these datasets depict
different objects, they have similar visual properties. For instance, they are more
alike than CIFAR10 and ImageNet.
Proposed solution. We would suggest using ImageNet instead. Generally, it is
"safer" to use a dataset gathered separately from the original dataset.

We summarised above the problems we faced while preparing the theoretical part of this
thesis. However, some of our designed and implemented experiments did not meet their
goals and our expectations. We analyse their behaviour and list below our speculations
on those topics.

• Low transferability scores. All attacks implemented in this thesis performed
poorly in terms of transferability. Although high transferability was not our goal,
we still would like to investigate the reasons for such behaviour. In two of our
query optimisation algorithms, adversarial examples were used. As they lay close to
the decision boundary, we expected that these optimisations would lead to higher
transferability. However, this was not the case. We assume that the reason lies in
the adversarial crafting algorithm we chose. Deepfool is one of the least-perturbing

107

8. Discussion

algorithms for crafting adversarial examples. Most likely, perturbations that fooled
our substitute model were not significant enough to also fool a target model that
has ever an even just slightly different decision boundary. We illustrate how the
decision boundary of the substitute model is changing in this case in Figure 8.1b.
As an adversarial example gets assigned the same label from the target model as
the unperturbed sample, the substitute model must adapt its decision boundary.
However, if such an update is too small, the substitute model’s decision boundary
will not reach the target even after many steps. However, even if an adversarial
example fools the target model (which we assume was barely happening) and is
mislabelled compared to the unperturbed sample, the predicted decision boundary
will be between those two samples. It will not reach the decision boundary of the
target model even after several training steps as shown in Figure 8.1.

(a) xadversarial does not fool the target model,
which lead to a local decision boundary up-
date.

(b) Even though xadversarial fools the target
model, the predicted decision boundary does
not reach the target.

Figure 8.1: Predicted substitute decision boundary when using adversarial examples with
small perturbations.

• Unstable defences behaviour. As we concluded in the previous section, the
defences considered in this thesis can not be recommended as a protection mechanism
against model stealing. First of all, their impacts are rather unpredictable. While
a defence decreases an attack’s performance in one configuration, it improves its
performance in another configuration. Moreover, the difference in performance is
not significant enough to (i) be worth the risk of potentially helping the attacker,
and (ii) paying the cost of an ineffective defence by having a less performing target
model. We further investigated the following questions: (1) why the performance of
defences is unstable and changes depending on the query budget, and (2) why the
difference in performance of protected and unprotected models is more significant

108

8.2. Contributions and Main Results

when artificial data is used. For (1), we assume that the distribution of perturbed
samples for each query budget could differ, which lead to different impact on
the attack’s performance. Regarding (2), defence hyperparameters were tuned
on CIFAR10, hence the number of flipped labels was under control only for this
dataset. The defences likely perturbed significantly more labels in the artificial
dataset, causing a larger difference in attack performance.

8.2 Contributions and Main Results
In this thesis, new attack and defence settings were investigated through adapting
methods proposed earlier to new scenarios and developing new approaches. Our main
contributions are:

• We highlighted problems of non-comparability in the related work and proposed a
solution for each of them.

• In particular, we introduced a categorisation for substitute training attacks focused
on stealing image classifiers. Our categorisation makes the comparison of different
attack techniques fairer, by considering the attacker’s strength.

• We explored how the target model’s complexity and transfer learning usage impact
the attack performance.

• We investigated how different hyperparameter configurations impact the perfor-
mance of attacks that use query optimisation techniques such as active learning
and adversarial augmentation.

• We proposed an algorithm combining active learning and adversarial augmentation
into one query optimisation technique.

• We developed a novel data-free attack based on a text-to-image stable diffusion
model.

• Finally, we adapted a defence against adversarial examples to model stealing attacks
and tested it together with another data-perturbation defence.

In Chapter 7, we described all experiments we performed, as well as their outcomes, in
detail. As a summary, we provide our key observations from the obtained results.

• Transfer learning. Attacks that use the same training strategy as the target
model (training from scratch or using transfer learning) for a substitute model
perform better than the ones that use the opposite strategy.

109

8. Discussion

• Data-free attack. Using artificial data generated by a stable diffusion model,
we achieved nearly 75% fidelity with 45,000 queries. Although there are data-free
attacks that are more effective, they are significantly less efficient. In particular, we
outperformed one of two attacks that assume the same weakest possible attacker’s
knowledge. Although another attack is better than ours by almost 10%, it uses
8,000,000 samples, 177 times more than ours.

• Query optimisation. The Active Learning approach showed the highest overall im-
provement of attack performance in various scenarios. It improved the performance
of all attacks that used 10,000 or 20,000 samples compared to the non-optimised
attacks.

• Data-perturbation defences. None of the defences implemented in this work
protect target models well enough – and sometimes even improve the performance
of an attack. However, they conversely can also improve the performance of some
target models.

• Original and PD state-of-the-art. Among attacks on CIFAR10 classifiers that
use original or problem-domain data, our attacks reach the highest accuracy and
fidelity scores having the same or smaller budget than related work.

8.3 Research Questions
To conclude the analysis of the obtained results, we revisit the research questions
formulated at the beginning of the thesis. We answer them using our observations from
Chapter 7.

1. To what degree are model stealing attacks effective? This generic question
wraps up all the experiments conducted during attack analysis. As we have seen
before, the effectiveness of an attack is affected by many factors, including the
attacker’s knowledge, capabilities, and the query budget. We analyse how each factor
influences substitute training attacks by answering the following sub-questions.

a) To what extent does the effectiveness of attacks depend on its query
budget? In the thesis, five different query budgets were analysed, namely
1,000 queries, 5,000 queries, 10,000 queries, 20,000 queries, and 45,000 queries,
which corresponds to the size of the original training set. As we started
our analysis from the strongest attacker, which uses original data and target
architecture to train a substitute, the answer looked very straightforward: the
more queries, the better the attack’s performance. However, this was not
the case for the artificial data. For one of the models, an attack with 5,000
queries outperformed attacks using 10,000 and 20,000 queries. We suspect
that the artificial dataset is too homogeneous. Later in the experiments,
we saw that models that only used 1,000 artificial queries reached over 90%

110

8.3. Research Questions

accuracy on the validation set, suggesting that the data samples have similar
characteristics that can be learned from a small subset. Hence, we conclude
that the performance improves if the dataset is too complex to learn its
features from a smaller subset. We assume that this is the case for natural
(non-artificial) data.
Another observation is that the improvement in the attack performance
slows down with the increase in queries. We obtained the most significant
improvement when the number of queries increased from 1,000 to 5,000. At
the same time, improvement between 20,000 and 45,000 are the smallest. For
instance, ResNet-18 trained on 20,000 original samples reaches fidelity scores of
91.15%-94.13% for different target models. With 45,000 original queries, this
range changes to 91.71%-95.44%. Therefore, from a certain point, a minute
improvement may not be worth the effort needed to gather more data.

b) To what extent do the effectiveness and efficiency of attacks change
depending on the complexity of the target model? We explored two
target architectures: SimpleNet, and the more complex ResNet-34. We trained
two ResNet models, one from scratch and one using transfer learning, with the
model being pre-trained on ImageNet. The SimpleNet model had the lowest
performance on the original dataset, followed by the ResNet-34 trained from
scratch. The ResNet-34 trained with transfer learning reached the highest
accuracy score. We observed from the experiment results that the performance
of the target models correlates with the fidelity score reached by an attack.
It turned out that it is easier to steal a better-performing model. Hence,
the attack performance was the best for ResNet-34 trained using transfer
learning and the worst for SimpleNet. The question, however, asks about
the complexity of the target model and not about its performance. As the
complexity represents the learning capability of the model, it directly influences
the performance. Hence, for the models we explored, the naive conclusion is
that it is easier to steal models of higher complexity. However, for a complete
answer, one needs to investigate if there is a difference in stealing models of
different complexity but the same performance.

c) To what extent does the effectiveness of model stealing attacks
change when the target model architecture is not known?
Three substitute models were trained for each target model: SimpleNet,
ResNet-18, and ResNet-34. The highest scores were obtained with ResNet-34
and the lowest with SimpleNet, which means that a more complex substitute
model architecture leads to better results. However, for smaller query budgets,
ResNet-18 outperformed ResNet-34. Thus, we would rather conclude that the
architecture of the substitute model should be complex enough to learn the
original dataset. At least in our case, this means that the knowledge about the
target model architecture has only a minor effect on the attack’s performance.

d) How does the effectiveness of model stealing attacks change if the

111

8. Discussion

target model is trained with transfer learning? As mentioned earlier,
we attacked two ResNet-34 target models, one trained from scratch and one
trained using transfer learning. With this research question, we wanted to
explore if there is a difference in stealing those models, considering that an
adversary may have access to the same pre-trained weights. For ResNet-18
and ResNet-34 substitute models, which were trained using the same transfer
learning approach as the target model, we observed that the attack performance
scores are higher when stealing the pre-trained ResNet-34. However, this target
model also performs better on the original test than the model trained from
scratch. Without further research, it is difficult to state the cause for the
difference in the stealing performance. The reason is either the usage of
transfer learning or the difference in the performance of the target models.
We observe a different behaviour pattern when using SimpleNet as substitute
model. This model scored higher when stealing target models trained from
scratch (SimpleNet, ResNet-34) than the pre-trained ResNet-34. This obser-
vation suggests that substitute models reach higher scores when their training
strategy coincides with the training strategy of the target model.

e) To what extent does the effectiveness of model stealing attacks
change depending on the availability of data? We explored three
configurations for the attacker’s dataset: original data, problem-domain data,
and artificially generated data. The best scores were obtained with the
original data. With the problem-domain data, the performance was lower,
but by increasing the query budget, it got closer to the original data. For the
artificial data, the drop in the attack’s performance was the most significant.
Interestingly, for the artificial data, the best stealing performance was reached
with larger query budgets when attacking the SimpleNet target model, whereas
the worst was obtained for the pre-trained ResNet-34. Most likely, those target
models had different outputs for a significant amount of the artificial samples,
leading to a difference in the substitute’s performance.
We additionally explored the difference in the performance of a substitute
model measured on the attacker’s validation and original test sets. When
the attacker used the original data, this difference was minimal, with slightly
better scores on the validation set. For the problem-domain dataset, which was
more complex than the original data, validation scores were significantly lower
than the test scores. For the artificial dataset, the situation was the opposite.
The validation scores were much higher than the test ones, suggesting that the
artificial data is simpler than the original. Based on those observations, we
conclude that an attack is more effective when the complexity of the attacker’s
dataset is higher than the original, compared with the dataset with lower
complexity than the original data.

f) To what extent does query optimisation of model stealing attacks
improve their effectiveness? In this thesis, three query optimisation
strategies were studied: active learning, adversarial augmentation, and their

112

8.3. Research Questions

combination, referred to as active adversarial augmentation. For 1,000 and
5,000 query budgets, for some target models, these optimisation techniques
made the performance of the corresponding substitute model worse. However,
the performance was always improved for 10,000 queries and more, sometimes
by up to 5%. In most cases, active learning performed better than other
optimisation techniques. However, it was tested for at most 20,000 queries, as
applying it when all the attacker’s data is used does not change anything. For
45,000 queries, active adversarial augmentation always improved the attack’s
performance. Hence, we suggest using active learning from 10,000 queries, and
its application does not make sense for the given query budget, switching to
active adversarial augmentation.

2. To what degree are data perturbation defences against model stealing
attacks useful?
Our exploration of the data-perturbation defences did not yield almost any positive
results. We concluded that in the scenarios considered in this thesis, such defences
are not useful and can even improve an attack’s performance. However, we also
answer the subsequent questions to provide a more detailed overview.

a) To what extent does the effectiveness of model stealing attacks
decrease when a certain defence is applied? We started our defence
analysis by comparing the performance of an attack conducted by the strongest
attacker against protected and unprotected models. The attack performance
was decreased by at most 1.5% in one particular configuration, whereas
sometimes it was improved by more than 1%. We did not find a specific
pattern to conclude in which settings the defences are helpful. In general, the
results are unstable. Even in the best case, the effect of the defences is not
significant enough to conclude that they can mitigate a substitute training
attack.

b) To what extent does the utility of the target model change when
a data perturbation defence is applied? This part of the defence study
brought us the most positive results. While we expected that the accuracy of
the protected model on the original test set would decrease by 1% for input
and output perturbation defences and by up to 2% for their combination,
it was not the case. The most notable drop of 0.34% was obtained for the
SimpleNet target model protected by input and output perturbation defences.
For the ResNet target models, the accuracy scores were even improved in
most cases. Based on that, we have two conclusions: (1) these defences do not
notably harm the utility of the target model, and (2) one can probably try
more significant perturbations than was done in this work.

c) To what extent does the utility of defences change when attacker’s
knowledge about the target model is limited? Finally, we verified if our
observations from attacks launched by the strongest attacker also took place

113

8. Discussion

for a weaker attacker. We analysed the performance of defences against an
adversary that used the artificial data and ResNet-18 substitute architecture.
The range of changes has increased: sometimes, defences decreased the attack’s
performance by almost 3%, and sometimes improved by nearly 2.5%. In this
scenario, the output perturbation defence performed the best. However, the
inconsistency and the volume of the attack’s performance change do not allow
us to recommend this defence as a mitigation technique.

8.4 Future Work
There are several directions in which the future work can be conducted. First of all, some
of our experiments showed promising results and suggested that some of our approaches
can be improved and developed further. Then, several experiments did not bring us
positive results. We propose ways to overcome the problems we met or other approaches
that can be tested. Finally, as there are many paths out of the scope of this thesis, we
describe other unexplored areas available for further research.

Improving the quality of the artificial data. Our data-free attack is significantly
more efficient than previous data-free attacks and even outperforms some of them in
terms of effectiveness. However, as we have seen, it is not complex enough compared to
the CIFAR10 dataset, which bounds the attack performance. With further investigation,
one can verify if this attack can be a real threat and if it should be considered when
developing defences against model stealing. Whereas one option is to improve the quality
of data generated by a single model, one can also try to combine outputs of different
text-to-image models (Stable Diffusion1, Midjourney2, DALL-E3, etc.) to make the
dataset more heterogeneous.

Developing guidelines for measuring transferability. Contrary to accuracy and
fidelity, there is no unified way to measure transferability. Different adversarial algo-
rithms modify data samples with different amounts of perturbation, resulting in diverse
transferability scores. Hence, exploring how transferability changes depending on the
algorithm would help to compare different works more fairly. Moreover, one can then
develop recommendations on which algorithms to use for transferability evaluation.

Reaching high transferability evaluated using DeepFool. Another challenge for
future work is to "fix" the transferability scores obtained in this work. Although we
probably picked the most strict evaluation approach, we would like to explore whether
achieving high transferability using DeepFool is possible.

Exploring other query optimisation techniques. Adversarial augmentation and
active adversarial augmentation mostly performed worse than active learning. However,
there could be a more prominent strategy for combining active learning with adversarial

1https://clipdrop.co/stable-diffusion
2https://docs.midjourney.com/
3https://openai.com/dall-e-3

114

https://clipdrop.co/stable-diffusion
https://docs.midjourney.com/
https://openai.com/dall-e-3

8.4. Future Work

augmentation, or maybe using another algorithm instead of DeepFool is better. Although
some research was already done in this direction, we did not obtain the same results, so
further investigation is needed.

Investigating if more significant perturbations can lead to a more effective
data-perturbation defence. The data-perturbation defences considered in this work
did not help to protect target models from stealing. However, during our analysis, we
found out that the accuracy of the protected target model decreased notably less than
we expected and, in some cases, even increased. That signifies that we could add more
perturbation without harming the target model’s utility. However, we do not know if
that would help to increase the defence effectiveness.

Testing our approaches on other datasets. In this work, we used only one dataset
for training target models. Firstly, we would like to confirm that our observations do not
depend on a particular dataset used. Secondly, as some works used other datasets, we
would like to compare our results with theirs.

Applying reactive defences. In the thesis, we explore data-perturbation defences,
which are proactive approaches. However, since they do not work in considered scenarios,
other defence approaches must be studied. In particular, we would like to pay attention
to watermarking and monitors. Watermarking allows verifying that the target model
was stolen if its illegal copy becomes publicly available with white- or black-box access.
Monitors track the behaviour of each client interacting with the target model and hence
can detect an attack in its early stage. We would like to investigate if our data-free attack
can be detected by one of them.

Exploring other data domains. In the thesis, we focused on the most popular data
domain and task within the related work, namely image classification. However, substitute
training attacks can be applied to any machine learning model and even to program
logic that implements an algorithm. Some domains, like audio, were not explored in the
previous work at all. Hence, one can investigate whether the same threats and scenarios
apply to other data domains.

Investigating scenarios with an adaptive attacker. An adaptive attacker possesses
additional knowledge about defence mechanisms applied to the target model. Conse-
quently, the attacker can adapt their stealing strategy to surpass the defence. Such a
scenario is essential for testing defence robustness and, in general, should be considered
while developing a new defence approach. For reactive defences like monitors, an adaptive
attacker means that the detection criteria are publicly known, hence giving the attacker
an obvious hint on how to evade being detected. For proactive defences like data pertur-
bation, an adaptive attacker is assumed to know the perturbation method, which allows
to reverse-engineer the modifications in some cases. However, adaptive attackers have
not been previously explored in model stealing.

115

APPENDIX A
Appendix

(a) Real automobile. (b) Fake automobile.

Figure A.1: Survey question for the "automobile" class. The real automobile was correctly
identified by 66% of respondents.

(a) Real bird. (b) Fake bird.

Figure A.2: Survey question for the "bird" class. The real bird was correctly identified by
54.4% of respondents.

117

A. Appendix

(a) Real cat. (b) Fake cat.

Figure A.3: Survey question for the "cat" class. The real cat was correctly identified by
30.7% of respondents.

(a) Real deer. (b) Fake deer.

Figure A.4: Survey question for the "deer" class. The real deer was correctly identified
by 39% of respondents.

(a) Real dog. (b) Fake dog.

Figure A.5: Survey question for the "dog" class. The real dog was correctly identified by
67.6% of respondents.

118

(a) Real frog. (b) Fake frog.

Figure A.6: Survey question for the "frog" class. The real frog was correctly identified by
44.8% of respondents.

(a) Real ship. (b) Fake ship.

Figure A.7: Survey question for the "ship" class. The real ship was correctly identified by
60.6% of respondents.

(a) Real truck. (b) Fake truck.

Figure A.8: Survey question for the "truck" class. The real truck was correctly identified
by 27.8% of respondents.

119

List of Figures

2.1 MNIST dataset [Den12]. 10
2.2 A feed-forward fully-connected neural network. 13
2.3 Optimising cost function with different learning rates. 16
2.4 A convolution process. 21
2.5 An application of a max pooling layer. 21
2.6 A residual block, introduced in [HZRS16]. 23
2.7 Denoising process. The image is taken from [HJA20]. 24

3.1 Example of an image classification API. 30
3.2 Model stealing attack on image classification API. 31
3.3 Categorisation of attacks on image classifiers based on attacker’s capabilities. 44
3.4 An unprotected API. 48
3.5 An API protected by an input perturbation defence. 48
3.6 An API protected by an output perturbation defence. 49

4.1 Model stealing attack with active learning query optimisation. 54
4.2 Model stealing attack with adversarial augmentation. 56

5.1 Image perturbation. The images are taken from [GR20]. 58
5.2 Comparison of point-based and region-based classifications. 60

6.1 Number of papers using certain datasets for target model training. 62
6.2 CIFAR10 dataset [KH09]. 62
6.3 CINIC10 dataset [DCAS18]. 63
6.4 Percentage of respondents scored 1-10 points. 65
6.5 Survey question for the "airplane" class. 66
6.6 Survey question for the "horse" class. 66
6.7 Failures of generative model. 67
6.8 Statistics of target model architectures. 68
6.9 Target model architectures. 69
6.10 CNN building blocks. 70
6.11 Input perturbation fidelity scores for ResNet-34 trained using transfer learning. 74
6.12 Statistics of substitute model architectures. 75
6.13 Validation fidelity of different training hyperparameter configurations. . . 77
6.14 Impact of different active learning configurations on validation fidelity. . . 79

121

6.15 Impact of different adversarial augmentation configurations on validation
fidelity. 82

6.16 Impact of different active adversarial augmentation configurations on valida-
tion fidelity. 84

6.17 Experiment setups carried out in this chapter. 87

8.1 Predicted substitute decision boundary when using adversarial examples with
small perturbations. 108

A.1 Survey question for the "automobile" class. 117
A.2 Survey question for the "bird" class. 117
A.3 Survey question for the "cat" class. 118
A.4 Survey question for the "deer" class. 118
A.5 Survey question for the "dog" class. 118
A.6 Survey question for the "frog" class. 119
A.7 Survey question for the "ship" class. 119
A.8 Survey question for the "truck" class. 119

122

List of Tables

2.1 Categorisation of attacks against machine learning (by Biggio and Roli [BR18]). 25

3.1 Comparison of query-based attacks. 37
3.2 Comparison of substitute training approaches. 40

6.1 Prompts used to generate artificial dataset. 64
6.2 Hyperparameter grid for target models trained from scratch. 70
6.3 Best hyperparameter setting for target models trained from scratch. 71
6.4 Hyperparameter grid for fine-tuning target models trained using transfer

learning. 71
6.5 Best hyperparameter setting for ResNet-34 trained using transfer learning. 71
6.6 Performance of benchmarks (1-3) and our target models (4-6). 72
6.7 Hyperparameter grid for input-perturbation defence. 73
6.8 Final hyperparameter configuration for input-perturbation defence and corre-

sponding fidelity scores. 73
6.9 Hyperparameter grid for output-perturbation defence. 74
6.10 Final hyperparameter configuration for output perturbation defence and

corresponding fidelity scores. 74
6.11 Hyperparameter grid for substitute model training. 76
6.12 Best training hyperparameter setting for SimpleNet substitute models. . . 78
6.13 Best training hyperparameter setting for ResNet-18 and ResNet-34 substitute

models. 78
6.14 Best-performing active learning hyperparameter configurations. 80
6.15 Best-performing adversarial augmentation hyperparameter configurations. 83
6.16 Best-performing active adversarial augmentation hyperparameter configura-

tions. 86

7.1 Baseline scores for substitute training attacks. 90
7.2 Performance of substitute model training attacks with different target and

substitute architectures measured on the CIFAR10 test set. 91
7.3 Performance of substitute model training attacks with different attacker’s

datasets measured on the CIFAR10 test set. 93
7.4 Comparison of validation and test scores of attacks using CINIC10 dataset. 94
7.5 Comparison of validation and test scores of attacks using artificial dataset. 95

123

7.6 Fidelity scores of SimpleNet substitute model trained on artificial dataset. 95
7.7 Performance of the substitute model training attacks with different optimisa-

tion techniques. 96
7.8 Comparison of substitute model attacks implemented in this work with the

state-of-the-art. 99
7.9 Performance of defences against substitute model training attacks. 101
7.10 Accuracy of target models on their original task, after applying data pertur-

bation defences compared to the unprotected models. 102
7.11 Performance of defences against data-free substitute model training attacks. 102

124

List of Algorithms

2.1 Deepfool [MDFF15] . 26

2.2 DFAL [DP18] . 28

2.3 κ-center [SS18] . 28

4.1 Active learning attack . 53

4.2 Adversarial augmentation attack . 55

4.3 Active adversarial augmentation attack 56

5.1 Input perturbation . 58

125

Bibliography

[ASJ+20] Buse Gul Atli, Sebastian Szyller, Mika Juuti, Samuel Marchal, and
N. Asokan. Extraction of Complex DNN Models: Real Threat or Boogey-
man? In Engineering Dependable and Secure Machine Learning Systems,
volume 1272 of EDSMLS, pages 42–57, Cham, 2020. Springer International
Publishing.

[BBJP19] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
Reverse Engineering of Neural Network Architectures Through Electro-
magnetic Side Channel. In USENIX Security Symposium, pages 515–532,
Santa Clara, CA, August 2019. USENIX Association.

[BCIP20] Antonio Bărbălău, Adrian Cosma, Radu Tudor Ionescu, and Marius
Popescu. Black-Box ripper: copying black-box models using generative evo-
lutionary algorithms. In International Conference on Neural Information
Processing Systems, NeurIPS, pages 20120–20129, Red Hook, NY, USA,
December 2020. Curran Associates Inc.

[BH19] Vahid Behzadan and William Hsu. Adversarial Exploitation of Policy
Imitation, June 2019. arXiv:1906.01121.

[BR18] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, December
2018.

[CCG+20] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and Songbai Yan.
Exploring Connections Between Active Learning and Model Extraction. In
USENIX Security Symposium, August 2020.

[CDG20] Hervé Chabanne, Vincent Despiegel, and Linda Guiga. A Protection against
the Extraction of Neural Network Models, July 2020. arXiv:2005.12782.

[CG17] Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating evasion attacks to
deep neural networks via region-based classification. In Proceedings of the
33rd Annual Computer Security Applications Conference, ACSAC ’17, page
278–287, New York, NY, USA, 2017. Association for Computing Machinery.

127

http://arxiv.org/abs/1906.01121
http://arxiv.org/abs/2005.12782

[CGZ+21] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu.
Stealing Deep Reinforcement Learning Models for Fun and Profit. In Asia
Conference on Computer and Communications Security, ASIA CCS, pages
307–319, Virtual Event Hong Kong, May 2021. ACM.

[CJM20] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic Ex-
traction of Neural Network Models. In Advances in Cryptology – CRYPTO
2020, volume 12172, pages 189–218, Cham, 2020. Springer International
Publishing. Series Title: Lecture Notes in Computer Science.

[CSBB+18] Jacson Rodrigues Correia-Silva, Rodrigo F. Berriel, Claudine Badue, Al-
berto F. de Souza, and Thiago Oliveira-Santos. Copycat CNN: Stealing
Knowledge by Persuading Confession with Random Non-Labeled Data. In
International Joint Conference on Neural Networks, IJCNN, pages 1–8,
Rio de Janeiro, July 2018. IEEE.

[CWS+20] Jinyin Chen, Changan Wu, Shijing Shen, Xuhong Zhang, and Jianhao Chen.
DAS-AST: Defending Against Model Stealing Attacks Based on Adaptive
Softmax Transformation. In International Conference on Information
Security and Cryptology, volume 12612, pages 21–36, Cham, 2020. Springer
International Publishing.

[CXLS22] Abhishek Chakraborty, Daniel Xing, Yuntao Liu, and Ankur Srivastava.
DynaMarks: Defending Against Deep Learning Model Extraction Using
Dynamic Watermarking, 2022.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[DCAS18] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey.
Cinic-10 is not imagenet or cifar-10, 2018.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
ageNet: A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages 248–255, Miami,
FL, June 2009. IEEE.

[Den12] Li Deng. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[DKLP22] Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas
Papernot. Increasing the Cost of Model Extraction with Calibrated Proof
of Work. In International Conference on Learning Representations, 2022.

128

[DP18] Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep
networks: a margin based approach, 2018.

[DR20] David DeFazio and Arti Ramesh. Adversarial Model Extraction on Graph
Neural Networks. In International Workshop on Deep Learning on Graphs:
Methodologies and Applications, DLGMA, New York, NY, USA, February
2020.

[DSRB19] Vasisht Duddu, Debasis Samanta, D. Vijay Rao, and Valentina E.
Balas. Stealing Neural Networks via Timing Side Channels, July 2019.
arXiv:1812.11720.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model Inversion
Attacks that Exploit Confidence Information and Basic Countermeasures.
In ACM SIGSAC Conference on Computer and Communications Security,
CCS, pages 1322–1333, Denver Colorado USA, October 2015. ACM.

[GCY+21] Xueluan Gong, Yanjiao Chen, Wenbin Yang, Guanghao Mei, and Qian
Wang. InverseNet: Augmenting Model Extraction Attacks with Training
Data Inversion. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 2439–2447, Montreal, Canada, August 2021.

[GR20] L. Guiga and A. W. Roscoe. Neural network security: Hiding CNN
parameters with guided grad-CAM. In ICISSP 2020 - Proceedings of the
6th International Conference on Information Systems Security and Privacy,
pages 611–618, 2020.

[Gra20] Justin Grana. Perturbing Inputs to Prevent Model Stealing. In IEEE
Conference on Communications and Network Security, CNS, pages 1–9,
Avignon, France, June 2020. IEEE.

[HDK+20] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke,
Ian Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş.
Security Analysis of Deep Neural Networks Operating in the Presence of
Cache Side-Channel Attacks, January 2020. arXiv:1810.03487.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion proba-
bilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[HRFS16] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures to
outperform deeper and more complex architectures, 2016.

[HVD14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. In NIPS 2014 Deep Learning Workshop, Montréal,
Canada, 2014.

129

http://arxiv.org/abs/1812.11720
http://arxiv.org/abs/1810.03487

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pages 770–778, Las Vegas, NV, USA,
June 2016. IEEE.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

[JCB+20] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High Accuracy and High Fidelity Extraction of Neural
Networks. In USENIX Security Symposium, pages 1345–1362. USENIX
Association, August 2020.

[JSMA19] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. PRADA:
Protecting Against DNN Model Stealing Attacks. In IEEE European
Symposium on Security and Privacy, EuroS&P, pages 512–527, Stockholm,
Sweden, June 2019. IEEE.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features
from Tiny Images. Technical report, University of Toronto, 2009.

[KMAM18] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta.
Model Extraction Warning in MLaaS Paradigm. In Annual Computer
Security Applications Conference, ACSAC, pages 371–380, San Juan PR
USA, December 2018. ACM.

[KPB+09] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software
engineering – a systematic literature review. Information and Software
Technology, 51(1):7–15, 2009. Special Section - Most Cited Articles in 2002
and Regular Research Papers.

[KPQ21a] Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. MAZE:
Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, pages 13809–13818, Nashville, TN, USA, June 2021. IEEE.

[KPQ21b] Sanjay Kariyappa, Atul Prakash, and Moinuddin K. Qureshi. Protecting
DNNs from Theft using an Ensemble of Diverse Models. In International
Conference on Learning Representations, 2021.

[KQ20] Sanjay Kariyappa and Moinuddin K. Qureshi. Defending Against Model
Stealing Attacks With Adaptive Misinformation. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR, pages 767–775,
Seattle, WA, USA, June 2020. IEEE.

130

[KTP+20] Kalpesh Krishna, Gaurav Singh Tomar, Ankur Parikh, Nicolas Papernot,
and Mohit Iyyer. Thieves of Sesame Street: Model Extraction on BERT-
based APIs. In International Conference on Learning Representations,
ICLR, Virtual Event, April 2020.

[LBOM12] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient BackProp, pages 9–48. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[LEMS19] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. Defending
Against Neural Network Model Stealing Attacks Using Deceptive Pertur-
bations. In IEEE Security and Privacy Workshops (SPW), pages 43–49,
San Francisco, CA, USA, May 2019. IEEE.

[LFS20] Hsiao-Ying Lin, Chengfang Fang, and Jie Shi. Bident Structure for Neural
Network Model Protection:. In International Conference on Information
Systems Security and Privacy, ICISSP, pages 377–384, Valletta, Malta,
2020. SciTePress.

[LHL22] Jeonghyun Lee, Sungmin Han, and Sangkyun Lee. Model Stealing Defense
against Exploiting Information Leak through the Interpretation of Deep
Neural Nets. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 710–716, Vienna, Austria, July 2022.

[LJLG22] Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. StolenEn-
coder: Stealing Pre-trained Encoders in Self-supervised Learning. In ACM
SIGSAC Conference on Computer and Communications Security (CCS),
Los Angeles, CA, USA, 2022. ACM. event-place: Los Angeles, U.S.A.

[LM05] Daniel Lowd and Christopher Meek. Adversarial Learning. In ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining,
KDD, pages 641–647, Chicago, Illinois, USA, 2005. ACM Press. event-place:
Chicago, Illinois, USA.

[LML+22] Xinjing Liu, Zhuo Ma, Yang Liu, Zhan Qin, Junwei Zhang, and Zhuzhu
Wang. SeInspect: Defending Model Stealing via Heterogeneous Semantic
Inspection. In European Symposium on Research in Computer Security (ES-
ORICS), volume 13554, pages 610–630, Cham, 2022. Springer International
Publishing.

[LMR23] Isabell Lederer, Rudolf Mayer, and Andreas Rauber. Identifying Appro-
priate Intellectual Property Protection Mechanisms for Machine Learning
Models: A Systematisation of Watermarking, Fingerprinting, Model Ac-
cess, and Attacks. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

131

[LZK21] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep Neural Network
Fingerprinting by Conferrable Adversarial Examples. In International
Conference on Learning Representations, 2021.

[MDFF15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
Deepfool: A simple and accurate method to fool deep neural networks. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2574–2582, 2015.

[MDN19] Itay Mosafi, Eli Omid David, and Nathan S. Netanyahu. Stealing Knowledge
from Protected Deep Neural Networks Using Composite Unlabeled Data.
In International Joint Conference on Neural Networks, IJCNN, pages 1–8,
Budapest, Hungary, July 2019. IEEE.

[MHS21] Takayuki Miura, Satoshi Hasegawa, and Toshiki Shibahara. MEGEX:
Data-Free Model Extraction Attack against Gradient-Based Explainable
AI, July 2021. arXiv:2107.08909 [cs].

[MLF22] Mantas Mazeika, Bo Li, and David Forsyth. How to Steer Your Adversary:
Targeted and Efficient Model Stealing Defenses with Gradient Redirection.
In International Conference on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pages 15241–15254. PMLR,
July 2022.

[MSDH19] Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model
Reconstruction from Model Explanations. In Conference on Fairness,
Accountability, and Transparency, FAT, pages 1–9, Atlanta GA USA,
January 2019. ACM.

[MYP21] Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset
Inference: Ownership Resolution in Machine Learning. In International
Conference on Learning Representations, 2021.

[OAFS18] Seong Joon Oh, M. Augustin, M. Fritz, and B. Schiele. Towards Reverse-
Engineering Black-Box Neural Networks. In International Conference on
Learning Representations, ICLR, Vancouver, B.C., Canada, 2018.

[OMR23] Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you
trained last summer: A survey on stealing machine learning models and
defences. ACM Comput. Surv., apr 2023.

[OSF19] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff Nets:
Stealing Functionality of Black-Box Models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, pages 4949–4958, Long
Beach, CA, USA, June 2019. IEEE.

132

[OSF20] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction Poi-
soning: Towards Defenses Against DNN Model Stealing Attacks. In In-
ternational Conference on Learning Representations, ICLR, Virtual Event,
April 2020.

[PGKS21] Soham Pal, Yash Gupta, Aditya Kanade, and Shirish Shevade. Stateful
Detection of Model Extraction Attacks, July 2021. arXiv:2107.05166 [cs,
stat].

[PGS+19] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade,
and Vinod Ganapathy. A framework for the extraction of Deep Neural
Networks by leveraging public data, May 2019. arXiv:1905.09165.

[PGS+20] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade,
and Vinod Ganapathy. ActiveThief: Model Extraction Using Active Learn-
ing and Unannotated Public Data. In AAAI Conference on Artificial
Intelligence, volume 34, pages 865–872, April 2020.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferabil-
ity in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples, May 2016. arXiv:1605.07277.

[PMG+17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical Black-Box Attacks
against Machine Learning. In ACM Asia Conference on Computer and
Communications Security, ASIA CCS, pages 506–519, Abu Dhabi United
Arab Emirates, April 2017. ACM.

[PYZ18] Li Pengcheng, Jinfeng Yi, and Lijun Zhang. Query-Efficient Black-Box
Attack by Active Learning. In IEEE International Conference on Data
Mining, ICDM, pages 1200–1205, Singapore, November 2018. IEEE.

[RBL+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10684–10695, June 2022.

[RK20] David Rolnick and Konrad Kording. Reverse-engineering deep ReLU net-
works. In Hal Daumé III and Aarti Singh, editors, International Conference
on Machine Learning, volume 119 of ICML, pages 8178–8187. PMLR, July
2020.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–408,
1958.

133

http://arxiv.org/abs/1905.09165
http://arxiv.org/abs/1605.07277

[RPM19] Nicholas Roberts, Vinay Uday Prabhu, and Matthew McAteer. Model
Weight Theft With Just Noise Inputs: The Curious Case of the Petulant
Attacker. In ICML Workshop on the Security and Privacy of Machine
Learning, Long Beach, CA, June 2019.

[RST19] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. Ef-
ficiently Stealing Your Machine Learning Models. In ACM Workshop on
Privacy in the Electronic Society, WPES, pages 198–210, London, United
Kingdom, 2019. ACM Press.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2016. arXiv:1609.04747.

[SAAH20] Kálmán Szentannai, Jalal Al-Afandi, and András Horváth. Preventing
Neural Network Weight Stealing via Network Obfuscation. In Computing
Conference, volume 1230, pages 1–11, Cham, 2020. Springer International
Publishing.

[SAB22] Sunandini Sanyal, Sravanti Addepalli, and R. Venkatesh Babu. Towards
Data-Free Model Stealing in a Hard Label Setting. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 15263–
15272, New Orleans, LA, USA, June 2022. IEEE.

[SAMA21] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. DAWN:
Dynamic Adversarial Watermarking of Neural Networks. In ACM Interna-
tional Conference on Multimedia, pages 4417–4425, Virtual Event China,
October 2021. ACM.

[SBV+22] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon,
Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton
Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R Kundurthy,
Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. LAION-5b: An open large-scale dataset for training next generation
image-text models. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[SCD+17] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization. In
IEEE International Conference on Computer Vision, ICCV, pages 618–626,
Venice, October 2017. IEEE.

[SDGA21] Sebastian Szyller, Vasisht Duddu, Tommi Gröndahl, and N. Asokan. Good
Artists Copy, Great Artists Steal: Model Extraction Attacks Against Image
Translation Generative Adversarial Networks, April 2021. arXiv:2104.12623
[cs].

134

http://arxiv.org/abs/1609.04747

[SDWMG15] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya
Ganguli. Deep unsupervised learning using nonequilibrium thermodynam-
ics. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 2256–2265.
JMLR.org, 2015.

[SS17] Yi Shi and Yalin E. Sagduyu. Evasion and causative attacks with adversarial
deep learning. In IEEE Military Communications Conference, MILCOM,
pages 243–248, Baltimore, MD, October 2017. IEEE.

[SS18] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. In International Conference on Learning
Representations, 2018.

[SSDJ22] Amir Mahdi Sadeghzadeh, Amir Mohammad Sobhanian, Faezeh Dehghan,
and Rasool Jalili. HODA: Hardness-Oriented Detection of Model Extraction
Attacks, February 2022. arXiv:2106.11424 [cs].

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Mądry.
How does batch normalization help optimization? In Proceedings of the
32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 2488–2498, Red Hook, NY, USA, 2018. Curran Associates
Inc.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In International Conference on Learning Representations,, ICLR,
Banff, AB, Canada, April 2014.

[TCBM20] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
On Adaptive Attacks to Adversarial Example Defenses. In Advances
in Neural Information Processing Systems, volume 33, pages 1633–1645.
Curran Associates, Inc., 2020.

[TMWP21] Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Paper-
not. Data-Free Model Extraction. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4769–4778, Nashville, TN,
USA, June 2021. IEEE.

[TYF20] Tatsuya Takemura, Naoto Yanai, and Toru Fujiwara. Model Extraction At-
tacks against Recurrent Neural Networks, January 2020. arXiv:2002.00123.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Stealing Machine Learning Models via Prediction APIs. In
USENIX Security Symposium, pages 601–618, Austin, TX, USA, August
2016. USENIX Association.

135

http://arxiv.org/abs/2002.00123

[WG15] Haibing Wu and Xiaodong Gu. Towards dropout training for convolutional
neural networks. Neural Netw., 71(C):1–10, nov 2015.

[WG18] Binghui Wang and Neil Zhenqiang Gong. Stealing Hyperparameters in
Machine Learning. In IEEE Symposium on Security and Privacy, SP, pages
36–52, San Francisco, CA, May 2018. IEEE.

[WH00] R. Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model
for data mining. Proceedings of the 4th International Conference on the
Practical Applications of Knowledge Discovery and Data Mining, 01 2000.

[WL22] Yixu Wang and Xianming Lin. Enhance Model Stealing Attack via Label
Refining. In International Conference on Intelligent Computing and Signal
Processing (ICSP), pages 1040–1043, Xi’an, China, April 2022. IEEE.

[WLL+22] Yixu Wang, Jie Li, Hong Liu, Yan Wang, Yongjian Wu, Feiyue Huang, and
Rongrong Ji. Black-Box Dissector: Towards Erasing-Based Hard-Label
Model Stealing Attack. In European Conference on Computer Vision
(ECCV), volume 13665, pages 192–208, Cham, 2022. Springer Nature
Switzerland.

[XHZ+22] Yi Xie, Mengdie Huang, Xiaoyu Zhang, Changyu Dong, Willy Susilo, and
Xiaofeng Chen. GAME: Generative-Based Adaptive Model Extraction
Attack. In European Symposium on Research in Computer Security (ES-
ORICS), volume 13554, pages 570–588, Cham, 2022. Springer International
Publishing.

[XSZ+18] Hui Xu, Yuxin Su, Zirui Zhao, Yangfan Zhou, Michael R. Lyu, and Irwin
King. DeepObfuscation: Securing the Structure of Convolutional Neural
Networks via Knowledge Distillation, June 2018. arXiv:1806.10313.

[YCBL14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? In Proceedings of the 27th
International Conference on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, page 3320–3328, Cambridge, MA, USA, 2014. MIT Press.

[YDZ+22] Xiaoyong Yuan, Leah Ding, Lan Zhang, Xiaolin Li, and Dapeng Oliver
Wu. ES Attack: Model Stealing Against Deep Neural Networks Without
Data Hurdles. IEEE Transactions on Emerging Topics in Computational
Intelligence, pages 1–13, 2022.

[YHL+22] Anli Yan, Ruitao Hou, Xiaozhang Liu, Hongyang Yan, Teng Huang, and Xi-
anmin Wang. Towards explainable model extraction attacks. International
Journal of Intelligent Systems, 37(11):9936–9956, November 2022.

[YYZ+20] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho,
and Yier Jin. CloudLeak: Large-Scale Deep Learning Models Stealing

136

http://arxiv.org/abs/1806.10313

Through Adversarial Examples. In Network and Distributed System Security
Symposium (NDSS), San Diego, CA, 2020. Internet Society.

[ZCW21] Zhanyuan Zhang, Yizheng Chen, and David Wagner. SEAT: Similarity
Encoder by Adversarial Training for Detecting Model Extraction Attack
Queries. In ACM Workshop on Artificial Intelligence and Security, pages
37–48, Virtual Event Republic of Korea, November 2021. ACM.

[ZCZL21] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes
Attack: Steal DNN Models with Lossless Inference Accuracy. In USENIX
Security Symposium, August 2021.

[ZFS21] Xinyi Zhang, Chengfang Fang, and Jie Shi. Thief, Beware of What Get
You There: Towards Understanding Model Extraction Attack, April 2021.
arXiv:2104.05921 [cs].

137

	Abstract
	Contents
	Introduction
	Problem Statement and Research Questions
	Methodology
	Structure of the Work

	Background
	Machine Learning for Image Classification
	Deep Learning
	Adversarial Machine Learning
	Active Learning

	Model Stealing
	Definition
	Threat Model
	Attacks
	Defences

	Attack Design and Implementation
	Attacker's Knowledge and Capabilities
	Data-free Attack
	Query Optimisation

	Defence Design and Implementation
	Input Perturbation
	Output Perturbation
	Input-output Perturbation

	Experiment Design
	Datasets
	Target Model Training
	Defence Configuration
	Substitute Model Training
	Experiment Summary

	Evaluation of Attacks and Defences
	Attack analysis
	Defence Analysis

	Discussion
	Insights and Issues
	Contributions and Main Results
	Research Questions
	Future Work

	Appendix
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

