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A B S T R A C T

Renewable-dominated power grids will require industry to run their processes in accordance with the
availability of energy. At the same time, digitalization introduces new possibilities to leverage the untapped
optimization potential to provide this flexibility. Mathematical optimization methods such as mixed-integer
linear programming (MILP) are widely used to predict optimal operation plans for industrial systems. MILP
models are difficult to adapt, but the viability of the predicted plans relies on accurate underlying models of
the actual behavior. New automation paradigms, such as the digital twin (DT), can overcome these current
drawbacks. In this work, we present the implementation and experimental evaluation of several micro-
services on a standardized five-dimensional DT platform that automate MILP model adaption and operation
optimization. These micro-services guarantee that, (1) deviations between the physical entity and its virtual
entity models are detected, (2) the models are adapted accordingly, (3) subsequently linearized to suit the
MILP approach and (4) used for live operational optimization. These novel services and DT workflows that
orchestrate them were experimentally tested with a packed bed thermal energy storage (PBTES) test rig that
acts as a physical entity. A waste heat recovery use case in steel production is used as the evaluation scenario.
While the model error of a static simulation model would increase to 60% over 7 days of operation, the model
error remains well below 25% as a result of successful model adaption. The prediction error of the optimization
model remains in a typical magnitude of 10 to 20% during the evaluation period, despite the degradation of
the PBTES power.
1. Introduction

1.1. Motivation

Heat generation in the industry sector accounts for roughly 20%
of global anthropogenic CO2 emissions [1]. This ratio increases to over
40% of total emissions [2] when also emissions related to the industry’s
electricity demand are allocated to it. Tremendous efforts are made
to reduce these emissions and thus mitigate environmental impact. A
major lever for this is reducing primary energy consumption through
energy efficiency measures. Waste heat recovery, e.g., by using ther-
mal energy storage (TES) for decoupling energy supply and demand,
is considered a key aspect [3]. Yet, Martin & Chiu [4] found that
the industry still restrains from TES application due to (1) economic
feasibility, and (2) increased complexity to processes, hence increased
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operational risk. Thus, optimal utilization of TES potential is required,
and, therefore, modeling and optimization of energy systems is crucial.
Accurate models are key to guarantee optimized operation. In industrial
plants, highly individualized components are operated under harsh
conditions, leading to changing properties and behavior. Therefore,
the automated adaption of complex operational optimization models
remains a challenging task.

1.2. Background

1.2.1. Operational optimization of energy systems
Optimal control of industrial energy system operation is typically

realized via at least two automated control layers [5]. Basic process
control, via, e.g., proportional–integral–derivative (PID) controllers, is
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Nomenclature

Acronyms

BPMN Business Process Model and Notation
DH District heating
DT Digital twin
EAF Electric arc furnace
GDTA Generic Digital Twin Architecture
IoT Internet of Things
LD Linz-Donawitz
MILP Mixed-integer linear programming
MPC Model predictive control
MQTT Message Queuing Telemetry Transport
OBDA Ontology-Based Data Access
OPC UA Open Platform Communications Unified

Architecture
PBTES Packed bed thermal energy storage
PID proportional–integral–derivative

(controller)
PLC Programmable Logic Controller
RSS Ruths steam storage
SCADA Supervisory control and data acquisition
SG Steam generator
SH Steam superheater
SOC State of charge
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
TES Thermal energy storage
TTT Tap-to-tap (referring to EAF cycle)
UC Unit commitment
VES Virtual energy system

Indices

𝑖 Index in sum
𝑗 Time step with fixed electricity values
𝑘 Index in sum
𝑛 Number of time steps/ measurement values
𝑡 Time step
𝑢 Unit index
b bottom
ch Superscript - charging
crit Superscript - critical value
dis Superscript - discharging
el Superscript - electric
fixed Superscript - fixed value
gas Superscript - gas burner
init Initial value
lat lateral
loss Superscript - losses
max Superscript - maximum value
min Superscript - minimum value
out Superscript - outgoing power
proc Superscript - process demand
ramp Superscript - ramping parameter

applied for the low-level realization of system states and must account
for fast dynamics and possible disturbances [6]. On a higher level,
typically unit commitment (UC) problems are solved to decide on the
2

sat Superscript - saturation
slack Superscript - slack variable
t top
turb Superscript - steam turbine

Parameters and Variables

𝛥𝑡 Time step size
�̇� Parameter - thermal power
�̇� Continuous variable - thermal power
𝜂+ charging efficiency
𝜂− discharging efficiency
𝛾TES Thermal loss factor of TES
𝜆pb effective thermal conductivity of packed

bed
 Set of discrete time steps
 Set of discrete time steps
 Set of units in the UC problem
𝜃 Parameter array (optimization variables)
𝜃 Optimized parameters
𝐴slack slack parameter
𝐶 Parameter - costs
𝑒 Error term
ℎ Continuous variable - SOC auxiliary vari-

able
𝐽 Objective function
𝑘 heat transfer coefficient
𝑝 Continuous variable - electric power
𝑆 Parameter - state of charge
𝑠 Continuous variable - state of charge
𝑇 spread Temperature spread at the PBTES outlet
𝑤 Weighting factor
𝑥 Binary variable - on/off
𝑧 Binary variable - TES state

Symbols

𝑓 linear function

economically timed operation of energy supply, storage, and consump-
tion for a prediction horizon of hours to months. The UC problem,
originating in electric power system research [7], has also been widely
applied to thermal processes [8], where it is also often referred to as en-
ergy management problem [9,10]. We refer to this higher level of eco-
nomic process control as operational optimization. Even higher-level
operational planning was proposed, considering production scheduling
on larger time scales. For example, Gan et al. [11] presented a three-
stage approach for economic operation of a steel plant, and Zhang
& Grossman [12] reviewed options for enterprise-wide optimization
for industrial demand side management. UC problems have also been
applied considering the economic incentives of electricity markets at
different timescales, see, e.g., Dowling et al. [13].

Various methods have been proposed to solve UC problems, such
as, for example, heuristic priority listing, dynamic programming, La-
grangian relaxation, simulated annealing, fuzzy logic, artificial neural
networks, genetic algorithms, and linear and mixed-integer linear pro-
gramming (MILP) [5]. Moser et al. [9] state that modern energy
management is most commonly based on MILP. A MILP problem is a
mathematical optimization problem featuring a linear objective func-
tion and linear inequality constraints on the variables, which can be
either continuous or integer-valued. The main benefit of MILP is the
existence of powerful solvers, which can solve even large optimiza-

tion problems in a reasonable time and are accessible from almost
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any programming language [9]. Furthermore, MILP avoids the risk
of terminating at non-global minima, associated with non-linear opti-
mization [14]. The problem of highly nonlinear dependencies has been
partly solved by numerous piecewise linear approximations applicable
to energy system components that have been proposed in recent years
(see, e.g., [15–17]).

Despite the successful demonstration of MILP implementations for
various applications, a major handicap is that the outcome of optimiza-
tion heavily relies on the accuracy of the underlying models. Especially
in energy systems, components are subjected to harsh environments
leading to changing component behavior and often performance degra-
dation. Examples include the aging or erosion of regenerative heaters in
thermal power plants [18], fouling [19] and erosion of heat exchangers
[20], degradation of electrode material [21], wear of rotating machin-
ery [22], dust accumulation on photovoltaic modules [23], the load
degradation of fuel cells [24,25], degradation of electric batteries [26],
and, the degradation of storage material in latent [27] and sensible
thermal energy storage [28].

Under these conditions, adaptive modeling and optimization pro-
vides huge benefits for energy system operation. Pattison et al. [29]
presented a framework to identify low-order dynamic process models,
later called ‘‘scale-bridging models’’, directly from historical process
transition data. These models are used to connect the disparate time
scales between the scheduling and control layers by mapping inputs
(imposed by the scheduling layer) to the process outputs (dynamic
response of selected process variables) [30]. This work was later ex-
tended by Kelley et al. [31] who presented a set of reformulation and
linearization techniques to approximate the problem as MILP problem.
Adaptive schemes have also been proposed in the control engineering
community. Lu et al. [32] proposed a robust model predictive con-
trol (MPC) algorithm, incorporating online model adaptation. Adetola
et al. [33] presented a closed-loop parameter estimation routine for
MPC. However, in a review on industrial practices, Forbes et al. [34]
examined a lack of implementation. They state that the concerns of
industry have shifted away from pure MPC performance to how easily
it can be installed, how intuitively operators can interact with it, and
how long-term performance can be monitored and maintained with
limited resources. This is where digital twin (DT) technology could be
a practical enabler [35], since it promises a new level of automation
and ease of implementation.

1.2.2. Digital twin technology in the energy sector
The DT concept has received increasing attention over the last

few years [36]. While there exist many different definitions [37,38]
and industrial application scenarios [39], one of the key pillars of DT
technology is keeping digital representations of real-world plants in
sync with their physical counterparts [40,41]. In contrast to a simple
virtual representation (i.e., a model), a DT features automated bidi-
rectional information and data exchange between the real and virtual
systems [40].

These characteristics make a DT perfectly suited to meet the chal-
lenge of adaptive operation optimization of industrial energy systems
introduced above. According to a recent review by Yu et al. [36],
DT technology could fundamentally change the way industrial energy
systems operate. The promise of DTs is to increase automation and
deliver more intelligent and efficient operation. Compared to adap-
tive MPC algorithms and automated model identification approaches,
briefly mentioned in the previous subsection, DT technology could be
located at a higher level of automation. Encompassing advanced predic-
tion, control and optimization techniques, the consistent application of
DT frameworks should ensure ease of implementation, scalability, and
interoperability of such methods in the form of services.

Yu et al. [36] concluded that adaptive DT technology for real-world
behavior changes is still a critical future research direction. However,
in a recent review on DT in the energy industry, Sleiti et al. [42]
3

found that DT research related to the energy sector is still in its infancy c
stage. Most crucially, the majority of proposed DT in the energy domain
lack automated bidirectional connectivity between virtual and physical
entity [36]. Therefore, real-world demonstration of ‘‘complete’’ DTs
in the energy domain is pivotal, and implementation templates are
necessary to foster implementation.

1.3. Scope of this work

Based on the state of the art, outlined above, the necessity for
adaptive modeling methodologies is clear. These are especially valuable
for the operational optimization of industrial energy systems due to the
huge potential for reducing energy demand and CO2 emissions. The
state-of-the-art approach for such economic operation problems is MILP
[9,43]. DT technology could greatly facilitate updating MILP models
of physical components according to current behavior. A DT platform,
however, needs to be equipped with appropriate functionality encapsu-
lated in DT services. To the best of our knowledge, there is no literature
available on the topic of achieving this automated adaptivity using a
DT. Therefore, we continue our previous work on DT technology for
industrial energy systems and determine which services are needed
for fulfilling this application scenario and how they are composed.
We further elaborate on the data transfer within the DT platform and
the necessary workflow connectivity between the services. We present
proof of the feasibility of the presented approach via experimental
investigation on a PBTES test rig, emulating an industrial use case in
steel production.

The novelty of this work can be summarized as follows: We

• present a DT-based approach to achieve adaptive TES modeling
and MILP-based optimization,

• establish the set of DT services necessary to provide these auto-
mated adaptation capabilities,

• introduce a use case of TES integration in steel production that
requires real-time adaptive optimization for energy-efficient op-
eration, and,

• test and validate the developed approach in live operation on a
packed bed TES test rig, emulating the use case.

1.4. Paper structure

After this introduction, this paper is organized as follows: Section 2
presents the industrial use case in steel production (Section 2.1), which
provides means of evaluation of this work and briefly explains the DT
platform (Section 2.2) that provides the foundation for this work. It fur-
thermore introduces the TES test rig the DT is applied to (Section 2.3),
and a state-of-the-art UC problem of the use case (Section 2.4), modeled
via MILP. The novel DT-based methodology is presented in Section 3
and the experimental results of its application are given in Section 4.
After this, Section 5 gives a brief conclusion of this work and an outlook
on further research.

2. Material and methods

2.1. Industrial energy system use case

The considered use case in this paper is a steel production process
and the subsequent off-gas heat recovery. The iron and steel industry
accounts for approximately 8% of annual global anthropogenic CO2
emissions [44]. These emissions must be reduced drastically to realize
the current 1.5 ◦C goal defined in the Paris Agreement. That is, despite
he International Energy Agency’s predicted growing steel demand from
round 1.9 billion tons in 2019 to over 2.5 billion tons in 2050 [45].
herefore, breakthrough decarbonization technologies, such as electric
rc furnaces (EAF) are essential [46]. However, still roughly a third of
he total energy input is leaving the EAF via the sensible heat of the
ff-gas [47,48]. Therefore, there is immense potential for energy re-

overy [49]. Given the substantial costs associated with implementing
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Fig. 1. Sketch of the industrial use case that is modeled as a virtual energy system in this work.
new low-emission strategies, a viable approach for operators of steel
plants to significantly progress towards eco-friendly steel production is
by installing heat recovery systems [48]. For an overview of waste heat
recovery in the iron and steel industry, we refer to a recent analysis of
Inayat [50].

The Austrian company voestalpine Stahl Donawitz GmbH recently
announced the construction approval of a new EAF at their site in
Leoben, Austria, as part of their ‘‘greentec steel’’ transformation path
[51].

The company’s goal is a reduction of 30% of the current CO2
emissions from 2027 onward, and CO2-neutral steel production by
2050. The first transformation step sees one of the two current steel
routes, with a blast furnace and an LD converter each, replaced by an
EAF. In this paper, we therefore consider the heat recovery process of
the EAF route individually, albeit it will be connected to the existing
industrial energy system at the site. This corresponds to the current
medium-term adaption plans.

In the considered energy system use case, illustrated in Fig. 1,
the thermal energy of the hot off-gas of the EAF is recovered in a
waste heat boiler. A similar system, specifically designed for steam
generation of EAF off-gas, was designed by Steinparzer et al. [52]
as a five-pass system including radiation passes, evaporation panels,
evaporation bundles, and an economizer for preheating feed-water. We
will reduce this system to its basic purpose from here on and simply call
it steam generator (SG). The generated steam is valuable for multiple
purposes. Firstly, a large amount of saturated steam is needed for
further metal processing at the site. Secondly, lower-temperature heat
can be decoupled from the steam system to provide facility heating
on-site and district heating for the adjoining city. Thirdly, saturated
steam can be superheated in the existing SG and fed into a turbine
to produce electricity. Since the EAF operates as a batch process, its
hot off-gas flow features not only high volatility but also periods of
disruption [52,53]. The SG, on the other hand, must adhere to power
ramping constraints and should ideally never be shut down completely.
Subjecting a SG to overly fluctuating input power can lead to excessive
material stresses due to pressure and temperature gradients, and a wide
range of other potentially life-limiting factors within the system [54].
Steinparzer et al. [52] and Keplinger et al. [48] argue that this chal-
lenge should be solved by integrating a TES between the EAF and the
SG. During off-gas peaks, the TES can be charged, and during EAF
downtimes or periods of lower heat flow occur, e.g., during initial raw
material heating, the TES can be discharged to provide steady input
power to the SG. Manente et al. [55] recently presented a procedure
to identify the best TES option for the heat recovery of discontinuous
flue gas in steel production for steam generation. They found that a
packed bed thermal energy storage (PBTES) using rocks as a storage
medium is the optimal choice from a techno-economic perspective.
4

Thus, in our use case a PBTES is considered to smoothen the volatile
EAF off-gas flow, hence accommodating the load requirements of the
SG. Comprehensive reviews on this type of TES technology can be
found in the work of Gautam et al. [56,57] and Xie et al. [58].

Another major challenge for EAF heat recovery systems are the high
gas velocities in the inlet duct and the high dust load of the EAF exhaust
gases [52]. While high gas velocities lead to increased surface erosion
[20], they can also be leveraged to achieve higher heat transfer. The
problem can be modulated with the design (e.g., cross sections) of pipes
and heat exchangers. For example, Marti et al. [59] conducted a PBTES
design optimization considering different velocities and the induced
pressure drop at different cross-sections. Bause et al. [60] states a
typical iron oxide dust concentration in EAF off-gas of 20 g∕Nm3. Put
another way, about 15 to 25 kg of dust per ton of produced steel
accumulates [61]. Typically, this is why a drop-out box is arranged
after the inlet duct of the hot gas line, which separates the coarse
dust particles by gravitation [49,62]. However, the majority of the EAF
dust consists of particles below a size of 20 μm [61]. This raises the
question of how the dust-laden exhaust gas used as heat transfer fluid
(HTF) will affect the PBTES performance. Investigations are currently
underway to quantify this behavior [63], but it can be expected that
the small particles accumulate in the packed bed of the PBTES [64].
It is well known that dust deposits increase the air pressure drop
across a packed bed [65,66]. Thus, we deduce that the available PBTES
charging/discharging power rates will gradually decrease based on the
dust-induced pressure drop and a maximum air fan power at the end of
the hot gas duct. This is a major effect besides, e.g., the degrading heat
capacity of PBTES storage media [28]. These degradation effects not
only lead to design challenges for the heat recovery system but also call
for intelligent operation approaches that consider the reduced PBTES
power.

2.2. Digital twin platform

The foundation of our DT approach is the DT platform developed
in previous work, building on the Generic Digital Twin Architecture
(GDTA) [67]. The DT platform was introduced by Kasper et al. [68].
Furthermore, Schwarzmayr et al. [69] presented the instantiation of the
DT platform on the PBTES test rig, introduced in Section 2.3.

The instantiated DT platform is illustrated in Fig. 2. It follows
the basic five-dimensional DT concept introduced by Tao et al. [70].
Accordingly, it consists of (1) the physical entity, (2) the virtual entity,
(3) the connection dimension, (4) the data dimension, and (5) the
service dimension. The physical entity is connected to the virtual space
via programmable logic controllers (PLC)s and the supervisory control
and data acquisition (SCADA) system. New data points are sent to
the message broker (connection dimension) and control signals are
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Fig. 2. Five-dimensional DT platform implemented for the PBTES test rig.
Source: Adapted from the author’s previous publication [69].
received. The virtual entity should be able to accurately represent the
behavior and properties of the physical entity. This can be fulfilled by
various types of virtual models. The data dimension provides semantic
structuring of all data in the DT platform and a central access point
for decentralized data storage. At the core of it is a knowledge graph
(see, e.g., [71]), consisting of several ontologies and a built-in reasoner.
We applied the Ontop framework [72] for this. With our implemen-
tation of the data dimension, it is possible to query and receive any
information within the scope of the DT from a single endpoint using
SPARQL Protocol and RDF Query Language (SPARQL). The aim of the
service dimension is to encapsulate various functionalities of the DT
into micro-services that provide user-friendly interfaces and allow easy
on-demand use and adaption. The timely and sequential coordination
of various service instances is realized with a service orchestrator. We
use a workflow engine, based on Business Process Model and Notation
(BPMN) workflows for this.

For more details on the DT platform, we must refer to our previous
publications [68,69].

2.3. Packed bed thermal energy storage test rig

A lab-scale test rig of a PBTES is used for experimental evaluations
in this work. The test rig, situated at the laboratory of TU Wien,
consists of a vertically standing steel vessel that is filled with slag
as storage material. The slag, a by-product from the iron and steel
industry, is chosen as storage material because of its thermo-physical
properties and low costs. It consists of irregularly shaped porous rocks
which leads to an enhanced heat transfer between storage material
and HTF and results in an even and homogeneous perfusion of the
packed bed. To minimize heat losses to the surrounding the storage
vessel and all piping is insulated with multiple layers of ceramic wool,
rock wool, and aluminum sheeting. For charging and discharging, the
test rig can be supplied with air from an air supply unit (ASU). Air
temperatures from 20 °C to 400 °C and a mass flow of 100 kg h−1 to
400 kg h−1 are available. To measure the current state of the storage, the
test rig is equipped with multiple temperature and differential pressure
sensors. Detailed descriptions of the test rig, its instrumentation, and
the properties of the used materials can be found in the studies of
Schwarzmayr et al. [69,73]. Fig. 3 shows the PBTES test rig with and
without insulation as well as a photograph of the storage material.

To charge the test rig, the ASU provides hot air that enters the
storage from the top, passes through the packed bed, thereby delivering
heat to the storage material, and exits the storage at the bottom. To
recover the heat stored in the TES, the ASU provides cold air that
passes through the packed bed in the opposite direction and is thereby
heated. Due to physical restrictions of the ASU, a 15 minute down-
time between charging and discharging periods has to be maintained.
5

Fig. 3. Test rig of a PBTES at the laboratory of TU Wien: with thermal insulation
(left), storage material (center), without thermal insulation (right).
Source: Reprinted from [73] with permission from Elsevier.

These downtimes are necessary to preheat/precool the ASU so that it
can deliver the HTF temperatures that are required for charging and
discharging the storage. In reality, the HTF used to charge the TES
will be accompanied by a significant amount of metal-oxide dust. As
explained in Section 2.1, this will lead to a gradual degradation of the
thermal performance of the PBTES. To simulate this effect of gradual
degradation of the thermal performance in the laboratory setup, the
HTF mass flow that is requested from the ASU is scaled with a factor
that is smaller than one and gradually decreases over time.

2.3.1. Packed bed thermal energy storage operating behavior
The PBTES’ charging and discharging power depend on the tem-

perature spread of the in- and out-flowing HTF. This temperature
spread decreases towards the end of a cycle, hence thermal power
is decreasing. During charging, we speak of saturation of the out-
flowing HTF, and these saturation losses must be taken into account in
operation in addition to the decreasing charging power. Furthermore,
Koller et al. [17] showed that under dynamic operation, the PBTES
power is not only dependent on the current SOC but also on the SOC at
the end of the previous charging or discharging phase. To model partial
cycle operation, also the initial SOC at the end of the previous charging
or discharging phase must be taken into account. This behavior is
illustrated in Fig. 4.
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Fig. 4. Dependency of the maximum charging power of a PBTES on the current SOC
and the initial SOC at the last operation switch. The maximum discharging power
features an equivalent but inverse dependency on the SOC.

2.4. Unit commitment model for the virtual energy system

The waste heat recovery use case, introduced in Section 2.1, is
modeled via MILP. The UC model is illustrated in Fig. 1 together with
relevant power variables. Here, the basic assumptions and fundamental
modeling approaches are presented. In the remainder of this paper, we
refer to this virtually modeled industrial use case as the virtual energy
system (VES). In this paper, we consider the design of the VES as fixed.
The design is not optimized but reasonable parameters were chosen,
which are given in Appendix B. The evaluation input data is given in
Appendix A.

The VES is modeled in a unit commitment (UC) formulation within
a finite number 𝑛 of discrete time steps 𝑡 ∈  = {𝑡1,… , 𝑡𝑛} at an equidis-
tant time step width 𝛥𝑡. Energy flows in the VES are reduced to heat
flows, i.e., neglecting temperature levels. This is a common approach
in UC problems of industrial energy systems (see, e.g., [74,75]), where
temperature levels are considered at lower hierarchy control layers.
Therefore, each unit 𝑢 ∈  is modeled via its thermal power �̇�𝑢𝑡 ∈ R
as decision variable in each time step. In this paper, decision variables
are distinguished by lowercase writing and parameters are written in
uppercase.

2.4.1. Basic unit power constraints
Some units are modeled with maximum ramping rates, hence their

power is constrained between their minimum and maximum power
(�̇�𝑢

min, �̇�𝑢
max) by

𝑥𝑢𝑡 �̇�
𝑢
min ≤ �̇�𝑢𝑡 ≤ 𝑥𝑢𝑡 �̇�

𝑢
max ∀𝑡 ∈  , (1)

with the binary decision variable 𝑥𝑢𝑡 ∈ {0, 1} denoting the on/off state
of the unit 𝑢 at a timestep 𝑡. The ramping constraints are then given as

− 𝛥�̇�𝑢
ramp +

(

𝑥𝑢𝑡 − 𝑥𝑢𝑡−1
)

(

�̇�𝑢
min
𝛥𝑡

− 𝛥�̇�𝑢
ramp

)

≤
�̇�𝑢𝑡 − �̇�𝑢𝑡−1

𝛥𝑡
≤

− 𝛥�̇�𝑢
ramp +

(

𝑥𝑢𝑡 − 𝑥𝑢𝑡−1
)

(

�̇�𝑢
max
𝛥𝑡

− 𝛥�̇�𝑢
ramp

)

∀𝑡 ∈  , (2)

with, in this case, direction-independent maximum ramping rates
𝛥�̇�𝑢

ramp. Note, that the initial states 𝑥𝑢𝑡=0 and �̇�𝑢𝑡=0 must be provided.
For units featuring no ramping constraints and no minimal partial

load (i.e. �̇�𝑢
min = 0), Eqs. (1)–(2) can be reduced to

�̇�𝑢 ≤ �̇�𝑢 ≤ �̇�𝑢 ∀𝑡 ∈  . (3)
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min 𝑡 max
2.4.2. Storage formulation
The two TES units in this use case are modeled via a basic storage

formulation, constraining the charging/discharging power rate �̇�TES
𝑡 via

−�̇�TES
max ≤ �̇�TES

𝑡 ≤ �̇�TES
max ∀𝑡 ∈  (4)

to a maximum available charging/discharging power rate �̇�TES
max. Their

state of charge (SOC) 𝑠TES
𝑡 is constrained via

0 ≤ 𝑠TES
𝑡 ≤ 𝑆TES

max ∀𝑡 ∈  (5)

to the TES unit’s capacity 𝑆TES
max. The SOC changes are modeled neglect-

ing conversion efficiencies which are assumed near one, but consid-
ering a thermal loss factor 𝛾TES. The factor expresses the ratio of the
current SOC that dissipates through thermal losses during the time 𝛥𝑡.
This results in the following set of equations:

𝑠TES
𝑡+1 = 𝑠TES

𝑡
(

1 − 𝛾TES𝛥𝑡
)

− �̇�TES
𝑡 𝛥𝑡 ∀𝑡 ∈  (6)

Note that the TES power rate is defined as negative when the storage is
charged and that the final SOC 𝑠TES

𝑡𝑛+1
must be defined appropriately, so

as not to discharge the storage completely at the end of the prediction
horizon. The initial SOC value 𝑠TES

𝑡1
is always set to the current SOC of

the TES.

2.4.3. Packed bed thermal energy storage modeling
For the PBTES test rig, the basic storage constraints are extended

with a formulation developed by Koller et al. [17] to account for the
nonlinear charging/discharging power rate dependency on the SOC,
and for saturation losses during the charging process.

The charging/discharging power rate �̇�TES
𝑡 of the PBTES, constrained

by the basic formulation (see Section 2.4.2), is split into charging power
�̇�PBTES, ch
𝑡 and discharging power �̇�PBTES, dis

𝑡 , i.e.,

�̇�TES
𝑡 = �̇�PBTES, dis

𝑡 − �̇�PBTES, ch
𝑡 ∀𝑡 ∈  . (7)

The binary variables 𝑧PBTES, ch
𝑡 , 𝑧PBTES, dis

𝑡 ∈ {0, 1} are defined to
take the value 1, if the PBTES is in charging or discharging state,
respectively. Since our PBTES test rig features a minimum charg-
ing/discharging power �̇�PBTES

min due to limitations of the air supply unit,
we introduced the minimum partial load constraints

𝑧PBTES, ch
𝑡 �̇�PBTES

min ≤ �̇�PBTES, ch
𝑡

≤ 𝑧PBTES, ch
𝑡 �̇�PBTES

max ∀𝑡 ∈  , (8)

𝑧PBTES, dis
𝑡 �̇�PBTES

min ≤ �̇�PBTES, dis
𝑡

≤ 𝑧PBTES, dis
𝑡 �̇�PBTES

max ∀𝑡 ∈  . (9)

In case the TES unit features a continuous power range, the left-hand
side inequalities in Eqs. (8) and (9) can be skipped.

The charging power is then constrained by

�̇�PBTES, ch
𝑡 ≤𝑓 ch

(

𝑠TES
𝑡 + 𝑠TES

𝑘
2

, ℎch
𝑡 , 𝑧PBTES, ch

𝑡

)

∀𝑡 ∈  , 𝑘 = 𝑚𝑖𝑛{𝑡 + 1, 𝑡𝑛} , (10)

and the discharging power is constrained analogously with 𝑓dis. Here,
𝑓 ch and 𝑓dis are linear functions of the stated decision variables. The
auxiliary variables ℎch

𝑡 and ℎdis
𝑡 represent the SOC at the end of the

previous charging/discharging switch. For details on this formulation,
which we consider too comprehensive to recapitulate, as well as for
the constraints on the auxiliary variables ℎch

𝑡 , ℎdis
𝑡 , we refer to Koller

et al. [17].
The UC problem is further extended by the saturation losses

�̇�PBTES, sat
𝑡 , which are constrained by

�̇�PBTES, sat
𝑡 ≥ 𝑓 𝑠𝑎𝑡

(

�̇�PBTES, ch
𝑡 , 𝑧PBTES, ch

𝑡 , 𝑇 spread
𝑡

)

∀𝑡 ∈  , (11)
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with the linear function 𝑓 𝑠𝑎𝑡 of the given decision variables. Here,
𝑇 spread
𝑡 denotes the temperature spread at the PBTES outlet that can

be constrained with the same linearized formulation as given in 𝑓 𝑐ℎ,
albeit weighted to the maximum temperature spread instead of the
maximum charging power. For details, we again refer to the original
publication: [17]. To account for the limit in the total heat flow
introduced to the PBTES during charging, we constrain �̇�PBTES, ch

𝑡 and
̇PBTES, sat
𝑡 to the maximum available charging power of the PBTES:

0 ≤ �̇�PBTES, ch
𝑡 + �̇�PBTES, sat

𝑡

≤ 𝑧PBTES, ch
𝑡 �̇�PBTES

max ∀𝑡 ∈  . (12)

In contrast to Koller et al. [17], we do not implement the formu-
ation for a minimum temperature requirement of gas stream mixing
fter the PBTES for the sake of simplicity of the UC model. However,
his implementation would be straightforward. This simplification does
ot affect the evaluation in this Paper but should be considered for
pplications that are sensitive to temperature levels.

.4.4. Minimum downtime
The operation of our PBTES test rig must abide by a minimal

owntime of 15minutes between switches from charging to discharging
nd vice versa. This is due to limitations in the air supply unit, as
resented in Section 2.3. Whenever the PBTES switches to idle mode, a
ypass mode is activated to pre-heat or cool the air supply unit. To
ccount for the downtime requirement in the operation schedule, a
tandard minimal downtime formulation is added to the UC problem,
ee, e.g., [76].

.4.5. Energy balances
On the hot gas side, illustrated on the left side of Fig. 1, the energy

alance constraint

̇ EAF
𝑡 + �̇�gas

𝑡 = �̇�PBTES, ch
𝑡 + �̇�PBTES, sat

𝑡

− �̇�PBTES, dis
𝑡 + �̇�SG

𝑡 + �̇�loss
𝑡 ∀𝑡 ∈  , (13)

ith �̇�loss
𝑡 ≥ 0 links the supply units with the PBTES and the SG. While

he EAF waste heat flow �̇�EAF
𝑡 is fixed, a conventional gas burner with

hermal power �̇�gas
𝑡 provides flexibility on the hot gas side.

The SG is modeled to produce saturated steam �̇�SG, out
𝑡 with a

onstant efficiency 𝜂SG, i.e.,

̇SG
𝑡 =

�̇�SG, out
𝑡
𝜂SG

∀𝑡 ∈  . (14)

part of the saturated steam �̇�SH
𝑡 can be further superheated in an

xisting waste heat boiler on-site to provide superheated steam at
5 bara. For this, the energy balance

̇ turb
𝑡 = �̇�SH

𝑡 ⋅ 1.1153 ∀𝑡 ∈  (15)

olds.1
The turbine considered in our use case is an existing extraction

ondensation steam turbine. A part of the steam supplied to the turbine
an be extracted at low pressure to satisfy heat demands, while the
est can be used for electricity generation through steam expansion.
he extraction ratio can be varied, therefore the heat and electricity
eneration is decoupled [77]. Thus, the energy balance between the
urbine input thermal power �̇�turb

𝑡 and the extracted heat �̇�turb, out
𝑡 and

roduced electricity 𝑝turb, el
𝑡 is modeled via the typical formulation [78]

̇ turb
𝑡 =

�̇�turb, out
𝑡
𝜂turb, out

+
𝑝turb, el
𝑡
𝜂turb, el

∀𝑡 ∈  , (16)

1 A ratio of 0.1153 of the saturated steam enthalpy is additionally supplied
y the existing waste heat boiler superheater. This is considered small. The
atio is given by the enthalpy difference between saturated steam at 25 bara
nd superheated steam at 25 bar at 100K above the saturation point.
7

a v
with the constant efficiencies for thermal power extraction 𝜂turb, out
and electric generation 𝜂turb, el. In case the electric turbine power was
already committed on the market, it is fixed via

𝑝turb, el
𝑡 = 𝑃 el, fixed

𝑡 ∀{𝑡 ∣ 𝑡 ∈ 𝑇 , 𝑗 ∈  ∶ 𝑡 = 𝑗} , (17)

where  is the set of time steps for which a fixed electric power 𝑃 el, fixed
𝑗

is given.
Within the saturated steam system, the energy balance constraint

�̇�SG, out
𝑡 − �̇�SH

𝑡 + �̇�RSS
𝑡 =

�̇�proc
𝑡 + �̇�sat, DH

𝑡 ∀𝑡 ∈  (18)

holds, with the RSS storage power �̇�RSS
𝑡 , the fixed saturated steam de-

mand for further production �̇�proc
𝑡 , and a proportion �̇�sat, DH

𝑡 (≥ 0) that
an be used for additional district heating. Here, the district heating
emand �̇�DH

𝑡 is considered as a limit rather than a hard constraint,
ence:

�̇�sat, DH
𝑡 − �̇�turb, out

𝑡 ≤ �̇�DH
𝑡 ∀𝑡 ∈  (19)

Furthermore,

�̇�SG, out
𝑡 − �̇�SH

𝑡 ≥ 0 ∀𝑡 ∈  (20)

ensures that no lower-pressure steam discharged from the RSS is con-
sidered to be fed back to the high-pressure system.

2.4.6. Objective function
The goal of the MILP UC problem of this use case is the maximiza-

tion of the objective function

𝐽UC =
∑

𝑡∈

(

𝐶el
𝑡 ⋅ 𝑝turb

𝑡 + 𝐶DH ⋅
(

�̇�sat, DH
𝑡 + �̇�turb, out

𝑡

)

−𝐶gas ⋅
�̇�gas
𝑡
𝜂𝑔𝑎𝑠

− 𝑐slack
𝑡

)

, (21)

hich consists of the reward from electricity and district heating sales
ess the costs for the auxiliary gas burner, considering the price param-
ters 𝐶el

𝑡 , 𝐶DH, and 𝐶gas. Additionally, a slack variable 𝑐slack
𝑡 is added

or the implementation of additional operational penalties. In this use
ase, the soft constraints
slack
𝑡 ≥ 𝐴slack (𝑆TES

crit − 𝑠TES
𝑡

)

(22)

≤ 𝑐slack
𝑡 (23)

re added to penalize the violation of a critical RSS storage level 𝑆TES
crit

ith a slack parameter 𝐴slack.

.5. Simulation of the virtual energy system

In our experimental operation, only the PBTES is physically oper-
ted, while the rest of the VES needs to be simulated. The PBTES power
alues during real operation can never exactly match the operation
lan resulting from the MILP UC problem. Combining the actual PBTES
ower values with the VES operation plan of the remaining (virtual)
omponents during the same time period would conflict with the
nergy balances given in Section 2.4.5. Thus, we emulate a low-level
ontrol procedure, to comply with the energy balances in the resulting
imulated VES operation.

This low-level control procedure is based on the same MILP con-
traints as the UC problem given in Section 2.4 with the PBTES power
alues fixed to those that were experimentally realized. However, the
bjective (see, Eq. (21)) is in this case not cost-efficient operation,
ut compliance with the previously predicted economic operation plan.
hus, the objective function consists of deviation terms of the planned
ower of VES units (gas burner, SG, RSS, and turbine) in the form
f fixed parameters and the to-be-determined power of these units as

ariables. The individual deviation terms are weighted appropriately.
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The minimization of this objective returns a ‘‘simulated’’ VES schedule
that complies with the energy balances while maintaining cost-efficient
trajectories.

This ‘‘simulation’’ procedure of the VES replicates the low-level
control of units according to the operation schedule in a real energy
system. The procedure was included as a preliminary step linked to
and executed before the model predictive control (MPC) service is
called. This service will be introduced in Section 3.1.7. When called,
the described MILP UC problem is solved only for the current historic
time period, which was not fixed via simulation yet.

The realized power values as well as the storage capacity of the
PBTES test rig are scaled up in the VES by a constant factor. Equally, the
results of the VES MILP UC problem are scaled down before scheduling
power values on the test rig. This factor is 3 000 and resulted from
the test rig’s physical and operational constraints and a rough PBTES
scaling in the use case.

3. Implementation

The five-dimensional DT platform first presented in [68] and briefly
introduced in this paper in Section 2.2, was equipped with additional
functionality in the form of micro-services and workflows to solve the
problem statement given in Section 1.3.

All services were implemented in MATLAB® R2023b and/or Python
3.10 language and virtualized in encapsulated containers via Docker
[79], using Docker Engine 20. For the services solving the MILP UC
problem, the parser YALMIP [80] R20210331 was used and GUROBI®
10.0.0 was used as a solver. The physical machine that hosted all
services is a 64-core Linux system (AMD EPYC 7702P) with 256 GB
of RAM. For implementation details on the fundamental DT platform,
we refer to our previous publications [68,69].

3.1. Digital twin micro-services

Services contain the main functionality within the DT platform,
tailored to use-case-related objectives. Building on previous work, we
developed additional micro-services. Seven services are fully functional
while two services are currently only implemented as a mock-up. In
the following section, the function of each service and the methods
implemented therein are briefly explained.

3.1.1. Data acquisition service
While the SCADA system, considered as part of the physical en-

tity [68], acts as the primary layer of data collection, the data acqui-
sition service fulfills the purpose of data correction, enrichment, and
storage.

In our implementation, this service calculates power rates of the
charged and discharged HTF of the test rig and estimates the SOC of
the PBTES as

𝑆𝑂𝐶𝑖 =
∑9

𝑘=1 𝐸𝑖,𝑘 − 𝐸SOC=0

𝐸SOC=1 − 𝐸SOC=0
, (24)

where 𝐸SOC=1 is the energy stored in a fully charged storage (constant
charging temperature), 𝐸SOC=0 is the energy of a fully discharged stor-
age (constant discharging temperature) and ∑9

𝑘=1 𝐸𝑖,𝑘 is the currently
stored energy which is calculated as

𝐸𝑖,𝑘 = 𝑚𝑘 𝑐 𝑇𝑖,𝑘 . (25)

The index 𝑘 in Eqs. (24) and (25) represents the nine vertical volume
sections in which the storage volume is discretized according to tem-
perature sensor positions. The energy 𝐸𝑖,𝑘 of the volume section 𝑘 is
calculated as the product of the mass of storage material 𝑚𝑘, the specific
heat capacity of the storage material 𝑐 and the measured value of the
temperature sensor 𝑇𝑖,𝑘 located in this section.

Furthermore, the data acquisition service processes the operating
8

states of the air supply unit and stores this information in an SQL
database. Thus, services such as MPC and operation planning service
can fetch initial states as well as information on remaining downtime
or last switches (important for initializing the auxiliary variables of the
SOC, ℎch

𝑡 and ℎdis
𝑡 , see Section 2.4.3).

3.1.2. Deviation detection service
The deviation detection service is currently implemented as a mock-

up on our DT platform. Methods for robust detection of deviations are
in the development phase (see, [69]). The service’s purpose is to detect
any deviations between the observed behavior of the physical compo-
nent and the models of its virtual entity. It has to detect deviations and,
if they are considered significant, assess whether the cause is physical
entity faults or virtual model drifts. Of course, also the classification of
physical faults should be considered. For more complex procedures, a
more separated functionality encapsulation could be helpful.

3.1.3. Model adaption service
The model adaption service is mainly based on experimental live

data and a finite volume simulation model of the PBTES test rig.
The finite volume simulation model was developed and validated by
Schwarzmayr et al. [81] to be used as the virtual entity in a DT frame-
work. The model adaption service takes temperature measurements
from the PBTES test rig as initial values and a set of parameters

𝜃 = {𝑘b, 𝑘t , 𝑘lat , 𝜆pb, 𝑘pb, 𝜂+, 𝜂−} (26)

to predict/reconstruct the thermal behavior of the test rig for a given
schedule. The set of parameters 𝜃 includes several heat transfer coeffi-
cients that describe the heat losses to the surrounding (𝑘b, 𝑘t , 𝑘lat), the
effective thermal conductivity of the packed bed 𝜆pb, the heat transfer
coefficient between HTF and storage material 𝑘pb as well as thermal
efficiencies 𝜂+ and 𝜂− for the charging and discharging process which
are the most important for the evaluations in this study. These two
efficiencies are defined as

𝜂 =
�̇�htf

�̇�pb
(27)

where �̇�htf is the thermal power rate that is expected to be delivered
by the ASU and �̇�pb is the actual power rate provided by the ASU. For
a PBTES with a clean packed bed and no gradual degradation of the
thermal performance, these two power rates are the same (neglecting
heat losses) and the efficiency 𝜂 is at a constant value of 1 for both
charging and discharging. As the behavior of the physical entity does
not change over time, this finite volume model with a static set of
parameters will be able to predict the behavior of the physical entity
with high accuracy.

However, in case the thermal behavior of the physical entity grad-
ually degrades over time (as is the case in this study) the set of
parameters 𝜃 needs to be constantly updated in order to fit the behavior
of the finite volume model to the behavior of the physical entity. To do
so, the model adaption service takes experimental data from the test
rig for the last 12 h of operation and uses the finite volume model
to reconstruct the experimentally measured behavior of the physical
entity. To find the optimal set of parameters 𝜃 we solve the nonlinear
optimization problem

𝜃 ∶= arg
(

min
𝜃

𝐽 (𝜃)
)

(28)

with the objective function

𝐽 (𝜃) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑤T 𝑒2T,𝑖 +𝑤SOC 𝑒2SOC,𝑖

)

(29)

where 𝑒T,𝑖 is the error between measured and reconstructed tempera-
tures in the packed bed and 𝑒SOC,𝑖 is the error between the measured
and the reconstructed state of charge (SOC) of the TES. 𝑤T and 𝑤SOC
are empirically determined weights that adjust the order of magnitudes
of 𝑒 and 𝑒 . The optimization problem defined in Eq. (28) is solved
T SOC
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with MATLAB®’s nonlinear solver fmincon which is initialized with
the set of parameters that was the result of the last optimization run.
This guarantees fast and reliable convergence. The new optimal set of
parameters 𝜃 found by the solver together with its time range of validity
is stored in the DT’s data dimension where it can be accessed by every
service of the DT.

3.1.4. Data augmentation service
The data augmentation service is triggered whenever a virtual

entity model was adapted by the model adaption service and acts as
a preliminary step before the linearization service (see, Section 3.1.5).
Since it would be unreliable to fit a piecewise-linearized model based
on a small amount of historic data, we chose the approach to simulate
the whole SOC operating range with the maximum mass flow of the
PBTES with the current accurate finite volume model fetched from the
virtual entity.

The service first simulates a complete cycle of the PBTES, i.e., charg-
ing from SOC = 0 until SOC = 1 is reached with the maximum available
power, and equally for discharging. It then loops through an equally
grided time array of the initial cycle, simulating charging/discharging
starting at different SOC levels until the final SOC is reached. This
approach provides a high-resolution data set of the PBTES behavior for
subsequent linearization.

3.1.5. Linearization service
This service automates the fitting of MILP-suitable piecewise-linear

models of nonlinear operational behavior of system components. The
service is triggered when new data from the data augmentation ser-
vice (see, Section 3.1.4) is available and provides a current accurate
model for the operation planning service and MPC service. In our
implementation, the nonlinear dependency of the maximum PBTES
charging/discharging power (see Eq. (10)), as well as the dependency
of the saturation losses on the state of charge (see Eq. (11)), is lin-
earized. The approach is based on the model formulation presented
by Koller et al. [17]. We implemented a novel algorithm developed
by Birkelbach et al. [82] and published on GitLab [83] that pro-
vides robust fitting with hyperplanes in one or two convex regions.
While Koller et al. manually fitted the linearization on the dataset,
our linearization service can automatically choose the separation of
the two convex regions and approximate them with hyperplanes. The
hyperplane parameters are then converted to MILP constraints at the
cost of additional binary variables and Big-M constraints. For details,
we refer to Birkelbach et al. [82]. Furthermore, the service performs
a basic feasibility check of the approximation in the operating region
to guarantee that no infeasibility issues in the subsequent application
of the models arise. Fig. 5 illustrates an exemplary linearization run of
this service for the maximum PBTES charging power. We used a fixed
number of ten hyperplanes for the approximation in the evaluation of
this work.

3.1.6. Operation planning service
The operational optimization of the physical system is split into

two parts: A higher-hierarchy operation planning service that provides
an optimal operation plan on a multi-day time horizon, and a lower-
hierarchy MPC service that provides fast optimal control of the VES.
Both services build on the same MILP model formulation given in Sec-
tion 2.4, but differ in the length of the forecast horizon and additional
boundary conditions. Such hierarchical energy management or also
multi-layer optimization was proposed by multiple authors in recent
years (see, for example, Dias et al. [84], Fuhrmann et al. [85], Valibeygi
et al. [86] or Polimeni et al. [87]). For demonstration purposes, we
implemented a very basic hierarchical control strategy. For details on
the current state of the art, we refer to the specialized literature given
above.

In our implementation, the operation planning service is triggered
every 6h and optimizes the operational schedule for the next 48h. The
9

Fig. 5. Typical approximation of the nonlinear dependency of the maximum charging
power of the PBTES (Fig. 4) by ten linear hyperplanes in two convex regions.

PBTES SOC after the final time step is constrained to 𝑠TES
𝑡𝑛+1

= 0.5 ⋅ 𝑆TES
max.

Furthermore, 𝑠TES
𝑡 is soft-constrained to a critical value 𝑆TES

crit = 0.3⋅𝑆TES
max

via Eq. (22). This is a typical safety requirement for the operating plan.
Each UC run requires the current states of both the VES and the

physical entity as initial values. To obtain the initial values, the service
can query the data dimension of the DT platform via OBDA (see
Section 2.2) and receive either the values themselves or the address
to obtain them.

The UC problem of this service amounts 9693 continuous and 3982
binary variables with a constraint matrix of 36530 rows and 13675
columns, of which 140115 are non-zero. Every optimization service
run reached the predefined MILP gap of 1% to the upper bound of the
optimal solution before the maximum time of 5h was reached.

3.1.7. MPC service
As outlined above, the MPC service is configured to operate at

a higher frequency than the operation planning service to provide
optimal control of the VES. In our implementation, the MPC service
is triggered every 5minutes and optimizes the operational schedule
for the next 12h. The PBTES SOC after the final time step 𝑠TES

𝑡𝑛+1
is

constrained to the corresponding SOC from the operation planning
service schedule at the time of 𝑡𝑛+1. This assures compliance with
the long-term plan of the operation planning service. No other final
constraints are set for the other components of the VES since their
dynamic is considered to be relatively fast. The SOC of the steam
storage 𝑠RSS

𝑡 is soft-constrained to a critical value 𝑆RSS
crit = 0.2 ⋅ 𝑆RSS

max,
i.e. to a slightly lower value than the operation planning service since
the MPC service has a shorter frequency of recurrence. Other than the
here-stated constraints, the MILP UC problem is equal to that of the
operation planning service. The initial values are fetched equivalently
to the operation planning service, see Section 3.1.6.

The UC problem of this service amounts 2352 continuous and 960
binary variables with a constraint matrix of 8453 rows and 3312
columns, of which 32433 are non-zero. Every optimization service run
reached the predefined MILP gap of 0.01% to the upper bound of the
optimal solution before the maximum time of 4min was reached.

3.1.8. Day-ahead service
The implemented service follows a very simple procedure. It is

called every day at 12:00 local time by a corresponding workflow.
When called, the service fetches the last known VES schedule predicted
by the operation planning service and fixes the electric turbine power,
resulting from this schedule, for the 24h of the next day. The fixed
electric power in the database 𝑃 el, fixed

𝑗 is then treated via Eq. (17)
in the UC problem. This simulates the typical procedure of electricity
procurement and marketing of industrial companies, i.e. sending the
forecast to the energy supplier and thus committing the plant to this
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Fig. 6. BPMN diagram of the workflows orchestrated in the DT. The accentuated right-hand box visualizes the communication of individual services with the ontology of the DT
platform.
load profile [88]. This DT service could be extended to also fulfill
the automated load profile transmission to the energy supplier when
applied in industrial applications.

3.1.9. Scheduler service
The scheduler service is responsible for sending the current set

points of the optimized operation schedule to the SCADA system. It
is called every 60 s and fetches the latest result schedule of the MPC
service and searches for the values at the last time step before the
current time. Power values are converted to an enthalpy difference
based on the HTF mass flow and the temperature between the PBTES
outlet and a fixed charging temperature. The corresponding values are
then written to the OPC UA server of the SCADA system which directly
controls the physical entity. This was implemented via Python OPC UA
in this service. The OPC UA information model can be mapped once to
an ontology in the DT platform’s data dimension. After this, the node
IDs of the respective control variables can be retrieved from the data
dimension with a simple SPARQL query. This was demonstrated by
Steindl et al. [89] and allows for a very flexible and scalable software
implementation.

3.2. Digital twin workflows

As explained in Section 2.2, the runtime management of the DT ser-
vices and the interaction between them is orchestrated by a workflow
engine. Fig. 6 shows the implemented workflows and their communi-
cation with the ontology as a BPMN representation.

The right box in Fig. 6 represents the ontology, which is not part
of BPMN but is included to highlight critical interaction between
the individual services and the ontology. The solid arrows define the
workflows, and the dashed arrows are visualizing the information flow
between services and the ontology.
10
4. Results

4.1. Experimental procedure

The use case presented in Section 2.1 provided the means for experi-
mental testing of the developed DT services and workflows for adaptive
operation optimization. One week of typical operation of the industrial
energy system, illustrated in Fig. 1, was assumed. The evaluation data
is given in Appendix B. As explained in Section 2.5, the power and SOC
values of the PBTES test rig are scaled by a constant factor to the MILP
UC problem, and vice versa. We considered the fixed temperatures
of 200 °C and 50 °C for charging and discharging, respectively. The
scheduler service (see Section 3.1.9) calculates the mass flow necessary
for a requested power value based on the temperature difference. These
values are then controlled in the SCADA system via PID controllers.
To simulate the continuous degradation of the PBTES in our lab, we
introduced an artificial error. This error reduces the requested power
value, hence the mass flow, by an increasing factor. The factor increases
linearly from 0 at the start of the experiment to 0.6 after 7 days of
operation. The artificial error was added to the scheduler service but
not specified anywhere else within the DT platform.

4.2. Model adaption results

As discussed in Section 3.1.3, the model adaption service reacts
to deviations between the physical entity’s behavior and the virtual
entity’s behavior by adjusting a set of parameters 𝜃. Based on the
artificial error that reduced the mass flow provided by the ASU, we
expect the two parameters 𝜂+ and 𝜂−, which are part of 𝜃, to gradually
decrease over time. We only considered these two parameters of 𝜃 to
be variable during the evaluation and fixed the others to pre-identified
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Fig. 7. Evaluation results of the model adaption service. Upper figure: Value of model
arameters during the evaluation period. Lower figure: Error of model parameters of
he adaptive model compared to a static model.

alues. In Fig. 7, this expected behavior of a perfectly working model
daption service is plotted as a black solid line. At this point, it should
e mentioned that in reality, the model adaption service will always
ag behind this black line because the adaption procedure can only be
one with historical data. This behavior can be observed in Fig. 7 in
he blue and orange dots. These dots represent the values of 𝜂+ and
− that were fitted by the model adaption service on each execution.
lthough the model adaption is slightly lagging behind, it still detects

he degradation of the thermal performance of the TES with acceptable
ccuracy. While the model error of a static model would increase to
0% over 7 days of operation, the model error remains well below 25%
s a result of the model adaption. This information can be used by the
ther micro-services of the DT to improve the quality and accuracy of
heir output.

.3. Virtual energy system operation

Here, an exemplary period of the VES operation during experimen-
al operation is given. Fig. 8 illustrates 12h of operation, 21∕2 days

into the experiment. The Figure depicts the heat flows and energy
balances at the main conversion points specified in Fig. 1 in individual
subplots (in the following numbered from top to bottom). The top-most
subplot 1 shows the hot off-gas energy balance (Eq. (13)). Subplot 2
illustrates the PBTES operation. The energy balance within the satu-
rated steam system (Eq. (18)), holds over subplots 3,4, and 6. Subplot 3
visualizes the total output power of the SG and the ratio of this power
that is fed to the saturated steam system and to the superheater for
subsequent turbine expansion. Subplot 4 illustrates the fulfillment of
the process steam demand with direct saturated steam production and
the RSS. The operation of the RSS is given in subplot 5. The decoupled
heat from the turbine and steam system (Eq. (19)) is illustrated in
subplot 6. The electric power output of the steam turbine, as well as
the current electricity price, are illustrated in subplot 7.

4.4. Virtual energy system results

The successful model adaption during our experimental operation
provides the basis for the efficient operation of the VES over long
periods. Fig. 9 illustrates the predicted and achieved revenue during
one week of VES operation. Here, the predicted revenue at a specific
time corresponds to the mean revenue prediction by the MPC service
that was made 12h before for its prediction horizon. The given achieved
revenue is the moving average over the same 12h window resulting
11
from the actual VES simulation according to the PBTES test rig oper-
ation, as explained in Section 2.5. The VES operation is visualized in
detail for an exemplary time period in Fig. 8 in Section 4.3.

It is visible that the prediction error remains in a typical magnitude
of 10 to 20% during the operation period, despite the degradation of
the PBTES power. The decreasing absolute value of the VES revenue
toward the end of the week cannot be directly ascribed to the reduced
PBTES capabilities but is mainly influenced by varying electricity prices
and heat demands.

Further reduction of the prediction error of the MPC service is
possible by the improvement of the experimental control. For example,
we observed some delays in controlling the ASU of the test rig. A
refined interval of the scheduler service (which was set to 60 s) could
guarantee exact value setting according to the operation schedule.
Furthermore, PID control of the HTF temperature entering the PBTES
under varying mass flow is not trivial due to thermal inertia and leads
to further fluctuations between the set power values and achieved
values. These effects are amplified by the necessary downtime of our
PBTES test rig, described in Section 2.4.4. Subplot 1 in Fig. 8 shows that
we measured some PBTES discharging overshoots that were caused by
the described delays. Similarly, the auxiliary gas burner was activated
in the VES simulation when a certain charging power could not be
achieved.

4.5. Digital twin approach

Despite the described options for further improvement, our experi-
mental tests provided a successful proof of concept for the DT-based
MILP model adaption. The automated adaption of the PBTES MILP
model in the MPC and operation planning service ensured that efficient
operational planning was not impaired. Even if further improvement
of detailed methodical aspects of the DT services is required for a
transfer from the laboratory environment to industrial application,
the advantages of the DT approach are clear. As highlighted in our
previous work on the DT platform [68] applied here, a message broker
as the central communication hub and a microservice framework for
managing inter-service workflows facilitate interoperability between
different applications and the access and maintenance of distributed
data sources. Adaptive operation optimization frameworks are com-
plex, which is where the encapsulation into micro-services surpasses
monolithic software implementations. Maintenance is facilitated when
capitalizing on state-of-the-art software development frameworks such
as Docker. This encapsulation in combination with overarching work-
flow management further fosters scalability such as the integration of
new services.

Thus, we argue that the developed DT service structure in this work
could provide an implementation template for at least basic economic
energy management applications.

5. Conclusion and outlook

In this paper, an approach for automated adaptive modeling and op-
eration optimization for industrial energy systems is presented. System
components in the energy-intensive industry, such as the iron and steel
sector, are exposed to harsh conditions, hence their performance tends
to deteriorate. For effective operation planning, adaptive modeling
could provide additional efficiency improvements. To address this chal-
lenge, we established a transferable and scalable methodology for this
aim, based on innovative and promising digital twin (DT) technology.
The foundation of this approach builds upon our previously devel-
oped five-dimensional DT platform. Several new DT micro-services,
which encapsulate distinct functionality were established. This includes
automated simulation model adaption, data augmentation, piecewise
linearization of non-linear behavior, mixed integer linear programming
(MILP) based operational optimization, and, live scheduling.



Applied Energy 353 (2024) 122192L. Kasper et al.
Fig. 8. Exemplary 12h of VES operation during the experimental evaluation.
Fig. 9. Results of one week VES operation. Upper figure: Predicted average revenue
of the MPC service for the past 12h prediction horizon (blue) and 12h-moving average
of the achieved revenue after PBTES operation and VES simulation (red). Lower figure:
Deviation between predicted and achieved revenue.
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We instantiated the developed services for a packed bed thermal
energy storage (PBTES) test rig, acting as the physical entity of the DT,
and validated them under consideration of a use case of waste heat
recovery in steel production. Under the first experimental operation, we
accomplished satisfactory results. The model adaption service proved
adequate to keep the high-fidelity simulation model up to date for
accurate and timely replication of the PBTES behavior. The data aug-
mentation service and subsequent linearization service provide robust
piecewise linear MILP models of the nonlinear PBTES behavior to be
used for operational optimization and control. Thus, the prediction
error of the MILP-based optimization compared to the actual opera-
tion did not increase, despite a continuously induced degradation of
PBTES power. This approach facilitates efficient TES operation and thus
contributes to flexible, low-emission industrial operation.

Additionally, we emphasize the advantage of the DT approach
during engineering, system observation, and software maintenance.
The DT platform facilitates scaling applications and implementing new
services. The observation and administration of micro-services during
operation proved very simple due to the use of software containers and

workflow orchestration.
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5.1. Outlook

Regarding the scope of this paper, two main overarching future
research directions can be deduced: Further sophistication of DT tech-
nology, and, detailed investigations of PBTES integration for waste heat
recovery in steel production under harsh operation.

Transferable methods for reliable deviation detection and fault clas-
sification will be highly relevant in the future. For example, Sleiti
et al. [42] pointed out that data-driven approaches alone are not suf-
ficient for a robust DT that detects deviations and triggers correspond-
ing corrective actions. Rather, a multi-faceted approach is needed,
e.g., by operating a physics-based model in parallel for verification
purposes. Additionally, increased automation in initial MILP model
creation based on system topology and properties could be futile, par-
allel to the work on automated control model identification [29,31,90].
For this, generic MILP frameworks are already available (see, e.g., [9,
76,91]) and the automated simulation model creation based on pipe
and instrumentation diagrams has been demonstrated [92,93]. Fusing
these approaches on a DT platform and using the methodology doc-
umented in the present paper could further contribute to widespread
efficiency improvements.
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ppendix A. Use case data

.1. Evaluation data

Here, the representative input data, used for the use case evaluation,
s presented.
13
Fig. A.1. Assumed EAF waste heat data.

A.1.1. Electronic arc furnace waste heat
For the EAF waste heat, only limited literature data is available.

We based our evaluation data on an EAF off-gas profile published by
Steinparzer et al. [94], who provided off-gas flow and temperature
measurements of one tap-to-tap (TTT) cycle of a 120 t EAF. The profile
shows temperature peaks of roughly 1200 ◦C at typical volume flows
of up to 200 000Nm3∕h, but also a sharp drop to 200 ◦C during the EAF
apping. The authors stated in a later publication that the measurement
ata of this 120 t EAF could be scaled up to a 150 t EAF, resulting in
44 kWh of waste heat per ton of steel produced [48].

We based our EAF use case data on these measurements and as-
umptions. Since we only considered absolute power values and no
emperature levels in the VES model, we calculated the power profile
rom temperature and volume flow measurements from Steinparzer
t al. [94]. However, we only considered off-gas temperatures above
00 ◦C as usable, corresponding to a share of 0.944% of its total
ensible thermal energy. This resulted in an average usable EAF ex-
ess heat of 41, 47MW that was used to scale the given profile. The
ata was reproduced and modified by a slight statistical fluctuation
nd then downsampled to 5 minute intervals for the final use case

profile. Fig. A.1 illustrates the EAF trajectory assumed for the use case
evaluation.

A.1.2. Electricity and gas price
Of course, in day-ahead spot market participation, the quarter-

hourly electricity prices are not only known until the price settlement,
typically one day ahead. However, based on historical data and the
weather forecast, it can be appropriately predicted via forecasting
tools [88]. Thus, we assume known prices for a horizon of 48 hours.
Weighted average Intra-day spot market prices in 15 min resolution
from February 2023 were considered, retrieved from the European
Power Exchange EPEX.2 In the chosen time period, starting from Feb.
13, 2023, the electricity price ranged from 92 to 246€∕MWh, while
daily spreads of typically more than 80€∕MWh occurred, see Fig. A.2.
Furthermore, we chose the Austrian wholesale natural gas import price
from February 2023 as the representative gas price. It is available at
E-Control3 and was valued at 60€∕MWh.

2 https://www.epexspot.com/
3 https://www.e-control.at/industrie/gas/gaspreis/grosshandelspreise

https://www.epexspot.com/
https://www.e-control.at/industrie/gas/gaspreis/%2Dgrosshandelspreise
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Fig. A.2. Electricity price during the use case evaluation period, retrieved from EPEX.2

Fig. A.3. Process steam demand and heat demand during the use case evaluation
period.

A.1.3. Steam and heat demand
The saturated steam demand as well as the internal and external

heat demand chosen for the use case evaluation are based on mea-
surements from the steel production plant Donawitz (Austria), from a
typical winter period. Both steam and heat demand are visualized in
Fig. A.3. Out of confidentiality, only normalized data can be provided
here. The heat demand features a very stable base load but also typical
twice-daily spikes. The steam demand features stronger volatility but
can be roughly estimated based on the production schedule. The heat
demand is about 4 to 5 times larger than the process steam demand.

A typical price for district heating reimbursement was assumed.

ppendix B. Virtual energy system parameters

Table B.1 lists the assumed unit parameters of the UC problem
iven in Section 2.4. In general, a slightly modified version of the
ILP UC formulation presented in that section with additional design

ariables could be used for the design optimization of the energy
ystem. However, this was not within the scope of this paper.

The system design and parameters were determined in coordination
ith our project partner and steel production plant operator voestalpine
tahl Donawitz GmbH. The use case, presented in detail in Section 2.1,
orresponds to the current medium-term energy system adaption plans.
he RSS system and the steam turbine already exist. We only consider
eed-in to the low-pressure part of the turbine, which is mainly fed by
he existing steam cycle. This steam cycle is fueled by post-combustion
f the carbon monoxide-rich Linz-Donawitz (LD) converter gas from the
xisting blast furnace and LD converter routes. The auxiliary gas burner
considered to provide backup flexibility) and the SG were designed by
mpirical knowledge. Typical SG systems are restricted to maximum
ower ramping of 1-2%∕min of the maximum power [95]. A slight

iteration of the presented use case could see a second or multiple PBTES
installed in parallel. Without the downtime constraints that our PBTES
test-rig exhibits, the auxiliary natural gas burner could potentially be
spared or used only during start-up and emergency cases.
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Table B.1
Assumed optimization problem parameters.

Parameter Value

Auxiliary gas burner
�̇�min 0MW
�̇�max 50MW
𝜂gas 0.99

Steam generator (SG)
�̇�min 10MW
�̇�max 70MW
𝛥�̇�ramp 70MW∕h

𝜂SG 0.9

Steam turbine
𝛥�̇�ramp 208MW∕h

𝜂turb, el 0.18
𝜂turb, out 0.98

Steam storage (RSS)
�̇�max 20MW
𝛾TES 0.002 %∕h

Packed bed thermal energy storage (PBTES)
𝑆TES

max 112.6MWha

�̇�PBTES
max 39.0MWa

�̇�PBTES
min

100∕250 �̇�PBTES
max

𝛾TES 0.005 %∕ℎ

a These values correspond to the upscaled default values of
the PBTES test rig. The default values are defined for the
initial condition of the test rig. The actual values within the
UC problem are retrieved from the virtual entity model.

The slack parameter value used in Eq. (22) was chosen as 𝐴slack =
106. For details on appropriate slack parameter choice in energy system
UC problems, see, e.g., [96].
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