
Exploring Interoperability and
Scalability in DAG-based

Distributed Ledger Technologies
A Case Study of Relay Implementation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Greitbauer, BSc
Matrikelnummer 01325988

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr.-Ing. Stefan Schulte
Mitwirkung: Dr. William Sanders

Wien, 29. September 2023
Philipp Greitbauer Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Exploring Interoperability and
Scalability in DAG-based

Distributed Ledger Technologies
A Case Study of Relay Implementation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Greitbauer, BSc
Registration Number 01325988

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.-Ing. Stefan Schulte
Assistance: Dr. William Sanders

Vienna, 29th September, 2023
Philipp Greitbauer Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philipp Greitbauer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. September 2023
Philipp Greitbauer

v

Acknowledgements

At this point, I would like to express my gratitude to all those who have supported me
in the creation of this diploma thesis and have accompanied me throughout my studies.

First and foremost, I want to thank my advisor Dr.-Ing. Stefan Schulte for his invaluable
supervision of this thesis and for providing timely and comprehensive feedback.

Furthermore, I am thankful to Dr. William Sanders for his helpful insights and for
connecting me with valuable resources and experts in the field.

However, my most profound gratitude is reserved for my wife, Ursula, for her patience
during this challenging time and for my son, Johannes, who gave me the strength and
motivation needed to successfully conclude this thesis.

Finally, I want to acknowledge my parents, whose initial support made my academic
journey possible in the first place.

vii

Kurzfassung

In den letzten Jahren sind Kryptowährungen wie Bitcoin und die zugehörige Blockchain-
Technologie zu gängigen Themen in der Mainstream-Welt geworden. Diese erhöhte Auf-
merksamkeit hat bedeutende Fortschritte im Bereich der Distributed-Ledger-Technologien
(DLTs) ermöglicht. Gleichzeitig hat der erhöhte Datenverkehr auch die Bedeutung von
Skalierbarkeit hervorgehoben und zur Entstehung verschiedener neuer Projekte und
Techniken zur Verbesserung der Skalierbarkeit geführt. Viele dieser Systeme sind in-
kompatibel zueinander, was die Fragmentierung von DLTs verstärkt. Daher ist neben
der Skalierbarkeit auch die Interoperabilität ein aktueller Forschungsschwerpunkt. Ein
vielversprechender Ansatz zur Erhöhung des Transaktionsdurchsatzes besteht darin, die
übliche Blockchain-Datenstruktur durch einen gerichteten azyklischen Graphen (directed
acyclic graph, DAG) zu ersetzen. Solche Lösungen bringen jedoch ihre eigenen Her-
ausforderungen in Bezug auf Dezentralisierung sowie Sicherheit mit sich und können
immer noch an Skalierbarkeitsgrenzen stoßen. Aus diesem Grund darf die Forschung zur
Skalierbarkeit solcher Systeme nicht vernachlässigt werden.

Die meiste Forschung zu Blockchain-basierten Systemen ist nicht unbedingt direkt auf
DAG-basierte anwendbar. Dies gilt auch für sogenannte “Relays”, die Schemata zur
vertrauenswürdigen Weiterleitung von Nachrichten von einer Ledger zu einer anderen sind.
Diese Interoperabilitätslösungen können die Skalierbarkeit fördern, da sie es ermöglichen,
von anderen Systemen zu profitieren, die beispielsweise bestimmte Aufgaben effizienter
erledigen. In jüngster Zeit hat die Nutzung von sogenannten “Zero-Knowledge Succinct
Non-Interactive ARguments of Knowledge” (zk-SNARKs) um solche Übertragungen
effizient und sicher abzuwickeln viel Aufmerksamkeit erregt. Mit dieser Art von Protokoll
ist es möglich, beliebige Berechnungen in kompakter Form zu beweisen, ohne Einzelheiten
der Operation preiszugeben.

In dieser Arbeit geben wir einen umfassenden Überblick zu Trends der Skalierbarkeit
sowie Interoperabilität in DLTs und diskutieren bestehende Relay-Lösungen. Basierend
darauf präsentieren wir eine Relay-Implementierung für eine DAG-basierte DLT. Die
Evaluierung konzentriert sich auf die Leistung des Relays bei der Überprüfung von
echten Transaktionsdaten unter verschiedenen Szenarien. Zum Abschluss dieser Arbeit
diskutieren wir mehrere Ansätze zur Nutzung von zk-SNARKs, um die vorgeschlagene
Lösung weiter zu verbessern, und betonen die Wichtigkeit DLTs, unter Berücksichtigung
von Interoperabilität und effizienter Anwendung von zk-SNARKs zu entwickeln.

ix

Abstract

In recent years, cryptocurrencies like Bitcoin and the associated blockchain technology
have become commonplace topics in the mainstream. This surge in attention has
enabled significant advancements and research within the field of distributed ledger
technologies (DLTs). Simultaneously, the increased traffic has underscored the importance
of scalability, leading to the emergence of various new projects and techniques aimed
at improving scalability. By this process, DLTs became even more fragmented due to
several incompatible systems. Therefore, besides scalability also interoperability is a
current focus of research.

A promising approach to achieve higher transaction throughput is to replace the common
blockchain data structure with a directed acyclic graph (DAG) to construct a DAG-based
DLT. However, such solutions come with their own challenges regarding decentralization
as well as security and may still encounter scalability limits. For that reason, research on
scalability specific to such systems should not be neglected.

Unfortunately, most research conducted in the field of DLT focuses on blockchain systems
and may not directly be applicable to the ones based on a DAG. That is also the case for
work on so-called “relays”, which are schemes for relaying messages from one ledger to
another in a trustworthy way. These interoperability solutions can promote scalability
because they allow to benefit from other systems that, for example, handle specific tasks
more efficiently. Recently, the utilization of zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKs) as an enabler for efficient and secure cross-chain
transfers has attracted much attention. With this kind of protocol, it is possible to prove
arbitrary computations in a concise way without giving away details of the operation.

In this thesis, we give a comprehensive overview of scalability and interoperability trends
in DLT and discuss existing relay solutions. Based on these observations we present a relay
implementation for a DAG-based DLT. The evaluation focuses on the relay performance
for verifying real-world transaction data under various scenarios. Concluding this work,
we discuss several approaches for using zk-SNARKs to further improve the proposed
solution and stress the importance of DLTs that are designed under consideration of
interoperability and efficient application of zk-SNARKs.

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 2
1.3 Methodology and Approach . 3
1.4 Structure . 4

2 Background 7
2.1 Blockchain-based Cryptocurrencies . 7
2.2 DAG-based Cryptocurrencies . 9
2.3 Sharding . 11
2.4 Zero-Knowledge Proofs . 12

3 Related Work 21
3.1 Scalability . 21
3.2 Sharding in DLTs . 24
3.3 Distributed Ledger Interoperability . 28
3.4 zk-SNARKs . 33
3.5 DAG-based DLTs . 34

4 Design 47
4.1 Requirements/Design Goals . 47
4.2 Milestone Validation . 52
4.3 Message Inclusion Proof . 53

5 Implementation 55
5.1 Technology Stack . 55
5.2 Relay Components . 59
5.3 Node Interfaces . 64
5.4 zk-SNARK Libraries . 65

xiii

6 Evaluation 69
6.1 Fulfillment of Requirements . 69
6.2 Quantitative Analysis . 72
6.3 Security Analysis . 78
6.4 Discussion . 80

7 Conclusion 83
7.1 Summary . 83
7.2 Future Work . 85

Bibliography 89

CHAPTER 1
Introduction

1.1 Motivation
Cryptocurrencies like Bitcoin are usually realized using blockchains as a distributed ledger
to log transactions in an immutable way. Using a consensus protocol, all participants
settle on a unique transaction order. The downside of this approach is the relatively
low throughput, mostly measured in transactions per second (TPS), which cannot easily
be scaled up. For this reason, scalability is a heavily researched topic in the field of
cryptocurrencies [WSNH19].

In recent years, blockchain-based cryptocurrencies have reached the mainstream and have
become a more and more popular investment option. Hence, there is a need for a solution
to handle the increased traffic. If the throughput per second cannot be increased, users
have to wait longer for their transactions to be confirmed. At some point, the waiting
time reaches a length where the usability of the system is heavily impacted [YWY+20;
ZHZB20].

To avoid this, multiple ways for scaling an existing blockchain have been proposed in
recent years. The solutions reach from optimizations of algorithms, data structures, and
networking [DPS+20] to sharding and sidechains [WSNH19; ZHZB20].

Sharding, a technique originally used for databases, is a way of dividing the work
(here: transactions) among groups of processing nodes. Accordingly, a blockchain gets
partitioned into multiple parts, called “shards”, while each node only stores and handles
transactions for some of these shards. This distribution of work allows handling different
transactions in parallel, improving the overall transaction throughput and also reducing
the communication and storage overhead for all nodes [WSNH19; YWY+20].

Another solution for scalability works by creating additional sidechains having specific
properties, like a faster block time, and also providing means of transferring native

1

1. Introduction

assets between the sidechains and the mainchain. This approach also makes the system
extensible by just adding more sidechains with different properties, avoiding the complex
process of changing the implementation of the mainchain [GKO20].

Furthermore, distributed ledger technologies (DLTs) applying other data structures than
blockchains exist. For instance, IOTA is based on a directed acyclic graph (DAG) called
“the Tangle” [PMC+20; Pop18], leading to a better transaction throughput because it
allows attaching transactions to various nodes instead of only one. While scalability
approaches for blockchains are heavily researched and in practical use, so far, little work
has be done in the context of sharding or sidechains for DAG-based DLTs to even further
improve the performance in terms of transaction throughput [ZHZB20].

An important field of study for DLTs is the relaying of messages in general and the
transfer of funds between chains. Recently, the utilization of zero-knowledge Succinct
Non-interactive ARguments of Knowledge (zk-SNARKs) as an enabler for such cross-
chain transfers has attracted much attention [GKO20]. With this kind of protocol, it
is possible to prove arbitrary computations in a succinct constant size without giving
away details of the operation. The resource-intensive calculation and proof generation
can happen off-chain and only the more lightweight verification is done on-chain [WE20].

By combining a DAG-based DLT, with additional sharding and sidechain solutions and
the use of zk-SNARKs for cross-chain transfers, a highly scalable, secure and decentralized
system for multiple use cases could be built. It remains to show if state-of-the-art zk-
SNARKs or similar proof systems are efficient enough to allow all users to equally
participate in all network operations.

1.2 Aim of the Work
Extensive research on possible scalability and interoperability solutions for blockchains
and also on zero-knowledge proof schemes with different properties exists, but there
have not been many efforts to apply these methods to other DLTs. Common, ways to
scale popular existing blockchain systems such as Bitcoin receive the most attention in
scientific work [ZHZB20] but also novel DLTs built from scratch with both scalability
and interoperability in mind are proposed [KJG+18; PMC+20]. Although replacing the
blockchain with a DAG can increase the throughput, such a solution also has limitations
[BKLM19; POK19]. This is why research on scalability and interoperability, as it
facilitates the former, specific to such systems should not be neglected.

Therefore, the initial aim of this thesis is to give an overview of current research in the
fields of sharding, sidechains, relays as well as other related scalability and interoperability
solutions for DLTs. Subsequently, the gained knowledge will be used to analyze and
compare the found approaches. The results can then be used to evaluate the applicability
to DAG-based DLTs and to derive a design for a relay solution. Before realizing the
solution design, choices for the tech stack, as well as the potential usage of zk-SNARK
libraries will be assessed. Relays are a popular field of research in DLT, as they bring

2

1.3. Methodology and Approach

together the topics of interoperability and scalability. The following paragraphs detail
the different aims of the work and their expected outcomes.

Scalability and Interoperability Approaches

Various techniques can be employed to reach the goal of better scalability and interoper-
ability. This thesis focuses on relay solutions but also looks into the usage of zk-SNARKs
or similar proof systems. For other aspects, like reducing the network communication
overhead or optimizing consensus protocols, only an overview is given.

The aim of the thesis is to find solutions applicable to DAG-based DLTs. Much work is
dedicated to blockchain technology only. Therefore, it will be investigated whether the
identified approaches are suitable for that goal and how they can be used.

zk-SNARK Schemes and Implementations

Although in recent years many new zk-SNARK proof schemes were proposed, only some
concrete implementations are available. Additionally to an overview of the approaches
and their practical usage, an assessment of the libraries implementing them is needed.
This is especially important as proof generation generally needs significant computing
resources that are not available for all participants due to constrained devices, for example
in the Internet of Things (IoT).

Relay Implementation

The final output of the work is a proof of concept implementation of a relay solution
for a DAG-based source ledger and an evaluation of its performance using transaction
data. Furthermore, an analysis of selected security aspects and a detailed perspective for
future enhancements will be given.

1.3 Methodology and Approach
The methodological approach can be grouped into four steps. Due to the fact that the
topics of this thesis are still undergoing heavy research and development, novel approaches
are proposed regularly. Analyzing these cutting-edge methods and their implementations
is a highly exploratory work. In consequence, the listed phases are not followed in a
strictly linear manner. Rather, a partly iterative process is necessary.

Literature Review

First, a literature review on the research fields of DLT scalability and interoperability with
a focus on relays needs to be conducted to gain deeper knowledge about current problems
and limitations. Additionally, recent advancements in (DAG-based) DLT and also in the
area of zero-knowledge proofs have to be evaluated to identify possible approaches to be
used as parts of the relay implementation case study.

3

1. Introduction

Requirements Analysis and Solution Design

Before working on the implementation, the requirements need to be clearly defined.
Based on these, a design is derived and the proposed solution is explained in detail. This
part also contains reasoning about exchangeable components and the potential use of
zk-SNARK proof systems.

Implementation

After analyzing existing approaches and stating the requirements, suitable options need
to be chosen to fulfill them with the developed proof of concept. On that account, care
must be taken when deciding on options such as the programming language to use. The
selection will be limited by the support of the targeted DLT and the availability of
zk-SNARK libraries, as these are the most important and complex parts of the realization.
Porting such codebases is not feasible within the scope of this work.

Evaluation

Finally, the created relay implementation and possibly its different options are evaluated
under various scenarios based on a suitable metric such as its “gas” costs. For zk-
SNARKs, CPU or RAM resource usage, as well as the computational time for proof
creation and verification, are the most important factors. To get meaningful results,
real-world transaction data of a DAG-based DLT, for instance, IOTA, is used as input.

1.4 Structure
After the previous introduction, the remaining thesis is structured into the following key
chapters that collectively provide a comprehensive exploration of current trends in DLT
and the development of a relay scheme for DAG-based source ledgers.

In Chapter 2, the foundation is laid with an extensive overview of DLT, covering both
blockchain and DAG-based cryptocurrencies. Concepts like sharding and zero-knowledge
proofs, particularly zk-SNARKs, are thoroughly examined. Chapter 3 investigates existing
research in the field. It addresses the topics of scalability, interoperability, and their
challenges. This review of related work sets the stage for the thesis’s original research.

Chapter 4 presents the requirements and design approach of a relay scheme for DAG-
based source ledgers, on the concrete example of IOTA. While drawing inspiration from
blockchain-based relay solutions, it highlights the specific design considerations taken for
this work. Chapter 5 follows with a detailed exploration of the implementation aspects
of the relay solution described in Chapter 4. It discusses the technology stack, the relay
contract functionality as well as the testing approach. Chapter 6 evaluates the solution,
aligning it with the design criteria specified in Chapter 4. Furthermore, data collection
and analysis, benchmarking, and a security analysis are presented in this chapter.

4

1.4. Structure

Finally, Chapter 7 serves as the conclusion, summarizing key findings and insights gained
throughout the thesis. It also looks ahead to potential research directions following this
work and also within the broader field of research, providing a fitting closure to this
comprehensive exploration of DLTs and relay schemes.

5

CHAPTER 2
Background

Chapter 2 provides a comprehensive overview of DLT. It covers blockchain-based, as well
as DAG-based cryptocurrencies, and the concept of sharding. The chapter also explores
zero-knowledge proofs, focusing on zk-SNARKs and their applications. A summary
concludes the chapter, highlighting the key points discussed and their significance in the
context of DLTs.

2.1 Blockchain-based Cryptocurrencies
Since the Bitcoin whitepaper was published by Nakamoto [Nak08] in 2008, DLTs have
evolved and become more and more accepted by the public. This evolution of blockchains
can roughly be divided into three generations, explained in the following paragraphs [Do23;
KS22; Ten]. The actual classification of generations in literature varies slightly depending
on the source and its intended audience and goal.

Bitcoin and its direct derivatives can be labeled as first-generation blockchains (or DLTs).
They were proposed with the goal of building a decentralized peer-to-peer electronic cash
system [Nak08] based on cryptographic functions and financial incentives, later commonly
referred to as “cryptocurrencies”.

With Ethereum, initially described by Buterin [But21b] and later specified in a more
formal way by Wood [Woo21a], the second generation of blockchains began. Note that
both of these papers are still updated. The initial versions were published in 2013 and 2014.
Smart contracts, the major feature introduced by Ethereum, allow to create applications
that are directly executed in the network and can control digital assets, based on the code
written in a Turing-complete programming language. For this reason, second-generation
blockchains are not just cryptocurrencies but rather platforms that other projects can
build upon. Developers can implement various decentralized apps (dapps), for instance,
financial services, games, and supply chain management. In Bitcoin, the available balance

7

2. Background

of a user is the total value of so-called unspent transaction outputs (UTXOs), meaning
coins of a transaction not yet used in another one, the user can prove ownership for.
Ethereum instead opted to store the balance of each account in the global state. This
approach is named “account model” and was chosen because of a more simple handling
in smart contracts and storage space savings [Eth20].

The new possibilities also meant a steady increase of transactions waiting to be executed,
resulting in much research on how to scale the efficiency of the system. Third-generation
blockchains are designed with inherent scalability solutions to tackle this problem. Second-
generation projects also work on integrating scalability solutions. For instance, Ethereum
transitioned to a PoS consensus and prepared for future scaling enhancements through
an update called “The Merge” that occurred in September 2022 [Eth23a].

Because there are already a huge amount of DLT projects covering several use cases
and one general-purpose blockchain cannot fulfill all of them with the same efficiency,
interoperability between different systems is of utmost importance. This is the second
topic third-generation blockchains are working on besides scalability. Well-known projects
include Cosmos [KB19] and Polkadot [BCC+20; Woo16]. With their SDKs, both projects
facilitate to build “application-specific blockchains”. Instead of executing a decentralized
application on top of a general-purpose virtual machine, like the EVM, it directly is
run as part of the chain logic. In the past, creating such a customized blockchain
required forking an existing DLT codebase, such as Bitcoin. Adaptions beyond simple
configuration changes were quite challenging as it was not intended for it.

Building an application as an application-specific blockchain has multiple benefits [ICF20;
Mar19]:

• Flexibility: Smart contracts usually require specific programming languages and
are therefore limited to a few choices. Compared to that developing app-specific
blockchains is possible with multiple general-purpose languages, although there
still is the limitation of SDK availability. With the rise of WebAssembly VMs
allowing many different programming languages for smart contract implementations,
language choice on its own is not an advantage of application-specific blockchains
anymore. Even Cosmos has a module for adding Wasm smart contract capabilities
to a blockchain built with its SDK1. Nevertheless, a customized blockchain allows
you to weigh trade-offs such as validator count, throughput, the balance of safety
and availability, and the account model to make a decision that fits your use case
best. Another benefit over smart contracts is the possibility to automatically trigger
code execution, e.g., at the beginning or end of each block.

• Performance: Although the performance of VMs regularly improves and often
used functionality is integrated in an efficient way, native execution in general will
always be ahead in terms of performance. Furthermore, an app-specific blockchain

1CosmWasm. https://docs.cosmos.network/v0.46/CosmWasm/, Last accessed: 2023-03-15

8

https://docs.cosmos.network/v0.46/CosmWasm/

2.2. DAG-based Cryptocurrencies

allows one to choose a consensus engine and avoids competition over storage or
computation resources between applications.

• Sovereignty: With an app-specific blockchain, the developer has full sovereignty
over the application and is not dependent on the governance of the network. On the
one hand, this allows to easily fix occurring issues but on the other hand reduces
trust in the network.

• Security: Without a VM, the attack surface is vastly reduced as there no longer is
the need to reason about its mechanisms. In addition to, more or less, free choice
of programming language also any available cryptographic library can be utilized
instead of being dependent on the limited functionality available in smart contracts.

Of course, also first-gen blockchains worked on improving their efficiency by various
means. Some of them are explained in Section 3.1. Additionally, there are projects that
do not directly fit into the described generations. For instance, IOTA (further described
in Section 3.5.1) does not use a blockchain and also does not support smart contracts.
Although the blockchain data structure has found a novel use case with cryptocurrencies,
it has limitations, such as not being suitable for parallel attachments of new blocks,
causing slow confirmation and low throughput [WYCX20].

Blockchains save state changes in the system by storing transactions in a block. These
blocks linearly build upon their predecessors, forming an immutable chain. Therefore, to
not cause conflicts, only one block can be added at a time. The performance bottleneck
is caused by that in combination with the consensus mechanism determining which
participant is allowed to add the next block. Because the amount of transactions fitting
into one is limited, the others are pooled until the following round. The race to be the
miner to attach the next block can lead to conflicts and wasted computations [IOT22;
WYCX20].

For the given reasons, research on replacing or at least complementing blockchains
with other data structures started early. A popular concept is that of using a tree-
like representation. First ideas came up to accelerate Bitcoin by structuring blocks in
trees [Tod14]. The next step was to avoid blocks altogether and use transactions to
directly confirm multiple others, constructing a DAG by that process.

2.2 DAG-based Cryptocurrencies
In contrast to most DLTs, which are based on a blockchain, systems using a DAG to
attach transactions come with the intrinsic advantage of fast confirmation and high
scalability. Blockchain systems rely on keeping the transactions/blocks linearly in a
single chain. Therefore, there is always only one point (not counting temporary forks)
to attach a succeeding block, causing competition over it. This ultimately leads to slow
confirmation. On the other hand, structuring transactions in a DAG provides multiple
attachment points enabling parallel processing of transactions [WYCX20].

9

2. Background

This distributed structure also allows for a more efficient utilization of network resources,
because transactions can be processed concurrently by different nodes in the network.
In general, performance is improved by reducing the communication, computation, as
well as storage overhead. Additionally, the lack of a single, central chain in a DAG-based
DLT theoretically eliminates the need for nodes to reach consensus on a linear global
ordering of transactions, resulting in improved scalability [WYCX20].

However, this shift in data model and transaction handling also calls for new consensus
algorithms and adjusted incentives to retain decentralization and security. Traditional
blockchain systems often rely on proof-of-work (PoW) or more recently on proof-of-stake-
based (PoS) procedures to validate and order transactions.

In PoW, participants (miners) have to solve complex mathematical puzzles in order for
them to be allowed to validate transactions and add them to the blockchain. These
puzzles, for example providing an input to a hash function that leads to an output with
specific properties, require significant computational power and energy.

PoS is an alternative in which validators are chosen to create new blocks and confirm
transactions based on the amount of cryptocurrency they hold and are willing to stake
as collateral, reducing the need for energy-intensive computations seen in PoW.

Another type is Byzantine Fault Tolerance (BFT) based consensus, where nodes vote on
the validity of transactions or proposed changes to the system. Through multiple rounds
of communication and voting, nodes must reach a threshold of agreement, typically
two-thirds, to ensure that only valid transactions are included in the system’s ledger,
even in the presence of faulty or malicious nodes.

In DAG-based DLTs, novel consensus algorithms leverage concepts like voting, gossip
protocols, or random walks with cumulative weights to ensure the integrity of the ledger
and prevent double-spending [WYCX20].

Furthermore, the use of a DAG in DLTs introduces some unique challenges. One challenge
is the potential for conflicts or conflicting transactions within the graph, which requires
additional measures to resolve. Moreover, the security of a DAG-based DLT relies heavily
on the honesty and reliability of the participants in the network. Since transactions
can be confirmed by different nodes independently, malicious actors could potentially
create multiple conflicting transactions or attempt to gain advantages in the network by
other means. Some attack scenarios known from classic blockchains can also be applied
to DAG-based systems. Additionally, various novel threats have surfaced due to the
inherently different approaches taken in these DLTs. Therefore, robust mechanisms
for transaction validation, reputation systems, and anti-spam measures are crucial in
ensuring the integrity and security of the ledger [AVD20; CKN+22].

DAG-based systems, compared to blockchains, still have not reached widespread commer-
cial acceptance due to their inconsistent designs, lack of standards, less certain security,
mixed performance, and implementations not matching the initial vision. For example,
IOTA employs a centralized auxiliary construct instead of relying on consensus based

10

2.3. Sharding

on the heaviest DAG, such as the probabilistic and leaderless protocols proposed by
Popov and Buchanan [PB21] or Müller et al. [MPP+22]. In general, DAGs may enhance
scalability and performance but often lead to sacrifices in terms of consistency, finality,
or decentralization [WYCX20].

2.3 Sharding

Sharding techniques originated from horizontal database partitioning schemes that sepa-
rate very large databases into many smaller parts (shards). This increases performance
and makes database management easier [WSNH19].

When transactions access multiple shards, coordination protocols are required to ensure
properties such as atomicity and isolation [DDL+19]. In their work, Dang et al. define
the term sharding as the combination of replication and partitioning. By replicating each
partition, distributed database systems can achieve fault tolerance and scalability. To keep
the content consistent, consensus protocols are needed, which could be combined with
transaction management in a well-thought-out way to reach better overall performance,
compared to just layering the two systems.

The goal of sharding in general is to scale out communication, storage and computation.
To scale out (also referred to as horizontal scaling) means to grow the respective capacity
with the number of nodes [YWY+20].

Yu et al. describe two fundamental issues that need to be addressed by any sharding
mechanism.

2.3.1 Intra-Consensus Safety

Sharding increases the throughput but also paves the way for different types of attacks,
especially when naive sharding techniques are used. For instance, the 1% attack, named
after the example that the whole network consists of 100 shards and one miner has 1% of
the total amount of mining power. This is by far not enough to directly attack the whole
network because usually more than 50% would be needed. An honest actor striving to
maximize his rewards would distribute the mining power over multiple shards, but if he
chooses to just concentrate on one he can completely control that shard. When more
shards are added, the issue gets worse as the needed mining power to attack one decreases
further. Therefore, especially a PoW-based consensus protocol under this assumption
is insecure. BFT-based consensus algorithms as an alternative can solve the issue. The
most important requirement for that type of algorithm is a source of secure randomness
that is unpredictable and unbiasable. It is then used to allocate nodes to shards both
initially and for each reshuffling phase, deciding shard leaders and also choosing where
cross-shard transactions should be broadcast to [YWY+20].

11

2. Background

2.3.2 Cross-Shard Atomicity

Although distributing transactions over multiple shards helps with the throughput also
the overhead and latency of communication between shards have to be considered. With
an increasing number of shards, the probability of cross-shard transactions approaches
100%. Therefore, the communication overhead could outweigh the initial advantage of
sharding resulting in an inefficient technique that does not reach the desired scalability.

Atomicity guarantees that a transaction is successfully executed across all different shards
and thereby ensures consistency and prevents partial execution or inconsistent states
in the distributed ledger. It needs to be fulfilled not only for simple transactions, for
instance, value transfers but also for more complex statements, such as the execution of
smart contracts.

To achieve cross-shard atomicity, coordination mechanisms and protocols must be estab-
lished. These mechanisms enable the coordination and synchronization of transactions
across different shards, ensuring that they are executed atomically. Yu et al. discuss
various approaches, based on lock/unlock schemes as well as asynchronous lock-free
solutions [YWY+20].

2.4 Zero-Knowledge Proofs
The first notion and definition of zero-knowledge proofs (ZKPs) was given more than
three decades ago by Goldwasser, Micali, and Rackoff [GMR89]. In their work, they
introduce interactive proof systems which are needed so that a prover can convince a
verifier that he knows the secret, without giving it (or any other knowledge) away, by
repeatedly exchanging information. They also give credit to Babai and Szemeredi who
invented the so-called Arthur-Merlin proof systems which are similar to interactive proof
systems. As an application of a zero-knowledge interactive proof system Goldwasser
et al. describe the usage for cryptographic protocols in which it could securely replace a
trusted middleman.

Further work in this field was done by Goldreich, Micali, and Wigderson, showing a ZKP
for the graph coloring problem under the assumption of secure encryption schemes (and
the existence of one-way functions) [GMW86; GMW91]. Since every problem in NP can
be reduced to this NP-complete one, they proved that ZKPs can be constructed for every
problem in NP.

Later Quisquater et al. published the famous, illustrative example known as the “Ali
Baba cave” [QQQ+90] still used nowadays to explain ZKPs in a comprehensible way.
This special cave has one entry and leads to a circular path that is blocked by a gate
midway through. The gate only opens for someone knowing the secret words. Now
imagine two persons, Peggy (prover) and Victor (verifier). Peggy wants to prove to Victor
that she can pass the door, without revealing how. This can be done with an interactive
zero-knowledge protocol as follows.

12

2.4. Zero-Knowledge Proofs

First Peggy enters the cave and chooses one direction while Victor waits outside so he
cannot observe which way Peggy went. Next Victor, waiting at the fork, tosses a coin
and depending on the outcome tells Peggy to come back via the left or right path. If she
truly knows the secret to open the door she can fulfill that request no matter the given
direction. Of course, if Peggy does not know the secret, there is a 50% chance for her to
choose the correct side in advance. Hence the described procedure needs to be repeated
n times until the probability 1/2n of always guessing correctly is so low that Victor is
convinced that Peggy really knows the secret. Otherwise, if she shows up on the wrong
side once, Victor immediately knows that Peggy is dishonest and has no knowledge of
the secret.

The property of being able to notice dishonest behavior in such a proof system with a
high probability is called soundness. Another property of interactive (zero-knowledge)
proofs is completeness.

Together they can be informally described like this [GMW91; Gol01]:

1. Completeness: If the prover knows the secret (statement is true) the verifier can be
convinced of this fact with high probability.

2. Soundness: If the prover does not know the secret (statement is false) the verifier
can only be fooled into believing otherwise with negligible probability.

3. Zero-knowledge: The proof does not yield knowledge beyond the fact that the
prover knows the secret (i.e., just the validity of the statement).

It is important to differentiate between knowledge and information. Goldreich describes
this in Foundations of Cryptography [Gol01] to motivate the definition of zero-knowledge
and explain what a gain in knowledge is. In the sense of information theory, there
is no difference between asking, for instance, about different properties of a publicly
known large graph. Knowledge however is related to computational difficulty. Therefore
someone does not gain knowledge by asking for a fact that could have been efficiently
determined by oneself, e.g., if the graph is Eulerian. One gains knowledge if after learning
the answer something can be easily computed, which was not possible efficiently before.
In the context of the graph example, this could be the knowledge if the graph contains a
Hamilton path, which is an NP-complete problem and therefore cannot be computed
efficiently.

According to Blum et al. [BDMP91], interactive ZKPs consist of the following building
blocks:

(1) Interaction: Prover and verifier communicate with each other recurringly.

(2) Hidden Randomization: The verifier’s source of randomization (e.g., the coin toss)
is hidden from the prover.

13

2. Background

(3) Computational Difficulty: The proof embeds a computational difficulty of some
problem.

In a quest to cut down these requirements, Blum et al. investigated the possibility to
implement ZKPs without recurrent interaction between prover and verifier. Getting rid
of this communication overhead would considerably enhance the practical applicability
of ZKPs.

Considering that uni-directional ZKPs without any shared information are only existing
for trivial statements, the new approach uses shared randomness as a solution. This
means that prover and verifier know the same, short, randomized string, commonly
named “reference string”. Therefore the building block (2) is obsolete, as the verifier
does not need to do any coin tosses. Additionally, as now only one single message is sent
from prover to verifier (1) is not needed anymore leading to the class of non-interactive
zero-knowledge proofs (NIZKs) [Gol04].

In the work of Blum et al., a new reference string is needed for each proof and it cannot be
reused without implications on the zero-knowledge property. As a general open problem,
they mention finding more efficient proof systems and even more important, reducing
the complexity assumptions needed. The question whether many provers could share
the same reference string without any drawbacks regarding the properties completeness,
soundness, or zero-knowledge was in succession positively answered in “Multiple Non-
Interactive Zero Knowledge Proofs Based on a Single Random String” by Feige, Lapidot,
and Shamir [FLS90].

2.4.1 zk-SNARKs
More research in the field of NIZKs led to more practicable and efficient proofs with
desirable properties, such as succinctness. Bitansky et al. [BCC+17; BCCT12] first coined
the term zero-knowledge Succinct Non-Interactive ARguments of Knowledge (zk-SNARKs)
for describing such enhanced proof systems. Gennaro et al. also worked on succinct NIZKs
by constructing a SNARK and making it zero-knowledge [GGPR13]. Subsequently, efforts
were made to create concrete, universal implementations solving previous limitations and
helping to bring zk-SNARKs into practical use [BCTV14; PGHR13]. Details on selected
state-of-the-art research and open challenges can be found in Section 3.4.

The properties building the acronym SNARK are described in the following [But21a;
Rei16]:

• Succinct: The length (or size) of the proof sent to the verifier and the time needed for
the verification is small in relation to the original statement’s size and computation
time. Therefore, the proof can be verified with considerably less effort than it takes
to build it.
In other words: the size of the proof, as well as the time required for its verification,
grows substantially slower than the computation to be verified.

14

2.4. Zero-Knowledge Proofs

• Non-interactive: Instead of recurring interactions, only a trusted setup and a single
message from the verifier to the prover are needed. Additionally, many SNARKs
satisfy the public verifier property, allowing them to be confirmed by multiple
verifiers without further messages. This is especially helpful in the context of DLTs.

• ARguments: Also known as computational soundness, the verifier is only protected
against maliciously crafted proofs under the assumption of a computationally
bounded prover. An adversary with unlimited/enough computation power could
craft proofs that would be accepted by the verifier even if they include wrong
statements. However, with such computation resources also public-key encryption
could be broken.

• of Knowledge: A prover can only construct a proof when knowing a witness for
it. The preimage x of a hash function h(x) is an example of a witness. Hence, the
verifier does not only know that a witness exists but also that the prover really
knows one.

Unfortunately, most SNARK schemes require a one-time trusted setup to produce
reference strings [GKM+18; Set19].

There are different types of reference strings used [GKM+18; ZKP19]:

• “Common Reference String” (CRS): The umbrella term for both types (URS and
SRS). The string, composed of proving and verification parameters (also referred
to as keys), is known to the prover and verifier.

• “Uniform Random String” (URS): In earlier literature, it was also called “Common
Random String” but due to the same acronym as the Common Reference String
this name is avoided nowadays. URS is a special case of CRS. The reference string
in this case is sampled from a uniform space without involving secrets. Such a
setup, where the prover and verifier access the URS, obtained from a common
source of randomness, is called transparent.

• “Structured Reference String” (SRS): An SRS is created based on a complex
distribution with a sampling algorithm using internal randomness which must be
kept secret. If this data is revealed, the creation of proofs for false statements would
be possible. For that reason, a trusted setup is needed for SRS creation. Groth
et al. use the term structured CRS [GKM+18].

In environments without trusted authorities, for instance, in DLTs, such a setup is often
infeasible or at least tied to the huge effort of a secure multi-party computation (MPC)
ceremony2. The result of an MPC is secure as long as one of the participants is honest.
Some MPC protocols result in a CRS for a fixed circuit. In case of an upgrade, for new

2Example of a complex MPC procedure [Zcab]

15

2. Background

functionality or better performance, and therefore a changed circuit, a whole new setup
ceremony is needed. A circuit is a representation of a computation consisting of inputs,
gates, wires and outputs. The Rank-1 Constraint System (R1CS) is a concrete way to
define a circuit using mathematical equations and inequalities describing how the input
is transformed to the output [Mal19].

Although this requirement hinders the widespread practical usage of zk-SNARKs, such
an upgrade procedure was performed by Zcash [Zcab]. The initial ceremony happened
in 2016 and required pre-selected participants who needed to be available for the entire
process. If one participant would have aborted, the whole procedure would have failed.
Since then MCP protocols have improved and scale better with respect to the number of
participants as they now can leave the protocol immediately after their work is done.

Promising solutions to avoid additional MPCs come with common reference strings that
are universal or updatable [CHM+20; GKM+18; MBKM19].

A universal SRS does not depend on specific relations and therefore is usable for all
relations (of a bounded size), while an updatable one can be changed to cope with the
new requirements. Updates require a proof of correctness and can be done by a single
user or multiple ones in succession. The updated SRS can be trusted if this proof can
be verified successfully under the additional condition that either the old string was
trustable or the updater was honest.

Universal SRS can be used for any circuit but in turn, they result in lower performance
compared to using a fixed SRS. To mitigate this drawback, more efficient, specialized
SRS for concrete problems can be derived. Such derivation algorithms only need public
information as input and therefore can be used whenever needed. Besides resulting in a
smaller reference string for a concrete circuit, the time complexity of verification and
proving can also be reduced. For instance, in [GKM+18], a universal quadratic size SRS
is specialized to a linear-size SRS with linear-time prover computation. This procedure
however requires an expensive computation on its own. To set the size of the SRS from
Groth et al. [GKM+18] in a practical context: Zcash has a circuit with 217 multiplication
gates leading to an SRS size in the order of terabytes. Some SNARKs like for instance
Sonic [Mal19] do not need to be specialized to be linear in size.

Furthermore, in recent work, Setty proposed a transparent SNARK that does not require
a trusted setup [Set19].

Bulletproofs, an alternative proving system to zk-SNARKs, do not require a trusted
setup and their proof size grows logarithmically. On the other hand, the verification time
scales linearly, even when applying additional techniques like batching to prove multiple
statements as a whole. Therefore Bulletproofs are only suitable for relatively simple
relations [MBKM19].

Zero-knowledge Scalable Transparent ARguments of Knowledge (zk-STARKs), first
constructed by Ben-Sasson et al. [BBHR18], have similar properties to Bulletproofs. They
are transparent, meaning they do not need a trusted external setup phase and share the

16

2.4. Zero-Knowledge Proofs

proof size complexity as well. The verification time only increases logarithmically and
therefore is shorter than that of Bulletproofs. When compared, zk-STARKs only are at
an advantage when the setup phase of zk-SNARKs is included in the measurement. If the
same computation with different inputs is anyway repeated many times or the resources
needed for the pre-processing do not hinder the intended use case, zk-SNARKs are
beneficial due to the constant verification time and proof size. As Ben-Sasson et al. state,
zk-STARK proofs are about 1000 times longer than those of zk-SNARKs. In contrast to
the zk-STARK construction in [BBHR18] many zk-SNARKs in practical use are based
on the discrete logarithm assumption and therefore are not quantum-resistant. However
new post-quantum secure zk-SNARK schemes have been proposed recently [NYI+20].

2.4.2 Applications of ZKPs
This subsection gives an overview to the power and versatile use cases of ZKPs. Besides
their usage in cryptocurrencies, there are also more practical and easier graspable scenarios
in the insurance sector.

DLTs

While zk-SNARKs can be used in many ways, one of the first practical applications
of the technique was Zcash. Zcash is a blockchain-based cryptocurrency built on the
original work done for the Zerocash protocol [BCG+14; BCT20]. It allows for transparent
transactions similar to Bitcoin as well as shielded ones where the addresses and the
transaction amount are kept private by using zk-SNARKs. For reasons of compliance or
auditory needs, the owner of a shielded address can choose to reveal transaction details
to trusted third parties with the help of viewing keys3 [Zcaa].

Monero, another privacy-focused cryptocurrency, employs Bulletproofs for range proofs
(which are simple statements [BNTT20]) to secure the amount sent in transactions. By
replacing the previous type of range proofs4 with Bulletproofs they could notably reduce
the transaction size and therefore costs [Mon].

Besides the privacy-focused aspect, zk-SNARKs can also be used to realize scalability
features for DLTs. For instance, instead of publishing data for each transfer, the data
from these transfers is first collected and then processed in bulk at once, which is more
efficient in terms of computation and storage resources, resulting in significantly lower
fees [Ethb; TSH22].

Data Collaboration

An interesting use case for ZKPs is using them for building a privacy-protected and
regulatory-compliant data collaboration platform. This is for instance explored in the
insurance industry [DeS21]. To not give their competitors an advantage and protect

3https://electriccoin.co/blog/explaining-viewing-keys/, Last accessed: 2023-03-15
4Schnorr and later Borromean signatures

17

https://electriccoin.co/blog/explaining-viewing-keys/

2. Background

customer data, insurers usually use their data independently. However, by exchanging
data, some fraudulent activities may be detectable while this is impossible in a siloed
environment.

A simple example is identifying cases where the same invoice has been handed in multiple
times for a refund of expenses. Detecting such behavior in an automated way while not
revealing sensitive information is a benefit to all stakeholders. Insights from internal
data can be monetized, risks mitigated and losses prevented. Additionally, the amount of
resource-consuming investigations needed to uncover fraud cases is reduced. Analyzing if
companies have mutual customers, without compromising user privacy, allows them to
develop better targeted marketing campaigns.

Altogether, zero-knowledge data collaboration in the insurance industry not only greatly
improves efficiency by various means, especially at fraud detection and business growth,
but also enables whole new possibilities such as data monetization.

Verifiable Computation

In general, zk-SNARKs are just a way of achieving (zero-knowledge) verifiable computa-
tion, where two parties collaborate on the computation of a function. When talking about
ZKPs, these parties are usually called verifier and prover, but in the context of verifiable
computation, the terms client and worker are used. The correctness of the result returned
by the worker can then be verified by the client [PGHR13]. Therefore, this topic covers
nearly all major use cases. It can be used for different types of outsourcing, for instance
realizing blockchain-based computation offloading [KSF+21] or doing computations, e.g.,
SQL queries, over outsourced data [ZGK+17].

Furthermore, verifiable computations can solve the trust issues regarding the integrity of
federated learning results. Heiss et al. [HGT+22] propose a concrete solution utilizing zk-
SNARKs for verifiable off-chain computation together with DLT to build a decentralized
and trustworthy federated learning system.

Anonymous credentials are another practical example made possible by verifiable compu-
tation. Instead of revealing their whole credentials, users can selectively disclose identity
attributes, or prove statements about them, while protecting other privacy-sensitive
ones [CG12; SKSB19].

Besides the proofs for cryptography-focused statements used in context of DLTs, where
proof size is crucial, there is emerging interest in highly complex statements of other
nature. In particular DARPA’s SIEVE program researches statements about software to
prove vulnerabilities in code without revealing the actual exploit and about sociotechnical
interactions, for instance, if a computation is compliant to data protection regulations [Bar;
BNTT20; DAR21]. Additionally, the program works on improving the efficiency of post-
quantum zk-SNARK schemes.

18

2.4. Zero-Knowledge Proofs

2.4.3 Standardization
Because the interest in ZKP technologies is growing fast and novel work with slightly
different notions is published regularly, it is crucial to settle on a standard in this
field. For this reason “ZKProof Standards”5 has been formed in 20186. ZKProof is an
initiative consisting of renowned researchers, already mentioned in this work such as
Goldwasser, Chiesa, Groth, and well-known industry partners, for instance, Microsoft,
Google, and the Ethereum as well as the Zcash foundation. Their aim is to mainstream
and standardize ZKP cryptography in a community-driven way. A standard for this
advancing technology fosters trust and enables faster adoption in the industry. Workshops
held annually are used to discuss the latest proposals and projects. The outcome of
these efforts is documented in the ZKProof Community Reference [ZKP19] which should
become the preferred source of trusted specifications and definitions for anyone seeking
to implement ZKPs. To facilitate interoperability and flexibility the work gives guidelines
on the implementation as well as the representation of ZKPs. It also includes best
practices regarding the benchmarking of proof systems with the aim of fair and unbiased
comparisons. Additionally, the protocol design steps for three ZKP use cases (identity
management, asset transfer, and regulation compliance) are presented. Besides these
practical aspects also the theory and security assumptions of ZKP systems are covered.

2.4.4 Summary
In Chapter 2, we provided a comprehensive background to establish the necessary
foundation for our research. We explored various key topics, including blockchain-based
as well as DAG-based DLTs, sharding, and ZKPs.

We summarized the evolution of DLT in Section 2.1 by describing the issues and motiva-
tions leading to the creation of the respective next generation, which itself opened up
other areas that have to be improved. Due to the fast innovation in the field, even quite
novel solutions appear to always be one step behind and sometimes fail to deliver their
promises in time to stay relevant.

DAG-based DLTs (Section 2.2) in theory allow for better scalability by replacing the
blockchain with a graph but have drawbacks in other areas. Furthermore compared to
blockchain-based solutions they are in the minority and therefore get less attention in
industry and research. In addition, because of their wholly different approach, partly
even between DAG-based solutions, they have higher effort to incorporate advancements
in the field.

Section 2.3 describes the concept of sharding, which originated from the field of databases,
as a combination of replication and partitioning. The goal of sharding is to horizontally
scale a whole system while considering the safety of each part and the atomicity of
transactions across.

5https://zkproof.org/, Last accessed: 2023-03-15
6Steering Committee has been formed 2018-01-31
https://zkpstandard.github.io/zkproof.github.io/index.html, Last accessed: 2023-03-15

19

https://zkproof.org/
https://zkpstandard.github.io/zkproof.github.io/index.html

2. Background

Interestingly, the original research for ZKPs goes back more than three decades. Due to
recent advancements, this field of research gained a lot of traction again. ZKPs in their
various manifestations can be used in many scenarios. They allow the construction of
proofs for statements over a secret that can be verified without giving the secret away.
For example, we could prove the possession of the pre-image of a hash without revealing
it. This characteristic makes them a valuable construct for privacy-related goals. A
family of ZKPs called zk-SNARKs has the property of succinct proofs, meaning that
the proof is small and fast to verify compared with the statements it proves. Therefore
it is primed for usage in DLTs, where it is beneficial to do as much work as possible
off-chain and have a low storage and computation footprint on-chain. More details on
the evolution, the properties and uses of ZKPs are given in Section 2.4.

Currently, projects with a focus on interoperability as well as application-specific
blockchains, and the utilization of ZKPs seem to be the most promising approach.

The insights gained from this chapter form the basis for our exploration of related
work in the subsequent chapter, where we examine the existing research and practical
developments of the described concepts.

20

CHAPTER 3
Related Work

This chapter provides an overview of the existing research in the field of distributed
ledger technology. We explore the topics of scalability, sharding in DLTs, distributed
ledger interoperability, zk-SNARKs, and DAG-based DLTs. Each section discusses the
key concepts, notable advancements, and challenges associated with these areas. This
review of related work serves as a foundation for our own research.

3.1 Scalability
In general, cryptocurrencies face the “Scalability Trilemma” (or “Blockchain Trilemma”),
stating that a system cannot be perfectly scalable, decentralized, and secure at the same
time [CZZ20; KJG+18; ZHZB20]. Figure 3.1 illustrates that concept with a triangle,
where the corners represent the three conflicting properties. Commonly, DLT projects
focus on one side and therefore two properties, but they have to make compromises on
the third one. For instance, traditional blockchains, such as Bitcoin or Ethereum, are
located on the bottom edge, as they are decentralized and secure but lack scalability.

According to Buterin [But21d], simple techniques only allow for two out of those three
desired properties. However, he describes sharding as a complex solution to realize a
scalable, decentralized, and secure DLT. Zhou et al. [ZHZB20] state that, although these
three properties will not be perfectly achieved together, a future DLT has to balance
them well to be suitable for mainstream adoption. Therefore the trilemma can be relaxed
to say that it just is very hard for a system to be reasonably scalable, decentralized, and
secure at the same time, instead of not being possible at all.

In their work, Zhou et al. [ZHZB20] also categorize several scalability solutions and assign
them to the respective layer they are applied to. Layer 1 describes solutions that are
employed on-chain and therefore need changes in the system itself. A simple example
are changes related to block data, for instance, expanding the block size to be able to fit

21

3. Related Work

Scalable

Decentralized Secure

High-TPS DLTs

Traditional blockchains

Multi-chain
ecosystems

Figure 3.1: The scalability trilemma demonstrating the conflicting requirements of DLTs.
Based on [But21d].

more transactions into one. The downside of this approach is that larger blocks are also
more difficult to propagate efficiently because of the limited intra-blockchain bandwidth.
Additionally, verifying the increased amount of transactions in one block within the
interval is hard for individual nodes and could lead to further centralization. The original
Bitcoin network only indirectly increased the amount of transactions that fit in a block
through the SegWit [LLW21] upgrade [ZHZB20]. Some Bitcoin forks however increased
the limit, for instance, Bitcoin Cash to 32 MB [ZHZB20]. Bitcoin SV even removed the
fixed limit completely and replaced it by a configurable consensus rule1, leading to a
block reaching a size of 2 GB, that earned more by fees than by block reward2.

Because block exchange efficiency is also important for the whole network, Bitcoin
reduced the data that needs to be sent for a block by implementing a compact block
relay (BIP152 [Cor20]). Instead of sending the whole block with all the transaction data,
only identifiers are sent. Other nodes already got most of these previously unconfirmed
transactions relayed. Therefore, they can reconstruct the block from data they still have
in memory. In case some transaction data is not present, it can be fetched with an
additional message exchange [ZHZB20].

In a blog post [But21c] Buterin gives an overview on the limits of scalability and reasons
why just increasing parameters is not a sustainable solution. He stresses the importance
of regular users being able to run a full node and gives estimates on the maximum
requirements for nodes regarding computing power, bandwidth and storage.

By replacing the classic blockchain data structure with a DAG, multiple blocks or
1https://github.com/bitcoin-sv-specs/protocol/blob/master/updates/genesis-spec.md#block-size-con
sensus-rule, Last accessed: 2023-03-15

2https://coingeek.com/new-1-25gb-2gb-record-blocks-prove-bsvs-economic-model/, Last accessed:
2023-03-15

22

https://github.com/bitcoin-sv-specs/protocol/blob/master/updates/genesis-spec.md#block-size-consensus-rule
https://github.com/bitcoin-sv-specs/protocol/blob/master/updates/genesis-spec.md#block-size-consensus-rule
https://coingeek.com/new-1-25gb-2gb-record-blocks-prove-bsvs-economic-model/

3.1. Scalability

transactions could be processed concurrently and therefore result in increased throughput.
However, such a change opens up challenges regarding consensus, ordering and other
scalability issues not necessarily present for blockchains. It may also lead to drawbacks
in terms of security or decentralization.

For example, IOTA, in its current version, opted for scalability and security but is not
fully distributed because it relies on a central entity, called “The Coordinator”, to reach
consensus and to ensure the network’s security. Work to replace it by a distributed
approach is ongoing [PMC+20]. More details on IOTA are given in Section 3.5.1.

Part et al. [POK19] describe that even DAG-based DLTs face scalability issues. If the
incoming transaction rate rises, the width of the graph grows, leading to an increased
duration until the transaction is considered final. To keep the system healthy, they
propose to dynamically adjust processing parameters and fee policies. An additional
analysis of efficiency and fairness in DAG-based ledger implementations identifying
structural limits under high transaction load is given in [BKLM19].

Another way better scalability can be reached is by a change in the consensus strategy.
One option is to adjust the way the consensus utilizes PoW. For instance, Eyal et
al. [EGSV16] proposed Bitcoin-NG that splits time into epochs and elects a single leader
for each epoch through PoW. During the epoch the leader can create multiple blocks
containing transactions without the need for additional PoW, resulting in improved
scalability and reduced transaction confirmation time [ZHZB20]. Projects actually using
Bitcoin-NG as consensus protocol are æternity3 and Waves4.

Because of the computational overhead and amount of energy needed for PoW, an
alternative mechanism called PoS is used for many DLTs created in recent years. The
rationale behind PoS is that users with more stake (coins they hold) in the system are
not likely to harm it because that would lead to financial loss [ZHZB20].

Delegated PoS (DPoS) is a variant in which stakeholders elect a small group of delegates
by staking. The voting weight is proportional to the amount of coins on stake. Delegates
will then produce and validate blocks. Without further measures, DPoS can lead to
centralization because the network is under the control of only a small number of nodes
that hold the most stake [ZHZB20].

In practice, (D)PoS schemes greatly differ in their workings. For instance, Polkadot uses
an own PoS scheme named Nominated PoS (NPoS) [BCC+20]. A limited number of
validators are elected for roughly one day based on the stake from nominators. When
nominating multiple validators, the stake is distributed evenly among them. In case of a
validator misbehaving, the penalties also affect the stake of nominators.

Ethereum 2.0 also uses a PoS-based consensus protocol, where validators each need a
stake of 32 ETH and are assigned (pseudo-)randomly to propose a block or to be part of

3https://aeternity.com/, Last accessed: 2023-03-15
4https://docs.waves.tech/en/blockchain/waves-protocol/waves-ng-protocol#_1-3-brief-summary-of-b
itcoin-ng, Last accessed: 2023-03-15

23

https://aeternity.com/
https://docs.waves.tech/en/blockchain/waves-protocol/waves-ng-protocol#_1-3-brief-summary-of-bitcoin-ng
https://docs.waves.tech/en/blockchain/waves-protocol/waves-ng-protocol#_1-3-brief-summary-of-bitcoin-ng

3. Related Work

a committee to attest it [Fan21; Jos20].

This assignment is regularly shuffled to avoid attacks on single shards (or blocks) when the
attacker controls less than one third of all validators. More details about this consensus
algorithm are given in Section 3.2.3.

Off-chain solutions (Layer 2) can be divided into payment channels, off-chain computation
and cross-chain communication. Payment channels are utilized for temporary off-chain
trading to reduce the amount of transactions in the DLT network and to enable low-cost
(micro-)payments. As a first step, a payment channel needs to be opened between two
parties, meaning that an amount of tokens is locked on the blockchain. Now, trading via
the off-chain channel can happen. In the end, the trades are settled by closing the channel
and posting the outcome as a transaction on the DLT network. To avoid establishing new
direct channels, it is also possible to build a payment channel network (PCN) allowing
for indirect trading between two parties by routing over other participants. For details
about how such functionality can be implemented, the reader is referred to descriptions
of the Lightning (Bitcoin) [PD16] and the Raiden Network (Ethereum) [Bra]. An issue
with PCNs is that users have to be online simultaneously in order to trade and therefore
to update the transaction outcome. The generalized term “state channels” describes the
same approach as payment channels but instead of just payments, it includes all kinds
of state-changing operations conducted in a DLT [CHX18]. A framework for building
applications on that idea for Ethereum is statechannels5.

Cross-chain solutions can be separated into sidechain solutions connecting two chains
together and overall interoperability projects enabling the communication of multiple
different DLTs. Plasma [Etha] (consisting of multiple different variations), originally
proposed by Poon and Buterin [PB17], allows to create sidechains for Ethereum with
the use of smart contracts and Merkle trees. Plasma chains are working independently
and can themselves have chains, resulting in a tree structure. The main chain gets
reports from the side chains periodically and is also used for dispute-settling. By taking
operations and their data off the Ethereum main chain, Plasma helps with scalability.
Additionally, resource-intensive computations can be done on Plasma chains because
of lower fees and faster execution compared to the main chain. A downside is that
users have to put up with long waiting periods to exit from Plasma chains, because of a
challenge period allowing any user to provide a proof that the withdrawal is invalid.

Further promising scalability solutions, such as Sharding, DLT interoperability, and
various applications of zk-SNARKs (e.g., rollups and off-chain computation) are explained
in the following sections.

3.2 Sharding in DLTs
A promising approach to overcome the scalability/performance problems in blockchain
technology is the usage of sharding. In the context of DLT, this works as follows: So-called

5https://github.com/statechannels/statechannels, Last accessed: 2023-03-15

24

https://github.com/statechannels/statechannels

3.2. Sharding in DLTs

shards, consisting of multiple nodes in the network, are defined. Instead of giving all nodes
the same transactions to process, they are distributed among these groups. This has
several positive effects on the blockchain system. Apart from the obvious improvements in
processing throughput due to parallelization, it significantly reduces the communication
and storage overhead [WSNH19]. These overheads are the reason why the naive attempt
to increase the performance by just increasing the block size is not a proper solution to
the scalability problem in DLTs [ZHZB20].

However, sharding, like other scalability solutions for DLTs, cannot easily scale with
regards to all required properties without any drawbacks, such as sacrifices in terms of
security. Therefore, as stated by Wang et al. [WSNH19], a central, unanswered research
question is whether there is a DLT design that achieves scalability for throughput, storage
efficiency, and security at the same time.

A more practical definition, further away from the initial notion of sharding, is that it is a
term for scalability solutions that are built with multiple interacting sub-networks [Cam21].
Generally, sharding can be realized with a hierarchical or non-hierarchical structure.
Further, it can be categorized into two types, homogeneous and heterogeneous sharding.

3.2.1 Hierarchical Sharding

Hierarchical sharding resembles a tree-like structure with one central root element where
all other ones descend from. This means that all children respond to the root in some
way, whether directly or indirectly by layered interaction working the way up to the top.
Therefore, in the end, the root shard is responsible for keeping everything in order. This
hierarchical organization not only simplifies the development of the distributed ledger
system but also brings significant advantages in terms of error tolerance and scalability.

In terms of error tolerance, the hierarchical sharding approach offers a robust mechanism.
Since the root shard plays a pivotal role in overseeing the entire structure, it can detect
and mitigate errors effectively. If a child shard experiences an issue, the root shard can
step in to maintain the overall integrity of the ledger.

Furthermore, the hierarchical sharding model provides scalability benefits. As the ledger
grows and the need for additional capacity arises, new child shards can be created
under the root shard. This scalable approach allows the network to expand seamlessly,
accommodating increased transaction volumes and data storage requirements. Each
child shard can operate independently, parallelizing transactions and computations, thus
enhancing the overall throughput.

However, it is important to note that while the hierarchical structure simplifies develop-
ment and offers error tolerance and scalability advantages, it is also constrained by the
capabilities of the root shard.

25

3. Related Work

3.2.2 Non-hierarchical Sharding
In non-hierarchical sharding approaches, there is no central element and no hierarchical
tree-like (communication) structure. Hence, the system is much more complex and
requires elaborate strategies, especially regarding security and communication. A non-
hierarchical approach has no obvious bottleneck caused by its topology and theoretically
should be more scalable.

However, unlike hierarchical sharding, where data flows through a predefined structure,
non-hierarchical networks must manage communication paths in a more flexible and
adaptive manner. This flexibility is essential for distributing workloads effectively, but it
also demands sophisticated bandwidth control mechanisms to prevent congestion and
ensure efficient data transfer. Even if everything is perfectly efficient, the throughput
will still be limited by available bandwidth for the needed communication.

3.2.3 Homogeneous Sharding
Homogeneous sharding works by creating multiple equally functioning shards, meaning
that they use the same consensus, state transition functions, and other configurations.

One example is the sharding approach initially envisioned for Ethereum 2.0. Note that
the ideas described in the following were partly replaced with other solutions at a later
point in time. Shard chains are no longer a planned feature and data sharding will be
implemented by the so-called “Danksharding”6. . However, the initial approach is still
outlined as an example of homogeneous sharding: With the original sharding approach,
there would have been 64 “shard chains”, which in the first step only provide more
capacity for data storage and access. The crucial problem to solve for this “data sharding”
is that of data availability. Shards store data and serve attestations for the availability of
it in parts. Using these attestations for data availability verification it is possible to build
a secure and efficient data layer that can be used in Layer 2 protocols, like rollups [But20].
Data sharding is a pre-requisite to also scale dapps and is easier to accomplish7.

In a later version handling of transactions and smart contracts could be added although
it is still discussed if this extension is needed. According to Buterin, there are three
possible ways forward: First, state execution is not needed and shards continue to be
just used for data storage needs. Second, as a compromise instead of only one execution
shard, a subset of around four to eight of the 64 shards get extended functionality. The
third option is to wait for a more matured zk-SNARK technology and adapt the shards
to support their usage for e.g., private transactions [Eth21].

A main-chain called Beacon Chain is used as the consensus layer that could potentially
also secure shards and enable communication between them. The Beacon Chain is already
live and introduced a PoS consensus mechanism to Ethereum Mainnet by an update in
September 2022 [Eth23a].

6https://ethereum.org/en/roadmap/danksharding/, Last accessed: 2023-09-25
7https://twitter.com/VitalikButerin/status/1312009922771443713, Last accessed: 2023-03-15

26

https://ethereum.org/en/roadmap/danksharding/
https://twitter.com/VitalikButerin/status/1312009922771443713

3.2. Sharding in DLTs

Although the following paragraphs were written before this upgrade and with the integra-
tion of sharding in mind they still convey the workings of the current consensus layer. As
DLTs are a fast-paced field of research and development some details may be outdated.

The Beacon Chain’s life is divided into epochs. An epoch provides 32 slots, each lasting
12 seconds.

Every slot gives the possibility to add a block to the Beacon Chain. One epoch in
advance, all validators are shuffled and evenly assigned to slots. Validators are active
participants in the consensus and need to stake 32 ETH by sending them to a specific
smart contract. Note that 32 ETH is the maximum stake a single validator can have.
At the start of an epoch exactly one validator for each slot, out of all active validators,
is randomly (weighted by their balance) chosen to propose a new beacon block. The
validators assigned to the slot can then vote on what they see as head of the chain. A
vote, also named attestation, is weighted by the validator’s balance and based on the
outcome of a fork-choice rule, called Latest Message Driven Greediest Heaviest Observed
SubTree (LMD GHOST) [BHK+20; Jos20]. This algorithm selects the block as the head
that is in the most “active” chain, meaning having the most votes, only considering the
latest one per validator. In the following, the attestations are aggregated and included at
the earliest in the next block and latest after a delay of 32 blocks [Edg].

Besides the LMD GHOST vote validators also have to vote for the so-called checkpoints
of the current (target) and the previous epoch (source). This additional vote is called
Casper Friendly Finality Gadget (FFG) vote It also can be described as referencing
the transition from the previous checkpoint to the next. Checkpoints need at least 2/3
(the supermajority) of the total voting weight of active validators to be accepted. A
target checkpoint (and all other previous blocks) is considered “justified” once it reached
supermajority and “finalized” when it achieved the same as source checkpoint. The
double-vote process is used to avoid additional communication between nodes which
would hinder the scalability of an increasing amount of validators. Getting a block
finalized on average takes the time of slightly over two epochs (around 14 minutes) and
can be compared to the required amount of block confirmations used in PoW. Finalized
blocks are added permanently to the blockchain and cannot be reversed [Fan21; Jos20].

In case the proposer did not provide a block, e.g. because it is offline or out of sync, the slot
will stay empty and a new block will only be added in the next one. Multiple incentives
and disincentives ensure good behavior of proposers and attestors (voters) [Jos20].

By the time shard chains were still part of the Ethereum roadmap it was planned to
upgrade the Beacon Chain to randomly assign shards to committees for each slot [Eth21].
A committee is a group of at least 128 validators made up of the previously shuffled
validators in a specific slot. This amount was chosen under statistical considerations to
keep the probability of having 2/3 malicious participants in one committee at a reasonable
level. As a result, it is improbable that an attacker in control of less than 1/3 of all
validators can attack a shard. To process all 64 shard chains in each of the 32 slots in
an epoch, there must be a minimum of 128 ∗ 64 ∗ 32 = 262144 active validators. In case

27

3. Related Work

that number is not reached, any given shard will only be processed once every few slots.
Validators in the committees also vote for the head of their respective shard chain in
addition to the Beacon Chain’s head [Jos20].

3.2.4 Heterogeneous Sharding
Usually, DLTs target specific features tailored to some use cases or try to fit as many as
possible. Both cases lead to various tradeoffs. Decisions have to be made which approach
and specific configuration to use for the transaction model, the consensus mechanism,
and the ledger model (UTXO or account-based). This severely limits flexibility and
forces enterprises to scatter their services over multiple DLTs suitable for the different
business scenarios. Besides the high implementation effort, another downside is that a
seamless interaction between the projects is difficult to realize or not possible at all. With
traditional sharding, the scaling is done by adding shards with identical specifications
which, for instance, are optimized to scale-out computation capacity but make drawbacks
otherwise.

Heterogeneous sharding, on the other hand, allows each shard to be configured differently,
e.g., in terms of consensus mechanism. The flexibility coming with heterogeneous sharding
allows to adapt more easily to future demands. This concept is similar to using sidechains
and cross-chain communication with the difference that it is more tightly coupled and
also protects the shards against attacks, whereas this has to be done by every single
other chain itself [BCC+20; Qua20].

Several projects in the field of distributed ledger interoperability adopt the notion of
heterogeneous sharding. While they share many common properties, they also differ in
implementation specifics, current feature completeness, and openness regarding joining
the networks [KP19]. Examples of such systems are Polkadot and Cosmos, which are
both explained in more detail in the following section. Koens and Poll [KP19] identified
that they share the planned functionality and both aim to include any ledger (reach).
Furthermore, they store the state in multiple places (scope) and have validators to ensure
semantic and syntactic interoperability.

3.3 Distributed Ledger Interoperability
This field of research generates a wide variety of publications and grey literature with a
multitude of different approaches and goals.

In their extensive systematic literature review, Belchior et al. classified the analyzed
work into three categories: Public Connectors, Blockchain of Blockchains, and Hybrid
Connectors, each with several sub-categories. Relevant sub-categories for this thesis are
explained below. Additionally, the authors made a critical observation about interoper-
ability in their work, highlighting that it not only combines flexibility and portability,
but also promotes scalability by enabling transaction offloading to other ledgers, such as
through sharding [BVGC21].

28

3.3. Distributed Ledger Interoperability

3.3.1 Public Connectors

Approaches in this category consist of strategies to achieve interoperability across public
ledgers for use cases like cryptocurrency trades and moving assets.

Notary schemes

In that scheme a notary is connected to multiple ledgers. When an event occurs on one
ledger the notary creates a corresponding transaction on another ledger. This means that
notary schemes act as intermediaries between ledgers. A practical example of notary
schemes are exchanges which can be either centralized (EX) or decentralized (DEX).
An exchange is centralized if it holds the users’ funds and executes trades, for example
buying cryptocurrencies conditionally, on their behalf. If the trust is not put into a
centralized entity and the exchange just provides a matching between buyers and sellers
with the help of smart contracts it is considered decentralized. The tradeoff is comfort
and speed (EX) versus security (DEX).

Relays

For a relay to work “relayers” keep track of the source ledger data and feed it into a
smart contract running on the target ledger. The first example of such a system was
the BTC Relay smart contract hosted on Ethereum to relay Bitcoin data. For each new
block published on Bitcoin, the header data needs to be submitted to the contract. There
the header gets validated and in the following can be utilized to verify Bitcoin on-chain
information such as the inclusion of transactions in a block. This is made possible by
the Merkle trees stored inside the header data. Now anyone can use the relay to verify a
transaction and forward the confirmation to another smart contract which then acts on
that information.

However, BTC Relay only accepts new block headers if they refer to a previously
successfully transmitted and validated block header. Therefore it is required to submit
every single intermediary header missing in the contract until the latest one can be added.
Although there is an incentive mechanism in place to compensate the relayers it does not
cover that overhead sufficiently. As a result, gaps will form over time and it will become
less and less practical to use the relay, due to the high costs [FSS+20; WE20].

Frauenthaler et al. proposed “ETH Relay”, a relay solution for Ethereum-based blockchains
that avoids high operating costs by well-defined incentives and only validating blocks on
demand [FSS+20]. Contrary to block validations for Bitcoin, the hash function needed
for Ethereum is computationally expensive to compute on-chain. Therefore, in addition
to the issues mentioned for BTC Relay, it would not be economically feasible to operate
such a relay when fully validating each block.

ETH Relay works by optimistically accepting block headers. At first, it only validates if
the header has not yet been submitted and the referenced parent block is already known.

29

3. Related Work

Newly added blocks cannot immediately be used for verifying transactions but are locked
for a certain amount of time.

During that time, they can be disputed. A reason could be that clients have noticed it is
an invalid block header by monitoring the relay as well as the actual source blockchain.
Only in the event of a dispute, a full validation of the header in question is done by the
relay contract. If it fails, the disputed block together with its potential descendants is
removed from the contract. In case the lock time of a block passes without a dispute it
automatically is considered valid but still needs multiple confirming blocks until it can
be used for checking the inclusion of transactions.

To make the described scheme work in practice an incentive structure compensates clients
for submitting and disputing blocks. Submitting a block requires a stake that can be
earned by disputants if it turns out the block is invalid. Additionally, clients receive a fee
each time a valid block they have submitted is used.

“Dogethereum”, a relay between Dogecoin and Ethereum proposed by Teutsch, Straka,
and Boneh utilizes Bulletproofs in order to validate Dogecoin’s PoW off-chain, as the
execution of the underlying memory-hard scrypt function is infeasible in smart contracts.
Although the validation of blocks happens in batches the proof size of Bulletproofs grows
too fast, leading to excessive verification costs on-chain. As a consequence, an optimistic
approach with an incentive scheme that rewards the detection of incorrect proofs is used
to minimize on-chain computation [TSB19; WE20].

Two additional relays are described in later sections: “zkRelay” in Section 3.4 because it
utilizes zk-SNARKs and “Verilay” a relay for PoS-based ledgers in Section 4.1.2 to guide
the design of the IOTA relay proposed in this work.

3.3.2 Blockchain of Blockchains
The concept of “Blockchain of Blockchains”(BoBs) refers to frameworks designed to
facilitate the seamless creation and integration of application-specific blockchains capable
of efficiently interacting with each other. This is achieved by providing comprehensive
guidelines, robust SDKs, and reusable components addressing the fundamental layers of
DLTs, including data, network, consensus, incentive, and contract layers.

BoBs implementations can be seen as building a network of relays and sidechains be-
cause usually, a main chain (sometimes referred to as a relay chain) acts as a (central)
connector for multiple secondary (application-specific) chains. That approach results in
high throughput but still gives users flexibility by offering interoperability capabilities
between various attached chains. In addition to the preferred framework-specific interop-
erability scheme, BoBs also include components, often called bridges, that utilize various
mechanisms to allow interactions with other types of blockchains.

Differences between specific BoB projects manifest in how generic or coupled their
approach is. For example, how much customization and control are possible for each
connected chain. Either there is a high degree of freedom where a chain can handle security

30

3.3. Distributed Ledger Interoperability

and validation on its own or customization is limited but in turn, shared security layers
are in place. This security-customization trade-off also has effects on the decentralization
and robustness of the system.

Although BoBs theoretically pave the way for better blockchain interoperability, in the
end, they just shift the problem from single isolated blockchains to competing BoB
projects that do not efficiently integrate with each other. Two widely adopted examples,
Polkadot and Cosmos, are described in more detail in the following sections.

Polkadot

Polkadot [BCC+20], initially proposed by Wood [Woo16], consists of one main chain,
with multiple heterogeneous shards, called parachains (from “parallel chains”) [Web21].
The main chain is referred to as the Relay Chain. It is in charge of validity and availability
checks, message exchange between parachains as well as providing security guarantees to
the whole network. In other words: Polkadot is a sharded state machine offering shared
security that enables trust-less messages. Cross-chain communication in a system only
built by bridging independent sidechains without shared security cannot be trustless
because the receiving chain has to fully trust the sending one.

However, chains securing themselves have the advantage of greater sovereignty. A general
bottleneck and security issues of one chain affecting all the others in the system can be
avoided. Cosmos [KB19] is an example of a blockchain ecosystem, that does not require
but optionally supports a group of shared security protocols called Interchain Security8..

Polkadot incorporates multiple components with different roles. Collators are responsible
for assembling transactions from their parachain into a block but do not need to give
security guarantees. They are running as a full node for both the parachain and the
Relay Chain in order to receive all the necessary information. The candidate block is
then transferred to one of the validators currently assigned to the parachain. For each
block, the mapping of validators to parachains is determined randomly. Validators verify
the block by checking the included state transitions against the state transition rules of
the parachain. The state of the parachain is stored in a Merkle tree. Therefore, all the
validator needs for a proof of validity is the block (list of state transitions), the values
that are modified and the hashes of the unaltered parts of the Merkle tree. This also
means that Polkadot only guarantees a valid state transition and not a valid state. If a
parachain joins with a valid state and all changes are executed protected by Polkadot, the
state is valid. The proof of validity is gossiped among all validators currently responsible
for the parachain. When more than half of them agree that it is correct they construct a
“candidate receipt”, which is the data that will be part of the Relay Chain block.

Another component previously proposed for Polkadot but not implemented are the
so-called Fishermen. Their role would have been to be full nodes of the parachain that
watch the parachain block creation process to make sure that no invalid state transactions

8https://cosmos.github.io/interchain-security/introduction/overview, Last accessed: 2023-09-24

31

https://cosmos.github.io/interchain-security/introduction/overview

3. Related Work

are packaged [Pol21a]. Clear information on why this is not necessary anymore or how
this goal is achieved instead could not be found.

For arbitrary messages passed between parachains, Polkadot uses the Cross-Consensus
Message Passing Format (XCM)9. A detailed description of XCM can be found in a blog
post by Gavin Wood [Woo21b]. In the Cross-chain Message Passing protocol (XCMP),
which is still under development10, Collators serve as message routers because they are
full nodes for both the parachain and the Relay Chain [Pol21c]. The actual messages do
not pass through the Relay Chain. To ensure scalability, only proofs about them and
operations for managing communication channels opened between parachains are stored.
Until XCMP is finalized there is a stop-gap protocol, called Horizontal Relay-routed
Message Passing (HRMP), available which implements the same functionality but is not
as efficient because it stores all messages in the Relay Chain [Pol21b].

Cosmos

Cosmos [KB19] uses the so-called Cosmos Hub (a blockchain itself) to transfer mes-
sages between zones (shards), similar to Polkadot’s Relay Chain connecting multiple
parachains [BCC+20]. Although the Cosmos Hub is cited the most, multiple (nested)
hubs are supported and there already are some in operation. In the following, the Hub
refers to the Cosmos Hub, while hub is used for any hub in general. Different from
Polkadot, Cosmos does not include the full state of its zones in the state of the Hub.
Therefore, as already stated, it (currently) does not provide shared security guarantees
and the separate zones need to have their own validators. This means that Cosmos as
a whole system is only as secure as its least secure zone and users need to trust the
individual zones to keep the state history.

The IBC (Inter-Blockchain Communication) protocol [Cos21; Goe20] used in Cosmos
aims at being a base protocol to build and iteratively improve upon, similar to how HTTP
builds on TCP. For now, it focuses on allowing cross-chain token transfers. Every DLT
implementing the IBC interface and meeting several other specifications could directly
interact with each other but it is assumed that most projects will connect to hubs. This
resembles the Internet’s network infrastructure which also consists of hubs instead of
building direct connections to all the services one wants to communicate to [Cho19].
By using hubs, the efficiency is higher due to avoiding the quadratic growth of direct
connections and also the ease-of-use is improved because new zones just need to join a
hub to automatically be interoperable with all other participants [Dah21].

While you need to gain the right to connect a parachain to Polkadot by auction [Bas21],
in Cosmos anyone can connect to the Hub. When transferring tokens over the Cosmos
Hub, it keeps track of the total amount of tokens held by each zone. To transfer a
token, the transaction has to be acknowledged by the sender, hub, and receiver. However,

9https://wiki.polkadot.network/docs/learn-crosschain, Last accessed: 2023-03-15
10https://wiki.polkadot.network/docs/learn-xcm-transport#xcmp-cross-chain-message-passing, Last

accessed: 2023-09-24

32

https://wiki.polkadot.network/docs/learn-crosschain
https://wiki.polkadot.network/docs/learn-xcm-transport#xcmp-cross-chain-message-passing

3.4. zk-SNARKs

transactions committed outside the Hub are not verified. For that reason, users are
advised to only send tokens to zones they trust, and receiving zones must trust the
security of the originating zone.

3.4 zk-SNARKs
Another relevant topic often neglected or left open for future work is the performance of
and the necessary computational resources for zk-SNARK proof generation. Depending
on the number of inputs, the proof generation can require more RAM than available
at the average personal computing device. Therefore, memory often is the scalability
bottleneck for the prover as it grows with the statement size [BNTT20]. Westerkamp
and Eberhardt propose to split the proof into multiple ones in that case but even then it
may not be feasible for, e.g., computationally-constrained IoT devices [GKO20; WE20].
Garoffolo, Kaidalov, and Oliynykov [GKO20] write about recursive SNARKs which merge
multiple proofs into one but also mention that this requires a significant amount of
computation and different approaches still need to be researched. A project using this
in the field is Mina [BMR] (formerly Coda). It works by computing a SNARK proof
validating the previous proof and the new blocks together. This enables state transition
verification in constant time, independent from the number of previous blocks. Differing
to common blockchains, a proof size of just 864 bytes and a verification time of 200 ms is
making a full verification practical, even for computationally weak devices.

As part of Layer 2 solutions, zk-SNARKs are a promising way to scale DLTs. They can
be utilized to build so-called “zk-rollups”, that bundle many transactions into batches for
off-chain execution. The result of the rollup is a summary of all the changes required by
the transactions together and a proof stating their correctness. A smart contract on Layer
1 verifies the proof and executes the state changes [Eth23b]. Research to create a whole
zero-knowledge EVM implementation that allows proving general-purpose computations
is ongoing [But22].

Depending on the scenario, novel zk-SNARK proof systems can lead to considerable
performance improvements. “Spartan” [Set19] is counted as one of the best performing
schemes and an open-source library11 written in Rust is available. Additional implemen-
tations of proof schemes from [Gro16] and [BCTV14] exist. Examples are the C library
“libsnark”12 and “bellman”13 which is available for Rust. Initially, Zcash built on libsnark
for implementation of the Pinnochio protocol [PGHR13] but currently, bellman, as a
realization of [Gro16] is in use [Zcac].

zk-SNARKs can also help in building better relays. Approaches previously described in
Section 3.3.1 rely on on-chain proof effort linear to the number of blocks or additional
economic incentives. Westerkamp and Eberhardt propose a different, novel approach for

11https://github.com/microsoft/Spartan, Last accessed: 2023-03-15
12https://github.com/scipr-lab/libsnark, Last accessed: 2023-03-15
13https://github.com/zkcrypto/bellman, Last accessed: 2023-03-15

33

https://github.com/microsoft/Spartan
https://github.com/scipr-lab/libsnark
https://github.com/zkcrypto/bellman

3. Related Work

a relay. Instead of verifying block headers directly in the relay contract, their solution
“zkRelay” [WE20], collects blocks into batches and executes the verification off-chain. By
utilizing zk-SNARKs a cryptographically secure proof of this verification is created. That
proof is then validated on-chain in constant time. Only the last block header of each batch
is stored in the contract. To still allow for verification of transactions inside intermediary
blocks a Merkle tree is built based on the hashes of all the block headers included in the
batch. The root of this Merkle tree is stored in the relay and can be utilized to prove the
inclusion of headers in the batch, similar to how proving the inclusion of transactions
works. This specific Merkle tree is built with Pedersen hashes that, contrary to the
often-used SHA-256, can be used efficiently for zk-SNARKs. The reason is that Pedersen
hashes are based on elliptic curve cryptography, while SHA requires modulus operations
that lead to a huge number of constraints in the proof system.

Garoffolo, Kaidalov, and Oliynykov [GKO20] propose a cross-chain protocol for native
fund transfers between main- and sidechains in a parent-child relationship using zk-
SNARKs. Their approach allows decoupled sidechains which may work differently in
terms of their “structure”, e.g., what type of consensus is used. They also describe a
concrete sidechain using PoS communicating with a PoW mainchain, both on a blockchain
basis. Contrary to blockchains, research on DLTs using DAGs is limited. Understanding,
if a similar approach is feasible with a DAG-based DLT and what data is needed for the
application of zk-SNARKs in this context, are still open questions.

3.5 DAG-based DLTs
Although many DAG-based DLTs have already been proposed, it is still a relatively new
area of research, compared to blockchains. Thus, the number of papers giving a systematic
overview on the topic is limited, making contributions to the field laborious, especially
for newcomers. In a Systematization of Knowledge (SoK), Wang et al. [WYCX20]
summarize their findings of both reviewing academic work and analyzing open-sourced
systems including accompanying self-published white papers. Besides classifying existing
approaches based on structure and consensus, they also provide an analysis of security
and performance. Furthermore, the differences of other scalability techniques compared
to a DAG-based approach are highlighted. To foster future work, they also list several
open research topics for DAG-based systems. Most relevant to this work are the questions
on how to enable sharding and cross-chain communication. Other noteworthy issues are
the implementation of smart contracts and the effect of feeless systems (meaning the
absence of incentive mechanisms). Popular examples14 for DAG-based cryptocurren-
cies include IOTA [PMC+20; Pop18], Hedera Hashgraph [BL20], and Nano (formerly
RaiBlocks) [LeM18].

Table 3.1 gives an overview of selected attributes of the three DAG-based projects, that
are explained in more detail in the respective sections. Text in square brackets hints at
changes or updates planned for future updates. Although all systems build upon a DAG

14Listed in order of market capitalization by 2021-04-21 from https://coinmarketcap.com/

34

https://coinmarketcap.com/

3.5. DAG-based DLTs

as a data structure its actual usage varies. Other noteworthy differences can be found at
Hedera: it currently only consists of permissioned nodes and runs a patented consensus
algorithm. Furthermore, contrary to IOTA and Nano it is not feeless and even specifies
the fees in US dollars. The different DAG structures are described as Divergent and
Parallel. Divergent means that units form the DAG in a random way without a specific
order while Parallel refers to keeping them in multiple chains.

Table 3.1: Comparison of selected DAG-based DLTs.

IOTA Nano Hedera Hashgraph

Unit Transaction Transaction Event
Tx model UTXO Account-Pair Account
Openness Permissionless Permissionless Permissioned [Permissionless]
Centralized Partly [No] No No
Structure Divergent Parallel Parallel
Patented No No Yes
Consensus base Tip selection Voting Voting
Spam Protection PoW [Adaptive] Prioritized PoW Congestion pricing
Signature Ed25519 Ed25519 Ed25519, RSA, ECDSA
Fees Feeless Feeless Pricing schedule (USD)

3.5.1 IOTA
The initial theoretical foundation of IOTA and its DAG data structure called “the Tangle”
was described by Popov [Pop18]. As quite common in the field of DLTs, the practical
implementation soon deviated to different extent from the early concepts. Details on the
current state of the protocol can be found in the developer documentation15 which is
based on multiple git repositories. At the time of writing, IOTA is at the halfway point
to realize the visions outlined by the IOTA Foundation (IF) in the whitepaper “The
Coordicide” (also referred to as IOTA 2.0) [PMC+20].

In the beginning, IOTA was built with the decision to use quantum-resistant cryptography
for signatures and implement core systems based on the ternary number system16.
Theoretically, this system is more efficient, due to the better radix economy17 [Geo16]
but in practice these gains are diminished because almost any computer system uses
binary, making additional conversions and encoding steps necessary [IF21a].

15https://docs.iota.org/, Last accessed: 2023-03-15
16https://legacy.docs.iota.org/docs/getting-started/1.1/the-tangle/ternary, Last accessed: 2022-06-09
17https://iota.stackexchange.com/questions/8/why-does-iota-use-a-ternary-number-system, Last

accessed: 2023-03-15

35

https://docs.iota.org/
https://legacy.docs.iota.org/docs/getting-started/1.1/the-tangle/ternary
https://iota.stackexchange.com/questions/8/why-does-iota-use-a-ternary-number-system

3. Related Work

IOTA used the Winternitz One-Time Signature scheme (W-OTS). This scheme is quantum-
resistant and therefore future-proof but in turn, comes with the huge drawback of being
vulnerable when reusing addresses (keys) [BDE+11; IF21a]. Additionally, the size of the
signature is relatively large with up to 3900 bytes (depending on the chosen security
level)18.

For these reasons, the latest update dubbed “Chrysalis” (also known as IOTA 1.5) [IF21a]
remedies both of the stated issues by re-implementing algorithms to use binary encoding
and replacing W-OTS with the Ed25519 signature scheme. By using atomic transactions
instead of bundles consisting of multiple, mandatory, fixed-size parts, the transaction
size was reduced from 1.7 kB to below 100 bytes [IF21d]. This not only results in less
overhead for network communication and signature verification but also makes Merkle
proofs, which may be used for a future sharding solution, significantly shorter [Moo19].

To improve scripting of transactions and to ease future additions, for example, digital
assets, the previously used account-based model was replaced by UTXOs. All these
changes together with optimizations including the tip selection algorithm lead to a
confirmation time of less than 10 seconds [IF21d].

The Tangle, illustrated in Figure 3.2, consists of vertexes representing transactions and
edges pointing to previous transactions to approve them [Pop18; ZY19]. Originally,
each transaction had to reference two others but since IOTA 1.5 it is possible to choose
between one and eight. More precisely, not transactions directly but messages are
used [IF21a]. Currently, normal messages have four parents, as can be observed on the
“Tangle Explorer”19.

These messages with a size of up to 32 KiB can carry different types of payload such
as transactions describing a value transfer. In the following, the terms transaction and
message in context of IOTA may be used interchangeably if not stated otherwise. Ideally,
new transactions approve other previously unapproved ones, called tips. It is also possible
to reference already approved transactions because it could happen that discovered tips
were approved by other transactions in the meantime. Before approving a transaction, it
is verified to be positive and not conflicting with previous ones. After reaching enough
direct or indirect approvals, a transaction is considered a fixed part of the Tangle.

Discovering and choosing tips is handled by a tip selection algorithm. For instance, the
weighted random walk tip selection algorithm works as follows. It starts walking from
the genesis transaction towards tips by choosing the path partly based on the cumulative
weight (direct and indirect approvals plus one). This behavior can be compared to
selecting the longest blockchain in Bitcoin. A parameter controlling how much impact the
weight has for path selection is used to avoid always orphaning transactions that approve
older ones instead of tips (e.g., due to network delay). Finding an optimal value and
therefore balancing the randomness used for tip selection is important for the stability of

18https://github.com/iotaledger/tips/blob/ee07797acb/text/0000-ed25519-signature-scheme/0000-ed2
5519-signature-scheme.md, Last accessed: 2023-03-15

19https://explorer.iota.org/mainnet, Last accessed: 2023-03-15

36

https://github.com/iotaledger/tips/blob/ee07797acb/text/0000-ed25519-signature-scheme/0000-ed25519-signature-scheme.md
https://github.com/iotaledger/tips/blob/ee07797acb/text/0000-ed25519-signature-scheme/0000-ed25519-signature-scheme.md
https://explorer.iota.org/mainnet

3.5. DAG-based DLTs

the Tangle. In case transactions are not approved for some time, it is possible to promote
them by issuing another empty transaction referencing the unapproved one together
with a recent tip. Whenever a transaction receives more direct or indirect approvals, its
cumulative weight increases making it more likely to stay in the Tangle. Changes applied
with the Chrysalis update made it possible to use a different, more efficient algorithm
called Uniform Random Tip Selection (URTS) [Rog21]. This was necessary because the
cumulative weight computation needed for the original tip selection turned out to be too
resource-intensive to reach high throughput.

Figure 3.2: Schematic diagram of the IOTA Tangle. Grey squares represent tips where
new messages will be attached. Based on [Pop18].

Because IOTA is feeless, it also is prone to spam attacks. For this reason, a small PoW
is required to send a transaction. A value called PoW score defines how many hash
computations per byte of a message are needed on average to find a valid nonce [Wel20].
It is important that a PoW algorithm (usually based on a hash function) is relatively
hard to compute but very easy to validate. IOTA uses a custom hash function called
“Curl-P-81” to compute the transaction hash. The number of trailing zeros in the trit
representation of the hash value determines if the targeted difficulty is fulfilled. The
PoW computation is the last remaining part of IOTA using ternary conversions. This
decision was made to keep the disruption to the protocol and related projects as low
as possible. However, with Chrysalis optimizations were made to avoid the validation
bottleneck caused by the slow performance of Curl. By first using the faster BLAKE2b-
256 function to hash the message and taking the shorter fixed-size digest as input to
Curl, the validation speed was improved. Because network nodes need to keep track of
UTXOs, a huge number of low-value transactions (“dust”) could lead to performance
and memory issues. Therefore a dust protection, limiting the allowance based on the
amount of deposit the target address is holding, is in place. This way such spam attacks
are expensive but micro-payments are still allowed by making a deposit.

Currently, IOTA does not use any type of sharding, but approaches for different parts
of the project are being researched [Cam21]. The first step would be to implement a
hierarchical sharding mechanism for data messages only. Not supporting transaction
payloads allows for a far simpler concept. New data shards (Child Tangles) can be created
by any node and configured to be permissioned/permissionless and public or private.

37

3. Related Work

Nested shards are possible but in general, it is more efficient to keep the hierarchy shallow,
as child tangles need to send message stamps to their parents and wait for confirmation
there to reach finality. Proof of inclusion for specific messages in a data shard can be
done using a chain of hashes, e.g., as a Merkle tree, without being part of the respective
Child Tangle. Altogether, this allows to decouple data from the main tangle and therefore
making it lighter. By shifting the data to shards it can be (indirectly) included in the
main tangle without limitations. Although the concept of data sharding was discussed
there is no recent activity on this topic20.

A non-hierarchical concept called “Fluid Sharding” is in discussion21 for further research
in the more distant future (targeting IOTA 3.0). Its main feature is the fluidness or
adjustable nature of requirements taking into account the available resources of the
respective nodes joining the network. The idea is to configure a location together with a
radius of perception for each node. Nodes may adjust the radius to fit their capabilities
and then only communicate to neighbors within their reach. Among others, there are
open questions regarding the security of the system, inter-shard as well as long-range
communication [Cam21].

IOTA does not yet have support for smart contracts in the mainnet. Nevertheless,
Drąsutis presented the reasoning behind a potential design for an IOTA Smart Contracts
(ISC) framework [Drą21]. In an effort to avoid the bottleneck of smart contract systems
that proposal follows a horizontal scaling approach by extending the Tangle at Layer 1
with a multi-chain Layer 2 environment anchored to it. Each of these Layer 2 blockchains
has its own set of validators and can independently run smart contracts. Although they
can execute in parallel, smart contracts can call others not only within one chain but
also across them by way of the Layer 1 ledger. For now, the ISC framework is only partly
available in the IOTA 2.0 DevNet and the testnet of Shimmer22.

Shimmer is a staging network for novel features, like updated consensus mechanisms,
before they eventually make their way into the IOTA mainnet. The IF also envisioned
a third network, called “Assembly”. However, the project was discontinued in favor of
focusing development resources and integrating the collected insights directly in the IOTA
mainnet [IF23]. The plan for Assembly was to implement the full ISC framework but also
add a permissionless pool of decentralized validators to reach shared security over the
participating smart contract chains. A main chain would have handled all the functions
for the validators such as keeping track of their trust scores, rotating the pool, paying
out rewards, or slashing stakes. In other words, the idea was to build a governance layer
on top of IOTA’s Tangle enabling a permissionless ecosystem of multiple smart contract
chains and validators [IF21b].

20Data sharding. https://govern.iota.org/t/data-sharding/1188, Last accessed: 2023-09-24
21Fluid sharding. https://govern.iota.org/t/fluid-sharding/1285, Last accessed: 2023-09-24
22https://blog.shimmer.network/shimmerevm-testnet-launch/, Last accessed: 2023-08-16

38

https://govern.iota.org/t/data-sharding/1188
https://govern.iota.org/t/fluid-sharding/1285
https://blog.shimmer.network/shimmerevm-testnet-launch/

3.5. DAG-based DLTs

3.5.2 Hedera Hashgraph
Hedera Hashgraph [BHM20] in its current state is a permissioned but decentrally governed
DLT built using the Hashgraph consensus algorithm invented by Baird [Bai16a; Bai16b;
BL20]. Until it eventually reaches the state where everybody is allowed to run a node,
only governing council members can do so. The council currently is constituted by 29 (up
to 39) organizations23 distributed around the world such as Google, University College
London, and Deutsche Telekom..

It is noteworthy that the rights and patents to the Hashgraph consensus algorithm are
held by the company Swirlds and its use is exclusively licensed to Hedera [BL20]. Swirlds
is also the only permanent member of the Hedera council.

Additionally to legal protections, also technical control mechanisms are in place. Clients
can request state proofs that contain the public keys of all nodes (“address book”) needed
to check the signatures of the state. Apart from this current key material, also a history
of it is kept. Any new address book needs to be signed by nodes in the previous one
with at least 2/3 of the total coins staked to them. The hash of the genesis address book
is used as the unique identifier of the ledger. If some nodes try to fork, they cannot
practically create an address book history reaching back to the genesis one because most
nodes will not sign this new address book. Therefore, the fork is forced to have a different
genesis address book resulting in a new unique identifier, avoiding any risk of clients
being deceived into using the fork.

Baird, Harmon, and Madsen [BHM20] argue that such protections are beneficial for
enterprise applications built on top of the system because they block network forks and
their negative effects leading to better adoption by mainstream markets. Furthermore,
the implementation is not fully open-sourced. The components making up the Hashgraph
Platform, including the gossip and consensus protocol code, were released for open review
in fall 202024, while the services and tools building on top of it are open-source since
August 202025.

The hashgraph consensus mainly works by means of a gossip protocol. Nodes randomly
choose other members of the network and tell them all the information they currently
know. This process is repeated until all members are aware of any new data. Each
synchronization between two parties creates an event (depicted as a circle in Figure 3.3)
containing a timestamp, transactions, hashes of respective previous events and a signature.
With these event hashes, a history of how events are interconnected and therefore how
members communicated is recorded. This “gossip about gossip” results in a DAG, or
as it is called by Hedera, a hashgraph, displayed in Figure 3.3. All nodes maintain a
continuously updated copy of the DAG. To reach consensus, additional to knowing every
event, it is necessary to agree on a linear ordering of them.

23https://hedera.com/council, Last accessed: 2023-09-24
24https://hedera.com/blog/hashgraph-platform-is-now-available-as-open-review, Last accessed:

2023-03-15
25https://hedera.com/blog/all-our-services-are-belong-to-you, Last accessed: 2023-03-15

39

https://hedera.com/council
https://hedera.com/blog/hashgraph-platform-is-now-available-as-open-review
https://hedera.com/blog/all-our-services-are-belong-to-you

3. Related Work

Ti
m

e

Alice Bob Carol Dave Ed

Figure 3.3: Hedera Hashgraph gossip history. Based on [Bai16b].

Hashgraph does not require separate voting messages to be sent, hence avoiding bandwidth
consumption which often leads to scalability issues on bigger networks. Instead, a virtual
voting algorithm is used. Every node can locally calculate the votes of other members
based on the gossiped data according to the rules. The added benefit of this local
approach is that a malicious node cannot directly influence the calculated voting result
at honest nodes by, for instance, manipulating voting messages in any way.

The order of events is then decided by the consensus round they were received in,
the (weighted) median of its timestamps, and the signature. The basic version of the
hashgraph consensus assumes that each member is equal, but in Hedera, the algorithm
is adjusted to include PoS. Nodes need to stake at least some coins to participate in
consensus, while users of the network not running an own node can proxy-stake towards
chosen ones. Since Hedera is still in a permissioned phase, only allowing council members
to host nodes, the Hedera treasury proxy-stakes more than two-thirds of the total coin
supply to nodes run by members. Proxy-staked coins are not locked and can be spent or
reassigned to a different node freely. As of May 2021, normal users cannot proxy-stake

40

3.5. DAG-based DLTs

yet26. It also is not needed currently because all nodes are permissioned.

To avoid too many people proxy-staking to a single node, the voting weight of a node,
based on the sum of the stake it controls or that got proxied to it, is capped. An important
difference between Hedera’s proxy-staking model and DPoS is that users directly impact
the consensus by increasing the voting-weight of the node they proxy-stake to, while in
case of DPoS only the vote on delegate candidates, which in the end control the consensus,
is influenced [Hed19].

Baird, Harmon, and Madsen state that the hashgraph is DoS resilient as it does not rely
on nodes with special rights but all nodes participate in the consensus. Therefore, even
if a small number of nodes are attacked, the network can still operate successfully. To
create more disincentives, the implementation of “automated congestion pricing” is listed
on the roadmap27. By adjusting the network fees in real-time, when it is used excessively,
denial of service can be prevented further.

Another not yet available but described feature of Hedera is sharding. Currently, the
network consists of a small number of nodes in a single shard. When more nodes join
the network, it can be split into multiple shards to distribute transaction processing and
allow parallel consensus. These shards trust each other and can communicate by means
of push messages. Randomly chosen subsets of all nodes will be assigned to different
shards that keep track of a subset of the ledger’s state. A master shard assigns new
nodes to shards randomly once a day and also ensures a secure distribution of stake by
relocating nodes to other shards. Nodes of a shard only contribute to the consensus
of transactions originating from within. Via state proofs and unique ledger identifiers
(already described in context of the technical controls against forks) the message origin
and state of shards can be validated. Each shard keeps a queue of outgoing messages
and a sequence number for incoming messages for all the others. After a cross-shard
transaction is part of the consensus state in shard A, a node sends a proof of it with a
sequence number to a random contact in shard B. This procedure is repeated until a
node of shard B responds with a proof that the shared state contains the given sequence
number, meaning that it and all previous messages were received and processed. Using
the sequence number, the order can be maintained and duplicates can be ignored.

To give incentives for running a node Hedera uses three types of fees: node, network, and
service fees. Node fees are paid by the user to the node used to submit a transaction to
the network. Network fees compensate for the resources needed to reach consensus. They
are paid by users to the Hedera treasury. Service fees are paid to the treasury for instance
when using the file storage or smart contract capabilities of Hedera. Income by fees paid
to the treasury are regularly distributed to participating nodes. Users proxy-staking
will also receive small amounts as a reward. The fees are calculated based on a pricing
schedule set in USD by the governing council28.

26https://help.hedera.com/hc/en-us/articles/360007176997-Will-Hedera-add-additional-services-to-the
-platform, Last accessed: 2023-03-15

27https://hedera.com/roadmap, Last accessed: 2023-03-15
28https://hedera.com/fees, Last accessed: 2023-03-15

41

https://help.hedera.com/hc/en-us/articles/360007176997-Will-Hedera-add-additional-services-to-the-platform
https://help.hedera.com/hc/en-us/articles/360007176997-Will-Hedera-add-additional-services-to-the-platform
https://hedera.com/roadmap
https://hedera.com/fees

3. Related Work

3.5.3 Nano
Nano [LeM18], a permissionless and feeless DLT, was initially proposed by LeMahieu
in a whitepaper last updated in 2017. Nowadays, most of the whitepaper’s content is
outdated due to multiple protocol improvements over the years. The latest information
can be found in a “living whitepaper” [Nana] which is maintained by the community in a
git repository29. In the following, this is used as a general citation without reference to
the specific sub-pages.

A B C

R

S

S

S

R

R

R

S

Ti
m

e

R

S

Figure 3.4: Nano’s block-lattice structure. Each transfers consists of a send (S) and
receive (R) block signed by their respective account (A, B, C). Based on [LeM18].

Instead of a classical blockchain, Nano uses a data structure called block-lattice, where
each account has its own blockchain, illustrated by the squares and solid lines in Figure 3.4.
Transfers between two accounts only occur with pairwise actions. To send, a block (circle
with S) is attached to the sender’s blockchain which conducts the chosen amount. Later,
the receiver needs to create a block (circle with R) increasing his accounts balance while
referring to both the latest block of its account and the sender’s block to consume. If the
receiver does not publish a matching block, the transaction will stay in a pending state
indefinitely. There is no way for the sender to revoke its transaction. This asynchronous

29https://github.com/nanocurrency/nano-docs/, Last accessed: 2023-03-15

42

 https://github.com/nanocurrency/nano-docs/

3.5. DAG-based DLTs

procedure builds up a DAG, like shown in Figure 3.4, connecting all accounts that
(implicitly) interacted with each other. A block always contains the full state of an
account at a specific point in time [Nana; WYCX20].

Contrary to traditional blockchain-based systems, a block always only is a single transac-
tion. Therefore in the context of Nano, both terms are frequently used interchangeably.
More precisely: block describes the encoding of the transaction while transaction refers
to the action [Nana].

The consensus scheme used in Nano is called “Open Representative Voting” (ORV).
Similar to a PoS approach, each Nano account can choose a representative to vote on
its behalf. Representatives are permanently running nodes that vote on transaction
validity. Their voting weight is defined by the sum of account balances delegated to
them. Delegating voting weight to representatives does not lock any funds. Accounts can
change their representatives at any time. Representatives share their votes with directly
connected peers and also forward votes from Principal Representatives (PRs). PRs are
nano nodes with more than 0.1% of the online voting weight. This value is specified as
the median of active representative weights sampled regularly across a moving 2-week
window. The differentiation to normal representatives was made to reduce the bandwidth
cost of broadcasting votes of all nodes, where many of them do not have a meaningful
impact on the consensus due to their low voting weight. Received votes are summed up,
compared against the available online voting weight and if a block has more than 50% it
is confirmed. Additionally, a specific minimal online voting value must be reached. On
the one hand, this helps in protecting the network in case some nodes are cut off, but on
the other hand, the network stalls until enough nodes (voting weight) are back online. To
“cement” a block, nodes store a block confirmation height for each account [Nana; Nanb].

There are no direct economic incentives for Representatives and also no staking rewards
for delegators. However Nano’s fast and feeless transaction can be seen as natural
incentives to participate in the network. Because the network can be used without fees
businesses are attracted to it. Additionally running an own Representative node is not
resource-intensive because no PoW is required and has the benefit of direct network
interaction without having to trust a third party. Trusted Representatives with many
delegators can also be used as a form of marketing as they are shown in lists on network
overview applications such as NanoLooker30 [Nan20].

In order to mitigate the possibility of spamming transactions, a small PoW needs to be
done for each. The difficulty for a receive transaction is lower than for sending. Since the
PoW computation only needs data of the account’s previous block, it can be precomputed
and therefore does not impact normal usage [LeM18]. Currently, blake2b is used but
research for a replacement with a memory-hard hash function like Equihash [BK21] or
the Nano PoW31 especially designed for it, is ongoing. Alternative non-PoW approaches

30https://nanolooker.com/representatives, Last accessed: 2023-03-15
31https://github.com/nanocurrency/nano-pow, Last accessed: 2023-03-15

43

https://nanolooker.com/representatives
https://github.com/nanocurrency/nano-pow

3. Related Work

like using time as a currency for rate limiting and quality of service based on PoS are
also discussed32.

Nano does not yet use any form of sharding but in a discussion, its founder stated that it
would be good to have a solution ready before it is needed33.

3.5.4 Discussion
In reviewing the existing literature within the field of DLTs with respect to scalability
and interoperability, several topics present opportunities for further exploration and
innovation. This discussion section will first give a summary on the related work described
in the chapter and then provide insights into the potential avenues for research.

Summary

A common understanding regarding DLT scalability is that of “the Scalability Trilemma”,
saying that scalability, decentralization, and security cannot be fully achieved at the
same time. However, with complex solutions that combine several approaches, reaching
all three properties to a high degree may be possible. Using multiple methods further
helps reducing possible congestions and avoids single points of failures.

Some general ways to improve the throughput are to be found in the consensus mechanism.
By tweaking parameters, for example, the block size, a system can be adapted to changing
requirements and reach a better performance. Nevertheless, such changes may lead to
issues at other (unforeseen) parts of the DLT and increase computational resources for
running a node. Other approaches are combining several consensus mechanisms and
using different kinds of blocks or data structures within the same ledger.

A more radical approach regarding the change in the data structure is followed by
DAG-based DLTs that replace the underlying blockchain with a DAG. This allows to
attach blocks at multiple points in the graph in parallel instead of just at the end of
the blockchain, resulting in higher transaction throughput. However, that shift requires
different approaches to consensus algorithms and trade-offs regarding decentralization or
security. For this work, we looked into the details and compared three DAG-based DLTs
in Section 3.5: IOTA, Hedera, and Nano. Key takeaways at the time of writing are: IOTA
still has a centralized component to secure the network, Hedera uses a patented algorithm
and currently is not permissionless, Nano has a low adoption and uses a consensus scheme
similar to (D)PoS with only a few nodes together having more than 51% voting weight.
Recently IOTA announced the change to a validator committee34 similar to Hedera and
therefore will be more decentralized but at the same time permissioned.

Sharding can be counted as a complex scalability solution in DLTs. As there is not a
single correct definition of sharding, it could mean one of the following: That incoming

32https://forum.nano.org/t/time-as-a-currency-pos4qos-pos-based-anti-spam-via-timestamping/1332,
Last accessed: 2023-03-15

33https://forum.nano.org/t/horizontal-scaling/1502/34, Last accessed: 2023-03-15
34https://blog.iota.org/replacing-coordinator-with-validator-committee/, Last accessed: 2023-09-13

44

https://forum.nano.org/t/time-as-a-currency-pos4qos-pos-based-anti-spam-via-timestamping/1332
https://forum.nano.org/t/horizontal-scaling/1502/34
https://blog.iota.org/replacing-coordinator-with-validator-committee/

3.5. DAG-based DLTs

transactions are distributed over multiple groups of nodes and therefore each transaction
is only validated by a subset of all nodes. Alternatively, the term also is used to describe
that the DLT network is built with multiple interacting sub-networks. Sharding can be
of a hierarchical or non-hierarchical structure and further categorized into homogeneous
or heterogeneous sharding. An example of a hierarchical, homogeneous sharding is
Ethereum 2.0 described in Section 3.2.3. Note that after working on that section both
the naming35 and the goals regarding sharding changed for Ethereum36. Instead of
Ethereum 2.0, it will just be Ethereum (execution and consensus layer) and sharding will
be dropped in favor of Layer 2 solutions.

There exist several categories of DLT interoperability solutions. In Section 3.3, we
described Public Connectors which include notary schemes and relays, as well as the BoB
concept. Notable work regarding relays are the ETH Relay, which follows an optimistic
approach with a dispute period and Verilay which was built for Ethereum’s PoS upgrade.
Note that Verilay did not make it into the related work chapter but is described later on
in Section 4.1.2.

Like the name BoB suggests, such systems can be seen as a network of efficiently connected
blockchains. Usually they include a component that acts as point of connection for the
other chains. To facilitate adoption usually resources such as reusable components and
SDKs for data, network, consensus, incentive and smart contract layers are available.
By that the effort to create a custom application-specific blockchain connected to the
network is greatly reduced. Section 3.3.2 also gives an overview to two representatives
of that technology: Polkadot and Cosmos. Both follow slightly different approaches
regarding the trade-off between security and customization of chains. In place of various
incompatible DLT projects there now are competing ecosystems of multiple chains. It
remains to see which project will take the lead in terms of adoption.

Chapter 2 already gave an introduction to the intriguing field of ZKPs and their impact
on DLTs. Although ZKPs, especially zk-SNARKs with their succinct proofs, bring
many possibilities, it is important to consider the computational resources needed or
proof creation. With increasing statement size the memory consumption can quickly
reach limits on common end devices. Notwithstanding, the relatively novel technology
is already in use in various DLT solutions. For example in the blockchain protocol
Mina, zk-SNARKs are utilized to reduce the blockchain into a constant sized proof,
while Zcash uses them to preserve privacy. Additionally zk-SNARKs have been used to
create interoperability solutions, such as a relay and a cross-chain transfer protocol. The
“zkRelay”, employs zk-SNARKs to do the validation of blocks off-chain. The on-chain
relay code only needs to verify the resulting proof.

Like previously mentioned, Ethereum dropped sharding from its roadmap, instead focusing
on Layer 2 solutions. One of these Layer 2 scalability solutions, zk-rollups, employs
zk-SNARKs to execute transactions in batches off-chain and therefore reduce the burden

35https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming, Last accessed: 2023-09-13
36https://ethereum.org/en/roadmap/#what-about-sharding, Last accessed: 2023-09-13

45

https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming
https://ethereum.org/en/roadmap/#what-about-sharding

3. Related Work

on the mainchain by a huge factor. This decision for Ethereum brings much weight behind
the future research on zk-SNARKs, especially for a general-purpose zero-knowledge EVM
implementation.

In general, zk-SNARKs and comparable families of ZKPs are a heavily researched topic,
already resulting in highly improved efficiency and easier, more universal, applicability.
Besides proposing new proof schemes, making them available and comparable in actual
implementations is essential. Even with ready-made libraries, existing DLT cannot
directly take the full advantage, because widely-used cryptographic primitives, like
SHA hash functions perform poorly when executed within ZKPs. Some existing hash
functions like Pedersen are more suitable but research already led to promising novel
hash constructions specifically designed for the application in ZKPs.

Potential research

One notable research gap concerns the creation of a relay for DAG-based DLTs. Many
papers have focused on the development and analysis of DAG-based ledgers and there
also is work describing various relay approaches for blockchain-based systems. However,
to our knowledge, these two areas of interest have not been investigated together yet.
A relay would enable interoperability in a way that, e.g., smart contracts executing on
another ledger can act on transactions that occurred at the DAG-based source.

Another path for practical research lies in the exploration of the ISC framework. Because
it was just released recently in an early development stage and is not available on the
IOTA mainnet yet, limited theoretical and practical insights are available. Investigating
the capabilities and limitations of IOTA’s smart contract framework as well as the
proposed IOTA ecosystem consisting of the mainnet, Shimmer, and the attached Layer 2
chains, could shed light on the potential for decentralized applications in DAG-based
ledgers. Nevertheless, smart contracts are not executed directly on the Tangle but on
specific smart contract blockchains anchored to the Tangle that can inter-operate with
each other over it. That “Tangle of Blockchains” system loosely resembles a BoB scheme
such as Polkadot. In the long term, the IF plans to integrate a general-purpose VM
enabling Layer 1 smart contracts [IF23].

46

CHAPTER 4
Design

This chapter presents the requirements and design approaches for a relay scheme with a
DAG-based source ledger. The overall design follows the concept of the existing state of
the art relay solutions built for blockchain-based DLTs. Due to the great difference in
consensus algorithms and inner workings of DAG-based projects, specific design decisions
for a use with IOTA are made. However, the validation functionality is independent of
the target DLT. The only requirement is the support for arbitrary computations (“smart
contracts”). After explaining the design considerations, we describe the different steps
involved in the relay process, including their states and preconditions.

4.1 Requirements/Design Goals
In general, the goal of relays is to make events, such as transactions of a source ledger
available on a target ledger in a verifiable way without depending on any intermediaries.
A relay scheme usually is built with two components: a relay contract deployed on the
destination ledger and an off-chain client allowing to easily relay data from the source
ledger to the contract. For this thesis, no off-chain client will be built. Nevertheless,
when needed for the usage of the contract, extensions to the interface of existing source
ledger node software will be provided. Furthermore, several test cases for the relay’s core
features will be specified.

4.1.1 Design Criteria
In their work on a PoS relay [WD22], Westerkamp and Diez list several design criteria
identified in previous cross-chain and relay literature:

• Forkless: No fork of the source ledger or active cooperation of a subset of its nodes
is needed to operate the relay.

47

4. Design

• Trustless: The initial state of the relay can be verified by its users. From there on
trust is derived only by validating the consensus of the source ledger. Therefore,
no trusted intermediaries are required.

• Autonomous: The relay is autonomous, in the sense that all that is required for it
to be used, are fully functioning source and target ledgers.

• Robust: The relay’s state is preserved and in case no update occurs for a considerable
time, catching up with the current state of the source ledger is technically and
economically feasible.

• Corresponding: Only data that is valid according to the source ledger is processed.
Furthermore, the relay contract includes functionality for validating inclusion proofs
of transactions, states, and events occurring there.

• Lightweight: Any execution of the relay contract or client should be efficient
regarding computation and memory resources. Update transactions at least adhere
to the limitations imposed by the target ledger.

4.1.2 Relay Schemes for PoW and PoS
Existing work on relays has largely concentrated on blockchain-based DLTs using a
consensus algorithm with PoW and the longest chain rule. However, new projects, as
well as established ones, such as Ethereum, show the trend of shifting away from the
resource-consuming PoW to using variants of the more efficient PoS. First efforts to
follow this development in the research field of relays have been made by Westerkamp
and Diez in Verilay: A Verifiable Proof of Stake Chain Relay [WD22], which includes a
proof of concept implementation1 for Ethereum 2.0.

Validation of PoW block headers can be done straightforwardly by recalculating and
comparing the hash value. Additionally tracking temporary forks and locking blocks
until enough have been added on top results in a usable relay. A consensus built
around PoS involves validator committees that sign the blocks they deem valid. In the
case of Ethereum’s Beacon Chain, a separate relay committee exists, which includes
more validators and stays unchanged longer than the usual committee. By storing (or
resubmitting) the public keys of the current and next relay committee’s participants in
the relay contract it is possible to validate if a block’s aggregated signature reaches the
minimal threshold needed. The relay committees, in turn, can be validated because every
block references the current and the next one. Therefore, the relay contract needs at
least one block of each sync committee period (256 epochs, roughly equal to 27 hours2)
to validate the transition. Contrary to Bitcoin or Ethereum’s PoW blocks, blocks of
Ethereum’s Beacon Chain include Merkle roots referencing the whole history. This avoids

1https://github.com/MaximilianDiez/PoSChainRelay, Last accessed: 2023-03-15
2https://github.com/ethereum/annotated-spec/blob/master/altair/beacon-chain.md#misc-1, Last
accessed: 2023-03-15

48

https://github.com/MaximilianDiez/PoSChainRelay
https://github.com/ethereum/annotated-spec/blob/master/altair/beacon-chain.md#misc-1

4.1. Requirements/Design Goals

the need to include all blocks (headers) in the relay, or in other words, it decouples blocks
from each other in the context of the relay.

4.1.3 Relay Scheme for DAG-based DLTs on the Example of IOTA
The common requirements for a relay solution described with the specific example of
IOTA, also depicted in Figure 4.1, are as follows: A source ledger (IOTA) is observed by
off-chain clients that submit ledger data (milestones) to a smart contract (relay contract)
at the destination ledger. After validating the submitted data (milestone) the contract
stores the relevant data (Merkle root hash etc.) allowing it to answer inquiries from
clients if a specific message (transaction) is included. For that, off-chain clients need to
build a proof (Merkle proof) with data they can get from the source ledger and submit it
to the relay contract for verification. If it passes the verification the relay contract could,
for example, forward this information to another contract that acts on this information.

Destination Ledger

Relay Contract

Milestones

Index Merkle Root Hash
4 Hash 1

10 Hash 2
...Get Merkle Proof

Observe

Off-chain clients

Submit Milestones

Verify Transaction Inclusion

Source Ledger (IOTA)

Figure 4.1: The IOTA Relay Scheme. Adapted from [FSS+20].

DAG-based DLTs not only differ in the way the consensus works but of course also in
their data structures, with some not having a directly comparable concept of blocks like
in a blockchain. As described in Section 3.5.1, IOTA builds a DAG out of messages. The
Coordinator periodically issues a message with a signed payload called milestone. Like
normal messages, milestones attach to multiple tips of the Tangle but also confirm the
messages they directly or indirectly reference.

The set of confirmed messages can still include conflicts. Nodes have to apply a deter-
ministic ordering and only apply the first of the conflicting messages, while the others
are ignored. The order is determined by a post-order depth-first search. That process is
called “White Flag Ordering” and is specified in a Tangle Improvement Proposal (TIP)3.
The result of the White Flag Ordering is a list of all nonconflicting messages having
a transaction payload. Put differently, it comprises all value transfers which are not
double-spends. As illustrated in Figure 4.2, a Merkle root hash calculated based on that
result is included in milestones. Therefore, nodes can validate the milestone by comparing
the Merkle root hash against the hash obtained from performing the White Flag Ordering
on their local state. Furthermore, inclusion proofs for transactions can also be validated

3https://github.com/iotaledger/tips/blob/main/tips/TIP-0002/tip-0002.md, Last accessed: 2023-03-15

49

https://github.com/iotaledger/tips/blob/main/tips/TIP-0002/tip-0002.md

4. Design

using the Merkle root hash, but the same is not possible for other message types, as
they are not included in that Merkle tree. The keys used to generate the milestone’s
signatures depend on the milestone index and are included in the configuration of the
node software.

A

C

E

B

H
Merkle Root

HashG

F

D

I

Merkle Tree

h(||)

h(||)

h(D) h(E)

h(G)

? Milestone

? Transaction
Message

? Non-value / Conflicting
Message

Figure 4.2: Example of IOTA Milestone with Merkle Tree based on White Flag Ordering.
Adapted from [FSS+20; Mar21].

Albeit not that well thought out (or suitable for a relay) compared to the approach taken
by Ethereum, there are similarities. Milestones can be seen as a kind of decoupled block
because they include transactions via the Merkle root hash and do not solely define
confirmed transactions by referencing them in the Tangle. Nevertheless, the signatures
of a milestone are less trustworthy than the aggregated signatures of Ethereum’s sync
committee. The issue is that the Coordinator, its signing nodes, and the keys are
under the control of the IOTA Foundation and there is no protocol to execute a trusted
transition of the keys in use. Node operators need to update their configuration with
newly published public keys. An expert of the IF confirmed via email that there is no
on-chain protocol to avoid or secure that process.

Nodes in the IOTA network validate milestones by recalculating the Merkle root hash
using their internal state of the Tangle and checking the result against the hash included
in the milestone [Wel21]. There is no additional signature or other indication available

50

4.1. Requirements/Design Goals

that shows a node’s consent regarding a milestone. Thus, in a relay contract that does
not mirror the Tangle with all its messages, it is impossible to distinguish a milestone
actually included in the network from a forged milestone that got signed with the real
keys. This puts even more trust into the Coordinator but if the private keys to create
valid milestone signatures are compromised, the whole IOTA network is at risk anyway.

In the following, the steps for relaying IOTA milestones and proofing the inclusion of
transactions are outlined.

4.1.4 Initialization
A node trying to synchronize with the Tangle needs to be bootstrapped with a trusted
snapshot file containing an initial state up to a specific point. These snapshots are
provided regularly by the IF4. Full snapshots are published every 1-2 days with the time
in between filled by delta snapshots at roughly two-hourly intervals. The snapshot file
format is defined in a TIP5. It includes UTXOs and milestone data to allow the ledger
state to be rebuilt. Additionally, nodes need the Coordinator’s public keys in order to
verify incoming milestones. Each key is only valid for a specific message index interval
but there are always two keys with overlapping intervals in use to sign milestones. Both
the keys and their applicable intervals are defined in the node’s configuration file6.

Because the relay only uses milestone data, just the public keys are needed for the
initialization of the contract. Users need to verify that the keys used in the relay contract
match the actual Coordinator keys. To avoid other unexpected behavior and increase
trust, it is also recommended to verify the contract logic itself. For example, there should
be no way to change the keys or intervals already added. Should the case occur that a
change is needed, a new contract needs to be deployed. As Westerkamp and Diez [WD22]
note, the average user lacks the skills to verify the relay contract on his own and therefore
has to build his trust on the public perception and possibly audits performed by trusted
third parties.

4.1.5 Relay Update
As soon as the relay contract is successfully deployed to the network, any user connected
to the target ledger can update it. No trust in the relaying user is required because the
relay contract validates the received milestones. Relays also need to make sure the data,
e.g., blocks, they operate on is “finalized”, i.e., non-reversible at least with a sufficient
probability. For traditional blockchains operating on PoW, this is often done by waiting
for a specific amount of new blocks confirming the previous ones, making the handling of

4IOTA snapshot files https://chrysalis-dbfiles.iota.org/?prefix=snapshots/hornet/, Last accessed:
2023-03-15

5Local Snapshot File Format https://github.com/iotaledger/tips/blob/main/tips/TIP-0009/tip-0009.md,
Last accessed: 2023-03-15

6Hornet node configuration file https://github.com/gohornet/hornet/blob/mainnet/config.json, Last
accessed: 2023-03-15

51

https://chrysalis-dbfiles.iota.org/?prefix=snapshots/hornet/
https://github.com/iotaledger/tips/blob/main/tips/TIP-0009/tip-0009.md
https://github.com/gohornet/hornet/blob/mainnet/config.json

4. Design

temporary chain forks in the relay mandatory. Contrary, PoS ledgers reach the finalized
state by means of voting. Therefore, after a block reached the targeted majority, it is
finalized and guaranteed to be part of the main chain. Because enough votes may not be
instantly available but are part of successive blocks, the finalization could occur with a
delay [WD22]. In place of votes for a block, in IOTA there are milestones confirming
transactions. For the use cases of a relay, it is enough to only store the milestone index
and the Merkle root hash instead of the whole milestone.

The data from the source ledger can either be obtained directly by running an own node
or by utilizing APIs of public nodes. Usually, calls to fetch data via HTTP are available.
In some cases, node software also provides means to subscribe to specific events one
wants to receive messages for, commonly called publish/subscribe (pub/sub) pattern.
IOTA nodes provide both, a “Node Event API” using the lightweight MQTT protocol7
and a REST API8.

4.2 Milestone Validation
Before validating the milestone data itself, the message encapsulating it can also be
checked. TIP-6 defines several criteria for a syntactical validation of messages in general,
while TIP-8 contains details about the milestone payload:

• Maximum size: messages must not exceed 32 KiB. This limit should be checked at
the contract before any further processing in order to avoid malicious attempts,
such as bloating the contract’s data.

• Parents: at least 1 but not more than 8 parent message ids in lexicographical order
need to be included. The milestone payload of the message has to include the
same parent data. The reasoning behind this is to prevent the attachment of the
same milestone payload at different places in the Tangle. This makes the milestone
independent from the message itself, allowing simpler processing. It also ensures
the actual position of the milestone message is consistent with milestone data like
the Merkle root hash which is calculated based on the location and the Tangle
topology.

• Nonce: valid solution to the PoW defined in TIP-12.

• No excessive bytes after parsing all defined message fields.

• Payload type: each payload starts with an integer identifying its type. For milestone
payloads, this is the number 1. This is important for deserializing the data from
raw bytes, e.g. when received as a parameter in the contract.

7https://wiki.iota.org/iota.rs/examples/mqtt, Last accessed: 2023-03-15
8https://wiki.iota.org/hornet/references/api_reference, Last accessed: 2023-03-15

52

https://wiki.iota.org/iota.rs/examples/mqtt
https://wiki.iota.org/hornet/references/api_reference

4.3. Message Inclusion Proof

• Keys: The public keys for the signature of a milestone are also included in its
payload, even though they are not used for verification in the node software.
Instead, one or more keys stored in the configuration file for the appropriate index
are used. The keys must be unique, sorted lexicographic, and match the given
count. Additionally, there is a lower bound for the amount of keys/signatures
specified in the configuration.

• Signatures: Must match the amount and order of the keys.

The most important thing is however the verification of the signature. It is created by
signing the BLAKE2b-256 hash of the milestone payload with an Ed25519 signature
scheme (RFC 8032). In practice, IOTA currently uses two independent signatures per
milestone. The Coordinator only assembles the milestone while the actual signing is done
by separate signature providers. By that, there is no central point holding all the key
material which makes it more difficult for potential attackers to acquire all keys needed
to create malicious milestones that pass verification.

4.3 Message Inclusion Proof
Just block or milestone data of the source ledger stored in a smart contract on the target
ledger alone is not enough to fulfil a relay’s function. A way to prove that a transaction
has happened, meaning it is included in a valid milestone, is necessary. Milestones include
the root hash of a Merkle tree built out of transactions like previously described in
Section 4.1. Therefore, it is possible to provide inclusion proofs for any transaction that
is part of it. The relay contract can verify the proof and if correct, for example, forward
details of the proven transaction to another smart contract that acts on this information.

For building a Merkle proof, two things are needed: First, the data to prove inclusion
for, and second, the sibling hashes along the path from the data to the Merkle root (also
called Merkle audit path). That is enough to recalculate the Merkle root to compare
against the Merkle root hash of the milestone which previously got stored in the contract.
If they match, the proof is valid and the transaction, therefore, is part of the milestone.

IOTA uses binary Merkle trees with BLAKE2b-256 as hash function like specified in
TIP-4 [Wel21]. Although there is no reference in the TIP it seems to be heavily based on
[RFC6962]. The input for creating one is a list of messageIds as binary data of messages
determined with the White Flag Ordering for the respective milestone. In Figure 4.2,
the construction of the Merkle tree hashes is displayed in a simplified way not differing
between leaf and node hashing. This would allow replacing two leaves with one having
the hash result of them as value. Therefore, different trees with the same root hash could
be created. To mitigate this security issue and provide “second preimage resistance”,
leaves and nodes get a different prefix when hashing.

53

4. Design

A more formal definition of the Merkle Tree Hash (MTH) is given in the recursive
Algorithm 4.1. The result of an empty input list is the hash of an empty byte string (line 3).
Line 6 gives the hash for a leaf, i.e., the hash for the only remaining element after
recursively splitting the input list. Note the prefix of 0x00 for the hash input, contrary
to line 9 which prepends 0x01 for the node hash in order to achieve the previously
mentioned second preimage resistance. The value k (line 8) defines how the input is split
into subtrees and by that also the structure of the tree based on the length of the input
list.

Algorithm 4.1: Merkle Tree Hash
Input: An ordered list of n input strings: Dn = {d1, d2, ..., dn}
Output: The Merkle Tree Hash of Dn

1 Function MTH(Dn)
2 if n = 0 then
3 return BLAKE2()
4 end
5 if n = 1 then
6 return BLAKE2(0x00 || d1)
7 end
8 Let k be the largest power of two less than n, i.e., k < n ≤ 2k
9 return BLAKE2(0x01 || MTH({d1, ..., dk}) || MTH({dk+1, ..., dn}))

10 end

54

CHAPTER 5
Implementation

This chapter serves as a detailed exploration of the implementation aspects for the
solution design already described in Chapter 4. First, it provides insights into the
technology stack, including programming languages and execution environments as well
as the various frameworks and tools utilized. Next, the Relay Contract’s functionality
and testing approach are discussed. The chapter concludes with a description of the
extended node interfaces and multiple zk-SNARK libraries.

5.1 Technology Stack
5.1.1 Programming Languages and Execution Environments
The most popular programming language for implementing smart contracts most probably
is Solidity. It was originally designed by Gavin Wood in 20141 and since then was heavily
used for smart contract development in Ethereum and in general for any DLT using a
compatible execution engine, also denoted as “virtual machine” (VM). Through the years,
a vast development ecosystem formed around Solidity and the EVM. For this reason,
many projects, such as the Binance Smart Chain2, chose to build compatible systems,
so that they can leverage the existing toolchains and make it easy for smart contracts
to be deployed there as well. Before deployment to the DLT network, smart contracts
written in Solidity or alternative languages are compiled into EVM bytecode that can be
executed by a node through the EVM.

Although Solidity was specifically built for smart contracts and has gained much adoption,
there still is the urge to use other established general-purpose programming languages. In
recent years, WebAssembly (Wasm) emerged, originally, as a binary format and runtime
for Web applications. Its standardized feature set is supported nearly completely by

1https://polkadot.network/gavin-wood/, Last accessed: 2023-03-15
2https://github.com/bnb-chain/bsc, Last accessed: 2023-03-15

55

https://polkadot.network/gavin-wood/
https://github.com/bnb-chain/bsc

5. Implementation

all major browser engines. Wasm bytecode is intended to be used as a compilation
target for modern programming languages. Studies show that Wasm can reach a better
performance than Javascript when executed in a browser. Wasm is not only intended
to be run in browsers but in general is built for memory-safe, sandboxed environments.
Therefore, it quickly gathered interest from the DLT community as an alternative to
the EVM [ZWW+21]. The main advantage of Wasm is support from a wide array of
programming languages, for instance, Rust, Go, and C#3. Additionally, the general
assumption is that it can perform better than code executed by the EVM.
Zheng et al. [ZWW+21] conducted a first comparative analysis between several Wasm
and EVM engines using diverse benchmarks. They found that the performance greatly
differs depending on the concrete implementation and benchmark used. However, the
following general observations could be made: Wasm uses 32- or 64-bit words while the
EVM runs with 256. Therefore, benchmarks utilizing the full 256 bit require an overhead
when executed on Wasm. The Ethereum flavored Ewasm is a restricted subset of Wasm
with interfaces to interact with the Ethereum environment and includes gas metering.
Compared to a standalone Wasm engine, these additions make a noteworthy impact on
execution time. In summary, standalone Wasm VMs perform better than EVMs but
DLT-specific Wasm engines are slower in most cases.

IOTA’s Wasm VM is built on top of wasmtime [IF22a]. The benchmarks in [ZWW+21]
show that wasmtime is the second-fastest engine in many cases. Interestingly, the
performance for BLAKE2b is weak, with an execution time higher by a factor of 50
compared to the best engine. This is especially noteworthy as IOTA primarily uses that
hash function. Nevertheless, this may have already been improved as wasmtime v0.15.0
used in the benchmarks is from April 2020. Running the benchmark again with the latest
version (v0.35.1 released in March 2022) unfortunately is not possible because the link to
the source code is missing from the document.

To write a smart contract, using a programming language allowing to target Wasm is
not enough. Additionally, some kind of library or SDK of the target DLT is required.
Often programming models similar to Solidity are used.

There are several options for implementing the IOTA Relay design described in Chapter 4.
In theory, IOTA smart contracts also include support for the EVM and one could therefore
benefit from Solidity and its tooling. However, it currently is only an experimental
feature with several limitations. Furthermore, the goal for creating the relay is to re-use
existing IOTA libraries to reduce possible implementation errors as well as to increase
maintainability, performance, and robustness. Because the IOTA Foundation uses Rust
as its main language for current and new IOTA libraries, the choice seems natural for
the relay implementation. Additionally, it also was the first language to be used for the
smart contract library due to its stable Wasm support. Later implementations of this
library for Go and Typescript were made available as well [IF22a].

3Status of Wasm support of multiple programming languages https://github.com/appcypher/awesome
-wasm-langs, Last accessed: 2023-03-15

56

https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs

5.1. Technology Stack

In the discussion of whether to support Solidity or Rust for smart contracts one reason for
Rust is to get developers to really think about the implementation and avoid copy-pasting
of existing Solidity code [Mac22]. Moreover, Rust is a very popular general-purpose
programming language opening up the field of smart contract development to a wide
audience. Then again an inexperienced Rust developer could also produce insecure and
inefficient code. Ways to mitigate these issues are thorough reviews of new contracts by the
more experienced community and providing easy-to-use APIs with good documentation.

During work on this thesis, we sometimes had difficulties due to having no previous
experience with Rust or Go despite the fact that only a subset of language features are
needed for IOTA smart contracts. Using Solidity, on the one hand, may have been easier
in general because we have worked with it in the past already but on the other hand, it
would increase the complexity through the need to re-implement procedures otherwise
readily available in libraries.

5.1.2 IOTA Frameworks & Tools
This subsection introduces several libraries and components developed by the IOTA
Foundation or the community to allow for easier implementation of related projects and
smart contracts.

Hornet

IOTA has two officially supported node implementations. Hornet is written in Go and is
currently the recommended node software because it includes features not available in the
alternative. It is maintained by the community and supported by the IOTA Ecosystem
Development Fund.

Bee

Bee is developed by the IF directly and follows a modular approach by splitting its
components into separate extendable libraries to allow re-usage for client software and
other projects. At the same time, it will act as the reference implementation for several
algorithms and data structures used in IOTA. Due to its performance and memory safety
guarantees, the IF chose Rust as their main programming language for most new projects,
including Bee. Other languages, such as Python and Java, are supported through bindings
to the Rust libraries. However native implementations with reduced functionality for C,
Go, and TypeScript, are also available. The reasoning is that C is needed for embedded
devices and the others were in use before the Rust-based library was finished [IF21c].

Solo

Smart contract development without a local development environment or framework
easing the task of deployment and testing would be laborious. With Solo, developers
can validate their smart contracts with tests written in Go, without the need to deploy

57

5. Implementation

them on a full testnet. Solo takes care of starting a virtual chain and deploying the
contract. Furthermore, it allows assertions on the execution of a smart contract call. For
interacting with the contract in tests, the same interfaces generated by the schema tool
for the implementation are used.

WasmLib

Every smart contract needs a secure way to execute in isolation and work with its state
in a deterministic way. To support a wide range of programming languages, IOTA chose
to use Wasm code as an intermediate representation which then can be executed within
an appropriate VM. A VM isolates the contract execution from the underlying host
system and ensures software portability. Wasm code running inside the VM has its own
memory space and by design is isolated from the outside except for the access to external
functionality needed for its execution. The ISCP sandbox API can be used by any type of
VM and provides generic functionality to store, access, and modify the state of the smart
contract. The use of the sandbox API is enabled by embedding the so-called “WasmLib”
into each compiled smart contract. This is needed to make the communication between
the different memory spaces of the smart contract and host possible [IF22a].

Schema Tool

There are many use-cases for smart contracts but usually, they involve handling assets
of some kind. For that reason, it is especially important that they are implemented in
a robust and secure way. Past experience shows that this is not an easy task and even
slight mistakes can have grave consequences like the loss of all assets held by the contract.
Recurring tasks while developing smart contracts, among others, include checking for
access rights and verifying the correctness of parameters. To reduce possible mistakes
and help with the implementation of smart contracts, the IF created the schema tool
which generates interfaces for functions, parameters, results, and state, based on a schema
definition file. One advantage is that the generated code uses strict type-checking at
compile time. Furthermore, it can output code in different programming languages
making it possible to program the contract in Rust but still easily test it with the
Go-based Solo framework.

Defining the contract for the Schema Tool is done in a YAML (default), as seen in
Listing 5.1, or JSON file. Besides fields for the name and description of the contract, the
schema is divided into several sections.

events. To allow clients to keep up with the state of the contract without polling, the
ISCP provides an event interface. However, this just supports arbitrary strings,
making it inconsistent and cumbersome to work with. That is why the schema
tool can generate client and contract code handling the encoding and decoding of
events defined in a structured way inside the schema file. Every event is logged
and therefore indirectly part of the state of the contract. If the data is not needed

58

5.2. Relay Components

in the contract itself using events is an alternative to storing data directly through
the contract. This approach can be used to reduce transaction costs because events
are cheaper than actual data access.

structs. This section is used to define structured data types with multiple fields that
can have different types and are accessible by their name. An example is, storing
different (meta-)data of a milestone in a grouped and structured way. Again, the
schema tool helps by generating code for accessing such a struct and also in the
background transforming it to a single byte array for storing.

typedefs. Allows defining a type alias. This is mainly used to build nested arrays or
similar which is not directly allowed otherwise.

state. The state of IOTA smart contracts is a simple key/value store using raw bytes.
The fields defined in this schema section specify the variables that will be stored in
the state. Type-safe handling is enabled by the schema tool-generated code. IOTA
provides some predefined types through the WasmLib that can be used directly
for the schema definition. On the one hand, there are basic types like (unsigned)
integers, String, Bytes, and on the other hand smart contract-specific types, such
as Address and Hash.

funcs. Each entry in this section defines a function with an access identifier, parameters,
and results. Funcs are allowed to modify the smart contract state. Code generated
for variables defined in the state section includes two interfaces, one for mutable
access and another immutable one for the use with views. The method stubs
created for the contract implementation do not directly include these interfaces as
parameters. Instead, the access works via an extra context object specific to each
function. Additionally, there is a common context object providing utility functions
for the smart contract, for instance, calling another contract, creating an event, or
logging.

views. Contrary to funcs, views only retrieve information from the state but are not
able to change it. Therefore, no tokens can be transferred with views and calling
non-view funcs is not possible. An example is the retrieval of saved milestone
information.

5.2 Relay Components
Based on the considerations and the tech stack explained in Section 5.1 we can now
discuss our own relay schema and its components. Afterward, the relay functionality
is described in Section 5.2.2 throughout Section 5.2.4 and some thoughts on testing
approaches are given in Section 5.2.5.

An overview of the extensive interplay of different systems and tools is given in Figure 5.1.
The relay contract, as the central resource, has the most connections to other parts of

59

5. Implementation

the implementation. Several libraries are used for its implementation, the schema tool
for its specification and Wasm tooling for compilation and execution. The programming
languages and protocols in use are given in square brackets, showing the multi-language
interfaces generated by the schema tool and the test components written in Go. On a
user- or client-side the main components are the extended node (Section 5.3) for fetching
proof data and the smart contract-capable node to call the relay.

uses

uses

uses

Relay Contract [Rust]

Milestone Validation
Message/Transaction

Inclusion Proof
Validation

wasmlib

uses

generates

schema tool

schema.yaml

uses

uses

uses

deploy & call [wasm]

Tests [GO]

Solo

Template & Interfaces
[Rust + Go]

get data [http]

iota.go

IOTA Node
(hornet or bee)

compiles [wasm] wasm-pack

uses
Extended

IOTA Node
(bee fork)

get milestone and inclusion proof
[http]

blake2

IOTA Types
(bee-message, bee-protocol)

rs-merkle

ISC Node
(wasp)

call relay contract

Figure 5.1: The IOTA Relay Implementation Components.

5.2.1 Contract Schema
The contract schema, shown in Listing 5.1, defines the interfaces for the implementation
of the relay contract. Besides specifying the function names, parameters, and results also
the contract state storage is declared.

There are several built-in data types available, such as Bytes, Uint32, Bool and Hash,
which eases the handling of hashes used for IOTA. The Hash type is used as part of the
MilestoneData struct to store the Merkle Tree root hash (line 6). In the contract state,
the map (line 9) resolves milestone indices to their MilestoneData.

The function addMilestone (line 12) accepts the milestone payload serialized as Bytes.

60

5.2. Relay Components

For transaction verification, the parameters (line 17) include the byte representation of
the Merkle proof, the index of the message to prove, as well as the message data itself,
and the milestone index. The read-only function getMilestone (line 27) returns the data
for a given milestone index.

Listing 5.1: Shortened schema.yaml defining the relay contract.

1 name: IOTA Relay

2 description: Validate milestones and verify transaction inclusion

3

4 structs:

5 MilestoneData:

6 merkleRoot: Hash

7

8 state:

9 milestones: map[Uint32]MilestoneData

10

11 funcs:

12 addMilestone:

13 params:

14 payload: Bytes

15

16 verifyTransaction:

17 params:

18 proofBytes: Bytes

19 indexToProve: Uint32

20 leavesLength: Uint32

21 msgData: Bytes

22 milestoneIndex: Uint32

23 results:

24 valid: Bool

25

26 views:

27 getMilestone:

28 params:

29 index: Uint32

30 results:

31 milestone: MilestoneData

61

5. Implementation

5.2.2 Relay Update
The first thing to do for the relay when receiving an update is to unpack the message
binary data. In order to reduce the data transferred and therefore possible transaction
costs, just the milestone payload itself is used. Milestone payloads in IOTA are identified
by “1” as a 32-bit integer in the beginning. However, when directly using the unpack
method of MilestonePayload in bee’s codebase, this identifier is not read but set statically
as it is assumed to have been read previously to identify the type of the payload in the
first place. When using an IOTA client library to get milestone data, it will usually
include that identifier. This is also the case for iota.go which is used to fetch data for the
tests done with Solo. Hence, the first 4 bytes need to be removed, ignored, or handled
by a more general method that reads the identifier before deserializing further. After
validating the signature, the milestone index together with at least its Merkle root hash
is stored in a map. To allow for easy adaption of the contract in case more milestone
details are needed, a struct is used as the value type of the map. Candidates for storing
alongside the hash value in the struct or as a separate field are milestone timestamp,
address of the submitter, and the latest milestone index.

5.2.3 Milestone Validation
Validating a milestone signature requires matching public keys. The keys need to be
stored at the contract and it should not be possible to change them without deploying
another version of the whole contract. Thus trust in the relay can be established by
checking the stored keys and verifying that no method exists that allows a malicious
party to change them. A downside of this approach however is that from time to time a
new contract is necessary because the public keys are only valid until a specific milestone
index. Furthermore, the minimum number of valid signatures a milestone needs are
defined in the contract. With that number and the given public keys, a key manager
instance is created which is used to return fitting keys to validate a milestone with a
specific index.

5.2.4 Transaction Inclusion Proof
The requirements for the implementation of transaction inclusion proofs and the Merkle
tree can be derived from Section 4.3:

• Merkle proof/audit path: It must be possible to create an audit path (inclusion
proof) for a specific message included in the Merkle tree. For transferring this proof
to the relay contract and verifying it there, functionality to serialize/deserialize
to/from bytes is needed.

• Hash function: The hash function utilized while building the Merkle tree needs to
be BLAKE2b-256. Existing libraries therefore either need to already include it or
allow for defining an own function to be used.

62

5.2. Relay Components

• TIP/RFC compatibility: The structure of the Merkle tree as well as the prefixes for
hashing leaf and node have to match the specification of the TIP/RFC. Therefore,
the correct prefixes for hashing leaves and nodes have to be included or a hook to
define them needs to be available.

Possible options to fulfill them are reusing IOTA implementation from the Bee or Hornet
node software, utilizing other existing Rust code preferably in form of a crate (library),
or building it from the ground up. The implementation that is part of Bee unfortunately
does not include any means of creating or verifying proofs, nor has any serialization
capabilities. Several Rust crates provide Merkle trees with differing features and goals.
Because the relay contract tests are written in Go, it would be an advantage to have a
compatible library, ideally from the same authors, for it as well.

• rs-merkle4: This Rust crate, according to its author is “the most advanced Merkle
tree library for Rust”. It provides good documentation as well as all needed features
and is actively maintained.

• merkletree-rs5: In addition to this Rust crate, there also is a compatible Go
implementation6 from the same author.

• merkletree7: This implementation is actively maintained by the Filecoin project.
There are recent updates to the repository but during the initial evaluation of
libraries, the latest available crate was from 2020.

• tendermint: tendermint is a BFT-based consensus implementation used for Cosmos
and written in Go that includes suitable Merkle tree code8. There also is a project
working on providing a Rust port9.

After an initial selection with an emphasis on the availability as stand-alone Rust crate,
project activity, documentation, and actual usage, two libraries, rs-merkle and merkletree,
underwent practical experimentation to adapt them to the given requirements.

Both libraries allow relatively easy integration of arbitrary hash functions and support
proof generation. For BLAKE2b-256, the crate blake2 10 was used. The advantage of
merkletree is that it already implements the hashing with prefixes compliant to the TIP.
However, the number of input leaves must be a power of two. Therefore, it is not flexible
enough for the variable number of messages included in IOTA milestones.

4https://github.com/antouhou/rs-merkle, Last accessed: 2023-03-15
5https://github.com/arnaucube/merkletree-rs, Last accessed: 2023-03-15
6https://github.com/arnaucube/go-merkletree-old, Last accessed: 2023-03-15
7https://github.com/filecoin-project/merkletree, Last accessed: 2023-03-15
8https://github.com/tendermint/tendermint/tree/master/crypto/merkle, Last accessed: 2023-03-15
9https://github.com/informalsystems/tendermint-rs/blob/master/tendermint/src/merkle.rs, Last
accessed: 2023-03-15

10https://github.com/RustCrypto/hashes/tree/master/blake2, Last accessed: 2023-03-15

63

https://github.com/antouhou/rs-merkle
https://github.com/arnaucube/merkletree-rs
https://github.com/arnaucube/go-merkletree-old
https://github.com/filecoin-project/merkletree
https://github.com/tendermint/tendermint/tree/master/crypto/merkle
https://github.com/informalsystems/tendermint-rs/blob/master/tendermint/src/merkle.rs
https://github.com/RustCrypto/hashes/tree/master/blake2

5. Implementation

In contrast, rs-merkle does not use prefixes but allows any input size. Adding the
needed prefixes before hashing a leaf or node requires fewer and less extensive changes.
Furthermore, this crate also comes with inbuilt serialization capabilities. For that reason,
it was chosen for the implementation of the relay contract.

5.2.5 Testing

As already explained in Section 5.1.2, tests for IOTA smart contracts are written in Go
with the Solo framework, which employs the generic Go package “testing”. It automatically
deploys the previously built Wasm file of the contract. To test the validation of milestones
as well as the inclusion of messages, test data is needed.

One way is to use existing data from the IOTA test or mainnet. With the iota.go client
library, recent milestones and messages can be fetched and serialized into bytes to prepare
them for sending to the contract. However, that approach to dynamically load data from
an IOTA node is not fully suitable for testing as it breaks with some best practices. It
introduces a dependency on external resources and makes them nondeterministic if not
always the same data is used.

Of course, it is possible to always request specific messages but IOTA nodes do not store
them indefinitely. Therefore, it is advisable to only do so during the early development
of the proof of concept code, when a quick and flexible way to run contract functions is
needed, like in the context of this work. Later on, for the stable test cases and evaluation,
selected data should be saved to disk or hard-coded into the tests, to guarantee consistent
results. Alternatives are querying a permanode that stores all data, using an own node
that is properly configured and holds all necessary data, or to directly make use of the
database and snapshot files provided by the IF11.

5.3 Node Interfaces
This section explains additions made to the API of the IOTA node software. They expose
the data needed to use the relay functions.

Milestone Included Messages

To check at the relay contract if a given transaction is in included in a milestone a way
to first build the Merkle proof for that procedure is required. This Merkle proof path
can only be built with the knowledge of the transaction data or intermediary hashes
along with it. Although IOTA nodes implement an API enabling queries for messages
and their payloads, there is no functionality to fetch all messages that are included in
a milestone. Therefore, we added another endpoint for this use case. It is based on a
modified version of the DFS search/traversal function implementation for the White Flag

11https://chrysalis-dbfiles.iota.org/, Last accessed: 2023-03-15

64

https://chrysalis-dbfiles.iota.org/

5.4. zk-SNARK Libraries

Ordering found in bee-ledger12. The main differences are that the messages in question
are already applied and only messages referenced by the given milestone index should
be included. Additionally, messages having the conflict flag set or that do not include a
transaction payload have to be ignored.

Transaction Inclusion Proof

Instead of just fetching all messages included in a milestone, the node software was also
extended by an endpoint, that given a message id, provides the whole message data, the
id of the milestone including it and the respective proof. The proof is sent as base64
encoded bytes while the rest of the payload is in JSON format.

5.4 zk-SNARK Libraries

Initially, a possible idea for implementing the IOTA relay was to utilize zk-SNARks
similar to zkRelay. Therefore at a relative early stage of this work a research regarding
possible zk-SNARK programming libraries was conducted. Although not used in the
actual implementation the following overview is kept in order to serve as a starting point
for future work.

5.4.1 ZoKrates

ZoKrates [ET18; ZoK] is not only a library implementing a proof scheme but a full-
featured toolbox helping to build DApps with zk-SNARKs. It uses its own domain-specific
language, including a standard library of various optimized cryptographic components,
for defining proof statements and a compiler to generate proofs for specific inputs.
Furthermore, it can create Solidity code capable of proof verification. This code is ready
to be deployed as Ethereum smart contract.

To represent programs “ZIR”, ZoKrates’ own intermediate representation format, is
used. It is closely related to R1CS but can also include directives for witness derivability,
meaning that it allows calculating all variables from inputs or intermediate results.
Because R1CS constraints often involve large numbers, ZIR also uses an isomorphism to
shorten representations and therefore improve readability.

ZoKrates does not implement proving schemes itself but employs multiple backends
(bellman, libsnark, ark) supporting different ones. Besides two schemes by Groth (one
with Maller) [GM17; Gro16] and “Pinnochio” [PGHR13], recently the universal and
updatable “Marlin” [CHM+20] was added.

12https://github.com/iotaledger/bee/blob/e836fde6de/bee-ledger/src/workers/consensus/white_flag.rs
#L207, Last accessed: 2023-03-15

65

https://github.com/iotaledger/bee/blob/e836fde6de/bee-ledger/src/workers/consensus/white_flag.rs#L207
https://github.com/iotaledger/bee/blob/e836fde6de/bee-ledger/src/workers/consensus/white_flag.rs#L207

5. Implementation

libsnark

libsnark is one of the backends used for ZoKrates. It is written in C++ and includes
implementations using R1CS as well as other languages that are required for specific
proof systems. Zcash initially used the “Pinnochio” scheme implemented in a fork of
libsnark [Zcac].

bellman

bellman, a library implemented in Rust, is another backend used in ZoKrates. The only
proving system included is [Gro16].

Since the update called Sapling in 2018, Zcash employs bellman as zk-SNARK li-
brary [Zcac]. Forks of this project are used in various projects. For instance “bellperson”
of filecoin13 added assembly-level optimizations and GPU parallel acceleration for multiple
essential algorithms. The bellman community edition by matter-labs enables a multicore
feature by default and supports the BN256 curve for compatibility with Ethereum. Future
plans include the additions of SONIC [MBKM19] and another scheme by Groth and
Maller [GM17].

Ark

Ark (or arkworks)14 is a collection of multiple separate Rust libraries (called crates) for
developing with zk-SNARKs. It includes implementations of cryptographic primitives,
R1CS constraints, elliptic curves and many more. ZoKrates supports the schemes [GM17]
and Marlin [CHM+20] via the ark backend, although [Gro16] would also be available.
The ZoKrates documentation [ZoK] does not explicitly state that ark is used for Marlin
but the source code15 references it. As noted in the Readme files all three proof scheme
implementations are academic prototypes, have not received careful code reviews and
therefore are not production ready. Additionally, the recursive verification feature16 is
also based on ark libraries.

5.4.2 gnark
gnark [Con21] is another open-source library for zk-SNARKs, as of now supporting
the [Gro16] and experimentally17 the PlonK [GWC19] scheme.

The main incentives for gnark were the often given statements that ZKPs are complicated,
hard to use and perform slow. In contrast to bellman it is written in Go and according to

13https://github.com/filecoin-project/bellperson, Last accessed: 2023-03-15
14https://github.com/arkworks-rs, Last accessed: 2023-03-15
15ZoKrates code with ark_marlin reference https://github.com/Zokrates/ZoKrates/blob/develop/zokrat

es_ark/src/marlin.rs, Last accessed: 2023-03-15
16Pull request for recursive verification https://github.com/Zokrates/ZoKrates/pull/918, Last accessed:

2023-03-15
17https://github.com/ConsenSys/gnark/blob/master/CHANGELOG.md, Last accessed: 2023-03-15

66

https://github.com/filecoin-project/bellperson
https://github.com/arkworks-rs
https://github.com/Zokrates/ZoKrates/blob/develop/zokrates_ark/src/marlin.rs
https://github.com/Zokrates/ZoKrates/blob/develop/zokrates_ark/src/marlin.rs
https://github.com/Zokrates/ZoKrates/pull/918
https://github.com/ConsenSys/gnark/blob/master/CHANGELOG.md

5.4. zk-SNARK Libraries

benchmarks also significantly faster, reaching a speedup from 2.6x to 3.5x depending on
the number of constraints as well as concrete implementation (underlying elliptic curve)
used [Bot20]. These speedups are partly possible because of a specially built library for
efficient field arithmetics.

A notable difference to ZoKrates is that Gnark does not use a purpose-built language
but simply uses Go. Botrel [Bot20] explains that decision with the benefits during the
whole development lifecycle, especially debug, document, test, and benchmark using Go
and its robust toolchain. Besides that, full and stable IDE integration across platforms
comes for free.

With gnarkd, there also is a way to use gnark as a service. This isolation may be desirable
for reasons of software architecture, resource allocation, or security. Communication with
the daemon is implemented with gRPC.

5.4.3 libspartan
libspartan [Set21] is a Rust library based on the equally named paper by Setty [Set19]
from Microsoft Research. More concretely, that work describes Spartan, as a whole family
of zk-SNARK schemes. The use of different underlying “commitment schemes” results in
multiple concrete zk-SNARKs with distinctive properties regarding the trade-off between
verifier costs and proof size.

Spartan’s outstanding feature is that it is a transparent zk-SNARK. This means a trusted
setup, like an MPC ceremony, is not required because there is no “toxic waste” involved
which needs to be kept secret. Furthermore, it offers sub-linear verification and linear
proving costs for any R1CS statements. Compared to other modern zk-SNARKs with
trusted setup, Spartan achieves a two-time speedup for proving arbitrary R1CS circuits
with up to 220 constraints. Data parallel workloads are even 16 times faster.

67

CHAPTER 6
Evaluation

This chapter evaluates the solution presented in Chapter 5. It starts with a review of
the implementation against the design criteria specified in Chapter 4. Afterward, the
collection of the datasets is described, followed by an analysis of the gathered data. Next,
different evaluation scenarios based on the resulting data classification are discussed.
Subsequently, the benchmark structure is outlined and the results are examined. The
chapter concludes with a security analysis focusing on selected aspects relevant to relay
solutions.

6.1 Fulfillment of Requirements
In the following, we discuss if the IOTA relay achieves the design goals established in
Section 4.1 and additionally cover limitations and possible improvements.

• Forkless: The IOTA relay builds on milestone validations specified in the IOTA
protocol such as verification of the signature that is part of the milestone payload.
For this reason, no explicit support from the nodes is needed. Instead of relying on
the centrally issued milestone signature, the trust in the relay could be increased if
some nodes would cooperate in a sort of committee to add an aggregated signature
to each milestone. Of course, that would contradict this design goal.

• Trustless: After the relay contract is deployed trust can be established by inspecting
the included public keys. These keys are used for the on-chain verification of newly
submitted milestones. Consequently, no trust in specific entities updating the relay
state is required, because the updates are validated by the contract.

• Autonomous: As there is no specific single entity required to operate the relay
contract it can be used by anyone with access to the source and target ledger.

69

6. Evaluation

• Robust: Due to the approach of using the milestone signature for validation, there
is no dependency on previous milestone data, meaning milestones can be seen as a
kind of decoupled “blocks”. Therefore a prolonged time without updates is not an
issue. The relay can be updated with the latest (or another arbitrary) milestone
without any further preconditions.
Adding missing milestones in between at a later point in time is only necessary if a
proof of inclusion for a transaction targets a milestone index not yet available at
the relay contract.
However, there are two limitations: The first is that the public keys included in the
relay contract for milestone validation are only applicable until a specific milestone
index. Milestones with an index greater than it cannot be verified and need an
updated relay contract instance including public keys with matching index ranges.
Another problem is the short interval at which new milestones (and messages in
general) are issued, leading to a significant amount of disk capacity needed over
time. Normal IOTA nodes like Hornet and Bee per default do not store the full
ledger history. Instead, they create snapshots of the ledger state and prune old
message data after reaching a configured database size or a milestone threshold1.
This implies that these nodes cannot provide milestones or data needed for inclusion
proofs indefinitely. For such cases “permanodes” are needed that store the whole
transaction history in a distributed database. IOTA’s permanode solution is called
“Chronicle” and has recently been rewritten as an extension for the Hornet node2.

• Corresponding: Milestones are issued by the trusted Coordinator and validated by
nodes of the IOTA network. Relayed milestones that pass the signature verification
and fit the data format requirements are considered valid. Merkle paths can be
used to prove the inclusion of transactions within milestones. Due to limits in the
milestone specification, a proof for non-value transferring messages is not possible.

• Lightweight: The IOTA relay is lightweight because there is no requirement to
constantly update it to keep it operable. Also, the creation of inclusion proofs by
using the extended node software is not resource heavy. It only involves a depth
first search similar to what is needed for milestone processing and the hashing to
build the Merkle tree.
Furthermore, the chosen programming language, Rust, shows the best gas utilization
in benchmarks targeting the execution of calculations, temporary memory usage,
and state storage writes when compared to Solidity, Typescript, and Go smart
contract implementations (Figure 6.1). For more clarity, the data for Typescript
was not plotted. It performed worse than Go and Rust, and in the case of storage,
it even is significantly inferior to Solidity. The interested reader is referred to the
original plots and scripts created by the IF [IF22b].

1https://wiki.iota.org/hornet/how_tos/managing_a_node#snapshot-pruning, Last accessed: 2022-12-09
2IOTA permanode https://github.com/iotaledger/inx-chronicle, Last accessed: 2023-03-15

70

https://wiki.iota.org/hornet/how_tos/managing_a_node#snapshot-pruning
https://github.com/iotaledger/inx-chronicle

6.1. Fulfillment of Requirements

In general, the most expensive operations in smart contracts are storage operations.
Note that contrary to the other subfigures the y-axis for it is scaled differently. The
sudden increase of storage operation gas usage for Go (and less notable Rust) in
Figure 6.1c probably is due to internal storage restructuring necessary when hitting
a specific size threshold.
In the context of this work, the existing gas usage tests were adapted in terms of
output data format and extended by another test measuring the hashing performance
of the blake2b implementation available in IOTA’s WasmLib. As there was no
blake2b function provided for Solidity, Figure 6.1d only shows the results for Rust
and Go, which both perform similarly.

0 200 400 600 800 1,000
0

0.5

1

·106

Operations

G
as

Solidity Go Rust

(a) Temporary Memory.

0 200 400 600 800 1,000
0

0.5

1

·106

Operations

G
as

(b) Calculations.

0 200 400 600 800 1,000
0

2

4

6

8

·106

Operations

G
as

(c) State Storage.

0 200 400 600 800 1,000
0

0.5

1

·106

Operations

G
as

(d) Hashing.

Figure 6.1: IOTA smart contract gas benchmarks for different programming languages.
Adapted from [IF22b] and extended by Figure 6.1d.

71

6. Evaluation

6.2 Quantitative Analysis
6.2.1 Dataset
To acquire a realistic IOTA dataset for the evaluation of the relay contract, the following
approach was used. First, a Docker image for the Bee node software, including our
HTTP API extensions to fetch milestone-included messages and proof data as explained
in Section 5.3, was built. A container using the image was then started via Podman
with a configuration to connect to the IOTA mainnet and automatically pair to existing
nodes. After collecting some milestones and their transaction data the node was stopped
and the auto-pairing was disabled. That allowed us to start the node later and use the
HTTP API without the node syncing more Tangle data.

This process was done twice on different dates and times of day to catch possible variations
in the data:

1. October 3 2022 from 17:38:14 until 18:54:24 GMT,
Milestone index 4512232 - 4512689 (458 milestones)

2. November 6 2022 from 13:19:23 until 14:55:53 GMT,
Milestone index 4804402 - 4804981 (580 milestones)

Before using the gathered data for the relay contract, an analysis based on the listed
metadata was conducted:

• Number of messages included in milestones:
For building and evaluating a relay solution, it is important to ascertain an average
milestone. A key property is the number of transaction messages it includes. Every
included message is used to calculate the Merkle root hash stored in the milestone.
This allows for building a proof of inclusion for any of them.
To verify such a proof the relay needs the matching milestone data. However,
many of the messages in IOTA are non-value messages which are not included in
milestones, resulting in a remarkable number of “empty” milestones (Figure 6.2).
Depending on the dataset, between 29% and 51% of the milestones include no
messages at all, and hence are of no use for the relay.
In order to give a better perception of the data interesting for further relay evaluation,
Figure 6.3 shows the number of milestones with at least one included message in a
cumulative histogram. The highest share of non-empty milestones just includes one
message, causing the usage of the Merkle tree hash to be an unnecessary overhead.
Approximated only 1.3% (Figure 6.3a) to 2.7% (Figure 6.3b) of the milestones
include 4 or more messages. As a result, the data savings of the Merkle tree are
marginal.

72

6.2. Quantitative Analysis

234

142

64 15

3

(a) Dataset 1

170

225

131
43

8 3

0
1
2
3
4
>4

(b) Dataset 2

Figure 6.2: Overview of the number of milestones with a specific amount of included
messages (0-4 and more) for both datasets.

• Timestamps:
The many empty milestones partly are due to the interval in which milestones
are created. When looking at the timestamps one can see that currently every
10 seconds a fresh milestone is published in the mainnet. This allows for fast
finalization times but leads to the previously explained drawbacks.

• Milestone payload byte size:
Strictly speaking, a milestone always is a message with a milestone payload. Yet
in this work, we use the term milestone for the milestone payload. Consequently,
also the relay contract expects milestone payloads without the wrapping message.
The raw data size of a milestone directly impacts execution costs when adding a
milestone to the relay contract.
There are not many dynamic components that allow increasing the size of a
milestone. One part that is variable is the number of parents, which can be between
one and eight. Usually, in the IOTA mainnet the maximal count is used, leading to
milestones of 447 bytes. However, occasionally special milestones with an additional
“receipt” payload3 still occur. These allow the migration of funds from a previous
IOTA version’s signature scheme and have a size of 598 bytes.

3https://github.com/iotaledger/tips/blob/main/tips/TIP-0017/tip-0017.md#receipts, Last accessed:
2023-03-15

73

https://github.com/iotaledger/tips/blob/main/tips/TIP-0017/tip-0017.md#receipts

6. Evaluation

1 2 3 4
0

50

100

150

200

63.4%

92%
98.7% 100%

Included Messages

N
um

be
r

of
M

ile
st

on
es

0%

20%

40%

60%

80%

100%

(a) Dataset 1

1 2 3 4 5 6 7
0

100

200

300

400

54.9%

86.8%

97.3% 99.3% 99.5% 99.8% 100%

Included Messages

N
um

be
r

of
M

ile
st

on
es

0%

20%

40%

60%

80%

100%

(b) Dataset 2

Figure 6.3: Cumulative histogram for the number of included messages in milestones
(excluding 0) for both datasets.

• Message byte size:
Contrary to a milestone, a transaction message has several possibilities to increase
in size but the overall size limitation of 32 KiB for IOTA messages still applies.

– Indexation payload. An additional payload that can be embedded into trans-
action messages. It adds an index as well as arbitrary data. Messages can be
queried using this index via the node’s API.

– Inputs/Outputs. A different number of payment sources (inputs, UTXOs)

74

6.2. Quantitative Analysis

and targets (outputs) results in slightly varying transaction data sizes. Each
input requires a matching unlock block with a signature.

The relay needs to parse and hash the whole message in order to verify the proof of
inclusion of the message for a milestone. More data leads to more computational
effort and therefore higher costs. Both datasets show a clear split into two groups,
the messages with and without indexation payloads, depicted in Figure 6.4. In
general, apart from the extent and the differing proportion of small messages, the
datasets are quite similar.

[33
9, 1

,72
0.2

)

[1,
720

.2,
3,1

01.
4)

[3,
101

.4,
4,4

82.
6)

[4,
482

.6,
5,8

63.
8)

[5,
863

.8,
7,2

45)
0

100

200

300

400

500

N
um

be
r

of
M

es
sa

ge
s

Dataset 1
Dataset 2

Figure 6.4: Histogram for the byte size of included messages.

6.2.2 Evaluation Scenarios
Based on the conducted data set analysis, multiple distinct evaluation scenarios can
be derived. By that, a realistic assessment of the relay’s costs in different use cases is
possible. Furthermore, if it is not necessary to use concrete parts of the message after
proving its inclusion, it suffices to do the proof just with the message id (hash) of the
message instead of the full message data. That approach leads to a major reduction in
execution (gas) costs. Note that the evaluation focuses on verifying transactions because
adding milestones incurs nearly constant costs of around 11,600,000 gas due to the fixed
size of 447 bytes. The following enumeration describes the evaluation scenarios.

75

6. Evaluation

(A) Full message data: The complete message bytes are sent to the relay contract where
they are deserialized into a message object. The message is then hashed twice, first
to get the message id and a second time for using as a leaf in the Merkle proof to
prove the inclusion of the message in a given milestone. If the proof is valid the
contract returns that result but it could also use any data included in the message,
such as transaction details, with confidence.

(1) Small transaction: A normal transaction without any indexation payload using
one input and one output.

(2) Medium transaction: Multiple inputs or outputs and a small indexation
payload.

(3) Large transaction: A large number of inputs or outputs with an indexation
payload of medium size.

(4) Huge indexation payload: Indexation payload among the maximum observed
size in the datasets.

(B) Message ID only: Instead of the full message data just its message ID (the hash
of the data) is used. Although, in general, there are no obvious use cases for this
scenario it is included for comparative reasons. It vastly reduces data that needs
to be transferred and deserialized at the contract and reduces the hashing by one
round.

(C) Number of included messages: Although the preceding dataset analysis showed
that milestones include only a few messages most of the time, it still is important
to assess the course of the gas consumption with respect to an increase of included
messages and therefore the height of the Merkle tree.

An overview of the scenario group (A) is given by the scatter plot in Figure 6.5 showing
the correlation between bytes and gas usage of the message verification for all messages
included in the datasets. As already foreshadowed by the histograms (Figure 6.4) there
are two clusters, which are mainly caused by the difference in indexation payload. The
one on the left mainly consists of messages without or with small- to medium-sized
indexation payloads while the right cluster is the result of a third-party project using
huge indexation payloads compared to other messages. In addition, two outliers for the
second dataset that deviate from the linear relationship can be observed. However, the
distinction between the transaction scenarios (A1) to (A3) is not clearly visible in the
plot. Furthermore, it does not show how the number of messages included in milestones
affects the gas usage when verifying transactions.

To give a more unobstructed view, Table 6.1 lists the message byte sizes and the gas costs
for doing the inclusion proof for representatives of the described evaluation scenarios. It
clearly shows that “simple” value transactions like scenarios (A1) to (A3) are located
at the bottom left cluster in the scatter plot. Note that in this case the representatives
were chosen such that they each are the only included message of a milestone.

76

6.2. Quantitative Analysis

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

0.5

1

1.5

·106

Message + Proof Bytes

Ve
rifi

ca
tio

n
G

as
C

os
ts

Dataset 1
Dataset 2

Figure 6.5: Scatter plot of the relation between byte size and verification gas costs.

As can be seen in the fourth column, the gas costs per byte are lowest for the biggest
message. The reason for that is the diminishing cost overhead of the common data passing
and the fact that in its current implementation, the relay contract does not store any data
when verifying transactions. If the contract would for example save indexation payloads
the cost factor for scenario (A4) compared to the others would increase remarkably as
storage is more expensive than computation time (like needed for hashing).

Table 6.1: Overview of evaluation scenarios A and B.

Transaction Scenario Message Bytes Verification costs Gas/Byte
A1 Small 339 138,232 407.76
A2 Medium 527 167,549 317.93
A3 Large 696 182,959 262.87
A4 Huge indexation 7245 773,541 106.77
B MessageID only 32 72,581 2268.16

The effect of the number of messages in a milestone on the verification gas costs can be
seen in Figure 6.6. More included messages mean increased proof bytes due to additional
leaves in the Merkle tree, which in turn results in additional hash calculations for the
inclusion proof. Contrary to Figure 6.5, we use only the message bytes for the x-axis in
this case. By that the difference in gas costs due to the position of the message in the

77

6. Evaluation

Merkle tree is better visible: messages of identical size that are included in milestones
with the same number of messages can have different gas costs because of the varying
number of tree leaves needed to construct the root hash. This is one of the reasons for
points aligning one above the other in Figure 6.6.

300 400 500 600 700 800 900 1,0001,1001,200

1.4

1.6

1.8

2

2.2

·105

Message Bytes (without Proof)

Ve
rifi

ca
tio

n
G

as
C

os
ts

1
2
3
4
5
6
7

Figure 6.6: Scatter plot for Dataset 1[x<1200] similar to Figure 6.5. The colors indicate
the number of included messages in the milestone.

6.3 Security Analysis
Apart from the occasional actual bug in smart contract code leading to exploits, it is
even more important to consider a relay under multiple scenarios, to understand its level
of security. A popular way of security analysis in DLT literature is the BAR (Byzantine,
Altruistic, Rational) model. In it system participants are categorized by their behavior.
Byzantine actors could deviate from the expected relay scheme for various reasons, for
example, because they strive to reach an arbitrary goal or simply are faulty. Contrary,
altruistic users obey the scheme independently of any gain different actions could result
in. The last class, rational clients, always aim to maximize their own profit, no matter if
it means following the procedure or deviating from it.

There is a multitude of ways to attack DLTs directly or concrete smart contract imple-
mentations. Some are applicable to whole classes of systems, others are so specialized
they only work for selected ones. In the following two selected security threats with
respect to relays are discussed [FSS+20].

78

6.3. Security Analysis

6.3.1 Relay Poisoning
For a relay to be of any use, blocks (data) of the source ledger need to be submitted
to it continuously. Other smart contracts can utilize the relay for proof of inclusion for
transactions, e.g., to create tokens based on them. For relay poisoning an attacker tries
to get (invalid) data into the relay that can be used to its advantage, for example, by
using transactions that never took place like that on the source ledger for getting some
tokens. Usually, there are two possible ways such an attack can be achieved.

The first option is to just send invalid blocks to the relay, the other is to send data
passing validations but including faked transactions. Submitting invalid data to the
relay only works if it optimistically accepts data and only checks it in case of other users
disputing it. In the case of PoW that would greatly reduce the effort for an attacker.
However, the attacker somehow needs to stop all other participants from starting disputes
over the invalid blocks until the lock time has passed. One way to reach that goal is an
“incentive attack”, where the attacker offers rewards higher than the ones for successful
disputes. Rational clients want to maximize profit and therefore choose this alternative
compensation. Even if the attacker is well-funded enough and is able to reach all the
other participants the attack most likely will not be successful, as just one altruistic
user that triggers a validation is enough to stop it. This consideration of having at least
one altruistic participant is often used as a practical assumption when reasoning about
security in distributed permissionless systems, as it is difficult to guarantee correct results
with just rational behavior.

The attacker’s second option is to build correct blocks that contain faked transactions.
This means a validation of the block headers in case of a dispute would pass. However, a
correct PoW is needed, vastly increasing the necessary amount of computing resources.
To succeed with the attack, all that is required is to stay ahead of legitimate source
ledger blocks submitted to the relay. Therefore also in this case alternative rewards raise
the chances of a successful attack by giving an incentive to not submit valid blocks.

In IOTA there are no blocks, just messages in the Tangle linking to others. However,
in regular intervals, milestones with special signatures, that confirm some of the new
messages, are issued. The relay only works with milestones that similar to usual blocks
also contain a Merkle root hash for all the messages they confirm. When a milestone
is submitted to the relay its signatures are verified via the pre-shared public keys that
are valid for a specific milestone interval. As long as this is done for every milestone,
relay poisoning is not possible. Contrary to building a fake block with the right PoW
hash, issuing a milestone requires the correct private key to create a signature passing
the validation.

6.3.2 Changes to the Source Ledger
A change of the source ledger also has effects on its relays, for example, if there are
changes in what is considered a valid block or message. Without adapting the relay, it
could either reject now valid blocks or still accept ones that are invalid according to the

79

6. Evaluation

new rules. Furthermore, relays can also be more indirectly affected, e.g., in the case of a
fork occurring at the source ledger. Such an event does not necessarily require a change
in the relay but depending on the concrete implementation it could lead to competition
on what is the source ledger for the relay going forward.

For the IOTA relay described in this work, the most crucial changes are the keypairs used
for signing the milestones. As already mentioned in Section 4.1.3 there is no on-chain
protocol for updating the keys in use for the current range of milestones, nor for future
ones where the public keys are not known yet. Therefore additional contract instances
need to be deployed when a new set of keys is published. The same reason also makes
issues with forks unlikely as the keys would be different in that case.

6.4 Discussion

This chapter showed that the proposed relay solution fulfills the requirements derived
from related literature. To argue how lightweight the relay implementation using Rust
as a programming language is, gas utilization benchmarks targeting different relevant
aspects were executed for Rust, Go, and Solidity, with Rust giving the best results. In
order to measure the relay’s performance, various evaluation scenarios based on real-world
data were conducted.

The datasets for evaluating the relay contract were obtained by connecting containers
of the Bee node software to the IOTA mainnet and storing incoming transactions and
milestones. Extensions made to the HTTP API enabled the fetching of the required data,
including proofs of inclusion for transactions. Two datasets were collected on different
dates in October and November 2022, with a size of 458 and 580 milestones. To build a
foundation for the analysis, the gathered data was first examined in detail to surface the
possible implications for further steps.

Surprisingly, a significant number of milestones were found to be empty as they did
not include any transactions, ranging from 29% to 51% depending on the dataset.
Furthermore, the majority of the remaining milestones only include up to four transactions.
This mostly is due to the fact that a new milestone is issued every ten seconds. Milestones
usually have the same size of 447 bytes, while message sizes vary widely between 339 and
7245 bytes.

Based on these insights collected from the datasets, several scenarios were defined and
evaluated in Section 6.2.2. Both the number of messages inside milestones and the size of
messages have an impact on the efficiency and cost of the relay. Although two datasets
were collected at different times both show similar properties and therefore also results.
The initial assumption was that the data would exhibit greater diversity and consist of
more milestones containing a higher number of transactions. Apart from two outliers and
the baseline established by scenario B, the results show a quasi-linear relation between
message bytes and verification costs. Data handling and especially storing are the most

80

6.4. Discussion

gas-expensive operations in smart contracts. Therefore these topics always are primed
for additional tests and in-depth optimizations but are not the scope of this work.

Assessing the meaningfulness of the results is challenging due to the implementation’s
reliance on evolving software components that are still in an experimental state. For
example, gas usage may fluctuate as a result of ongoing adjustments to the costs associated
with certain operations. In addition, there is no baseline to compare relay gas costs to,
owing to the early stage of the IOTA smart contract framework. Moreover, contrary to,
e.g., Ethereum, in the planned Assembly network (based on the IOTA smart contract
framework) [IF21b], chain operators can assign fees on their own, possibly resulting in
multiple instances of the relay with monetary costs.

The evaluation is concluded by arguing about the relay’s security, regarding relay poisoning
and changes to the source ledger, under the BAR model. Similar to the IOTA network
itself the relay relies on the security of the centralized Coordinator and its signatures.

A promising way to optimize both the efficiency and the security of the relay is to utilize
zk-SNARKs. By that, a more thorough approach could be taken to increase trust in
the relay without raising gas consumption, due to the off-chain creation of the proof
and the near-constant verification costs for it. Furthermore the high costs of validating
milestones, compared to transaction verification, could potentially be reduced with the
help of zk-SNARKs. In addition, the tests should be repeated with recent IOTA smart
contract framework versions as well as after revisiting and improving the relay code.
Updates to the Rust programming language and for the compiler to Wasm can also
potentially have a significant impact on performance.

81

CHAPTER 7
Conclusion

In this concluding chapter, we first provide a comprehensive summary of the research
conducted, highlighting key findings and insights gathered throughout this work. We also
explore potential directions for future work by discussing areas where further investigation
and development seem promising for the results of this work as well as the broader field
of research.

7.1 Summary
Research in the area of DLT in the last few years mostly has focused on two broad
topics, scalability and interoperability. The first has to be improved in order to handle
increased traffic and avoid congestion of the system during high load. The latter stems
from the fact that over time more and more competing projects have evolved, resulting in
fragmentation of the field due to the various incompatible technologies in use. For both,
several solution approaches surfaced. Regarding scalability, these are the optimization of
components (algorithms, data structures, networking) as well as their parameters, and
ways of splitting and distributing work, such as sharding and introducing sidechains or
other means of moving computations off the main chain. Shards and multiple chains
need efficient ways of communication. Therefore, scalability has overlapping research
goals with interoperability.

To establish deeper knowledge about scalability and interoperability approaches, the
thesis started with extensive literature research including whitepapers and Web pages
of DLT projects, as these resources give a more up-to-date view compared to the often
outdated information found in traditional research papers.

In Chapter 2, we described the evolution of DLTs and their challenges as well as possible
solutions in a general way to give a background for the remaining thesis.

83

7. Conclusion

DLTs can be classified into three generations. The first generation is defined by Bitcoin,
the first cryptocurrency, built in a decentralized way using a blockchain and PoW.
However, it was not designed in a way that fostered adaptation and did not support
building custom programs on top of it. With the second generation and Ethereum that
changed, because smart contracts were introduced as a way to create own distributed
applications that execute on the network. The new possibilities and the fact that all
the participating nodes have to execute the smart contracts, lead to an increased load
on the system. This is why third-generation DLTs focus on efficient solutions with
scalability in mind. Besides scalability, projects of the third generation also introduced
solutions for interoperability between multiple DLT instances and made it easier to build
application-specific blockchains that integrate with each other.

Because blockchains are a linear data structure, they pose a bottleneck. To resolve this
issue several approaches utilizing DAGs were proposed that offer a high transaction
throughput. However, DAG-based DLTs come with their own drawbacks and challenges
in terms of decentralization and security.

Other promising techniques to scale DLTs are sharding and ZKPs. Sharding aims to
grow the overall capacity by scaling horizontally and distributing work while keeping
the overhead of handling additional nodes as low as possible. ZKPs in their various
manifestations can be used as a tool for many use cases. They allow the construction of
proofs for statements over a secret that can be verified without giving the secret away.
This characteristic makes them a valuable construct for privacy-related goals. A family
of ZKPs called zk-SNARKs has the property of succinct proofs, meaning that the proof
is small and fast to verify compared with the statements it proves. Therefore it is primed
for usage in DLTs, where it is beneficial to do as much work as possible off-chain and
have a low memory and computation footprint on-chain.

After establishing an understanding of the general topics, Chapter 3 goes into more
detail by exploring related work for the previously mentioned areas specific to the field
of DLTs. We discuss the scalability trilemma and present different approaches for scaling
done in various projects while also pointing to the resulting drawbacks. Furthermore,
an overview of the different consensus strategies is given. The chapter continues by
describing off-chain as well as cross-chain solutions. Afterward, sharding is revisited in
the context of DLTs and a concrete example is given with Ethereum 2.0. In the following,
we focus on two categories of interoperability: Public connectors, such as relays, and
the concept of BoBs. For both, examples based on the literature or actual projects are
discussed. Similar to sharding, we take another look at ZKPs, concretely zk-SNARKs,
and their usage in the field of DLTs. The chapter concludes by describing and comparing
three DAG-based DLTs, namely IOTA, Hedera, and Nano.

Chapter 4 and Chapter 5 propose the design and implementation for an IOTA relay built
with the ISC framework. We derived the requirements and design goals from existing
literature on relays for PoW- and PoS-based ledgers. Using that as a guideline, we
reasoned about the specifics of IOTA and the realization of a relay for it.

84

7.2. Future Work

For the implementation, we chose the Rust programming language, based on the fact
that it was stated as the main language for IOTA going forward, it has good support
of WebAssembly and performed notably better than Go in benchmarks, displayed in
Figure 6.1. In addition, Wagner et al. [WMM+23] also identified Rust as a better choice
than Go in their exploration of Wasm performance across various programming languages.
This decision turned out to be challenging and in hindsight, we would choose Go instead
because, in the ISC framework, it needs to be used for testing and allows for easier
debugging. Having to handle two languages and their various dependencies was very
time-intensive and caused a lot of issues. That was especially the case due to the plan of
reusing existing libraries to write the actual relay code that handles data of the current
IOTA mainnet while the ISC frameworks are based on the devnet. Therefore, different
incompatible versions of multiple libraries were needed in the project causing version
conflicts that partly had to be solved by forking.

While evaluating the different processes and specifications of IOTA, we found several
options for improvements. Milestones only include transactions by means of a Merkle tree
hash but not conflicts or data-only messages. Furthermore, we had to extend the API of
the node software on our own to be able to fetch the actual transactions included in a
milestone to be able to build a proof of inclusion. The Coordinator signs each milestone
using two different keys. The IOTA nodes and also the relay verify these signatures.
However, the keys are only used for a defined range of milestones. Afterward, they need
to be manually updated because there is no on-chain protocol for that.

To enable an efficient and secure implementation of, e.g., relays, DLTs, and their consensus
have to be designed with interoperability in mind. Security-relevant processes such as
the rotation of keys have to be automated and should happen on-chain.

The evaluation of the proposed solution is done in Chapter 6. For a summary, we refer
to Section 6.4.

7.2 Future Work
In this section, we outline various possible improvements and extensions to the proposed
relay solution as well as some more general topics for future work in the field of DLT
interoperability and scalability.

Similar to ETH Relay, an optimistic or on-demand approach could be applied to the
proposed relay solution, which in turn would require a supporting incentive scheme. To
increase trust in the relay in addition to the Coordinator milestone signatures, measures
like for example a confirmation by means of a threshold signature coming from some of
the IOTA ledger nodes or a dispute timeframe before milestones can be used, would be
beneficial.

One highly promising strategy to enhance both security and efficiency involves leveraging
zk-SNARKs to move computations off-chain and only verify the resulting proof at the
relay contract.

85

7. Conclusion

A first step would be to port the existing solution for adding milestones and verifying
transactions to use zk-SNARKs, which could be extended to allow batch proofs of multiple
milestones and transactions at once. In the case of a relay implementation for the EVM,
using zk-SNARKs instead of verifying the ed25519 milestone signatures on-chain has
less gas costs. The reason is that the EVM does not have a pre-compiled function to
verify ed25519 signatures. Batching the verification of multiple signatures into one proof
increases the cost savings even more. The discussion and implementation of such a
solution by Goel, Ghangas, and Jain [GGJ22] can serve as a starting point for future
research.

However, ed25519 internally uses SHA-5121, which cannot be used efficiently inside
zk-SNARKs, diminishing the possible performance gains. In zkRelay (Section 3.4),
Westerkamp and Eberhardt [WE20] combine batch proofs for blocks with a Merkle tree
using a zk-friendly hash function. By that construct, they validate all blocks of the batch
off-chain but store only data about the last block on-chain to reduce storage cost, while
still allowing to prove the inclusion of intermediate blocks, via the Merkle tree, later on
if needed.

zk-SNARKs also open up whole new possibilities that would not be feasible to do on-chain.
Advanced uses are building proofs for the whole state of the ledger and aggregating
multiple proofs into one (also referred to as “recursive composition”). One recent approach
is “zkTree: A Zero-Knowledge Recursion Tree with ZKP Membership Proofs” by Deng
and Du [DD23]. Utilizing their proposed framework for a new relay implementation
instead of the less sophisticated Merkle tree usage (described in the previous paragraph)
looks promising. Fitting to our use case of validating the signatures of IOTA milestones,
the authors give an example of employing zkTree for validating ed25519 signatures in
a single proof within the EVM. As IOTA will move from the Coordinator, currently
using two signatures per milestone, to a decentralized committee of ten members, each
apparently signing milestones independently2, optimizing signature validation for the
relay is even more crucial than before.

When designing new systems around zk-SNARKs, it is important to do it in a “zk-friendly”
way, by choosing suitable cryptographic primitives. For example, the often-used hash
families SHA or BLAKE cannot be used efficiently, which has already been researched
and led to novel hash function constructions, such as “Poseidon” [GKR+21].

Further potential questions to answer are under which criteria (for example, data size or
number of messages included in the batch) zk-SNARKs offer better efficiency for a relay
compared to direct on-chain computations. When following such an approach, the impact
on clients has to be considered, as creating zk-SNARK proofs can be quite resource-
intensive, especially regarding RAM consumption. A comparison between multiple
zk-SNARK libraries implementing the same underlying scheme as well as a benchmark

1RFC8032: Edwards-Curve Digital Signature Algorithm (EdDSA). https://datatracker.ietf.org/doc/h
tml/rfc8032, Last accessed: 2023-09-27

2IOTA testnet milestones have ten signatures as seen at https://explorer.iota.org/testnet, Last
accessed: 2023-09-27

86

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://explorer.iota.org/testnet

7.2. Future Work

across different schemes would be of interest for both on- and off-chain computations.
Our overview of libraries in Section 5.4 showed that the most common available scheme
is [Gro16]. Nevertheless, more recent schemes, for example, Spartan, can offer better
performance and useful properties like transparency. Although Rust seems to be a popular
choice for implementing zk-SNARKs, with gnark a Go library is available that could be
used for further tests regarding the impact of using different programming languages in
an IOTA smart contract.

Part of the reason for constructing the relay using the ISC framework was its support
of Wasm, enabling the utilization of existing IOTA libraries for the implementation. In
the meantime, the development of the ISC and its dependencies, as well as other IOTA
libraries and the node software progressed notably. Therefore an update and reevaluation
of the implemented relay could show improved efficiency and would serve as a more
relevant baseline.

To underscore the potential for reuse, subsequent efforts should involve abstracting the
code from the actual ISC framework, to assess the possibilities of deployment to other
Wasm-compatible DLTs. This is even more important as a significant shift occurred
regarding the preferred method to execute smart contracts. Initially, the focus was on
Wasm, while the EVM support was labeled as experimental. Now the EVM is set to
be released for Shimmer soon and the Wasm VM should only be used for experimental
purposes, giving more reason to deploy the contract to another Wasm-capable DLT. The
decision to prefer the EVM comes despite performance evaluations indicating Wasm’s
superior performance. The rationale behind this change most probably is the EVM’s
widespread adoption and its ability to facilitate the deployment of existing smart contracts
originally designed for platforms like Ethereum or any other DLT that supports the
EVM. Therefore, a direction for future work is to take a close look at performance and
feature differences between the EVM and Wasm in the ISC framework. In terms of relay
implementation with zk-SNARKS, the EVM has the benefit that the ZoKrates framework
directly outputs verification smart contracts.

Research on a novel consensus algorithm to get rid of the Coordinator for IOTA 2.0 is
still ongoing at the IF. While working on this thesis, one proposed solution has already
been implemented in the devnet for evaluation but at a later point, the approach changed.
Future work could look into the forthcoming, ideally zk- and interoperability-friendly,
finalized specifications in order to build a relay for it.

87

Bibliography

[AVD20] Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. “Preventing Denial of
Service Attacks in IoT Networks through Verifiable Delay Functions”.
In: GLOBECOM 2020 - 2020 IEEE Global Communications Conference
(2020), pages 1–6. doi: 10.1109/GLOBECOM42002.2020.9322260.

[Bai16a] Leemon Baird. Hashgraph Consensus: Detailed Examples. 2016. url: htt
ps://www.swirlds.com/downloads/SWIRLDS-TR-2016-02.pdf (visited on
2021-05-13).

[Bai16b] Leemon Baird. The Swirlds Hashgraph Consensus Algorithm: Fair, Fast,
Byzantine Fault Tolerance. 2016. url: https://www.swirlds.com/downloads
/SWIRLDS-TR-2016-01.pdf (visited on 2021-05-13).

[Bar] Joshua Baron. Securing Information for Encrypted Verification and Evalu-
ation. Defense Advanced Research Projects Agency. url: https://www.dar
pa.mil/program/securing-information-for-encrypted-verification-and-evalua
tion (visited on 2021-08-09).

[Bas21] Gilbert Bassey. What Are Parachain Auctions? — All You Need to Know.
Coinmonks. 2021. url: https://medium.com/coinmonks/what-are-parachai
n-auctions-all-you-need-to-know-df54f96c552c (visited on 2021-10-06).

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
Transparent, and Post-Quantum Secure Computational Integrity. 046. 2018.
url: http://eprint.iacr.org/2018/046 (visited on 2021-09-08).

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. “The Hunting of the SNARK”.
In: Journal of Cryptology 30.4 (2017), pages 989–1066. doi: 10.1007/s0014
5-016-9241-9.

[BCC+20] Jeff Burdges, Alfonso Cevallos, Peter Czaban, Rob Habermeier, Syed
Hosseini, Fabio Lama, Handan Kılınc Alper, Ximin Luo, Fatemeh Shirazi,
Alistair Stewart, and Gavin Wood. Overview of Polkadot and Its Design
Considerations. 2020. url: https://github.com/w3f/research/blob/master/d
ocs/papers/OverviewPaper-V1.pdf (visited on 2021-09-23).

89

https://doi.org/10.1109/GLOBECOM42002.2020.9322260
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-02.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-02.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.darpa.mil/program/securing-information-for-encrypted-verification-and-evaluation
https://www.darpa.mil/program/securing-information-for-encrypted-verification-and-evaluation
https://www.darpa.mil/program/securing-information-for-encrypted-verification-and-evaluation
https://medium.com/coinmonks/what-are-parachain-auctions-all-you-need-to-know-df54f96c552c
https://medium.com/coinmonks/what-are-parachain-auctions-all-you-need-to-know-df54f96c552c
http://eprint.iacr.org/2018/046
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/s00145-016-9241-9
https://github.com/w3f/research/blob/master/docs/papers/OverviewPaper-V1.pdf
https://github.com/w3f/research/blob/master/docs/papers/OverviewPaper-V1.pdf

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “From
Extractable Collision Resistance to Succinct Non-Interactive Arguments
of Knowledge, and Back Again”. In: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference. ITCS ’12. Cambridge, Mas-
sachusetts: Association for Computing Machinery, 2012, pages 326–349.
doi: 10.1145/2090236.2090263.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized
Anonymous Payments from Bitcoin”. In: 2014 IEEE Symposium on Security
and Privacy. 2014, pages 459–474. doi: 10.1109/SP.2014.36.

[BCT20] Aritra Banerjee, Michael Clear, and Hitesh Tewari. Demystifying the Role
of Zk-SNARKs in Zcash. 2020. arXiv: 2008.00881 [cs].

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Suc-
cinct Non-Interactive Zero Knowledge for a von Neumann Architecture”.
In: 23rd USENIX Security Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, 2014, pages 781–796. url: https://www.usenix.o
rg/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. “On the Security of the Winternitz One-Time Signature
Scheme”. In: Progress in Cryptology – AFRICACRYPT 2011. Lecture
Notes in Computer Science. Springer, 2011, pages 363–378. doi: 10.1007/9
78-3-642-21969-6_23.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
“Noninteractive Zero-Knowledge”. In: SIAM journal on computing 20.6
(1991), pages 1084–1118. doi: 10.1137/0220068.

[BHK+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi
Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang. Combining
GHOST and Casper. 2020. arXiv: 2003.03052 [cs.CR].

[BHM20] Leemon Baird, Mance Harmon, and Paul Madsen. Hedera: A Public Hash-
graph Network & Governing Council. 2020. url: https://hedera.com/hh_w
hitepaper_v2.1-20200815.pdf (visited on 2021-05-13).

[BK21] Alex Biryukov and Dmitry Khovratovich. Equihash-Nano Research Report.
2021. url: http://content.nano.org/ABDK-Nano-Equihash-Report.pdf
(visited on 2021-05-17).

[BKLM19] Georgios Birmpas, Elias Koutsoupias, Philip Lazos, and Francisco J.
Marmolejo-Cossío. Fairness and Efficiency in DAG-Based Cryptocurrencies.
2019. arXiv: 1910.02059 [cs].

[BL20] Leemon Baird and Atul Luykx. “The Hashgraph Protocol: Efficient Asyn-
chronous BFT for High-Throughput Distributed Ledgers”. In: 2020 Inter-
national Conference on Omni-Layer Intelligent Systems (COINS). 2020,
pages 1–7. doi: 10.1109/COINS49042.2020.9191430.

90

https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1109/SP.2014.36
https://arxiv.org/abs/2008.00881
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1137/0220068
https://arxiv.org/abs/2003.03052
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
http://content.nano.org/ABDK-Nano-Equihash-Report.pdf
https://arxiv.org/abs/1910.02059
https://doi.org/10.1109/COINS49042.2020.9191430

[BMR] Joseph Bonneau, Izaak Meckler, and Vanishree Rao. Mina: Decentralized
Cryptocurrency at Scale. url: https://minaprotocol.com/static/pdf/technic
alWhitepaper.pdf (visited on 2021-01-04).

[BNTT20] Daniel Benarroch, Aurelien Nicolas, Justin Thaler, and Eran Tromer. A
Benchmarking Framework for (Zero-Knowledge) Proof Systems. 2020. url:
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-b
enchmarking.pdf (visited on 2021-07-17).

[Bot20] Gautam Botrel. Introducing gnark: a fast zero-knowledge proof library.
HackMD. 2020. url: https://hackmd.io/@zkteam/gnark (visited on 2021-
07-25).

[Bra] Brainbot Labs. What Is the Raiden Network? url: https://raiden.network
/101.html (visited on 2021-10-10).

[BS84] László Babai and Endre Szemeredi. “On The Complexity Of Matrix Group
Problems I”. In: 25th Annual Symposium on Foundations of Computer
Science, 1984. 1984, pages 229–240. doi: 10.1109/SFCS.1984.715919.

[But20] Vitalik Buterin. An explanation of the sharding + DAS proposal. HackMD.
2020. url: https://hackmd.io/@vbuterin/sharding_proposal (visited on
2021-12-06).

[But21a] Vitalik Buterin. An Approximate Introduction to How Zk-SNARKs Are
Possible. 2021. url: https://vitalik.ca/general/2021/01/26/snarks.html
(visited on 2021-06-13).

[But21b] Vitalik Buterin. Ethereum Whitepaper. ethereum.org. 2021. url: https://e
thereum.org/en/whitepaper/ (visited on 2021-10-12).

[But21c] Vitalik Buterin. The Limits to Blockchain Scalability. 2021. url: https://v
italik.ca/general/2021/05/23/scaling.html (visited on 2021-06-13).

[But21d] Vitalik Buterin. Why Sharding Is Great: Demystifying the Technical Prop-
erties. 2021. url: https://vitalik.ca/general/2021/04/07/sharding.html
(visited on 2021-06-13).

[But22] Vitalik Buterin. The Different Types of ZK-EVMs. 2022. url: https://vital
ik.ca/general/2022/08/04/zkevm.html (visited on 2023-09-14).

[BVGC21] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia.
A Survey on Blockchain Interoperability: Past, Present, and Future Trends.
2021. arXiv: 2005.14282 [cs].

[Cam21] Darcy Camargo. Scalability and Sharding - IOTA Research Symposium
2021. IOTA Foundation. 2021. url: https://www.youtube.com/watch?v=h
dWEdIuBF5k (visited on 2021-08-30).

[CG12] Jan Camenisch and Thomas Groß. “Efficient Attributes for Anonymous
Credentials”. In: ACM Transactions on Information and System Security
15.1 (2012), 4:1–4:30. doi: 10.1145/2133375.2133379.

91

https://minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-benchmarking.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-benchmarking.pdf
https://hackmd.io/@zkteam/gnark
https://raiden.network/101.html
https://raiden.network/101.html
https://doi.org/10.1109/SFCS.1984.715919
https://hackmd.io/@vbuterin/sharding_proposal
https://vitalik.ca/general/2021/01/26/snarks.html
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://vitalik.ca/general/2021/05/23/scaling.html
https://vitalik.ca/general/2021/05/23/scaling.html
https://vitalik.ca/general/2021/04/07/sharding.html
https://vitalik.ca/general/2022/08/04/zkevm.html
https://vitalik.ca/general/2022/08/04/zkevm.html
https://arxiv.org/abs/2005.14282
https://www.youtube.com/watch?v=hdWEdIuBF5k
https://www.youtube.com/watch?v=hdWEdIuBF5k
https://doi.org/10.1145/2133375.2133379

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. “Marlin: Preprocessing ZkSNARKs with Uni-
versal and Updatable SRS”. In: Advances in Cryptology – EUROCRYPT
2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part I. Zagreb, Croatia: Springer-Verlag, 2020, pages 738–768.
doi: 10.1007/978-3-030-45721-1_26.

[Cho19] Jason Choi. Demystifying Cosmos: Atomic Swaps, Ethereum, Polkadot and
the Path to Blockchain Interoperability. Based on an interview with Sunny
Aggarwal from Tendermint, a core contributor to Cosmos. The Spartan
Group. 2019. url: https://medium.com/the-spartan-group/demystifying-co
smos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interope
rability-d1a2d75c20d6 (visited on 2021-10-02).

[CHX18] Jeff Coleman, Liam Horne, and Li Xuanji. Counterfactual: Generalized
State Channels. 2018. url: https://l4.ventures/papers/statechannels.pdf
(visited on 2022-01-02).

[CKN+22] Mauro Conti, Gulshan Kumar, Pranav Nerurkar, Rahul Saha, and Luigi
Vigneri. “A Survey on Security Challenges and Solutions in the IOTA”. In:
Journal of Network and Computer Applications 203 (2022). doi: 10.1016/j
.jnca.2022.103383.

[Con21] ConsenSys. Gnark Documentation. 2021. url: https://docs.gnark.consensy
s.net/en/0.4.0/ (visited on 2021-07-25).

[Cor20] Matt Corallo. Bitcoin Improvement Proposal 152 - Compact Block Relay.
2020. url: https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
(visited on 2021-10-27).

[Cos21] Cosmos. IBC Technical Specifications. 2021. url: https://github.com/cosm
os/ibc (visited on 2021-10-28).

[CZZ20] Shan-Te Chao, Yang Zhao, and Jun Zhao. Reviewing Blockchain Scalability
Challenge with a Discussion of Off-Chain Approaches. 2020. doi: 10.13140
/RG.2.2.19055.87209.

[Dah21] Treyce Dahlem. A Journey Through the Cosmos (ATOM). The TIE Re-
search. 2021. url: https://research.thetie.io/a-journey-through-the-cosmos-
atom/ (visited on 2021-10-06).

[DAR21] DARPA. Researchers Demonstrate Potential for Zero-Knowledge Proofs
in Vulnerability Disclosure. Defense Advanced Research Projects Agency.
2021. url: https://www.darpa.mil/news-events/2021-04-22 (visited on
2021-08-09).

[DD23] Sai Deng and Bo Du. “zkTree: A Zero-Knowledge Recursion Tree with
ZKP Membership Proofs”. Recording: https://www.youtube.com/watch?v
=2s_c6KD5Yyc. Zero Knowledge Summit 9 (April 4, 2023). Lisbon, 2023.
url: https://eprint.iacr.org/2023/208 (visited on 2023-09-27).

92

https://doi.org/10.1007/978-3-030-45721-1_26
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://medium.com/the-spartan-group/demystifying-cosmos-atomic-swaps-ethereum-polkadot-and-the-path-to-blockchain-interoperability-d1a2d75c20d6
https://l4.ventures/papers/statechannels.pdf
https://doi.org/10.1016/j.jnca.2022.103383
https://doi.org/10.1016/j.jnca.2022.103383
https://docs.gnark.consensys.net/en/0.4.0/
https://docs.gnark.consensys.net/en/0.4.0/
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/cosmos/ibc
https://github.com/cosmos/ibc
https://doi.org/10.13140/RG.2.2.19055.87209
https://doi.org/10.13140/RG.2.2.19055.87209
https://research.thetie.io/a-journey-through-the-cosmos-atom/
https://research.thetie.io/a-journey-through-the-cosmos-atom/
https://www.darpa.mil/news-events/2021-04-22
https://www.youtube.com/watch?v=2s_c6KD5Yyc
https://www.youtube.com/watch?v=2s_c6KD5Yyc
https://eprint.iacr.org/2023/208

[DDL+19] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. “Towards Scaling Blockchain Systems
via Sharding”. In: Proceedings of the 2019 International Conference on
Management of Data. SIGMOD ’19. New York, NY, USA: Association for
Computing Machinery, 2019, pages 123–140. doi: 10.1145/3299869.331988
9.

[DeS21] Marta De Stradis. ZKP in Action - How Insurance Industry Can Benefit
from Secure Data Collaboration. QEDIT. 2021. url: https://qed-it.com/20
17/07/04/zkp-in-action/ (visited on 2021-08-02).

[Do23] Thuat Do. SoK on Blockchain Evolution and a Taxonomy for Public
Blockchain Generations. 2023. doi: 10.2139/ssrn.4377849. preprint.

[DPS+20] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and
Aviv Zohar. SOK: Cryptocurrency Networking Context, State-of-the-Art,
Challenges. 2020. url: https://www.univie.ac.at/ct/stefan/ares20.pdf
(visited on 2021-02-18).

[Drą21] Evaldas Drąsutis. IOTA Smart Contracts. IOTA Foundation, 2021. url:
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf (visited on
2021-11-11).

[Edg] Ben Edgington. Eth2 Annotated Spec. Ethereum 2.0 Phase 0 – The Beacon
Chain. url: https://benjaminion.xyz/eth2-annotated-spec/phase0/beacon-c
hain/#introduction (visited on 2022-01-05).

[EGSV16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.
“Bitcoin-NG: A Scalable Blockchain Protocol”. In: Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation.
NSDI’16. USA: USENIX Association, 2016, pages 45–59. url: https://ww
w.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf (visited
on 2021-10-09).

[ET18] Jacob Eberhardt and Stefan Tai. “ZoKrates - Scalable Privacy-Preserving
Off-Chain Computations”. In: 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). 2018, pages 1084–1091.
doi: 10.1109/Cybermatics_2018.2018.00199.

[Etha] EthHub. Plasma. url: https://docs.ethhub.io/ethereum-roadmap/layer-2-sc
aling/plasma/ (visited on 2021-10-10).

[Ethb] Ethhub. ZK-Rollups. url: https://docs.ethhub.io/ethereum-roadmap/layer-
2-scaling/zk-rollups/ (visited on 2021-10-10).

[Eth20] Ethereum Foundation. Design Rationale. Ethereum Wiki. 2020. url: https
://eth.wiki/fundamentals/design-rationale (visited on 2021-08-16).

93

https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
https://qed-it.com/2017/07/04/zkp-in-action/
https://qed-it.com/2017/07/04/zkp-in-action/
https://doi.org/10.2139/ssrn.4377849
https://www.univie.ac.at/ct/stefan/ares20.pdf
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf
https://benjaminion.xyz/eth2-annotated-spec/phase0/beacon-chain/#introduction
https://benjaminion.xyz/eth2-annotated-spec/phase0/beacon-chain/#introduction
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/plasma/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/plasma/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://eth.wiki/fundamentals/design-rationale
https://eth.wiki/fundamentals/design-rationale

[Eth21] Ethereum Community. The Eth2 upgrades. ethereum.org. 2021. url: https:
//ethereum.org/en/eth2 (visited on 2021-12-02).

[Eth23a] Ethereum Community. The Merge. ethereum.org. 2023. url: https://ether
eum.org/en/roadmap/merge/ (visited on 2023-09-25).

[Eth23b] Ethereum Foundation. Zero-Knowledge Rollups. ethereum.org. 2023. url:
https://ethereum.org/en/developers/docs/scaling/zk-rollups/ (visited on
2023-09-14).

[Fan21] Tobias Fan. Ethereum 2.0 For Dummies — Part 2: How Does Staking
Actually Work? Coinmonks. 2021. url: https://medium.com/coinmonks/et
hereum-2-0-for-dummies-part-2-how-does-staking-actually-work-96bb714e
4ad4 (visited on 2021-10-10).

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero
Knowledge Proofs Based on a Single Random String”. In: Proceedings
[1990] 31st Annual Symposium on Foundations of Computer Science. 1990,
308–317 vol.1. doi: 10.1109/FSCS.1990.89549.

[FSS+20] Philipp Frauenthaler, Marten Sigwart, Christof Spanring, Michael Sober,
and Stefan Schulte. “ETH Relay: A Cost-efficient Relay for Ethereum-
based Blockchains”. In: 2020 IEEE International Conference on Blockchain
(Blockchain). 2020, pages 204–213. doi: 10.1109/Blockchain50366.2020.000
32.

[Geo16] Harris V. Georgiou. On the Optimality of Ternary Arithmetic for Com-
pactness and Hardware Design. 2016. arXiv: 1611.03715 [cs].

[GGJ22] Garvit Goel, Rahul Ghangas, and Jinank Jain. Verify Ed25519 Signatures
Cheaply on Eth Using ZK-Snarks - Zk-s[Nt]Arks. Ethereum Research. 2022.
url: https://ethresear.ch/t/verify-ed25519-signatures-cheaply-on-eth-using-
zk-snarks/13139 (visited on 2023-09-27).

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
“Quadratic Span Programs and Succinct NIZKs without PCPs”. In: Ad-
vances in Cryptology – EUROCRYPT 2013. Lecture Notes in Computer
Science. Springer, 2013, pages 626–645. doi: 10.1007/978-3-642-38348-9_3
7.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and Universal Common Reference Strings with Appli-
cations to Zk-SNARKs. 280. 2018. url: http://eprint.iacr.org/2018/280
(visited on 2021-06-27).

[GKO20] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: A
Zk-SNARK Verifiable Cross-Chain Transfer Protocol Enabling Decoupled
and Decentralized Sidechains. 2020. arXiv: 2002.01847 [cs].

94

https://ethereum.org/en/eth2
https://ethereum.org/en/eth2
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://medium.com/coinmonks/ethereum-2-0-for-dummies-part-2-how-does-staking-actually-work-96bb714e4ad4
https://medium.com/coinmonks/ethereum-2-0-for-dummies-part-2-how-does-staking-actually-work-96bb714e4ad4
https://medium.com/coinmonks/ethereum-2-0-for-dummies-part-2-how-does-staking-actually-work-96bb714e4ad4
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/Blockchain50366.2020.00032
https://doi.org/10.1109/Blockchain50366.2020.00032
https://arxiv.org/abs/1611.03715
https://ethresear.ch/t/verify-ed25519-signatures-cheaply-on-eth-using-zk-snarks/13139
https://ethresear.ch/t/verify-ed25519-signatures-cheaply-on-eth-using-zk-snarks/13139
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
http://eprint.iacr.org/2018/280
https://arxiv.org/abs/2002.01847

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. “Poseidon: A New Hash Function for Zero-
Knowledge Proof Systems”. In: 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, 2021, pages 519–535. url: https://w
ww.usenix.org/conference/usenixsecurity21/presentation/grassi (visited on
2023-09-27).

[GM17] Jens Groth and Mary Maller. Snarky Signatures: Minimal Signatures of
Knowledge from Simulation-Extractable SNARKs. 540. 2017. url: https:
//eprint.iacr.org/2017/540 (visited on 2021-01-03).

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “Knowledge Com-
plexity of Interactive Proof Systems”. In: SIAM Journal on Computing
18.1 (1989), pages 186–208. doi: 10.1137/0218012.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield
Nothing but Their Validity and a Methodology of Cryptographic Protocol
Design”. In: 27th Annual Symposium on Foundations of Computer Science
(Sfcs 1986). 1986, pages 174–187. doi: 10.1109/SFCS.1986.47.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield
Nothing but Their Validity or All Languages in NP Have Zero-Knowledge
Proof Systems”. In: Journal of the ACM 38.3 (1991), pages 690–728. doi:
10.1145/116825.116852.

[Goe20] Christopher Goes. The Interblockchain Communication Protocol: An Overview.
2020. url: https://github.com/cosmos/ibc/raw/old/papers/2020-05/build/p
aper.pdf (visited on 2021-10-28).

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1: Basic Tools.
Volume 1. Cambridge: Cambridge University Press, 2001. doi: 10.1017
/CBO9780511546891.

[Gol04] Oded Goldreich. “Zero-Knowledge Twenty Years after Its Invention”. In:
(2004). url: http://www.wisdom.weizmann.ac.il/~oded/PSX/zk-tut02v4.pdf
(visited on 2021-06-07).

[Gro16] Jens Groth. On the Size of Pairing-Based Non-Interactive Arguments. 260.
2016. url: https://eprint.iacr.org/2016/260 (visited on 2021-01-03).

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-Bases for Oecumenical Noninteractive Arguments
of Knowledge. 953. 2019. url: http://eprint.iacr.org/2019/953 (visited on
2021-06-26).

[Hed19] Hedera. How Is Hedera’s Proxy Staking Different from DPoS? Hedera Help.
2019. url: https://help.hedera.com/hc/en-us/articles/360000665318-How-is
-Hedera-s-proxy-staking-different-from-DPoS- (visited on 2021-05-30).

95

https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://eprint.iacr.org/2017/540
https://eprint.iacr.org/2017/540
https://doi.org/10.1137/0218012
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/116825.116852
https://github.com/cosmos/ibc/raw/old/papers/2020-05/build/paper.pdf
https://github.com/cosmos/ibc/raw/old/papers/2020-05/build/paper.pdf
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/~oded/PSX/zk-tut02v4.pdf
https://eprint.iacr.org/2016/260
http://eprint.iacr.org/2019/953
https://help.hedera.com/hc/en-us/articles/360000665318-How-is-Hedera-s-proxy-staking-different-from-DPoS-
https://help.hedera.com/hc/en-us/articles/360000665318-How-is-Hedera-s-proxy-staking-different-from-DPoS-

[HGT+22] Jonathan Heiss, Elias Grünewald, Stefan Tai, Nikolas Haimerl, and Stefan
Schulte. “Advancing Blockchain-Based Federated Learning through Verifi-
able off-Chain Computations”. In: 2022 IEEE International Conference
on Blockchain (Blockchain). 2022, pages 194–201. doi: 10.1109/Blockchain
55522.2022.00034.

[ICF20] Interchain Foundation. Application-Specific Blockchains. Cosmos Network.
2020. url: https://docs.cosmos.network/master/intro/why-app-specific.html
(visited on 2021-11-11).

[IF21a] IOTA Foundation. Chrysalis Documentation. 2021. url: https://chrysalis.d
ocs.iota.org/ (visited on 2021-05-29).

[IF21b] IOTA Foundation. IOTA x Shimmer x Assembly. IOTA Foundation Blog.
2021. url: http : / / blog . iota . org / iota - shimmer - assembly/ (visited on
2022-01-18).

[IF21c] IOTA Foundation. The New IOTA Client Libraries: Harder, Better, Faster,
Stronger. IOTA Foundation Blog. 2021. url: https://blog.iota.org/the-new-
iota-client-libraries-harder-better-faster-stronger/ (visited on 2022-01-20).

[IF21d] IOTA Foundation. Towards Full Decentralization with IOTA 2.0. IOTA
Foundation Blog. 2021. url: http://blog.iota.org/path-towards-full-decentr
alization-with-iota-2-0/ (visited on 2021-05-29).

[IF22a] IOTA Foundation. Introduction to the Wasm VM for IOTA Smart Con-
tracts. IOTA Wiki. 2022. url: https://wiki.iota.org/smart-contracts/guide
/wasm_vm/intro (visited on 2022-03-20).

[IF22b] IOTA Foundation. Wasm Gas Usage Tests. GitHub Wasp repository. 2022.
url: https://github.com/iotaledger/wasp/tree/03e00b5ef7/contracts/wasm
/gascalibration (visited on 2023-03-16).

[IF23] IOTA Foundation. IOTA’s Stardust Upgrade and the Evolution of $IOTA
Tokenomics. IOTA Foundation Blog. 2023. url: http://blog.iota.org/stardu
st-upgrade-iota-tokenomics/ (visited on 2023-09-25).

[IOT22] IOTA Foundation. The Tangle | IOTA Wiki. 2022. url: https://wiki.iota.o
rg/learn/about-iota/tangle/ (visited on 2023-03-19).

[Jos20] JosephC. The Beacon Chain Ethereum 2.0 Explainer You Need to Read
First. ethos.dev. 2020. url: https://ethos.dev/beacon-chain/ (visited on
2021-10-09).

[KB19] Jae Kwon and Ethan Buchman. Cosmos Whitepaper - A Network of
Distributed Ledgers. Cosmos Network. 2019. url: https://v1.cosmos.networ
k/resources/whitepaper (visited on 2021-09-23).

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ewa Syta, and Bryan Ford. “OmniLedger: A Secure, Scale-Out, Decen-
tralized Ledger via Sharding”. In: 2018 IEEE Symposium on Security and
Privacy (SP). 2018, pages 583–598. doi: 10.1109/SP.2018.000-5.

96

https://doi.org/10.1109/Blockchain55522.2022.00034
https://doi.org/10.1109/Blockchain55522.2022.00034
https://docs.cosmos.network/master/intro/why-app-specific.html
https://chrysalis.docs.iota.org/
https://chrysalis.docs.iota.org/
http://blog.iota.org/iota-shimmer-assembly/
https://blog.iota.org/the-new-iota-client-libraries-harder-better-faster-stronger/
https://blog.iota.org/the-new-iota-client-libraries-harder-better-faster-stronger/
http://blog.iota.org/path-towards-full-decentralization-with-iota-2-0/
http://blog.iota.org/path-towards-full-decentralization-with-iota-2-0/
https://wiki.iota.org/smart-contracts/guide/wasm_vm/intro
https://wiki.iota.org/smart-contracts/guide/wasm_vm/intro
https://github.com/iotaledger/wasp/tree/03e00b5ef7/contracts/wasm/gascalibration
https://github.com/iotaledger/wasp/tree/03e00b5ef7/contracts/wasm/gascalibration
http://blog.iota.org/stardust-upgrade-iota-tokenomics/
http://blog.iota.org/stardust-upgrade-iota-tokenomics/
https://wiki.iota.org/learn/about-iota/tangle/
https://wiki.iota.org/learn/about-iota/tangle/
https://ethos.dev/beacon-chain/
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://doi.org/10.1109/SP.2018.000-5

[KP19] Tommy Koens and Erik Poll. “Assessing Interoperability Solutions for
Distributed Ledgers”. In: Pervasive and Mobile Computing 59 (2019). doi:
10.1016/j.pmcj.2019.101079.

[KS22] Yaşanur Kayıkcı and Nachiappan Subramanian. “Blockchain Interoperabil-
ity Issues in Supply Chain: Exploration of Mass Adoption Procedures”.
In: Big Data and Blockchain for Service Operations Management. Studies
in Big Data. Springer International Publishing, 2022, pages 309–328. doi:
10.1007/978-3-030-87304-2_13.

[KSF+21] Benjamin Körbel, Marten Sigwart, Philip Frauenthaler, Michael Sober,
and Stefan Schulte. Blockchain-Based Result Verification for Computation
Offloading. 2021. doi: 10.48550/arXiv.2110.11090. preprint.

[LeM18] Colin LeMahieu. Nano: A Feeless Distributed Cryptocurrency Network.
2018. url: https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
(visited on 2021-04-11).

[LLW21] Eric Lombrozo, Johnson Lau, and Pieter Wuille. BIP141 - Segregated
Witness (Consensus Layer). 2021. url: https://github.com/bitcoin/bips/bl
ob/master/bip-0141.mediawiki (visited on 2021-10-27).

[Mac22] Richard MacManus. Solana Uses Rust to Pull in Developers and Avoid
Copypasta. The New Stack. 2022. url: https://thenewstack.io/solana-rust-
developers/ (visited on 2022-03-22).

[Mal19] Mary Maller. “Practical Zero-Knowledge Arguments from Structured Ref-
erence Strings”. PhD thesis. UCL (University College London), 2019. url:
https://discovery.ucl.ac.uk/id/eprint/10075582/ (visited on 2021-06-27).

[Mar19] Gautier Marin. Why Application-Specific Blockchains Make Sense. 2019.
url: https://blog.cosmos.network/why-application-specific-blockchains-mak
e-sense-32f2073bfb37 (visited on 2023-05-27).

[Mar21] Thibault Martinez. White Flag Ordering - Tangle Improvement Proposal
(TIP) 2. 2021. url: https://github.com/iotaledger/tips/blob/5386420a65/ti
ps/TIP-0002/tip-0002.md (visited on 2022-03-02).

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. “Sonic:
Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Struc-
tured Reference Strings”. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pages 2111–2128.
doi: 10.1145/3319535.3339817.

[Mon] Monero. Moneropedia: Bulletproofs. getmonero.org, The Monero Project.
url: https://www.getmonero.org//resources/moneropedia/bulletproofs.html
(visited on 2021-07-15).

97

https://doi.org/10.1016/j.pmcj.2019.101079
https://doi.org/10.1007/978-3-030-87304-2_13
https://doi.org/10.48550/arXiv.2110.11090
https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://thenewstack.io/solana-rust-developers/
https://thenewstack.io/solana-rust-developers/
https://discovery.ucl.ac.uk/id/eprint/10075582/
https://blog.cosmos.network/why-application-specific-blockchains-make-sense-32f2073bfb37
https://blog.cosmos.network/why-application-specific-blockchains-make-sense-32f2073bfb37
https://github.com/iotaledger/tips/blob/5386420a65/tips/TIP-0002/tip-0002.md
https://github.com/iotaledger/tips/blob/5386420a65/tips/TIP-0002/tip-0002.md
https://doi.org/10.1145/3319535.3339817
https://www.getmonero.org//resources/moneropedia/bulletproofs.html

[Moo19] Hans Moog. Atomic Transfers / Transactions Instead of Bundles. IOTA.cafe.
2019. url: https://iota.cafe/t/atomic-transfers-transactions-instead-of-bund
les/318 (visited on 2021-05-29).

[MPP+22] Sebastian Müller, Andreas Penzkofer, Nikita Polyanskii, Jonas Theis,
William Sanders, and Hans Moog. “Tangle 2.0 Leaderless Nakamoto Con-
sensus on the Heaviest DAG”. In: IEEE Access 10 (2022), pages 105807–
105842. doi: 10.1109/ACCESS.2022.3211422.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
url: https://bitcoin.org/bitcoin.pdf (visited on 2021-10-11).

[Nana] Nano Foundation. Living Whitepaper. url: https://docs.nano.org/what-is-
nano/living-whitepaper/ (visited on 2021-05-12).

[Nanb] Nano Foundation. Nano RPC Protocol Documentation. url: https://do
cs.nano.org/commands/rpc-protocol/#confirmation_quorum (visited on
2021-05-12).

[Nan20] Nano Foundation. The Incentives to Run a Node. Medium. 2020. url:
https://blog.nano.org/the-incentives-to-run-a-node-ccc3510c2562 (visited
on 2021-11-20).

[NYI+20] Ken Naganuma, Masayuki Yoshino, Atsuo Inoue, Yukinori Matsuoka,
Mineaki Okazaki, and Noboru Kunihiro. “Post-Quantum Zk-SNARK for
Arithmetic Circuits Using QAPs”. In: 2020 15th Asia Joint Conference on
Information Security (AsiaJCIS). 2020, pages 32–39. doi: 10.1109/Asia
JCIS50894.2020.00017.

[PB17] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart
Contracts. 2017. url: https://plasma.io/plasma.pdf (visited on 2021-10-10).

[PB21] Serguei Popov and William J. Buchanan. “FPC-BI: Fast Probabilistic
Consensus within Byzantine Infrastructures”. In: Journal of Parallel and
Distributed Computing 147 (2021), pages 77–86. doi: 10.1016/j.jpdc.2020.0
9.002.

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. 2016. url: https://lightning.network/lightnin
g-network-paper.pdf (visited on 2021-10-10).

[PGHR13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio:
Nearly Practical Verifiable Computation. 279. 2013. url: https://eprint.iac
r.org/2013/279 (visited on 2021-01-03).

[PMC+20] Serguei Popov, Hans Moog, Darcy Camargo, Angelo Capossele, Vassil
Dimitrov, Alon Gal, Andrew Greve, Bartosz Kusmierz, Sebastian Mueller,
Andreas Penzkofer, Olivia Saa, William Sanders, Luigi Vigneri, Wolfgang
Welz, and Vidal Attias. The Coordicide. IOTA Foundation. 2020. url:
https://files.iota.org/papers/20200120_Coordicide_WP.pdf (visited on
2020-12-01).

98

https://iota.cafe/t/atomic-transfers-transactions-instead-of-bundles/318
https://iota.cafe/t/atomic-transfers-transactions-instead-of-bundles/318
https://doi.org/10.1109/ACCESS.2022.3211422
https://bitcoin.org/bitcoin.pdf
https://docs.nano.org/what-is-nano/living-whitepaper/
https://docs.nano.org/what-is-nano/living-whitepaper/
https://docs.nano.org/commands/rpc-protocol/#confirmation_quorum
https://docs.nano.org/commands/rpc-protocol/#confirmation_quorum
https://blog.nano.org/the-incentives-to-run-a-node-ccc3510c2562
https://doi.org/10.1109/AsiaJCIS50894.2020.00017
https://doi.org/10.1109/AsiaJCIS50894.2020.00017
https://plasma.io/plasma.pdf
https://doi.org/10.1016/j.jpdc.2020.09.002
https://doi.org/10.1016/j.jpdc.2020.09.002
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://files.iota.org/papers/20200120_Coordicide_WP.pdf

[POK19] Seongjoon Park, Seounghwan Oh, and Hwangnam Kim. “Performance Anal-
ysis of DAG-Based Cryptocurrency”. In: 2019 IEEE International Confer-
ence on Communications Workshops (ICC Workshops). 2019, pages 1–6.
doi: 10.1109/ICCW.2019.8756973.

[Pol21a] Polkadot. Availability and Validity · Polkadot Wiki. 2021. url: https://wi
ki.polkadot.network/docs/learn-availability (visited on 2021-10-06).

[Pol21b] Polkadot. Cross-Consensus Message Format (XCM) · Polkadot Wiki.
2021. url: https://wiki.polkadot.network/docs/learn-crosschain (visited on
2021-10-06).

[Pol21c] Polkadot. Polkadot and Cosmos · Polkadot Wiki. 2021. url: https://wiki
.polkadot.network/docs/learn-comparisons-cosmos (visited on 2021-10-06).

[Pop18] Serguei Popov. The Tangle. 2018. url: https://assets.ctfassets.net/r1dr6vz
fxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota
1_4_3.pdf (visited on 2020-12-01).

[QQQ+90] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis Guillou, Marie Annick Guillou, Gaïd Guillou, Anna
Guillou, Gwenolé Guillou, and Soazig Guillou. “How to Explain Zero-
Knowledge Protocols to Your Children”. In: Advances in Cryptology —
CRYPTO’ 89 Proceedings. Lecture Notes in Computer Science. Springer,
1990, pages 628–631. doi: 10.1007/0-387-34805-0_60.

[Qua20] QuarkChain. How Heterogeneous Sharding Empowers Enterprise. QuarkChain
Official. 2020. url: https://medium.com/quarkchain-official/how-heterogen
eous-sharding-empowers-enterprise-e1ca05131009 (visited on 2021-09-08).

[Rei16] Christian Reitwiessner. zkSNARKs in a Nutshell. Etherum Foundation Blog.
2016. url: https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
(visited on 2021-06-07).

[RFC6962] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency.
RFC 6962. Internet Engineering Task Force, 2013. 27 pages. doi: 10.17487
/RFC6962.

[Rog21] Gal Rogozinski. Uniform Random Tip Selection. IOTA Protocol RFCs.
2021. url: https://github.com/iotaledger/tips/blob/7d19cf3894/text/0008-
uniform-random-tip-selection/0008-uniform-random-tip-selection.md (visited
on 2021-08-25).

[Set19] Srinath Setty. Spartan: Efficient and General-Purpose zkSNARKs without
Trusted Setup. 550. 2019. url: https://eprint.iacr.org/2019/550 (visited on
2021-01-02).

[Set21] Srinath Setty. Spartan: High-Speed zkSNARKs without Trusted Setup.
Github. 2021. url: https://github.com/microsoft/Spartan (visited on
2021-07-25).

99

https://doi.org/10.1109/ICCW.2019.8756973
https://wiki.polkadot.network/docs/learn-availability
https://wiki.polkadot.network/docs/learn-availability
https://wiki.polkadot.network/docs/learn-crosschain
https://wiki.polkadot.network/docs/learn-comparisons-cosmos
https://wiki.polkadot.network/docs/learn-comparisons-cosmos
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://doi.org/10.1007/0-387-34805-0_60
https://medium.com/quarkchain-official/how-heterogeneous-sharding-empowers-enterprise-e1ca05131009
https://medium.com/quarkchain-official/how-heterogeneous-sharding-empowers-enterprise-e1ca05131009
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC6962
https://github.com/iotaledger/tips/blob/7d19cf3894/text/0008-uniform-random-tip-selection/0008-uniform-random-tip-selection.md
https://github.com/iotaledger/tips/blob/7d19cf3894/text/0008-uniform-random-tip-selection/0008-uniform-random-tip-selection.md
https://eprint.iacr.org/2019/550
https://github.com/microsoft/Spartan

[SKSB19] Martin Schanzenbach, Thomas Kilian, Julian Schütte, and Christian Banse.
“ZKlaims: Privacy-Preserving Attribute-Based Credentials Using Non-
Interactive Zero-Knowledge Techniques”. In: Proceedings of the 16th Inter-
national Joint Conference on e-Business and Telecommunications (2019),
pages 325–332. doi: 10.5220/0007772903250332.

[Ten] Tendermint Inc. What Is Cosmos? Cosmos Network. url: https://v1.cosm
os.network/intro (visited on 2023-05-21).

[Tod14] Peter Todd. Tree Chains. 2014. url: https://github.com/petertodd/tree-ch
ains-paper (visited on 2023-03-19).

[TSB19] Jason Teutsch, Michael Straka, and Dan Boneh. Retrofitting a Two-Way
Peg between Blockchains. 2019. doi: 10.48550/arXiv.1908.03999.

[TSH22] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid.
“Blockchain Scaling Using Rollups: A Comprehensive Survey”. In: IEEE
Access 10 (2022), pages 93039–93054. doi: 10.1109/ACCESS.2022.3200051.

[WD22] Martin Westerkamp and Maximilian Diez. Verilay: A Verifiable Proof of
Stake Chain Relay. 2022. arXiv: 2201.08697 [cs].

[WE20] Martin Westerkamp and Jacob Eberhardt. “zkRelay: Facilitating Sidechains
Using zkSNARK-based Chain-Relays”. In: 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS PW). 2020, pages 378–386.
doi: 10.1109/EuroSPW51379.2020.00058.

[Web21] Web3 Foundation. Polkadot Wiki. 2021. url: https://wiki.polkadot.networ
k/docs/getting-started (visited on 2021-09-22).

[Wel20] Wolfgang Welz. Message PoW. IOTA Protocol RFCs. 2020. url: https://g
ithub.com/Wollac/protocol-rfcs/blob/e00bfce106/text/0024-message-pow
/0024-message-pow.md (visited on 2021-08-26).

[Wel21] Wolfgang Welz. Milestone Merkle Validation - Tangle Improvement Pro-
posal (TIP) 4. 2021. url: https://github.com/iotaledger/tips/blob/c2485e8
177/tips/TIP-0004/tip-0004.md (visited on 2022-04-02).

[WMM+23] Linus Wagner, Maximilian Mayer, Andrea Marino, Alireza Soldani Nezhad,
Hugo Zwaan, and Ivano Malavolta. “On the Energy Consumption and
Performance of WebAssembly Binaries across Programming Languages
and Runtimes in IoT”. In: Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering. EASE ’23. New
York, NY, USA: Association for Computing Machinery, 2023, pages 72–82.
doi: 10.1145/3593434.3593454.

[Woo16] Gavin Wood. Polkadot: Vision For A Heterogeneous Multi-Chain Frame-
work. 2016. url: https://github.com/polkadot-io/polkadotpaper/raw/master
/PolkaDotPaper.pdf (visited on 2021-09-21).

100

https://doi.org/10.5220/0007772903250332
https://v1.cosmos.network/intro
https://v1.cosmos.network/intro
https://github.com/petertodd/tree-chains-paper
https://github.com/petertodd/tree-chains-paper
https://doi.org/10.48550/arXiv.1908.03999
https://doi.org/10.1109/ACCESS.2022.3200051
https://arxiv.org/abs/2201.08697
https://doi.org/10.1109/EuroSPW51379.2020.00058
https://wiki.polkadot.network/docs/getting-started
https://wiki.polkadot.network/docs/getting-started
https://github.com/Wollac/protocol-rfcs/blob/e00bfce106/text/0024-message-pow/0024-message-pow.md
https://github.com/Wollac/protocol-rfcs/blob/e00bfce106/text/0024-message-pow/0024-message-pow.md
https://github.com/Wollac/protocol-rfcs/blob/e00bfce106/text/0024-message-pow/0024-message-pow.md
https://github.com/iotaledger/tips/blob/c2485e8177/tips/TIP-0004/tip-0004.md
https://github.com/iotaledger/tips/blob/c2485e8177/tips/TIP-0004/tip-0004.md
https://doi.org/10.1145/3593434.3593454
https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf
https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf

[Woo21a] Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Version Istanbul 6ef6062. 2021. url: https://ethereum.github.io/yel
lowpaper/paper.pdf (visited on 2021-10-12).

[Woo21b] Gavin Wood. XCM: The Cross-Consensus Message Format. Polkadot
Network. 2021. url: https://medium.com/polkadot-network/xcm-the-cross-
consensus-message-format-3b77b1373392 (visited on 2021-10-06).

[WSNH19] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. SoK: Sharding
on Blockchain. 1178. 2019. url: http://eprint.iacr.org/2019/1178 (visited
on 2021-02-21).

[WYCX20] Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. SoK: Diving
into DAG-Based Blockchain Systems. 2020. arXiv: 2012.06128 [cs].

[YWY+20] Guangsheng Yu, Xu Wang, Kan Yu, Wei Ni, J. Andrew Zhang, and Ren
Ping Liu. “Survey: Sharding in Blockchains”. In: IEEE Access 8 (2020),
pages 14155–14181. doi: 10.1109/ACCESS.2020.2965147.

[Zcaa] Zcash. How It Works. url: https://z.cash/technology/ (visited on 2021-06-
28).

[Zcab] Zcash. Parameter Generation. url: https://z.cash/ko_KR/technology/para
mgen/ (visited on 2021-07-12).

[Zcac] Zcash. What Are Zk-SNARKs? url: https://z.cash/technology/zksnarks/
(visited on 2021-06-26).

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. “vSQL: Verifying Arbitrary SQL Queries
over Dynamic Outsourced Databases”. In: 2017 IEEE Symposium on
Security and Privacy (SP). 2017, pages 863–880. doi: 10.1109/SP.2017.43.

[ZHZB20] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. “Solutions to
Scalability of Blockchain: A Survey”. In: IEEE Access 8 (2020), pages 16440–
16455. doi: 10.1109/ACCESS.2020.2967218.

[ZKP19] ZKProof. ZKProof Community Reference. Version 0.2. 2019. url: https:
//docs.zkproof.org/reference.pdf (visited on 2021-06-27).

[ZoK] ZoKrates. ZoKrates Documentation. url: https : / / zokrates . github . io/
(visited on 2021-07-25).

[ZWW+21] Shuyu Zheng, Haoyu Wang, Lei Wu, Gang Huang, and Xuanzhe Liu. “VM
Matters: A Comparison of WASM VMs and EVMs in the Performance of
Blockchain Smart Contracts”. 2021. arXiv: 2012.01032 [cs].

[ZY19] Liangrong Zhao and Jiangshan Yu. “Evaluating DAG-Based Blockchains
for IoT”. In: 2019 18th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE).
2019, pages 507–513. doi: 10.1109/TrustCom/BigDataSE.2019.00074.

101

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://medium.com/polkadot-network/xcm-the-cross-consensus-message-format-3b77b1373392
https://medium.com/polkadot-network/xcm-the-cross-consensus-message-format-3b77b1373392
http://eprint.iacr.org/2019/1178
https://arxiv.org/abs/2012.06128
https://doi.org/10.1109/ACCESS.2020.2965147
https://z.cash/technology/
https://z.cash/ko_KR/technology/paramgen/
https://z.cash/ko_KR/technology/paramgen/
https://z.cash/technology/zksnarks/
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1109/ACCESS.2020.2967218
https://docs.zkproof.org/reference.pdf
https://docs.zkproof.org/reference.pdf
https://zokrates.github.io/
https://arxiv.org/abs/2012.01032
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00074

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Aim of the Work
	Methodology and Approach
	Structure

	Background
	Blockchain-based Cryptocurrencies
	DAG-based Cryptocurrencies
	Sharding
	Zero-Knowledge Proofs

	Related Work
	Scalability
	Sharding in DLTs
	Distributed Ledger Interoperability
	zk-SNARKs
	DAG-based DLTs

	Design
	Requirements/Design Goals
	Milestone Validation
	Message Inclusion Proof

	Implementation
	Technology Stack
	Relay Components
	Node Interfaces
	zk-SNARK Libraries

	Evaluation
	Fulfillment of Requirements
	Quantitative Analysis
	Security Analysis
	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

