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Abstract

Stream Reasoning is a young field of study that focuses on the high level evaluation of
data streams. The LARS framework was created for this task utilizing a logic based
approach, modelling data streams and programs in Answer Set Programming fashion.
We introduce a new formalism for the LARS framework by translating the LARS logic
programming language to Metric Temporal Logic. This logic expresses formulas more
succinctly than others and uses timed state sequences instead of streams as semantic
structures, which distinguish between system- and real-time. By translating LARS to
MTL and back we create a new MTL fragment, called Metric LARS, which describes the
LARS-translatable forumlas, and provide answer set semantics for timed state sequences
and Metric LARS programs. Timed state sequences are explored in detail on their own
and we give various options to translate them to LARS streams and back, with methods
that can be chosen depending on the semantics of the data to be modelled. We further
create fragments of Metric LARS for Metric Interval Temporal Logic, Signal Temporal
Logic and their respective semantic structures and have a look at Timed Propositional
Temporal Logic and its relation with Metric LARS.
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Kurzfassung

Stream Reasoning ist ein neues Forschungsfeld, das sich auf die semantische Auswertung
von Datenstreams konzentriert. Für dieses Feld wurde das LARS Framework geschaffen;
es benutzt Logik Programmierung und Datenströme der Answerset Semantik. In dieser
Arbeit führen wir neue Formalismen für das LARS Framework ein, indem wir die LARS
Programmiersprache in Metric Temporal Logic (MTL) übersetzen. Mit dieser Logik lassen
sich Formeln sehr prägnant ausdrücken und sie wertet diese Formeln auf Timed State
Sequences anstatt auf Datenströmen aus. Diese Timed State Sequences unterscheiden
zwischen einer System- und einer Echtzeit. Durch die Übersetzung von LARS auf MTL
erhalten wir ein neues MTL Fragment, das wir Metric LARS nennen. Dieses Fragment
umfasst alle Formeln, die sich in LARS übersetzen lassen. Für Metric LARS und Timed
State Sequences wird auch Answerset Semantik eingeführt. Timed State Sequences werden
weiters auch genauer behandelt und wir beschäftigen uns mit verschiedenen Möglichkeiten
diese in Datenströme zu übersetzen. Hier gibt es mehrere Optionen, jenachdem wie die
temporalen Daten modelliert werden sollen. Wir werfen außerdem noch einen Blick auf
andere mit MTL verwandte Real-Time Logics wie Metric Interval Temporal Logic, Signal
Temporal Logic und deren semantischen Strukturen, sowie Timed Propositional Temporal
Logic, welche die Mutter dieser Familie der Logik ist.
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CHAPTER 1
Introduction

1.1 Background
Stream Reasoning is a novel field of research that is concerned with the monitoring,
evaluation and reasoning of data streams. Although a clear definition cannot be made,
Stream Reasoning distinguishes itself from Stream Processing by being a more high-level
and abstract approach to working with temporal data. As there are currently more data
streams around the world than ever before in the history of computer science, Stream
Reasoning is of growing interest and will be a key research topic in the coming years.
The key features of stream reasoning include dropping and filtering data to cope with the
excessive amount of information contained in a stream and that evaluation of programs
has to be done incrementally, continuously and repeatedly because of newer information
constantly flowing in during the run-time of a stream and possibly invalidating assump-
tions of the past. This interest was already monitored and observed by Dell’Agilo et al.
in 2017 [DDVvHB17].

With this new field of research emerging, there are many possibilities to choose from,
but none is as perfectly suited for this task as logic. While there are many formalisms
available to model data with, Beck et al. chose 2018 in their paper "LARS: A logic-based
framework for Analytic Reasoning over Streams" [BDTE18] to work with temporal logic
using Answer Set Semantics. This has many great properties to reason over streaming
data.

Temporal Logic [BvBW06] is a form of Modal Logic [BvBW06] that models time as a
structure where each point in time has a set of logic formulas that describes its state.
Many such logics exist, but the most prominent one is Linear Temporal Logic [Pnu77],
which uses a structure of linear, subsequent time points. Since data streams are not a
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1. Introduction

lot different in that they usually consist of a linear sequence of data points – although
different representations may consist of parallel streams or include technical details such
as transmission delays – it was a logical option to use for Stream Reasoning.

The LARS framework utilizes linear temporal logic and semantics of Answer Set Pro-
gramming [BET11][Lif19][RN02]. This is a formalism for reasoning over sets of logic
inference rules called programs. Rules consist of a body that has to be fulfilled so that the
head of the rule can be inferred. This technique has many great properties for reasoning
tasks and can be adapted for most problem instances.

1.2 Problem Statement
As was said, the LARS framework only uses semantic structures of linear temporal logic,
but it is unclear how it is related to other temporal logics. The goal of this thesis is
to introduce a different type of logic to Answer Set Semantics for Stream Reasoning
and investigate its relationship with LARS: Real-Time logic, first and foremost Metric
Temporal Logic. This logic is special in that its semantic structures, called Timed
State Sequences, have a way to distinguish between system time and real time. It was
first introduced in 1993 by Alur and Henzinger [AH93] and was intended to be a more
succinct fragment of Timed Propositional Temporal Logic, the first real-time logic devised
in 1989 [AH89]. Furthermore we want to show ways to model data streams as timed
state sequences and align it with various other semantic structures of other real-time logics.

1.3 Overview of Results
In this thesis we enrich the LARS framework with an additional form of reasoning using
Metric Temporal Logic and fully translate it into the LARS logic language. With this we
also introduce Answer Set Semantics for MTL and Timed State Sequences. We further
explore the relationship of the resulting MTL logic programs with other real-time logics,
such as Metric Interval Temporal Logic [AFH96], Signal Temporal Logic [MN04] and
Timed Propositional Logic [AH89]. We also examine the relationships of timed state
sequences with the structures underlying these logics and describe how to use their
respective intended semantics with timed state sequences.

1.4 Related Work
There have been multiple research papers aiming to provide Metric Temporal Logic
with Answer Set Semantics. One of the earliest was Datalog MITL by Brandt et al.
2017 [BKK+17], which focuses on the Metric Interval Temporal Logic fragment of MTL,
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1.4. Related Work

which will be explained in the later chapters of this thesis. There have already been
applications of MITL used in reasoning as seen in the work of Fu and Topcu 2015 [FT15].
A different form of datalog for MTL was proposed by Wałęga et al. in 2019 [WKG19],
called Forward Propagating DatalogMTL. The authors decided to omit changes to the
past by the logical inference done on the logic rules, hence the name. This is again a
datalog type that is based on MITL rather than MTL itself. This logic is not evaluated
on timed state sequences, but rather a rational timeline, with a mapping function that
assigns sets of propositions to points in the timeline.

In a recent paper, Wałęga et al. [TCWCGK21] did further work on DatalogMTL and
extended it for stratified datalog programs with MTL temporal operators. Here they
proposed negation as failure as it is defined in most answer set formalisms. This means
that facts that are not known to be true are assumed to be false. They also progressed the
understanding of their language by researching the reasoning complexity of negation-free
DatalogMTL programs, which was found to be PSPACE-complete in data complexity and
EXPSPACE for combined complexity. This extension of DatalogMTL is again evaluated
on a rational timeline.

Stream reasoning has features that make it amenable for ASP; the LARS framework and
its success is one of the witnesses of this view. The framework was proposed by Beck et
al. in 2018 [BDTE18] and is the basis for this thesis. Another example of ASP for stream
reasoning is Temporal Datalog by Ronca et al. [RKG+18]. Here the authors thoroughly
examine the possibilities of stream reasoning in datalog that is extended with a temporal
sort and successor function. They also examine new problems in stream reasoning, such
as the Definitive Time Point problem and define their characteristics, as well as their
complexity requirements. For instance DTP is PSPACE-complete in data complexity.
These problems were designed to challenge existing stream reasoning frameworks and
inspire the design of future systems. They found that logic-based stream reasoning is
feasible for non-recursive Temporal Datalog queries.

Recently there has been more interest sparking in MTL answer sets, as Cabalar et al.
[CDSS20] show in their 2020 paper "Towards Metric Temporal Answer Set Programming".
This thesis is not influenced by their work on Answer Set Semantics for MTL, as the
approaches are radically different in nature and were developed independently at roughly
the same time. The biggest difference is found in the authors advancing the logic of
Here-and-There with an MTL extension and base it on Metric Equilibrium Logic. The
results are the fragments of MHT and MEL. While using the logic of Here-and-There is
a valid idea for the establishment of answer set semantics, it is not really suited for the
application in stream reasoning. This was found by Beck et al. in 2016 [BDTE16]. In
this paper the authors proposed a form of LARS that included the HT semantics, but
they found that the notion of windows cannot be properly expressed in Here-and-There
logic.
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1. Introduction

1.5 Organization
In the following we will explain the content to come in the following chapters.

• In Chapter 2 we introduce the various preliminary topics this thesis is built upon.
We start with the answer set semantics that will later make up the core contribution
of the thesis. Next we have a look at Modal Logic and the Possible World Semantics,
focusing on temporal logic. From this we start with stream reasoning and the
LARS framework. This includes an overview of stream reasoning, as well as a first
quick look at the syntax and semantics of LARS, that will get more in depth in
the later chapters.

• Chapter 3 is dedicated solely to Metric Temporal Logic. We provide an in-depth
explanation of the syntax and semantics of this logic, as well as proofs for expressivity
and complexity of this logic. This serves as the foundation of all findings of this
thesis.

• In Chapter 4, the main contributions are presented. We first show the translation
of the Plain LARS fragment, which omits most of the challenging features of LARS.
To properly translate all LARS formulas we introduce a new normal form, called
Nested Window Normal Form. This helps with the succinct expression of MTL
formulas compared to LARS. From there we provide a translation of general LARS
and MTL formulas. In the next step we generalize the translation to window
functions of unknown complexity, by introducing Oracle Intervals. With this all
done, we have a look at translations for LARS streams to timed state sequences and
back. We also define the subset operator for timed state sequences, that creates a
partial order on the set of all timed state sequences. This is needed to define the
Answer State Semantics of Metric LARS, the set of all LARS-translatable MTL
formulas. We finish this chapter with semantic properties of answer state sequences
and a small note to the size increase of the translation.

• Chapter 5 is concerned with the relationship of Metric LARS with other real-time
logics such as Metric Interval Temporal Logic, Signal Temporal Logic and Timed
Propositional Temporal Logic. For this reason we provide translations for the
semantic structures of these logics and a Metric LARS fragment for STL and MITL.
As TPTL is more expressive than MTL, we only mention it for future research.

• In Chapter 6 we summarize our findings and contributions and have a final outlook
on what is yet to come. This includes the obvious lack of a working reasoner
and translator for Metric LARS, but also some research on the complexity and
expressivity of Metric LARS.
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CHAPTER 2
Preliminaries

In this chapter we have a look at the work previously done in the field of stream reasoning
and all accompanying technologies necessary to gain a solid foundation to understand
the thesis at hand.

In the first section, we will look at answer set programming and the Datalog syntax
for first order logic. Next we have a look at modal logics and linear temporal logic
in particular. In the last section the LARS framework and stream reasoning will be
explained. If not explicitly said, the information found in this section originate from
Artificial Intelligence: A modern Approach by Russel and Norvig [RN02].

2.1 Answer Set Programming
Answer Set Programming is a certain type of logic programming, where models are
defined as so-called Answer Sets, centered around the so-called stable model semantics.
This is the foundation of a lot of work done in the field of automated reasoning and will
be the basis for the semantics defined in this thesis.

2.1.1 Syntax
A given extended answer set program P consists of a language Σ that is made up of
a set P of predicate names, a set C of constants and a set V of variables. Predicates
have a positive arity assigned to them determining the number of parameters that they
accept. These parameters are called terms, which can be either variables or constants.
The structure of a predicate name with parameters is called an atom and typically of the
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2. Preliminaries

form

predicate_name/n(term1, term2, ...termn) n ≥ 0 (2.1)

If there are no variables in the vector of terms, the atom is called ground. Atoms can
be negated in two different fashions: strong or classical negation and default negation,
also called negation as failure. Literals are atoms that are either strongly negated or
positive. Any positive or negative literal can also be default negative negated. We will
not consider the special semantics of strong negation in the following, as this can be
emulated by creating two different mutually exclusive atoms.

Definition 1 An answer set program P consists of a finite set of inference rules of first
order logic. The most general case is the extended rule, which is of the following form:

a1 ∨ a2 ∨ ... ∨ am ← b1 ∧ b2 ∧ ... ∧ bk ∧ not bk+1 ∧ ... ∧ not bn. k ≤ n (2.2)

where we denote the left-hand-side of the rule by head(r) = {aj | 1 ≤ j ≤ m}, also called
the rule head and the right-hand-side body(r) = {b1, ..., bk, not bk+1, ..., not bn} is called
the rule body. We further discriminate between the positive and the negative body of a
rule r. The positive body is defined as body+(r) = {bi | 1 ≤ i ≤ k}, while the negative
body consists of all atoms body−(r) = {bi | k < i ≤ n}.

The type of rule is based on the following conventions:

• fact: a rule is called a fact iff m = 1 and n = 0, so a rule with just one atom in the
head and no body.

• strict: a rule is proper iff n = k and m ≥ 1

• positive: a rule is positive iff it includes no negated atoms.

• disjunctive: a rule is disjunctive iff m > 1, so there are multiple atoms occurring in
the head.

• normal: a rule is normal iff it is proper and not disjunctive.

• Horn: a rule is Horn iff m = 1, k = n and it is positive.

• extended: a rule is called extended iff it is disjunctive and includes default negation.

• safe: a rule is called safe iff every term in the rule occurring in a default negated
atom also occurs in a positive atom.
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2.1. Answer Set Programming

• constraint: a rule is a constraint iff m = 0, so a rule without a head. In this case
the rule infers ⊥.

If each rule in a program has a certain property, the program adopts the attribute for
itself. For instance, if every rule in a program is strict, the program is also called strict.

Example 1 Here we present some rules with their properties:

• p ← q. this rule is proper, ground, normal, positive, safe and Horn.

• a ← . this rule is a fact.

• ← not a. this is a constraint. The atom a is default negated.

• a1 ∨ a2 ← b1, not b2. is extended.

• a(X) ← b(X), not c(X). is safe.

• a(X) ← not b(X), not c(X). is not safe.

2.1.2 Semantics
After defining the syntax of an answer set program, next we want to define the semantics
of it.

The semantics of an answer set program P is based on a structure composed of a set C
of constants, a set P of predicate names and their arity and a set V of variables. The
so-called Herbrand Universe of program P is defined as all the terms occurring in it:

HU(P) = C (2.3)

The Herbrand Base of a program P is defined as:

HB(P) = {p/n(c) | p/n ∈ P, c ⊆ HB(P ), |c| = n, n ∈ N} (2.4)

Atoms can be ground, which means that they do not include any variables. Similarly, a
rule that only consists of ground atoms is also called ground. The semantics of answer
set programs are defined for ground programs, composed entirely of ground rules.

A given set of ground atoms is called interpretation. An interpretation I of a program
P is a subset of Herbrand Base HB(P). Intuitively an interpretation fulfills an atom
if it is in the interpretation, similarly, a ground rule is fulfilled if the positive body is
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2. Preliminaries

part of the interpretation and the negative part is not. When this is the case, the head is
inferred, meaning it has to be in the interpretation as well. This is defined as follows:

{b1, ..., bk} ⊆ I ∧ {bk+1, ..., bn} ∩ I = ∅ → {a1, ..., am} ∩ I �= ∅ (2.5)

When Condition (2.5) holds for a ground rule, the interpretation is called a classical model
of the given rule. If it is a classical model of every rule in a program, the interpretation
is a classical model of the program.

In the case of a non-ground program P, we first derive the ground version of it grnd(P).
This process is called grounding and uses the substitution function θ. The application
of θ on a rule substitutes the variables occurring in its atoms with the constants of the
program, which is denoted by grnd(r), where r is the given rule. This creates all possible
ground instances of a rule:

θ : V (r) �→ HU(P), r ∈ P (2.6)
grnd(P) =

�
r∈P

grnd(r) (2.7)

where V (r) is the set of variables occurring in rule r.

More important than such classical models are stable models for the purpose of defining
semantics. Stable models are generated with the Gelfond-Lifschitz Reduct PI of a ground
program P and an interpretation I [GL88]:

PI = {head(r) ← body+(r) | r ∈ P, body−(r) ∩ I = ∅} (2.8)

If the interpretation I is a subset-minimal classical model of PI , it is called an Answer Set
of program P. Because of language features like disjunctive rules and default negation,
there may be more than just a single answer set (or conversely no answer set at all). For
this purpose, the set of all answer sets of a program P is denoted by AS(P). Since every
answer set is minimal, different answer sets are incomparable and the following condition
holds:

A1, A2 ∈ AS(P) ∧ A1 ⊆ A2 → A1 = A2 (2.9)

Non-ground programs first have to be grounded to be evaluated by applying the substi-
tution with θ. For these programs, all answer sets that are found for the ground version,
are also answer sets for the non-ground programs.

AS(P) = AS(grnd(P)) (2.10)

8



2.1. Answer Set Programming

Example 2 Consider the program

P = { a.

b.

c ← b.

d ← a, not b. }

Program P is ground already, so we do not need to substitute any variables. Instead we
proceed to apply the GL Reduct for the interpretation I = {a, b, c}:

PI = { a.

b.

c ← b. }

As it can be seen, the last rule can be applied and I is in fact an answer set of P. If we
change the program, not to include the fact b., the answer set changes:

Q = { a.

c ← b.

d ← a, not b. }

Here we use the interpretation J = {a, c, d}. With this we apply the reduct to receive:

QJ = { a.

c ← b.

d ← a. }

We can clearly see that J is a classical model of Q, but can not qualify for being an
answer set of Q. This is because there exists another interpretation J 
 = {a, d}, that is a
classical model of the program and subsumes the interpretation J .

9



2. Preliminaries

2.2 Linear Temporal Logic
In this section we will have a look at the temporal family of modal logic with the example
of linear time logic. For this we have a look at modal logic and the possible world
semantics, again based on [RN02] first and proceed with LTL [Pnu77].

2.2.1 Modal Logic
Compared to classical first-order logic, modal logic is an extension concerned with multiple
modalities at once. Whereas a regular formula of logic can adopt a global truth value in
the interpretation structure, in modal logic there exists a notion of different localities.
Developed by various philosophers in the past, this logic features a semantics using so
called possible worlds and their interactions inside a structure of worlds. Depending on the
type of modal logic in use, they might use different names and properties. Syntactically,
two new operators are introduced:

• The possibility operator or diamond operator: ♦φ

• The necessity or box operator: �φ

• Both can be expressed in terms of the other as a property of the formal definition:
intuitively ♦φ = ¬�¬φ and �φ = ¬♦¬φ

Where φ is any formula of modal logic. This creates the following general syntax of
modal logic:

φ ::= p | ⊥ | � | ¬ φ | φ1 → φ2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ♦φ | �φ (2.11)

where p is a propositional atom. Each type of modal logic can however define new
operators and may have its own name for the box and diamond operators.

2.2.2 Possible World Semantics
A Kripke Structure, named after its inventor Saul Kripke, is an abstract structure that
can be visualized as a form of directed graph, where the nodes correspond to worlds and
the connections between them as accessibility relations among worlds.

Definition 2 A Kripke Structure is a tuple �W,R�, where W is the set of worlds and
R = {xRy 
 x, y ∈ W} is the set of connections between such worlds. Each world w ∈ W
itself is a set of modal logic formulas.
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2.2. Linear Temporal Logic

This can be for instance a group of people knowing each other, commandments in
philosophy, or a structure of timed events happening subsequently. The semantics of the
modal logic in use highly depends on the type of structure they are evaluated against.
Classical logical formulas can now be true or false in each world individually, meaning
that a formula φ can be true in one world, but false in another. The additional operators
as seen above define logical properties of the relations between the worlds. The diamond
operator ♦φ expresses that φ is true in one or more connected worlds. On the other
hand, the box operator �φ requires that φ is true in all connected worlds to evaluate to
true. The semantics for each formula can be defined as follows and are evaluated on one
world w ∈ W inside the Kripke Structure:

�W,R�, w |= p iff p ∈ w

�W,R�, w |= ¬ φ iff �W,R�, w �|= φ

�W,R�, w |= φ1 ∧ φ2 iff �W,R�, w |= φ1 ∧ �W,R�, w |= φ2

�W,R�, w |= φ1 ∨ φ2 iff �W,R�, w |= φ1 ∨ �W,R�, w |= φ2 (2.12)
�W,R�, w |= φ1 → φ2 iff �W,R�, w �|= φ1 ∨ �W,R�, w |= φ2

�W,R�, w |= ♦φ iff ∃v : wRv ∧ �W,R�, v |= φ v ∈ W

�W,R�, w |= �φ iff ∀v : wRv → �W,R�, v |= φ v ∈ W

If a formula is satisfied on every world of a structure, the entire structure is then said to
entail the formula.

Example 3 Assume a Kripke Structure with worlds W = {w1 = {p}, w2 = {q}, w3 =
{q}} and relations R = {(w1, w2), (w2, w1), (w1, w3), (w3, w1)}. We now want to check
whether the structure is cyclic regarding proposition p. This means, that every world
satisfying p and being connected to another world, also requires that these worlds are
connected back in a directed cycle. We can model this property with the formula p → �♦p.
Since only world w1 satisfies p, w2 and w3 trivially satisfy the formula. The right hand
side of the formula now has to be evaluated on w1. Intuitively the meaning of the sub-
formula is that every reachable world has at least one path that reaches a world that
entails p. The world w1 reaches both remaining worlds w1Rw2 and w1Rw3. This means
the subformula ♦p has to hold on w2 and w3. Since in both cases there exists a relation
w2Rw1 and w3Rw1, the formula holds. Since this formula holds on every world in the
structure �W,R�, it is cyclic regarding proposition p.

2.2.3 Linear Temporal Logic
The most important type of modal logic for this thesis is the group of temporal modal
logics. These modal logics model different views on how timed processes can be expressed
using logic. There are many different approaches to this question but only some will be
mentioned here. The most important distinction is which worlds – in this case we talk
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about one world being a point in time – should be linear or, if it is possible to consider
multiple time lines. In this thesis we will only look at forms of logic using the first kind
of structure. This understanding of time is used in Linear Time Logic as described by
Amir Pnueli [Pnu77]. In his paper various new operators were introduced to provide
syntax and semantics for properties of linear time sequences. These include

• The Next operator: ⊕φ or Xφ

• The Eventually operator: ♦φ or Fφ

• The Globally operator: �φ or Gφ

• The binary Until operator: φ1U φ2

• The binary Releases operator: φ1R φ2

where φ and ψ are formulas of linear time logic. As in other modal logics, a world is a
set of formulas true at this point. In the context of time, each world gets a time point
t assigned, where t ∈ T , the (possibly infinite) time domain of the structure. With
the operation ≤ we can create a total order of time points, corresponding to the set of
relations R in other modal logics which is therefore given implicitly by the set of worlds.
The semantics for the other operators is defined as follows:

W, t |= ⊕φ iff W, t + 1 |= φ

W, t |= ♦φ iff ∃t
 : W, t
 |= φ, t < t


W, t |= �φ iff ∀t
 : W, t
 |= φ, t < t
 (2.13)
W, t |= φ1 U φ2 iff ∃t
 : W, t
 |= φ2 ∧ ∀t

 : W, t

 |= φ1, t ≤ t

 < t


W, t |= φ1 R φ2 iff W, t �|= ¬ φ1 U¬ φ2

Over the years, many extensions for different applications were made, most importantly
PLTL, the Past Time Linear Time Logic, where all of the operators have a paired operator
expressing processes in the past. It is however important to note that the expressiveness
does not change with the introduction of new operators but is exponentially more succinct
as shown by Markey [Mar03].
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2.3 Stream Reasoning and the LARS Framework
In recent years the need for more abstract approaches for stream processing gave rise
to a new area called stream reasoning [DDVvHB17]. Even though a clear hierarchy
between the two can not be established as either the more general or more abstract
version can be seen as leading the two to name the united field, they are closely related
fields dedicated to work with streams of data. One such approach to stream reasoning is
the LARS framework [BDTE18], which is a generic reasoner for linear temporal logic. In
the following we will have a close look at first the field of stream reasoning and then the
technology behind LARS.

2.3.1 Stream Reasoning

Stream Reasoning was established more than ten years ago, when the world got more
and more reliant on data-heavy streams [DDVvHB17]. Ever since then, data streams
got even bigger and low level processing is not sufficient anymore. For this, reasoning
systems for ontologies or logic programming were tried and tested to faster process the
highly semantic information passed through the wires of the world. Due to the highly
interdisciplinary field, various ideas get exchanged and influence work of research in the
area. Because of this not only logic programming but also a mix with statistical methods
is used inside processing pipelines, making artificial intelligence tasks ever more efficient
and precise. Future inventions in this area will have a big emphasis on scalability of
systems and streams, as the trend towards an more and more connected world develops
faster than ever [DEHLP18].

2.3.2 LARS Framework

In 2015 Beck et. al. proposed a new framework for stream reasoning using stable
semantics and the advances in reasoning in answer set programming. The Logic-based
Framework for Analytic Reasoning over Streams, short LARS, is a stream reasoner making
use of a fragment of past linear time logic in the fashion of Datalog rules and inference
systems. This is done treating time as an order (N, ≤) as the time ontology. The most
prominent feature of the framework is the notion of custom and built-in window functions.

As it was seen in the semantics of PLTL, a formula quantified with the box or diamond
operator gets evaluated over the entire stream – i.e. every point in time in the correspond-
ing Kripke Structure. Since an indefinite stream can not be feasibly evaluated, a window
function serves as an operation to truncate the stream in a given time interval. Such
function can be defined inside the framework, with some specific functions predefined
by the authors. These include the time-based window �[i,j]φ, the tuple-based window
�#nφ and the partition-based window �pφ.

13
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• The time-based window truncates the stream in the interval [t − i, t + j] and
evaluates the sub-formula solely in this section.

• The tuple-based window cuts the stream at the n-th last atom. This also means
that there may be time points at the border of this interval, where only some of
the tuples are taken.

• The partition-based window looks for the occurrence of the given predicate symbol
p and creates a sub-stream between the current time and the last occurrence of the
symbol in the stream.

Since all of these window functions define some interval of time or tuples, that is evaluated
based on the current time of the system, they are called sliding window functions. On the
other hand there are also filter windows, that do not truncate the data stream but rather
omit any but some specified atoms. The discussed window function are all called sliding
windows, which means that the resulting data stream is different at each time point. On
the other hand there are also tumbling windows. These split the stream into parts of
some specified length and are the same for all time points in their respective part.

For the case of nested windows, there is also a new reset operator Aφ that resets the
sub-stream to the input stream. The @tφ operator checks whether formula φ holds at a
specific point in time t.

The syntax for a LARS rule can then be defined as follows:

φ0 ← φ1, ..., φk, not φk+1, ..., not φn. (2.14)
φi ::= p | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | �w φ | @t φ | A φ | �φ | ♦φ

where p is an atom as seen previously in the section on answer set programming and φ is
a sub-formula of the same kind. As in ASP, the left-hand-side of the rule is called the
head of the rule Head(r) and the right side is called the body Body(r). On a side note,
there have been fragments of this syntax proposed, which we will have a look at later in
this thesis.

Example 4 Here we can see how rules can look like in LARS in the context of modelling
the traffic of a city:

• Assume we want to model the participants in the flowing traffic, so noone who is
currently in a queue. We can express this with the following rule:
traffic(X, Time) ← @T imecar(X), not in_queue(X, Time).
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• Observing a bus at some time in a destination, that has the same ID as another
destination, we may infer that there is a bus route between them:
@T route(X, Y, N) ← destination(X, I), destination(Y, I), @T spotting(N, X), bus(N).

• This rule has no inteded semantic meaning other than showing what rules are
possible in the very free syntax of LARS rules:
p ← �#5♦(p → �#2�q), @T −2p, cur(T ).

Rules in LARS have to be evaluated against a set of window functions W , which is
assumed to be fixed �W ≡ W , and a stream S, defined as follows:

Definition 3 LARS Stream. A stream is a tuple S = (T, ν), where T is a closed
interval of N and ν : N �→ 2G, where G is the set of ground atoms. The function ν returns
∅ for all n ∈ N\T and returns a subset of the set of ground atoms of the corresponding
logic program otherwise.
A sub-stream of a stream S = (T, ν) is a stream S
 = (T 
, ν 
), where T 
 ⊆ T and
ν 
(t
) ⊆ ν(t
) for all t
 ∈ T .

The semantics for each operation on a structure M = �S∗, W, B�, where S∗ is a stream,
W is the set of windows and B ⊆ G is the set of background data for a sub-stream S of
S∗ at time point t ∈ T is given as follows:

M, S, t � p iff p ∈ ν(t) ∨ p ∈ B

M, S, t � ¬φ iff M, S, t � φ

M, S, t � �wφ iff M, S
, t � φ, S
 = w(S, t)
M, S, t � @t� φ iff M, S, t
 � φ, t
 ∈ T (2.15)
M, S, t � Aφ iff M, S∗, t � φ

M, S, t � �φ iff ∀t
 : M, S, t
 � φ, t
 ∈ T

M, S, t � ♦φ iff ∃t
 : M, S, t
 � φ, t
 ∈ T

A LARS program then consists of a set of LARS rules.

Definition 4 Answer Stream Semantics. Consider a data stream D and a LARS
program P. We define the interpretation stream I, with D ⊆ I, so that a structure is
then called an interpretation for D of the form M = �I, W, B�. An interpretation is then
a model of a rule r ∈ P at time t, denoted as M, t |= r, if M, t |= Body(r) → Head(r).
The interpretation is a model of P at time t, if M, t |= r for each rule r ∈ P. It is then
called a minimal model of P for D, if there is no other model M 
 = �I 
, W, B� at time
point t so that the relations I 
 ⊂ I and D ⊆ I 
 holds.
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This model is now called an Answer Stream if it is a minimal model of the reduct P M,t for
D at time t. This reduct is based on the FLP-reduct as opposed to the Gelfond-Lifschitz
reduct seen earlier. Intuitively, we disregard any rules that cannot fire with respect to the
interpretation. Further M has to be minimal so that the conclusions made by the firing
rules are always supported. This means that all intensional atoms, i.e. those that occur
in some rule head, are based on some chains of rules consisting of extensional atoms,
which are all those that do not occur in any rule head. All the facts that cannot be
derived are assumed to be false, which corresponds to the closed world assumption.

Example 5 Consider the propositional LARS program

P = { a ← �[2,2]�b, �[1,0]♦c.

d ← �[0,3]♦c. }

where all window functions are of the sliding interval type and the data stream D

t Propositions
0 �→ {b}
1 �→ {b, c}
2 �→ {b}
3 �→ {c}
4 �→ {c}

Now assume an interpretation stream I of the form

t Propositions
0 �→ {b, d}
1 �→ {b, c}
2 �→ {b}
3 �→ {c}
4 �→ {c}

This interpretation stream is then an answer stream of the program P for D at time point
t = 0. This can be seen as the reduct P M,0 includes only the second rule at said time
point:

P M,0 = { d ← �[0,3]♦c. }

We now need to evaluate the window function �[0,3] at time point 0. As it was explained,
this function changes the evaluation of the formula on the stream to a substream as
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defined in the window. This means we have to evaluate the formula ♦c on the stream S


t Propositions
0 �→ {b}
1 �→ {b, c}
2 �→ {b}
3 �→ {c}

As we can see, the formula ♦c is fulfilled as there is at least one occurrence in the stream.

The complexity of evaluating LARS programs depends a lot on the window functions
that are being used and whether nesting depth is bounded or not. Beck et. al. considered
the problems of model checking and satisfiability in their paper. Model checking receives
a given model structure I and a program P to check whether it is an answer stream of
the program, while satisfiability asks if there exists an answer stream satisfying the given
program and data stream. The results are as follows [BDTE18]:

• Model Checking:

– With bounded nesting depth: P for formulas and co-NP for programs
– Without bounded nesting depth: PSPACE for formulas and PSPACE for

programs

• Satisfiability:

– With bounded nesting depth: NP for formulas and ΣP
2 for programs

– Without bounded nesting depth: PSPACE for formulas and PSPACE for
programs
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CHAPTER 3
Metric Temporal Logic

In this section, we will describe the original work of Alur and Henzinger [AH93] in more
detail concerning Metric Temporal Logic (in short MTL). Intuitively, we want to express
state changes at arbitrary time steps as opposed to the Linear Temporal Logic, where
each world is defined at each passing time point. In this case it is a time sequence with
ti+1 − ti = 1 ∀i ∈ N, while in Metric Temporal Logic the difference can not be predicted.

3.1 Syntax
Metric Temporal Logic has some unique properties and operators that make it possible
to express formulas with varying temporal distances. There is a big emphasis in this
logic on the operators „Since” φ1 S[i,j] φ2 and „Until” φ1 U[i,j] φ2. According to Alur and
Henzinger the syntax of MTL is given by:

φ ::= p | ⊥ | φ1 → φ2 | ⊕[i,j] φ | �[i,j] φ | φ1 U[i,j] φ2 | φ1 S[i,j] φ2 (3.1)

In Equation 3.1, p is an atom, φi are MTL formulas and ⊕[i,j] φ is the Next operator,
while �[i,j] φ denotes the Previous operator. This syntax subsumes full Boolean algebra,
as shown in the following:

� = ⊥ → ⊥ (3.2)

¬ φ = ¬φ ∨ ⊥
= φ → ⊥ (3.3)

φ1 ∨ φ2 = ¬ ¬ φ1 ∨ φ2

= ¬ φ1 → φ2

= (φ1 → ⊥) → φ2

(3.4)
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3. Metric Temporal Logic

φ1 ∧ φ2 = ¬ (¬ φ1 ∨ ¬ φ2)
= ¬ (φ1 → ¬ φ2)
= (φ1 → ¬ φ2) → ⊥
= (φ1 → (φ2 → ⊥)) → ⊥

(3.5)

The intervals of some operators may be changed to congruence relations ≡d c. Based on
this syntax for formulas, we will define four more important operators, that are oriented
on the possibility and necessity operator of classical modal logic. These operators are
+✆[i,j] φ and −✆[i,j] φ, describing the occurrence of an event in the at time point t + i to
t + j (respectively t − i to t − j in the negative version of this operator).

Further there are additionally the �[i,j]φ and �[i,j]φ operators that describe that in the
time interval starting at t+ i and ending in t+ j in every single passing time unit, formula
φ is true (respectively t − i until t − j). Syntactically these operators can be built with
the Until and Since operators:

+✆[i,j] φ = � U[i,j] φ

�[i,j] φ = ¬ +✆[i,j] ¬ φ

�[i,j] φ = ¬ (� U[i,j] ¬ φ)
(3.6)

−✆[i,j] φ = � S[i,j] φ

�[i,j] φ = ¬ −✆[i,j] ¬ φ

�[i,j] φ = ¬ (� S[i,j] ¬ φ)
(3.7)

The operators as shown in Equation 3.7 are only available in the Past Time Extension of
Metric Temporal Logic, denoted as MTLP . Implicitly the MTLP extension is assumed
to be given when referring to MTL in this work.
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3.2 Semantics

The semantics of MTL relies on a data stream for state changes called a Timed State
Sequence, denoted as S. This structure is defined over a set P of finite propositions and
a time domain T . More precisely, we define a timed state sequence as follows:

Definition 5 Timed State Sequence. A Timed State Sequence S over a time domain
T and set of propositions P is a pair S = �σ, τ� consisting of an ordered list of states
σ = �σ1, σ2, ...�, where every state σi ∈ σ is a subset of P , and an injective function
τ : N �→ T . This function maps each index in the sequence of states σ to a point in time
in the time domain T .

It is important to note that this function is not necessarily surjective, so the function
τ−1 : T �→ N is not defined on all points in T . Also pay attention to the fact that a time
domain may be infinite. For the sake of complexity we will further assume a finite time
domain.

To check whether a formula φ is true in the given timed state sequence S at time point t,
we define the following semantics for each formula as it was written in Equation 3.1:

S, t |= ⊥ iff S, t �|= ⊥
S, t |= p iff p ∈ σi ∧ τ(i) = t

S, t |= φ1 → φ2 iff S, t �|= φ1 ∨ S, t |= φ2

S, t |= ⊕[i,j]φ iff S, τ(i) |= φ ∧ τ(i) ∈ [t + i, t + j],
s.t. τ(i − 1) ≤ t < τ(i)

S, t |= �[i,j]φ iff S, τ(i) |= φ ∧ τ(i) ∈ [t − j, t − i], (3.8)
s.t. τ(i) < t ≤ τ(i + 1)

S, t |= φ1 U[i,j] φ2 iff ∃x : S, τ(x) |= φ2 ∧ ∀y : S, τ(y) |= φ1,

τ(x) ∈ [t + i, t + j], τ(y) ∈ [t + i, τ(x)]
S, t |= φ1 S[i,j] φ2 iff ∃x : S, τ(x) |= φ2 ∧ ∀y : S, τ(y) |= φ1,

τ(x) ∈ [t − j, t − i], τ(y) ∈ [τ(x), t − i]
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Subsequently, we can also define the semantics of the derived MTL operators:

S, t |=+✆[i,j] φ iff S, t |= � U[i,j] φ (3.9)
S, t |=−✆[i,j] φ iff S, t |= � S[i,j] φ

S, t |= �[i,j] φ iff S, t |= ¬ +✆[i,j] ¬ φ (3.10)
iff ∃x : S, τ(x) �|= φ → ∃y : S, τ(y) |= ⊥,

τ(x) ∈ [t + i, t + j], τ(y) ∈ [t + i, τ(x)]
S, t |= �[i,j] φ iff S, t |= ¬ −✆[i,j] ¬ φ (3.11)

iff ∃x : S, τ(x) �|= φ → ∃y : S, τ(y) |= ⊥,

τ(x) ∈ [t − j, t − i], τ(y) ∈ [τ(x), t − i]

As we have seen previously, the mapping τ does not cover every point in time of the time
domain T . This means that if a formula has to be evaluated over a time point t ∈ T that
is not corresponding to a state in the timed state sequence, the world at t is considered
as being empty, i.e. devoid of any given information. Since this property was explained
by Alur and Henzinger [AH93] we call it the Intended Semantics of Metric Temporal
Logic. For operators using congruence instead of regular intervals, the formulas hold only
in the special sets of time points defined by the relation. The relation ≡2 1 for instance
would only check for the timed states at time t ∈ {2n + 1}n≥0.

Example 6 Consider the MTL formula ⊕p. Given a structure S = �{{p}, {p}},
{{0 �→ 0}, {1 �→ 2}}�, the formula evaluated at t = 0 is false: S, 0 �|= ⊕p, since S, 1 �|= p.
This is due to the fact that the time point 1 has no information concerning the existence
of fact p, as the state with index 1 is occurring at time point 2. The formula is therefore
true at time point t = 1: S, 1 |= ⊕p, since S, 2 |= p.
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3.3 Expressivity and Complexity

In their paper Alur and Henzinger showed that the validity problems is for MTL and
for MTLP EXPTIME-complete. The upper bounds were found with size constraints
on Tableau procedures, similar to those done in [Pnu77], which will be defined in the
following. This section serves as a summary of the work in [AH93], but contains a full
complexity proof that was omitted in the original paper.

3.3.1 Deciding MTLP

In the following we will construct a tableau based proof of the decision procedure
for MTLP . First we start with the observation that a finite tableau can always be
constructed in MTLP . For this we use the term State Requirement that denotes a formula
or subformula that creates a constraint on a certain state in the time sequence.

Lemma 1 A given MTLP formula can only produce a finite number of state requirements.

Proof. Assume a formula of the form +✆[0,j] φ. For the formula to be true in some
structure at some time point t, it means that it has to be fulfilled either now – i.e. at t –
or at any other point in the interval [t, t + j] ∈ T . Since time passes at the maximum of
one state per unit we can now see that the formula is true iff φ is true at the current
time or when +✆[1,j] φ holds. We can now see that when this is done j times, we end up
with a formula that can be evaluated at each timed state in the future until j units have
passed. Since this number of states is finite the formula can only produce a finite number
of requirements. This is true for all temporal operators defined above. �

Theorem 1 Deciding the validity of MTLP formulas is feasible in deterministic expo-
nential time in O(C · N), where N − 1 is the number of boolean and temporal connectives
and C − 1 is the largest constant that occurs as an interval end point.

Proof. Given a MTLP formula φ, we want to determine whether φ is valid. This means
that we have to check whether its negation ¬φ is satisfiable. Let Closure(¬φ) define the
closure set of ¬φ, which is the smallest set containing ¬φ that is closed under the Sub
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operation:

Sub(ψ → χ) = {ψ, χ}
Sub(⊕ ψ) = {ψ}
Sub(� ψ) = {ψ} (3.12)

Sub(ψ UI χ) = {ψ, χ} ∪ {⊕(ψ UI−δ χ) 
 δ ≥ 0}
Sub(ψ SI χ) = {ψ, χ} ∪ {�(ψ SI−δ χ) 
 δ ≥ 0}

For the interval operation we define that I − δ = ∅ for all δ > c, where c is the interval
endpoint – this constraint is also present for past time intervals in the reversed form.
Now consider the numbers N − 1 – the number of temporal and boolean operators
occurring in φ – and C − 1 – the biggest interval boundary. In the way we defined the set
Closure(¬φ), we see that the number of subformulas inside the set has to be bounded by
the number of operators times the number intervals are split. Since the greatest arity of
some temporal operator defined above is binary and the highest number of splits is given
by the biggest interval, we define the upper bound for the magnitude of the closure as
|Closure(¬φ)| ≤ 2C · N . This assumes all operators are binary temporal with the same
maximum sized intervals.

We restrict the proof to timed state sequences with time differences between states
τ(i + 1) − τ(i), i ≥ 0 of at most

K = C ·
�
i≥0

di

where di denotes all constants occurring in congruence relations ≡d c. This boundary is
important for the finite state character of the state sequence.

The information regarding time given implicitly in the state sequence can now be modeled
in

• Time difference propositions Tdiff −
δ , where 0 ≤ δ ≤ K. This represents the current

time δ in the initial state of the timed state sequence and the time difference
compared to the last state in all other timed states.

• Time difference propositions Tdiff +
δ , where 0 ≤ δ ≤ K. This denotes the difference

to the successor state rather than the predecessor.

• Time congruence propositions TcongK.t, where 0 ≤ t < K. This shows the remain-
der t of the current time modulo K.

Now let Closure∗(¬φ) be the union of the closure of ¬φ and all the time difference
propositions Tdiff −

δ , TcongK.t and Tdiff +
δ . We call any subset Φ of this set maximally

consistent if and only if it satisfies the following conditions:
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• Tdiff −
δ ∈ Φ for precisely one 0 ≤ δ ≤ K, where this δ ∈ T is referred to as δ−

Φ

• Tdiff +
δ ∈ Φ for precisely one 0 ≤ δ ≤ K, where this δ ∈ T is referred to as δ+

Φ

• TcongK.t ∈ Φ for precisely one 0 ≤ δ < K, where this δ ∈ T is referred to as γΦ

• ⊥ �∈ Φ

• ψ → χ ∈ Φ if either ψ �∈ Φ or χ ∈ Φ

• ψ UI χ ∈ Φ for an interval I, iff

– I �= ∅ and
– either 0 ∈ I and χ ∈ Φ, or ψ ∈ Φ and ⊕(ψ UI−δ+

Φ
χ) ∈ Φ

• ψ U≡dc χ ∈ Φ iff either γΦ ≡d c and χ ∈ Φ or ψ ∈ Φ and ⊕(ψ U≡dc χ) ∈ Φ

• ψ SI χ ∈ Φ for an interval I, iff

– I �= ∅ and
– either 0 ∈ I and χ ∈ Φ, or ψ ∈ Φ and �(ψ SI−δ−

Φ
χ) ∈ Φ

• ψ S≡dc χ ∈ Φ iff either γΦ ≡d c and χ ∈ Φ or ψ ∈ Φ and �(ψ S≡dc χ) ∈ Φ

We consider a tableau T(¬φ) to be a directed graph with vertices of all maximally
consistent subsets of Closure∗(¬φ). A direct edge is established from vertex Φ to vertex
Ψ if the following conditions hold:

• δ+
Φ = δ−

Ψ

• γΨ ≡K γΦ + δ+
Φ

• For all ⊕Iψ ∈ Closure(¬φ), ⊕Iψ ∈ Φ iff δ+
Φ ∈ I and ψ ∈ Ψ

• For all ⊕≡d cψ ∈ Closure(¬φ), ⊕≡d c ψ ∈ Φ iff γΨ ≡d c and ψ ∈ Ψ

• For all �Iψ ∈ Closure(¬φ), �Iψ ∈ Ψ iff δ−
Ψ ∈ I and ψ ∈ Φ

• For all �≡d cψ ∈ Closure(¬φ), �≡d c ψ ∈ Ψ iff γΦ ≡d c and ψ ∈ Φ
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All models of the given formula ¬φ now correspond to some infinite path through the
tableau graph T(¬φ). This means that ¬φ is satisfiable if and only if the following
conditions of a path {Φ0, Φ1, ...} hold:

• ¬φ ∈ Φ

• Φ0 contains no formula �ψ

• For all i ≥ 0 and intervals I, ψ UI χ ∈ Φi implies χ ∈ Φj for some j ≥ i with�
i≤k<j

δ+
Φk

∈ I

• For all i ≥ 0, ψ U≡d c χ ∈ Φi implies χ ∈ Φj for some j ≥ i with γΦj ≡d c

Because of the upper bound we specified earlier, we know that the tableau T(¬φ) contains
O(K · 2C·N ) vertices. Each vertex has at most O(C · N) elements, so the graph T(¬φ)
can be constructed and checked for infinite paths in deterministic exponential time. �

3.3.2 Complexity of MTLP

The next step is to define the algorithmic complexity for the decision procedure of validity
problems of MTLP as defined above.

Theorem 2 The validity problems for MTL and MTLP are EXPSPACE-complete.

Proof. From the Theorem 1 and Savitch’s Theorem [Sav70] it follows that the non-
deterministic tableau is in EXPSPACE. To show the lower bound for it being EXPSPACE-
hard, we use EXPSPACE-bounded Turing machines as was done by Alur and Henzinger
to prove the complexity of Timed Temporal Logic (TPTL) in [AH89] (Theorem 2, second
part).

For this we consider a deterministic 2n-space-bounded Turing machine M. We construct
an MTLP formula φX for each input X with length n, that has a length of O(n · log n).
This formula has to be valid iff M accepts X. From the hierarchy theorem of space we
know that there has to be a constant c > 0 so that every Turing machine that solves the
validity problem for formulas φ of length l takes S(l) ≥ 2c·l/log l space infinitely often.
This means given the initial tape contents X we only have to construct:

• A sufficiently succinct formula φX that describes the unique computation of M on
X as an infinite sequence of propositions and
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• A sufficiently succinct formula φACCEPT that characterizes the computation of M
on X as accepting.

The implication φX → φACCEPT is then valid iff M accepts the input X.

Each tape symbol i is represented by a proposition pi, where p0 is the special blank
symbol. For every state j of M we use a proposition qj , where q0 is the initial state of
the Turing machine. Additionally there are three abbreviations following from this:

p̂ : pi ∧
�
i� �=i

¬pi� ∧
�

¬qj

ri,j : pi ∧ qj ∧
�
i� �=i

¬pi� ∧
�

j� �=j

¬qj� (3.13)

s :
�

¬pi ∧
�

¬qj

Each configuration of M is represented by p̂-state sequences of length 2n that are separated
by void s-states. The position of the read-write head is represented by an r-state ri,j ,
where the first index is the position on the tape and the second index references the
current state. The transition function of M is denoted by fM : P × Q × R → P ∪ Q ∪ R,
where each input set P , Q and R ranges over all propositions of p̂i, ri,j and s, so that it
properly models the behaviour of the machine. The following two conditions determine
the computation of M on X:

• The Turing machine will always start with the initial configuration.

• Every configuration follows from the previous one by a move of M.

The sequence of symbols on the tape is denoted by Xi with i ∈ [0, n]. We now want to
formulate both conditions as formulas in MTLP . First, since between each time state
exactly one moment passes, we add the formula �T ⊕[1,1] � to φX . This formula can be
obtained from the state counter in TPTL, which looks as follows: �x.Oy.y = x + 1. We
then model the constraints for the behaviour of the Turing machine:

φINITIAL =s ∧ ⊕T rX1,0 ∧
�

i∈[2,n]
�[i,i] p̂Xi ∧ �[n+1,2n]p̂0 (3.14)

φMOVE = �T (s →+✆[2n+1,2n+1] s)∧ (3.15)�
P,Q,R

�T ((P ∧ ⊕[1,1]Q ∧ ⊕[2,2]R) →+✆[2n+2,2n+2] fM(P, Q, R))

The formula φINITIAL models the original bounded tape and configuration of the machine,
so that the first state is the void state s as defined before. The next time step is the
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3. Metric Temporal Logic

position of the read-write head on the tape symbol X1, so the first symbol in the given
input X, in state 0. The third part of the formula states that the remaining tape contents
appear in the order of the input, while the space between tape location n + 1 (the end
of the input definition) to 2n has to be empty. This creates the exponential boundary
of the tape. The second formula φMOVE has again two parts. The first part requires
that between each machine configuration of 2n p̂-states, there is one void configuration
s. The second part demands that each triplet of configurations, consisting of either r, q̂
or s configuration, creates some configuration in the next iteration of the configuration
of M. This choice of predicate depends on the encoding of the transition function fM.
For instance writing in state j on input i the symbol k and then moving to the right
and entering state j
 can be seen as fM(p̂i, ri�,j , p̂i��) = p̂k and then in the next time state
fM(ri�,j , p̂i�� , p̂i���) = ri��,j� .

The computation is now accepting X if and only if the accepting state F occurs:

φACCEPT =
�

i∈X

+✆T ri,F (3.16)

The length of φINITIAL, φMOVE and φACCEPT is then O(n · log n), O(n) and O(1) respec-
tively. This means that the upper bound of O(n · log n) was in fact correct for φX . �

3.3.3 Expressive Completeness of MTLP

Next we will have a look at the expressive completeness of MTLP , which can express the
non-elementary first-order language LT .

Let L denote the first-order language with uninterpreted unary predicate symbols and
an order predicate ≤ evaluated over the set of natural numbers N. This order predicate
entails the existence of the constant 0 as ∀y.(x ≤ y) and the successor function y = x + 1
as x < y ∧ ∀z.(x < z → y ≤ z), when considering the set of natural numbers. In L we
only consider formulas without any free variables, i.e. variables that do not occur in the
scope of a quantifier.

We now change the domain of the language L to make it express timed state changes by
adding in a time function τ to associate each state with a time. To model the properties
of time, the function τ has to be monotonic as time is not known to go backwards in the
observable universe. The newly defined language, now called LT , then has two different
sorts, one for the states and one for the time in the time domain (T, "), linked together
by the function τ . Since it is a fragment of first-order logic, we only allow quantifica-
tion over individuals. This language can now express any given timed state sequence (σ, τ).
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Theorem 3 For every formula φ of LT , there is a formula ψ of MTLP such that for
every initial timed state sequence S, S is a model of φ if and only if S is also a model of
ψ.

Proof. Let MT (φ) denote the set of models of φ with time domain T . We will now con-
struct a PTL formula φ
 with additional time-difference propositions Tdiff t and Tdiff ≥t

and time congruence propositions Tcongd.t, so that M∗
T (φ) = M(φ
). As an additional

constraint, we only allow these time propositions to be out of scope of any temporal
operators, or directly linked to a next operator ⊕.

Consider only initial models of MTLP formulas, i.e. those where the proposition τ(0) = 0
holds. From φ
 we derive the desired MTLP formula by eliminating the time difference
and congruence propositions. Each occurrence of Tdiff t, Tdiff ≥t and Tcongd.t is replaced
by � if t = 0, and by ⊥ if it is any other number. The subformulas ⊕Tdiff t are replaced
with ⊕[t,t]�, ⊕Tdiff ≥t is replaced with ⊕≥t� and ⊕Tcongd.t with ⊕≡dt�. Only the next
operator has to be subscripted with time constraints, because of the semantics of the
operators. As a reminder, these require the next given time state to be in the subscripted
interval. �
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CHAPTER 4
Reasoning in Metric Temporal

Logic

In this section we will explain how we can use Metric Temporal Logic with past time opera-
tors to reason over streaming data. Since names for this type of datalog-type language are
already using datalogMTL or datalogMITL, we name the result of this thesis Metric LARS.

The translation is created using an incremental approach to defining and then refining
translations to the LARS framework, that is based on Linear Temporal Logic. We
start with the easiest of such languages, called plain LARS, then building more complex
operator constructs and negation, ending with nested window functions. Finally we will
define Answer Set Semantics for Metric LARS.

4.1 General Definitions
To start, we will first define the most important properties of a possible language Σ for
programs of LARS or MTLP :

Definition 6 The Program Language. We define three sets that make up the language
of a program P, the finite set of constants C, the set P of all predicate names and the set
of variables V . A denotes the set of all the atoms that can be created from the combination
of predicate names and constants.

This is the same as for regular answer set programs. Since Metric Temporal Logic only
works with propositions in A, we will also reduce the expressiveness of LARS to these
atoms. This means that grounding a program is not necessary, as per definition, all rules
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4. Reasoning in Metric Temporal Logic

already are ground.

4.2 Plain Metric LARS
4.2.1 Plain LARS
The first translation is concerned with the least expressive formalism of the LARS
framework. The language is called plain LARS and features datalog-style rules with
minimal complexity. A rule in plain LARS looks like the following:

α ← β1, β2, ..., βn. (4.1)
where α ::= p | @tp

βi ::= p | @tp | �n �p | �n ♦p

p ∈ A

where �n denotes the time-based window operator of LARS. Other than in regular LARS,
the window operators are only evaluated in the past; for the sake of ease we will focus on
time-based windows in the following. A more detailed look at window operators will be
given in the later sections of this chapter. Atoms that occur only in the body of such
a rule are called external, while those that occur in at least one rule head are called
internal. The semantics of Plain LARS on a discrete data stream is given in Chapter 2.

4.2.2 Translation
The biggest difference in syntax between LARS and MTL is the notion of window
operators. As these are not present in regular MTL, they present the biggest difficulty
when trying to find a suitable translation. Since the binary connectors ∧ and → are the
same in both LARS and MTL, there only needs to be a translation of @tp,�w�p and
�w♦p.

Proposition 1 Plain LARS to MTLP Translation. We propose the following trans-
lation for temporal operators.

LARS MTLP

�n �p =̂ �[0,n] p

�n ♦p =̂ −✆[0,n] p (4.2)
@tp =̂ �[t�,t�] p, t
 = t̂ − t

=̂ −✆[t�,t�] p, t
 = t̂ − t

where t̂ is the current time. This variable is necessary, as MTL only defines time intervals
relative to the current timed state, so in order to model the absolute time t, as required
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4.2. Plain Metric LARS

by the @ operator of LARS, we have to subtract the absolute time from the current time,
to receive the relative time interval.

Proof. �n�p → �[0,n]p: The window operator cuts the current stream into a substream,
reaching from the current point in time, back n time points. Assume in this substream
p always holds, fulfilling �p. This means that the same property holds on the interval
[−n, 0], with 0 being the current time. This fulfills �[0,n]p.

�n�p ← �[0,n]p: Assume now �[0,n]p is given on a data stream. If we cut this same
interval and make it a substream, every point in time satisfies p. This fulfills �n�p.

In a similar fashion �n♦p =̂ −✆[0,n] p can be shown. Of more interest is the translation
@tp =̂ �[t�,t�] p =̂ −✆[t�,t�] p. As it was already said, the @ operator uses absolute time,
rather than relative time like the window operators in LARS or interval operators in
MTL. This means we cannot simply adopt t in the translation. Considering we know the
current time t̂, we obtain the relative time by subtraction. Once this is done, we revisit
the definitions of semantics for @:

S, t̂ |= @tp iff S, t |= p ∧ S, t |= �
t = t̂ − t


−✆[t�,t�] p = � S[t�,t�] p

S, t̂ |= � S[t�,t�] p iff S, t |= p ∧ S, t |= �
� S[t�,t�] p =̂ @tp

�[t�,t�] p = ¬ −✆[t�,t�] ¬p =̂ ¬@t¬p = @tp

As we can see all three expressions are identical. �

Example 7 Take the rule p ← �5 � q, r. This rule states intuitively, that if there is the
atom r given in the current moment and in the last five moments there was at least one
occurrence of atom q, we can infer that in this moment atom p has to be true. Translating
the rule to Plain Metric LARS it yields p ← �[0,5]q, r.
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4. Reasoning in Metric Temporal Logic

4.3 Extending Metric LARS to general LARS Formulas
As Plain LARS is just a fragment of the original logic, we now have a look at the full
version. Extended LARS has three major differences compared to Plain LARS: default
negation, nested window operators and window operators are allowed to define windows
in the future. Since the syntactic properties of default negation and future windows are
negligible, they will be discussed in the next section on the Answer Set Semantics of
Metric LARS.

4.3.1 LARS Formulas
LARS uses not only standard components as elements in the rules, but rather complex
LARS formulas. These can consist of the following subformulas:

φ ::= p | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | �n φ | @t φ | A φ | �φ | ♦φ (4.3)

As before the binary connectors ∧, ∨ and → behave in the exact same way as in MTL,
so we will not feature a proof on their translation. The issues arise with unbounded
occurrences of window operators, always and finally. This translation therefore needs
more steps than before. We start by converting an arbitrary LARS formula into Nested
Window Normal Form. This is needed to reduce the number of subformulas in the further
steps of the translation and helps us to reduce the exponential blowup in size.

4.3.2 Nested Window Normal Form
Nested Window Normal Form tries to bind each temporal operator with a window
operator, which is necessary since MTL does not feature a distinction between a temporal
operator and its interval on the stream. First, the formula has to be shaped into Negation
Normal Form with the additional rules for temporal operators:

¬�φ =̂ ♦¬φ

¬♦φ =̂ �¬φ

¬ �n φ =̂ �n ¬φ (4.4)
¬ A φ =̂ A ¬φ

¬@tφ =̂
�

@t¬φ if t ∈ T

� otherwise

The window function and stream reset are not changed by a negation since the stream is
not altered in a different way. The @ operator requires t to be in the current streams
time domain T . If so, the operation will not be affected, however since it evaluates to ⊥
otherwise, it returns � as the negated form. For the always and finally operator the rules
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4.3. Extending Metric LARS to general LARS Formulas

are derived from their definition. Since the type of temporal operator does not matter
for the translation, we propose a new notation:

Notation 1 Anonymous Temporal Operators. The temporal operators of LARS
�,♦, @ are generalized by the temporal operator symbol 
. Similarly, this will also be
done with the MTL temporal operators +✆, −✆,�,�, with the difference that they may have
a subscript for their interval like 
I .

In the next step, each Window operator is pulled into the formula until it is guarded by
a temporal operator.

Proposition 2 Preliminary Nested Window Normal Form. We propose the fol-
lowing transition rules to achieve preliminary Nested Window Normal Form:

�n (φ1 ∧ φ2) =̂ �n φ1 ∧ �nφ2

�n (φ1 ∨ φ2) =̂ �n φ1 ∨ �nφ2

�n (φ1 → φ2) =̂ �n φ1 → �nφ2

�n �mφ =̂ �min(n,m) φ

�n 
1... 
k φ =̂
�

⊥ iff 
i = @t ∧ t /∈ T

�n 
k φ otw.
(4.5)

�n Aφ =̂ A φ

A ... A φ =̂ A φ

�n α =̂ α

Here α is any ordinary formula, so that no temporal operator occurs in it. Each window
operator that is paired with a proposition or with the reset operator can be removed from
the formula. In the first case this is because the proposition is implicitly evaluated at the
current time t, making the window obsolete and in the second case is simply reset to the
last window, or the original stream should there exist no other window operator. Nested
window operators cut the stream twice, which means that the smaller bound is taken and
the windows can be subsumed. For the case of window operators that are paired with a
stack of any length of temporal operators, it is equivalent to the last temporal operator
used.

Example 8 Take the LARS formula ¬(�n(p → �q)). In NNF this formula will look
like this: �n(p ∧ ♦¬q). In the next step we try to get the window as far as possible down
to the temporal operators, creating the NWNF p ∧ �n♦¬q.
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Definition 7 Window Introduction Rule. In a special case we have a formula φ of
the shape �n 
 φ, that starts with a window operator, followed by some temporal operator

. In the scope of this operator is a formula φ, in which a subformula 
ψ starting with
a temporal operator occurs, that is not yet guarded by a window function. For this case
there needs to be another rule, allowing us to pair this single operator, called the Window
Introduction Rule:


 ψ =̂ A �min(n,...) 
 ψ (4.6)

The new boundary of the window operator is derived from the minimum value of all
windows that it is in the scope of to properly cut the stream according to the semantics of
window functions.

Example 9 To make Equation 4.6 more tangible, consider the formula �w♦ �v �(p →
♦q). With the formulas in Equation 4.5 this would already be finished as we cannot move
the window further in. However we still want to guard each temporal operator with a
window function. We employ the last rule to obtain �w♦�v �(p → A�min(w,v) ♦q), which
satisfies this constraint.

Theorem 4 Semantic Equivalence of Nested Window Normal Form. Let φ be
an arbitrary LARS formula. The Nested Window Normal Form NW NF (φ) is semanti-
cally equivalent to φ and can be obtained by applying the rules of the Preliminary NWNF
(Proposition 2) and the Window Introduction Rule (Definition 7).

Proof. The proof on semantic equivalence will be done inductively on the re-writing rules.

• We start with the first three rules as they are quite easy to show:

S, t |= �n(φ1 ∧ φ2) iff S
, t |= φ1 ∧ φ2

S, t |= �n(φ1 ∧ φ2) iff S
, t |= φ1 and S
, t |= φ2

S, t |= �nφ1 ∧ �nφ2 iff S
, t |= φ1 and S
, t |= φ2

In the same fashion also ∨ and → can be proved:

S, t |= �n(φ1 ∨ φ2) iff S
, t |= φ1 ∨ φ2

S, t |= �n(φ1 ∨ φ2) iff S
, t |= φ1 or S
, t |= φ2

S, t |= �nφ1 ∨ �nφ2 iff S
, t |= φ1 or S
, t |= φ2

S, t |= �n(φ1 → φ2) iff S
, t |= φ1 → φ2

S, t |= �n(φ1 → φ2) iff S
, t �|= φ1 or S
, t |= φ2

S, t |= �nφ1 → �nφ2 iff S
, t �|= φ1 or S
, t |= φ2
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• Next we have a look at the rule for merging window functions. Assume the window
function 1 cuts the stream at some point in the past. the next window operator
then has two possibilities

– Either it cuts it further down than the previous function,
– Or it tries to cut it beyond the limit which results in the same substream as

before.

Thus the overall new window will only employ the minimal interval imposed on
the stream. Inductively, if there are more window functions following the two first
ones, the observation still holds, resulting in the function min(n1, ...nm), with m
being the number of consecutive window functions.

• Next we have the case of multiple consecutive temporal operators. First we have a
look at the different combinations for two such operators and then we inductively
add any number of additional ones.

– S, t |= ��φ iff every time point t
 satisfies S, t
 |= �φ, which is then true if
every time point t

 satisfies S, t

 |= φ. This means to satisfy the entire formula
the following has to hold: ∀t
∀t

 : S, t

 |= φ. As we can see, the first temporal
operator did not matter in the evaluation, which means that it can savely be
removed, resulting in the equal formula S, t |= �φ.

– S, t |= �♦φ iff every time point t
 satisfies S, t
 |= ♦φ. For this to be the case,
some t

 in S has to fulfill S, t

 |= φ. This can now be rewritten in the formula
∀t
∃t

 : S, t

 |= φ, which is equal to ∃t

 : S, t

 |= φ and can be written as
S, t |= ♦φ.

– S, t |= �@t̄φ iff every time point t
 satisfies S, t
 |= @t̄φ for some time point
t̄. This is then true iff S, t̄ |= φ and results in the satisfaction requirement
∀t
 : S, t̄ |= φ. This is then equal to S, t̄ |= φ, which is checked in the current
time as S, t |= @t̄φ.

Since the other possibilities work in the exact same way, we will shorten the proof
here a bit and only have a look at the semantics of the finally and at operator:

– S, t |= ♦
 φ iff some t
 in S satisfies S, t
 |= 
φ. No matter what the temporal
operator is, if 
φ is fulfilled at some, all or a specific time t

, it will also be
fulfilled at t
 as we can just set t
 = t

.

– S, t |= @t̄ 
 φ iff S, t̄ |= 
φ. Note that t̄ can be outside the current substream,
which means that in this case the formula evaluates to ⊥. If the time point
is in the current stream, the subformula 
φ will be evaluated on the current
substream, as the temporal operator is not bounded by the time point t̄ from
the @ operator.
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Now that the base case is established, we can go forth inductively by increasing
the number of consecutive operators to m. We take the first two and apply the
base case, which means that the first operator gets cancelled, reducing the number
of operators left to m − 1. By doing this one step at a time we end up with only a
single operator left, which is the innermost operator from the original stack.

• The next rule uses the combination of window function and reset operator �n A φ.
This proof is again quite simple. The reset operator changes the current substream
to the original data stream. This means that it simply removes all stream con-
straints imposed by the previous windows. Therefore any window function directly
in front of a reset operator serves no purpose, as the substream immediately gets
reset to the original stream.

• Additionally, if there are multiple adjacent reset operators, as the stream gets reset
by the first for the subformula, all can be reduced to one single reset operator. Of
course, any leading reset operator can be omitted as there is no point in resetting
the data stream to itself.

• Next we have the rule concerning �nα, where α is an ordinary formula, i.e. there
is no temporal operator or window function occurring in α. Since α can only be
evaluated in the current time, as there is no temporal meaning imposed on it by a
temporal operator, the window serves no meaning and can be omitted.

• The last rule is the window introduction rule, which is used to find a window for
the temporal operators that are in the scope of one, but not directly adjacent. We
establish the base case by stating

�n 
 φ =̂ �n A �n 
φ

Now assume there is a formula �n 
 φ where no rule of the above can be applied.
We further assume that there is a subformula ψ in φ, that is of the form 
χ, where
the temporal operator is not adjacent to a window function. Since we know that it
is still in the scope of one, we have to evaluate it in this substream. To achieve
this we employ the transformation above, which allows us to create a new window
function without changing the semantics of the formula. The resulting subformula
ψ then looks like A�n 
χ. For the induction step we nest the subformula ψ further
into a structure with many window functions and temporal operators. Assume a
nesting depth of δ. We now can not apply the above transformation as the stream
would be reset to the original stream, but in reality we only need to emulate the
latest window function. To combat this, we limit the window to the interval this
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temporal operator would occur in. Therefore we have to use all previous windows
and stack them together in consecutive order like so

�n1 
 ... �nδ 
... 
 χ =̂ �n1 
... �nm 
... A �n1 ... �nδ 
χ

By the rule for consecutive window occurrences we can then simplify this by the
following rule:

�n1 
 ... �nδ 
... 
 χ =̂ �n1 
... �nm 
... A �min(n1,...nδ) 
 χ

This results in the definition of the rule as given above.

These new rules make the NWNF complete in that every temporal can be guarded by a
window operator, making the resulting translation far easier. �

4.3.3 Translating MTLP to LARS
Now we can begin with the actual translation. The biggest difference between window
operators in LARS and intervals in MTL is that windows truncate the stream and
therefore all nested windows, while in MTL temporal operators are not limited by the
previous layer of operators. This makes the translation from MTL operators to LARS
very easy:

Proposition 3 MTLP Operator to LARS Window Translation. MTLP operators
can be translated to LARS formulas with the following rules:

MTLP LARS

−✆[0,n] φ =̂ A �n♦φ (4.7)
�[0,n] φ =̂ A �n�φ

This can be employed in any size of nested temporal operators, however the leading reset
operator may be omitted.

Proof. We inductively prove the translation on both operators:

• First we have a look at the translation for the diamond or finally operator.

S, t |=−✆[0,n] φ iff ∃t
 : S, t
 |= φ and t
 ∈ [t − n, t]
S, t |= �n♦φ iff ∃t
 : S
, t
 |= φ and S
 = {ν(t

) | t − n ≤ t

 ≤ t}

As we can see, the effective interval for the operator is the same, the two notions just
operate with different tools, either cutting the stream and evaluating the formula
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on all of it, or simply limiting the stream to a certain interval in which the formula
is evaluated. Now assume that there are some temporal operators occurring before
such a MTL formula. Other than in LARS, the stream is not cut, but rather just
evaluated by the interval in each time point specified. This means that in LARS we
have to reset the substream to the original stream in every instance of the temporal
operator to preserve the semantics at any nesting depth δ.


[0,n1]... −✆[0,nδ] φ =̂ �n1 
... A �nδ♦φ

As the temporal operators must evaluate on the original stream, we can generalize
this to

−✆[0,n] φ =̂ A �n♦φ

making the translation valid.

• By the same arguments we can also prove that
�[0,n]φ =̂ A �n�φ

holds. �

Example 10 The MTL formula �[n,0] �[m,0] (p∧ −✆[i,0] q) can be translated to the LARS
formula �n� A �m�(p ∧ A �i �q).

We start with the outermost operator �[0,n]φ, which is then turned to A �n �φ. In the
same fashion, we translate the next subformula �[0,m]φ to A �m �φ. The proposition p
as well as the logical and ’∧’ do not need to be changed and can be taken as is. The last
operator that needs translation is −✆[0,i] q, which is rewritten to A �i �q. Put together in
the original sequence we obtain A �n � A �m�(p ∧ A �i �q). The leading reset operator is
omitted and we obtain the above formula.

4.3.4 Translating NWNF to MTLP

On the other hand, the translation of window operators to MTL is more difficult. The
intuition behind it is, that every nested window creates a truncated version of the
temporal operator at each time step. To model this in MTL, it is necessary to split each
time point apart from the computation and create its own version of the interval. For a
single nested window operator this looks as follows:

LARS MTLP

�n ��m 
φ =̂
�

i∈[0,n]
�[i,i] 
[0,min(m,n−i)] φ (4.8)

�n ♦ �m 
φ =̂
�

i∈[0,n]
�[i,i] 
[0,min(m,n−i)] φ
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For any nesting depth greater than one we first propose a new notation to deal with
nested window operations:

Notation 2 Subformula Window Intervals. A LARS formula φ = �nψ with any
subformula ψ will further be denoted as φn, where the superscript defines the type and
boundary of the outermost window function. If there are multiple such window function
like φ = �nψ ∨ �mχ, they can be superscripted as a list of such intervals φn,m.
An MTL formula φ = 
[i,j]ψ similarly receives a subscript with the outermost temporal
interval like φ[i,j]. This can again be done in the form of a list if there are multiple
operators in the same nesting depth.

Proposition 4 Translation of Formulas with arbitrary Nesting Depth. We
propose the following more general rules, utilizing the above notation:

LARS MTLP

�n �φm =̂
�

i∈[0,n]
�[i,i]φ[0,min(m,n−i)] (4.9)

�n ♦φm =̂
�

i∈[0,n]
�[i,i]φ[0,min(m,n−i)]

This translation can be used recursively starting from the outermost window operator and
continuing until only one window operator is left that can be translated as a regular MTL
operator. The second window operator may also be nested inside a subformula, in which
case the entire subformula replaces 
φ and the next window gets the new interval assigned.

Proof. We start with the base case for the always operator as defined above:

�n��m 
φ =̂
�

i∈[0,n]
�[i,i] 
[0,min(m,n−i)] φ

The left hand side is true iff every time point in the substream created by the window
function satisfies the subformula 
φ in the subsubstream created by the second window
function. This means that each time point in the substream has to check whether this
subformula is true in the subsubstream. The first window function therefore has to
be eliminated by pulling it apart into the time points of the substream. The semantic
equivalence can be seen here:

S, t |= �n�φ iff ∀t
 : S
, t
 |= φ

S, t |= �n�φ iff
�

t�∈[t−n,t]
S, t
 |= φ

S, t |= �n�φ iff S, t |=
�

t�∈[0,n]
@t−t� φ
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The above formula can then be directly translated to MTL as

S, t |=
�

t�∈[0,n]
@t−t� φ =̂ S, t |=

�
i∈[0,n]

�[i,i]φ

Because of the truncating nature of window functions, the latest time point in the
substream can create only a single time point in the subsubstream. This is modelled
by assigning each time point in the substream its own subformula checking only the
truncated time interval. The truncation happens in the MTL operator interval starting
with 0, since we can only observe past time windows currently. The function min(m, n−i)
then truncates the interval at either the point where the inner window would end the
stream, or where the outer window would truncate the inner stream. This means that
with an i = n only the latest time point will be seen, which fulfills the semantics of nested
windows. Similarly, the finally operator base case

�n♦ �m 
φ =̂
�

i∈[0,n]
�[i,i] 
[0,min(m,n−i)] φ

can be explained, except that there only needs to be one point in time fulfilling the
subformula, which makes it a disjunction instead.

From this base case we add additional window functions to φ of any nesting depth δ. We
go inductively starting with the outermost window function to the innermost, until we
reach the base case. Assume a formula

�n0�φn1

As we have defined above, the subformula φ includes a window function with the
superscript m, defining the subsubstream. Using the formula from above we can pull the
window apart to emulate the substream generation:

�n0�φn1 =̃
�

i∈[0,n0]
�[i,i]φ

n1

Next the subformula φn1 has to be adapted to fit the truncating nature of substreams.
We adjust the next outermost window of φn1 to define the window min(n1, n0 − i) so
that the interval models the substream.

�n0�φn1 =̂
�

i∈[0,n0]
�[i,i]φ

min(n1,n0−i)

In the next nesting level of φmin(n1,n0−i) = �min(n1,n0−i)ψn2 , we again employ the strategy
of pulling apart the window function to create a conjunction or disjunction of time points.
This can be continued until nδ−1, where the base case can be used to preserve the last
temporal operator without pulling it apart. �
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Example 11 We look at the NWNF formula �5♦ �2 ♦(p ∨ q).

• We start with the translation beginning with �5♦φ2, which is in MTL then�
i∈[0,5]

�[i,i]φ[0,min(2,5−i)].

• This is written in full form

�[0,0]φ[0,2] ∨ �[1,1]φ[0,2] ∨ �[2,2]φ[0,2] ∨ �[3,3]φ[0,2] ∨ �[4,4]φ[0,1] ∨ �[5,5]φ[0,0]

• The subformula
φ[0,min(2,5−i)] ≡ �min(2,5−i)♦(p ∨ q)

is then translated with regular MTL equivalence to

−✆[0,min(2,5−i)] (p ∨ q)

and inserted back into the formula as the MTL logic formula

�[0,0] −✆[0,2] (p ∨ q) ∨ �[1,1] −✆[0,2] (p ∨ q) ∨ �[2,2] −✆[0,2] (p ∨ q)∨

�[3,3] −✆[0,2] (p ∨ q) ∨ �[4,4] −✆[0,1] (p ∨ q) ∨ �[5,5] −✆[0,0] (p ∨ q).

As it can be seen, the formula size is increased by the product of interval sizes of all
nested windows. This makes it an exponential blowup roughly of size O(ιδ), where ι is
the size of the biggest window interval and δ is the maximum window nesting depth.
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4.4 Custom Window Functions

In the previous sections, we were only able to utilize past time time-based window
functions. However this may be too limiting for the rich expressivity of LARS. For this
we now add the notion of general window functions and intervals in LARS and Metric
LARS. Further we have a look at what is currently not possible to express in regular
MTLP .

4.4.1 Future Time Window Functions

First we want to extend the time-based window functions to include future time intervals.
We therefore change the formulas to consider from �n 
φ to �[i,j] 
φ, where the resulting
substream clips the original stream to the interval [t − i, t + j], relative to some time t
where the window is evaluated.

We start by adding the notion of future time window functions. These window functions
define an interval starting at 0, i.e. the current time t̂, and end at some point t̂ + j.
Therefore the currently available windows look as follows: �[0,j] for future time windows
and �[i,0] for past time intervals. The translation for these strictly future and past
window functions is then easy:

LARS MTLP

A �[i,0]�φ =̂ �[0,i] φ

A �[0,j]�φ =̂ �[0,j] φ (4.10)
A �[i,0]♦φ =̂ −✆[0,i] φ

A �[0,j]♦φ =̂ +✆[0,j] φ

The leading reset operator signifies that there may not be any leading windows for this
translation to work. For nested window functions we have to rewrite the translation rules
from before here to make sure all the different combinations of past and future intervals
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are dealt with:

LARS MTLP

�[0,j] �φ[0,n] =̂
�

k∈[0,j]
�[k,k]φ

[0,min(n,i−k)]

�[0,j] �φ[n,0] =̂
�

k∈[0,j]
�[k,k]φ

[min(n,k),0]

�[i,0] �φ[0,n] =̂
�

k∈[0,i]
�[k,k]φ

[0,min(n,k)] (4.11)

�[i,0] �φ[n,0] =̂
�

k∈[0,i]
�[k,k]φ

[min(n,i−k),0]

�[0,j] ♦φ[0,n] =̂
�

k∈[0,j]
�[k,k]φ

[0,min(n,i−k)]

�[0,j] ♦φ[n,0] =̂
�

k∈[0,j]
�[k,k]φ

[min(n,k),0]

�[i,0] ♦φ[0,n] =̂
�

k∈[0,i]
�[k,k]φ

[0,min(n,k)]

�[i,0] ♦φ[n,0] =̂
�

k∈[0,i]
�[k,k]φ

[min(n,i−k),0]

Next we will have a look at the mixed intervals in the base case, so without any nested
window functions:

LARS MTLP

�[i,j] �φ =̂ �[i,0] φ ∧ �[0,j]φ (4.12)
�[i,j] ♦φ =̂ −✆[i,0] φ∧ +✆[0,j] φ

These formulations make it now easy to see a common scheme far a general translation
of any form of interval window function.

Proposition 5 Mixed Time Window Translation. We propose the following rules
to translate any LARS formula with window functions of future- and past-time intervals
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to MTLP :

LARS MTLP

�[i,j] �φ[n,m] =̂
�

k∈[0,i]
�[k,k]φ

[min(n,i−k),min(m,j+k)]∧
�

l∈[0,j]
�[l,l]φ

[min(n,i+l),min(m,j−l)] (4.13)

�[i,j] ♦φ[n,m] =̂
�

k∈[0,i]
−✆[k,k] φ[min(n,i−k),min(m,j+k)]∨

�
l∈[0,j]

+✆[l,l] φ[min(n,i+l),min(m,j−l)]

The translations mentioned in Equations 4.11 and 4.12 are then special cases of this
general translation and do not need their own proof.

Proof. We start by showing that the general window interval can be split into past and
future without loosing semantic accuracy in the nesting depth 0 case.

S, t |= �[i,j]�φ iff ∀t
 ∈ [t − i, t + j] : S, t
 |= φ

S, t |= �[i,j]�φ iff S, t |=
�

t�∈[t−i,t+j]
@t�φ

This can then be split into past and future parts:

S, t |=
�

t�∈[t−i,t+j]
@t�φ iff S, t |=

�
tP ∈[t−i,t]

@tP φ ∧
�

tF ∈[t,t+j]
@tF φ

In the same way we obtain the translation for the finally operator:

S, t |= �[i,j]♦φ iff S, t |=
�

tP ∈[t−i,t]
@tP φ ∨

�
tF ∈[t,t+j]

@tF φ

These resulting formulas can be directly translated to MTL in the way we have seen in
the base case that is Equation 4.12. Next we assume there are multiple window functions
nested in φ up to a nesting depth δ.

S, t |= �[i,j]�φ[n,m] iff S, t |=
�

t�∈[−i,j]
@t+t�φI

S, t |=
�

t�∈[−i,j]
@t+t�φI iff S, t |=

�
tP ∈[0,i]

@t−tP φIP ∧
�

tF ∈[0,j]
@t+tF φIF

where I, IP and IF have to be determined. We start with I, which determines the
interval for the inner window function in the non-split case. This will be only truncated
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at the border of the outer window, so we have to check for the minimum of either
its own border or the sliding effect of closing in. This results in the new interval
I = [min(n, i − t
), min(m, j − t
)].

S, t |= �[i,j]�φ[n,m] iff S, t |=
�

t�∈[−i,j]
@t+t�φ[min(n,i−t�),min(m,j−t�)]

The last two intervals are trickier because the truncating outer border is now split in two
parts. This means that we have to allow the substream to go beyond the scope of the
counting variable instead of stopping at 0, like in the previous cases. This propagates
the new window intervals down a nesting layer that has again a future and past part
in the most cases. For the past, we have to use the previous trick of truncating at the
border, as well as truncating in the future if the inner window interval is bigger than the
outer one. This is done with the past time interval IP = [min(n, i − tP ), min(m, j + tP )]
and the future time interval IF = [min(n, i + tF ), min(m, j − tP )]. The reason for their
shape is that in the case of IP that the counter decreases the current time by its current
value. The interval for the past is then either as defined or is truncated by the border.
The border is closer in each time step further down. This means we need to compare
the defined bound with the approached bound. For the future part, it is the other way
around, so the bigger the counter gets, the further we leave the future bound, so it has
to be gradually increased until we can use the defined bound. For IF this is the same,
but the other way around. With this we result in the final equation:

S, t |=
�

tP ∈[0,i]
@t−tP φ[min(n,i−tP ),min(m,j+tP )] ∧

�
tF ∈[0,j]

@t+tF φ[min(n,i+tF ),min(m,j−tP )]

Translated into MTL by the semantics for the @ operator we receive the exact equation
as proposed in Equation 4.13. �

Example 12 Consider the formula �[2,2]♦ �[1,2] �p.

We start with the first window function �[2,2]♦φ[1,2]. In this case we have a future and
past time window interval to deal with, so we use the translation formula from Equation
4.13. This yields the preliminary formula:�

tP ∈[0,2]
−✆[tP ,tP ] φ[min(1,2−tP ),min(2,2+tP )] ∨

�
tF ∈[0,2]

+✆[tF ,tF ] φ[min(1,2+tF ),min(2,2−tF )].

Spelled out, this results in the following formula:

−✆[0,0] φ[1,2]∨ −✆[1,1] φ[1,1]∨ −✆[2,2] φ[0,2]∨ +✆[0,0] φ[1,2]∨ +✆[1,1] φ[1,1]∨ +✆[2,2] φ[1,0].
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For each subformula φ we now have to adjust the outermost window function. Since there
are no more nested windows, we can use the base case and directly translate to MTL as
seen in Equation 4.12:

−✆[0,0] (�[0,1]p ∧ �[0,2]p)∨ −✆[1,1] (�[0,1]p ∧ �[0,1]p)∨ −✆[2,2] (�[0,0]p ∧ �[0,2]p)∨

+✆[0,0] (�[0,1]p ∧ �[0,2]p)∨ +✆[1,1] (�[0,1]p ∧ �[0,1]p)∨ +✆[2,2] (�[0,1]p ∧ �[0,0]p).

The final result can be optimized a bit by removing redundant subformulas:

�[2,2]♦ �[1,2] �p =̂ −✆[0,0] (�[0,1]p ∧ �[0,2]p)∨
−✆[1,1] (�[0,1]p ∧ �[0,1]p)∨
−✆[2,2] �[0,2]p∨
+✆[0,0] (�[0,1]p ∧ �[0,2]p)∨
+✆[1,1] (�[0,1]p ∧ �[0,1]p)∨
+✆[2,2] �[0,1]p

This example shows how much small LARS formulas may blow up when translated to
MTL. We will have a closer look at this blow up in Lemma 2 on page 59.

4.4.2 General MTLP Interval Operators
So far we only looked at general intervals for LARS window functions, however also
MTLP has a more extended notion of intervals subscripted to its operators. Other than
the window functions, the temporal operators of MTL need not contain the current point
in time. This means that the interval [i, j] subscripted under a past time operator defines
the interval [t̂ − j, t̂ − i], where t̂ is the current time.

Proposition 6 General MTLP Interval Operator Translation. Since MTL does
not truncate the stream, we do not need to worry about nested window operations in these
formulas and we can simply propose the following translation:

−✆[i,j] φ =̂ A @t̂−i �[j−i,0] ♦φ

+✆[i,j] φ =̂ A @t̂+i �[0,j−i] ♦φ

�[i,j] φ =̂ A @t̂−i �[j−i,0] �φ

�[i,j] φ =̂ A @t̂+i �[0,j−i] �φ
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This is a direct generalization of the translation given in the previous section of this thesis.

Proof. We start by demonstrating how a general temporal operator in MTL can be
rewritten as two strict ones:

−✆[i,j] φ =̂ �[i,i] −✆[0,j−i] φ

The formula −✆[i,j] φ is true, iff there exists a time point in the interval [t̂ − j, t̂ − i] where
φ is fulfilled. By first freezing the time to t̂ − i and then applying the interval operator −✆,
we can emulate the exact behavior of the original formula. This can now be translated
to LARS directly:

�[i,i] −✆[0,j−i] φ =̂ A @t̂−i �[0,j−i] ♦φ

The reset operator has to be added since the boundaries of the previous window functions
do not concern us in MTL. Again, a leading reset may be omitted, as the original stream
will always be reset to itself. The proof for the always operator and future time interval
works in the same way. �

4.4.3 General Monotonous Window Functions
Metric temporal logic only considers sliding intervals for its operators, but LARS is quite
an open system when it comes to the definition of window functions. This means that only
a certain number of window functions can be emulated by Metric LARS. In particular
we will have a look at a more general approach to make monotonous interval-based
window functions like tumbling windows and others possible. Other windows like Filter
or Tuple-based window functions will not be covered as they can not be emulated by
regular MTLP , since they go beyond the notion of intervals constraining the data stream.

Definition 8 Oracle Intervals. An Oracle Interval is a predicate of the form

Ω(f, A0, ..., An, S, E). (4.14)

where

• f is the identifier of the window function

• A0, ..., An are arguments of the window function f

• S is the starting point of an interval for a temporal operator

• E is end point of an interval for a temporal operator
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This predicate accepts any numbers Ai, S, E ∈ N and evaluates only then to true, if
the start and end point match the computation of the interval of the specified temporal
operator with the given arguments. This means it emulates the evaluation of the function
f : Nn → N2.

Example 13 To demonstrate how such a window can be translated, consider the following
formula �t[0,5]♦φ, where the window symbol refers to a tumbling window. This defines a
window that splits the stream into parts of 5 time points and evaluates the formula within
the current time, i.e. 0, and the next boundary of 5. We can simulate this type of window
with the MTL formula

+✆[S,E] φ ∧ Ω(tumble, t̂, S, E).

The function argument t̂ refers to the current point in time and the word tumble identifies
the function we have defined as tumble : T → 0 × N. In detail we calculate the tuple
(0, 5 − t̂ mod 5).

This oracle is introduced to emulate more complex intervals in the Metric LARS formulas.
As is the case in regular LARS we will not allow too complex window functions and
restrict them to polynomial time complexity so that f ∈ P . This makes it now possible
to allow tumbling time-based windows, partition-based windows etc. to be translated. In
a Metric LARS formula, the oracle just has to be conjuncted and can use the variables S
and E to define the interval borders of any temporal operator.
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4.5 Answer State Semantics
With the translation of general LARS formulas established, we will now have a look
at the answer set semantics of Metric LARS. When thinking back about the definition
of streams, LARS and MTL in their intention serve different goals and therefore use a
different notion of data streams. LARS assumes that there is a state at each time point,
while MTL treats a timeline just as a series of states with unknown amounts of time in
between where there are no states. To compare the semantics of both systems, we hereby
propose two different ways to translate state sequences into LARS streams. After that
we have a look at LARS answer streams and then derive Metric LARS answer streams
from them.

4.5.1 Continuous Stream Assumption
MTL tries to model systems that rarely receive updates of their current status. For this
reason, the temporal operators use intervals to relax the need of having to remember
exact time points. The next operator is the best example, since it is defined with an
interval to make sure the next state occurs in a given number of steps. MTL can easily
adopt the notion of LARS data streams by adding the formula �T ⊕[1,1] �. This formula
ensures that there is always a state in the next moment of time.

Assume now that we only receive updates when the system state changes. It may still
be important to compare the new state to the last in case the difference creates the
meaning of the data, which is not uncommon for systems. To model this consider the
following formula to transform sparse state sequences to continuous LARS streams using
the Continuous Stream Assumption (CSA(S)):

Definition 9 Continuous Stream Assumption. Given the state sequence S =
{�σi, i� | 0 ≤ i < n, n ∈ N} and function τ : N �→ T , mapping each state to the
system time, then the Continuous State Assumption of S is the resulting LARS stream:

CSA(S) = { (σi, j) | τ(i) ≤ j < τ(i + 1) ∧ �σi, i� ∈ S }. (4.15)

4.5.2 Sparse Stream Assumption
On the other hand we also need a method to create sparse LARS streams from state
sequences, that does not allow consecutive states to be the same. For this matter we use
the Sparse Stream Assumption (SSA(S)), that behaves like the differential to the given
sequence S.
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Definition 10 Sparse Stream Assumption. Given a state sequence S = {�σi, i� | 0 ≤
i < n, n ∈ N} and function τ : N �→ T , mapping each state in the sequence to the system
time, the Sparse Stream Assumption of S is the resulting LARS stream:

SSA(S) =
�

(σi, τ(i)) ∀i : 0 ≤ i < n

(∅, j) ∀j : j ∈ T\{τ(i) | i ∈ N}.
(4.16)

4.5.3 LARS Stream Sequence
Of course we not only want to transform state sequences into LARS streams but also the
other way around. For this we propose the LARS Stream Sequence transformation:

Definition 11 LARS Stream Sequence. Given a LARS stream S = (T, ν), where T
is a time domain and ν a function, mapping atoms to time points in T , then the LARS
Stream Sequence of S is defined as the following timed state sequence:

LSS(S) = {�σi, i� | σi = ν(ti) ∧ σi �= ∅}. (4.17)

4.5.4 Report Only Changes State Sequence
Typically MTL state sequences only report the changes in a system. This means that it
should not occur in two directly following states, that they bear the same information.
For this type of LARS stream translation, we propose the Report Only Changes State
Sequence, or short ROCS:

Definition 12 Report Only Changes State Sequence. Given a LARS stream S =
(T, ν), where T is a time domain and ν a function, mapping atoms to time points in T ,
then the Report Only Changes State Sequence of S is defined as:

ROCS(S) = {�σi, i� | σi = ν(ti)\ν(ti−1) ∧ σi �= ∅}. (4.18)

4.5.5 Comparing Timed State Sequences
It is important for the definition of answer sets to compare two different timed state
sequences. For this reason we introduce the subset operator ⊆ for the semantic structures.
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Definition 13 Timed State Sequence Subsets. Consider two timed state sequences
I = {�p̄i, i�, τI | i ≤ n} and J = {�q̄j , j�, τJ | j ≤ m}. The sequence I is considered to be a
subset of J , written I ⊆ J , if the following conditions hold:

1. ∀ i, j : τI(i) = τJ(j) → p̄i ⊆ q̄j.

2. ∀ i ≤ n ∃ j ≤ m : τI(i) = τJ(j).

This means that every specified time point in I needs to have a corresponding time point
in I, of which the set of propositions of J is also a subset of the propositions of J .

Example 14 Consider the timed state sequences I:

t = 0 : σ1 = {b, c}
t = 2 : σ2 = {a}
t = 3 : σ3 = {a, d}
t = 5 : σ4 = {a, c}

and J :

t = 0 : σ1 = {a, b, c}
t = 1 : σ2 = {a}
t = 2 : σ3 = {a, b, c, d}
t = 3 : σ4 = {a, d}
t = 4 : σ5 = {a, b, c}
t = 5 : σ6 = {a, c, d}

over the same time domain T and set of propositions P = {a, b, c, d}. We now want to
see if the relation I ⊆ J holds. We start with the first constraint. Each state of I with
the same time mapping as a state within J has to be a propositional subset of J . In this
case we need to look at the states at time points 0, 2, 3 and 5. As we can see, all the
states of I with a corresponding state in J fulfill this. In the next constraint, we have to
check if each state in I has a corresponding state in J . As we have already seen in the
previous condition, this is true for the state sequences.

This then leads to a very important property of timed state sequences. Together with
the subset operator, a set of timed state sequences is a partial order:
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Proposition 7 Partial Order of Timed State Sequences. Let S = {s0, s1, ...}
denote the set of timed state sequences over a set time domain T and a set of propositions
P . Further, let ⊆ be the subset operator. This operator is then a partial ordering on S
and (S, ⊆) is a partially ordered set.

Proof. Recall that for a set S, for a binary relation R ⊆ S2 to be a partial ordering of S,
R has to fulfill the three properties of Reflexivity (aRa for each a ∈ S), Transitivity (if
aRb and bRc then also aRc), and Antisymmetry (if aRb and bRa then a = b).

• Reflexivity: Let a be a timed state sequence. A reflexive operator satisfies a ⊆ a for
every a. The first condition as in Definition 13 states that for each time point that
is in the same real time point for both sequences, the propositions have to be equal
or a subset. This is always the case as the propositions are equal in all equal timed
states. The second condition states that all timed states of the left sequence have
to be included in the right sequence. As both are equal, this is always the case.

• Transitivity: Let a, b and c be timed state sequences. To satisfy transitivity, we
have to show that if a ⊆ b and b ⊆ c then a ⊆ c is always the case. Assume the
left hand side is given, so that a ⊆ b and b ⊆ c. This means that b includes all the
information of a and c includes every information provided in b. As there is no loss
of information between these relations, c has to include all the information of a,
which means that

– In each timed state of a the propositions of c are at least equal, and
– each timed state in a is included in c.

• Antisymmetry: Let a and b denote timed state sequences. For the relation to be
called antisymmetric, it has satisfy that for all a, b if a ⊆ b and b ⊆ a then a = b.
Assume a ⊆ b and b ⊆ a holds. This means that each timed state in a is included
in b and each timed state in b is included in a. This means that both have the
same amount and timing of their states. Further, in each state the propositions of
a and b have to be equal as both include each others propositions. Therefore the
sequences have to be equal to each other.

Satisfying all these properties makes the subset operator and the set of timed state
sequences a partially ordered set. �

4.5.6 Metric LARS Answer State Sequences
As we have seen, there is semantic equivalence for LARS and Metric LARS formulas and
we can transform LARS streams into timed state sequences and back. This makes it now
easy to define the answer set semantics of Metric LARS programs.
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Definition 14 Metric LARS Formulas. A Metric LARS Formula is any formula in
MTLP that can be translated to LARS. This leads to the following syntax definition:

φ ::= p | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | �I φ | �I φ | +✆I φ | −✆I φ (4.19)

Where p is a proposition and I an interval.

Definition 15 Metric LARS Rules. A Metric LARS rule is of the form

φ0 ← φ1 ∧ ... ∧ φn. (4.20)

where φ0, ..., φn are arbitrary Metric LARS formulas. The left hand side is called the rule
head – head(r) – and the right hand side is the rule body – body(r). A Metric LARS
program consists of a set of Metric LARS rules.

Definition 16 Answer State Sequences. Metric LARS is evaluated on a timed state
sequence D called the data state sequence in a model structure M = �I, O, B� composed
of a timed state sequence I called the interpretation sequence with D ⊆ I, a possibly
empty set of oracle intervals O and B, the background data. We use the FLP-reduct
PM,t = {r ∈ P | M, t |= body(r)} at time point t to determine the answer state sequences
of a Metric LARS program P. For I to be an answer state sequence of P at time point
t, I has to be minimal compared to all other models of the reduct PM,t. The set of all
answer state sequences of the program P on the data sream D at the time point t is
denoted as AS(P, D, t).

Example 15 Assume the data state sequence D = {σ1 = {b, c}, σ2 = {c}} with its
corresponding mapping function τD = {1 �→ 0, 2 �→ 3} and the program

P = { a ←−✆[0,2] b.

d ← �[1,1]c. }

Assume the model structure for time point t = 2 is the following:

M = �I = {σ1 = {b, c}, σ2 = {a, d}, σ3 = {c}}, ∅, ∅}�
where I has the corresponding mapping function τI = {1 �→ 0, 2 �→ 2, 3 �→ 3}. As no
oracle intervals are used in this program, the set of oracles is empty.

The reduct PM,2 has the form

PM,2 = { a ←−✆[0,2] b.

d ← �[1,1]c. }
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Here nothing has changed but compare to the reduct of time point t = 0:

PM,0 = { a ←−✆[0,2] b. }

The interpretation state sequence I is therefore the answer state sequence of P for D at
t = 2, so that I ∈ AS(P, D, 2). The answer states for this program on the given data
sequence at the other time points t will look as follows:

t = 0 : σt=0 = {a, b, c}
t = 1 : σt=1 = {a}
t = 2 : σt=2 = {a, d}
t = 3 : σt=3 = {c}

Note that renaming states in a sequence is not important for comparing them via the
subset operator as defined in Definition 13. It only matters that states refer to the same
real time when they are compared. The answer state sequence I is therefore correctly a
proper superset of D.

Proposition 8 Answer Stream to Answer State Equivalence. An answer stream
I in an interpretation M = �I, W, B� of a LARS program P at some time t is identical to
the answer state sequence translation LSS(I) in the interpretation M 
 = �LSS(I), O, B�
of the Metric LARS translation P 
 of P on at the same point in time t, if the oracle
intervals O can emulate the intervals imposed by the LARS window functions W .

Proof. Assume the answer stream and answer state were different. This means that
either or both of them contain different propositions. For this to be true, either the
stream I and timed state sequence LSS(I) had a different mapping of real time to sets of
propositions or the program consists of different rules. Since the background data is the
same in both structures and the streams contain the same information, as shown in the
section on stream translation, only the rules may be different. As we have shown, the
translation of rules is semantically identical to their LARS/Metric LARS counterpart,
which means that the FLP-reduct has to be the same as well. Therefore either one of the
two answer streams/states is not a minimal model of the reduct or not a model at all,
contradicting the assumption. �

4.5.7 Semantic Properties
Now we have a look at the properties of the answer states. We start with the minimality
of answer state sequences, incomparability of answer state sequences, then the supported-
ness of answer state sequences and lastly consistency of positive Metric LARS programs.
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As we have seen that there is an equivalence of LARS answer streams and Metric LARS
answer states, the proofs will be rather simple as these properties have already been
established for LARS by Beck et al. [BDTE18]. Similarly, we let the sets of Background
Data B and Oracle intervals O be fixed in the following theorems.

Theorem 5 Minimality. Let P be a Metric LARS program, D be a data sequence, t
be a time point and AS(P, D, t) denote its answer states. Then by Definition 16 each
interpretation sequence I ∈ AS(P, D, t) builds a minimal model M = �I, O, B� of P for
D at time t.

Proof. Here we have to show that each minimal model of PM,t is also a minimal model of
P. Consider M = �I, O, B� and I ∈ AS(P, D, t). To be a model of P, each rule r ∈ P
has to be satisfied by the model M, t |= r. Now r can either be satisfied in PM,t as defined
at t, or the rule body is not fulfilled, satisfying the implication, so that M, t �|= body(r)
and M, t |= body(r) → head(r).

Next assume there exists some M
 = �I, O, B�, where M
 ⊂ M is a model of P at time t.
Suppose a rule r ∈ PM,t. As PM,t ⊆ P and M
, t |= PM,t holds, it follows that M
, t |= r.
Thus M
, t |= PM,t must also hold, which contradicts that M is an answer set of P at t. �

Corollary 1 Incomparability. As was seen in Theorem 5, answer states are minimal.
Therefore the answer states cannot be compared by the subset operator ⊆. This means for
each I, J ∈ AS(P, D, t) either I = J or I �⊆ J and J �⊆ I.

Theorem 6 Supportedness. Let I ∈ AS(P, D, t) be an interpretation sequence. Each
intensional proposition p ∈ I\D in any state σi ∈ I has some justifying rule r ∈ P, so
that both

• M, t |= body(r)

• M
, t �|= r, where M
 = �I\{p ∈ σi}, O, B� and I\{p ∈ σi} denotes the interpretation
sequence I without the proposition p in the state σi ∈ I.

For ordinary logic programs, where all rule heads consist of either a proposition or a
disjunction of propositions, the semantics of ordinary answer set programs is used, that
states that per answer set one of the head propositions has to be in the set.
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Proof. Let I ∈ AS(P,D, t), so that M = �I, O, B� and p ∈ I\D, so that p is an inten-
tional proposition in a state σi, denoted p ∈ σi. To prove the supportedness, we construct
a contradiction. Assume that for all r ∈ P either M, t �|= body(r) or M
, t |= r, where
M
 = �I\{p ∈ σi}, O, B�.

The first case cannot hold for all rules, as the reduct would be empty in this case and
the data sequence D being the interpretation sequence I = D is a contradiction with
p ∈ I\D and p ∈ σi.

In the second case some rules are part of the reduct, i.e. PM,t �= ∅. Since M
, t |= r for
all rules r ∈ PM,t and M
 ⊂ M, the model M is not a minimal model of PM,t. This
contradicts the assumption that M is an answer state of P for D at t. �

Theorem 7 Consistency. Let P be a positive Metric LARS program such that all rule
heads are satisfiable. Then for any data sequence D and time point t:

• The set of answer states is not empty AS(P, D, t) �= ∅.

• An interpretation M = �I, O, B� is a minimal model of the reduct PM,t at t iff I is
an answer state I ∈ AS(P, D, t).

Proof. For the first statement assume we let all intentional propositions be true in some
model M. Now any model M
 ⊆ M of PM,t for D at time t satisfies M, t |= P by
monotonicity M
, t �|= body(r) for all r ∈ P\PM,t. We repeat this for M
, creating a
sequence S = M,M
,M

, ... of strictly decreasing models of P. Let the intersection of
all models in S be denoted by N, which is again a model of P for D at time point t.
This also means that N is a minimal model and therefore the answer state of the program.

The second statement follows from Theorem 5. According to the minimality of answer
states, each I ∈ AS(P, D, t) with M = �I, O, B� is a minimal model of PM,t. With the
previous sequence construction, starting with any minimal model M yields M = N, so
therefore I ∈ AS(P, D, t) holds. �

4.5.8 A Note on Translation Complexity
As we have seen in this chapter, there can be a direct translation between LARS and
MTL formulas. Since we only deal with a fragment of MTL and LARS, the corresponding
language was called Metric LARS. However the translation needs to break the LARS
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window function up into the covered time points to properly work. This means that a
translated LARS formula with a nesting depth greater than 1 will grow exponentially in
size.

Lemma 2 Metric LARS Translation Size. Given a LARS formula φ with nesting
depth δ = δ(φ), the corresponding MTLP equivalent will be of size O(2 ιδ), where ι = ι(φ)
is the size of the greatest interval covered by a window function in φ.

The factor of 2 is related to the base case (δ = 0) where we have to split the intervals
into past and future parts. Just like in LARS, this means that the performance is far
better if the nesting depth of window functions is bounded by a constant. Otherwise we
suffer the exponential explosion similar to translations in other normal forms like CNF.

Example 16 Consider a LARS formula with a nesting depth of 0, so no nested window
functions occur. This may look like

�[n,m]♦φ.

To translate this formula to MTL, we only need to split it into its past and future part:

−✆[0,n] φ∨ +✆[0,m] φ

The size expansion is by a factor of 2, just like predicted in the formula above: 2(n+m)0 =
2.

Now consider the formula �[2,2]♦�[1,2] �p from Example 12. The nesting depth here is 1
and the size of the biggest interval is 5 because of the window �[2,2]. After the translation
the corresponding MTL formula is as follows:

�[2,2]♦ �[1,2] �p =̂ −✆[0,0] (�[0,1]p ∧ �[0,2]p)∨
−✆[1,1] (�[0,1]p ∧ �[0,1]p)∨
−✆[2,2] �[0,2]p∨
+✆[0,0] (�[0,1]p ∧ �[0,2]p)∨
+✆[1,1] (�[0,1]p ∧ �[0,1]p)∨
+✆[2,2] �[0,1]p

The proposition p now occurs in 10 different subformulas, which is equal to the estimation
of 2 × 51 = 10.
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CHAPTER 5
Relationship with other Real

Time Logics

In this chapter we consider some other logics that extend Metric LARS or serve as
other formalizations of the given expressions. For this reason, we have a look at Signal
Temporal Logic, an extension of Metric Interval Temporal Logic, and Timed Propositional
Temporal Logic, the original real time logic on which MTL is based.

5.1 Metric Interval Temporal Logic
The first real time logic we introduce is Metric Interval Temporal Logic, or short MITL.
It was first described by Alur et. al. in 1996 [AFH96]. This is a fragment of MTL that
was made decidable by inhibiting the use of point intervals in temporal operators.

We start by defining the timed state sequences in MITL, which contain different notions
than the ones we have seen so far.

Definition 17 Timed State Sequence. Given a time domain T = R≥0 starting at
time point 0 without an upper bound, we define an interval sequence Ī = I0 I1... as an
infinite sequence of intervals so that

• I0 is left-closed, i.e. it includes the starting point, and starts at 0

• Each interval is adjacent to its neighbors, so that each interval Ii is either right-open
and Ii+1 is left-closed, or the other way around

• Every time point t ∈ T belongs to some interval Ii
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Let P be a finite set of propositions. A state sequence s̄ = s0 s1... is an infinite sequence
of states si ⊆ P .
A Timed State Sequence τ = (s̄, Ī) consists of a state sequence and an interval sequence.
For each time point t ∈ Ii, we retain the corresponding state by using the function
τ∗ : T → s̄, so that τ∗(t) = si.

Intuitively this definition wants to model the same notion as regular MTL, but instead
of time points, the states are identified by intervals and count as long as their interval
defines. The syntax and semantics of MITL is the same as in MTL with the sole exception
that subscript intervals may never be punctual. This means that Intervals of the form
I = [i, i] are prohibited.

5.1.1 Defining the MITL Fragment for Metric LARS
There have already been many attempts to create MITL fragments to create MITL
logic programs, as for instance in [BKK+17]. Since MITL is a fragment of MTL we will
continue by proposing a formalization of MITL within Metric LARS.

Definition 18 Continuous Interval Sequence. Given a Metric LARS timed state
sequence S = {�σi, i� | 0 ≤ i < n, n ∈ N} and function τ : N �→ T , mapping each state to
the system time, then the Continuous Interval Sequence of S yields the following MITL
state sequence:

CIS(S) = { (σi, Ii) | Ii = [τ(i), τ(i + 1) − 1] ∧ �σi, i� ∈ S } (5.1)

We further define LARS MITL as a fragment of Metric LARS:

Definition 19 MITL fragment of Metric LARS. A Metric LARS formula that
does not contain an interval of the form I = [i, i] is said to be in MITL. A rule is in
MITL, if every formula contained in said rule is in MITL. If each rule in a Metric LARS
program is in MITL, the entire program is in MITL.

To evaluate MITL in our formalization the way its unique semantics was intended, we
adopt above notion of timed state sequences for evaluation of the MITL fragment of
Metric LARS:

Proposition 9 Evaluation of MITL Programs. Metric LARS programs of the
MITL fragment can be evaluated on any timed state sequence using the Metric LARS
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semantics. This is done by converting a timed state sequence using the CIS to the proper
MITL sequence.

Note that LARS formulas that shall be translated to MITL may not include nested
window functions. Plain LARS formulas without the @ operator can therefore be directly
translated. This greatly reduces the complexity of LARS formulas in this fragment.
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5.2 Signal Temporal Logic
To increase the possibilities of MITL, Signal Temporal Logic was designed in 2004 by
Maler and Nickovic [MN04]. It was made to model continuous signals for interval bounded
MITL. These signals require a non-trivial definition:

Definition 20 Signal. Let T be the time domain so that T = R≥0. A signal is a
function s that maps the time domain to some domain D. In the case of STL, we restrict
D to the set B = {�, ⊥}. Then s : T → B is defined over an interval I = [0, r), where r
is the length of the signal. Each point in time t > r that is not defined by the signal is
defined as s[t] = ⊥.

The semantics of signals is defined as Interval Coverings:

Definition 21 Interval Covering. Let I = [0, r) be an interval. An interval covering
of I is an interval sequence Ī = I0I1... as in MITL. We define the following properties:

• Consistency: An interval covering is consistent with a signal s if s[t] = s[t
] for
every t, where t
 belongs to the same interval Ii. In this case we write s(Ii).

• Finite Variability: A signal s with a finite interval covering is said to be of finite
variability.

• Refinement: An interval covering Ī refines Ī 
 iff ∀I ∈ Ī ∃ I 
 ∈ Ī 
 : I ⊆ I 
.

The minimal consistent interval covering of a signal s with finite variability is denoted
by Īs. Such an interval covering can be split into positive and negative sets, where the
positive intervals of s are Ī+

s = {I ∈ Ī : s(I) = �}. The negative intervals can be defined
simply as Ī−

s = Īs\Ī+
s .

STL features the same syntax as MITL, however satisfaction of a formula works a bit
differently as there are no timed state sequences. Instead the semantics for the various
operators of STL uses the projection function π on signals s. This function filters the
specified frequency, or in this case proposition, p from a signal. This means signals
sp : T → B, sq : T → B and spq : T → B × B can be combined respectively separated by
the pairing and projection functions as such:

sp 
 sq = spq if ∀t : spq[t] = (sp[t], sq[t])
sp = πp(spq) (5.2)
sq = πq(spq)
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where 
 is the pairing function and πp is the projection function.

With these concepts now fully explained, we can define the semantics of the STL syntax
elements:

Definition 22 STL Semantics.

(s, t) |= p iff πp(s)[t] = �
(s, t) |= ¬φ iff (s, t) �|= φ

(s, t) |= φ1 → φ2 iff (s, t) �|= φ1 or (s, t) |= φ2 (5.3)
(s, t) |= �[a,b]φ iff ∃ t
 ∈ t + [a, b] : (s, t
) |= φ

(s, t) |= �[a,b]φ iff ∀ t
 ∈ t + [a, b] : (s, t
) |= φ

Note that the implication and negation build the full Boolean algebra as seen in Equations
3.2 to 3.5.

The most distinctive feature of STL compared to MITL is the usage of predicates. For
this we need to relax the previous constraint that the target domain of signals may only
be used for the set B = {�, ⊥} and define real-valued signals.

Definition 23 Real-Valued Signals. Let T be the time domain and Rm be any m
dimensional space of real values. A real-valued signal defines a function s : T → Rm.

As real-valued signals may be chaotic, we introduce the notion of well-behaved signals,
to which we will constrain the usage of STL predicates. If a signal has an unbounded
frequency, the function µ may create a Boolean signal of infinite variability.

Definition 24 Well-behaved Signals. Assume a function µ : R → B and a signal s.
We restrict STL to signals where each µ(s) is of finite variability and every change of
µ(s) is detected, so that each t, where

µ(s[t]) �= limt�→tµ(s[t
]) (5.4)

holds is included in the sampling. This is similar to smoothing the signal s.

Of course the previous semantics has to be redefined as m-dimensional vectors can hardly
be used with regular logic connectors. For this reason we define a function µ : Rm → B
to “binarize” the real-valued signals.
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Definition 25 STL Predicates. Let s : T → Rm be a well-behaved signal and
U = {µ1, ..., µn} be a set of m-ary predicates. Predicates are effective functions of
the form µi : Rm → B. An STL(U) formula is then an interval-bounded MITL formula
over the atomic propositions µ1(x), ..., µn(x).

As Maler and Nickovic [MN04] have established, STL predicates can be transformed to
propositions by creating a new Boolean signal.

Proposition 10 STL Predicate Transformation. Any signal s with respect to some
set of predicates U can be transformed into a Boolean signal s
 : T → Bn so that
s
 = µ1(s) 
 ... 
 µn(s). Every STL formula φ on signal s can be made propositional, by
replacing each occurrence of µi(x) by a proposition pi and evaluating it on s
.

Example 17 Consider a simple real-valued signal s that corresponds to the function
s(x) = sin(x). Further we assume two STL predicates: gtz(s) and ltz(s). These corre-
spond to the greater than zero and less than zero functions respectively. By applying the
predicate transformation we can create a new Boolean signal s
 = gtz(s) 
 ltz(s). This
new signal will alternate the two Boolean output parameters in intervals of π length.

5.2.1 Defining an STL Fragment for Metric LARS
Similar to Metric Interval Logic, the syntax of STL is very similar to MTL, therefore
we only need to find a way to translate the structure on which STL is evaluated to
timed state sequences as used by MTL and Metric LARS. We start by defining a signal
representation of MTL timed state sequences. In the translation from a timed state
sequence to a signal, we have to make each proposition its own partial signal. This means
we do not have to deal with real-valued signals, as it can be modelled using only Boolean
signals.

Definition 26 Timed State Signal. Let S be a Metric LARS timed state sequence
S = {�σi, i� | 0 ≤ i < n, n ∈ N} with a function τ : N �→ T , mapping each state to the
system time, we define a signal for each proposition p1, ..., pn in S as follows:

si = { [τ(j), τ(j + 1)] | ∀ j : �σj , j� ∈ S ∧ pi ∈ σj} (5.5)

The Timed State Signal of S is defined as the following STL signal:

TSS1(S) = s1

TSS i+1(S) = TSS i(S) 
 si+1 (5.6)
TSS(S) = TSSn(S) = s1 
 s2 
 ... 
 sn
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where si is a partial Boolean signal that corresponds to one proposition pi in S.

Intuitively, we try to incrementally build the signal by individually looking at each
proposition in the timed state sequence. Each proposition is stored in a subsignal
si : T → B, which is represented by a set of intervals, that denote its positive up-
time. This signal is then paired with the resulting signal using the pairing function.
The result is an n dimensional signal modelling the up- and down-time of each proposition.

The other way around we have to model a timed state sequence starting from a signal.
Because real-valued signals may occur, the sequence first has to transform the signal into
a multidimensional Boolean signal as it was proposed in Definition 10.

Definition 27 Signal State Sequence. Let s : T → Rm be an m-dimensional real-
valued signal and a set U = {µ1, ..., µn} of m-ary predicates. Let s
 : T → Bn be a
transformation of signal s, where each dimension in the target domain corresponds to
a predicate in U , so that s
 = µ1(s) 
 ... 
 µn(s). Next construct a set P = {p1, ..pn}
of propositions corresponding to each signal µi(s) in s
. We define the SSS(s) as the
following MTL timed state sequence:

SSS(s) = {(σi, i) | σi = {pj | µj(s)[t] = �} ∧ σi �= ∅, τ(t) = i, t ∈ T} (5.7)

where i is the index of the timed state at time point t. This means that each time point
that is not empty – so that there is at least one STL predicate true in this moment –
receives a new timed state.

With this we now propose the Signal Temporal Logic Fragment of Metric LARS:

Definition 28 STL Fragment of Metric LARS. A Metric LARS formula that does
not contain a punctual interval of the form I = [i, i], where every occurring interval
I = [s, e] is bounded by a real number s, e ∈ R, is in the MITL[a,b] fragment of Metric
LARS. If this formula is to be evaluated on a real-valued or Boolean signal, the formula
is said to be in STL. A Metric LARS rule that only consists of STL formulas is said to
be in STL as well. A Metric LARS program is in STL, if each rule in it is in STL.

With the STL fragment of Metric LARS we can now model real-valued time domains,
as well as predicates which makes a great additions to Metric LARS. It must be noted,
that as with MITL the price of the fragment is, that it can not translate any nested
window functions in LARS. However, since atoms are allowed in Plain LARS, this
fragment shows almost the full capability of Plain LARS with the sole exception be-
ing the restriction of punctual intervals. Another important consideration is that STL
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predicates all have the same arity n, corresponding to the number of channels in a sig-
nal. For predicates with an assumed arity smaller than n certain channels may be omitted.
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5.3 Timed Propositional Temporal Logic

The last logic we have a look at is Timed Propositional Temporal Logic (TPTL). This
logic was proposed by Alur and Henzinger in 1989 and is the first real time logic they
worked on [AH89]. This logic introduced the notion of timed state sequences, which
was then adopted by the authors for Metric Temporal Logic. This means the semantic
structure on which formulas have to be evaluated does not change from the original
definition of timed state sequences as shown in this thesis. However the syntax of this
logic is quite different as we will see.

5.3.1 Syntax

TPTL was designed as an extension of Linear Temporal Logic by adding time variables.
These variables are bound by a freeze quantifier x.φ, where x is the frozen variable. This
makes TPTL more expressive than MTL since absolute time points can be defined in a
formula instead of only sliding time. It features the following syntax:

Definition 29 TPTL Syntax. A TPTL formula is of the form:

π ::= x + c | c (5.8)
φ ::= p | ⊥ | π1 ≤ π2 | π1 ≡d π2 | φ1 → φ2 | ⊕ φ | φ1 U φ2 | x.φ

where x is a time variable, c is a constant and φ is a formula. Arithmetic expressions
concerning time variables are represented by π-terms. TPTL also features the Next
operator ⊕.

5.3.2 Semantics

As said, the semantics of TPTL is defined over timed state sequences, the same as the
ones used in MTL. This makes the semantics easily definable within the context of this
thesis.

Definition 30 TPTL Semantics. Given a timed state sequence S and a function τ
mapping state identifiers to the system time. Further let V be the set of variables and
I : V → T be the environment for variables. The semantics of TPTL formulas for a time
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point t is defined as follows:

S, t |=I ⊥ iff S, t �|=I ⊥
S, t |=I p iff p ∈ σi ∧ τ(i) = t

S, t |=I π1 ≤ π2 iff I(π1) ≤ I(π2)
S, t |=I π1 ≡d π2 iff I(π1) ≡d I(π2)
S, t |=I φ1 → φ2 iff S, t �|=I φ1 or S, t |=I φ2 (5.9)
S, t |=I ⊕φ iff S, t
 |=I φ, t
 = τ(i + 1), t = τ(i)
S, t |=I φ1 U φ2 iff ∃ t
 ≥ t : S, t
 |=I φ2 ∧

∀ t

 ∈ [t, t
) : S, t

 |=I φ1

S, t |=I x.φ iff S, t |=I[x:=t] φ

Compared to the semantics of MTL this definition should look rather familiar. The sole
exception is the new freeze quantifier and the lack of interval boundaries on the Until
connective. Alur and Henzinger proposed different extensions of their logic which we will
not cover in this thesis. Noticeable is the past time extension TPTLP , which introduces
the Before � and Since S operators.

5.3.3 TPTL Extensions for Metric LARS
Since MTL was defined as a fragment of TPTL, the translation of MTL to TPTL was
already given in [AH93]. However TPTL is more expressive, so there are formulas that
cannot be expressed properly by MTL. The TPTL translation of the MTL operators is
as follows:

Definition 31 MTLP to TPTLP Translation.

MTLP TPTLP

p =̂ p

⊥ =̂ ⊥
φ1 → φ2 =̂ φ1 → φ2

⊕I φ =̂ x. ⊕ y.(y ∈ x + I ∧ φ)
�I φ =̂ x. � y.(y ∈ x − I ∧ φ) (5.10)
φ1 UI φ2 =̂ x.(φ1 U y.(y ∈ x + I ∧ φ2))
φ1 SI φ2 =̂ x.(φ1 S y.(y ∈ x − I ∧ φ2))
+✆I φ =̂ x.(� U y.(y ∈ x + I ∧ φ))
−✆I φ =̂ x.(� S y.(y ∈ x − I ∧ φ))

As before, the � and � operators can be derived from the +✆ and −✆ operators.
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We can see that only certain formulas can be translated from TPTL to MTL, as we
would expect. A full extension of Metric LARS to TPTL will however not be given as
this is beyond the scope of this thesis. In this sense the translation given in this chapter
is rather meant as a Metric LARS fragment for TPTL.
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CHAPTER 6
Conclusion and Outlook

In this chapter we summarize our findings and reflect on work that still has to be done.
We start with the conclusion and close the thesis with an outlook on future work.

6.1 Conclusion
The thesis started with a broad introduction in logic programs and showed the capability
of answer set programming, which is form of logic programming. We then had a look
at modal logic and in particular the temporal logic family, with the example of Linear
Temporal Logic. At last, we presented the syntax and semantics of the LARS framework,
a logic based framework for stream reasoning tasks using answer set programming.

From there we explored Metric Temporal Logic as it was originally designed in 1993 by
Alur and Henzinger. This inspection featured the full proofs for the expressivity and
complexity of the logic.

In the main part of this thesis, we explored different fragments of the LARS language
and how to translate them to MTL. We introduced Plain Metric LARS, a translation
of Plain LARS to MTL and back. To make the translation to the full syntax of LARS
formulas possible, we first introduced a new normal form, called Nested Window Normal
Form (NWNF). This normal form serves the purpose to guard LARS temporal operators
with window functions. This was done due to the combined nature of MTL temporal
operators serving as window functions and operators at the same time. Based on the
NWNF of LARS formulas, we could then transform them to MTL syntax and proved
the semantic correctness.
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In the last step of the translation, we revisited the LARS window functions and lifted some
constraints on them, like a mixture of past- and future-time intervals. We introduced the
notion of oracle intervals to simulate windows that do not use sliding interval boundaries.
These oracles may further be able to help us to create non-monotonic temporal operators
in MTL. Overall this final translation suffers an exponential blow-up in size.

Some features of LARS had to be simulated as they had no direct correspondence within
MTL. This was the direct access to system time, as in the LARS @ operator, or window
functions that were non-monotonic.

We defined the language of LARS-translatable MTL formulas as Metric LARS and
provided answer set semantics for its logic programming fragment. Since the semantic
structures on which the different logics are evaluated differ, we also proposed various
ways to translate the LARS streams to MTL timed state sequences and back. Depending
on the situation, streams may feature different semantics so MTL may express a stream
in another fashion. The different ways we proposed serve to show the options instead of
one unified translation.

In the last chapter we had a look at different related logics and created fragments of
Metric LARS to utilize their unique features. We first looked at Metric Interval Temporal
Logic, which restricts the usage of punctual intervals in operators. This logic features
its own type of timed state sequences using intervals rather than timed states, where
propositions hold. We proposed a translation of timed state sequences to their interval
counterpart and introduced a fragment of MITL for Metric LARS. Based on MITL,
we looked at Signal Temporal Logic, which extends the idea of using intervals rather
than time points and applied it to signals on real-valued time domains. This logic first
defines MITL on Boolean signals, but introduces the notion of predicates on real-valued
signals. Exploring this idea, we provided a translation to and from STL signals and an
STL fragment for Metric LARS. The extension of MITL to signals and predicates may
make expressions more succinct while still being quite expressive. The last real-time
logic observed was Timed Temporal Logic, of which MTL is a fragment. This logic is
evaluated on the same timed state sequences as MTL, but uses a freeze operator that
makes it more expressive. We presented the translation given by Alur and Henzinger
[AH93] to transform TPTL to MTL and back. This plethora of new formalisms and
translations shows how much there is to learn from other logics and how they treat data
streams. Having a great variety of inter-translatable suggestions for data semantics makes
real-time logics even better at modelling real-world scenarios.
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6.2 Outlook
This thesis with all its findings served only as a theoretical work and still misses an
actual application on which it can be tested. Answer set programming features great
properties for reasoning tasks and stream reasoning is a very highly sought after field
of research. Applying ASP to tasks of stream reasoning is therefore a valuable cause as
it can directly model these problems using the various formalisms. Especially with the
many ways data streams can be handled by signals or state sequences, we assume that
interest in ASP for stream reasoning will only grow in the future.

Although there are many potential fields of application, the first step has to be to
implement the translator to make Metric LARS programs executable within the LARS
framework. On the other hand, a Metric LARS reasoner might lead to further insight and
inspire progress in other reasoners due to the nature of timed state sequences. For this
reason, further research on oracle intervals will be needed to implement non-monotonic
LARS window functions like tuple-based windows and see the boundaries of Metric LARS
oracles in actual reasoning tasks.

This thesis does not feature a full study of the computational complexity for Metric
LARS and its fragments. MTL has been thoroughly studied in this regard but this task
is still open for the new logics we proposed in this thesis. Future theoretical work may
start with this analysis.

Another topic for future work may be the extension of LARS to Timed Temporal Logic.
As we have seen in this thesis, Metric LARS would require a rather big extension to be
lifted to the same expressivity as TPTL. In this sense, a direct translation from LARS to
TPTL and back may be more interesting, as we had to omit certain features of LARS for
MTL anyways. Most likely such a translation would have similar problems as MTL when
it comes to the correct representation of non-trivial window functions. The translation
may however be more succinct than Metric LARS.
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