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Gate-based universal quantum computation is
formulated in terms of two types of operations:
local single-qubit gates, which are typically easily
implementable, and two-qubit entangling gates,
whose faithful implementation remains one of the
major experimental challenges since it requires
controlled interactions between individual sys-
tems. To make the most of quantum hardware
it is crucial to process information in the most
efficient way. One promising avenue is to use
higher-dimensional systems, qudits, as the fun-
damental units of quantum information, in or-
der to replace a fraction of the qubit-entangling
gates with qudit-local gates. Here, we show how
the complexity of multi-qubit circuits can be low-
ered significantly by employing qudit encodings,
which we quantify by considering exemplary cir-
cuits with exactly known (multi-qubit) gate com-
plexity. We discuss general principles for circuit
compression, derive upper and lower bounds on
the achievable advantage, and highlight the key
role played by entanglement and the available
gate set. Explicit experimental schemes for pho-
tonic as well as for trapped-ion implementations
are provided and demonstrate a significant ex-
pected gain in circuit performance for both plat-
forms.

Quantum computation is a disruptive technol-
ogy that has irrevocably changed the way that
computation is envisioned. It holds the potential
for addressing a wide range of computational chal-
lenges [1], from factoring [2] and database search [3],
to applications in quantum machine learning [4, 5].
Yet, current noisy intermediate-scale quantum
(NISQ) devices [6] are still far from addressing
these applications at a practically relevant scale and

early demonstrations of quantum advantages remain
confined to algorithms that do not yet have clearly
identifiable broad applications [7, 8]. The primary
obstacle for today’s quantum computers, which
now feature 10s to 100s of qubits [9–16] remains
noise and decoherence, which limits the number of
entangling operations and therefore the achievable
circuit depth. Hence, for current as well as future
quantum computers, efficiency at the circuit level
will be key to getting the most out of these devices.

Fortunately, there is a lot of unused potential in
current quantum devices, which tend to use only a
small fraction of the available Hilbert space. Indeed,
control over the inherently high-dimensional Hilbert
space has been demonstrated in all major quantum
technology platforms [17–20], motivating the ex-
ploitation of a new paradigm of quantum computing
based on d-dimensional qudits, rather than qubits.
Compared to their two-level counterpart, qudit
architectures offer much richer coherence [21] and
entanglement structures [22], which can be exploited
for efficient quantum information processing [23–26]
and improved quantum error correction [27, 28].
Since entangling operations tend to be the bottleneck
in current quantum devices, the efficiency of a quan-
tum computation, or the complexity of a quantum
circuit, is traditionally measured by counting the
number of entangling operations [29]. While this is
an incomplete picture, it serves as a good hardware-
agnostic approximation, because the optimal circuit
for a given quantum operation is elusive and highly
dependent on the available gate set.

Here, we investigate qudit circuit compression, as
a way to simplify a given qubit circuit by rephrasing
it as a qudit circuit. We achieve this in two steps:
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First, the qubits are partitioned into groups of equal
size such that the number of gates within the groups
is maximized. Each group is then interpreted as a
qudit, turning entangling gates into local gates and
thus reducing the overall entangling gate count by
a combinatorial factor for which we find lower and
upper bounds using a graph-based approach. Second,
by considering an extended gate set including not
only qubit-entangling gates, but also genuine qudit-
entangling gates, the number of entangling gates in
the resulting qudit circuit can be further reduced,
even saturating the combinatorial lower bound. To
showcase these two effects, we study the compres-
sion of exemplary qubit circuits under different
gate sets. We illustrate this gate compression with
experimental details for two contemporary quantum
technologies using qudits: photonic qudits encoded
in orbital angular momentum and trapped ions with
multiple addressable levels, showing that, already
today, qubit circuits can be more efficiently compiled
on qudit architectures. Aside from algorithmic
improvements, reducing the number of quantum
information carriers tends to make the system
experimentally easier to control, leading to improved
performance. We provide general design principles,
as well as upper and lower bounds for the possible
reduction in the number of gates, exemplified with
explicit constructions for photonic systems and
trapped ions.

Circuit compression. Quantum circuits are built from
a sequence of gate operations. At the lowest level of
abstraction, circuit compression is hence concerned
with compiling an N -qubit unitary to an M -qudit ar-
chitecture (M < N ), which we call gate compres-
sion, see Fig. 1. The task is to encode the qubit
circuit into the qudit architecture in such a way that
the maximal number of entangling gates in the qubit
circuit manifests as local gates in the resulting qu-
dit circuit. Importantly, the remaining entangling
gates retain their qubit-entangling structure, in terms
of maximally generated entanglement entropy, when
embedded in the qudit Hilbert space. Consequently,
this procedure always reduces the amount of entan-
glement needed (irrespective of the available gate set
for qudits), by compressing non-local gates into local
ones. Consider the example of a four-qubit circuit,
where qubits 1 and 2 are encoded in one qudit, and
qubits 3 and 4 in another. Now all non-local gates
between the original qubits 1 and 2 as well as be-
tween qubits 3 and 4 are local in the respective qudits.
The non-local gates between qubits that are now en-

coded in different qudits remain non-local and main-
tain their tensor-product structure, which is why we
call them embedded qubit gates.

Importantly, while embedded qubit gates still cre-
ate two-level entanglement (i.e., equivalent to a two-
qubit gate in terms of entanglement entropy), they are
not necessarily easily implementable in a qudit archi-
tecture. To see this, consider the example of a CNOT
gate U (c, t)

CNOT applied to qubits 2 (control) and 3 (target)
in the above example of a four-qubit register, taking
the form 1(1) ⊗ U (2, 3)

CNOT ⊗ 1(4). When qubits 1 and 2
are encoded in the first qudit, and 3 and 4 in the sec-
ond, the resulting embedded version of the original
gate would have to be a subspace-agnostic operation
(i.e., applying the same operation on both subspaces
pertaining to the encoded qubits 1 and 4). Already for
a single-qudit example with the canonical encoding
|0⟩ = |00⟩ , |1⟩ = |01⟩ , |2⟩ = |10⟩ , |3⟩ = |11⟩,
we see that performing an operation of the form
1 ⊗ U , which acts on the second encoded qubit only
requires the application of the same U to the sub-
spaces {|0⟩ , |1⟩} and {|2⟩ , |3⟩} in order to realize
the original tensor-product structure. While embed-
ded qubit entangling gates still only create two-level
entanglement, they are hence often not available na-
tively. On the other hand, the qudit encoding enables
new kinds of two-level entangling operations, which
do not admit a tensor-product structure in the corre-
sponding qubit circuit. Such gates provide new pow-
erful tools for circuit compression, as discussed be-
low, while also emphasizing the importance of the
available gate set for qudit architectures. This again
highlights the importance of considering the available
gate set, rather than just qudit dimension, for efficient
circuit compression.

While finding the ideal embedding of qubits into
qudits is difficult, we can use weighted graphs to
find a simplified representation of the circuit which
in turn allows for powerful tools of graph theory to
be employed. A weighted graph G = (V, E) is a
pair of a set of vertices V = {v1, . . . , vn} and a
set of edges E = {e1, . . . , ek}, where each edge
ei = ((vl, vm), wi) is a pair of vertices together with
a weight wi. To encode the non-local properties of
the quantum circuit into the graph, we associate each
vertex with a qubit and draw an edge whenever a non-
local gate is present between two qubits. The weight
of each edge is determined by counting the number of
non-local gates between the respective qubits. This
graph representation simplifies the circuit by ignor-
ing the gate order, but it works for both qubits and
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Figure 1: Gate compression. (a) & (b) Compression of quantum circuits of N -qubit controlled phase-flip (CPF)
gates C (N)

PF . (a) The best known [30] decomposition of a 4-qubit CPF gate C (4)
PF in terms of two-qubit gates requires

13 entangling gates, i.e., 6 CNOTs and 7 controlled T (or T †) gates (CT) with T = diag{1, exp(iπ/4)}. By
compressing the circuit to two qudits of dimension 4, two quarts, only 7 entangling gates are required in terms of
embedded two-qubit gates, while 6 previously non-local gates become local. However, the same operation C (4)

PF could
also be realized by a single controlled-C (2)

PF =CZ= diag{1, 1, 1, −1} gate on two ququarts, carried out if ququart 1 is
in the state |d − 1 ⟩ = |3 ⟩ corresponding to the two-qubit state |11 ⟩. (b) Similarly, the most efficient decomposition
of C (6)

PF for 6 qubits requires 61 two-qubit gates [30], whereas the compression to 3 ququarts (d = 4) requires (at
most) 9 (native) two-ququart gates, including adjoints and powers of controlled CT gates as well as controlled Π
gates, where Π =

∑3
n=0 | (n − 1)mod(3) ⟩⟨n | is a permutation. Further compressing to two quocts (d = 8), as little

as 1 controlled-C (3)
PF gate, conditioned on the quoct computational-basis state |d − 1 ⟩ = |7 ⟩ may be required. In

both (a) and (b) the final decomposition of the N -qubit CPF gate into a single controlled-C (N/2)
PF gate requires a

non-factorizable two-level entangling gate. (c) & (d) Illustration of the effect of gate compression for the creation of a
(quadratic) 2D cluster state consisting of four (c) and nine qubits (d), respectively. Cluster states are a particular type
of graph state that can be schematically represented by vertices (here shown as circles carrying the local subsystem
dimension d as labels, 2 for qubits, 4 for ququarts, etc.) connected by lines representing entangling gates (controlled-Z
gates for qubits). By grouping (blue boxes) the qubits into pairs (c) or triples (d) the subsystem dimension becomes
d = 4 (ququart) and d = 8 (quoct), respectively, but the number of non-local entangling gates can be reduced (c)
from 4 two-qubit gates to either 2 embedded two-qubit gates or even 1 single-qudit gate, and (d) from 12 two-qubit
gates to 6 embedded two-qubit gates, 4 two-qudit gates, or 2 two-quoct gates, as is explained below.

qudits. Using this graph representation, one can em-
ploy graph-partition algorithms [31, 32] to divide the
graph into subgraphs (partitions) in a way that maxi-
mizes the number of non-local gates within each par-
tition. Specifically, we try to find a minimal k-cut,
which involves identifying a set of edges E′ that,
when removed, partitions the graph into k parts while
minimizing the sum of weights in E′. Note that
this paradigm can cover a wide range of optimiza-
tion goals, including unequal-size partitions or dif-
ferent cost functions. In particular, we highlight the
importance of considering the structure of the origi-
nal circuit, as well as the available forms of qudit en-
tanglement in the target hardware to achieve optimal
encoding of qubits into qudits.

Gate set optimization. After we have reduced the
width of the circuit, we can further improve upon
the circuit depth by considering the extended gate set
we can access for qudits. Recall that the embedded
gates, resulting from circuit compression, still gen-

erate two-level entanglement and retain their origi-
nal tensor-product structure. While such gates can be
constructed from a universal set of qudit gates, there
is much more untapped potential in the qudit Hilbert
space, including gates that do not respect the tensor-
product structure of the original qubit Hilbert space.
By expanding the gate set, a significant reduction in
circuit depth can thus be achieved, as illustrated in
Fig. 1. However, the choice of gates for the expansion
strongly depends on the chosen hardware platform.

Upper and lower bounds. Using the above princi-
ples, we can derive upper and lower bounds on the
compression ratio Cd, which we define as the ratio of
the number of entangling gates in the compressed cir-
cuit to the number of gates in the original circuit. To
compute these bounds, we denote the weights of the
original qubit graph by ω⃗ and the weights of the qudit
graph after compression by ⃗̃ω. The latter is obtained
by dropping all components of the original vector that
correspond to non-local gates between qubits that are
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encoded in the same qudit, and which thus become
local, and then assigning all edges between qubits
that are encoded in different qudits to the respective
qudits in the new graph (and adding the correspond-
ing weights). The upper (worst-case) bound is then
obtained by comparing the sum of weights (i.e., the 1-
norm of ω⃗) before and after compression, represent-
ing the scenario where no further gate optimization is
possible. The lower bound, on the other hand, rep-
resents the scenario where gate optimization is able
to fully exploit native qudit gates to realize the full
qudit-entangling operation with a single gate opera-
tion. This bound is hence determined by the num-
ber of non-zero weights in ⃗̃ω. By normalizing these
bounds using the number of gates in the initial circuit,
∥w⃗∥1, we can establish the compression-ratio bounds

∥ ⃗̃w∥0
∥w⃗∥1

≤ Cd ≤ ∥ ⃗̃w∥1
∥w⃗∥1

, (1)

where, ∥·∥0 and ∥·∥1 refer to the l0 (quasi-)norm and
the l1 norm, respectively. The span between the lower
and upper bounds indicates potential improvements
based on an appropriate gate set. In the following,
we will provide examples saturating both the lower
and the upper bound.

Controlled phase gates. As a key example, we will
now study N -qubit controlled phase-flip gates C (N)

PF

(i.e., phase gates with a π phase shift). These gates
are central elements in quantum computing, for ex-
ample, as a key part of Grover’s search algorithm [3].
It can be written as follows,

C (N)
PF = 1⊗N + |1⟩⟨1 |⊗(N−1) ⊗ (Z − 1), (2)

where 1 is the identity operator and Z denotes the
single-qubit Pauli-z gate. Due to its central role, the
decomposition of C (N)

PF is often used as a benchmark
for comparing circuit decompositions and gate sets.
Importantly, provably optimal decompositions into
two-qubit gates and local operations are known for 3
to 8 qubits [30]. As we noted above, the optimality
of a quantum circuit depends on the metric used.
However, even when the metric is fixed, finding
an efficient way to realize the circuit is highly
non-trivial. For example, for a four-qubit controlled
phase flip C (4)

PF , the most efficient decomposition
known, believed to be optimal, requires 13 two-qubit
gates [30], as shown in Fig. 1 (a). The same circuit
can be realized in a qudit system by embedding two
qubits each into two ququarts. There are 3 ways to
achieve such a partition, and the best choice turns 6
entangling gates into local gates, leaving 7 embedded

two-qubit gates between the two ququarts. If we
consider also ququart gates in our gate set, this can
further reduce the non-local gate count to just a
single gate between the two ququarts, which turn out
to generate only two-level entanglement, as shown in
Fig. 1 (a). In case N > 4, we can cut N qubits into
k equal parts by using a 2N/k-dimensional qudit in
each part and achieve similar improvements. For the
six-qubit controlled phase-flip gate (C (6)

PF ), for exam-
ple, 61 two-qubit gates are needed in the best known
(again, believed to be optimal) decomposition [30].
Encoding the same circuit into 3 ququarts reduces
the requirement to 9 two-ququart gates, including
four two-ququart controlled-shift gates and five two-
ququart controlled phase gates [33], see Fig. 1 (b).
Going further by encoding the gate into two qudits
of dimension d = 8 (quocts), the gate can again be
realized with a single two-level entangling qudit gate.

Graph states and the saturation of graph partition-
ing bounds.– Graph states are another highly rele-
vant example. For a set of edges E = {e}, they
can always be created by applying controlled-Z gates
across all edges on computational-superposition
product states, i.e., |G⟩ :=

∏
e∈E CZe|+⟩⊗n with

|+⟩ =
(
|0⟩ + |1⟩

)
/
√

2. As all CZe commute, it
directly follows that, with an unrestricted entangling
power of the gate set, the lower bound ∥ ⃗̃w∥0 can be
saturated. If the gate set is restricted to two-level en-
tangling gates, however, the fact that a high amount
of entanglement may be generated if multiple edges
cut across a bipartition directly implies that the up-
per bound needs to be observed with ∥ ⃗̃w∥1 embedded
qubit gates.

Consider, for example, a 4-qubit quadratic 2D
cluster state as illustrated in Fig. 1 (c). Due to the
symmetry of the state the partition is irrelevant and
we can thus combine the first and second qubit as
well as the third and fourth qubit to a qudit each
without loss of generality. This reduces the num-
ber of non-local gates from 4 to 2, which saturates
the upper bound ∥ ⃗̃w∥1. Now, we can use gate op-
timization to reduce the number to 1 by combining
the two non-local gates between the qudits to a single
genuine qudit gate, saturating the lower bound ∥ ⃗̃w∥0.
This example demonstrates that the commutativity of
the entangling gates across compressed partitions as
well as the maximum amount of entanglement gen-
erated across these partitions are crucial parameters
that determine how well a qubit circuit can be com-
pressed when compiled on a qudit architecture and
which gate set would be required for the qudits.

Accepted in Quantum 2023-09-28, click title to verify. Published under CC-BY 4.0. 4



Photonic implementation.– Photonic systems are
excellent candidates for gate compression. Current
developments enable increased control over higher-
dimensional degrees of freedom by manipulating a
photon’s polarization, spatial profile, temporal pro-
file, or frequency, either separately or simultaneously.
This enables the encoding of multiple bits into a sin-
gle photon, as is routinely done in entanglement-
based quantum communication [34–36]. Local uni-
tary operations are easily done within a certain de-
gree of freedom, such as spatial manipulation through
multi-plane light conversion [37], frequency manipu-
lation [38, 39], or between different degrees of free-
dom, for example, using polarizing beam splitters
to couple path and polarization. For instance, high-
dimensional Pauli X- and Z-gates, which are parts of
higher-dimensional universal gate sets, have recently
been implemented in a number of ways [37, 40–43].
While local gates can often be performed with near-
unit efficiency and fidelity, entangling gates remain
the Achilles heel of photonic information processing,
as entangling two photons can be achieved proba-
bilistically at best, leading to an exponential decrease
in success probability with the number of entangling
gates.

The latter aspect is where high-dimensional en-
codings can become particularly useful, as more in-
formation can be processed at higher fidelity and
with potentially much higher success probability.
Recent developments already show promising re-
sults [44, 45], including the implementations of high-
dimensional multi-partite quantum gates [46] and
of the SUM gate (a high-dimensional controlled-X
gate) in the time and frequency degrees of freedom
of photons [47]. Here, we propose a scheme for a
photonic two-qudit entangling gate that grows only
logarithmically in complexity with dimension and
achieves a constant success probability of 1/4 that is
independent of the qudit dimension, see Appendix A
for details.

Trapped-ion implementation.– Trapped ions are
among the leading platforms for quantum informa-
tion processing [48], where the electronic energy lev-
els of each ion naturally provide a high-dimensional
Hilbert space. Recently it was shown that such a
system can be operated as a universal qudit quan-
tum processor up to dimension 7 [19]. The qudit-
gate set used in this demonstrations consisted of arbi-
trary local gates and two-qubit CNOT gates embed-
ded in a qudit Hilbert space. Compared to a stan-
dard qubit CNOT, the embedded version exhibits er-

ror rates larger by roughly a factor of 2, independent
of the Hilbert-space dimension. Beyond this basic
gate set, it has been shown that both dominant gate
mechanisms in this platform, the Mølmer-Sørensen
gates [49] and light-shift gates [50], can be general-
ized to achieve genuine qudit entanglement. A first
experimental realization of the latter demonstrated
the generation of genuine qudit entanglement in a
scalable fashion and with highly competitive error
rates [50].

Compiling the example of Fig. 1 (a) and using
state-of-the-art error rates for trapped-ion quantum
processors of about 0.01 per qubit CNOT gate [48],
a rough estimate suggests that the implementation of
the four-qubit C (4)

PF gate could achieve an error rate on
the order of 0.12 with the standard two-level decom-
position using 13 two-qubit entangling gates. Curi-
ously, while it is known on the one hand that enlarg-
ing the Hilbert space locally (i.e., encoding 4 qubits
into 4 qudits) can reduce the required number of gates
quadratically [23], this gain is offset almost exactly
in the 4-qubit case by the factor of 2 increased er-
ror rates incurred in the experimental implementa-
tion [19]. On the other hand, when two qubits each
are encoded in a qudit of dimension 5 (4 computa-
tional levels and 1 auxiliary level), the required num-
ber of two-level entangling gates drops to 1 (albeit
with a rotation angle equivalent to 4 qubit gates),
achieving an estimated error rate of 0.04, see Ap-
pendix B for the circuit. Curiously, this is an example
where it is optimal to use a two-level entangling gate
in the qudit circuit, which is not an embedded qubit
gate.

Conclusion.– We have explored two ways in which
higher-dimensional architectures are universally ben-
eficial to quantum computing. First, using gate com-
pression, we can cut down on the amount of entan-
glement needed for a specific N -qubit circuit, and
second, by exploiting the added capabilities of qudit
systems in the form of richer gate sets, we can fur-
ther reduce the number of non-local gates required to
generate that entanglement. This highlights the key
role played by entanglement and the available gate set
in efficient qudit QIP. As every higher-dimensional
gate can be achieved by any universal gate set applied
a number of times, the advantage from larger gate
sets is constant in the number of qubits. Similarly,
even the most efficient partitioning of the qubit cir-
cuit leads to only a constant advantage. Such constant
improvements, however, can make the difference be-
tween feasibility and failure.
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Another important aspect is the potential break-
down of conventional wisdom regarding easily im-
plementable local gates versus hard non-local gates.
Once qudit dimensions get sufficiently large, the
performance gap between local and non-local gates
might change. Moreover, gate performance typi-
cally degrades somewhat with system size, provid-
ing another motivation for reducing the number of
quantum-information carriers and making more effi-
cient use of available resources. Finally, we empha-
size that a case-by-case evaluation of the actual trade-
offs is critical to finding the optimal dimensionality
for a given problem and hardware platform.

Our examples provide a promising first step, show-
ing that qudit encodings can lead to a significant
reduction in gate count. Hence, this approach can
greatly increase the utility of current and future quan-
tum hardware, using only degrees of freedom that
are already present in today’s quantum technology.
Indeed, various quantum-computing platforms have
demonstrated qudit control with ever-increasing per-
formance. Both gate compression and gate-set op-
timization will be central tools for making the most
of the next generation of high-dimensional quantum
processors, harnessing the full potential of physical
quantum information carriers.
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A Photonic Implementation with the orbital angular momentum

To implement quantum circuits with high-dimensional quantum gates, we propose a general experimental
scheme for two-qudit CPF gates in the orbital angular momentum (OAM) of two photons. The scheme suc-
ceeds with a probability of 1

4 , irrespective of the encoding dimension, but requires an auxiliary two-qubit Bell
state. Hence, this scheme does not overcome some of the fundamental limitations that all photonic computing
suffers from but carries the potential to increase the number of gates that can be realized with a given set of
resources, as well as exploring gates in one of the many potential degrees of freedom that can be harnessed in
single-photons.

In order to implement an efficient photonic circuit for C (N)
PF in the OAM degree-of-freedom via a qudit

encoding, high-dimensional quantum gates with high success probability are required. These include single-
qudit gates, which have been well developed for the OAM of a single photon, i.e., Pauli X- [37, 41, 43]
and Z-gates [42], and non-local two-qudit quantum gates, which include two-qudit quantum controlled-phase
gates or two-qudit quantum controlled-cyclic (permutation) gates. All of these non-local quantum gates are
conditioned on the highest state |d − 1⟩ of the control qudit with computational basis {|m⟩}m=0,1,...,d−1.

Here we are interested in performing two-qudit gates in the subspace spanned by the OAM modes
{|m⟩}m=0,1,...,d1−1 and {|m⟩}m=0,1,...,d2−1 of two photons, where d1 and d2 are any (integer) dimensions.
The main idea of our proposal for a potential experimental implementation is shown in Fig. 2 (a).

Figure 2: Experimental scheme for realizing a two-qudit CPF gate in the OAM degree-of-freedom of two
photons. (a) The setup has three main parts representing the two subsystems in question, control (upper part)
and target (lower part), as well as an auxiliary state |φ ⟩ in a two-qubit subspace spanned by two OAM modes (|0 ⟩
and |m1 ⟩, as well as |0 ⟩ and |m2 ⟩, respectively) each of two additional photons, here shown for arbitrary local
dimension d. The control and target parts each consist of single-photon input states |C ⟩ and |T ⟩ that are fed into
OAM sorters S1 and S2, respectively, which split pairs of the different OAM modes into orthogonal spatial modes.
There are

⌊
log2 (d1/2 − 1)

⌋
+ 1 outputs from the sorter S1/2. For each of these parts, the paths corresponding to

the pair of OAM modes |d1/2 − 1 − 2⌊log2 (d1/2−1)⌋ ⟩ and |d1/2 − 1 ⟩, respectively, are each combined with one of
the photons of |φ ⟩ (normalization not shown) on additional OAM beam splitters (OAM-BS) m1 = 2⌊log2 (d1−1)⌋

and m2 = 2⌊log2 (d2−1)⌋ respectively. One of the output paths of each OAM-BS is then projected onto an equally
weighted superposition of |0 ⟩ and |m1/2 ⟩, while the remaining output paths of the OAM-BSs are fed back into a
final inverse OAM-sorter operation S−1

1/2 that recombines the different paths into a single path. (b) Example for OAM
sorter S in dimension eight (d = 8) realized by a combination of two OAM-BSs [labeled by 2i = 1 and 2i = 2 with
i = 0 and i = 1, respectively, as shown in (c)] and two holograms [for ℓ0 = −1 and ℓ0 = −2 as shown in (c)]. The
first OAM-BS (2i = 1, i ∈ Z0+) separates the modes |0 ⟩, |2 ⟩, |4 ⟩, and |6 ⟩ from |1 ⟩, |3 ⟩, |5 ⟩, and |7 ⟩. The first
hologram (ℓ0 = −1) shifts the latter modes to |0 ⟩, |2 ⟩, |4 ⟩, and |6 ⟩, before the second OAM-BS (2i = 2) separates
|0 ⟩ and |4 ⟩ (formerly |1 ⟩ and |5 ⟩) from |2 ⟩ and |6 ⟩ (formerly |3 ⟩ and |7 ⟩). The second hologram (ℓ0 = −2) then
maps |2 ⟩ and |6 ⟩ to |0 ⟩ and |4 ⟩, originally corresponding to |d − 1 − 2⌊log2 (d−1)⌋ ⟩ = |3 ⟩ and |d − 1 ⟩ = |7 ⟩. (c)
Two basic elements: OAM beam splitters (OAM-BSs) and holograms. The label i determines the sorting property of
the OAM-BS. Holograms shift the azimuthal quantum number of the OAM modes fixed amount. For details about
the structure of OAM-BS see Fig. 3 (b).
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Figure 3: Experimental scheme for two-qudit controlled phase flip in the OAM of two photons with eight
dimensions. (a) Experimental setup. 10 OAM-BSs (blue boxes) together with holograms (thick, black, vertical lines)
are used in the setup. A two-qubit Bell state is necessary for facilitating the interaction between the two photons.
(b) Structure of the OAM-BS. The OAM-BS works for sorting OAM modes, the sorting property is determined by i,
which is related to the rotation angle α of the Dove prism.

The operation S splits modes from one path into multiple paths, while S−1 does the opposite, regrouping all
modes into a single path. First, the input photon goes through S, which sends the highest mode |d − 1⟩ to its
own path together with the mode |d − 1 − 2⌊log2 (d−1)⌋ ⟩ by using ⌊log2 (d − 1)⌋ OAM-BSs and ⌊log2 (d − 1)⌋
holograms. Subsequently, |d − 1⟩ and |d − 1 − 2⌊log2 (d−1)⌋ ⟩ are combined with a photon from the Bell state
|φ⟩ in an OAM-BS. Finally, the operation S−1 recombines all modes into one single path. The gate works
if two single-photon detectors click at the same time with probability of 1/4 (due to the auxiliary Bell state,
normalization not shown). As an example, we show the operation S for dimensions d = 8 in Fig. 2 (b). The
highest mode |7⟩ and mode |3⟩ are split into their own paths and enter into an OAM-BS together with another
photon (red) from the auxiliary state. Afterward, all modes are routed into one single path via S−1. The opera-
tion S consists of multiple OAM-BSs and holograms, as shown in Fig. 2 (c). An OAM-BS is an interferometer
containing two Dove prisms [51], see Fig. 3. The operations S and S−1 features a high symmetry: S−1 is a
mirror reflection of S, with an inversion of the hologram values.

There are two basic elements in the setup: holograms and OAM beam splitters, each of which has a finite
(below 1) fidelity, meaning an advantage can only materialise in high dimensions if one needs at most a log-
arithmic number of these elements for a specific gate. And indeed, the number N(d1/2) of OAM-BSs scales
logarithmically with d1 and d2:

N(d1/2) = 2 × (⌊log2 (d1 − 1)⌋ + ⌊log2 (d2 − 1)⌋) + 2, (3)

where N(d1/2) is an upper bound obtained by studying a simple setup. For certain circuits, we know the actual
number can still be lower. In the case of two eight-dimensional qudits, the complete C (6)

PF can be achieved with
10 OAM-BSs, as shown in Fig. 3.

Remarkably, the probability of success is 1/4, irrespective of the dimension. Therefore, the efficiency of the
circuit increases significantly when using higher-dimensional gates. It is also interesting to implement such
gates in other degrees of freedom of photons, such as path.
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B Trapped ion implementation
In Fig. 4, we provide a circuit for the implementation of a four-qubit CPF gate C (4)

PF using either four qubits, or
2 qudits.
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Figure 4: Trapped-ion circuits for implementing a four-qubit CPF gate C (4)
PF . Implementations are shown for

(a) 4 qubits with auxiliary level, or (b) two qudits that encode 2 qubits each. In both cases only two-level entangling
operations are used, where each yellow gate corresponds to a Mølmer-Sørensen (MS) gate with rotation angle π/2,
which is maximally entangling for qubits. The local rotations are X or Y rotations with acting on the subspace
indicated in the superscript (and color coding), where operations without superscript act on the 01-subspace of the
original qubits. Note that, while using auxiliary levels enables a reduction to only 5 non-local gates, those gates
require larger rotation angles and thus come with an increased experimental cost per gate. Even taking this into
account the qudit-assisted circuit is expected to perform slightly better than a pure qubit circuit. In case (b) each
ion occupies a 5-dimensional Hilbert space and encodes two qubits. Exploiting again the auxiliary level, only a single
non-local gate is required.
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