
A Comparative Performance
Analysis of Deep Reinforcement
Learning News Recommender

Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Dominik Veselý, BSc.
Matrikelnummer 01633647

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. Peter Knees

Wien, 29. September 2023
Dominik Veselý Peter Knees

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Comparative Performance
Analysis of Deep Reinforcement
Learning News Recommender

Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Dominik Veselý, BSc.
Registration Number 01633647

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Peter Knees

Vienna, 29th September, 2023
Dominik Veselý Peter Knees

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dominik Veselý, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. September 2023
Dominik Veselý

v

Danksagung

Danke an meine Eltern, für ihre Unterstützung während meines Studiums. Danke an
Lena, für die emotionale Hilfe während dem Verfassen dieser Arbeit. Danke an all jene,
die nie aufgehört haben mich zu fragen, wann ich fertig sein werde.

vii

Acknowledgements

Thanks to my parents, for their support during my studies. Thanks to Lena, for the
emotional assistance during the work on this thesis. Thanks to those who never stopped
asking me when I’ll be done.

What we do in life,
echoes in eternity.

ix

Kurzfassung

Mit der zunehmenden Nutzung von Online-Nachrichtendiensten, sowie dem Überfluss von
Nachrichteninhalten, wächst der Bedarf an News Recommender Systems, die Nutzer*innen
ihren Interessen entsprechende Nachrichtenbeiträge anbieten. Obwohl es sich nach wie
vor um einen unterrepräsentierten Bereich in der Forschung zu Recommender Systemen
handelt, so hat das Thema Nachrichtenempfehlung in den letzten Jahren einen Aufschwung
erlebt. Vor allem die Veröffentlichung des frei zugänglichen, großen Datensatzes im Jahr
2020, namens "MIND", sowie der damit verbundene Wettbewerb, haben die Forschung
weiter vorangetrieben.

Ein weiteres Thema, das einen Anstieg an Forschungsaktivitäten verzeichnen kann, ist
Deep Reinforcement Learning, seit der Veröffentlichung bahnbrechender, wissenschaftli-
cher Arbeiten zu Deep Q-Networks im Jahr 2013 und 2015. Die prominentesten Erfolge
des Paradigmas liegen im Bereich der (Video-)Spiele. Nichtsdestotrotz wurde es auch auf
eine Vielzahl anderer Probleme angewendet, einschließlich von Recommender Systems.

Die folgende Arbeit verknüpft diese beiden Themen. Nachdem wir das notwendige Hinter-
grundwissen bereitstellen, stellen wir den aktuellen Stand der Forschung in den Bereichen
News Recommender Systems, sowie Deep Reinforcement Learning Recommender Systems
vor. Anschließend präsentieren wir den MIND Datensatz. Schließlich stellen wir das
Reinforcement Learning Framework vor, das wir rund um diesen Datensatz entwickelt
haben. Basierend darauf führen wir eine umfassende komparative Leistungsanalyse von
Deep Reinforcement Learning News Recommender Systems durch. Neben dem Testen
verschiedener Algorithmen vergleichen wir auch diverse News- und User-Encoder. Unsere
reproduzierbaren Experimente decken eine Vielzahl von Ansätzen ab und bieten Einblicke
darüber, welche Algorithmen und Encoder am besten für das Problem der Nachrich-
tenempfehlung geeignet sind. Die Ergebnisse des MIND Wettbewerbs für einen dieser
Ansätze, auch wenn diese nicht bahnbrechend sind, unterstreichen die grundsätzliche
Eignung und Anwendbarkeit von Deep Reinforcement Learning News Recommender
Systems.

Zusammenfassend adressiert diese Arbeit den Mangel an einer Open-Source, reproduzier-
baren und umfassenden komparativen Leistungsanalyse. Wir sind der Meinung, dass diese
Arbeit und der veröffentlichte Code, im Hinblick auf das bereitgestellte Hintergrundwissen
und die Ergebnisse der Experimente, als Ausgangspunkt für weitere Forschung dienen
kann.

xi

Abstract

With an increasing amount of news consumption taking place online, and an abundance
of news content, comes the need for news recommender systems to serve users with
news items that match their interests. While being an underrepresented domain among
recommender system research, news recommenders have experienced a surge in the past
decade. Especially the 2020 release of a public, large-scale news recommendation dataset
and its accompanying competition, called "MIND", has further encouraged research, due
to the previous lack of access to comparable data.

Another topic that has seen a rise in research activity is reinforcement learning, particularly
deep reinforcement learning, since the release of seminal papers on deep Q-networks
in 2013 and 2015. While the learning paradigm’s most prominent achievements come
from the area of (video) games, reinforcement learning has been applied to various other
problems, including the recommendation problem.

This thesis conjoins these two topics. After providing the fundamental background
knowledge required to understand the thesis, we present the state-of-the-art in news
recommender systems, as well as deep reinforcement learning recommender systems.
Subsequently, we discuss and critique the MIND dataset. Finally, we put forward
the reinforcement learning framework that we have developed around it. We use this
framework to conduct a comprehensive and reproducible comparative performance
analysis of deep reinforcement learning news recommender systems. Along with testing
several different algorithms, we also compare and contrast different news and user encoders.
Our experiments cover a multitude of approaches, offering insights into which algorithms
and encoders are most suitable for the news recommendation problem. The MIND
competition results of one of these approaches, albeit not achieving ground-breaking
scores, underline the general viability of deep reinforcement learning news recommender
systems.

In summary, this work addresses the lack of an open-source, reproducible and broad
comparative performance analysis. We believe that this thesis, both in terms of the
provided theoretical background and the experiment results, along with the published
code, can serve as a starting point for further research.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Structure of the Work . 3

2 Fundamentals I: Reinforcement Learning 5
2.1 Relationship to other Paradigms . 5
2.2 Introduction to Reinforcement Learning 8
2.3 Markov Decision Process . 10
2.4 Dynamic Programming . 16
2.5 Learning Methods . 19
2.6 Function Approximation . 24

3 Fundamentals II: Recommender Systems 25
3.1 Introduction to Recommender Systems 25
3.2 Recommendation Methods . 28
3.3 Recommender System Evaluation . 30
3.4 Challenges: Sparsity and Cold-Starts 33

4 Fundamentals III: Deep Reinforcement Learning 35
4.1 Brief History of Deep Reinforcement Learning 35
4.2 DQN . 36
4.3 Distributional Reinforcement Learning 39
4.4 REINFORCE . 48
4.5 DDPG and TD3 . 49

5 NRSs and DRLRSs: State-of-the-Art 51
5.1 Introduction to News Recommendation 51

xv

5.2 State-of-the-Art: News Recommender Systems 54
5.3 (Deep) Reinforcement Learning Recommender Systems 60

6 Data: Microsoft News Dataset 63
6.1 Introduction to MIND and MIND Paper 63
6.2 Preprocessing and Exploration . 67
6.3 Discussion and Critique . 71

7 DRLNRS: Comparative Analysis 75
7.1 RL Framework . 75
7.2 DRL Algorithms . 83
7.3 Experiments . 85
7.4 Results . 86

8 Conclusion 101
8.1 Insights . 101
8.2 Summary . 103
8.3 Future Work . 103

List of Figures 105

List of Tables 107

List of Algorithms 109

Acronyms 111

Bibliography 113

CHAPTER 1
Introduction

In this chapter, we begin by introducing the topic of this thesis. We will first discuss the
motivation for this work, and subsequently outline the problem statement and the aim of
this work. Finally, we will address the general structure of this thesis.

1.1 Motivation and Problem Statement
This thesis conjoins two topics that have experienced an increased amount of research in
the past decade, namely news recommender systems and deep reinforcement learning.

In this day and age, an ever-increasing proportion of news consumption takes place
online [14]. Readers rely on news websites, search engines, and news aggregators, e.g.
Google News, Microsoft News, Flipboard, etc., to stay informed. This shift entails
that publishers are not confined to the limited amount of space offered by traditional
news media, such as print, TV and radio, but are free to utilize the essentially infinite
storage space of the world wide web. The consequence is an abundance of news content,
leading to information overload that ultimately burdens the consumer. With this comes
a need, and a possibility, for news recommender systems, in order to alleviate users
from the aforementioned pressure, and keep them up-to-date with news item suggestions,
tailored to their personal interests. In comparison to other recommendation problem
domains, the news domain poses a set of unique challenges that are not present, or
not as strongly pronounced in other domains. On the supply side, the news publishing
environment is highly dynamic, with an enormous amount of content being released at
every hour of every day. At the same time, the relevancy of this content is typically of
short duration, with most information being irrelevant within days. On the demand
side, user’s interests can evolve rapidly, e.g. due to current events, or depending on
locality. Therefore, a recommender system must be able to distinguish between long- and
short-term interests of users and react accordingly. Furthermore, albeit this is beyond
the scope of this work, news recommenders are arguably more important than other

1

1. Introduction

recommender systems from a societal perspective. A broadly and diversely informed
citizenry that engages with counter-attitudinal information is paramount for democratic
processes and institutions. To that end, evaluation methods that go beyond accuracy
must be explored. Nonetheless, the specific domain of news recommendation has been
underrepresented in recommender systems research, in comparison to other domains,
such as movie or product recommendations.

The second overarching topic of this thesis is reinforcement learning, which has been
successfully employed in the past decade to solve various problems. The presumably most
prominent achievements come from the area of (video) games. Reinforcement learning
is a computational approach to the idea of learning from interactions. A reinforcement
learning agent aims to learn appropriate mappings from observed states of the environment
it interacts with, to actions it can take that will help the agent reach its ultimate goal.

In recent years, research output on the application of reinforcement learning techniques
to recommendation problems has increased significantly. However, studies revolving in
the news domain are exceedingly rare and usually conducted on proprietary datasets.
To that end, the 2020 release of a large-scale, public news recommendation dataset by
Microsoft greatly facilitates research in this area, with the accompanying competition
allowing a direct comparison with other solutions. However, at the time of writing,
deep reinforcement learning based recommenders have not been trained or tested on the
dataset. In summary, there currently is a shortage of open-source, reproducible research
on the application of deep reinforcement learning algorithms to the news recommendation
problem, using a publicly available dataset. Furthermore, there is a complete lack of
studies comparing the results achieved by different reinforcement learning algorithms.
Therefore, this work aims to fill this space.

1.2 Aim of the Work

The aim of this work is to apply multiple deep reinforcement learning algorithms to the
news recommendation problem, and compare and analyze their performance. Furthermore,
we will test and compare different news and user encoding approaches. To this end, the
aforementioned dataset by Microsoft, i.e. the MIND dataset [93], will serve as the source
of data for this project and will thus be used for the training and evaluation of agents. The
public MIND competition results will be used to compare our results with recommender
systems based on other approaches. Ultimately, this constitutes the implementation and
subsequent comparative analysis of a broad spectrum of deep reinforcement learning news
recommenders, as well as news and user encoding approaches. To us, reproducibility and
open-sourced code is of utmost importance. The source code for the practical part of
this thesis can be accessed via GitHub1. Finally, the following research questions will be
answered throughout the thesis:

1https://github.com/d-vesely/drlnrs

2

https://github.com/d-vesely/drlnrs

1.3. Structure of the Work

• Q1: How does the news recommendation problem fit into the reinforcement learning
framework?

• Q2: How can offline behavior data be used to train a reinforcement learning agent?

• Q3: In terms of performance, how do deep reinforcement learning news recom-
mender systems compare to each other, depending on the used algorithms?

• Q4: In terms of performance, how do deep reinforcement learning news recom-
mender systems compare to each other, depending on the used news/user encoder?

• Q5: In terms of performance, how do deep reinforcement learning news recom-
mender systems compare to others based on different methods?

• Q6: How suitable is the application of deep reinforcement learning for recommen-
dation in the news domain?

1.3 Structure of the Work
We will begin with a self-contained explanation of the background knowledge that is
required for further reading and understanding of this thesis. Our goal is to provide
sufficient information, such that the contents of this work can be understood by a fellow
Data Science student that has not taken any elective courses on these topics, or has
studied a different branch of informatics. In that regard, there are three topics that
are fundamental: reinforcement learning, recommender systems and deep reinforcement
learning. We will introduce each one in the Chapters 2, 3, and 4 respectively. Then, in
Chapter 5, we will first introduce the issues and challenges that differentiate recommender
systems in the news domain from others. Then, we provide an overview of the current state-
of-the-art in news recommender systems, as well as the application of deep reinforcement
learning methods to the recommendation problem. Chapter 6 presents the primary dataset
used in this thesis. We will summarize the results of our exploratory analysis, as well as
explain the conducted preprocessing. Finally, Chapter 7 details the practical part of this
thesis. We first explain how the available data was embedded into a reinforcement learning
framework, then we discuss how we applied deep reinforcement learning algorithms in
detail, and our experiment setup. The results of our comparative analysis are visualized
and discussed at the end of the chapter. A summarization and conclusion of the thesis,
as well as suggestions for future work, are provided in the final Chapter 8.

The work is written to logically progress from background knowledge to the conducted
analysis, with frequent references to previous chapters and sections. Furthermore,
acronyms are introduced gradually. Therefore, we suggest reading the text in sequential
order, especially to readers who feel they lack sufficient background knowledge.

3

CHAPTER 2
Fundamentals I: Reinforcement

Learning

This chapter covers the fundamentals of Reinforcement Learning (RL). These concepts
are part of the groundwork underpinning this thesis, and their understanding is essential
for further reading. Part I of the standard work on reinforcement learning, by Sutton
and Barto [83], is the main source for this chapter. Additional information was sourced
from the chapters 1, 2, 17, 18 and 21 of the standard work on artificial intelligence, by
Russell and Norvig [73].

2.1 Relationship to other Paradigms
Before delving into what reinforcement learning actually is, we first describe where it fits
into the overarching field of Artificial Intelligence (AI), as well as how it relates to other
paradigms of the field. This ensures a shared vocabulary and a correct categorization of
the concept. Figure 2.1, shown at the end of this section, summarizes these relationships
in the form of a Venn diagram.

2.1.1 Artificial Intelligence
The term "artificial intelligence" was first used by John McCarthy in 1955, in the proposal
for a workshop on the topic at Dartmouth College [55]. His theory was that it is possible
to describe any feature of intelligence precisely enough for a machine to simulate it. It is
difficult to define AI, perhaps because it is just as difficult to define human intelligence.
The standard work on the subject, by Russell and Norvig, presents four approaches to
defining AI, with the authors arguing for the "rational agent approach" [73]. An agent,
i.e. an entity that acts ("agent" originates from the latin word "agens", the present
active participle of "agere", meaning "do" [42]), is in this context a computer program.

5

2. Fundamentals I: Reinforcement Learning

It is said to be rational, when it takes actions in accordance with the goal of reaching
the best (expected) outcome. The authors even argue that "computational rationality"
would have been a more precise terminology than AI for what McCarthy was describing.
Nevertheless, AI went on to become the umbrella term for a vast array of subdomains,
such as logic, reasoning, search, computer vision, natural language processing, machine
learning and more, with many of these fields overlapping to some degree.

2.1.2 Machine Learning
Machine Learning (ML), a subdomain of AI, concerns itself with the ability of rational
agents to improve their performance on future tasks through experience and the observa-
tion of data, i.e. the agents’ capacity to learn. Russell and Norvig identify three main
reasons for why it is desirable for an agent to improve on its own, as opposed to being
improved by its human creator (usually meaning programmer) [73]:

1. The human creator usually cannot predict all conceivable scenarios involving the
agent. For example, game-playing agents have to learn to operate in unseen states
of the game, and it is often intractable for the human creator to define the agent’s
behavior for the entire state-space.

2. The human creator cannot predict changes that occur over time that affect the
agent. Again, game-playing agents must be able to adapt to conceptual changes of
the game itself, which is common in modern competitive computer games.

3. The human creator might know how to perform a task, but be unable to program
or even explain their own approach. For example, humans are able to distinguish
whether a seen object is close or far away, but would struggle to program a computer
to do the same without applying ML algorithms.

The term "machine learning" was first coined by the then IBM employee Arthur Samuel
[75], who was one of 10 attendees of McCarthy’s workshop at Dartmouth in 1956 [73],
during his work on agents learning to play checkers. Note that ML encompasses a
problem, a class of solution methods for said problem, as well as the research field that
revolves around both. While there are various forms of ML, the three arguably main
types can be distinguished via the kind of feedback available to the agent to learn from.

In "supervised learning" the agent observes labeled data, i.e. inputs with explicit output
feedback, and learns a function that generates the output from the input. The domain can
be further separated into regression and classification, where problems with continuous
outputs fall into the former, and discrete outputs into the latter category. The agent’s
goal is to maximize its performance, which can be measured in different ways. A simple
example of Supervised Learning (SL) is an agent that learns to detect spam e-mails, by
observing examples labeled by a supervisor (e.g. a human). In this case, the agent’s
performance should be measured with precision, since relevant e-mails being marked as
spam is less desirable than spam remaining undetected.

6

2.1. Relationship to other Paradigms

In "unsupervised learning" the agent observes unlabeled data, i.e. inputs without explicit
output feedback, and learns hidden structures in the input. A typical Unsupervised
Learning (UL) problem is clustering, where the agent categorizes the input data into two
or more groups, based on the presence or absence of patterns it discovers in the data.

In reality, the lines between supervised and unsupervised learning can be blurred, mainly
for two reasons. Firstly, it is possible to use both in conjunction, by supplying the agent
with a (usually small) set of labeled data, in order to aid the learning process applied to
a (usually large) set of unlabeled data. Secondly, labels can be incorrect, due to random
noise or even systematic errors. Therefore, these cases are referred to as "semi-supervised
learning".

In "reinforcement learning" the agent receives feedback in the form of reinforcements,
which are supposed to reinforce the agent’s behavior. They can either be rewards or
punishments, depending on whether the agent performed well or not. However, the agent
has to learn on its own, which of the agent’s actions prior to receiving the reinforcement
contributed to it and in what way. Typically, the term "reward" is used for both forms of
reinforcement, since rewards are usually numeric and can be both positive (reward) and
negative (punishment).

Of course, all of these types of machine learning can be employed in conjunction, as part
of a larger system, or as subsystems of each other.

Before going into the details of RL, we briefly want to establish a common understanding
of Deep Learning (DL).

2.1.3 Deep Learning
A type of computing structure that is often used for ML is the Artificial Neural Network
(ANN). They are inspired by the biological brain and consist of nodes, also called neurons,
connected via directed links. Typically, the nodes are arranged in layers. Nodes that are
neither in the input nor the output layer are said to be part of a hidden layer. Warren
McCulloch and Walter Pitts, the creators of the neural network model, argued in their
original paper released in 1943 [56] that arbitrarily deep, and possibly recurrent, networks
can achieve any functionality, as long as the number of nodes is large enough. This
was later proven with varying assumptions, such as arbitrary depth (number of hidden
layers) or arbitrary width (number of units) of the network, leading to multiple so-called
universal approximation theorems [43] [32]. Research on neural networks continued
throughout the 20th century, leading to important advances in the field. Nevertheless,
their popularity waned due to inflated expectations and the improvement of other ML
techniques. In the early 2000s, the prevailing sentiment was that training deep neural
networks, i.e. networks consisting of two or more hidden layers, was a very difficult
undertaking. However, the growing computational capabilities of the 21st century allowed
for more experimentation and research. The efforts were spearheaded by the ML research
groups headed by Geoffrey Hinton, Yann LeCun, and Yoshua Bengio, leading to the
revelation that existing training algorithms did indeed work well in practice [41] [9]

7

2. Fundamentals I: Reinforcement Learning

[67]. What followed was a new wave of research on increasingly deep and complex
ANNs, causing the popularization of the term "deep learning". These Large Deep Neural
Network (LDNN) began outperforming other ML approaches across multiple domains
and continued to do so, ensuring the popularity of deep learning up until now, where it
has become an umbrella term for a wide variety of techniques and architectures based on
LDNNs. Some of them include convolutional neural networks, recurrent neural networks,
long short-term memory and transformers [30]. Transformers are based on the attention
mechanism and are particularly useful in natural language processing, which we utilize
in the practical part of this thesis. The transformer was introduced in the seminal work
"Attention Is All You Need" [86].

DL methods can be employed in all three main types of ML presented in the previous
section, where the application of DL in RL is commonly referred to as Deep Reinforcement
Learning (DRL). The following Venn diagram visually explains the categorizations
described in this section.

Artificial Intelligence

Machine Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Deep
Learning

Deep
Reinforcement

Learning

Figure 2.1: AI is an umbrella term, with ML as a subdomain. SL, UL and RL are three
main types of ML. DL refers to a broad family of techniques based on LDNNs that can
be applied to all types of ML. DRL is the combination of DL and RL.

2.2 Introduction to Reinforcement Learning
The process of learning via interaction with an environment is a fundamental concept
that underpins most theories of learning and intelligence in general. It is a very natural
concept that humans themselves apply often throughout life. We sense our environment
and its responses to our actions, and continually adapt our behavior depending on the
received feedback and our goals. Ultimately, we are able to distinguish good from bad
behavior with respect to our desired outcome. For example, infants are not necessarily
explicitly taught how to crawl, walk, or communicate non-verbally. Instead they act and
observe whether their intended response occurs, e.g. their parent hands them a piece of

8

2.2. Introduction to Reinforcement Learning

fruit after the infant gestures for it, otherwise they adapt. The same process occurs when
learning a new game or sport, learning to cook, or learning to navigate social interactions.

RL is a computational approach to this concept that, at its core, revolves around finding
appropriate mappings from observed states of the environment to actions. This mapping
is not taught, but learned, meaning that it has to be inferred from experiences. This
is the key difference to SL, where one would present input-output pairs, in this case
state-action pairs denoting desired behavior, to the agent to learn from. However, such an
approach is often inadequate for interactive learning problems, due to the impracticality
of collecting a sufficiently large set of examples that covers a representative sample of all
possible situations. This becomes clear when one tries to play the role of the supervisor.
While teaching an agent (say person) how to play football, how to cook, or how to drive
a car requires guidance from the supervisor in the form of knowledge and feedback, the
agent’s experience plays a vital role in the learning process that cannot be replaced. A
driving instructor would not expect their pupil to learn how to drive solely based on a
set of situation-action pairs presented by the instructor, as the construction of such a set
is simply infeasible. In contrast, teaching an agent (say person) how to distinguish cats
and dogs can be done entirely with a set of examples, from which the agent can derive
its own set of rules and generalize, i.e. extrapolate, to previously unseen instances. The
absence of labeled data is common in both RL and UL. The key difference there is that
UL seeks to find hidden structures in the input data, while the goal of RL is to maximize
the sum of received rewards, i.e. the total reward. Generally, RL is significantly more
focused on goal-directed learning than the other two types of ML. As already mentioned
in the previous section, an RL agent can involve SL to solve a subproblem critical to
the complete goal-seeking agent. For example, the detection of traffic signs in a camera
feed is a subproblem for an agent that is learning how to drive a car. That being said,
modern, practical approaches to RL, which we will discuss in Chapter 4, rely on SL to
train certain components of the agent.

Aside from the agent itself, and the environment it continually interacts with, an RL
setting consists of three additional main elements:

1. Reward Signal: As already discussed, the agent periodically receives a numeric
reward directly from the environment. Via its sign and absolute value, the reward
defines whether the agent’s actions are good or bad, as well as their significance.
Since the agent aims to maximize the total reward during its interaction, the reward
signal ultimately designates the goal of the particular RL problem. Rewards can
be both deterministic and stochastic.

2. Value Function: Given a state, and possibly a chosen action, the value function
basically returns an estimate of the total reward the agent will collect from that
point onward. Therefore, while rewards convey information about the current state
and/or action, values are indicators for the desirability of the future, based on
the states that follow and the rewards they yield. However, this information is
usually only an estimate that has to be continually adapted, following the agent’s

9

2. Fundamentals I: Reinforcement Learning

experiences. Rewards and values are thus tightly coupled, because the former
informs and shapes the latter. Methods for the efficient and precise estimation of
values are at the core of RL. The relationship between rewards and values is, again,
very natural. Stubbing a toe is followed by a negative reward in the form of pain,
but will typically not ruin an entire day. Conversely, eating junk food might be
followed by pleasure, but could have long-term impacts on health.

3. Policy: The aforementioned mapping from environment states to actions is referred
to as the agent’s policy. This is a general construct that can take on various
forms, depending on the characteristics of the RL problem, ranging from simple
lookup tables to complex functions. An agent’s policy is closely coupled to value
estimations, because an agent generally chooses its actions so as to enter positions
of high value. Policies can be both deterministic and stochastic.

In addition to these three components, an RL system can include a model of the
environment, which gives the agent the possibility to anticipate how the environment will
respond to its actions. The agent can thus employ a technique called planning, which
is the process of deciding on a strategy a priori. RL solution methods can be divided
into model-free and model-based approaches. Because models of the environment are
usually not easy to obtain, the arguably most famous RL algorithms fall into the former
category. We are only concerned with model-free methods in this work.

The formal framework for the concepts discussed in this section, that is the bedrock of
the RL problem, is the Markov Decision Process (MDP).

2.3 Markov Decision Process
A Markov decision process is a mathematical formalization of the sequential decision
problem that occurs in RL. The MDP that frames the interaction between agent and
environment, described in the previous section, is formalized as follows. The interaction
is split into discrete timesteps, t = 0, 1, 2, 3, . . . , at which the agent selects an action
based on its observation of the environment’s state. The chosen action in turn affects
the environment, prompting it to send a reward to the agent and changing its state
accordingly. The state, action and reward at each timestep t are denoted as random
variables St, At and Rt+1. Note that Rt+1 denotes the reward due to action At, in
order to signify that the reward and the next state St+1 are jointly determined by
the taken action. Figure 2.2 visualizes this MDP. The interaction between agent and
environment thus produces a sequence of states, actions and rewards in the form of
{S0, A0, R1, S1, A1, R2, . . . }, referred to as a trajectory τ .

The sample spaces for the state, action and reward random variables are S, A(s) and
R ⊂ R respectively, where the set of actions can depend on the current state s, and
rewards are numeric. If these sets are finite, a probability can be assigned to the
occurrence of a particular next state s′ ∈ S and reward r ∈ R at time t, depending on

10

2.3. Markov Decision Process

Environment

AgentAction State

Reward

Figure 2.2: The interaction between agent and environment, formalized as an MDP. The
agent observes the current state, receives a reward and chooses an action, which affects
the environment’s state and yields a new reward.

the particular current state s ∈ S and the taken action a ∈ A(s). These four arguments
are mapped to probabilities with a deterministic function p : S × R × S × A → [0, 1],
defined as:

p(s′, r | s, a) =̇ P(St = s′, Rt = r | St−1 = s, At−1 = a) (2.1)∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1 ∀s ∈ S, a ∈ A(s) (2.2)

Equation 2.2 signifies that the probabilities must sum to 1 for each state-action pair, since
p defines a probability distribution for each such pair. The states in an MDP fulfill the
so-called Markov property, which stipulates that the probabilities for each combination
of next state and reward only depend on the preceding state and action, and are entirely
independent of any earlier values in the trajectory. Each state representation must thus
encompass all relevant information from the past interaction trajectory. Consequently, p
represents a complete description of the environment’s dynamics.

As already discussed informally in the previous section, the agent seeks to maximize the
total cumulative reward it receives in the course of its trajectory. In order to formalize
this, we define the return Gt, which the agent tries to maximize in expectation.

Gt =̇ Rt+1 + Rt+2 + · · · + RT (2.3)

T designates a final timestep, where we can distinguish finite (T < ∞) and infinite
horizons (T = ∞). Interactions of the former kind are also called episodic tasks, in
which the agent eventually reaches a terminal state and the interaction either ends or is
reset. Otherwise, we speak of continuing tasks. Simple examples for the two would be an
agent playing chess, in contrast to an agent regulating some process in a chemical plant
indefinitely. Due to the assumption that R ⊂ R, rewards have to be finite. However,
it is clear that in the case of continuing tasks, the return of infinite trajectories will
generally also be infinite, which would ultimately allow a comparison only via the sign of

11

2. Fundamentals I: Reinforcement Learning

the return. The solution to this is the application of a discount factor γ ∈ [0; 1] to the
reward sequence, where the discounted return Gt is defined as follows.

Gt =̇ Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑

k=0
γkRt+k+1 (2.4)

Discounting models the priority that immediate rewards have over future rewards. with
the reward Rt+1 contributing 1

γk more to the overall return than the same reward obtained
k timesteps later. This is yet again a natural concept, receiving 1e today is (typically)
preferable over receiving it next month. The edge cases γ = 0 and γ = 1 are special. The
former yields a short-sighted agent that seeks out the highest immediate reward with
every taken action and thus acts without any foresight, which is usually not desirable.
The latter is equivalent to the undiscounted return 2.3. In all other cases 0 < γ < 1, the
discounted return of an infinite reward sequence is a sum of an infinite geometric series,
and therefore indeed finite, with the rewards bounded by ± rmax.

Gt =̇
∞∑

k=0
γkRt+k+1 ≤

∞∑
k=0

γkrmax = rmax
1 − γ

(2.5)

While averaging the rewards of infinite trajectories is also a viable way of combating
infinite returns, discounting is the common approach.

The two presented definitions of the return Gt, using additive and discounted rewards
respectively, are the only sensible maximization targets, given the natural assumption
of stationary preference. If an agent prefers the state sequence {S0, S1, S2, . . . } over
{S′

0, S′
1, S′

2, . . . }, then S0 = S′
0 should not affect the agent’s preference of {S1, S2, . . . }

over {S′
1, S′

2, . . . }. Meaning, if an agent’s preference is said to be stationary, the agent
will always decide for one future over another, regardless of when it is allowed to make
this decision. In order to unify both definitions of Gt and use a common notation for both
episodic and continuing tasks, we can assume that episodes terminate in an absorbing
state, which continues to transition to itself indefinitely without yielding any additional
rewards, i.e. ∑∞

t=T Rt+1 = 0. Therefore, the unified Gt is defined as follows, with T = ∞
and γ = 1 as mutually exclusive possibilities.

Gt =̇
T∑

k=t+1
γk−t−1Rk (2.6)

Finally, the relationship between returns at successive timesteps is an essential aspect of
RL. By unrolling 2.6, we can observe the following recursion.

Gt =̇ Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + . . .)
= Rt+1 + γGt+1 (2.7)

Since the agent’s goal is to maximize Gt in expectation, it is tightly coupled to the value
function, which in turn relates to the agent’s policy, both discussed at the end of the

12

2.3. Markov Decision Process

previous section. Within the MDP framework, the value function is formalized as the
expected return Gt, either when the agent starts in state s, or takes action a in state s.
This separates state-value functions vπ(a) from action-value functions qπ(s, a), both for
the given policy π. Formally, a policy is a function that defines for every state s ∈ S a
probability distribution over actions a ∈ A(s), i.e. π(a | s) denotes the probability that
the agent chooses At = a, if St = s. This formalization facilitates deterministic and
stochastic policies. The two aforementioned value functions are thus defined as follows:

vπ(s) =̇ Eπ[Gt | St = s] = Eπ

[T∑
k=t+1

γk−t−1Rk

|||| St = s

]
(2.8)

qπ(s, a) =̇ Eπ[Gt | St = s, At = a] = Eπ

[T∑
k=t+1

γk−t−1Rk

|||| St = s, At = a

]
(2.9)

Note that the expectations rely on the agent following a given policy π, which is indicated
by the subscript. The recursive relationship of the return can be used to establish similar
recursions for both value functions, which are called Bellman equations, named after
Richard Bellman [8].

vπ(s) =̇ Eπ[Gt | St = s]
= Eπ[Rt+1 + γGt+1 | St = s]
= Eπ[Rt+1 | St = s] + γEπ[Gt+1 | St = s]
= Eπ[Rt+1 | St = s] + γEπ[vπ(St+1) | St = s]
=

∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)], ∀s ∈ S (2.10)

In the second line we apply Equation 2.7, in the third line the properties of expectations
E[X + Y] = E[X] + E[Y] and E[kX] = kE[X]. For action-values, the derivation is
analogous, but the current action a is already known and a sum over all possible next
actions a′ has to be added.

qπ(s, a) =̇ Eπ[Gt | St = s, At = a]
= . . .

= Eπ[Rt+1 | St = s, At = a] + γEπ[qπ(St+1, At+1) | St = s, At = a]
=

∑
s′,r

p(s′, r | s, a) [r + γ
∑
a′

π(a′ | s′) qπ(s′, a′)], ∀s ∈ S, ∀a ∈ A(s) (2.11)

These two Bellman equations express the relationship between current state- or action-
values and the values of successive states or actions. In words, Equation 2.10 says that
the state-value is defined as the sum of the expected immediate reward and the (possibly
discounted) expected value of the next state. Equation 2.11 is analogous for action-values.
These so called backup operations that send information about values from successor
states/actions back to its preceding state/action are a core element of RL, and backup
diagrams visualize these operations. The root node of a backup diagram represents the

13

2. Fundamentals I: Reinforcement Learning

value (of state or state-action pair) to be updated. The child and leaf nodes represent
all transitions that affect that update via a reward or another estimated value. The top
row of Figure 2.3 shows the backup diagram for vπ and qπ respectively. The Bellman
equations are the foundation for various methods of learning vπ or qπ, because the value
functions are the unique solutions to their respective Bellman equations. We can of
course relate vπ and qπ to each other as follows:

vπ(s) =
∑

a

π(a | s) qπ(s, a), ∀s ∈ S

qπ(s, a) =
∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)], ∀s ∈ S, ∀a ∈ A(s) (2.12)

The value of a state is the expected action value over all possible actions from that
state. The second equation then follows directly from the first one, by substituting into
Equation 2.11.

As already said, both value functions are specific to the agent’s policy. An optimal policy
π∗, which the agent aims to find, has value functions v∗ and q∗ that return greater or
equal values for all states and actions, than value functions for all other policies π′. While
there can be multiple optimal policies, they all share the same value functions, which are
referred to as the optimal state- and action-value functions. They are defined as follows:

v∗(s) =̇ max
π

vπ(s), ∀s ∈ S (2.13)

q∗(s, a) =̇ max
π

qπ(s, a), ∀s ∈ S, ∀a ∈ A(s) (2.14)

Of course, v∗ and q∗ also have to satisfy the recursive self-consistency conditions given in
Equations 2.10 and 2.11, but due to their optimality, these conditions can be rewritten
without referencing a given policy π. In this case, they are called Bellman optimality
equations.

v∗(s) =̇ max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s′)], ∀s ∈ S (2.15)

q∗(s, a) =̇
∑
s′,r

p(s′, r | s, a) [r + γ max
a′ q∗(s′, a′)], ∀s ∈ S, ∀a ∈ A(s) (2.16)

Instead of using the expected value for a given policy, the equations simply maximize
over the best action from s or s′, which can be visualized in the backup diagrams as well,
see bottom row of Figure 2.3. If the optimal value function v∗ is found, an optimal policy
π∗ chooses in each state an action that will yield the highest possible value, without any
additional look-ahead, since future consequences are already accounted for in the value
function itself. Finding q∗ has the added benefit of not needing any knowledge about the
dynamics of the environment, because all state-action pairs already have assigned values
and possible successor states need not be considered.

14

2.3. Markov Decision Process

r

Figure 2.3: Backup diagrams for vπ, qπ (top row, from left to right), v∗ and q∗ (bottom
row, from left to right).

In theory, finding a solution to the Bellman optimality equations also solves the RL
problem itself. However, such an approach would rely on various assumptions that are
usually not all fulfilled, such as the Markov property, knowing the exact environment
dynamics, or having enough computational resources. Furthermore, the theories discussed
in this section assume finite MDPs, albeit they are still applicable to general MDPs. In
the case of small state sets, approximating value functions can be done using tables with
entries for each state, hence this case is called the tabular case. However, state spaces
are commonly too large for tabular methods to be applicable, giving rise to a need for
parameterized function approximations. So while the theories of optimality discussed in
this section are an important foundation for RL, they present an ideal that the agent
seeks to approximate as closely as possible. The field of RL is generally concerned with
problems, where finding optimal solutions is infeasible.

Notice that the MDP framework is generic and flexible, and is therefore applicable to a
wide variety of RL problems. It suggests that any process of goal-directed learning can
be reduced to the interaction of three signals, i.e. actions, states and rewards, visualized
in Figure 2.2. The timesteps dictating this interaction do not have to be periodic or
connected to time at all, they simply represent successive stages. Actions and states
are abstract concepts. Their design depends on the specific RL problem and is thus a
separate issue that is unrelated to the actual decision-making. To an agent that learns
to play chess, an action can be the specific motion of a robotic arm, or the high-level
decision of which move to make. A state can be raw camera input, or a representation of
the chess board as a mapping from tile to piece.

In the next section, we will discuss a set of concrete algorithms for computing optimal

15

2. Fundamentals I: Reinforcement Learning

policies, called dynamic programming. These methods assume complete knowledge of
the environment model and necessitate vast computational resources in practice, making
them infeasible for a practical implementation. Nonetheless, comprehension of these
methods is paramount, in order to understand the approaches we discuss and apply in
the practical part of this work.

2.4 Dynamic Programming
Given a model of the environment as an MDP, with its dynamics represented by a
complete four-argument function p (Equation 2.1), an optimal policy can be computed
using methods from the set of Dynamic Programming (DP) algorithms. As mentioned in
the penultimate paragraph of the previous section, these algorithms have little usefulness.
However, it can be argued that all practical RL methods strive to emulate DP, without its
assumptions and with a smaller computational footprint. Again, the subsequent concepts
assume finite MDPs, but the ideas can be applied even in the case of continuous state
and/or action spaces.

In the previous section, we concluded that an optimal policy π∗ can be simply constructed,
if an optimal state- or action-value function, v∗ or q∗, was found. These value functions
satisfy the Bellman optimality Equations 2.15 and 2.16 respectively. At the core of
DP is the idea of iteratively updating an estimate of a value function, by turning these
equations into assignment statements. Iteratively improving the value function then in
turn leads to an iteratively improving policy, until reaching optimality.

The first key concept of DP is policy iteration, which consists of alternating steps of
policy evaluation and policy improvement.

Policy evaluation refers to computing a value function, given a policy. The Bellman
Equation 2.10 presented in the previous section shows that with a complete four-argument
function p and a known policy π, vπ(s) is the solution to a system of n linear equations
in n unknowns, where n = |S|. With large state spaces, iterative approaches are a
more sensible choice than direct solution methods. Starting from a random initial value
function approximation v0 (except for terminal states, which have value 0), the Bellman
equation is used as an assignment statement to update each successive approximation v1,
v2, . . . , vk, as follows:

vk+1(s) =
∑

a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γvk(s′)], ∀s ∈ S (2.17)

For each state s, the assignment sets the new value of s to be the expected sum of
the immediate reward and the discounted old value of the succeeding state, along all
single-step transitions that can occur using the evaluated policy. The Bellman equation
declares vk = vπ to be a fixed point of this assignment. Policy evaluation continually
sweeps over all states in the state space and applies it to each states’ value to produce
an updated approximation of the value function for the given policy. In general, this
iterative policy evaluation is known to converge to vπ in the limit. In practice, the

16

2.4. Dynamic Programming

algorithm should stop once the difference between new and old values drops below a
certain threshold. The analogous expected update for action-value approximation is:

qk+1(s, a) =
∑
s′,r

p(s′, r |s, a) [r +γ
∑
a′

π(a′ |s′) qk+1(s′, a′)], ∀s ∈ S, a ∈ A(s) (2.18)

Policy improvement refers to creating a new, improved policy π′, using the value function
vπ (or qπ) of a given policy π. This can be easily done, by always picking a greedy action
in each state. An action is called greedy, if its value is at least as high as the value of all
other possible actions from a specific state. Clearly, there can be multiple greedy actions
with equal values in each state. A policy that resorts to taking greedy actions is said
to act greedily, and is referred to as a greedy policy, with respect to the value function.
Formally, π′(s) is constructed as follows, using Equation 2.12:

π′(s) =̇ arg max
a

qπ(s, a)

= arg max
a

∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)], ∀s ∈ S (2.19)

That π′ is at least as good as the given policy π is guaranteed via the policy improvement
theorem. It stipulates that if for two deterministic policies π and π′ the inequality
qπ(s, π′(s)) ≥ vπ(s) holds for all states s ∈ S, then π′ must be at least as good as π,
i.e. vπ′(s) ≥ vπ(s) must hold for all states s ∈ S. If for a state s the former inequality
is strict, the latter inequality is also strict. Of course, the definition of a greedy policy
(Equation 2.19) satisfies the condition of the policy improvement theorem. Furthermore,
policy improvement will always yield a strictly better policy, unless the given policy is
already optimal. This becomes clear when replacing arg max with max in Equation 2.19:

vπ′(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)], ∀s ∈ S (2.20)

Assuming that the new policy π′ remained as good as π, as opposed to being strictly
better, we can set vπ′ = vπ. However, this turns Equation 2.20 into the Bellman optimality
Equation 2.15, i.e. π′ and π would both be optimal policies, and vπ′ = vπ = v∗.

As already mentioned, policy evaluation and improvement can be naturally combined
into policy iteration, yielding a sequence of policies and value functions that improve
monotonically. Each new policy is either already optimal, or strictly better than its
predecessor. Since we assume the MDP is finite, the number of possible policies is also
finite, thus guaranteeing convergence to an optimal policy in a finite amount of steps.

As opposed to starting each policy evaluation with a random initial v0, the value function
of the previous policy can be reused, thus greatly increasing the speed of convergence.
Nevertheless, the policy evaluation might still require many sweeps through the states of
the environment to reach its goal of a barely changing value function. However, there
are various ways of shortening this step of policy iteration, while still maintaining its
guaranteed convergence. One method is the so called value iteration algorithm, which

17

2. Fundamentals I: Reinforcement Learning

truncates policy evaluation after finishing a single update to each state, i.e. one sweep.
It uses the following assignment as an update rule (again, analogous for action-values):

vk+1(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + γvk(s′)], ∀s ∈ S

qk+1(s, a) =
∑
s′,r

p(s′, r | s, a) [r + max
a′ γqk(s′, a′)], ∀s ∈ S, a ∈ A(s) (2.21)

These are the Bellman optimality Equations 2.15 and 2.16 in the form of an assignment.
Value iteration iteratively applies this update to all states, with each iteration being
essentially equivalent to a single sweep of policy evaluation and improvement respectively.
Analogous to policy evaluation, value iteration arrives at v∗ (or q∗) in the limit, but
should stop when the changes to the value function are sufficiently small between sweeps.
Finally, a good (or optimal) policy will act greedily with respect to the returned value
function.
While policy iteration runs policy evaluation completely, and value iteration runs it just
once, there is a whole set of truncated policy iteration algorithms that lie between these
extremes, utilizing varying amounts of evaluation sweeps. An even more granular approach
offer asynchronous dynamic programming algorithms. As opposed to running sweeps
over the entire state set, which can quickly become infeasible in practical settings, these
algorithms are based on the idea of updating values asynchronously, i.e. in no particular
order. Additionally, while states cannot be ignored fully, some may be updated more
often than others, e.g. due to their importance. This also allows running asynchronous
DP algorithms simultaneously with the agent’s interaction with the MDP environment,
establishing a bidirectional influence. The algorithm applies updates to the states visited
by the agent, and the agent uses the current value function and policy when making
decisions. Effectively, states that are more pertinent to the agent will be focused on,
and will thus have more accurate value estimates, which is a common approach in RL
methods. To ensure convergence, all states must be updated eventually.
Independently of their differences, these variations are summarized by the term Gen-
eralized Policy Iteration (GPI), describing the general concept of interacting processes
of policy evaluation (adapting the value function with respect to the current policy)
and policy improvement (making the policy greedy with respect to the current value
function). In a way, these two processes cooperate and compete simultaneously, both
aiming towards different goals. Policy evaluation typically causes the current policy to
not be greedy anymore, and policy improvement causes the current value function to
be incorrect. However, each step leads closer to the overarching goal of optimality. A
stabilization of both processes means that the found policy is greedy towards its own
value function determined via evaluation, implying optimality. The general concept of
GPI, as well as the push-pull relationship we just described, is visualized in 2.4. Usually,
RL methods can be described as some form of GPI. Lastly, a key aspect of the DP
methods is their use of bootstrapping, which is the concept of using the estimated value
of the next state to update the estimated value of the current state. Bootstrapping is
prevalent in many RL methods.

18

2.5. Learning Methods

evaluate

improve

Figure 2.4: GPI constitutes alternating steps of policy evaluation and improvement (left).
These two processes cooperate and compete at the same time (right).

As already mentioned, the requirement of having full knowledge of the environment
dynamics (via Equation 2.1) is a crutch. In the next section, we will cover algorithms that
learn from past experiences alone, in the form of complete or partial trajectories, without
additional information about the MDP underpinning the environment. As opposed
to DP, value functions and policies are learned, instead of computed. This approach,
and thus also the following algorithms, is at the core of RL. Furthermore, notice that
the lack of a model prohibits using Equation 2.12 to obtain action values from state
values. Therefore, directly focusing on learning qπ is much more useful, which also greatly
simplifies the construction of a greedy policy, see 2.19. We will thus primarily discuss
learning action-value functions from now on.

2.5 Learning Methods

2.5.1 Monte Carlo Methods
Assuming tasks are episodic, one approach to reinforcement learning is utilizing sample
returns of experienced (or simulated) episodes. Methods that follow this approach are
called Monte Carlo (MC) methods. We established earlier, in Equation 2.8, that the
value of a state-action pair (s, a) is the expected return obtained from taking action a in
s, and following π thereafter. MC methods estimate this expectation, by averaging over
the experienced returns after visiting the node (s, a) in a trajectory. With increasing
amounts of experience, this estimate converges to the true expectation. Since returns
become available on termination, MC methods perform updates to the estimated value
function and policy on an episode-by-episode basis. All steps of the trajectory following
the node (s, a) affect the return and are thus updated. Just like for DP, we visualize this
in a backup diagram, see Figure 2.3. This is in contrast to the DP algorithms presented
before, where updates are applied on a step-by-step basis. Nonetheless, MC methods
still follow the GPI loop presented in the previous section. Clearly, MC methods do not
bootstrap, because the estimates of action-values do not depend on existing estimates of

19

2. Fundamentals I: Reinforcement Learning

other actions or states.

One distinct advantage of the MC approach is the fact that more computational resources
can be expended on learning values for states and actions that are of particular interest, by
focusing on generating trajectories that start at that point. This is entirely independent
of the dimensions of the state-/action- space. However, while DP algorithms operate
with sweeps of the entire space, MC methods must ensure that all state-action pairs are
experienced at some point. Always concentrating on the currently best values might lead
the agent to disregard potentially better states/actions, due to imprecise or plainly wrong
value estimates, caused by a lack of experience involving those states/actions. This is
an important topic in RL in general, known as the exploration-exploitation trade-off.
Essentially, it stipulates that an agent must strike a balance between behaving in a
manner that appears to be best, and also experiencing nominally worse states/actions,
which might ultimately lead to higher returns. There are two possibilities of forcing
the agent to perpetually explore, dividing RL methods into two categories. Namely,
on-policy and off-policy methods. The former improve on the same policy that is used
during interactions with the environment. That policy must have a built-in exploration
mechanism that occasionally forces it to take sub-optimal decisions. Typically, so-called
ϵ-greedy policies are used, which usually act optimally, but will act randomly with a small
probability ϵ. This approach still falls into the category of GPI, since the requirement
is moving towards a greedy policy, but not necessarily fully reaching it. On the other
hand, off-policy methods rely on a behavior policy for decision making, while using
the obtained experience to learn a deterministic, greedy target policy. In contrast, the
behavior policy can engage in exploration. A key assumption is that any action that
occurs by following the target policy must have a non-zero probability of being taken by
the behavior policy, for instance by using an ϵ-greedy policy. The off-policy approach is
the more general concept, encapsulating the on-policy approach with the case of behavior
and target policies that are equivalent. Furthermore, off-policy methods offer a way to
learn from experiences supplied by a human expert or a non-RL system. It is important
to note that the episode returns obtained by using the behavior policy must be weighted
with the ratio of the probabilities of the actions taken during the episode to be taken
under the behavior and target policies. This ensures that the sampled returns actually
approach the expectation for the target policy, as opposed to the behavior policy. This is
called importance sampling, and there are various approaches.

While we ignore the details of MC algorithms, we examine a key part, namely the
incremental update of action values. Instead of storing all experienced returns for a given
state-action pair (s, a), and computing the value q(s, a) as the average (possibly weighted,

20

2.5. Learning Methods

due to importance sampling), we can employ incremental updates as follows:

Qt+1 = 1∑t
k=1 wk

t∑
k=1

wkGk

= 1∑t
k=1 wk

(wtGt +
(t−1∑

k=1
wk

) 1∑t−1
k=1 wk

t−1∑
k=1

wkGk)

= 1∑t
k=1 wk

(wtGt +
(t−1∑

k=1
wk

)
Qt)

= 1∑t
k=1 wk

(wtGt +
(t∑

k=1
wk

)
Qt − wtQt)

Qt+1 = Qt + wt∑t
k=1 wk

(Gt − Qt) t ≥ 1

The weights wk are either just 1 for all k, or depend on the kind of importance sampling
applied. This incremental update allows us to update estimates after each return, without
storing all returns experienced before. Assignments of the following form are very common
in RL:

update.py

✶ new_estimate = old_estimate + weight * (target - old_estimate)

Algorithm 2.1: Typical RL update assignment.

2.5.2 Temporal-Difference Learning
Next, we will discuss Temporal-Difference Learning (TD), a concept that the authors of
[83] hail as cardinal. Again, TD follows the principle of GPI. TD relies both on sampling
past experiences to learn from, as in MC methods, and on employing bootstrapping, as
in DP. It can thus be viewed as a conceptual blend between the two approaches.

TD utilizes a recursive relationship we have established in Equation 2.11. To repeat:

qπ(s, a) =̇ Eπ[Gt | St = s, At = a] (1)
= Eπ[Rt+1 + γGt+1 | St = s, At = a]
= Eπ[Rt+1 + γqπ(St+1, At+1) | St = s, At = a] (2)

MC methods gather sample returns to estimate the expected return (1) and use it as a
target. DP uses an estimate of the recursive relationship (2) as a target. As opposed to
MC, DP can utilize its full environment model to compute the expectation, but the current
estimate Q(St+1, At+1) is used in place of the unknown qπ(St+1, At+1). Similarly, TD

21

2. Fundamentals I: Reinforcement Learning

also uses (2) to estimate the target, by both sampling the expectations and bootstrapping
with an estimated Q. While MC methods have to wait until the end of an episode to
form a target with the obtained reward, TD methods can form a target and run updates
at every timestep. The update assignment follows the form of 2.1:

Q(St, At) ← Q(St, At) + α
[
Rt+1 + γQ(St+1, At+1) − Q(St, At)

)
(2.22)

The difference between the target and the current estimate in square brackets, i.e. the
so-called TD-error, occurs in different forms across the entire RL domain. In general,
TD has significant advantages over MC. Long episodes prolong the waiting time of MC
methods, and continuous tasks render them useless entirely, whereas TD methods work
incrementally. Exploratory actions have a much stronger effect on the speed of MC
learning, while TD uses each transition without taking subsequent actions into regard.
Nevertheless, without going into detail, convergence to qπ is still guaranteed for TD under
certain assumptions. And albeit not proven formally, learning usually converges faster
with TD than with MC.

Again, we can differentiate between on-policy and off-policy approaches to TD. An
on-policy method built around the GPI framework is called "Sarsa", named after the
quintuple (St, At, Rt+1, St+1, At+1) that makes up a transition and is used in the TD
update. Sarsa constructs this quintuple in its entirety, before updating Q. It uses a
policy πQ derived from its current action-value estimate Q to select an action a, based on
the current state s. It then immediately takes the action and observes the environment’s
response, in the form of the reward r and the next state s′. Finally, it uses the same πQ to
pick the next action a′, based on the received information. Only then, it updates Q and
consequently also πQ. As discussed in the previous section, convergence is guaranteed,
as long as it is ensured that the policy visits all state-action pairs infinitely often in the
limit, which can be achieved with an ϵ-greedy policy, for instance. On the other hand,
the off-policy counterpart to Sarsa is called Q-learning. Instead of selecting a next action
At+1 and using its value as part of the target, Q-learning chooses the action a that yields
the highest value. The TD update assignment thus becomes:

Q(St, At) ← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a) − Q(St, At)

)
(2.23)

Since this breaks the dependence on the current behavior policy, Q-learning is deemed an
off-policy algorithm. Again, we visualize the TD updates of both Sarsa and Q-learning
with backup diagrams in Figure 2.5.

Due to the max-operation used in Q-learning and implicitly also in Sarsa, via the ϵ-greedy
policy, the estimated values in Q can have a significant upward bias, called maximization
bias. For instance, the true action values for all actions in a state s could be 0, as is the
case for terminal states. The estimated values Q(s, a) for all a ∈ A(s) will be uncertain
and scattered around 0, but the maximum over these estimates will be positive, thus
leading to the aforementioned bias. This bias can be broken with a technique called
double learning. As the name suggests, double learning uses two symmetrical estimates,

22

2.5. Learning Methods

. .
 .

Figure 2.5: Backup diagrams for MC methods, Sarsa and Q-learning (from left to right).

Q1 and Q2. While one is used to obtain the action with the highest value, the actual
value of that action is taken from the other estimate. In other words, the max-operation
is separated into action selection and action evaluation. For each update step, one of
them is randomly chosen to be adapted. For example, if Q1 is selected, the update
assignment looks as follows:

Q1(St, At) ← Q1(St, At)+α
[
Rt+1 +γQ1(St+1, arg max

a
Q2(St+1, a))−Q1(St, At)

)
(2.24)

Double learning not only converges faster by countering the maximization bias, it can
also lead to better performance at asymptote.

2.5.3 n-Step Temporal-Difference Learning

n-step TD methods bridge the gap between the one-step TD and the MC methods
discussed in the previous subsections. They are a seamless unification of the two
approaches, offering a way to shift arbitrarily close to one or the other. To repeat, while
MC uses the entire episode return as an update target, TD uses the one-step return, i.e.
the sum of the currently received reward and the discounted expected future return. This
(extreme) case of TD is also called TD(0). Of course, the action-value estimates are used
in-place of the future return. However, as the name suggests, it is also possible to use TD
with the two-step, three-step, or n-step return as an update target. Over n timesteps,
actions are taken and rewards received. Ultimately, the update target is constructed
as the sum of all n received rewards, and the appropriately discounted expected future
return. Concretely, the one-step return used in TD(0) and the n-step return are defined

23

2. Fundamentals I: Reinforcement Learning

as follows:

Gt:t+1 =̇ Rt+1 + γQt(St+1, At+1)
Gt:t+n =̇ Rt+1 + Rt+2 + ... + Rt+n + γnQt+n−1(St+n, At+n) (2.25)

Instead of updating at every timestep, n-step TD permits updates after an arbitrary
amount of steps n. The corresponding backup diagram would therefore lie somewhere
between those of MC and TD, as seen in Figure 2.5.

2.6 Function Approximation
So far, we have discussed a spectrum of learning methods, spanning from MC methods
to TD. These methods differ from DP, due to their use of experience to "learn" a value
function, as opposed to known environment dynamics to "compute" it. All of these
methods use backup operations to estimate action value functions, and follow the pattern
of GPI, i.e. the idea of iteratively improving estimates of a value function and a policy,
based on each other. However, we have also identified key components of variation. For
example, on-policy and off-policy methods, synchronous and asynchronous updates, or
the action selection process and the accompanying exploration-exploitation trade-off.
Nevertheless, as briefly mentioned in Section 2.3, tabular methods rapidly lose utility,
once the size of the state-space (and/or action-space) grows to a point, where a practical
implementation becomes infeasible, both due to the speed of convergence, as well as the
required computational resources and memory. Unfortunately, this point is reached by
all but the most primitive RL problems, such as an agent navigating a 2-dimensional
maze with 10,000 states. For instance, even a comparatively simple game such as chess
encompasses around 1040 states. While it is immediately clear that the methods discussed
in this chapter cannot be applied in that case, it is also not intuitive. The requirement of
having to experience a specific state multiple times before being able to select a good
action in that state has no basis in reality. Generally speaking, after learning the rules
of the game, humans play chess by generalizing from previously experienced situations
to those they have not seen yet. Since ambitions of reaching optimality are futile in RL
problems of this dimension, the aim shifts to finding good approximate solutions. To
that end, we must use function approximation, which essentially is the idea of replacing
lookup tables with other representation methods. The goal of function approximation is
to compress the state-space representation to a much smaller size, which in turn allows
the agent to inductively generalize from visited to unknown states. The name stems from
the fact that examples of the target function, in our case an action-value function or a
policy, are used to learn an approximation of the true function. Clearly, this incorporates
an instance of SL into RL, as we have mentioned in Section 2.2. Function approximation
is an umbrella term for a wide variety of approaches, including state aggregation and
linear methods. However, we will focus on non-linear methods involving LDNNs. This
combination of DL and RL, i.e. DRL, was responsible for the range of state-of-the-art
RL methods that are being used in practice. We will present some of these methods in
Chapter 4 and apply them in the practical part of this thesis, presented in Chapter 7.

24

CHAPTER 3
Fundamentals II: Recommender

Systems

This chapter covers the fundamentals of Recommender System (RS). It will provide
a basic understanding of RSs, an overview of various recommendation and evaluation
methods, as well as the key challenges of sparsity and cold-starts. The sources for this
chapter are primarily [71] and [3], along with the corresponding entries for RSs in [74]
and [70].

3.1 Introduction to Recommender Systems
Due to the rapid rise of the world wide web, there has been an exponential increase in the
amount and variety of information available online. Along with globalization and a boom
of digital commerce and services, this has led to an overwhelming amount of possible
choices users can make. From the thousands of movies and shows to watch on Netflix
[81], to the millions of songs and podcasts to listen to on Spotify [80], up to the huge
variety of products and product categories to buy at Amazon. Instead of being beneficial,
this sheer overload of information was shown to have negative effects on the well-being of
users [77]. RSs have emerged as a software solution to this problem, stemming from the
observation that people often rely on recommendations to arrive at a decision.

In accordance with the understanding of the term AI that we have established in Section
2.1.1, we can regard RSs as rational agents. The goal of an RS is to infer the interests
of users, and use that information to serve them recommendations for items that they
would want to interact with. The specifics of these systems are highly dependent on the
domain and the available data. Furthermore, there is a multitude of recommendation
methods, using techniques from several intersecting fields, such as statistics, data mining,
information retrieval and ML. The inherent commercial utility and the user-centered

25

3. Fundamentals II: Recommender Systems

nature of RSs entails that they play a very large role in people’s everyday lives. Amazon
recommends products [33], Spotify recommends music [28], Netflix recommends movies
and shows [82][13], Instagram recommends photos and videos [29], and so on. While the
data used in these examples spans a wide variety of domains, requiring vastly different
approaches to analyzing and processing the data, they all fit into the overarching RS
framework. According to the authors of [71], an RS consists of three main elements,
namely a collection of users and a collection of items, as well as the relations between
two objects from each respective collection:

1. Items: An item is the object of interest that the RS recommends to users. For
instance, following the examples above, an item could be a specific, product, movie,
or song. Clearly, there is a broad spectrum of possibilities for encoding an item,
ranging from a simple identification number, a combination of extracted features,
to a latent representation learned by an LDNN, or a node in a knowledge graph
about the entire domain. Any available data can be used for the encoding. For the
example of a movie, one could use the genre, the title, the list of actors involved,
the director, etc. Furthermore, each recommended item has an attached value that
is dependent on the user receiving the suggestion. The sign of the value describes
whether the user’s reaction to the recommendation was positive or negative.

2. Users: In order to achieve its goal of generating tailored recommendations, an RS
must utilize the available data to create a user model. Again, the details of this
model depend on the domain and the accessible information. For instance, in the
case of social media platforms, one could use sociodemographic attributes such
as age, gender, location, relationship status, etc. to construct a user encoding.
In other cases, when users have not willingly provided this information, a user’s
behavior within the domain can serve as a basis for a user model. For example, the
order history, search history, browsing patterns, reviews, etc. of an Amazon user
can be accumulated into an encoding. Last but not least, the relations between
individual users in the collection can offer valuable information. An RS could
suggest items to user u due to their connection to another user v, be it friendship,
kinship or a relationship of trust, e.g. when user v is a celebrity, or an influencer.

3. Transactions: Ultimately, the key element of an RS are the binary interactions
between individual users and specific items, called transactions. An RS must keep
a log of this transactional data that occurs during human-computer interaction.
Aside from a unique reference to the respective user and item model involved in the
transaction, contextual data can be collected as well. Examples of such data are
timestamps, or the query that led the user to interact with the item. However, the
arguably most important information is user feedback. It can be explicit, e.g. in
the form of a numerical (1-5 stars), ordinal ("[strongly] agree", "neutral", "[strongly]
disagree"), or binary ("interesting", "uninteresting") rating. Unary ratings also exist,
where users can express a positive sentiment towards an item, but not a negative
one, such as via "likes" on Instagram. It is also possible, and often necessary, to

26

3.1. Introduction to Recommender Systems

collect and rely on feedback that is implicit. Instead of having access to directly
expressed user opinions, the RS must infer a user’s interests and preferences, based
on their actions. Which products a user clicked on or bought, which songs a user
listened to, and which movies a user watched, are all examples of implicit feedback.
Notice that all of these activities indicate interest, but not a positive sentiment.
The user might not have liked the product, song, or movie. Furthermore, just like
in the case of unary ratings, not taking a certain action is usually not an indicator
for disinterest. For instance, a user might enjoy a movie or a song, but they are
simply not familiar with it, which is a common occurrence, due to the collection of
items typically being very large.

In essence, the goal of an RS is the ability to compute accurate predicted evaluations for
a pair (u, i), where u ∈ U denotes a user from the collection of users, and i ∈ I denotes
an item from the collection of items. In other words, an RS must implement a function
R̂ : U × I ,→ R that estimates the real underlying function R. Again, the details of this
process are domain- and data-dependent. Furthermore, the predicted evaluation of an
item for a user might depend on contextual variables as well, e.g. the user’s location,
the current time, etc. Generally speaking, the operation of an RS can ultimately be
separated into three distinct tasks. Firstly, the RS must elicit user preferences. It does
this by collecting and evaluating transactions, which describe the experience of a user
with an item. Formally, such an experience is a tuple (u, i, m, R(u, i, m)), where m
denotes the aforementioned contextual variables and R(u, i, m) the user’s (explicit or
implicit) feedback. In addition, as already mentioned, the sociodemographic attributes
of users can play a role in preference elicitation. Secondly, the RS uses the collected
transactions to predict evaluations for new user-item pairs. There is a wide variety of
recommendation methods that can be employed in this step. They can be categorized
into different types, which we will discuss in the next section. Thirdly, the RS uses the
predicted evaluations to finally generate recommendations. There are several approaches.
For example, the RS can construct a list of the top k items sorted from highest to lowest
predicted evaluation. It can also just predict a single item it deems best. Or, it can opt
to rank all evaluated items, which usually is a set of candidate items, i.e. a subset of all
items that were eligible for recommendation for one reason or another. However, note
that while the predicted evaluation plays a central role in this process, there are other
important factors as well, such as diversity and novelty. It is possible that the set of
items with high predicted evaluations are all very similar, i.e. the recommendations are
not diverse. It is also possible that the recommended items are very similar to items that
the user has already interacted with, i.e. the recommendations are not novel.

Last but not least, it should be mentioned that not all RSs fall into the framework
presented in this section. For example, a non-personalized RS is not concerned with
specific users or preference elicitation at all, and simply aims to recommend items that
will appeal to the average user. Another example are RSs that do not collect transactions,
and instead recommend items based on specific queries provided by a user. Nevertheless,

27

3. Fundamentals II: Recommender Systems

the majority of RSs, as well as the RS discussed in the practical portion of this work,
can be described as we did in this section.

3.2 Recommendation Methods
There is a broad spectrum of recommendation methods that can be employed to estimate
predicted evaluations. These methods can be grouped into categories, mainly according
to the data they utilize. In this section, we will briefly present the most important
recommendation approaches. The following taxonomy was first introduced in [11].

• Content-based Methods: These methods focus on the attributes and features of
items. Preference elicitation for a user is usually done on the basis of the encoded
items that the user interacted with in the past, but other approaches are also
possible, such as via the user’s answers to predefined questions. Subsequently, the
RS aims to infer the content of items that could be interesting to the user. Again,
there are multiple possible approaches. Given encoded items, the RS could compute
predicted evaluations, based on the learned user preferences. On the other hand,
it would also be possible to directly generate an encoding for a pseudo-item, and
recommend items with similar encodings. As an example, a content-based RS could
recognize that a user is particularly fond of science-fiction and action movies, and
thus recommend other movies from those genres.

• Collaborative Filtering: These methods revolve around the idea of inferring from
previously occurred transactions. We can further distinguish memory-based and
model-based methods.

Memory-based Methods: These methods use neighborhoods to compute pre-
dicted evaluations. On the one hand, we can group together users with similar
preferences. The similarity between two users is determined from each user’s past
transactions. Recommendations for one user are then based on the activities of
other users in the neighborhood. In other words, the probability of user Alice
enjoying a movie that received a highly positive rating by user Bob increases
proportionally to how much overlap there is between their watch histories. On the
other hand, we can group together items that have received similar ratings from the
same users. Recommendations for a user are then based on the feedback they have
given for other similar items. In other words, we can assume the movies A and B
are similar, when both have received comparable ratings from a set of users, e.g.
users Alice, Bob and Eve loved both movies, users Carol and Dan hated them. We
can then infer that user Frank will enjoy movie A, because they have enjoyed movie
B. Memory-based methods have the advantage of simplicity and explainability, but
are lackluster when transactions are sparse. Meaning, the number of users and/or
items is high, and/or the amount of feedback per user/item is low.

Model-based Methods: These methods aim to build a statistical model for user
feedback. While memory-based methods rely on a statistical similarity between

28

3.2. Recommendation Methods

users/items, these models assume that the similarity is induced by latent factors
in the data. A successful approach to obtaining a model is matrix factorization,
whereby users and items are mapped to feature vectors along k latent dimensions,
such that the inner product of a user-item pair matches any recorded feedback. This
can be done e.g. via singular value decomposition. The predicted evaluation for a
specific user-item pair can then simply be obtained by taking the inner product of
the respective feature vectors.

• Knowledge-based Methods: These methods utilize, as the name suggests, concrete
domain knowledge, stored in some form of knowledge base (e.g. a knowledge graph)
to identify which properties of an item match which user needs. Naturally, these
methods are particularly useful in domains, where transactions are rare, but more
consequential, and items are complex. For example, real estate, cars, or financial
services are bought comparatively rarely to products on Amazon, so there is not
enough user feedback to effectively employ one of the other mentioned methods.
Additionally, since buying a house or health insurance is a much more important
decision than which movie to watch, users usually have specific constraints and
conditions that must or should be met by the recommended items. We can further
distinguish case-based and constraint-based methods:

Case-based Systems: These systems require users to specify existing cases as
a target. The attributes of the case are then used to identify similar items. The
process can be interactive, whereby the user slightly modifies the recommended
item and specifies that as the new target, in order to refine the recommendation.
An example for a case-based system is a car RS, which allows users to define ideal
values for certain attributes of the car (e.g. color, horsepower, price, etc.), and/or
demand recommendations similar to a specific car.

Constraint-based Systems: These systems allow users to set constraints, e.g.
upper and lower values, specific values, value ranges, etc., which are then matched
to items via domain-specific rules. Again, the process is meant to be interactive,
with users tightening or relaxing their constraints, depending on the amount and
quality of the recommended items.

• Hybrid Methods: Last but not least, hybrid methods attempt to utilize some
combination of the preceding methods, with the goal of mitigating the disadvantages
of a single method. For example, CF methods struggle to compute predicted
evaluations for items that have occurred in few transactions. In contrast, content-
based methods do not have this problem. An example for a hybrid approach is using
both methods to produce lists of recommended items, and subsequently combining
them using an adaptive weighted average, whereby items recommended by CF are
weighted proportionally to the amount of available feedback for that item.

Analogous to the variety of possible ways to compute predicted evaluation and generate
recommendations, there are multiple approaches to evaluating an RS. We will briefly
cover the key aspects of RS evaluation in the next section.

29

3. Fundamentals II: Recommender Systems

3.3 Recommender System Evaluation
First and foremost, the evaluation of an RS can be conducted in the context of three
experimental settings:

• Offline Experiment: These experiments use a historical dataset of collected transac-
tions to train and evaluate an RS. Since transaction logs are typically time-series
data, a common approach is to split the data into a training-, test-, and possibly
development set, along certain points in time. A fundamental assumption is that
the dataset is an accurate representation of its source upon deployment of the RS.
Meaning, aspects such as user behavior or the set of active users should be similar
in the real system. Naturally, offline experiments are cheap and easy to conduct,
allowing to iteratively test, compare and finetune a multitude of methods, without
having to expose real users to this process. The main focus of offline experiments is
to measure the quality of predicted evaluations. However, the real effect of an RS
and the response of the user base can only be measured accurately in the following
two settings.

• User Studies: In order to collect more information about the performance of an RS,
especially regarding metrics that are hard to measure, e.g. emotional user responses
such as "satisfaction", one must move from offline experiments to more user-centric
evaluations. User studies are controlled experiments, where a carefully recruited
group of actual users is instructed to interact with the RS, typically via given tasks.
During the interactions, quantitative and qualitative data can be collected. The
former could consist of the number of completed tasks and the time taken for each
one, the number of interactions with recommended items, or even eye tracking data.
The latter could be obtained by questioning the subjects, about topics such as the
user interface, their perceived interest in the recommendations, or how difficult
the given tasks were. Obviously, user studies are difficult, time-consuming and
expensive experiments, but can provide a very wide range of insights into the
performance of an RS.

• Online Experiments: Finally, the most holistic evaluation approach is the deployment
of an RS into an existing environment, where real users can interact with it. Usually,
A/B testing is employed to measure the impact of an RS, whereby users are randomly
separated into two groups. Subsequently, each group is exposed to a different system.
One system could use a new RS, whereas the other system only serves random
suggestions, or one could compare two different RSs. Due to the potential negative
effects of a subpar RS on the user base, e.g. users might be discouraged to utilize
the service in the future, online experiments are usually conducted at the final stage
of RS development. Unfortunately, online experiments are often only accessible
to the owners of the environment, typically a commercial system, e.g. Amazon,
Netflix, or Spotify.

30

3.3. Recommender System Evaluation

As already mentioned, offline studies focus on measuring the performance of an RS, for
which there is a multitude of metrics available. The choice depends on the goals of the
RS and the type of predicted evaluations. In the case of systems with explicit feedback,
accuracy measures can be used to evaluate the errors between predicted evaluations and
the actually collected rating, for transactions in the test set. Commonly used metrics
are the well-known mean squared error, root mean squared error, or mean absolute
error. In the case of implicit feedback, or unary ratings, the RS can be evaluated on the
basis of which of the items recommended to a user did they actually interact with. For
instance, whether a user listened to recommended songs, watched recommended movies,
or clicked on recommended products. Of course, this information must be available in
the dataset. Note that the data is generally collected while another RS, or none at all,
was used. Unfortunately, this means we must assume that a user not interacting with
an item implies that they were not interested, even if that item were recommended to
them. Clearly, it is possible that the user was simply unaware of the item instead. The
only way to relax this assumption, is by collecting information on which items the user
has encountered, or was otherwise made aware of by the system. Evaluation based on
occurred interactions can be done using metrics revolving around the number of true/false
positives/negatives. Most notable are precision p, recall r, and false positive rate fpr.

p = tp

tp + fp
(3.1)

r = tp

tp + fn
= tpr (3.2)

fpr = fp

n
= fp

fp + tn
(3.3)

These metrics present a trade-off, since recommending more items often increases recall
and reduces precision. Therefore, it is usually beneficial to employ evaluation metrics that
compare both values, such as a precision-recall curve, or receiver operating characteristic
(ROC) curve. The former pits precision against recall, focusing on the proportion of
recommended items that the user is interested in. The latter compares recall and the
false positive rate, focusing on the proportion of uninteresting items that are nonetheless
recommended to the user. Which curve to use depends on the domain and the inherent
goals of the recommender system. A precision-recall curve is more suitable, when as
many interesting items as possible should be recommended, attaching less relevance to
the amount of uninteresting items in the set of suggested items. In contrast, a ROC curve
is more suitable, when it is desirable that most of the recommended items are actually
interacted with, attaching less relevance to the amount of interesting items that did not
get suggested. In order to facilitate comparing several RSs, metrics that summarize the
mentioned curves are useful, namely F1-measure and the Area Under the ROC Curve
(AUC). While AUC is self-explanatory, the F1-score is defined as the harmonic mean
between the equally weighted precision and recall, whereas the generic Fβ-score applies

31

3. Fundamentals II: Recommender Systems

a larger weight to the recall value, such that it is β times as important:

F1 = 2 · r · p

r + p
(3.4)

Fβ = (1 + β2) · r · p

r + (β2 · p) (3.5)

Because items are usually recommended to users in the form of lists, it is often useful
to compute the evaluation metrics only for the top N suggested items, due to their
prominence. In this case, or when the amount of recommendations is fixed to always
be N , we instead evaluate e.g. precision at N, denoted precision@N. Note that these
metrics disregard the order the recommended items are in. However, in practical
applications, these rankings play an important role. It is natural for users to expect
the recommendations to be ranked from most to least suitable for them. Therefore, an
evaluation metric that measures how closely the ranking produced by the RS matches
(one of) the ideal rankings provides useful insights. Again, there is a multitude of metrics
available, emphasizing different aspects. A widely used measure is normalized discounted
cumulative gain (NDCG), which applies a logarithmically increasing discount to each
ranking position, commonly with a logarithm of base 2. Furthermore, NDCG is usually
computed for the top N items, where N = 5 or N = 10 are typical values. The discounted
cumulative gain for the top N suggestions is defined as follows:

DCG@N =
N∑

j=1

gu,ij

log(j + 1) (3.6)

gu,ij is the "gain" the user u gets from item i, presented at position j in the ranking, i.e.
a value denoting how relevant item i is to user u. This value can be a simple binary, as
well, where gu,ij = 1 describes relevant, and gu,ij = 0 irrelevant items. Finally, NDCG
normalizes DCG by the ideal DCG (IDCG):

NDCG@N = DCG@N

IDCG@N
(3.7)

The ideal DCG is the DCG for an ideal ranking, which contains relevant items sorted
from most to least gain. Clearly, in the case of a binary gain value, there can be multiple
ideal rankings. This occurs, for instance, when only user’s implicit feedback is available,
e.g. in the form of clicks. A closely related metric is the reciprocal rank (RR), which
attaches a weight of 1

k to a recommended item that the user interacted with, where k
denotes the item’s position in the ranking, and sums over them. The mean reciprocal
rank (MRR) is the average RR over all rankings constructed by the RS, i.e.:

MRR = 1
N

N∑
j=1

1
rank(ij) (3.8)

While the predictive power of an RS is undoubtedly essential, there are other important
factors beyond accuracy, which we have briefly mentioned in Section 3.1, such as novelty,
serendipity, diversity, and trust. Again, the possibilities for evaluating an RS in regards
to these properties are manifold. A discussion thereof is not in the scope of this thesis.

32

3.4. Challenges: Sparsity and Cold-Starts

3.4 Challenges: Sparsity and Cold-Starts
In this section, we will briefly discuss two key challenges that usually occur when solving
the recommendation problem, namely sparsity and cold-starts.

Sparsity describes the issue of scarcely received feedback, especially in the explicit form.
In other words, users rarely provide feedback, the vast majority of users will never interact
with the vast majority of items. The scarcity, or complete lack, of explicit feedback is
an issue for all RSs. Collecting and utilizing implicit feedback is a way to mitigate this.
Sparsity poses a major difficulty for RSs employing collaborative filtering techniques,
due to the fact that it impedes the search for sets of users with comparable ratings.
This effect is exacerbated by a high item-to-user ratio, i.e. a music RS will have to deal
with significantly more sparsity than a movie RS, assuming the number of users is equal
in both. Furthermore, sparsity will generally be very high in new systems that have
yet to accumulate a good amount of feedback. Note that sparsity is less of an issue in
content-based RSs, provided that sufficient content attributes are available.

Cold-Starts describes the introduction of new items or new users into a system, where
the term "cold" denotes the shortage of initially available information. In the case of
items, an absence of feedback for a specific item essentially prohibits a collaborative
filtering method from recommending it. In the case of users, preference elicitation is
hampered for users without any historical transaction data. Instead, an RS can rely on
non-personalized recommendations during the cold-start period. Another possibility is
to ask users to self-describe their preferences, for example by having them select desired
genres of music, or their favorite artists or songs. Again, in content-based systems,
cold-starts for items are not a problem, whereas cold-starts for users still have to be dealt
with.

33

CHAPTER 4
Fundamentals III: Deep
Reinforcement Learning

This chapter presents the set of DRL algorithms that we will apply in the practical
portion of this thesis. These algorithms essentially cover all categories of DRL approaches,
and include state-of-the-art methods. First, we will begin with a very brief history of
DRL.

4.1 Brief History of Deep Reinforcement Learning

One of the earliest successful RL agents utilizing an ANN for function approximation was
an agent playing backgammon, dubbed TD-Gammon [84]. Despite its limited knowledge
of the game, the agent was able to reach a very high skill level, using a variant of TD.
The ANN was trained via backpropagation of the TD-errors experienced by the agent.
While this network was technically not "deep", one can argue that TD-Gammon marked
the beginning of DRL [61]. Unfortunately, subsequent efforts to apply TD-gammon to
other games were unsuccessful, fueling the belief that the approach was for one reason or
another a fluke and would only work on backgammon [65]. The wave of research around
deep learning that we briefly discussed in Section 2.1.3 had little effect on the field of RL,
until Mnih et al. presented the Deep Q-Network (DQN) algorithm in papers published
in 2013 [59] and 2015 [58]. The authors showed how a DQN agent learned to play classic
Atari 2600 video games, by directly processing the raw pixels of game frames. The agent
not only outperformed previous algorithms, but also reached the level of a skilled human
across 49 games, without tuning the agent for each game. This breakthrough ignited the
DRL research, leading to a multitude of novel DRL approaches in the years thereafter
[23] [61] [95], some of which we will discuss in this chapter, starting with DQN.

35

4. Fundamentals III: Deep Reinforcement Learning

4.2 DQN
The basic idea underpinning DQN is using a neural network, called the Q-network, as a
function approximator for the optimal action value function q∗. Formally, this can be
written as Q(s, a; θ) ≈ q∗(s, a), where θ is a stand-in for the parameters and weights of
the ANN. Prior work concluded that Q-networks are unstable and can diverge, due to
three key issues [85]. Firstly, the correlations between subsequently experienced states.
Naturally, a new state s′ depends on the previous state s, and might be highly similar.
Secondly, the correlations between the Q-networks outputs and the targets. And thirdly,
the fact that even small changes to the Q-network can bring about significant changes
of the corresponding greedy policy. In consequence, the assumption that the data used
by optimization methods for learning is identically independently distributed cannot
be upheld for experiences. Arguably the first successful approach to using ANNs for
approximating the action-value function was NFQ (neural fitted Q-iteration) [72] [61].
By using large mini-batches of experiences, NFQ alleviated some of the aforementioned
issues, without solving them. While this yielded good results in simple environments [61],
the computational cost per iteration is proportional to the dataset size, making its use
infeasible for more complex problems requiring larger Q-networks. Mnih et al. used two
fundamental concepts to alleviate these problems, namely experience replay and a target
network. Experience replay is the idea of storing experience tuples et = (st, at, rt, st+1)
in a dataset Dt, usually called the replay memory/buffer [61], at each time step t. Then,
instead of using current experiences in the learning process, the agent samples mini-
batches from Dt uniformly at random, i.e. (s, a, r, s′) ∼ U(D). This has the effect that
correlations in the trajectories are broken up and changes in the data distribution are
smoothed over. The target network is a second Q-network that, as its name suggests,
is used in the computation of the update target. The target network lags behind the
primary ("online") network, i.e. its parameters are frozen and only aligned to the online
network’s parameters every C steps. For instance, for the agent learning to play Atari
games, the authors ran C = 10000 updates between each alignment. Otherwise, the
two networks are architecturally equivalent. The use of target networks removes the
correlation between outputs and targets, by using different network parameters for
obtaining of each respective value.

Just like neural networks in other machine learning domains, Q-networks are trained by
iteratively minimizing the losses between targets and outputs. Of course, there are many
functions that can be used as the loss function L, such as MAE-loss, MSE-loss, etc. For
instance, using the latter, the loss function Li(θi) at iteration i is defined as:

Li(θi) = E(s,a,r,s′)∼U(D)
[
(yi − Q(s, a; θi))2)

(4.1)

The expectation is taken over the uniformly sampled experience tuples. Unlike in SL,
the targets yi are not known beforehand. Instead, the target used in tabular Q-learning
(Equation 2.23) is computed analogously, using the target network with the parameters
θ−

i , i.e.:
yi = Es′∼U(D)

[
r + γ max

a′ Q(s′, a′; θ−
i)

)
(4.2)

36

4.2. DQN

Differentiation of the loss function with respect to the Q-network’s parameters ultimately
leads to the following gradient, which can be used for optimization via stochastic gradient
descent:

∇θi
Li(θi) = E(s,a,r,s′)∼U(D)

[(
r+γ max

a′ Q(s′, a′; θ−
i)−Q(s, a; θi)

)∇θi
Q(s, a; θi)

]
(4.3)

In the years after the release of the initial papers by Mnih et al., several improvements
to DQN were introduced, which we will discuss in the following subsections.

4.2.1 Double DQN
We have already discussed the issue of overestimation in Q-learning in Section 2.5.2, as
well as the solution to it, i.e. double learning. Incidentally, the same researchers that
authored double Q-learning 5 years prior [36], presented Double DQN (DDQN) in [37],
with the designated goal of embedding most of the advantages of double Q-learning into
DQN, while changing the original algorithm as little as possible. Therefore, as opposed to
following double Q-learning and introducing yet another Q-network, the target network
is used. Concretely, the max-operation in the DQN target (Equation 4.2) is decoupled
into action selection, done by the online network, and action evaluation, done by the
target network. This makes sense, since the target network’s parameters are held fixed
for C steps at a time, thus providing more stable values. Unlike double Q-learning,
which requires updating two estimates Q1 and Q2, the utilization of the target network
means that the online network remains the sole network being trained. The original
DQN algorithm is not adapted in that regard. In summary, Double DQN replaces the
target Equation 4.2 with:

yi = Es′∼U(D)
[
r + γQ(s′, arg max

a′
Q(s′, a′; θi); θ−

i))
)

(4.4)

As mentioned in Section 2.5.2, double Q-learning not only mitigates the maximization
bias, but can ultimately also lead to better performance overall. The authors of DDQN
report the same effect for the agent playing Atari games, where their algorithm obtained
significantly higher mean and median scores than the original DQN agent.

4.2.2 Dueling DQN
With the goal of designing a neural network architecture that is tailored for RL, the
authors of [87] devised and presented the dueling network architecture. Again, the
underlying DQN algorithm remains unchanged. Moreover, since Dueling DQN is only
concerned with the Q-network’s architecture, it can also be combined with DDQN, as well
as other variants we will discuss later on. The dueling architecture utilizes a relationship
between action-values qπ(s, a) and state-values vπ(s) that we have omitted in Chapter 2:

aπ(s, a) =̇ qπ(s, a) − vπ(s)
aπ(s, a) + vπ(s) =̇ qπ(s, a) (4.5)

37

4. Fundamentals III: Deep Reinforcement Learning

aπ(s, a) is called the advantage-function, since it represents how advantageous it is
to choose action a, over selecting an action according to the policy π. Intuitively,
by subtracting the value of a state from the value of taking a specific action in that
state, we obtain a relative value of the action’s importance. Furthermore, note that
Ea∼π(s)[qπ(s, a)] = vπ(s), which means that Ea∼π(s)[aπ(s, a)] = 0. The general concept
of a separate advantage stems from [34], with its authors presenting a single advantage
function later, in [35]. The dueling architecture explicitly splits the single stream of a
conventional Q-network into two streams, estimating state values and action advantage
values. Ultimately, these streams are combined in the network using Equation 4.5.
Mathematically, this can be expressed as follows, with θ representing the parameters of
the shared layers, while α and β denote the parameters of the advantage- and state-value
layers respectively.

Q(s, a; θ, α, β) = V (s; θ, β) + A(s, a; θ, α) (4.6)

However, this equation is said to be unidentifiable, since the unique values of A and V
cannot be obtained, if only Q is given. There are multiple ways to address this, with the
authors opting for subtracting the mean of all advantage values from Q:

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α) − 1

|A|
∑
a′

A(s, a′; θ, α)
)

(4.7)

This leads to a more stable optimization process. While it also shifts V and A by a
constant, whereby these estimates lose their initial meaning, the relative rank of the
resulting Q remains unchanged.

Of course, the internal connections of a Q-network ensure that information is shared
to some degree, i.e. learning about Q(s, a1) also entails learning about other action
values a′ ∈ A(s) in the state s. Nevertheless, especially in the case of a large number of
actions having similar values, the use of the dueling architecture improves the agent’s
performance and sample efficiency. Again, the authors tested their architecture design
using the familiar Atari benchmark, finding that it outperformed the original DQN on
the majority of games.

4.2.3 Prioritized Experience Replay

The final key improvement to the original DQN covered in this section focuses on the
sampling strategy for experience replay. Prioritized experience replay [76] aims to replay
important experiences more frequently than others, as opposed to sampling uniformly
at random from the replay memory. Concretely, a transition is characterized as more
"important", the more the estimated value of an action differs from the target value. In
other words, importance is directly proportional to the size of the TD-error (see Section
2.5.2). However, while it is good to prioritize experiences with large absolute TD-errors,
it is not helpful to completely stop replaying "regular" experiences. To that end, the

38

4.3. Distributional Reinforcement Learning

authors propose the following sampling probability:

P (i) = pα
i∑

k pα
k

(4.8)

pi = |δi| + ϵ (4.9)

pi = 1
rank(i) (4.10)

Equation 4.9 uses the absolute TD-error δi directly as the probability of experience i
being sampled. The small constant ϵ prevents probabilities of 0. However, this is sensible
to outliers, where experiences with very high TD-errors dominate the sampling process.
Equation 4.10 mitigates this by using the reciprocal rank of the experiences sorted by the
magnitude of the TD-error in descending order. As we have briefly mentioned in Section
2.5.1, if the distribution of the updates does not match the distribution of its expectation,
some form of importance sampling is needed to correct the bias. PER therefore scales
the TD-errors in the gradients by weights that are proportional to the corresponding
probability of each sample. We will not discuss this in further detail, since we do not
apply prioritized importance sampling in the practical part of this thesis, as discussed in
Section 7.1. As with the other improvements covered before, for the majority of Atari
games, PER yielded improved performance.

4.2.4 Rainbow
All of the previously discussed improvements to DQN, and others that we chose to omit,
tackle varying issues with regular DQN, but are built on top of a common framework.
Therefore, they are complementary and can be combined. This variant of DQN was
dubbed "Rainbow", and led to massive improvements on the Atari benchmark [40].
Rainbow DQN also employed distributional RL, which is a topic of its own and will be
discussed in the next section.

4.3 Distributional Reinforcement Learning
So far, the methods from Chapter 2, as well as DQN and its variants, were concerned
with maximizing the expected return. However, by focusing on this point estimate, one
loses potentially interesting information about the set of experienced rewards. Typically,
complex environments will contain elements of randomness, with the rewards obtained
for a specific state-action pair having uncertainty and variance to them. Therefore, the
mean of the random return might simply be a poor representation of the underlying
distribution. For instance, in the case of a bimodal distribution, a state-action pair could
sometimes yield a high positive, or a high negative reward. The estimated expected
return, i.e. the average, will be around 0, a reward value that was never actually observed.
The answer to these flaws is to take a distributional perspective and focus on the entire
return distribution, in order to capture the intrinsic randomness of the rewards and

39

4. Fundamentals III: Deep Reinforcement Learning

environment dynamics. To that end, a full distributional Bellman equation is used:

Zπ(s, a) D= R(s, a) + γZπ(S′, A′) (4.11)

As opposed to the original Bellman equations that related scalars, the distributional
one relates random variables, namely the reward R, the next state-action pair (S′, A′)
and the random return Zπ(S′, A′) obtained from that point onward, following policy
π. Z1

D= Z2 denotes that the random variables Z1 and Z2 are equal in distribution,
i.e. D(Z1) = D(Z2). The familiar action-value is then the expected value of the value
distribution Zπ:

qπ(s, a) =̇ E[Zπ(s, a)] (4.12)
The value function maps state-action pairs to values, the value distribution maps them
to distributions. While this distributional perspective is not a novel idea [45], it had little
impact on RL. Only in the last years, several algorithms have taken this approach, leading
to many state-of-the-art results. We will discuss some of them in this section, starting
with the Categorical DQN presented by Bellemare et al. in [6], a seminal paper that gave
rise to the category of distributional RL methods, and was used in the aforementioned
Rainbow DQN. We also rely on [95] and [7] as sources on distributional RL.

4.3.1 Categorical DQN: C51
An important concept presented by the authors is the notion of a Bellman operator T π

and an optimality operator T :

TπQ(s, a) =̇ E[R(s, a)] + γEP,π[Q(s′, a′)] (4.13)
T Q(s, a) =̇ E[R(s, a)] + γEP [max

a′ Q(s′, a′)] (4.14)

Iterative application of these operators to an initial Q0 will converge to Qπ or Q∗.
Moreover, the operators are γ-contraction mappings. This means that the same operator
applied to two different value functions Q1 and Q2 will reduce the distance between them
by a factor of at least γ. In other words, this property formalizes that each value function
that the operator is applied on, moves closer to the target value, i.e. closer to each other.
Mathematically, a γ-contraction mapping is expressed as follows:

dist(T Q1, T Q2) ≤ γ dist(Q1, Q2) (4.15)

Clearly, these operators simply describe the expected behavior of Q-learning. The
corresponding Bellman operator Tπ for Zπ is defined as:

TπZ(s, a) Ḋ= R(s, a) + γPπZ(S′, A′) (4.16)

Pπ is the transition operator that encapsulates the environment dynamics, i.e. the
distribution of the next state-value pair (S′, A′).

PπZ(s, a) Ḋ= Z(S′, A′) (4.17)

40

4.3. Distributional Reinforcement Learning

Without going into detail, which is outside the scope of this thesis, the authors provided
proof that using the maximal form of the Wasserstein metric as a distance measure
between distributions, the Bellman operator for value distributions is a contraction.
However, the same cannot be said for Kullback-Leibler divergence. An operator T is
then said to be a distributional Bellman optimality operator, if the policy π implements
greedy action selection. This optimality operator is not a contraction in any distance
measure.

The algorithm proposed by the authors is based on the distributional Bellman optimality
operator. Its iterative application on an approximated distribution should converge to
the set of optimal value distributions. They opted for a categorical distribution as a
model, with its support consisting of atoms zi. The support of a distribution is comprised
of all outcomes that can be assigned a nonzero probability. The set of atoms zi is defined
as:

{zi = Vmin + i∆z : 0 ≤ 1 < N} (4.18)

∆z =̇ Vmax − Vmin

N − 1 (4.19)

Vmin, Vmax and N are the parameters of this distribution, where the two former values
limit the action-value range, and the latter value denotes the number of atoms to be
used. Usually, N = 51, hence the name Categorical 51 (C51). In contrast to DQN, we
now use an LDNN to obtain a value distribution Zθ for a state-action pair (s, a), instead
of action-values, where θ again denotes the network’s parameters. Using a softmax, the
probability of each atom, i.e. Zθ(s, a) = zi for 0 ≤ i < N , is defined as:

P (Zθ(s, a) = zi) =̇ pi(s, a) =̇ eθi(s,a)∑
j eθj(s,a) (4.20)

Following Equation 4.12, we can then compute the corresponding action-value. These
values can be regarded as a weighted ensemble of returns. The idea is that this estimate
of the expectation will be more accurate than in DQN, due to the possibility of errors in
the probabilities returned by the Z-network (an ANN analogous to the Q-network, but
trained to learn the distribution Z instead of Q) canceling each other out [66].

Q(s, a) =̇ E[Z(s, a)]

=
N−1∑
i=0

zipi(s, a) (4.21)

The problem with a discrete distribution is that applying the operator T to Zθ leads to
disjoint supports. Furthermore, using the Wasserstein metric as a stand-in for the loss
between T Zθ and Zθ is impossible when learning from experiences. Again, the proof is
outside of the scope of this work. The authors solved this issue by projecting the sampled
Bellman updates T̂ Zθ onto the support of Zθ. Given an experience tuple e = (s, a, r, s′),
the Bellman update for each atom zi is defined as

T̂ zi =̇ r + γzi (4.22)

41

4. Fundamentals III: Deep Reinforcement Learning

The projection Φ is then done as follows. Each misaligned atom zj is split, by distributing
its probability pj(s′, a′), where a′ is the result of greedy action selection with Equation
4.21, to its two neighboring atoms. The probability is weighted indirectly proportionally
to the distance to each respective neighbor. For each i, the distributed probabilities are
accumulated into the projected Bellman update:

(ΦT̂ Zθ−(s, a))i =
N−1∑
j=0

[
1 − |[T̂ zj]Vmax

Vmin
− zi|

∆z

]1

0
pj(s′, a′) (4.23)

Note that the parameters θ− denote the use of a target network, which we have introduced
as a key part of DQN in Section 4.2. The four steps of the projected distributional
Bellman update are shown in Figure 4.1, along with a detailed visualization for the
distribution of probabilities to neighboring atoms.

(1)

(3) (4a)

(2)

(4b)

Figure 4.1: The projected distributional Bellman update used in C51, broken down into
four steps. (1) Applying the transition operator Pπ to the value distribution Z yields
the distribution of the next state-value pair. (2) Multiplying with the discount factor
γ shrinks the domain, which entails increased probabilities of the support values. (3)
Adding the reward shifts the support to the right or left, depending on the reward’s
sign. (4a) The projection of the Bellman update onto the support distributes the
probability of misaligned atoms to its immediate neighbors. (4b) The weight assigned to
neighboring atoms is indirectly proportional to the distance from the misaligned atom.
All contributions from misaligned atoms are summed.

Ultimately, the projection step permits the use of KL divergence between categorical

42

4.3. Distributional Reinforcement Learning

distributions as a loss function:

Li(θi) =̇ DKL(ΦT̂ Zθ−
i

(s, a) || Zθi
(s, a))

= DKL(mi || pi)

=
N−1∑
i=0

mi log mi −
N−1∑
i=0

mi log pi

= − H(m) + H(m, p) (4.24)

∇θi
Li(θi) = ∇θi

H(m, p)

= −
N−1∑
i=0

mi log pi(s, a; θ) (4.25)

Since the probabilities mi come from the target network and do not depend on θ, we can
simply use the cross-entropy loss for minimization.
The authors report that C51 was able to outperform DQN and its improvements on
the majority of Atari games, obtaining significantly higher mean and median scores.
Notably, the agent improved on games with sparse rewards, which indicates that value
distributions are better at propagating rare events.

4.3.2 Quantile Regression DQN: QR-DQN
The algorithm we will discuss in this subsection was built on top of the theoretical results
presented in the previous subsection. The authors of C51 were able to show that the
Wasserstein metric would be an ideal stand-in for the loss. However, since it generally
cannot be minimized via gradient descent, C51 runs a projection and subsequently
minimizes the KL-divergence between the predicted distribution and the projected
Bellman update. This left the theoretical results unused, and whether a distributional
algorithm exists that utilizes the Wasserstein metric remained an open question. The
work by Dabney et al. [19] closes this gap by employing the theory of quantile regression
[47], leading to the algorithm Quantile Regression DQN (QR-DQN).
First and foremost, the authors transposed the fundamental distribution model of the
predecessor algorithm. C51 learned to attach probabilities pi to atoms with fixed locations
zi, for 0 ≤ i < N . In contrast, QR-DQN uses fixed probabilities, namely uniform weights
pi = 1/N for 1 ≤ i ≤ N , with variable positions. So the goal is to estimate quantiles of
the target distribution, hence called a quantile distribution. The cumulative probabilities
τi, i.e. the values of the cumulative distribution function, are the cumulative sum of the
probabilities pi, meaning τi = i

N (we assume τ0 = 0). Mathematically, the Z-network
aims to find a quantile distribution Zθ, which maps a given state-action pair (s, a) to a
uniform probability supported on θi(s, a):

Zθ(s, a) =̇ 1
N

N∑
i=1

δθi(s,a) (4.26)

43

4. Fundamentals III: Deep Reinforcement Learning

The term δz is the Dirac, i.e. a unit impulse, at z ∈ R. In comparison to C51, this
distribution is not restricted by boundaries Vmin and Vmax, which required domain
knowledge, or uniformly spaced atoms. Furthermore, disjoint supports are not an issue.
Since the Wasserstein metric operates on quantile functions, i.e. inverse CDFs, the goal
of QR-DQN is to find the supports θi for 1 ≤ i ≤ N from 4.26 that minimize the metric
with respect to the target distribution Z. The authors show that these supports can be
obtained by plugging the quantile midpoints τ̂i = τi−1+τi

2 into the quantile function of Z:

θi = F −1
Z (τ̂i) (4.27)

In other words, QR-DQN aims to learn the quantile function, for which it uses quantile
regression.

Note that a quantile τ ∈ [0, 1] simply denotes that the probability mass left of it is τ , and
right of it is 1 − τ . For instance, the median is τ = 0.5, because it splits the distribution’s
probability mass in half. If we want to determine a specific quantile, we must start with
an estimate θ and improve it by sampling from the distribution, applying weights 1 − τ
and τ to samples below and above θ respectively. Once our estimate is correct, sampling
m times from the distribution should yield τ samples below and 1 − τ samples above
the estimate. If that is the case, applying the aforementioned weights will lead to an
equivalency (τm)(1 − τ) = ((1 − τ)m)τ . The weights to be applied can be expressed as
follows, with Ẑ denoting a sample from Z:

|τ − δẐ<θ| =
{

|τ − 1| = 1 − τ if Ẑ < θ

τ, if Ẑ ≥ θ
(4.28)

The so called quantile regression loss is then the expected value of multiplying the
absolute difference between the sample and the estimate with the corresponding weight:

Lτ
QR =̇ EẐ∼Z [|Ẑ − θ||τ − δẐ<θ|]

= EẐ∼Z [ρτ (Ẑ − θ)], with (4.29)
ρτ (u) = u(τ − δu<0) (4.30)

Note that in the last line, we can omit the absolute values, because both factors will
always have the same sign.

In summary, given a distribution Z and a quantile τ , the values that yield the minimal
quantile regression loss are F −1

Z (τ). Due to Equation 4.27, the supports we want to learn
minimize the sum over all respective quantile regression losses for the quantile midpoints
τ̂i, i.e.:

N∑
i

EẐ∼Z [ρτ̂i(Ẑ − θi)] (4.31)

This loss can be minimized via stochastic gradient descent, which was the original issue
with C51. Last but not least, the authors argue that the loss function’s cusp at 0 hinders

44

4.3. Distributional Reinforcement Learning

optimization. In order to mitigate that they propose the quantile Huber loss, which uses
the Huber loss Lκ with parameter κ [44]:

ρκ
τ (u) = |τ − δu<0| Lκ(u) (4.32)

Lκ(u) =
{1

2u2, if|u| ≤ κ

κ(|u| − 1
2κ), otherwise

(4.33)

This turns the quantile regression into an asymmetric squared loss within the interval
[−κ, κ]. Figure 4.2 shows a visualization for clarity.

-2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

3.53.5

44

4.54.5

00

Figure 4.2: Huber loss Lκ for κ = 1 compared to the absolute value function | · |.

Ultimately, QR-DQN uses analogue formulas to Equations 4.21 and 4.22, for action
selection and iterative improvement of the quantile estimates, given experience tuples
e = (s, a, r, s′):

Q(s, a) =̇
∑

i

piθi(s, a) (4.34)

T̂ θi =̇ r + γθi(s′, a′) (4.35)

As per usual, QR-DQN outperformed its predecessors on the Atari benchmark. Further-
more, the authors evaluated the added improvement of the quantile Huber loss, with
the parameters κ = 0 (i.e. regular ρτ) and κ = 1, showing empirically that the latter
outperforms the former.

4.3.3 Implicit Quantile Networks: IQN
The algorithm presented in this subsection again expands on the theories and algorithms
of distributional RL discussed in this section so far. Therefore, we first briefly summarize
C51 and QR-DQN. Both aim to learn a parameterized estimate of the return distribution
Z. The former attaches priorities to a discrete set of a priori determined support
values. The latter transposes this representation, by assuming a uniform mixture of unit
impulses and adjusting their respective locations via quantile regression. In contrast
to C51, QR-DQN utilizes the Wasserstein metric. It aims to return quantiles that
minimize the distance between the target and the estimated distribution, updated with
the distributional Bellman update. The next logical extension to QR-DQN is to remove
the restriction of discrete sets. Implicit Quantile Networks (IQN) [20] does this by
learning the entire quantile function, instead of only a set of discrete quantiles.

45

4. Fundamentals III: Deep Reinforcement Learning

IQN denotes not only the algorithm, but specifically the deterministic parametric function
that is being trained. It takes as input samples τ from a base distribution, for which
the authors propose a uniform distribution U([0, 1]), and outputs the respective quantile
values at τ for the target distribution Z, i.e. τ ,→ F −1

Z (τ). The function can then be used
to obtain a sample of the return distribution, i.e. F −1

Z (τ)(s, a) ∼ Z(s, a), for τ ∼ U([0, 1]).
The authors denote the quantile function at τ as Zτ . The function that learns Zτ for a
given τ is embedded into the LDNN that is used for function approximation. Given a
state-action pair (s, a), the quantile function is estimated as:

Zτ (s, a) ≈ f(ϕ(s) ⊙ ψ(τ))a (4.36)

Concretely, ϕ(s) is the part of the LDNN that processes the state, whereas f maps the
resulting embedding to action-value estimates. Of course, f can also represent a part
of the LDNN consisting of multiple layers. A regular DQN could thus be described as
approximating Q(s, a) ≈ f(ϕ(s))a. IQN adds ψ into the neural network, as an additional
arm that maps an input τ ∼ U([0, 1]) to Rd. The two arms are ultimately combined
with an element-wise product denoted by ⊙. Therefore, the dimension d of the output
produced by ψ must match the dimension of the intermediate representation of the state
produced by ϕ. While the possibilities to parameterize ϕ(τ) are vast, the authors propose
the following definition, with an embedding dimension n = 64:

ϕj(τ) =̇ ReLU
(n−1∑

i=0
cos(πiτ)wij + bj

)
(4.37)

In words, the single scalar input τ is expanded to a vector v ∈ Ri with elements
vi = cos(πiτ) for i ∈ [0, n−1]. v is then pushed through a fully connected neural network
layer, with weights W and biases b, to obtain an embedding of dimension Rd. Since τ is
sampled in every forward pass through the network, we must distinguish between τ and
τ ′. Given an experience tuple experience tuple e = (s, a, r, s′), the TD-error u depends
on the two samples τ, τ ′ ∼ U([0, 1]):

uτ,τ ′ = r + γZτ ′(s′, a′) − Zτ (s, a) (4.38)

As per usual, s′ is the result of greedy action selection. The number of samples τ and τ ′

to draw, i.e. N and N ′, can be different for the computation of Zτ ′ and Zτ , done by the
target and online network respectively. Just like in QR-DQN, the quantile Huber loss is
applied to the TD-error uτ,τ ′ at each step. Finally, the action-value function estimate is
defined as the expected value of Zτ , which can be approximated by sampling τ̃ ∼ U([0, 1])
K times and taking the average:

Q(s, a) =̇ Eτ∼U([0,1])
[
Zτ (s, a)

)
Q(s, a) ≈ 1

K

K∑
k=1

Zτ̃k
(s, a) (4.39)

Generally speaking, the authors found that increasing N and N ′ improved performance
until reaching a plateau. For simplicity, setting N = N ′ is valid. IQN was found to be
insensitive towards the value of K.

46

4.3. Distributional Reinforcement Learning

4.3.4 Fully Parameterized Quantile Function: FQF
The authors of the IQN algorithm [20] argued that, given enough computational resources
for a sufficiently large network, any distribution can be approximated, using an infinite
number of quantile fractions in the limit. Of course, in practice, the number of quantile
fractions is limited to a comparatively small number of random samples. Again, a logical
next step would be to make the quantiles τ dependent on each specific state-action pair,
instead of sampling them uniformly at random. To that end, the authors of [94] propose
the extension of the IQN model by another neural network, the so called fraction proposal
network, giving rise to the Fully Parameterized Quantile Function (FQF) algorithm. The
LDNN responsible for approximating the quantile value function, i.e. the Quantile Value
Network (QVN), remains unchanged from IQN. But instead of sampling quantiles, they
are generated by an additional LDNN, called the Fraction Proposal Network (FPN). In
summary, FQF attaches N estimated quantile values to N estimated quantile fractions,
with neither being fixed nor sampled. Note that in QR-DQN, the return distribution
is approximated with Equation 4.26, for a fixed set of τi = i

N for 1 ≤ i ≤ N , and each
Dirac is weighted with the term 1

N = τi+1 − τi. Analogously, since FQF uses adjustable
quantiles, the return distribution is defined as:

Zθ,τ (s, a) =̇
N−1∑
i=0

(τi+1 − τi) δθi(s,a) (4.40)

In order to leverage the same theoretical results regarding the Wasserstein metric as
QR-DQN, which we have briefly discussed in Section 4.3.2, the quantiles constructed
by the FPN must have the properties τi+1 < τi, τ0 = 0 and τN = 1. Clearly, training
the network to emit values that fulfill these conditions is not trivial. Therefore, the
authors propose using a cumulative softmax, i.e. τi = ∑i−1

j=0 qj for i ∈ [0, N], where qj are
softmax output values. The FPN can be trained by minimizing the Wasserstein metric
via gradient descent, using its derivative with respect to the proposed τi:

∂W1
∂τi

= 2Zτi − Zτ̂i − Zτ̂i−1 ∀i ∈ [1, N − 1] (4.41)

Just like with QR-DQN, τ̂i denotes the quantile midpoints. The respective quantile
functions are provided from the QVN. Its training process is identical to IQN’s, using
the quantile Huber loss on the same TD-error (Equation 4.38).

Of course, the training of FQF is slower compared to the distributional RL algorithms
discussed so far, due to the addition of another neural network. It is also very sensitive
to the number of samples τ , which is not the case for IQN. However, the benefit of a
fully parameterized quantile function without fixed components was clearly shown on the
Atari games benchmark, with FQF outperforming the other distributional RL algorithms.

Figure 4.3 summarizes and compares the four distributional RL algorithms presented
in this section. It also highlights the evolution up to FQF, starting from the non-
distributional algorithm DQN.

47

4. Fundamentals III: Deep Reinforcement Learning

input input input input

Actions

Actions

Actions Actions

Returns

Returns

Returns

Returns

FPN

input

DQN C51 QR-DQN IQN FQF

Figure 4.3: Comparison of distributional RL algorithms and DQN. The visualization
is an adaptation and extension of a Figure featured in [20]. It shows the adaptations
and improvements that led to FQF: DQN yields point estimates, C51 attributes different
probabilities to fixed atoms, QR-DQN attaches fixed probabilities to different quantiles,
IQN learns the entire quantile function for quantiles sampled from a uniform distribution.
Ultimately FQF learns to adapt the quantiles to the input.

4.4 REINFORCE

DQN and its distributional variants fall into the category of value-based methods. These
algorithms first learn an estimate of the value-function and then use it to derive a policy,
usually one that picks the actions with the highest value. The counterpart to value-based
methods are policy-based methods. These algorithms take a more direct approach, by
optimizing the policy itself, e.g. by gradient ascent on the objective J(θ), where θ are the
parameters of an ANN representing the policy π. The main goal of these approaches is
to update the action probability distribution of a stochastic policy such that actions with
high expected reward also have a high probability, and vice versa. A popular policy-based
approach is the REINFORCE algorithm. The objective J(θ) is simply the expected
return of an episode, which is maximized via gradient ascent. The policy gradient can be
derived using the equation d

dx log f(x) = f ′(x)
f(x) , where τ denotes a trajectory:

∇θJ(θ) =
T −1∑
t=i

∇θP (st, at | τ)rt+1

=
T −1∑
t=i

P (st, at | τ)∇θP (st, at | τ)
P (st, at | τ) rt+1

=
T −1∑
t=i

P (st, at | τ)∇θ log P (st, at | τ)rt+1

= E
[T −1∑

t=i

∇θ log P (st, at | τ)rt+1
)

(4.42)

48

4.5. DDPG and TD3

In practice, random past episodes are sampled to estimate the expectation. Briefly
speaking, the logarithm simplifies the gradient, because terms that do not depend on θ,
such as environment transition probabilities, will be 0. Ultimately, the gradient ends up
as:

∇θJ(θ) =
T −1∑
t=0

∇θ log πθ(at|st)Gt (4.43)

REINFORCE collects entire episodes, storing the log-probabilities of the policy, as well as
the obtained rewards, at every timestep. The rewards are used to compute the discounted
cumulative future reward at each step, which are then plugged into the policy gradient
used to update the parameters θ.

4.5 DDPG and TD3
While the DRL algorithms presented so far, i.e. DQN and variants of distributional RL,
are able to handle high-dimensional observation spaces, they only work with discrete
or low-dimensional action spaces. In the case of continuous actions, e.g. a real-valued
actuator setting in a physical control task, finding the specific action with the highest
value would require iterative optimization. This process would be too slow to be feasible,
especially in the case of large ANNs. Discretizing the action space is usually not an
option, since a fine-grained approach can yield an intractably large action space, and a
more naive approach leads to the loss of potentially essential information.

A prominent example for a DRL algorithm that can operate in continuous action spaces
is Deep Deterministic Policy Gradient (DDPG) [49]. It uses key ideas from the authors
of DQN, namely experience replay buffers and target networks, and applies them to
Deterministic Policy Gradient (DPG) [79], an off-policy Actor-Critic (AC) algorithm,
hence extending the name with the prefix "deep". "Actor-critic" refers to a common
architecture used in RL, consisting of an actor that learns a stochastic policy, and a critic
that learns the action-value function [83]. In DRL, typically both actor and critic are
separate ANNs. The actor is an ANN learning a policy π(s; θπ) that deterministically
maps an action to a given state s, where θπ denotes the ANN’s parameters. The critic is
constructed and trained analogously to DQN, but utilizing the actions determined by the
actor. The actor aims to maximize the expected return, via the policy gradient obtained
with the chain rule:

J ≈ E
[
Q(s, π(s; θπ); θQ)

)
(4.44)

∇θπ J ≈ E
[∇θπ Q(s, π(s; θπ); θQ)

)
= E

[∇aQ(s, a; θQ, a = π(s; θπ)) ∇θπ π(s; θπ)
)

(4.45)

In words, given an experience tuple e = (s, a, r, s′), the actor determines the next action
a′ given s′, which is used to update the Q-network, i.e. the critic, as is done in DQN.
Subsequently, the critic is used to compute the value of the action produced by the actor
for the current state s. Since the goal is to maximize the expected return, the actor’s loss

49

4. Fundamentals III: Deep Reinforcement Learning

is the negative action-value determined by the critic, i.e. the critic criticizes the actor’s
choices.

In contrast to DQN, DDPG utilizes so called "soft" target updates to update the target
networks. As opposed to directly copying the weights from the online network to the
target network every n steps, a soft update occurs at every step. It slowly nudges the
target network’s parameters towards those of the corresponding online network, according
to the following update formula:

θ′ ← τθ + (1 − τ)θ′ (4.46)

The parameter τ is typically very small, such as 0.01. It should be briefly noted that
in continuous action spaces, exploration is done by simply adding noise to the actor’s
policy. However, as we will discuss in Section 7.1.5, exploration does not concern us in
the practical part of this thesis.

A common issue that can occur with DDPG is the overestimation of action-values by the
critic, which subsequently allows the actor to outplay the critic, by producing actions
that exploit the critic’s weaknesses. In turn, this exploitation leads to the critic returning
even higher action-values, which ultimately causes the learning process to spiral out
of control. Twin Delayed DDPG (TD3) [21] addresses these issues with 3 adaptations
to DDPG. Firstly, similarly to double learning in DQN, TD3 adds an additional critic
and uses the smaller action-value of the two when computing the target. This hinders
the actor from exploiting the critic, because it has to exploit both of them. Secondly,
the target update for the actor network is delayed, with the authors recommending one
update to the actor for every two updates of the critic. Thirdly, noise is added to the
actor’s choice of a′, in order to further decrease the chance of exploitation.

A noteworthy algorithm built on top of DDPG/TD3 is the Wolpertinger algorithm [25].
It was designed for the purpose of handling large discrete action spaces, which can occur
in language models, industrial plants, or recommender systems with large amounts of
items. While applying DQN is certainly possible, it is inefficient. The Wolpertinger
algorithm requires that each action is represented by an embedding. The actor produces
a so called prototype-action â, i.e. a vector that corresponds to the dimensions of an
action embedding, but does not necessarily represent a valid action from the discrete set
of actions A. Given a prototype-action, the k nearest neighbors from the set of valid
actions are selected and passed through the critic, which ultimately selects the action
with the highest action-value. TD3 can be adapted to have one critic select the action
and the other critic return the value for that action. While the critic is trained using the
valid actions, the policy gradient is taken at the actor’s prototype-action.

50

CHAPTER 5
NRSs and DRLRSs:

State-of-the-Art

In this chapter, we will separately examine the topics News Recommender System
(NRS) and Deep Reinforcement Learning Recommender System (DRLRS). We will begin
by introducing the news recommendation problem and what differentiates news from
other domains. Then, we will present State-Of-The-Art (SOTA) solutions. Besides the
literature on the aforementioned solutions, we also rely on the surveys on the topic of
NRS research, namely [92], [57], [68], [27], and [46]. Finally, we will examine how DRL
can be applied to RSs, and discuss the state of the field of research surrounding this idea,
sourcing from [2] and [17].

5.1 Introduction to News Recommendation
The news industry has been subjected to a significant paradigm shift over the past
decades, with an increasing amount of people looking to read news online. Users can turn
directly to websites of news organizations, social media networks, or news aggregators,
such as Google News1, Apple News2, or Microsoft News3. Nowadays, the majority of
U.S. Americans consume news online, via digital devices (e.g. smartphone, tablet, or
PC), as opposed to reading print publications, listening to the radio, or even watching
TV [14]. Current statistics published by the European Union paint the same picture
[26]. The consequence of this was, as we have already discussed in Section 3.1, the rise of
today’s digital media landscape, characterized by a seemingly infinite supply of news and
an accompanying abundance of choice. At the same time, according to the 2022 Digital
News Report by the Reuters Institute for the Study of Journalism [62], the growth of

1https://news.google.com/
2https://www.apple.com/apple-news/
3https://microsoftnews.msn.com/

51

https://news.google.com/
https://www.apple.com/apple-news/
https://microsoftnews.msn.com/

5. NRSs and DRLRSs: State-of-the-Art

people willing to pay for online news has seemingly stagnated at a low level, and overall
interest in news has declined sharply across markets over the past years, to only 51%
in 2022. NRSs present a possible solution to these issues. They can navigate the scarce
attention of users through the abundance of news content to the information that is
particularly interesting or important to them. Subsequently, relieving this information
overload can potentially lead to users having increased engagement and loyalty towards
news organizations, thus being more willing to pay [10].

NRSs fall into the general framework that we have outlined in Section 3.1, with items
being news content in various forms (e.g. articles, videos, or podcasts), and transactions
being media-dependent interactions between users and items (i.e. reading, watching, or
listening to news content). Feedback is typically implicit, in the form of clicks or views,
but could theoretically be explicit as well, if users are prompted to rate items in some way.
For instance, users could assess the quality of writing, or how interesting an article was
to them. However, compared to domains like movies, advertising, music or e-commerce,
the news domain entails a unique set of challenges that makes the development of NRSs
a difficult task. Some of these are:

• Engagement and Survival Time: Depending on the length of an article, the average
engagement time, i.e. the duration for which a user interacts with the content,
spans from 43 to 270 seconds (0.7 to 4.5 minutes). Furthermore, the majority of
news items has a very short survival time, meaning the content becomes quickly
out-of-date, e.g. in a matter of days, hours, or even minutes in the case of developing
stories. In contrast, movie items usually have a consumption time measured in
hours, and their eligibility for recommendation is not as strongly tied to their age.
The same can be said for books and music, where the engagement time of the latter
is comparable to news, but the survival time is much longer.

• Candidate Set Size: Due to the size of the media landscape discussed before, the
release rate of news content is extremely high, in the range of thousands of new
items per hour. This leads to a very large set of candidate news items that can
be recommended. While this is also the case in other domains, e.g. music or
e-commerce, the addition of a low survival time in the news domain means that
the candidate set is constantly changing.

• Sequential Consumption: While the order of consumption is an important factor in
all RSs, it is paramount in the news domain. For example, an RS might correctly
identify a user’s interest in a breaking story, and recommend a corresponding news
item from a set of candidate news that cover the topic. The user’s engagement
with the suggested item can then lead to a decrease, or even complete end, of their
interest. In another case, a user could want to remain informed on a developing
story, thus requiring recommendations for news items containing new information
in the order of discovery. Last but not least, unlike in the music domain, items in
the sequence of consumption are usually not repeated.

52

5.1. Introduction to News Recommendation

• Context: Situational and contextual aspects can have a significant influence on
user’s preferences and interests. Current events and trends can encourage an
otherwise uninterested user to consume corresponding news content. For instance,
a quadrennial event such as the Olympics, or the world’s best football player
unexpectedly leaving their childhood club, can motivate typically sports-averse
users to interact with items covering these events. Time is also an important factor,
where the time-of-day was found [54] to affect the preferences for certain news
categories. Concretely, the political category was generally preferred in the morning,
whereas the entertainment category was more popular in the evening. Another
key context is a user’s location, which can naturally lead the user to engage with
local news that usually do not pertain to them. Finally, some contextual properties
can be highly personal, such as a user’s mood or the current weather affecting
their preferences. To summarize, users in the news domain have highly dynamic
preferences that an RS constantly has to adapt to.

As already said, these properties present issues that are either non-existent, or less
pronounced in other domains. In addition, one can easily argue that NRSs have a unique
status, due to their potential impact on journalism as an industry, as well as the public’s
information consumption behavior, which ultimately can affect democratic processes and
systems as a whole. In other words, the recommendation of news content has a greater
social relevance than the recommendation of movies, music, books, or similar types of
items. We briefly summarize the main arguments for the aforementioned elevated status
of NRSs:

• News Supply: An increasing utilization of NRSs could lead to a fully automated
curation and dissemination of news content, free of human editors. [12] argues that
this could shift the focus in the processes of journalistic production and selection
away from topics that deserve attention, towards topics that will be recommended.
For instance, sensationalism could thrive. This effect would naturally be exacerbated
by the direct insight into the user’s demand, via metrics supplied by the NRSs,
thus changing the perception of what designates qualitative journalism.

• News Demand: The inherent goal of an RS, i.e. to elicit users’ preferences and
suggest matching items, can have negative effects on the quality of the users’ overall
"dietary intake" of news. The assumption that an RS understands what a user
wants can lead to filter bubbles, i.e. users being isolated in regards to the spectrum
of items they are able to transact with. Especially in the category of politics,
engaging with counter-attitudinal opinions is important. News media are central
institutions that should ensure that the citizenry remains informed and attends to
a broad and diverse set of opinions and ideas. Failing to do so could have negative
implications for democracy [39]. However, people tend to selectively choose items
that are attitude-consistent, meaning aligned with their beliefs and viewpoints,
and avoid attitude-dissonant content. While the former can reinforce confidence

53

5. NRSs and DRLRSs: State-of-the-Art

into their pre-existent perspective, the latter can cause an increase in psychological
distress and uncertainty [5]. Therefore, an NRS could theoretically aim to serve
users with exclusively attitude-consistent items, thus trapping them in an echo
chamber [60].

While these issues are being framed as challenges, they present an opportunity for
positive impact as well. Clearly, the development of commercial NRSs must include these
beyond-accuracy aspects not only in the evaluation, but also directly in the engineering
process. However, this is a highly complex topic of its own, and thus not in the scope of
this thesis.

In comparison to other domains, the recommendation problem for news content has been
studied significantly less extensively. A key reason could be the scarcity of public datasets
for offline training and evaluation [93]. The majority of existing datasets are private, or
synthetically developed for a narrow research purpose. However, all surveys cited at the
beginning of this chapter have found an increase in research output over the past decade.
The CLEF NEWSREEL challenge, an annual research competition on the topic of NRSs
that ran from 2014-2017, has played an important part in this rise. Participants were
given access to a comprehensive dataset and an existing NRS, which encouraged research
and led to a spike in the number of publications during the challenge’s active years.
Furthermore, a public, large-scale dataset for news recommendation, called MIcrosoft
News Data (MIND), was released in 2020, along with an accompanying challenge, thus
fostering additional research and combating the aforementioned scarcity [93]. It is the
principal dataset used in the practical part of this thesis, and will be discussed in Chapter
6.

5.2 State-of-the-Art: News Recommender Systems
All of the surveys cited at the beginning of this chapter have identified that, out of
the general recommendation methods presented in Section 3.2, collaborative filtering is
applied the least in the news recommendation domain. Generally, either content-based
or hybrid approaches are the most used methods overall, depending on which papers
were analyzed, and the total amount of included papers. Furthermore, [68] conclude
that there has been an increased utilization of DL methods for RSs in the past years,
which can be observed in the news domain as well. In fact, all of the SOTA methods
that we will discuss in this section use DL techniques and architectures. Of course, a key
aspect of DL is the ability of a model to generalize. For instance, let’s assume a model
is given information about a user’s past activities on a NRS platform, e.g. consisting
of a list of items the user has interacted with, and learns to predict the probability of
that user clicking on a new item. Due to the nature of DL, where the parameters of a
model are adapted with each new observation, the model will automatically apply what
it learned from one user’s transactional data to other users. Therefore, while we have
described a content-based approach, one can argue that DL methods implicitly contain a

54

5.2. State-of-the-Art: News Recommender Systems

collaborative filtering component, thus placing them in the category of hybrid techniques.
Unlike in traditional collaborative filtering, DL finds similarities between users in a latent
space, instead of directly comparing the feedback users have given to items both have
transacted with. While the other surveys do not discuss knowledge-based methods, [46]
points out that none of the analyzed papers utilize techniques from that category. The
authors state that this is not surprising, since the news domain does not fit the typical
use-case of knowledge-based methods, which we have also discussed in Section 3.2. To
reiterate, these techniques are usually applied in settings comprised of complex items with
long life-cycles and few, but consequential, transactions. The news domain is essentially
the exact opposite of this description, as we have extensively laid out in the preceding
section. However, we offer potential applications of knowledge-based techniques in news
recommendation in Section 8.3.

Due to the previously discussed scarcity of public datasets, leading to the reliance on
proprietary, private data, results in NRS research were often not comparable or repro-
ducible, especially after the CLEF NEWSREEL challenge was discontinued. However,
the aforementioned release of the MIND dataset has facilitated both. Therefore, we
will briefly present recommendation methods that have performed well when applied
to the MIND dataset. Note that for most of these methods, their respective authors
report that ensembles of several, independently trained models have achieved the best
evaluation scores. Most notably, the current highscore on the MIND evaluation leader-
board4 was achieved by an ensemble model. We think that it is safe to assume, that
these methods represent the SOTA for the entire NRS domain, as opposed to only for
this specific dataset. Nonetheless, note that these methods are focused on performing
well on accuracy-based measures, which is the evaluation approach implicitly enforced by
the authors of the MIND dataset, because their testbed ranks solutions based on the
obtained AUC score. The solutions contributed in the practical part of this thesis (see
Chapter 7) are thus also accuracy-centric recommender systems. In summary, we do not
consider beyond-accuracy evaluations in this section, but want to again emphasize their
overall importance, especially in the light of the arguments put forward in the previous
section, about the societal importance of NRSs.

5.2.1 Neural News Recommendation with Long- and Short-term User
Representations: LSTUR

An et al. proposed a neural, i.e. DL, approach to news recommendation in [4]. Some
of the authors were part of the team behind the MIND dataset release. Their proposal
consists of two key components, namely a news encoder and a user encoder. The news
encoder converts textual attributes of a news article into sequences of word embeddings.
The matrix obtained by stacking these embeddings is subsequently passed through a
Convolutional Neural Network (CNN). The CNN learns to extract contextual word
embeddings, by sliding a window of size M over the entire sequence. Clearly, the
context around a word is highly important to its meaning. For instance, in the article

4https://msnews.github.io/#leaderboard

55

https://msnews.github.io/#leaderboard

5. NRSs and DRLRSs: State-of-the-Art

title "Houston Rockets End 2022-23 Season In Win vs. Wizards"5 various word-level
interactions are paramount for understanding the context of this news item. Representing
this item as a sequence of regular word embeddings would presumably not accurately
encode the information that "Rockets" and "Wizards" are names of NBA teams, and
the term "Season" thus is a sports-related portion of the year, as opposed to being
climate-related. The resulting embeddings are then further processed by an additive
word attention network. Its goal is to produce encodings that focus on important words,
via attention weighted summation. Finally, the resulting vector is concatenated with
embeddings of the category and subcategory of the respective news item. The user
encoder uses the list of previously clicked news of a user to build a model for that user.
It itself consists of two separate modules, namely a short-term and a long-term user
representation (STUR/LTUR) model. After each news in a user’s history is passed
through the news encoder, the entire sequence is processed by a Gated Recurrent Unit
(Network) (GRU). The short-term representation vector is then the GRU’s last hidden
state. The long-term user model attempts to capture the general preferences of a user,
by embedding the user’s randomly initialized ID. The authors propose two approaches
to combining the short- and long-term encodings. Firstly, using the long-term vector
to initialize the GRU’s hidden state. Secondly, concatenating the two encodings. The
authors report slightly better results for the former method. Furthermore, they show
that it outperforms a model that solely relies on the STUR. Unsurprisingly, only using
the LTUR in a model yields bad results, since it completely disregards the transaction
histories. In addition, the authors also experimented with various methods for learning
short-term user representations. Besides GRU, they tested Long Short-Term Memory
(LSTM), weighted summation via additive attention and simple averaging over all items.
The last two were outperformed by the sequential methods. Perhaps unexpectedly, GRU
led to better results than LSTM. The authors put forward the possible explanation that
due to GRU having fewer parameters, it is less likely to overfit. In the news encoder,
using an LSTM, with or without attention, also was reportedly outperformed by the
CNN approach (with and without attention). Last but not least, the authors verified
the added benefit of including embeddings of a news item’s category and subcategory,
finding that using both was the best choice. On its own, the subcategory led to a larger
improvement than the category. Finally, given a candidate news article, the probability of
a user clicking on it is computed as the inner product between the user encoding and the
encoding of the candidate item, produced by the news encoder. A set of candidate items
can then be ranked by their respective click probability for a specific user in decreasing
order

5.2.2 Neural News Recommendation with Multi-Head Self-Attention:
NRMS

Wu et. al, half of whom also worked on the previously presented model, and many on the
MIND dataset, improved on LSTUR with NRMS [91]. Again, the model consists of a

5https://www.si.com/nba/rockets/news/houston-rockets-end-2022-23-season-win-vs-washington-wizards

56

https://www.si.com/nba/rockets/news/houston-rockets-end-2022-23-season-win-vs-washington-wizards

5.2. State-of-the-Art: News Recommender Systems

news encoder and a user encoder. The news encoder also first converts textual attributes
of a news article into sequences of word embeddings. However, instead of using a CNN,
these sequences are passed through a multi-head self-attention network. In contrast to a
CNN, a self-attention mechanism is able to capture even long-distance interactions and
contexts of words. For instance, in the previously given headline, a CNN will presumably
understand that "Rockets" refers to an NBA team, given the prefix "Houston". But it
might miss the interaction between "Rockets" and "Wizards", because the two words are
relatively far apart. Finally, the sequence of multi-head word representations, obtained
by concatenating the encodings produced by each head, is passed through an additive
word attention network. Again, the user encoder uses the list of previously clicked news
of a user to build a model for that user. After each news in a user’s history is passed
through the news encoder, a multi-head self-attention network is applied again. In this
case, it focuses on interactions between news items in a history, with the aim of learning
how the items relate to each other. Subsequently, analogously to the news encoder, an
additive news attention network learns to differentiate between more and less important
items in a history. Again, attention weighted summation ultimately yields a single user
representation vector. To compute a click probability score for a given candidate item,
the authors again utilize the dot product. The authors show the effectiveness of the
different attention networks and levels, by comparing the performances of the model,
when individual attention mechanisms are excluded. Word-level attention was shown to
be more effective than news-level attention, and self-attention was more effective than
additive attention. However, in both cases, using both led to the best performance. In a
later work [88], the authors explore the utilization of a large Pre-Trained Language Model
(PLM) in the news encoder component. Due to their depth and overall size, as well as
the typically extensive pre-training on large corpora of unlabeled text, PLMs present a
better starting point, than the comparatively shallow text modeling employed otherwise.
In addition, a PLM can be fine-tuned during training, if desired. The authors report
significant improvements across the board, when enhancing the regular news encoder in
NRMS with a PLM. Furthermore, the authors tested different approaches to pooling
the hidden states of a PLM, in order to produce a final embedding for the input news
item. Using an attention network performed better than averaging over all hidden states,
which in turn bested the widely-used approach of directly using the PLM’s output for
the "[CLS]" token, or whichever other token is designed to represent the entire sequence.

5.2.3 User-News Matching BERT for News Recommendation:
UNBERT

The two architectures presented so far have relied on separate news and user encoders,
where the former learns to represent news items as vectors, and the latter applies
the former to the items in a user’s list of previously read articles, in order to learn a
representation vector for said user. Given a user and their history, along with a candidate
news item, the separately obtained encodings are then used in later stages of the model
to generate a final matching score, or click probability score. However, the authors of [96]

57

5. NRSs and DRLRSs: State-of-the-Art

argue that these two-pronged approaches potentially ignore matching signals occurring
on a lower level, such as relations on the word-level. To that end, they propose a joint
approach, where the textual content of the candidate item and the items in a user’s
history are concatenated, and subsequently processed together. Just like we discussed
at the end of the previous subsection, the authors also leveraged the power of a PLM,
concretely BERT [22]. The input to the BERT model was constructed by summing
individual, pre-trained embeddings on the level of tokens, segments, positions and news
items. In other words, the input representation contains information that separates the
candidate item from the user history, each respective item, as well as the individual tokens.
The architecture is split into a word- and a news-level module. The first module learns an
encoding for each word using multiple transformer layers, along with an overall word-level
matching vector, which is supposed to encode how well the candidate item matches the
user’s preferences on a word-level. This vector was the final output for BERT’s "[CLS]"
token. The second module then aggregates the word encodings for each corresponding
news item, and passes the results again through several transformer layers, in order to
capture matching signals on the news level. Again, the resulting output for the "[CLS]"
token represents a matching vector, this time on the news-level. The authors also tested
the same three approaches for aggregating the word-encodings that we discussed in the
previous subsection, namely attention-pooling, mean-pooling, and using the embedding
of a special separator token (in this case, they used the token that separated news
items from each other in the input). Analogously, attention outperformed averaging,
which outperformed just using the token embedding. Ultimately, the word-level and
the news-level matching vectors are concatenated and fed into a fully-connected layer,
producing a click probability score. Similarly to the NRMS, the authors also put forward
an ablation study, where they disable each of the two modules individually, to test its
impact on the overall performance. They report the best results when both modules are
used. Unsurprisingly, in the case of a single module, the news-level module outperforms
the word-level module.

5.2.4 Multi-Interest Matching Network for News Recommendation:
MINER

While other news recommendation architectures typically learn to represent users with
a single embedding vector, the authors of [48] propose a poly attention mechanism.
They argue that due to the diversity and variance inherent to users’ interests, relying
on a single-vector encoding presents a bottleneck. To relax this degree of compression,
they propose using K learnable context codes, where each code influences the attention
mechanism applied to the news items in a user’s history. The result is K user model
vectors, where in theory, each vector represents a different aspect of their preferences.
In addition, the authors introduce a regularization that aims to minimize the mean
cosine similarity between the individual representation vectors. The goal is to ensure
that each pairwise distance is high and vectors are dissimilar, i.e. a diverse set of vectors,
which the authors call disagreement regularization. Finally, for a given candidate news

58

5.2. State-of-the-Art: News Recommender Systems

item, a matching score is computed for each of the K vectors, as the dot product with
the encoding of a candidate news article. Out of three proposed ways to aggregate the
resulting K scores, namely taking the maximum, the mean, and an attention-weighted
sum of each score, the last approach outperformed the others. The authors reportedly
obtained best results for K = 32. Last but not least, MINER re-weighs news items in a
user’s history, proportionally to the similarity to the candidate item, in terms of its news
category. For instance, if the candidate item is a sports news article, the items in the
user’s history from the categories sports, fitness, health and food would receive a higher
weight. Following [88], MINER uses a PLM to enhance the news encoder component.
Again, the authors conduct an ablation study, proving the effectiveness of individual
MINER components (disagreement regularization, category weighting and the PLM), by
obtaining worse performances when removing them.

5.2.5 Fastformer: Additive Attention Can Be All You Need
Finally, the currently best result on the MIND leaderboard6 was achieved by a model
called Fastformer [89], developed by the same authors as NRMS. The self-attention
mechanism in the standard issue transformer has to compute the pair-wise dot product
for the entire sequence of input vectors, meaning its complexity is quadratic to the
length of the sequence. Therefore, longer sequences are not handled efficiently. To that
end, the authors propose the Fastformer, which heavily utilizes additive attention to
achieve linear complexity. It first uses additive attention to compress the input query
matrix into a single global query vector. The interaction with the keys in the input key
matrix is then modeled via element-wise multiplication with the global query vector. The
resulting matrix is again compressed into a global key vector with additive attention.
Ultimately, element-wise multiplication of the global key vector and the input attention
values, along with a subsequent linear transformation of the resulting vectors, yields
global attention values. The sum of these values with the original query vectors forms the
final Fastformer output. The authors utilize Fastformer as a news encoder, by feeding
it with GloVe embeddings as the initial token embedding matrix, and using additive
attention to combine the output vectors into a single news encoding vector. Analogously
to previous works, the news encoder is applied to the sequence of previously read news
items to produce a user encoding. While the authors do not specify how the individual
item encodings are combined into a user encoding, one can assume that they reused the
combination of self- and additive attention that was used in NRMS. Following [88], the
authors report improved results when combining Fastformer with a PLM. Furthermore,
using a Fastformer that was pre-trained on unspecified data also boosts the model’s
performance. Last but not least, the authors tested the Fastformer architecture on
additional tasks besides news recommendation, namely sentiment and topic classification,
as well as text summarization. Fastformer not only achieved significantly lower training
and inference times than other transformer variants with linear complexity, it also
outperformed many of them on the tested tasks.

6https://msnews.github.io/#leaderboard

59

https://msnews.github.io/#leaderboard

5. NRSs and DRLRSs: State-of-the-Art

5.3 (Deep) Reinforcement Learning Recommender
Systems

The RSs discussed so far have viewed item recommendation as a prediction or classifi-
cation problem, e.g. by aiming to predict a user’s rating of an item, a click probability,
or to classify items into interesting and uninteresting groups. However, the interactions
between users and items within an RS are sequential processes, which suggests that the
recommendation problem can be viewed as a sequential decision problem [78]. Conse-
quently, modeling recommender systems as MDPs and applying RL algorithms is a viable
option. RL has the potential to handle the dynamic nature of user preferences in an
RS better than conventional methods, by continuously adapting to the received reward,
whereas periodic re-training is required otherwise. At the same time, an RL agent could
accurately take into account user engagement and interest in the long-term, due to the
agent’s aim to maximize return. While tabular RL methods are not feasible in most
RSs, due to the sizes of the item and user spaces, using DL for function approximation
solves this issue, and the DRL methods discussed in Chapter 4 are indeed applicable.
In summary, DRLRSs are a promising research direction. [2] reports that in the years
following the publication of the seminal paper on DQN [58], the amount of publications
on the topic of DRLRSs has steeply increased, and the application of tabular RL methods
has remained at a very low level. While many papers in the field report the effectiveness
of utilizing DRL (e.g. [98], [97], [16], [52], ...), a notable success was a REINFORCE
RS achieving good results in an online study [15], leading to YouTube7 employing the
system for video recommendation. According to the authors, this measure has led to
the "largest single launch improvement [...] for two years" [1]. However, due to the news
domain being underrepresented in the RSs research field overall, publications on Deep
Reinforcement Learning News Recommender System (DRLNRS) are exceedingly rare
([99] and [50]).

The recommendation problem can be formulated as an MDP, and embedded into the RL
framework laid out in Chapter 2, as follows:

• Agent: The agent assumes the role of the RS. When a user requests recommendations
(e.g. by logging into the system, or explicitly entering the "For You"-page of the
system, etc.), the agent determines which items to suggest, based on the user’s
profile. Usually, it has to fetch this profile from some internal memory.

• Environment: The environment is comprised of the sets of users and items of the
RS.

• State: The state is the aforementioned user profile, i.e. a representation of the user
that is requesting recommendations, along with contextual information. As already
discussed in the presentation of SOTA NRSs in section 5.2, the user encoding
typically consists of an embedding of previously transacted items, but can also

7https://www.youtube.com/

60

https://www.youtube.com/

5.3. (Deep) Reinforcement Learning Recommender Systems

include features of the user itself, such as demographic information, or self-ascribed
interests. Contextual information can be e.g. a timestamp, or a location. Clearly,
this puts DRLRSs into the category of content-based methods, or hybrid methods,
due to the use of function approximation, as discussed in Section 5.2.

• Action: Serving a user with a recommendation constitutes an action. The recom-
mendation can consist of a single item, or a slate of items. The concrete action
space depends on the specific domain and application. It can be discrete, e.g.
consisting of a set of candidate items C, and recommending each item is an action,
i.e. |A| = C. But it could also be continuous, e.g. when the agent produces an
n-dimensional vector that represents the ideal item, and subsequently uses it to
recommend the closest item(s) from a set of candidates.

• Reward: The reward returned by the environment depends on the user’s feedback to
the recommended item, which can be either explicit or implicit, as already discussed.
The reward design can also include contextual information, e.g. how long a user
actively participates in the system. Note that the reward drives the training of the
RS, with the evaluation metrics discussed in Section 3.3 having no impact on its
development (unless they are embedded into the reward).

• Environment Dynamics: The environment dynamics, encapsulated in the four-
argument function p (Equation 2.1), are the (generally) unknown probabilities of
a user interacting with a recommended item, and rating it a certain way. These
dynamics depend on the user’s profile and the specific item that was recommended
(i.e. state and action).

• Model: There are few works on model-based DRLRSs. Accurately determining
the aforementioned environment dynamics is difficult in practical RSs, and using
historical transaction data to estimate them further increases the computational
complexity and cost of the system. Furthermore, while the agent adapts to dynamic
changes in the environment, a model would require periodic re-training.

• Task: An agent’s task begins with a user requesting a recommendation, and ends
with the user exiting the system, or otherwise indicating that they no longer
want to receive recommendations for now. One can assume that the user will
exit the system in a timely manner and not request recommendations indefinitely.
Another possibility is that the interaction ends, when all available items have been
recommended or ranked. Therefore, tasks are episodic.

• Discount Factor : The discount factor γ is paramount, because it must encapsulate
the evaluation metrics used for recommendations of multiple items in a ranked list.
Concretely, when an agent sequentially recommends items to a user, the discount
factor ensures that the agent’s goal is to recommend interesting items first, and
less interesting items later. When a recommended item draws a high reward from
a user, e.g. in the form of a high rating, it should be dampened, when the item
could have been recommended earlier. In contrast, when a user is dissatisfied with

61

5. NRSs and DRLRSs: State-of-the-Art

a recommendation, it should matter less when it is one of the last items out of
a finite set of candidates the agent has chosen to recommend. A short-sighted
agent (γ = 0) is undesirable, since it will only care about the very first item it
recommends. An undiscounted return (γ = 1) does not work in an RS, because the
agent will have no notion of recommendation order. Given a set of recommended
items, the agent would receive the same return for any sequence of suggestions.
Instead, discounting will teach it to recommend good items first.

Aside from the obvious choice of which DRL algorithm to use (see Chapter 4), there are
four key components to a DRLRS that must be adapted to the domain and available data.
Firstly, the state representation design. As discussed in chapter 2, state is a loose concept
in RL, with the only requirement being the Markov property. Of course, how to construct
a user profile is a key question in regular RSs as well, as we have discussed in Section
5.2. Secondly, the action space design. As mentioned above, there are usually several
ways of deciding what designates an action and the action space. Thirdly, the reward
function design, which is an issue all RL applications face. And lastly, the environment
design. Depending on the available data, there are several possibilities for how to train
and evaluate a DRLRS agent. In addition, just like with regular RSs, conducting an
online study is possible, but rarely done, due to the already mentioned restrictions. Since
the design of these three components is highly domain- and data-dependent, we will
solely discuss our own approaches in the practical part of this thesis, in Chapter 7.

62

CHAPTER 6
Data: Microsoft News Dataset

In this chapter, we will first briefly present and discuss the principal dataset used in this
thesis, as well as summarize the accompanying paper. Subsequently, we will outline the
approaches and results of our own preprocessing and data exploration, along with various
visualizations.

6.1 Introduction to MIND and MIND Paper
The principal dataset used in this work is the MIcrosoft News Dataset, "MIND" for short
[93]. It is available at the MIND homepage https://msnews.github.io/ for download, or
via the Microsoft Azure Open Datasets cloud platform1. MIND was released in 2020 along
with an accompanying paper, by researchers from Microsoft Research Asia, Microsoft and
Tsinghua University. In the paper, the authors present the dataset, compare it to similar
existing datasets and outline their shortcomings, as well as discuss various approaches to
the news recommendation problem. They also provide experimental results for some of
the methods presented in Section 5.2. As already mentioned, some of the authors have
also been involved in the development of those methods. Furthermore, a competition
was launched in 2020, encouraging researchers to use the MIND dataset as a testbed for
NRSs. Through this competition, hosted via Codalab2, predictions on the test set, for
which the true labels cannot be downloaded, are automatically scored. Along with this
competition went a call for papers and technical reports to be submitted for a workshop
that was held on April 14th, 2021. The research group behind the dataset dubbed this
the "1st International Workshop on News Recommendation and Intelligence"3, albeit the
10th installment of the International Workshop on News Recommendation and Analytics,

1https://learn.microsoft.com/en-us/azure/open-datasets/dataset-microsoft-news?tabs=
azureml-opendatasets

2https://codalab.lisn.upsaclay.fr/competitions/420
3https://msnews.github.io/workshop.html

63

https://msnews.github.io/
https://learn.microsoft.com/en-us/azure/open-datasets/dataset-microsoft-news?tabs=azureml-opendatasets
https://learn.microsoft.com/en-us/azure/open-datasets/dataset-microsoft-news?tabs=azureml-opendatasets
https://codalab.lisn.upsaclay.fr/competitions/420
https://msnews.github.io/workshop.html

6. Data: Microsoft News Dataset

"INRA" for short, took place in 20224 [63]. While the official competition is over, the
submission process can still be used to obtain scores for predictions on the test set, which
can be submitted to a public leaderboard5.

According to the authors, the MIND dataset was built by collecting user behavior logs of
the Microsoft News website6. It is supposed to contain impression data from 1 million
randomly sampled users. The authors claim that only users, who had at least 5 news
clicks within the time period October 12th to November 22nd 2019 (6 weeks, from a
Saturday 00:00 am to a Friday 11:59 pm), were taken into account. We will refer to the
aforementioned 6-week period as the "data period".

The dataset is already split into a training-, a validation/development- and a test-set.
The impressions occurring in the last week of the data period comprise the test set. Those
occurring in the penultimate week, i.e. the fifth week, comprise the training set. The
validation set was built by further splitting the training set. Impressions occurring on
the last day of the fifth week make up the validation set, all others the training set. We
will thus refer to the concatenation of the training and validation sets, i.e. the impression
data from the complete fifth week, as the "full training set".

A single impression begins every time a user visits the Microsoft News homepage. It
provides information on when the impression began, which news articles where shown to
the user, as well as whether the user did, or did not, click on each individual item. While
the authors do not specify this, we assume that an impression ends when the user exits
the Microsoft News homepage. In order to allow the inference of user’s interests, the
data includes for each user a list of all news articles that the user clicked on in the past.
The impressions that occurred in the first four weeks of the data period were used to
construct these user histories in the full training set. The histories remain fixed within
the full training set, meaning clicks are not immediately incorporated into a user’s history.
However, the clicks that occurred in the full training set are added to the user histories
in the test set, i.e. the histories in the test set were constructed from the impressions in
the first five weeks of the data period. Obviously, the histories remain fixed within the
test set as well, because the impressions in the test set are not labeled. Otherwise, we
could simply read out, which articles a user clicked on or ignored during an impression.
Note that while the authors did not do that for the full training set, continually updated
user histories can be easily inferred from the data, by sorting by time and incrementally
adding the news articles that a particular user clicked on to that user’s previous history.

In order to summarize the general structure and construction process of the MIND
dataset, as well as facilitate its understanding, we provide a visualization in Figure 6.1.
Weeks 1 to 4 of the data period were only used to construct user histories. No impressions
from that period are contained in the dataset. Importantly, histories only consist of clicks
and hold no information as to which news were ignored by a user, even though this would

4https://research.idi.ntnu.no/NewsTech/INRA/
5https://msnews.github.io/#leaderboard
6https://microsoftnews.msn.com/

64

https://research.idi.ntnu.no/NewsTech/INRA/
https://msnews.github.io/#leaderboard
https://microsoftnews.msn.com/

6.1. Introduction to MIND and MIND Paper

further shape a user’s interest model. Week 5 is the full training set, with the last day
comprising the validation subset. Week 6 is the test set, where user histories incorporate
the clicks from Week 5 into the previous user histories, which is somewhat redundant.

Oct.

12th

Training Set Test Set

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Day 7

Validation Set

Nov.

9th

Nov.

16th

Nov.

15th

Nov.

23rd

Clicks

Clicks

No Impression Data Impression Data

User

Histories

User

Histories

Figure 6.1: The general structure of the MIND dataset.

We will now explain the format of the impression data, by looking at concrete samples
from the unprocessed dataset. In Table 6.1 are three impression samples, also referred to
as behavior samples, from the validation set. Each entry consists of the following data
points.

• id: A unique impression ID.

• user_id: A unique user ID.

• time: The timestamp at which the behavior occurred.

• history: A list of news articles (news IDs separated by whitespaces) that the user
clicked on in the first four weeks of the data period. The list is sorted by click
time, meaning the last read articles are at the end of the list. The authors only
specify that the list is sorted, but we can infer from the updated histories in the
test data that the sorting order is indeed ascending. This is important when it
comes to building representations of users that aim to capture the sequential order
of previously read news, which we will discuss in the subsequent chapters.

• impression: The list of news articles shown to the user, where a hyphen separates
each news ID from its corresponding label, denoting whether the user clicked on
(label 1) or ignored (label 0) the article. Unlike the reading histories, the news
in an impression are shuffled. Note that the authors do not mention this in the
accompanying paper, but on the corresponding GitHub page7 linked on the MIND
homepage.

7https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md

65

https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md

6. Data: Microsoft News Dataset

We cut off both the history and the impression lists for presentation purposes. As
discussed earlier, the entry in the history column is the same in each sample for a given
user.

id user_id time history impression

46869 U1 11/15/2019 10:36:07 AM N14639 N27258 N63237 ... N121138-0 N104644-1 N7728-0 N56565-0 ...
29644 U1 11/15/2019 3:10:18 PM N14639 N27258 N63237 ... N55066-0 N130076-0 N18258-0 N80105-0 ...
2783 U1 11/15/2019 8:13:43 AM N14639 N27258 N63237 ... N19162-0 N83491-0 N121138-0 N94999-0 ...

Table 6.1: The behavior samples for user U1 from the validation set.

In Table 6.2, we show behavior samples for the same user in the test set. The only
difference in the data representation is that the impression list is unlabeled. Furthermore,
as discussed, the user’s history corresponds to the history in the full training set, extended
by the articles the user clicked on in Week 4.

id user_id time history impression

1023170 U1 11/17/2019 6:03:46 AM N14639 N27258 N63237 N112729 ... N23931 N117631 N19135 ...
583877 U1 11/21/2019 6:59:37 PM N14639 N27258 N63237 N112729 ... N34469 N47516 N41213 ...

1136326 U1 11/22/2019 5:13:08 PM N14639 N27258 N63237 N112729 ... N65918 N79427 N76418 ...

Table 6.2: The behavior samples for user U1 from the test set.

In addition to the behavior data, the MIND dataset includes data about the news articles
occurring in the impressions. The data is also split into training-, validation- and test set,
such that they cover all news articles occurring in the impressions of the corresponding
set. Of course, this introduces redundancy, with some news article data being present in
two or all sets.

We will now look at a concrete sample of the news article data from the unprocessed
dataset. Table 6.3 shows a single sample from the validation set. Each entry consists of
the following data points:

• news_id: A unique news ID.

• category: The category and ...

• sub_category: ... sub category of the news article. According to the authors, these
categories were manually tagged by editors. Who these editors were is not discussed
in the paper.

• title: The title and ...

• abstract: ... abstract of the news article.

• url: A URL leading to the full content body of the news article. The authors
cite licensing issues8 as the reason for not making the body available for direct

8https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md

66

https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md

6.2. Preprocessing and Exploration

news_id N88753

category lifestyle

sub_category lifestyleroyals

title The Brands Queen Elizabeth, Prince Charles, and...

abstract Shop the notebooks, jackets, and more that the ...

url https://assets.msn.com/labs/mind/AAGH0ET.html

title_entities [{"Label": "Prince Philip, Duke of Edinburgh", ...

abstract_entities []

Table 6.3: The news data sample from the validation set.

download. Already in May 2020, the authors admit to some URLs being expired or
otherwise not accessible9. We further discuss this issue in Section 6.3.

• title_entities: Rich entities from the title and ...

• abstract_entities: ... abstract. How these entities were extracted is not exactly
described by the authors. Instead, they only refer to an "internal NER and entity
linking tool". We do not utilize these entities in the practical part of this thesis.
There are many missing values, and none of the presented SOTA approaches use
that data.

In regards to the dataset’s dimension, the authors state that the dataset contains 161,013
news articles, and 4,893,502 behavior samples (split into 2,186,683 samples in the training
set, 365,200 samples in the validation set and 2,341,619 samples in the test set), including
a total of 24,155,470 clicks. As already mentioned at the beginning of this section, the
authors claim that the number of users amounts to 1 million. Furthermore, the paper
offers some extracted statistics. We will discuss both in the next section.

6.2 Preprocessing and Exploration

6.2.1 Dimension
The version of the dataset we (last) downloaded on 09/05/2023 contains 130,379 news
articles, and 4,979,946 behavior samples (split into 2,232,748 samples in the training set,
376,471 samples in the validation set and 2,370,727 samples in the test set). The number
of clicked articles from impressions in the full training set amounts to 3,958,501. The sum
of the lengths of the histories of all unique users in the full training set totals 13,742,917.
This number corresponds to the amount of clicks that occurred in the first four weeks
of the data period. Together, this aggregates to 17,701,418 clicks, with approx. 22% of
these being part of an impression.

9See commit: https://github.com/msnews/msnews.github.io/commit/
49dd36e7727c16f0122d94e606c1a3a1bc20e5a2

67

https://github.com/msnews/msnews.github.io/commit/49dd36e7727c16f0122d94e606c1a3a1bc20e5a2
https://github.com/msnews/msnews.github.io/commit/49dd36e7727c16f0122d94e606c1a3a1bc20e5a2

6. Data: Microsoft News Dataset

Clearly, there are discrepancies between our findings and the numbers reported by the
authors in the MIND paper. Firstly, there are more than 30k fewer news articles in our
dataset. Secondly, the number of behavior samples is more than 86k higher than reported.
Nonetheless, the number of clicks is smaller than reported by more than 6MM. Thirdly,
the number of unique users amounts to 876,956, as opposed to 1MM. The root of these
differences is unclear. There is no dataset versioning mechanism or documentation in
place, so we cannot determine whether the reported statistics stem from the same dataset
version as ours. However, an issue regarding the differing numbers of behavior samples
was opened on GitHub10 in November of 2020, but remains open as of now. Interestingly,
many of the papers presented in Section 5.2 regurgitate the same numbers as the MIND
paper, which begs the question whether their version and our version of the dataset are
the same.

As already mentioned in the previous section, the news data is also split into redundant
sets. We examined whether:

(a) All news IDs present in the behavior data are covered by a corresponding entry in
the news data?

(b) Every news data sample occurs in the behavior data at least once?

In order to answer these questions, we constructed two sets. Firstly, the set of all news
IDs, allN , is the union over unique news IDs in the news data splits. Secondly, the set
of relevant news IDs, relN , is the union over unique news IDs occurring in the behavior
data, either in an impression, a user’s history or both. We found that 58% of IDs ∈ relN
are solely part of reading histories, 25% are solely part of impressions, and the remaining
17% are part of both. Since the difference allN \ relN is the empty set, we conclude that
(a) is true. Furthermore, since allN = relN , we conclude that (b) is also true. These
conclusion are important, because they ensure that we indeed have behavior data for
each news data sample, and vice versa.

6.2.2 Preprocessing Steps
We provide a commented Jupyter Notebook that contains our entire preprocessing
code, facilitating the reproduction of our preprocessing steps. It can be found in the
corresponding GitHub repository11.

We begin with the preprocessing of the behavior data. We differentiate in the code
between necessary preprocessing, and the extraction of information for exploratory
purposes. The necessary steps were: 1) converting the timestamp string into a datetime
format, 2) splitting the history string into a list of news IDs, 3) splitting the impression
into lists of clicked/ignored/shown news (for the test set, the distinction could not be

10https://github.com/msnews/msnews.github.io/issues/18
11https://github.com/d-vesely/drlnrs

68

https://github.com/msnews/msnews.github.io/issues/18
https://github.com/d-vesely/drlnrs

6.2. Preprocessing and Exploration

made), 4) sorting the data by user ID and timestamp, and subsequently processing
the user histories. In this last step, we extended each user history with the clicks that
occurred in the user’s previous impressions. As already mentioned, the authors did not
do this, leaving all histories unchanged within a split. Especially since we aim to exploit
the sequential nature of the news recommendation problem, we think this is an important
step that should have been done by default. For exploratory purposes, we extracted a
multitude of values for each impression, such as the lengths of user histories, the number
of clicked and ignored news, etc. We also computed statistics for these values. The results
are presented in the next subsection. Finally, we concatenated all three preprocessed
data splits, keeping only the list of news shown to the user and the timestamp. We later
used this concatenated data to obtain survival information for each news article, i.e. how
many hours were between the first and last occurrence of an article.

For the news data, we first concatenate the three redundant splits into a single dataset.
Again, we differentiate between necessary and exploratory preprocessing steps. The
former were: 1) replacing missing abstract values with empty strings, 2) remapping the
categories and subcategories. A few categories were mislabeled, and most subcategories
were conjunctions of multiple words, which would be difficult for the embedding model
to handle, so we replaced them with natural language keywords. For the embedding step,
we also created additional columns, such as the concatenation of title and abstract. As
we will discuss in the next chapter, we utilized a pre-trained large language model for
the embedding of the textual data as a whole. Therefore, tokenization, lower-casing,
stopword-removal and other typical preprocessing steps done in NLP projects, were not
necessary. Nonetheless, we included them in the exploratory preprocessing, in order to
obtain values such as the lengths of titles and abstracts, but also to facilitate the use of
word embeddings in the future. Finally, we utilized the aforementioned concatenated
data, as well as the full training data, to obtain survival data and engagement data, i.e.
the total number of clicks, appearances, etc., for each news item.

Aside from the irrelevant entity data columns, and the already mentioned missing
abstracts, we found that user histories were missing in a total of 57,335 impression
(approx. 2.2% of all impressions), for 14,086 unique users. It is unclear whether these
missing values designate users that have not yet read any articles, or whether it constitutes
an error. However, the fact that 17.6% of all initial user histories contain between 1
and 4 news items directly contradicts the authors’ claim that a minimum of 5 clicks was
required for inclusion in the dataset.

6.2.3 Exploration

Following the authors, we will present some interesting statistics extracted from the
dataset in this subsection. Again, we provide12 two separate notebooks, one for the
behavior data and one for the news data, that can be used to reproduce our visualizations.

12https://github.com/d-vesely/drlnrs

69

https://github.com/d-vesely/drlnrs

6. Data: Microsoft News Dataset

Again, we begin with the behavior data. Figures 6.2(a) and 6.2(b) show histograms for
the length of user histories and the number of impressions per user. 75% of users have
histories of length 22 or less, and 90% of users stay at or below 42, but there are some
users with very long histories as well, the maximum being more than 800. 1 is the most
frequently occurring amount of impressions per user. Most impression are rather short,
as can be seen in Figure 6.2(c). Figure 6.2(d) shows that in the vast majority of cases,
users click only on a single news item per impression. Consequently, the percentage of
ignored news is typically extremely high, and also increases the longer the impression is,
as can be seen in Figures 6.2(e) and 6.2(f) respectively. Last but not least, Figures 6.2(g)
and 6.2(h) show that most impression occur in the morning (5-11 am) and during the
day (11am-5pm), only few in the evening (5-11pm) and even less at night (11pm-5am).

We continue with the news data. Figures 6.3(a), 6.3(b) and 6.3(c) show histograms of
the lengths (as the number of words) of title, abstract, and the concatenation of both,
respectively. It also shows how the length is affected when stopwords are removed. The
concatenation of title and length consists of 95 or fewer characters for 99% of all articles.
So during the embedding process (see Section 7.1.1), the textual data should rarely be
cut off, despite language models usually introducing more tokens than just words. These
graphics correspond to those shown in the MIND paper [93], with the exception of the
spike for abstracts that have 0 length, i.e. a missing abstract. We assume that the
authors omitted those values. A histogram of the survival times are shown in Figure
6.3(d). 90% of articles have a survival time below 86 hours, 75% below 32 hours, and 50%
below 17 hours. Both these stats and the visualization only include articles that allow for
survival time measurement, i.e. occur in at least two impressions. Finally, the Figures
6.3(e), 6.3(f) and 6.3(g) show histograms of the number of times articles are shown and
clicked, as well as the engagement percentage. Again, we omit articles that only occur in
user histories and not in an impression. 50% of articles are shown 54 or fewer times. 50%
of articles rack up 5 or fewer clicks. However, some articles are shown and/or clicked
thousands of times. Approximately 10% of articles are shown more than 4000 times.
Approximately 1% of articles are clicked more than 4000 times. Approximately 50% of
articles are clicked less than 4% of times that they are shown, and 99% of articles are
clicked ≤ 1

3 times that they are shown.

6.2.4 Numerical News Features

As a byproduct of the previously discussed preprocessing and exploration steps, we
extracted 11 numerical features for each news item. Firstly, the lengths of title and
abstract, both individually and concatenated, with and without stopwords (6 features).
Secondly, engagement numbers, concretely the number of times an article was clicked,
ignored, and shown throughout the dataset’s time period, as well as the percentage of
showings that led to clicks, indicating its popularity or lack thereof (4 features). Lastly,
the item’s survival time. Note that the engagement features are collected from the entire
training data split. Usually, an RL agent would be trained online and thus not have
access to these numbers a priori. The same is the case for the final survival time, which

70

6.3. Discussion and Critique

inherently will always be undetermined when an article is in the candidate set.

6.3 Discussion and Critique
We want to present a set of points about the MIND dataset that we find worth critiquing:

• First and foremost, the discrepancies between the authors’ claims and our own find-
ings regarding the contents of the dataset pose a reproducibility issue. Comparisons
between our results and those presented in other works carry less value, as long as
it is unclear, whether the utilized datasets are equivalent. If a different version of
the dataset was used, we cannot account for it, due to the lack of a transparent
versioning system.

• At the time of writing, all URLs seem to have expired (naturally, we have not
tested all of them). This means that the news article bodies are not accessible.
Furthermore, additional information cannot be extracted, such as the article’s
author, publisher, release date, etc., which presumably could have been scraped
from the corresponding website. As already mentioned, the authors refer to licensing
issues to justify the exclusion of article bodies from the dataset. Nevertheless,
we want to emphasize the value of the aforementioned information. For instance,
publishers and authors could be used for beyond accuracy evaluation and training,
to ensure readers do not consume news content from a single source.

• We do not understand the authors’ decision to shuffle the order of news articles in
the impressions. Especially for the application of RL, we deem the sequentiality of
the impressions to be valuable information. For instance, a user might be interested
in a current event and read an article about it. Subsequently, the user might choose
to skip other news about said event, since they already feel adequately informed.
Without being shown the order of appearance, a recommender agent will not be
able to learn about these cases. Instead, it could face impressions, where a user
seems to skip an article that would otherwise be interesting, only to later read a
similar article, and vice versa. Of course, this is only an issue if our assumption
about this user behavior is correct.

• The authors provide no information on the selection process for the shown articles.
It would be interesting to know, whether these were randomly selected, or recom-
mended. And if so, whether the candidates were selected all at once and ranked, or
adapted during the impression.

• Similarly, insufficient documentation is provided regarding the information provided
to the user before clicking on an article, such as whether the abstract is visible or
just the article’s title, whether they are presented in a list or a grid, whether some
articles receive more screen space (e.g. breaking news), and so on.

71

6. Data: Microsoft News Dataset

0 10 20 30 40 50 60
0

10k

20k

30k

40k

50k

User History Lengths Histogram

History Length

N
um

be
r

of
 U

se
rs

(a) User history lengths.

0 2 4 6 8 10 12 14
0

50k

100k

150k

200k

User Impression Counts Histogram

Number of Impressions

N
um

be
r

of
 U

se
rs

(b) User impression counts.

0 20 40 60 80 100
0

50k

100k

150k

200k

250k

300k

Shown News per Impression Histogram

Number of Shown News

N
um

be
r

of
 I

m
pr

es
si

on
s

(c) Shown news per impression.

0 1 2 3 4 5 6 7 8 9 10
0

0.5M

1M

1.5M

2M

Number of Clicked News Per Impression Histogram

Clicked News

N
um

be
r

of
 I

m
pr

es
si

on
s

(d) Clicked news per impression.

0 20 40 60 80 100
0

100k

200k

300k

400k

500k

600k

Percentage of Ignored News Histogram

Percentage of Ignored News

N
um

be
r

of
 I

m
pr

es
si

on
s

(e) Percentage of ignored news.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Relation between Shown and Ignored News

Percentage of Ignored News

N
um

be
r

of
 S

ho
w

n
N

ew
s

(f) Relation between shown and ignored news.

43.6%

35.6%

11.9%

8.94%

morning
daytime
evening
nighttime

(g) Percentage of impressions per time category.

09th 10th 11th 12th 13th 14th 15th 16th
0

10k

20k

30k

40k

50k

60k

70k

80k

Number of Impressions per Time of Day Histogram

Time

N
um

be
r

of
 I

m
pr

es
si

on
s

(h) Number of impressions per time of day.

Figure 6.2: Visualizations of exploratory behavior data.

72

6.3. Discussion and Critique

0 5 10 15 20 25
0

5k

10k

15k

20k

Title Length
Full Title
Without Stopwords

Title Length Histogram

Title Length

N
um

be
r

of
 A

rt
ic

le
s

(a) Title lengths.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000
Abstract Length

Full Abstract
Without Stopwords

Abstract Length Histogram

Abstract Length

N
um

be
r

of
 A

rt
ic

le
s

(b) Abstract lengths.

0 10 20 30 40 50 60 70 80 90 100 110
0

1000

2000

3000

4000

5000
Title and Abstract Length

Full Title and Abstract
Without Stopwords

Title and Abstract Length Histogram

Title and Abstract Length

N
um

be
r

of
 A

rt
ic

le
s

(c) Lengths of concatenated title and abstract.

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

Article Survival Time in Hours

Survival Time in Hours

N
um

be
r

of
 A

rt
ic

le
s

(d) Article survival times.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Times Articles are Shown

Amount Shown

N
um

be
r

of
 A

rt
ic

le
s

(e) Show-numbers for articles.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Times Articles are Clicked

Amount Clicked

N
um

be
r

of
 A

rt
ic

le
s

(f) Click-numbers for article.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Percentage Articles are Engaged with

Percentage Clicked

N
um

be
r

of
 A

rt
ic

le
s

(g) Engagement percentages.

Figure 6.3: Visualizations of exploratory news data.

73

CHAPTER 7
DRLNRS: Comparative Analysis

7.1 RL Framework
A key aspect of the practical part of this thesis was the construction of an RL framework
around the MIND dataset. The main goals were readability, extensibility and reproducibil-
ity. Our code provides a variety of news and user encoders, that can be easily modified,
or extended by new approaches. We provide a set of implemented DRL algorithms to be
applied on the MIND dataset. We do not rely on third-party RL libraries, thus ensuring
readability. Jupyter notebooks facilitate the training and evaluation of agents, as well as
the production of result visualizations. All of the code written and used in the context of
this thesis is open-source and available via GitHub1. In this section, we will outline and
discuss the individual components that make up the RL framework.

7.1.1 News Encoder
In general, the news encoder uses the available data for a news article, as well as features
extracted from the behavior logs, which we have outlined in Section 6.2.4, to produce
an embedding vector. We have tested a total amount of 9 approaches, made up of
different combinations of input data. For the embedding of textual input, we utilized pre-
trained language models available via the sentence-transformers library2 [69]. For the
embedding of title and/or abstract, we opted for the model all-mpnet-base-v2 with the
maximum number of tokens set to 256, which produces 768-dimensional encodings. Given
the length distribution of title and abstract, it is safe to assume that the vast majority
of inputs will not require any cutoff. For the embedding of category, or subcategory,
we opted for the model all-MiniLM-L12-v2, which produces 384-dimensional encodings.
Furthermore, we have also tested OpenAI’s embedding model text-embedding-ada-002

1https://github.com/d-vesely/drlnrs
2https://www.sbert.net/docs/pretrained_models.html

75

https://github.com/d-vesely/drlnrs
https://www.sbert.net/docs/pretrained_models.html

7. DRLNRS: Comparative Analysis

[31], which generates 1536-dimensional vectors, with a maximum number of input tokens
of 81913. We have done this to approximate the impact of the used PLM on performance,
following [88]. Note that obtaining these embeddings requires a (very small) payment
for the use of the OpenAI API. The following enumeration summarizes all tested news
encoding schemes, with each one visualized in Figure 7.1.

1. Embedding of the title.

2. Embedding of the abstract.

3. Concatenation of the embeddings of title and abstract.

4. Embedding of the concatenation of title and abstract.

5. Embedding of the category, concatenated with the embedding of title and abstract.

6. One-hot encoding of the category, concatenated with the embedding of title and
abstract.

7. Embedding of the subcategory, concatenated with the one-hot encoding of the
category and the embedding of title and abstract.

8. Embedding of the concatenation of category, subcategory, title and abstract, in
that order. The concatenation is a formatted string, of the following form:

formatted_string.py

✶ f"category: {news['category']}, subcategory: {news['sub_category']}. \
✷ title: {news['title']}, abstract: {news['abstract']}"

Algorithm 7.1: The formatted string used for the concatenation of all textual informa-
tion of an article.

9. Constructed features, concatenated with the embedding of title and abstract. For
the reasons discussed in Section 6.2.4, we do not use an item’s survival time.
However, we test both including and omitting the engagement features. Each
feature was standardized to have a mean of 0 and a standard deviation of 1.

3https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

76

https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

7.1. RL Framework

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

em
be

dd
in

g

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

em
be

dd
in

g
em

be
dd

in
g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

on
e-

ho
t

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

on
e-

ho
t

em
be

dd
in

g
em

be
dd

in
g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

ne
w

s
en

co
di

ng

(7
68

,)

ne
w

s
en

co
di

ng
 (

11
52

,)

ne
w

s
en

co
di

ng
 (

15
36

,)

ne
w

s
en

co
di

ng
 (

11
67

,)

ne
w

s
en

co
di

ng

(7
68

,)
ne

w
s

en
co

di
ng

(7

83
,)

ne
w

s
en

co
di

ng

(7
68

,)

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

ne
w

s
en

co
di

ng

(7
78

,)
 /

 (
77

4,
)

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

fe
at

ur
es

1. 4. 7.

2. 5. 8.

3. 6. 9.

em
be

dd
in

g

su
b-

ca
te

go
ry

tit
le

ab
st

ra
ct

ca
te

go
ry

ne
w

s
en

co
di

ng

(7
68

,)

fe
at

ur
es

Fi
gu

re
7.

1:
N

ew
s

en
co

de
r

va
ria

nt
s.

77

7. DRLNRS: Comparative Analysis

7.1.2 User Encoder
Given the data available to us in the MIND dataset, our state is solely based on the ordered
list of previously read articles, of the user that is currently requesting recommendations.
We have tested a total amount of 8 approaches to encoding the list. Besides testing
which method yields the best performance, we also aimed to get insights into the degree
to which news recommendation is a sequential problem. Our selection of approaches
was inspired by the SOTA methods presented in Section 5.2, as well as by [53]. Again,
the following enumeration summarizes all tested user encoding schemes, with each one
visualized in Figure 7.2.

1. The (weighted) mean of all news encoding vectors. Each article is weighted with a
value αk, where k denotes the article’s position in the reading history. The most
recently read item has rank k = 1.

2. Multi-head self-attention with 8 attention heads, followed by a mean-pooling over
all attention head outputs.

3. Multi-head self-attention with 8 attention heads, followed by additive attention
pooling.

4. The concatenation of three quantiles over all news encoding vectors (0.25, 0.5 and
0.75).

5. The final last hidden state of a bi-directional GRU network.

6. The mean over all last hidden states of a bi-directional GRU network.

7. Additive attention applied to all final last hidden states of a bi-directional GRU
network.

8. The concatenation of the encoding of the last read article, the weighted mean over
the encodings of the last 5 read articles (short-term) and the weighted mean over
all other articles, besides the last 5 (long-term). We call this encoding scheme
"LTSTL", for long-term-short-term-last.

When possible, i.e. for encoding schemes 1., 4. and 8., we processed the user’s entire
reading history. Otherwise, we limited the history to the last 40 read articles. Without
this limit, mini-batch processing is not possible. Histories shorter than 40 articles were
padded.

78

7.1. RL Framework

hi
dd

en
st

at
e

hi
dd

en
st

at
e

hi
dd

en
st

at
e

. . .

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

G
R
U

G
R
U

G
R
U. . .

hi
dd

en
st

at
e

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

G
R
U

G
R
U

G
R
U. . .

hi
dd

en
st

at
e

hi
dd

en
st

at
e

hi
dd

en
st

at
e

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

G
R
U

G
R
U

G
R
U. . .

hi
dd

en
st

at
e

hi
dd

en
st

at
e

us
er

en
co

di
ng

us
er

en
co

di
ng

hi
dd

en
st

at
e

mean

us
er

en
co

di
ng

additive attention

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

us
er

en
co

di
ng

(weighted) mean

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

multi-head self-attention (8x)

us
er

en
co

di
ng

mean

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

multi-head self-attention (8x)

us
er

en
co

di
ng

additive attention

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

quantiles (0.25, 0.5, 0.75)

us
er

en
co

di
ng

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

ne
w

s
en

co
de

r

long-term (weighted) mean short-term
(weighted) mean

concat

us
er

en
co

di
ng

. . .

. . .

. . .

. . .

. . .

. . .

1. 5. 8.

2.
3.

4.

6.
7.

Fi
gu

re
7.

2:
U

se
r

en
co

de
r

va
ria

nt
s.

79

7. DRLNRS: Comparative Analysis

7.1.3 Action Space
While there are several ways of encoding the state, it is straightforward to decide, which
information is used to designate the state. In contrast, we find there are multiple
approaches to designing the action space, both discrete and continuous, with the given
MIND dataset. First of all, it is important to re-emphasize the points made in Section
6.3. The impression logs are shuffled, which means we cannot reconstruct the order of
consumption. We also have no information on whether the recommended items were all
selected as candidates immediately when the user sent a request for recommendation, or
if the candidate set was incrementally built or adapted.

In order to obtain a discrete action space, one possibility would be to assume a fixed
amount of candidates c, from which the most suitable item is recommended. The
resulting empty slot would then be filled with a new candidate item. However, we deem
this approach to be too restrictive with a high potential of losing valuable information,
especially in light of the fact that the order of consumption is unknown. Furthermore,
even if the order was known, it is unclear whether the MIND dataset was collected with
an RS in place, or whether the users were simply served newly released articles. Last
but not least, if c is set too small, it can be automatically impossible to recommend
the best item first, if it is not in the initial set of candidates. Therefore, we determined
that the safest approach would be to assume that all items were candidates a priori.
Unfortunately, this also means that the number of items available for recommendation,
i.e. the number of actions, constantly changes and can be very high (see Figure 6.2(c),
showing the distribution of impression lengths). Nonetheless, this approach constitutes a
large, and potentially unbounded, discrete action space. Yet another design decision to
be made, is how the RL agent is informed of the available actions. Concretely, how the
news encodings of each candidate item are input into the LDNN function approximator
that is inherently a central component in each DRL agent (see Chapter 4). The authors
of [38] suggest to pre-allocate slots in the LDNN input for the maximum amount of
available actions. While this is a feasible approach in their work, where the number of
actions also varies per state, but is at most 4, we deem it highly impractical for the large
amounts of possible actions in our case. Using a sequence model for the candidates could
be a way to mitigate the need for pre-allocation, but we expected the model to have
trouble remembering and distinguishing the available items for large amounts. Therefore,
we found the approach of individually processing all candidates as the only sensible one,
albeit it is less efficient. Almost all of the tested algorithms that require a discrete action
space just output a single action-value or quantile for a given candidate, and subsequently
compare these values for all candidates, after processing each one. However, for the
REINFORCE algorithm, we have tested the approach of emitting two values for each
candidate, namely the probabilities for the two discrete actions "recommend" and "skip"
that the agent faces for each candidate.

We have identified two options of defining a continuous action space. Firstly, following
[51], we can define an action as a continuous vector of the same dimension as the vectors
produced by the chosen news encoding. The ranking score for each candidate is then

80

7.1. RL Framework

the dot product between the action and the candidate’s news encoding. Secondly, the
authors of [25] also use a continuous vector of equivalent dimension as an encoded item,
but propose an agent that learns to generate actions that serve as prototypical items.
A prototype is then used to find a set of k candidates that resemble it most closely.
This fixed, small set of candidates can then easily be regarded as a discrete action space.
Furthermore, in the case of k = 1, the appropriate candidate can be selected immediately.
For both cases, a design decision is whether to process the candidates as input, and if so,
how. The aforementioned problems arise again, i.e. pre-allocation is usually infeasible
and sequence models might have trouble handling long sequences of candidates. However,
if each candidate is again processed separately, there is no added benefit to opting for
a continuous action space over the discrete definition discussed before. Nevertheless,
completely omitting the candidates in the input and only utilizing the state has value
as well, because it can be utilized in a component of the RS that constructs the set
of candidates. Especially in the news domain, distilling the large amount of available
news articles into a small set of items that are potentially interesting to the user is a
fundamental part of the recommendation process.

Note that, on a higher level, both cases ultimately lead to an action being the process of
recommending an item to the requesting user. The approaches only differ in the way
they select the item to recommend.

7.1.4 Reward Function

As already mentioned in the previous chapter, the reward should incorporate the feedback
users have given in response to a recommended item. Since the MIND dataset does
not provide any additional contextual information, such as user activeness, our reward
function is purely based on the implicit feedback in the form of binary click values. As
we have presented in Chapter 4, the reward is a key part of the update target. In cases
of a reward of 0, no update occurs, in the sense that one estimate is assigned the value
of another estimate. Of course, there are applications that solely assign a non-zero
reward at the end of an episode, thus updating only a single value per episode. A typical
example for such an application is an agent learning to play a board game. The actions
up until a terminal state should be neither rewarded nor penalized, and a constant
reward at every timestep would lead the agent to trying to reach a terminal state as
slowly/quickly (depending on the sign of the reward) as possible. Instead, the only thing
that should matter to that agent is whether the game was won or lost. In summary, the
reward functions needs to be designed in a way that describes to the agent what to do,
not how to do it. In the board game example, winning is the goal and it is up to the
agent to learn which moves are best to reach it. However, in our case, simply using the
binary click values as a reward would yield an agent that solely learns from successful
recommendations. This would immensely prolong learning, especially due to the rarity
of positive examples. Furthermore, unlike with board-games, our agent does not have
"intermediary" actions that it can take in pursuit of its goal. Recommending interesting
items is its goal, and each action constitutes an attempt at reaching it. Therefore, we

81

7. DRLNRS: Comparative Analysis

will return a reward of -1, if the recommended item was not clicked, and +1 otherwise.

7.1.5 Environment and Training Process
Since we are utilizing a dataset of historical transactions to train an RL agent, one can
argue that we are operating in a blend of SL and RL. Furthermore, in order to fit into
the framework of the MIND benchmark, we intend to train the agent with data from the
training split, and evaluate it on data from the development, and test splits. This is also
fairly atypical for RL agents, which are usually continuously evaluated during training,
by monitoring their obtained return. We determined two approaches to using the MIND
dataset to train an RL agent:

1. Simulation: Instead of directly interacting with the environment, the agent would
be placed in a simulator. Following the order of occurrence, the agent would receive
simulated requests for recommendation by individual users. As already discussed,
the initial state would be the requesting user’s reading history. As discussed before,
the entire set of news items that the user has interacted with during the impression
would serve as the set of candidate items that are up for recommendation. The agent
would then recommend items one by one, until eventually exhausting all candidate
items, at which point the episode terminates and a new recommendation request is
issued. It would receive rewards for each recommended item from the simulator,
depending on the ground truth recorded in the dataset. This approach closely
resembles the regular RL training process, allowing the application of exploration
techniques and prioritized experience replay.

2. Offline: The second possibility is to randomly construct a replay memory from the
dataset, and subsequently use it to train the agent. By randomly constructing a
recommendation order for each impression, one can obtain a new dataset consisting
of tuples of the form (state, action, reward, next-state, candidates), i.e. the user’s
history, the recommended news item, whether the user clicked on the recommenda-
tion, the subsequent new user’s history and the remaining set of candidates. For
example, the Tables 7.1 and 7.2 show a fictional entry in the dataset, and the
resulting entries in the constructed replay memory. Note that the set of seen news
items is shuffled and then recommended one-by-one. The current history (state)
can easily be reconstructed from the next history (next state) and the obtained
reward. Furthermore, the reward is simply a copy of the binary clicked value, and
can be adapted at a later stage (see previous Section 7.1.4). The resulting replay
memory dataset is extremely large, since each row in the MIND dataset is expanded
to n rows, where n is the number of items in the impression (see Figure 6.2(c)
for the histogram of the amount of shown news per impression). However, this
approach allows us to oversample positive results, i.e. cases where a user clicked
on the recommended item, which the MIND competition winners identify as an
important factor for training in their technical report [18]. To that end, we split
the replay memory into a positive and a negative memory, where the former is

82

7.2. DRL Algorithms

comprised of recommendations that were clicked (resulting in 3,383,656 rows), and
the latter includes those that were ignored. In essence, this approach constitutes a
purely exploratory agent (random recommendations) collecting experience data, and
using that data to train a more successful agent, by oversampling experiences with
positive rewards. The disadvantage is that exploration techniques and prioritized
experience replay cannot be used.

Table 7.1: Fictional entry in the MIND
dataset, consisting of the requesting
user’s history and the impression log.

history impression

N1 N2 N3 N4-0 N5-0 N6-1

Table 7.2: The resulting entries in the
randomly constructed replay memory.

recommended reward next_history next_candidates

N5 0 N1 N2 N3 N6 N4
N6 1 N1 N2 N3 N6 N4
N4 0 N1 N2 N3 N6 []

We opted for the second approach, because we deemed it more efficient and assumed
it would yield lower training times. Furthermore, it strongly facilitates oversampling,
which we hypothesized to be paramount, and our results reflect that. It is important to
emphasize that, ultimately, the agent has no impact on which of the recommended items
the user will click on, since that is pre-determined in the dataset. It can only learn to
recommend interesting items first. However, as we have noted in Chapter 6, the order
of recommendation could have an effect on a user’s click behavior. Naturally, only an
online training approach with an online study could mitigate this issue.

We have also constructed an episodic replay memory, where each entry represents an
entire episode, as opposed to a single environment transition step. This allows the usage
of DRL algorithms that work with entire trajectories, such as REINFORCE.

7.2 DRL Algorithms
We have implemented a total of 8 DRL algorithms and applied them to the MIND news
recommendation problem, namely DQN, C51, QR-DQN, IQN, FQF, DDPG, TD3 and
REINFORCE. The necessary theoretical background for these algorithms was presented
in Chapter 4. As already mentioned, we have not relied on third-party RL libraries. In
our opinion, these libraries are too restrictive regarding the action- and state-spaces,
and the implementation of the environment, making our offline approach difficult or
impossible. Furthermore, we did not find a library that would offer all DRL algorithms
that we have implemented. Therefore, our approach of implementing everything from
scratch ensures comparability, readability and further facilitates reproducibility, due to
the lack of a dependency on volatile RL libraries (see also the brief discussion in Section
8.3).

While the used architectures for each algorithm can be easily found in the code itself,
the following Figure 7.3 visualizes the LDNN designs. We used a hidden size of 4096 for
all experiments.

83

7. DRLNRS: Comparative Analysis

q-
va

lu
e

state item

. . .

hidden size

hidden size

hidden size / 2

256

ne
w

s

en

co
de

r

us
er

en

co
de

r

ca
nd

id
at

e

ite

m

256

...

 atoms

256

...

 quantiles

256

...

256

qu
an

til
e

256

256

qu
an

til
e

256

 quantilesFP
N ...

C
51

Q
R-

D
Q

N
IQ

N
FQ

F
D

Q
N

hidden size

hidden size

hidden size / 2

256

so
ft

m
ax

...

R
EI

N
F.

hidden size

hidden size

hidden size / 2

state

item size

hidden size

hidden size

hidden size / 2

256

q-
va

lu
e

...

D
D

PG
 /

 T
D

3Actor

Critic

Fi
gu

re
7.

3:
O

ve
rv

ie
w

ov
er

th
e

LD
N

N
s

us
ed

fo
r

ea
ch

D
R

L
al

go
rit

hm
.

84

7.3. Experiments

7.3 Experiments

We train all agents solely on replay memory that was constructed with the training data.
As discussed earlier, the replay memory is separated into positive and negative memory,
which we sample from independently. Due to the size of the entire negative memory,
we used a sufficiently large subset during training. The exact subset can, of course, be
reproduced. The development data is used for evaluation. For each impression, the
evaluated agent is supplied with the initial user history, as well as the set of candidates
occurring in the impression, which constitutes the set of available actions. Based on the
agent’s value estimates, the actions are ranked from best to worst, which constitutes an
order of recommendation. We have also tested a sequential evaluation approach, where
we assume that the user always clicks on the first 3 recommended items, and the user
encoding is incrementally regenerated with each of these 3 news items incorporated into
the user’s reading history. Therefore, the agent’s value estimates adapt during evaluation.
The purpose was to further test the effect of recently read news on the user’s choice.
Intuitively, an agent would initially attach similar value to similar articles. However,
once the user reads one article, the value of the other should drop significantly, since the
user is presumably not interested in re-reading the same story. Of course, the assumption
that the first 3 recommendations are accepted is strong. Unfortunately, we cannot rely
on the real click labels. As outlined in Section 6.3, we don’t know whether articles were
skipped due to a lack of interest, or due to the recommendation order.

We train each agent for 6 million steps, saving model checkpoints on every millionth
step. In addition, we save three early checkpoints after 10k, 100k and 200k training
steps, in order to better evaluate, how quickly an algorithm progresses. Since the aim
of this work is a comparative analysis of different DRL algorithms applied to a news
recommendation problem, we refrain from using the evaluation metrics used in the MIND
benchmark. Instead, we use the average obtained discounted return as the primary
performance measure, which is common in RL experiments. For the evaluation, we
always use a discount factor of γ = 0.9. As opposed to training, the discount value is
unimportant during evaluation, as long as it is less than 1 (which would yield the same
return, regardless of recommendation order) and consistent for all experiments.

We repeated each training twice with different random seeds and report the mean and
standard deviation of the results. All experiments, including the construction of the
replay memory, were conducted on a PC with a i7-13700K CPU and 64GB of RAM, as
well as an NVIDIA GeForce RTX 3080 GPU, which was used for deep learning, using
the PyTorch library [64]. For a complete list of Python packages and versions, refer to
the GitHub repository4.

4https://github.com/d-vesely/drlnrs

85

https://github.com/d-vesely/drlnrs

7. DRLNRS: Comparative Analysis

7.4 Results
First and foremost, we established a baseline result, obtained by generating two random
recommendation orders and evaluating each one. The mean of the two average discounted
returns was 0.5521, which forms our baseline. For visual reasons, we do not display this
baseline in any of the result visualizations, since the obtained results are much higher,
even after few training steps. The baseline can be reproduced in the provided evaluation
notebook.

7.4.1 Hyperparameters
We started our experiments by varying the set of RL hyperparameters, while keeping the
RL algorithm, the user encoder and the news encoder fixed. We used regular DQN, a
weighted mean of news encodings, and the embedding of the concatenation of title and
abstract, for the aforementioned components. Subsequently, the hyperparameter settings
that we deemed best as a result of these experiments were reused in later experiments.
Of course, the assumption that varying the user encoder, news encoder, or the DRL
algorithm has no effect on which hyperparameter settings yield the best results is left
unproven. Nonetheless, we believe that this approach is valid for the following reasons:

1. The main goal of this thesis is a comparative performance analysis of DRL al-
gorithms, as well as of user encoders and news encoders. To that end, a set of
hyperparameter values that remains consistent through all experiments is required.
These values need not necessarily be those that yield the best overall results.
Nonetheless, the argument can be made that the parameters were set using DQN,
giving it an inherent advantage over other algorithms, which might demand other
settings. We do not think this is a serious issue, because ...

2. On the one hand, most hyperparameters, as we will see, have little effect on the
performance.

3. On the other hand, some hyperparameters have an effect that we deem strong
enough to be universal for all algorithms.

We conducted neither grid search, nor random search. Instead, we opted for an initial
hyperparameter setting, and gradually varied each hyperparameter to test its impact
and obtain a well-performing value for it. This assumes a certain level of independence
between hyperparameters, which we are willing to take on for the first of the above
listed reasons. Note that we always picked the parameter value that led to the best
performance, even if changes were marginal. Some results were so close that, given other
seeds or additional runs, another value choice might have taken the lead.

The following enumeration discusses the results of each graphic in Figure 7.4, where the
item label corresponds to the respective caption label:

86

7.4. Results

(a) We began by testing two learning rates, i.e. 1e−4 and 1e−5. The former yields much
better results, but already leads to steep improvements in the first checkpoints,
while performance decreases after 3MM training steps. Therefore, we did not test
an even smaller learning rate.

(b) The positive memory preference is the probability, with which the agent chooses
to sample a batch of positive experiences, i.e. cases where the user clicked on
a recommended item, as opposed to negative experiences. In other words, this
parameter tunes oversampling. We tested a PMP of 10%, 30%, 50% and 70%.
Looking at the percentage of ignored news in Figure 6.2, all of these constitute
some degree of oversampling. As hypothesized earlier, especially in comparison to
other hyperparameters, the PMP has a huge impact on performance, with 30%
being the best out of the tested values.

(c) A discount value γ that is on the lower side led to better performances, but there
was little difference between a gamma of 0.65 and 0.80.

(d) We always applied learning rate decay (for details, consult the code). A slowly
decaying LR outperformed one that decayed quicker, albeit the results were very
similar. Furthermore, the quicker decay seemed more stable, in the sense that the
performance score kept improving until the training ended.

(e) The frequency with which the target network is updated via direct copy had a
small impact on performance, with updates after every 5k steps performing best,
compared to every 10k and every 500 steps.

(f) In comparison with a direct target network copy, a soft target update conducted
after every training step with τ = 0.01 (see Section 4.5) led to a slightly better
final performance.

(g) We also tested an adaptive PMP, one increasing the PMP by 0.04 every 500k steps,
another increasing it by 0.1 every 1MM steps. The idea was to simulate the agent
getting better at recommending good items first, as training progresses. While
both methods improved the training speed and the second method obtained the
best performance score, a constant PMP of 30% appeared to be more stable and
improved steadily. Performance drops significantly beyond 4MM training steps,
when using adaptive PMP.

(h) Last but not least, we tested the impact of the batch size, by comparing sizes of 16,
32 and 64. Smaller batch sizes performed better, especially at the early checkpoints.
However, the performance scores were slightly more volatile, whereas a batch size
of 64 generally led to a steadily improving score. Ultimately, due to the final
measurements being quite similar, and lower batch sizes increasing the training
time, we opted to stick with a batch size of 64 for the following experiments.

87

7. DRLNRS: Comparative Analysis

7.4.2 User Encoders
We continued by testing the set of user encoders that we presented in Section 7.1.2, again
using regular DQN. We used the set of hyperparameter values that yielded the best
results in the experiments described in the previous subsection. Just like before, we used
the embedding of the concatenated title and abstract as the news encoding. Both the
RL hyperparameters, and the news encoder scheme remained fixed for these experiments.
As already discussed in Section 7.1.2, we used a reading history length of 40 articles for
those user encodings that required a predetermined history length.

The following enumeration discusses the results of each graphic in Figure 7.5, where the
item label corresponds to the respective caption label:

(a) For the weighted mean encoding, we tested various reading history lengths, i.e.
amounts of news articles that are included in a user’s history, namely the last 5,
20 and 40 articles. Furthermore, we also tested the performance of including all
previously read articles in the encoding. The results show that including more
articles in the user encoding improves preference elicitation. There even is a
noticeable improvement from using 40 news items to processing the entire history,
despite only approximately 10% of users having histories of more than 40 items (see
Section 6.2.3). The significant performance drop between using 20 and 5 articles
underlines that short-term interests are not sufficient to construct an accurate
model of a user’s preferences.

(b) We tested the effect of changing, or completely omitting, the weighting factor
alpha. Applying no weighting (α = 1) means that the reading order is completely
disregarded, whereas decreasing α reduces the contribution of articles read in the
distant past. As one would expect, applying no weighting negatively impacts
performance, although the final performance is quite close. The comparison of
α = 0.99 and α = 0.999 shows that a weighting factor closer to 1, i.e. one that
decays more slowly and thus incorporates older articles more strongly into the
weighted mean, performs slightly better. However, the difference is negligible.

(c) The multi-head self-attention encoding scheme works slightly better when using an
attention pooling method, as opposed to a mean pooling, albeit the latter performs
better at the early checkpoints, presumably due to the additional parameters that
need to be trained for additive attention.

(d) We tested the effect of omitting and applying weighting (α = 0.999) on the LTSTL
encoding method, finding that the impact was minimal.

(e) We did not test any parameter configurations for the distribution encoding.

(f) Analogously to the multi-head self-attention encoding, the bi-directional GRU
encoding using mean pooling learns faster, but is ultimately outperformed by
attention pooling, with marginal differences. Utilizing just the last hidden state, as

88

7.4. Results

opposed to pooling all of them together, strongly underperforms, indicating that
it does not hold sufficient information to adequately represent the entire reading
history. There are several potential reasons for this. For example, the range of the
dependencies in the sequence might be too long to be entirely captured by the last
hidden state. Another reason could be that this scheme focuses too much on the
most recently read articles, which might be less relevant than the overall reading
habits of the users.

(g) Finally, we compare all five distinct user encoding methods, with their respective
best parameter settings. GRU performs best, followed by the weighted mean,
self-attention, distribution encoding and in last place LTSTL. To us, the quality of
the weighted mean encoding was surprising, due to its crude nature in comparison
with the others. A possible explanation is that it strikes a good balance between
encompassing a user’s interests, with a focus on recently consumed news, while
already generalizing at the user encoding stage. A key advantage of this encoding
method is its lightweight nature. In contrast, while GRU outperforms it, the
increase in trainable parameters comes with a significantly increased training time.
In our opinion, the lackluster results of LTSTL show that the most recently read
articles bear less valuable information than perhaps expected.

7.4.3 News encoders
Analogously, we tested the set of news encoders that we presented in Section 7.1.1,
with regular DQN and the same hyperparameters. However, as opposed to using the
best-performing user encoder, i.e. GRU with attention pooling, we opted for the weighted
mean, due to its much lower training time.

The following enumeration discusses the results of each graphic in Figure 7.6, where the
item label corresponds to the respective caption label:

(a) We started by comparing the performance of using the embedding of the title,
the concatenation of the separate embeddings of title and abstract, as well as the
embedding of the concatenation of title and abstract (which we have been using in
all previous experiments). Unsurprisingly, the embedding of the concatenated texts
achieved the best performance. Using both texts improves the PLM’s understanding
of an article’s context, thus generating better embeddings. For instance, an article
about basketball could only mention "the Bulls" in the title, whereas the abstract
might contain additional information that could allow the PLM to infer that the title
does not refer to the animals, but to the basketball team from Chicago. Nonetheless,
using both title and abstract embeddings separately still performed better than
relying on just the title or abstract. Out of the two, utilizing just the title was
better than using just the abstract, despite titles being generally shorter than
abstracts, see Figure 6.3. We can infer that users focus on the title, whereas the
abstract is useful for our models to understand the context of the news item and

89

7. DRLNRS: Comparative Analysis

produce a good embedding. Furthermore, as discussed in Section 6.3, it is unclear
whether the abstract was visible to the user before clicking on the item.

(b) In addition to the embedding of title and abstract, we included information about
the news item’s category. We tested the embedding of the category’s name, as
well as a one-hot encoding over all 15 categories. Clearly, a one-hot encoding
outperformed the text embedding at every training step. However, note that
omitting the category entirely was even better.

(c) We continued by adding the embedding of the subcategory text to the input. Due to
the large amount of subcategories, and their dependence on the overarching category,
we did not test a one-hot encoding. Just like with the category, performance
decreased. Standardizing the input to a mean of 0 and a standard deviation of 1
did not help much, but reduced the standard deviation of the results.

(d) The embeddings of the concatenation of all textual news item elements, i.e. category,
subcategory, title and abstract, into a single string also did not outperform the
encodings that omitted the categories entirely. In the mean, it performed better
than the encoding using the subcategory embedding, presumably due the very
volatile results of the latter news encoder over the two random seeds, as can be
seen from the standard deviation in the figure. The figure clearly shows that each
additional input element beyond the concatenation of title and abstract led to a
performance deterioration, with the complete concatenation embeddings achieving
the lowest results (with the possible exception of the subcategory encoding, where
more experiments would be needed to reduce the standard deviation of the results).
There are several possible reasons for why this is the case. Firstly, the additional
information could be redundant, while simultaneously occupying a large portion
of the input vector (see Figure 7.1), hindering the LDNN from focusing on useful
information. Secondly, our LDNN might lack the capacity, i.e. the network not
being wide and/or deep enough, to extract useful patterns from the additional
information. Thirdly, the enlarged feature space might hinder the LDNN from
generalizing, causing it to overfit to the training data instead. Last but not least,
while not having done a formal investigation into this issue, our manual exploration
of the MIND dataset has revealed many mislabeled categories, where the attached
article did not accurately fit the description. In addition, many of the subcategories
that we remapped to natural language descriptions during preprocessing (see Section
6.2.2) had the appearance of being auto-generated, as opposed to manually labeled,
suggesting the use of a possibly error-prone automated process. Ultimately, the
benefit of using just the embeddings of the concatenated title and abstract is that
each extension of the input vector also increases training time.

(e) The inclusion of numerical features regarding the respective news item also reduces
performance. Omitting engagement features (see Section 6.2.4) yields better results.
As discussed before, the information provided by the numeric features might be
redundant and causing the network to overfit, or otherwise hinder its ability to

90

7.4. Results

generalize. Therefore, it is plausible that the omission of some features leads to
improvements.

(f) In order to gauge the impact of the embedding model, we tested a model by OpenAI,
as discussed in Section 7.1.1. We generated embeddings for the concatenation of
title and abstract. We hypothesized that a comparatively recently trained, pay-to-
use model would improve performance. In addition, the dimension of the produced
embeddings is twice as large as those returned by MPNet, thus carrying more
information. However, MPNet significantly outperformed OpenAI’s model, which
we tested with two different learning rates. It is possible that the more compact
embedding facilitates generalization. Another explanation is that, as discussed
before, the LDNN does not have sufficient capacity to properly utilize the larger
embeddings.

7.4.4 DRL algorithms
Last but not least, we tested the DRL algorithms that we have mentioned in Section 7.2,
and theoretically discussed in Chapter 4. Again, we opted for the weighted mean user
encoder. Given the results presented in the previous section, we used the embedding of
title and abstract as a news encoding.

The following enumeration discusses the results of each graphic in Figure 7.7, where the
item label corresponds to the respective caption label:

(a) We compared several target update schemes with DDQN, namely a direct update
every 5k steps, as well as soft target updates with τ values of 0.005, 0.01 and 0.05.
A soft target update with τ = 0.01 performed best, followed by the direct target
update. However, the differences were marginal.

(b) On average, DDQN improves on DQN, but the standard deviation is higher across
different seeds, i.e. the results fluctuate more strongly, even at later checkpoints. In
the following experiments, we opted to use the direct target update after 5k steps,
for its seemingly better stability.

(c) In contrast to DDQN, the extension of DQN with a dueling network performed
much worse than the regular version, despite the Atari benchmark results suggesting
a different outcome. However, it should be noted that our approach of individually
processing each candidate is not suitable for the default dueling architecture.
Usually, one would use only the state as input, and compute the state value in one
stream of the ANN, and the advantages for each action in a separate stream (see
[87]). Subsequently, these two streams would be combined via an implementation
of Equation 4.7. Due to our unbounded action space, which is a case that is rarely
addressed in RL literature, leaving us without a precedent, we could not adopt this
architecture. Refer to the code repository on GitHub5 for our solution.

5https://github.com/d-vesely/drlnrs

91

https://github.com/d-vesely/drlnrs

7. DRLNRS: Comparative Analysis

(d) C51 outperformed DDQN. Notably, the results had a small standard deviation
across different seeds and the algorithm learned significantly faster than DDQN,
although the final results were close.

(e) As discussed in Section 4.3.2 on the theory behind QR-DQN, the number of quantiles
is a hyperparameter that can be tuned. We tested two values suggested by the
authors, namely 32 and 64. While the latter yielded better results with steadily
improving scores at every checkpoint, both were outperformed by C51. Given that
QR-DQN significantly improves on C51 when tested on the Atari benchmark, this
result was surprising.

(f) Analogously, we tested IQN with 32 and 64 quantiles, obtaining the same result,
whereby a higher amount of quantiles reaches better performance. However, in
addition to the decreased performance of QR-DQN in comparison to C51, IQN
obtained even lower scores. Using a soft target update minimally improved the
results, but generally did not mitigate the issue. Again, this result is surprising,
given the Atari benchmark results of these algorithms.

(g) Last but not least, we tested FQF, again with 32 and 64 quantiles. While it
improved on IQN, its performance was disappointing, as can be seen in the next
figure.

(h) Comparing all distributional DRL algorithms, the result is that C51 outperforms all
others. This was unexpected, since each subsequent algorithm not only theoretically
improved on its predecessor, but also in practice, achieving increasingly higher
scores on the Atari benchmark. Furthermore, we note that regular DQN yields
better results than its distributional counterparts, with the exception of C51. A
possible explanation of C51’s performance stems from the observation made by the
authors of [6], which we have briefly mentioned at the end of Section 4.3.1. To
reiterate, C51 achieved great results on Atari games with sparse rewards, namely
"Venture" and "Private Eye", indicative of the ability of value distributions to
propagate rare events better than DQN. As we have seen in Section 6.2.3, a user
clicking on recommended items, and thus rewarding the agent, is indeed a rare
event. The subsequently published QR-DQN, IQN and FQF all outperformed C51
(and each other) on the overall Atari benchmark, i.e. on an average measure over
all Atari games. However, C51 kept the highest score on the aforementioned games,
excluding the human score on "Private Eye" (see Atari score tables in [6, 19, 20, 94]).
While this serves as a possible explanation for C51 outperforming its successors, it
does not illuminate, why DQN also outperformed them.

In regards to REINFORCE, we do not present any results here. While the algorithm
worked, it learned slowly and never achieved results comparable to those presented
previously, albeit beating the baseline. Specifically, a REINFORCE agent trained on
300k episodes, which has a training time that is comparable to the experiments discussed
so far, reaches a discounted return of 0.7338. While it is possible that REINFORCE

92

7.4. Results

would reach scores similar to those presented, given more training time, we did not deem
it worthwhile.

Finally, we tested both of the continuous action approaches that we have outlined in
Section 7.1.3, i.e. outputting a scoring vector (indirect) and outputting a prototype-action
(direct, with k = 25%), with DDPG and TD3. In both cases, a common problem emerges
that we have discussed in Section 4.5, namely the actor outplaying the critic. Relatively
early on, the critic starts attaching higher and higher values to the actor’s outputs,
beyond reasonable boundaries. This overestimation spiral cannot be corrected, leading
to the actor producing increasingly useless values, albeit receiving extremely high action-
values. This problem occurs for both the indirect and the direct approach. Furthermore,
using TD3, which purposely includes mechanisms to avoid such an exploitation issue,
does not solve the problem and ultimately leads to the same results. However, the
actor’s output usually explodes in magnitude. In the case of the direct approach, the
prototype-action vector should have the same properties as the known embedding vectors,
e.g. regarding the sum of its squared components or the value range. Therefore, we
tested incorporating a loss component into the actor that penalizes it, when the sum
of squared vector components diverges from the hardcoded value. This value is known,
since it can be obtained from samples of the embeddings produced by the news encoder.
Indeed, this prevents the actor from spiraling out of control. We tried two evaluation
approaches, utilizing just the actor, as well as the critic respectively. The former simply
ranks the candidate items by their similarity to the prototype-action. The latter uses the
prototype-action to reduce the number of candidates by half (k = 50%), leaving similar
candidates to be ranked by the critic, while the rest is again ranked by similarity. We
did not further pursue the indirect approach.

The results are displayed in Figure 7.8. It is important to reemphasize that the actors
do not use the list of candidate items, only the reading history. Therefore, while the
results seem underwhelming at first, they show that an agent that uses just an actor
significantly outperforms the baseline, without incorporating available news items. Such
an agent could thus be used in a first step, to reduce a set of candidates that is too
large to be processed in its entirety. In addition, using a critic to rank a selected subset
further improves performance significantly. Nevertheless, to test the viability of this
approach, additional data is required that includes information about the candidate set
construction. TD3 (also in Figure 7.8) performs similarly, with the actor-critic evaluation
being slightly better, and the actor-only evaluation slightly worse than DDPG.

7.4.5 Sequentiality
Due to its significantly increased evaluation time, we have tested the sequential evaluation
approach described in Section 7.3 just once. It led to a decrease in performance, albeit
marginal. Concretely, one run of the DQN agent visualized in Figure 7.6(a) scored
0.7828, whereas the sequential evaluation yielded a score of 0.7819. This could further
indicate that the most recently read articles have little impact on a user’s decision
making. However, as already discussed in Section 6.3, it must be kept in mind that

93

7. DRLNRS: Comparative Analysis

impressions were shuffled in the MIND dataset. Therefore, our agent can have difficulties
understanding the notion of ignoring an article, because a similar one was already read.
For the same reason, the click labels are inherently unreliable, because a click might have
not occurred due to the recommendation order, and potentially should have occurred in
a ranking produced by our agent. Only an online study could provide clarity on these
issues.

7.4.6 MIND Leaderboard
In order to compare the results of a DRLNRS to other approaches, especially those
presented in Section 5.2, we submitted the test set predictions of the best-performing DRL
algorithm, i.e. C51, to the MIND dataset’s testbed6 (see Section 6.1). We used the model
trained with one of the two seeds, without performing any additional hyperparameter
tuning. Furthermore, note that with a PMP of 30% and a training time of 6MM steps, our
agent was statistically trained on less than half of the available positive experiences (see
Section 7.1.5). Therefore, despite some experiment results decreasing at later checkpoints,
it is still possible that a longer training, perhaps in conjunction with an adjusted learning
rate decay, could improve performance. While the leaderboard7 does not seem to receive
updates any longer, we were still able to obtain result scores, see Table 7.3. Due to
the iterative development and improvement of the SOTA methods, increasingly better
scores are reported across several papers. In general, we conclude that a DRL approach,
represented by C51, outperforms LSTUR and NRMS in their initial form, where they
score an AUC of 0.6708 and 0.6766 respectively. However, as we discussed, the addition
of a PLM that is fine-tuned during training significantly enhances these methods. Note
that we used a PLM to produce embeddings, but we did not fine-tune the PLM during
training. Concretely, LSTUR and NRMS with BERT achieve an AUC of 0.6949 and
0.6950 respectively, using UniLM [24] instead of BERT raises these scores to 0.7056 and
0.7064. UNBERT and MINER, both of which utilize BERT in their default version,
achieve an AUC of 0.7068 and 0.7151 respectively. Comprehensive score lists are best
found in [48] and [88]. Furthermore, note that ensembles of multiple independently
trained models can further boost performance [48, 89, 96].

AUC MRR nDCG@5 nDCG@10

C51 0.6828 0.3349 0.3654 0.4227
Fastformer 0.7304 0.3770 0.4180 0.4718

Table 7.3: MIND competition result scores for C51 and the current competition leader, a
Fastformer variant.

6https://codalab.lisn.upsaclay.fr/competitions/420
7https://msnews.github.io/#leaderboard

94

https://codalab.lisn.upsaclay.fr/competitions/420
https://msnews.github.io/#leaderboard

7.4. Results

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - LR 1e-4
DQN - LR 1e-5

DQN - Learning Rate Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - LR 1e-4: 0.7530

(a) Effect of learning rate.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - PMP 10
DQN - PMP 30
DQN - PMP 50
DQN - PMP 70

DQN - Positive Memory Preference Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - PMP 30: 0.7800

(b) Effect of positive memory preference.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - gamma 0.65
DQN - gamma 0.80
DQN - gamma 0.95

DQN - Gamma Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - gamma 0.65: 0.7803

(c) Effect of discount value γ.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - LDR 0.7
DQN - LDR 0.9

DQN - Learning Decay Rate Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - LDR 0.9: 0.7811

(d) Effect of learning decay rate.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - FTU 500
DQN - FTU 5k
DQN - FTU 10k

DQN - Frequency Target Update Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - FTU 5k: 0.7821

(e) Effect of target update frequency.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - FTU 5k
DQN - STU 0.01

DQN - Soft Target Update Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - STU 0.01: 0.7824

(f) Effect of soft target update.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Constant PMP
DQN - 1MM 0.1
DQN - 500k 0.04

DQN - Adapting PMP Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - 1MM 0.1: 0.7838

(g) Effect of adaptive pos. memory preference.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Batch Size 16
DQN - Batch Size 32
DQN - Batch Size 64

DQN - Batch Size Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Batch Size 32: 0.7827

(h) Effect of batch size.

Figure 7.4: Result of varying RL hyperparameters, tested with DQN. 95

7. DRLNRS: Comparative Analysis

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Last 5
DQN - Last 20
DQN - Last 40
DQN - All

DQN - History Length Weighted Mean

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - All: 0.7821

(a) Weighted mean encoding - history length.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Alpha 0.99
DQN - Alpha 0.999
DQN - No Weighting

DQN - Weighted Mean Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Alpha 0.999: 0.7821

(b) Weighted mean encoding - alpha.

10K
200K

1M 2M 3M 4M 5M 6M
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN Attention - Mean Pooling
DQN Attention - Attention Pooling

DQN - Multi-Head Self-Attention

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN Attention - Attention Pooling: 0.7748

(c) Attention encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN LTSTL - No Weighting
DQN LTSTL - Weighted

DQN - LTSTL

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN LTSTL - No Weighting: 0.7670

(d) LTSTL encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN Distribution

DQN - Distribution

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN Distribution: 0.7735

(e) Distribution encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN GRU - Last Hidden State
DQN GRU - Mean Pooling
DQN GRU - Attention Pooling

DQN - GRU

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN GRU - Attention Pooling: 0.7839

(f) GRU encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN GRU - Attention Pooling
DQN Attention - Attention Pooling
DQN Weighted Mean - 0.999
DQN LTSTL
DQN Distribution

DQN - User Encoder Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN GRU - Attention Pooling: 0.7839

(g) User encoding comparison.

Figure 7.5: Results of varying user encodings, tested with DQN.96

7.4. Results

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Title
DQN - Abstract
DQN - Title and Abstract (sep.)
DQN - Title and Abstract (conc.)

DQN - Title and Abstract Encoding Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Title and Abstract (conc.): 0.7821

(a) Title and abstract encoding.
10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Cat. Embedding
DQN - Cat. One-Hot
DQN - Without Cat.

DQN - Category Encoding Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Without Cat.: 0.7821

(b) Category encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Subcat. Emb.
DQN - Subcat. Emb. (stand.)
DQN - Cat. One-Hot

DQN - Subcategory Encoding Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Cat. One-Hot: 0.7816

(c) Subcategory encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Title and Abstract
DQN - + Category (One-Hot)
DQN - + Subcategory
DQN - All

DQN - Complete Concatenation Encoding Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Title and Abstract: 0.7821

(d) Complete concatenation encoding.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - Without Features
DQN - All Features
DQN - Without Engagement

DQN - Numerical Features Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - Without Features: 0.7821

(e) Numeric features comparison.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - OpenAI LR 1e-4
DQN - OpenAI LR 1e-5
DQN - MPNet

DQN - OpenAI Embedding Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - MPNet: 0.7821

(f) Embedding model comparison.

Figure 7.6: Results of varying news encodings, tested with DQN.

97

7. DRLNRS: Comparative Analysis

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN - FTU 5k
DQN - STU 0.005
DQN - STU 0.01
DQN - STU 0.05

DDQN - Target Update Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN - STU 0.01: 0.7826

(a) DDQN target update comparison.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN
DDQN

DDQN and DQN Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DDQN: 0.7826

(b) DDQN and DQN.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 DQN
Dueling DQN

Dueling DQN and DQN Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

DQN: 0.7821

(c) Dueling DQN and DQN.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 C51
DDQN

C51 and DDQN Comparison

Training Steps

D
is

co
un

te
d

Re
tu

rn

C51: 0.7840

(d) C51 and DDQN.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 QR-DQN - 32 Quantiles
QR-DQN - 64 Quantiles
C51

QR-DQN Quantile Amount Comparison, and C51

Training Steps

D
is

co
un

te
d

Re
tu

rn

C51: 0.7840

(e) QR-DQN quantile amounts, and C51.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 IQN - 32 Quantiles
IQN - 64 Quantiles
IQN - 64 Quantiles, STU
QR-DQN - 64 Quantiles

IQN Quantile Amount Comparison, and QR-DQN

Training Steps

D
is

co
un

te
d

Re
tu

rn

QR-DQN - 64 Quantiles: 0.7782

(f) IQN quantile amounts, and QR-DQN.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 FQF - 32 Quantiles
FQF - 64 Quantiles
IQN - 64 Quantiles

FQF Quantile Amount Comparison, and IQN

Training Steps

D
is

co
un

te
d

Re
tu

rn

FQF - 64 Quantiles: 0.7784

(g) FQF quantile amounts, and IQN.

10K
200K

1M 2M 3M 4M 5M 6M

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78 C51
QR-DQN - 64 Quantiles
IQN - 64 Quantiles
FQF - 64 Quantiles
DQN

Distributional DRL Algorithms, and DQN

Training Steps

D
is

co
un

te
d

Re
tu

rn

C51: 0.7840

(h) Comparison of Distributional DRL.

Figure 7.7: Results of comparative analysis of DRL algorithms.98

7.4. Results

10K

200K

1M 2M 3M

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74 DDPG - Actor
DDPG - Actor-Critic

DDPG - Actor and Actor-Critic Evaluation

Training Steps

D
is

co
un

te
d

Re
tu

rn

DDPG - Actor-Critic: 0.7183

(a) DDPG actor and actor-critic results.

10K

200K

1M 2M 3M

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74 TD3 - Actor
TD3 - Actor-Critic

TD3 - Actor and Actor-Critic Evaluation

Training Steps

D
is

co
un

te
d

Re
tu

rn

TD3 - Actor-Critic: 0.7213

(b) TD3 actor and actor-critic results.

Figure 7.8: DDPG and TD3 results.

99

CHAPTER 8
Conclusion

In this final chapter, we will summarize the findings and contributions of this thesis, as
well as succinctly answer the research questions posed in Section 1.2. Finally, we want to
offer brief suggestions for future work that would, in our opinion, drive the research on
DRL(N)RSs forward.

8.1 Insights
The following bullet points summarize the key insights that we have gained from this
thesis, and concretely the comparative performance analysis, most of which we have
already discussed in the Section 7.4 as part of the results presentation.

• Learning Parameters: Aside from the learning rate, the hyperparameter with the
largest impact was the positive memory preference, which guides oversampling. Its
strong effect on an agent’s performance suggests that it is a highly important factor
when training RL agents with a replay memory constructed from an offline dataset,
as we did, and should be carefully tuned. Using an adaptive positive memory
preference increased the training speed, but performance ultimately dipped below
the levels achieved when keeping a constant rate. Last but not least, a discount
factor that was too high led to a decrease in performance, because the agent is
punished less for ranking positive items lower. Otherwise, training was relatively
insensitive to other hyperparameters.

• User Encoding: A simple weighted mean over a user’s history almost performed best,
being just barely surpassed by the user encoders relying on a bi-directional GRU.
However, the large amount of additional training parameters severely increased
the training time as well. The close results of those two methods, as well as the
low scores reached when using just the last hidden state of the GRU, instead of

101

8. Conclusion

pooling all of them together, raises questions about the importance of the order of
a user’s reading history. In other words, the sequence of previously read articles,
and the concrete news items that were read most recently, might have less impact
on a user’s next choices than expected. The authors of [90] raise the same question,
coming to the conclusion that modeling news recommendation as a conventional
sequential recommendation problem is sub-optimal. Nonetheless, we have shown
that a weighted mean does outperform an unweighted mean. At the same time,
processing the entire histories yielded better results than reducing histories to
exclude articles that were not recently read. These two results indicate that it is
important to differentiate between long-term and short-term interests of a user,
without focusing too much on short-term dependencies between specific news items,
that might not be as strong, as short-term, or as sequential, as one might think. Our
sequential evaluation approach, discussed in Section 7.4.5, underlines this sentiment.
Other encoding methods did not reach competitive levels, with the LTSTL encoding
achieving the lowest scores. Note that LTSTL includes the encoding of the most
recently read news item in the user encoding. Yet again, we must emphasize the
need for an online study, to obtain truly conclusive results on this issue.

• News Encoding: An embedding of the concatenated title and abstract performed
best. Additional information, either in the form of category and subcategory, or as
numerical features, led to a decreased performance. Potential reasons are that the
information was redundant, that it hindered generalization, or a lack of capacity
in our LDNNs. Using just the title or abstract was insufficient, with the former
outperforming the latter.

• DRL Algorithms: C51 achieved the highest performance out of the tested DRL
algorithms, followed by DDQN and regular DQN. DDQN did outperform C51 at
one of the two tested seeds. However, due to DDQN’s results having a high standard
deviation, it ended up being slightly worse on average. In contrast, C51 achieved
stable results across both seeds and learned faster, reaching good results at early
checkpoints. C51’s successor algorithms in the category of distributional RL, i.e.
QR-DQN, IQN and FQF, all performed worse than C51. This supports the theory
that C51 operates well in sparse reward environments. As already discussed, C51
scored higher on the sparse reward Atari games "Private Eye" and "Venture", than
its successor algorithms. However, we have no concrete explanation for why DQN
was able to score higher in our experiments, than the distributional algorithms that
convincingly beat DQN on the Atari benchmark, including the two aforementioned
games.

• Candidate Set Extraction: The results achieved by DDPG/TD3 show that agents
can outperform the baseline without having to process the set of candidate items,
thus presenting a possible approach to reducing very large item sets to a small set
of candidate items. However, the viability of this approach would require further
testing that cannot be conducted with the available data.

102

8.2. Summary

8.2 Summary
The contributions of this thesis are best summarized by outlining, what the research
field was missing. Firstly, as discussed in Section 5.3, little DRLRS research is conducted
in the news domain ([99] and [50]). Secondly, the majority of DRLRS experiments
are conducted on proprietary data, rendering them not reproducible. Thirdly, DRLRS
research is usually focused on a specific algorithm, without drawing comparisons to
systems based on different DRL algorithms. In our opinion, such an approach clearly
diminishes the insights on the general viability of combining DRL and RSs. Our thesis
was aimed at filling these spaces, and we believe to have succeeded, by providing a
comprehensive comparative performance analysis of several DRLNRSs, using the publicly
available MIND dataset [93]. In addition to testing DRL algorithms, we also compare
different user encoders and news encoders, as opposed to focusing on any specific settings,
which ensures the generality and robustness of our results, and provides further insights.
We published all of our code and experiment configurations on GitHub1, making our
results easily reproducible. Our codebase requires minimal dependencies and does not
involve any third-party RL libraries or frameworks, with all algorithms coded from
scratch. This further increases reproducibility and transparency, as well as facilitates the
adaptation of our code. In summary, our analysis offers insights into the overall viability
of applying DRL to recommendation problems, and the performance of individual DRL
algorithms, in conjunction with various user- and news encoders. Furthermore, along with
our code, this thesis presents, discusses and provides a framework for training DRLRSs,
which can be reused in other recommendation domains. Last but not least, our thesis
summarizes all necessary background knowledge to understand the thesis and the SOTA,
and we believe it can serve as a starting point for delving into the topic, and for further
research into DRLNRSs.

Finally, we have answered the research questions posed in Section 1.2. Mainly, the
answers can be found in Section 7.1 (Q1), 7.1.5 (Q2), 7.4.4 (Q3), 7.4.3 and 7.4.2 (Q4),
7.4.6 (Q5), 8.1 and 7.4.5 (Q6).

8.3 Future Work
The following list contains a few brief directions for future work that would benefit the
research field of deep reinforcement learning recommender systems, in the news domain
and others:

• Dataset: The MIND dataset was undoubtedly very useful, especially since no other
comparable datasets exist as of August 2023. However, we already outlined some
criticisms in Section 6.3. To us, the key issue was the shuffled order of impressions.
It does not accurately reflect the user’s reading habits and could hinder the training
of RL agents. Simply speaking: if the agent does not know, whether article A was

1https://github.com/d-vesely/drlnrs

103

https://github.com/d-vesely/drlnrs

8. Conclusion

read before article B was skipped, then it cannot differentiate whether the user
skipped B because it was uninteresting, or because it was perceived to contain
the same information as A. Therefore, a dataset that preserves the sequential
order of events would be highly useful for DRLRS research, and further clarify the
questionable role of sequentiality in NRSs. The same is the case for a dataset that
(reliably) includes information on the publisher, author and date of an article.

• Online Experiments: Naturally, conducting online experiments in a live RS envi-
ronment, as discussed in Section 3.3, would be extremely beneficial to the training
and evaluation of RSs based on DRL. While the results obtained in this thesis are
certainly insightful, DRL agents have the potential to thrive in an online environ-
ment. Furthermore, the labels are predetermined in an offline evaluation, but the
actual order of recommendations could have a large impact on the user’s decisions.
For instance, if a user is recommended two articles on the same topic, they might
read the first recommendation and skip the second one. Therefore, if the RS that
produced the labels offered a different order than our RL agent, our result scores
will decrease, despite giving an equally good or better recommendation.

• Sequentiality: Further research should be conducted on the importance of sequen-
tiality in NRSs.

• Beyond Accuracy: Further research should be conducted into the topic of evalu-
ating NRSs beyond accuracy. Furthermore, datasets that facilitate these kinds of
evaluation metrics should be constructed.

• DRL Algorithms and Encoders: There is a multitude of other DRL algorithms that
could be applied to the news recommendation problem. The same is the case for
news- and user encoders.

• RL Tooling: In contrast to SL, RL tooling and standardization is - to put it bluntly
- a mess. The multitude of incomplete, incompatible, and little maintained libraries
hinders productivity and reproducibility. This is especially the case, when one is
not operating in a pre-existing or easily implementable OpenAI gym2 environment.
A lot of work is required to raise the level of RL tooling, in terms of applicability
and standardization, towards that of SL. Thankfully, the recently founded Farama3

foundation seems to be pushing in that direction.

2https://gymnasium.farama.org/
3https://farama.org/Announcing-The-Farama-Foundation

104

https://gymnasium.farama.org/
https://farama.org/Announcing-The-Farama-Foundation

List of Figures

2.1 AI is an umbrella term, with ML as a subdomain. SL, UL and RL are three
main types of ML. DL refers to a broad family of techniques based on LDNNs
that can be applied to all types of ML. DRL is the combination of DL and
RL. 8

2.2 The interaction between agent and environment, formalized as an MDP. The
agent observes the current state, receives a reward and chooses an action,
which affects the environment’s state and yields a new reward. 11

2.3 Backup diagrams for vπ, qπ (top row, from left to right), v∗ and q∗ (bottom
row, from left to right). 15

2.4 GPI constitutes alternating steps of policy evaluation and improvement (left).
These two processes cooperate and compete at the same time (right). . . 19

2.5 Backup diagrams for MC methods, Sarsa and Q-learning (from left to right). 23

4.1 The projected distributional Bellman update used in C51, broken down into
four steps. (1) Applying the transition operator Pπ to the value distribution
Z yields the distribution of the next state-value pair. (2) Multiplying with
the discount factor γ shrinks the domain, which entails increased probabilities
of the support values. (3) Adding the reward shifts the support to the right
or left, depending on the reward’s sign. (4a) The projection of the Bellman
update onto the support distributes the probability of misaligned atoms to
its immediate neighbors. (4b) The weight assigned to neighboring atoms
is indirectly proportional to the distance from the misaligned atom. All
contributions from misaligned atoms are summed. 42

4.2 Huber loss Lκ for κ = 1 compared to the absolute value function | · |. . . . 45
4.3 Comparison of distributional RL algorithms and DQN. The visualization

is an adaptation and extension of a Figure featured in [20]. It shows the
adaptations and improvements that led to FQF: DQN yields point estimates,
C51 attributes different probabilities to fixed atoms, QR-DQN attaches fixed
probabilities to different quantiles, IQN learns the entire quantile function
for quantiles sampled from a uniform distribution. Ultimately FQF learns to
adapt the quantiles to the input. 48

6.1 The general structure of the MIND dataset. 65
6.2 Visualizations of exploratory behavior data. 72

105

6.3 Visualizations of exploratory news data. 73

7.1 News encoder variants. 77
7.2 User encoder variants. 79
7.3 Overview over the LDNNs used for each DRL algorithm. 84
7.4 Result of varying RL hyperparameters, tested with DQN. 95
7.5 Results of varying user encodings, tested with DQN. 96
7.6 Results of varying news encodings, tested with DQN. 97
7.7 Results of comparative analysis of DRL algorithms. 98
7.8 DDPG and TD3 results. 99

106

List of Tables

6.1 The behavior samples for user U1 from the validation set. 66
6.2 The behavior samples for user U1 from the test set. 66
6.3 The news data sample from the validation set. 67

7.1 Fictional entry in the MIND dataset, consisting of the requesting user’s history
and the impression log. 83

7.2 The resulting entries in the randomly constructed replay memory. 83
7.3 MIND competition result scores for C51 and the current competition leader,

a Fastformer variant. 94

107

List of Algorithms

2.1 Typical RL update assignment. 21

7.1 The formatted string used for the concatenation of all textual information
of an article. 76

109

Acronyms

AC Actor-Critic. 49

AI Artificial Intelligence. 5

ANN Artificial Neural Network. 7

C51 Categorical 51. 41

CNN Convolutional Neural Network. 55

DDPG Deep Deterministic Policy Gradient. 49

DDQN Double DQN. 37

DL Deep Learning. 7

DP Dynamic Programming. 16

DPG Deterministic Policy Gradient. 49

DQN Deep Q-Network. 35

DRL Deep Reinforcement Learning. 8

DRLNRS Deep Reinforcement Learning News Recommender System. 60

DRLRS Deep Reinforcement Learning Recommender System. 51

FPN Fraction Proposal Network. 47

FQF Fully Parameterized Quantile Function. 47

GPI Generalized Policy Iteration. 18

GRU Gated Recurrent Unit (Network). 56

IQN Implicit Quantile Networks. 45

111

LDNN Large Deep Neural Network. 8

LSTM Long Short-Term Memory. 56

MC Monte Carlo. 19

MDP Markov Decision Process. 10

MIND MIcrosoft News Data. 54

ML Machine Learning. 6

NRS News Recommender System. 51

PLM Pre-Trained Language Model. 57

QR-DQN Quantile Regression DQN. 43

QVN Quantile Value Network. 47

RL Reinforcement Learning. 5

RS Recommender System. 25

SL Supervised Learning. 6

SOTA State-Of-The-Art. 51

TD Temporal-Difference Learning. 21

TD3 Twin Delayed DDPG. 50

UL Unsupervised Learning. 7

112

Bibliography

[1] "Reinforcement Learning for Recommender Systems: A Case Study on Youtube,"
by Minmin Chen. Mar. 2019. url: https://youtu.be/HEqQ2_1XRTs?t=50 (visited
on 06/24/2023).

[2] M Mehdi Afsar, Trafford Crump, and Behrouz Far. “Reinforcement learning based
recommender systems: A survey”. In: ACM Computing Surveys 55.7 (2022), pp. 1–
38.

[3] Charu C. Aggarwal. Recommender Systems - The Textbook. Springer, 2016.
[4] Mingxiao An et al. “Neural News Recommendation with Long- and Short-term User

Representations”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, July 2019,
pp. 336–345.

[5] Michael A. Beam. “Automating the News: How Personalized News Recommender
System Design Choices Impact News Reception”. In: Communication Research 41.8
(2014), pp. 1019–1041.

[6] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective
on Reinforcement Learning”. In: CoRR abs/1707.06887 (2017).

[7] Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement
Learning. http://www.distributional-rl.org. MIT Press, 2023.

[8] Richard Bellman. Dynamic Programming. 1st ed. Princeton University Press, 1957.
[9] Yoshua Bengio and Yann Lecun. “Scaling learning algorithms towards AI”. In:

Large-scale kernel machines. MIT Press, 2007.
[10] Balázs Bodó. “Selling News to Audiences – A Qualitative Inquiry into the Emerging

Logics of Algorithmic News Personalization in European Quality News Media”. In:
Digital Journalism 7.8 (2019), pp. 1054–1075.

[11] Robin Burke. “Hybrid Web Recommender Systems”. In: vol. 4321. Jan. 2007.
[12] Matt Carlson. “Automating judgment? Algorithmic judgment, news knowledge, and

journalistic professionalism”. In: New Media & Society 20.5 (2018), pp. 1755–1772.

113

https://youtu.be/HEqQ2_1XRTs?t=50
http://www.distributional-rl.org

[13] Netflix Help Center. How does Netflix make recommendations for me? n.d. url:
https://help.netflix.com/en/node/100639#:~:text=We%20estimate%20the%
20likelihood%20that,preferences%20on%20our%20service%2C%20and (visited on
05/29/2023).

[14] Pew Research Center. More than eight-in-ten Americans get news from digital
devices. Jan. 2021. url: https://www.pewresearch.org/short-reads/2021/01/
12/more- than-eight- in- ten- americans- get- news- from- digital-devices/
(visited on 06/06/2023).

[15] Minmin Chen et al. “Top-K Off-Policy Correction for a REINFORCE Recommender
System”. In: Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining. WSDM ’19. Melbourne VIC, Australia: Association for
Computing Machinery, 2019, pp. 456–464.

[16] Shi-Yong Chen et al. “Stabilizing Reinforcement Learning in Dynamic Environ-
ment with Application to Online Recommendation”. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
KDD ’18. London, United Kingdom: Association for Computing Machinery, 2018,
pp. 1187–1196.

[17] Xiaocong Chen et al. “A survey of deep reinforcement learning in recommender sys-
tems: A systematic review and future directions”. In: arXiv preprint arXiv:2109.03540
(2021).

[18] Huige Cheng. MIND News Recommendation Technical Report. Sept. 2020. url:
https://msnews.github.io/assets/doc/1.pdf (visited on 06/23/2023).

[19] Will Dabney et al. “Distributional Reinforcement Learning with Quantile Regres-
sion”. In: CoRR abs/1710.10044 (2017).

[20] Will Dabney et al. “Implicit Quantile Networks for Distributional Reinforcement
Learning”. In: CoRR abs/1806.06923 (2018).

[21] Stephen Dankwa and Wenfeng Zheng. “Twin-Delayed DDPG: A Deep Reinforcement
Learning Technique to Model a Continuous Movement of an Intelligent Robot
Agent”. In: Proceedings of the 3rd International Conference on Vision, Image
and Signal Processing. ICVISP 2019. Vancouver, BC, Canada: Association for
Computing Machinery, 2020.

[22] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association for Computational
Linguistics, June 2019, pp. 4171–4186.

[23] Hao Dong et al. Deep Reinforcement Learning: Fundamentals, Research, and
Applications. http://www.deepreinforcementlearningbook.org. Springer Nature,
2020.

114

https://help.netflix.com/en/node/100639#:~:text=We%20estimate%20the%20likelihood%20that,preferences%20on%20our%20service%2C%20and
https://help.netflix.com/en/node/100639#:~:text=We%20estimate%20the%20likelihood%20that,preferences%20on%20our%20service%2C%20and
https://www.pewresearch.org/short-reads/2021/01/12/more-than-eight-in-ten-americans-get-news-from-digital-devices/
https://www.pewresearch.org/short-reads/2021/01/12/more-than-eight-in-ten-americans-get-news-from-digital-devices/
https://msnews.github.io/assets/doc/1.pdf
http://www.deepreinforcementlearningbook.org

[24] Li Dong et al. “Unified Language Model Pre-training for Natural Language Under-
standing and Generation”. In: ArXiv abs/1905.03197 (2019).

[25] Gabriel Dulac-Arnold et al. “Deep Reinforcement Learning in Large Discrete Action
Spaces”. In: (2016).

[26] Stefan Ellerbeck. Most people get their news online - but many are switching off
altogether. Here’s why. Sept. 2022. url: https://www.weforum.org/agenda/2022/
09/news-online-europe-social-media/ (visited on 06/06/2023).

[27] Chong Feng et al. “News Recommendation Systems - Accomplishments, Challenges
& Future Directions”. In: IEEE Access 8 (2020), pp. 16702–16725.

[28] Sharon Ferguson. How Does Spotify Know What You Like? Expert Sheds Light on
Recommender Systems at U of T Event. May 2023. url: https://www.utoronto.
ca/news/how-does-spotify-know-what-you-expert-sheds-light-recommender-
systems-u-t-event (visited on 05/29/2023).

[29] Sharon Ferguson. Powered by AI: Instagram’s Explore Recommender System. Nov.
2019. url: https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-
recommender-system/ (visited on 05/29/2023).

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[31] Ryan Greene et al. New and improved embedding model. Dec. 2022. url: https:
//openai.com/blog/new-and-improved-embedding-model (visited on 06/21/2023).

[32] Gustaf Gripenberg. “Approximation by neural networks with a bounded number of
nodes at each level”. In: Journal of Approximation Theory 122.2 (2003), pp. 260–
266.

[33] Larry Hardesty. The History of Amazon’s Recommendation Algorithm. Nov. 2019.
url: https://www.amazon.science/the-history-of-amazons-recommendation-
algorithm (visited on 05/29/2023).

[34] Mance E. Harmon, Leemon C. Baird, and A. Harry Klopf. “Advantage Updating
Applied to a Differrential Game”. In: NIPS. 1994.

[35] Mark Harmon. “Multi-player residual advantage learning with general function”.
In: 1996.

[36] Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing
Systems. Vol. 23. Curran Associates, Inc., 2010.

[37] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning
with Double Q-learning”. In: CoRR abs/1509.06461 (2015).

[38] Ji He et al. “Deep Reinforcement Learning with an Unbounded Action Space”. In:
ArXiv abs/1511.04636 (2015).

[39] Natali Helberger. “On the Democratic Role of News Recommenders”. In: Digital
Journalism 7.8 (2019), pp. 993–1012.

115

https://www.weforum.org/agenda/2022/09/news-online-europe-social-media/
https://www.weforum.org/agenda/2022/09/news-online-europe-social-media/
https://www.utoronto.ca/news/how-does-spotify-know-what-you-expert-sheds-light-recommender-systems-u-t-event
https://www.utoronto.ca/news/how-does-spotify-know-what-you-expert-sheds-light-recommender-systems-u-t-event
https://www.utoronto.ca/news/how-does-spotify-know-what-you-expert-sheds-light-recommender-systems-u-t-event
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model
https://www.amazon.science/the-history-of-amazons-recommendation-algorithm
https://www.amazon.science/the-history-of-amazons-recommendation-algorithm

[40] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep Reinforcement
Learning”. In: Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence.
AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI Press, 2018.

[41] G. E. Hinton, S. Osindero, and Y. W. Teh. “A Fast Learning Algorithm for Deep
Belief Nets”. In: Neural Computation 18 (2006), pp. 1527–1554.

[42] T. F Hoad. The Concise Oxford Dictionary of English Etymology. Oxford University
Press, 2002.

[43] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[44] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: The Annals of
Mathematical Statistics 35.1 (1964), pp. 73–101.

[45] Stratton C. Jaquette. “Markov Decision Processes with a New Optimality Criterion:
Discrete Time”. In: The Annals of Statistics 1.3 (1973), pp. 496–505.

[46] Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac. “News recommender
systems – Survey and roads ahead”. In: Information Processing & Management
54.6 (2018), pp. 1203–1227.

[47] Roger Koenker. Quantile Regression. Cambridge University Press, 2005.
[48] Jian Li et al. “MINER: Multi-Interest Matching Network for News Recommenda-

tion”. In: Findings of the Association for Computational Linguistics: ACL 2022.
Association for Computational Linguistics, May 2022, pp. 343–352.

[49] Timothy Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
CoRR (Sept. 2015).

[50] Danyang Liu et al. “Reinforced Anchor Knowledge Graph Generation for News
Recommendation Reasoning”. In: Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. KDD ’21. Virtual Event, Singapore:
Association for Computing Machinery, 2021, pp. 1055–1065.

[51] Feng Liu et al. “Deep Reinforcement Learning based Recommendation with Explicit
User-Item Interactions Modeling”. In: ArXiv abs/1810.12027 (2018).

[52] Feng Liu et al. “End-to-End Deep Reinforcement Learning Based Recommendation
with Supervised Embedding”. In: Proceedings of the 13th International Conference
on Web Search and Data Mining. WSDM ’20. Houston, TX, USA: Association for
Computing Machinery, 2020, pp. 384–392.

[53] Feng Liu et al. “State representation modeling for deep reinforcement learning
based recommendation”. In: Knowledge-Based Systems 205 (2020).

[54] Andreas Lommatzsch, Benjamin Kille, and Sahin Albayrak. “Incorporating context
and trends in news recommender systems”. In: Proceedings of the International
Conference on Web Intelligence (2017).

116

[55] John McCarthy et al. “A Proposal for the Dartmouth Summer Research Project
on Artificial Intelligence, August 31, 1955”. In: AI Magazine 27.4 (Dec. 2006).

[56] Warren Mcculloch and Walter Pitts. “A Logical Calculus of Ideas Immanent in
Nervous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–147.

[57] Eliza Mitova et al. “News recommender systems: a programmatic research review”.
In: Annals of the International Communication Association 47.1 (2023), pp. 84–113.

[58] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518 (2015), pp. 529–533.

[59] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
(Dec. 2013).

[60] Judith Moeller et al. “Shrinking core? Exploring the differential agenda setting
power of traditional and personalized news media”. In: info 18 (Sept. 2016), pp. 26–
41.

[61] Miguel Morales. Grokking Deep Reinforcement Learning. Manning Publications
Co., 2020.

[62] Nic Newman. Overview and key findings of the 2022 Digital News Report. June
2022. url: https://reutersinstitute.politics.ox.ac.uk/digital- news-
report/2022/dnr-executive-summary (visited on 06/06/2023).

[63] Özlem Özgöbek et al. “The 10th International Workshop on News Recommendation
and Analytics (INRA 2022)”. In: July 2022, pp. 3470–3473.

[64] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., 2019.

[65] Jordan Pollack and Alan Blair. “Why did TD-Gammon Work?” In: Advances in
Neural Information Processing Systems. Ed. by M.C. Mozer, M. Jordan, and T.
Petsche. Vol. 9. MIT Press, 1996.

[66] Pascal Poupart. CS885 Fall 2021 Reinforcement Learning - Module 5: Distributional
RL. University of Waterloo. 2021. url: https://cs.uwaterloo.ca/~ppoupart/
teaching/cs885-fall21/slides/cs885-module5.pdf (visited on 05/24/2023).

[67] Marc’Aurelio Ranzato et al. “Efficient Learning of Sparse Representations with an
Energy-Based Model”. In: Jan. 2006.

[68] Shaina Raza and Chen Ding. “News recommender system: a review of recent
progress, challenges, and opportunities”. In: Artificial Intelligence Review 55.1 (Jan.
2022), pp. 749–800.

[69] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
Nov. 2019.

117

https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022/dnr-executive-summary
https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022/dnr-executive-summary
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-fall21/slides/cs885-module5.pdf
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-fall21/slides/cs885-module5.pdf

[70] Francesco Ricci. “Recommender Systems: Models and Techniques”. In: Encyclopedia
of Social Network Analysis and Mining. Springer New York, 2014, pp. 1511–1522.

[71] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Systems Handbook.
Vol. 1-35. Oct. 2010.

[72] Martin Riedmiller. “Neural Fitted Q Iteration – First Experiences with a Data
Efficient Neural Reinforcement Learning Method”. In: Machine Learning: ECML
2005. Springer Berlin Heidelberg, 2005, pp. 317–328.

[73] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Third Global Edition. Pearson, 2016.

[74] Claude Sammut and Geoffrey I. Webb. Encyclopedia of Machine Learning. 2nd.
Springer Publishing Company, Incorporated, 2017.

[75] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM Journal of Research and Development 3.3 (1959), pp. 210–229.

[76] Tom Schaul et al. “Prioritized Experience Replay”. In: (Nov. 2015).
[77] Barry Schwartz. The Paradox of Choice: Why More Is Less. Harper Perennial,

2005.
[78] Guy Shani, David Heckerman, and Ronen I. Brafman. “An MDP-Based Recom-

mender System”. In: Journal of Machine Learning Research 6.43 (2005), pp. 1265–
1295.

[79] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of
the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and
Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 1. PMLR, 22–24
Jun 2014, pp. 387–395.

[80] Spotify. About Spotify. url: https://newsroom.spotify.com/company-info/#:
~:text=Discover%2C%20manage%20and%20share%20over, ad%2Dfree%20music%
20listening%20experience. (visited on 06/05/2023).

[81] Statista. Countries with most content available on Netflix worldwide as of March
2023. 2023. url: https://www.statista.com/statistics/1013571/netflix-
library-size-worldwide/ (visited on 06/05/2023).

[82] Harald Steck et al. “Deep Learning for Recommender Systems: A Netflix Case
Study”. In: AI Magazine 42.3 (Nov. 2021), pp. 7–18.

[83] Richard S. Sutton and Andrew G. Barton. Reinforcement Learning: An Introduction.
2nd ed. http://incompleteideas.net/book/the-book-2nd.html. MIT Press, 2018.

[84] Gerald Tesauro. “Temporal Difference Learning and TD-Gammon”. In: Commun.
ACM 38.3 (Mar. 1995), pp. 58–68.

[85] J.N. Tsitsiklis and B. Van Roy. “An analysis of temporal-difference learning with
function approximation”. In: IEEE Transactions on Automatic Control 42.5 (1997),
pp. 674–690.

118

https://newsroom.spotify.com/company-info/#:~:text=Discover%2C%20manage%20and%20share%20over,ad%2Dfree%20music%20listening%20experience.
https://newsroom.spotify.com/company-info/#:~:text=Discover%2C%20manage%20and%20share%20over,ad%2Dfree%20music%20listening%20experience.
https://newsroom.spotify.com/company-info/#:~:text=Discover%2C%20manage%20and%20share%20over,ad%2Dfree%20music%20listening%20experience.
https://www.statista.com/statistics/1013571/netflix-library-size-worldwide/
https://www.statista.com/statistics/1013571/netflix-library-size-worldwide/
http://incompleteideas.net/book/the-book-2nd.html

[86] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017).

[87] Ziyu Wang et al. Dueling Network Architectures for Deep Reinforcement Learning.
2016.

[88] Chuhan Wu et al. “Empowering News Recommendation with Pre-Trained Language
Models”. In: Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’21. Virtual Event,
Canada: Association for Computing Machinery, 2021, pp. 1652–1656.

[89] Chuhan Wu et al. “Fastformer: Additive Attention Can Be All You Need”. In:
ArXiv abs/2108.09084 (2021).

[90] Chuhan Wu et al. “Is News Recommendation a Sequential Recommendation Task?”
In: Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’22. Madrid, Spain: Association for
Computing Machinery, 2022, pp. 2382–2386.

[91] Chuhan Wu et al. “Neural News Recommendation with Multi-Head Self-Attentio”.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP. Association for Computational Linguistic, Nov. 201,
pp. 6389–639.

[92] Chuhan Wu et al. “Personalized News Recommendation: Methods and Challenges”.
In: ACM Trans. Inf. Syst. 41.1 (Jan. 2023).

[93] Fangzhao Wu et al. “MIND: A Large-scale Dataset for News Recommendation”.
In: Jan. 2020, pp. 3597–3606.

[94] Derek Yang et al. “Fully Parameterized Quantile Function for Distributional
Reinforcement Learning”. In: CoRR abs/1911.02140 (2019).

[95] Alexander Zai and Brandon Brown. Deep Reinforcement Learning in Action. Man-
ning Publications Co., 2020.

[96] Qi Zhang et al. “UNBERT: User-News Matching BERT for News Recommenda-
tion”. In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. International Joint Conferences on
Artificial Intelligence Organization, Aug. 2021, pp. 3356–3362.

[97] Xiangyu Zhao et al. “DEAR: Deep Reinforcement Learning for Online Adver-
tising Impression in Recommender Systems”. In: AAAI Conference on Artificial
Intelligence. 2019.

[98] Xiangyu Zhao et al. “Deep Reinforcement Learning for Page-Wise Recommenda-
tions”. In: Proceedings of the 12th ACM Conference on Recommender Systems.
RecSys ’18. Vancouver, British Columbia, Canada: Association for Computing
Machinery, 2018, pp. 95–103.

119

[99] Guanjie Zheng et al. “DRN: A Deep Reinforcement Learning Framework for News
Recommendation”. In: Proceedings of the 2018 World Wide Web Conference. WWW
’18. Lyon, France: International World Wide Web Conferences Steering Committee,
2018, pp. 167–176.

120

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Structure of the Work

	Fundamentals I: Reinforcement Learning
	Relationship to other Paradigms
	Introduction to Reinforcement Learning
	Markov Decision Process
	Dynamic Programming
	Learning Methods
	Function Approximation

	Fundamentals II: Recommender Systems
	Introduction to Recommender Systems
	Recommendation Methods
	Recommender System Evaluation
	Challenges: Sparsity and Cold-Starts

	Fundamentals III: Deep Reinforcement Learning
	Brief History of Deep Reinforcement Learning
	DQN
	Distributional Reinforcement Learning
	REINFORCE
	DDPG and TD3

	NRSs and DRLRSs: State-of-the-Art
	Introduction to News Recommendation
	State-of-the-Art: News Recommender Systems
	(Deep) Reinforcement Learning Recommender Systems

	Data: Microsoft News Dataset
	Introduction to MIND and MIND Paper
	Preprocessing and Exploration
	Discussion and Critique

	DRLNRS: Comparative Analysis
	RL Framework
	DRL Algorithms
	Experiments
	Results

	Conclusion
	Insights
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

