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Abstract

Hamiltonian surface charges are introduced in terms of the covariant phase space formalism,
then they are computed for Einstein gravity in three spacetime dimensions. In general this gives
a different result depending on whether one uses the second order (metric) or first order (Cartan
or Chern-Simons) formulation. This is studied explicitly for three different spacetime examples,
only in one of which the difference between formalisms becomes apparent.
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Introduction

The concept of Hamiltonian surface charges in the context of general relativity and holography
has received a lot of attention in recent years. The foundations, however, go back to 1986, when
Brown and Henneaux released their seminal paper [1] showing that the Hamiltonian charges
obtained in the covariant phase space formalism correspond to generators of asymptotic symme-
tries and that their Dirac bracket algebra is isomorphic to the Lie algebra of the corresponding
diffeomorphism generators, up to additional central charges. Finite and nonzero Hamiltonian
charges are related to symmetry transformations between distinct physical states, all obeying
some kind of boundary conditions that need to be specified. As a specific example Brown and
Henneaux considered asymptotically Anti-de Sitter spacetimes in three dimensions (AdS3) and
found that the charges obey the centrally extended Witt algebra, also known as Virasoro algebra,
familiar from conformal field theory in two dimensions (CFT2). This precursor of the AdS/CFT
correspondence was formulated more than a decade before Maldacena’s famous paper [2].

Three is the lowest number of dimensions where Einstein gravity exists, but it is also partic-
ularly simple as there are no bulk degrees of freedom. Instead the theory features “topological”
or “surface” degrees of freedom at the (possibly asymptotic) boundary. For asymptotically AdS3
spacetimes Bañados, Teitelboim and Zanelli found a black hole solution, now referred to as
BTZ black hole [3]. This provided researchers with a simplified black hole model to tackle the
information loss problem and gain insights about quantum gravity. The BTZ black hole was
later found to be a special representative of a class of asymptotically AdS3 spacetimes called
the Bañados geometries [4]. They feature two state-dependent functions and as many towers of
charges. In later years more general AdS3 boundary conditions were found, featuring four and
six state-dependent functions [5, 6, 7]. One can, instead of the asymptotic region, also consider
the symmetries and their associated charges at the (outer) horizon of the BTZ black hole [8,
9]. This leads to a different algebra that can be used to define and count microstates of the
BTZ black hole [10]. In all of these cases the Hamiltonian surface charges allow for a systematic
treatment of symmetries that are compatible with certain boundary conditions.

On a technical level, Einstein gravity in three spacetime dimensions can be treated in different
mathematical formalisms. The metric formalism features the metric as the only field content of
the theory (assuming no coupling to matter). In the Cartan formalism the metric is replaced
by the vielbein and spin connection. If both are treated as individual fields, there are no second
derivatives in the action, hence this formalism is also referred to as the first order formulation of
Einstein gravity. In contrast, the metric formalism is referred to as second order formalism. The
methods of the covariant phase space formalism allow to extract expressions for the Hamiltonian
surface charges in both formalisms, however the results do, in general, not agree. This was
recently given formal treatment in four spacetime dimensions [11]. The first part of the following
text is concerned with repeating the main results of the covariant phase space formalism followed
by an extensive analysis of the differences between the metric and Cartan formalism in three
spacetime dimensions. In the specific case of three spacetime dimensions there is also another
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formulation of Einstein gravity in terms of a gauge theory called Chern-Simons theory [12]. As
will be shown in the following, the Hamiltonian charges from the Chern-Simons formalism agree
with those in the Cartan formalism. Thus, the differences between the metric formalism and the
Cartan formalism are the same as between the metric formalism and the Chern-Simons formalism.
However, these differences do not always occur. To highlight this fact three different examples
will be given. For the Bañados geometries and the BTZ near horizon boundary conditions there
is no difference in the Hamiltonian surface charges between formalisms. As a third example, a
general locally AdS3 metric in Gaussian null coordinates will be studied, which exhibits significant
differences in the Hamiltonian surface charges, depending on the formalism.
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Chapter 1

Conserved Hamiltonian surface charges in
3d Einstein gravity

The treatment of invariant surface charges in the covariant phase space formalism makes heavy
use of the exterior calculus of differential forms. A p-form α in d spacetime dimensions is given
either as

α =
1

p!
αµ1...µp dx

µ1 ∧ . . . ∧ dxµp (1.1)

or, alternatively, as
α = αµ1...µd−p (dpx)µ1...µd−p

, (1.2)

where

(dpx)µ1...µd−p
=

1

(d− p)!

1

p!
�µ1...µd−pν1...νp dx

ν1 ∧ . . . ∧ dxνp . (1.3)

Differential forms as abstract objects with all basis elements included are written as bold-faced
letters. The only exceptions to this rule are the dreibein, the spin connection and the coordinate
differentials.

The symbol �µ1...µd−pν1...νp refers to the usual permutation symbol without any additional
factors of

√−g, i.e. � is a tensor density, not a tensor. Raising the indices of the permutation
symbol with some metric one picks up a factor of the inverse determinant of that metric, i.e.

�µ1...µd = �ν1...νd
gµ1ν1 . . . gµdνd = det

�
g−1

�
�µ1...µd

= det(g)
−1

�µ1...µd
. (1.4)

This then leads to the identity

�µ1...µpν1...νd−p�µ1...µpρ1...ρd−p
= p! det(g)

−1
δ
ν1...νd−p
ρ1...ρd−p (1.5)

with the antisymmetrizer δ
ν1...νd−p
ρ1...ρd−p . The same is true for permutation symbols with anholonomic

(“flat”) indices with the metric replaced with the Minkowski metric ηab, which has determinant
−1.

In the following the key relations of the covariant phase space formalism will be sketched
before it will be applied to Einstein gravity in three different contexts, the second order (metric)
formulation, the first order (Cartan/dreibein) formulation and the Chern-Simons formulation.
An accessible, but more elaborate introduction to the covariant phase space formalism is given by
Compère and Fiorucci in [13], although they do not consider state-dependent diffeomorphisms.
This special case is picked up e.g. in [11] and the appendix of [14].
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1.1 Covariant phase space formalism

1.1.1 Presymplectic potential and form

The usual starting point for a typical field theory on a d-dimensional (pseudo-)Riemannian
spacetime manifold M is the Lagrangian. If the volume element of spacetime is included in the
definition, the Lagrangian is a top form given as

L(Φ) = L(Φ)√−g ddx (1.6)

with some scalar function L(Φ). The symbol Φ stands for the field content of the theory, including
the metric and any possible combination of matter fields. The action of the theory is then given
as

S =



M

L (1.7)

and the equations of motion can be found by computing the variation of S with respect to all
fields Φ, which will be enumerated by an index i. This usually leads to terms where derivative
operators act on δΦi. One then performs partial integration on these terms, which yields total
derivatives, i.e. surface terms. Thus,

δS =



M

δL =



M

�
δL

δΦi
δΦi + dΘ (δΦ;Φ)

�
. (1.8)

Here δL
δΦi , in a slight abuse of notation, means the equations of motion (EOM). Θ is a d−1-form

called the presymplectic potential. Note that it is defined by (1.8) only up to an additional
closed (and thus locally exact) form. It was assumed that the spacetime manifold M is at least
C2 everywhere (and not only piecewise as in some applications), i.e. ∂∂M = 0. This avoids any
corner contributions to the surface terms [15].

The key ingredient to the Hamiltonian surface charge is the presymplectic form ω, which is
defined as

ω(δ1Φ, δ2Φ;Φ) = δ1Θ(δ2Φ;Φ)− δ2Θ(δ1Φ;Φ)−Θ([δ1, δ2]Φ; Φ). (1.9)

The term with the commutator serves to reproduce the presymplectic form defined by Lee and
Wald, which is bilinear in the variations [14, 16]. It differs from the notion of an invariant
presymplectic form defined by Barnich and Compère [17], which will not be discussed here.
The term “presymplectic form” in the following will always refer to the Lee-Wald presymplectic
form given by (1.9). Note that if one were to add an arbitrary exact form to the presymplectic
potential, the presymplectic form would also change by a total derivative. It is important to
keep this in mind as it will end up mattering in the following. Another ambiguity could come
from the fact that only the bulk part of the action was considered and any surface terms that
are added to preserve the variational principle were ignored. However, this is legitimate since an
additional term dM in the Lagrangian enters the presymplectic potential as an additional term
δM, which drops out in the presymplectic form.

1.1.2 Noether current and Noether-Wald surface charge

Under some symmetry transformation δ	 with parameter � the Lagrangian stays invariant, pos-
sibly up to a surface term. Thus,

δ	L =
δL

δΦi
δ	Φ

i + dΘ (δ	Φ;Φ) = dY	 . (1.10)
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From this one can define the Noether current of the symmetry as

J	 := Θ(δ	Φ;Φ)−Y	 (1.11)

It is clear from (1.10) that
dJ	 ≈ 0, (1.12)

where the symbol ≈ means the relation holds on-shell. So the on-shell Noether current must be
a closed (and locally exact) form, i.e.

J	 ≈ dQ	 . (1.13)

The (d− 2)-form Q	 is called the Noether-Wald surface charge [13].

1.1.3 Conserved Hamiltonian surface charges

The variation of the conserved charge Hξ (also called Hamiltonian surface charge) associated
with the symmetry generated by � is

/δH	 =



Σ

ω(δΦ, δ	Φ;Φ). (1.14)

Σ is a spacelike hypersurface in M. The symbol /δ is used as it is not clear at this point whether
or not (1.14) is integrable in field space. If it turns out to be integrable, one obtains Hξ via an
integration in field space as

H	(Φ) =


 Φ

Φ

δH	 +N	(Φ). (1.15)

Here Φ means the target field configuration at which the charge is evaluated and Φ is some
reference field configuration. N	(Φ) is a charge associated with that reference field configuration.
Integrability means that the result of the integral is independent of the path chosen between Φ
and Φ.

As mentioned previously, there is an ambiguity in the definition of Θ that allows for an
additional total derivative in Θ that would also enter the presymplectic form and consequently
the surface charge. Thus, the result (1.14) implicitly contains a convention of how to resolve this
ambiguity. Also, the presymplectic form ω in (1.14) is specifically the Lee-Wald presymplectic
form (1.9). To keep track of these conventions the charge defined by (1.14) is called “Iyer-Wald
surface charge” [18]. This is to distinguish it from the “Barnich-Brandt surface charge” [19],
which makes use of the invariant presymplectic form built from the equations of motion instead
of the Lagrangian. In the following the phrase “Hamiltonian surface charge” always refers to
the Iyer-Wald surfac charge. However, for Killing symmetries of Einstein gravity the Iyer-Wald
and Barnich-Brandt charges agree. Only in the case of symplectic symmetries, which will not be
considered in the following, there is a difference [13, 14].

Gauge transformations

Depending on the type of symmetry the expression (1.14) can be further simplified. For (in-
finitesimal) gauge transformations with parameter � = λ it may be the case that the Lagrangian
is exactly invariant under the transformation and thus Yλ = 0. If then the presymplectic po-
tential is also gauge invariant, i.e. δλΘ(δΦ;Φ) = 0, the variation of the surface charge is given
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by

/δHλ =



Σ

[δΘ(δλΦ;Φ)−Θ([δ, δλ]Φ; Φ)]

≈


Σ

d [δQλ −Qδλ]

≈
�
∂Σ

[δQλ −Qδλ] =

�
∂Σ

kλ(δΦ;Φ),

(1.16)

where the form
kλ(δΦ;Φ) := δQλ −Qδλ (1.17)

was introduced for convenience. Note that in the last line of (1.16) the integral is over the
boundary of Σ. If the gauge parameter λ is not field-dependent, then the Hamiltonian surface
charge is integrable and coincides with the Noether-Wald charge of the symmetry integrated over
∂Σ.

This simplification is only valid if the Lagrangian and presymplectic potential are exactly
invariant under the gauge transformation. With respect to the following examples this is the
case for local Lorentz transformations of the Einstein-Hilbert-Palatini action (1.34), but not for
gauge transformations of the Chern-Simons action (1.93).

Diffeomorphisms

For diffeomorphisms generated by an infinitesimal vector ξ the Lagrangian transforms as

δξL = LξL = d(iξL) + iξ(dL) = d(iξL) (1.18)

and thus Yξ = iξL. Then

/δHξ =



Σ

[δΘ(δξΦ;Φ)− δξΘ(δΦ;Φ)−Θ([δ, δξ]Φ; Φ)]

=



Σ

[δJξ + δYξ − d (iξΘ(δΦ;Φ))− iξ (dΘ(δΦ;Φ))− Jδξ −Yδξ]

=



Σ

[δJξ + δ (iξL)− d (iξΘ(δΦ;Φ))− iξ (dΘ(δΦ;Φ))− Jδξ −Yδξ]

=



Σ

[δJξ + iδξL+ iξδL− d (iξΘ(δΦ;Φ))− iξ (dΘ(δΦ;Φ))− Jδξ −Yδξ]

≈


Σ

�
dδQξ − d (iξΘ(δΦ;Φ))− dQδξ



≈

�
∂Σ

�
δQξ − iξΘ(δΦ;Φ)−Qδξ



=

�
∂Σ

kξ(δΦ;Φ)

(1.19)

with
kξ(δΦ;Φ) := δQξ − iξΘ(δΦ;Φ)−Qδξ (1.20)

Again, the conserved Hamiltonian surface charge can be computed as an integral over the bound-
ary of Σ.

Conservation criterion

Assuming integrability the difference of the Hamiltonian surface charge evaluated at two different
surfaces ∂Σ1 and ∂Σ2 is
 Φ

Φ

�
∂Σ1

k	(δΦ;Φ)−

 Φ

Φ

�
∂Σ2

k	(δΦ;Φ) =


 Φ

Φ



S
dk	(δΦ;Φ) . (1.21)
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Here S means the codimension one hypersurface that is bounded by ∂Σ1 and ∂Σ2. As can be
seen the Hamiltonian surface charge is conserved between ∂Σ1 and ∂Σ2 if there exists a surface
S such that

dk	(δΦ;Φ) = ω(δΦ, δ	Φ;Φ) ≈ 0 (1.22)

everywhere on S. This is, in general, not the case, but there are two special and interesting
cases in the context of general relativity. For diffeomorphisms that obey the Killing equation
the presymplectic form will be zero identically and the associated charge will be conserved ev-
erywhere. In the case of asymptotic Killing symmetries the charge will be conserved in the
asymptotic region where the symmetry holds.

1.2 Metric formalism

Starting from the Einstein-Hilbert Lagrangian

Lg =
1

16πG

√−g (R− 2Λ) ddx (1.23)

computing the variation yields

δLg = −
√−g

16πG
(Gµν + Λgµν)δgµν d

dx+ dΘ(δg; g) (1.24)

with

Θ(δg; g) =

√−g

8πG
gµ[νδΓρ]

νµ

�
dd−1x

�
ρ
=

√−g

16πG

�∇σδg
σρ − gσρ∇σδg

µ
µ

� �
dd−1x

�
ρ
. (1.25)

One has to be precise here what these variations mean. δgµν in this context means the variation
of gµν with both indices raised by the metric. This is not the same as the variation of gµν , which
would have a different overall sign. The symbol δgµµ means the variation of gµν with one index
raised and contracted. For a diffeomorphism ξ

Θ(δξg; g) =

√−g

16πG
(gσµgρν∇σLξgµν − gσρgµν∇σLξgµν)

�
dd−1x

�
ρ

=

√−g

16πG
(gσµgρν∇σ(∇µξν +∇νξµ)− gσρgµν∇σ(∇µξν +∇νξµ))

�
dd−1x

�
ρ

=

√−g

16πG
(∇µ∇µξ

ρ +∇µ∇ρξµ − 2∇ρ∇µξµ)
�
dd−1x

�
ρ
.

(1.26)

The Noether current for a diffeomorphism is

Jξ = Θ(δξg; g)− iξLg

=

√−g

16πG
(∇σ∇σξµ +∇σ∇µξσ − 2∇µ∇σξ

σ)
�
dd−1x

�
µ
−

√−g

16πG
ξµ(R− 2Λ)

�
dd−1x

�
µ

=

√−g

16πG
(∇σ∇σξµ + 2[∇σ,∇µ]ξσ −∇σ∇µξσ − ξµ(R− 2Λ))

�
dd−1x

�
µ

=

√−g

16πG
(∇σ∇σξµ + 2Rµ

σξ
σ −∇σ∇µξσ − ξµ(R− 2Λ))

�
dd−1x

�
µ

≈
√−g

16πG
(∇σ∇σξµ −∇σ∇µξσ)

�
dd−1x

�
µ

≈ dQξ

(1.27)
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with the Noether-Wald charge

Qξ =

√−g

8πG
∇σξµ

�
dd−2x

�
µσ

= −
√−g

8πG
∇µξν

�
dd−2x

�
µν

. (1.28)

From this (keeping in mind the aforementioned sign convention for δgµν)

δQξ = − 1

8πG

�
δ
√−g∇µξν +

√−g δ(∇µξν)

 �

dd−2x
�
µν

= − 1

8πG

�
1

2

√−g gρσδgρσ∇µξν +
√−g δ(gµρ∇ρξ

ν)

� �
dd−2x

�
µν

= −
√−g

8πG

�
1

2
gρσδg

ρσ∇µξν − δgµσ∇σξ
ν + gµρδΓν

σρξ
σ + gµρ∇ρδξ

ν

� �
dd−2x

�
µν

(1.29)

and since

gµρδΓν
σρξ

σ = gµρ
1

2
gνλ (∇σδgρλ +∇ρδgσλ −∇λδgσρ) ξ

σ

=
1

2
(∇σδg

µν + gσκ∇µδgκν − gσκ∇νδgκµ) ξσ

=
1

2
ξσ∇σδg

µν − ξσ∇[νδgµ]σ

(1.30)

the variation of the Noether-Wald charge is

δQξ = −
√−g

8πG

�
1

2
δgσσ∇µξν − δgµρ∇ρξ

ν − ξσ∇νδgµσ +∇µδξν
� �

dd−2x
�
µν

. (1.31)

Finally, the form kg
ξ can be computed as

kg
ξ = δQξ − iξΘ(δg; g)−Qδξ

=

√−g

8πG

�
−1

2
δgσσ∇µξν + δgµσ∇σξ

ν + ξσ∇νδgµσ − ξν∇σδg
σµ + ξν∇µδgρρ

��
dd−2x

�
µν

.

(1.32)
The superscript g stresses that kg

ξ was obtained in the metric formalism. The (variation of the)
Hamiltonian surface charge can then be found by integrating

/δHξ ≈
�
∂Σ

kg
ξ . (1.33)

Also note that this result is valid in an arbitrary number of spacetime dimensions. This will not
be true for the following sections, which are restricted to 3d Einstein gravity.

1.3 Cartan formalism

In the first order formulation of Einstein gravity the Einstein-Hilbert action is replaced by the
Einstein-Hilbert-Palatini action, which in three spacetime dimensions is given as

SEHP =



M

Le =
σ

16πG



M

�
�abcR

ab ∧ ec − Λ

3
�abce

a ∧ eb ∧ ec
�
. (1.34)

The 1-form ea = eaµ dx
µ is called triad or dreibein1. Its components fulfill

gµν = eaµe
b
νηab (1.35)

1As “drei” means “three” in German, this nomenclature is, just like “triad”, specific to the number of spacetime
dimensions. The general term that does not specify the number of dimensions is “vielbein”.
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and taking the determinant of this expression establishes the relation

√−g = σ det(e), (1.36)

where σ is the sign of det(e) and depends on the relative orientation of the triad. While det(e)
is a continuous function of spacetime, its sign will be either positive or negative everywhere.
If at some point det(e) would change sign, the triad would degenerate at that point, which
is unphysical. Hence, σ introduces a global sign that is needed to relate back to the metric
formulation.

The Riemann curvature 2-form Rab = dωab+ωa
c∧ωcb is given in terms of the spin connection.

It is not to be confused with the presymplectic form, although both use the letter omega. This
action is equivalent to the Einstein-Hilbert action from before. Introducing the dualized spin
connection ωa := 1

2�
abcωbc yields the Lagrangian

Le =
σ

8πG

�
dωa ∧ ea +

1

2
�abcω

b ∧ ωc ∧ ea − Λ

6
�abce

a ∧ eb ∧ ec
�
, (1.37)

that has to be varied with respect to the dreibein and dualized spin connection independently,
yielding

δLe =
σ

8πG

��
dωa +

1

2
�abcω

b ∧ ωc − Λ

2
�abce

b ∧ ec
�
∧ δea

+
�
dea + �abcω

b ∧ ec
� ∧ δωa + d (δωa ∧ ea)

�
.

(1.38)

The EOM

dωa +
1

2
�abcω

b ∧ ωc − Λ

2
�abce

b ∧ ec = 0, (1.39)

dea + �abcω
b ∧ ec = 0 (1.40)

consist of the familiar Einstein equations, now in Cartan notation, and of the torsion constraint,
that sets the torsion to zero. This was an implicit assumption in the second order formalism.
The presymplectic potential is

Θ(δΦ;Φ) =
σ

8πG
δωa ∧ ea. (1.41)

The letter Φ now stands for the dreibein and the spin connection, which are the independent
fields of the theory.

A diffeomorphism ξ acts on the 1-form ωa
µ as

δξω
a
µ = Lξω

a
µ = ξν∂νω

a
µ + ∂µξ

νωa
ν (1.42)
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and analogously on eaµ. The Noether current associated with this diffeomorphism is then

Jξ = Θ(δξΦ;Φ)− iξLe

=
σ

8πG

�
ξµ∂µωaνe

a
ρ + ∂νξ

µωaµe
a
ρ − ξµ∂µωaνe

a
ρ − ξµ∂νωaρe

a
µ − ξµ∂ρωaµe

a
ν

−1

2
�abcξ

µωb
µω

c
νe

a
ρ −

1

2
ξµ�abcω

b
νω

c
ρe

a
µ − 1

2
�abcξ

µωb
ρω

c
µe

a
ν

+
Λ

2
�abcξ

µeaµe
b
νe

c
ρ

�
dxν ∧ dxρ

≈ σ

8πG

�
∂νξ

µωaµe
a
ρ − ξµ∂ρωaµe

a
ν − 1

2
�abcξ

µωb
µω

c
νe

a
ρ −

1

2
�abcξ

µωb
ρω

c
µe

a
ν

�
dxν ∧ dxρ

≈ σ

8πG

�
∂ν

�
ξµωaµe

a
ρ

�− ξµωaµ∂νe
a
ρ + �abcω

a
µω

c
νe

b
ρξ

µ


dxν ∧ dxρ

≈ σ

8πG
∂ν

�
ξµωaµe

a
ρ

�
dxν ∧ dxρ

≈ dQξ ,

(1.43)

so
Qξ =

σ

8πG
(iξωa)e

a. (1.44)

The form ke
ξ can then be worked out as

ke
ξ = δQξ − iξΘ(δΦ;Φ)−Qδξ

=
σ

8πG
[(iδξωa)e

a + (iξδωa)e
a + (iξωa)δe

a − (iξδωa)e
a + δωa(iξe

a)− (iδξωa)e
a]

=
σ

8πG
[(iξωa)δe

a + δωa(iξe
a)] .

(1.45)

In the Cartan formulation of GR there is an additional symmetry that is not present in the
second order formulation, the symmetry under local Lorentz transformations. The generator of
such a transformation is an infinitesimal2 antisymmetric matrix λab. The dreibein transforms as

δλe
a
µ = λa

be
b
µ, (1.46)

while the Minkowski metric is of course invariant under local Lorentz transformations, i.e.

δληab = 0. (1.47)

The spin connection transforms as

ωa
b → (δac + λa

c) d(δ
c
b − λc

b) + (δac + λa
c)ω

c
d(δ

d
b − λd

b) +O(λ2)

= ωa
b − dλa

b + λa
cω

c
b − ωa

cλ
c
b +O(λ2),

(1.48)

so
δλω

a
b = − dλa

b + λa
cω

c
b − ωa

cλ
c
b. (1.49)

2Considering only infinitesimal Lorentz transformations is, strictly speaking, a restriction to the component
connected with the unit element instead of the full Lorentz group O(1, 2).
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If the torsion constraint is fulfilled, the Einstein-Hilbert-Palatini Lagrangian is exactly invariant
under local Lorentz transformations und thus the corresponding Noether current is given by

Jλ = Θ(δλΦ;Φ)

=
σ

8πG
δλωa ∧ ea

=
σ

16πG
�abc

�− dλbc + λb
dω

dc − ωb
dλ

dc
� ∧ ea

=
σ

16πG
�abc

�− dλbc − 2ωb
dλ

dc
� ∧ ea

= − σ

16πG
�abc

�
d(eaλbc)− λbc dea + 2λdcωb

d ∧ ea
�

= − σ

16πG
�abc

�
d(eaλbc)− λbc dea − λbcωa

d ∧ ed
�

≈ − σ

16πG
�abc d(e

aλbc)

≈ dQλ .

(1.50)

Here it was used that
2�abcλ

dcωb
d ∧ ea = −�abcλ

bcωa
d ∧ ed, (1.51)

which can be seen by explicitly performing the summation. Then

2�abcλ
dcωb

d ∧ ea = 2
�
λ13ω2

1 ∧ e1 + λ21ω3
2 ∧ e2 + λ32ω1

3 ∧ e3

−λ12ω3
1 ∧ e1 − λ23ω1

2 ∧ e2 − λ31ω2
3 ∧ e3

� (1.52)

is the same as

−�abcλ
bcωa

d ∧ ed

= − �
λ23ω1

d ∧ ed + λ31ω2
d ∧ ed + λ12ω3

d ∧ ed

−λ32ω1
d ∧ ed − λ13ω2

d ∧ ed − λ21ω3
d ∧ ed

�
= −2

�
λ23ω1

2 ∧ e2 + λ23ω1
3 ∧ e3 + λ31ω2

1 ∧ e1

+λ31ω2
3 ∧ e3 + λ12ω3

1 ∧ e1 + λ12ω3
2 ∧ e2

�
.

(1.53)

Now,

Qλ ≈ − σ

16πG
�abce

aλbc (1.54)

and thus the variation of the Hamiltonian charge corresponding to local Lorentz transformations
is obtained by integrating the form

ke
λ = δQλ −Qδλ = − σ

16πG
�abcδe

aλbc. (1.55)

1.4 Difference in presymplectic potentials and dressing form

Naively computing Hamiltonian surface charges for the same spacetime in the first and second
order formalism will not necessarily lead to the same results. This is already clear at the level of
the presymplectic potentials, which don’t have to agree between the two formulations. Although
they come from equivalent actions that lead to equivalent equations of motion, they can still
differ by an additional exact form. If they differ by such an exact form (and it will turn out that
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they do), this also makes a difference in the Hamiltonian surface charges and needs to be taken
into account when comparing results form both formalisms.

To compare the two presymplectic potentials, first note that

ωbcµ = ebσ∂µe
σ
c + ebσΓ

σ
µλe

λ
c = ebσ∇µe

σ
c (1.56)

and thus

Θe =
σ

8πG
δωa ∧ ea =

σ

16πG
δωbcµeaν�

abc dxµ ∧ dxν

=
σ

16πG

�
δebσ∇µe

σ
c + ebσ∇µδe

σ
c + ebσδΓ

σ
µλe

λ
c

�
eaν�

abc�µνα det(g)
�
d2x

�
α
.

(1.57)

The last term is

σ det(g)

16πG
ebσδΓ

σ
µλe

λ
c eaν�

abc�µνα
�
d2x

�
α
=

σ det(g)

16πG
δΓσ

µλgκσe
ν
ae

κ
b e

λ
c �

abc�µν
α
�
d2x

�
α

=
σ det(g) det(e)

16πG
δΓσ

µλgκσ�
νκλ�µν

α
�
d2x

�
α

=
σ det(g) det(e)

16πG
δΓσ

µλg
λρ�νσρ�

ναµ
�
d2x

�
α

=
σ det(e)

16πG
δαµσρ g

λρδΓσ
µλ

�
d2x

�
α

=

√−g

8πG
gλ[µδΓ

α]
µλ

�
d2x

�
α

= Θg.

(1.58)

The first two terms in the second line of (1.57) then must be a total derivative. Using the identity

ebσ∇µδe
σ
c = eρb∇µ (gρσδe

σ
c )

= eρb∇µ

�
δecρ − eσc δ

�
edρedσ

��
= eρb∇µ

�
δecρ − eσc δe

d
ρedσ − eσc e

d
ρδedσ

�
= −eρb∇µ

�
eσc e

d
ρδedσ

�
= −∇µe

σ
c δebσ − eρbe

σ
c∇µ

�
edρδedσ

�
(1.59)

the first two terms of (1.57) are

− σ det(g)

16πG
eaνe

ρ
be

σ
c∇µ

�
edρδedσ

�
�abc�µνα

�
d2x

�
α

=
σ det(g) det(e)

16πG
�ν

ρσ�νµα∇µ

�
edρδedσ

� �
d2x

�
α

=
det(g)

√−g

16πG
gρβgσγ�νβγ�

νµα∇µ

�
edρδedσ

� �
d2x

�
α

=

√−g

8πG
gρ[µgα]σ∇µ

�
edρδedσ

� �
d2x

�
α

(1.60)

=

√−g

8πG
∇µ

�
ed[µgα]σδedσ

� �
d2x

�
α

=−
√−g

8πG
∇µ

�
δed[µe

α]
d

� �
d2x

�
α

=− ∂µ

�√−g

8πG
δed[µe

α]
d

��
d2x

�
α
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=− d

�√−g

8πG
δed[µe

α]
d (dx)αµ

�
=− dα

with

α :=

√−g

8πG
δed[µe

α]
d (dx)αµ =

σ det(e)

16πG
δedµeαd �αµν dx

ν

=
σ

16πG
δedµeαd e

a
αe

b
µe

c
ν�abc dx

ν

=
σ

16πG
�abcδe

aµebµe
c

(1.61)

called the “dressing form” [11]. So indeed

Θg = Θe + dα . (1.62)

This means that, in general, the presymplectic forms of the second and first order formulation
will not agree. The difference, however, is quantified by the form α that is easily computed in the
Cartan formalism and its exterior derivative can be added to the old “bare” presymplectic po-
tential. Any results derived from this new “dressed” presymplectic potential will then reproduce
the results form the metric formalism.

Due to the inclusion of the dressing form the presymplectic form gains an additional contri-
bution

ωα(δΦ, δ	Φ;Φ) = δ dα(δ	Φ;Φ)− δ	 dα(δΦ;Φ)− dα([δ, δ	]Φ; Φ)

=
σ

16πG
�abc

�
d
�
δ(δ	e

aµebµe
c)
�− δ	

�
d(δeaµebµe

c)
�− d

�
[δ, δ	]e

aµebµe
c
�


.
(1.63)

Note that while the variation δ in field space is assumed to commute with the exterior derivative
d, this is not necessarily the case for the symmetry transformation δ	. This will now be studied
for gauge transformations and diffeomorphisms.

1.4.1 Gauge transformations

In the case of local Lorentz transformations (1.63) yields

ωα
λ =

σ

16πG
�abc

�
d
�
δ(λa

de
dµebµe

c)
�− δλ

�
d(δeaµebµe

c)
�− d

�
δλa

de
dµebµe

c
�


=
σ

16πG
�abc

�
d
�
λa

dδ(e
dµebµe

c)
�− δλ

�
d(δeaµebµe

c)
�


=
σ

16πG
�abc

�
d
�
λa

dδ(e
dµebµe

c)
�− d

�
δλ(δe

aµebµe
c)
�

+dλa
d δe

dµebµ ∧ ec + dλb
d e

aµedµ ∧ ec + dλc
d δe

aµebµ ∧ ed



=
σ

16πG
�abc

�
d
�
λa

de
dµδebµe

c + λa
de

dµebµδe
c − δeaµλb

de
d
µe

c − δeaµebµλ
c
de

d
�

+dλa
d δe

dµebµ ∧ ec + dλb
d δe

aµedµ ∧ ec + dλc
d δe

aµebµ ∧ ed



(1.64)

Note that the last line is

σ

16πG
�abc dλ

a
d ∧

�
δedµebµe

c + δecµedµe
b + δebµecµe

d


. (1.65)

The expression inside the brackets is invariant under cyclic permutations of b, c and d. The �abc
prefactor makes it also antisymmetric in b and c. This means that the bracket is proportional
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to �bcd. Together with �abc this gives −2δda, but since λa
d is antisymmetric the whole expression

(1.65) is zero.
Now using

edµδebµ = edνg
νµδebµ

= edνδe
bν − edνδ(e

ν
ae

aµ)ebµ

= edνδe
bν − edνδe

ν
b − δedµebµ

= −δedµebµ

(1.66)

in (1.64) gives

ωα
λ =

σ

16πG
�abc d

�
λabδec − λa

d

�
δedµebµe

c + δecµedµe
b + δebµecµe

d
�


. (1.67)

The last three terms are, again, invariant under cyclic permutations of b, c and d. The same
argument as above then leads to them being zero and the first term is the only contribution left.
This establishes

kα
λ =

σ

16πG
�abcλ

abδec. (1.68)

This neatly cancels (1.55), so that in the Cartan formalism ke
λ + kα

λ = 0. This should come at
no surprise as it is equivalent to saying that the local Lorentz transformations have no charges
in the metric formalism, which makes sense as the symmetry is not present there. It is, however,
a nice consistency check. The more interesting symmetry that is present in both formalisms is
that of diffeomorphisms.

1.4.2 Diffeomorphisms

Note that since δξd = diξd+ iξd
2 = diξd = d2iξ +diξd = dδξ the variation δξ commutes with d.

This means that for a diffeomorphism (1.63) yields

ωα
ξ =

σ

16πG
�abc d

�Lξe
aµδ(ebµe

c
ν)− δeaµLξ(e

b
µe

c
ν)


dxν (1.69)

and thus
kα
ξ =

σ

16πG
�abc

�Lξe
aµδ(ebµe

c
ν)− δeaµLξ(e

b
µe

c
ν)


dxν . (1.70)

By adding kα
ξ to ke

ξ the result for the Hamiltonian charges from the metric formulation can be
recovered, i.e.

/δHg
ξ =

�
∂Σ

kg
ξ =

�
∂Σ

�
ke
ξ + kα

ξ



(1.71)

Note, however, that in general
kg
ξ �= ke

ξ + kα
ξ , (1.72)

but rather only
kg
ξ = ke

ξ + kα
ξ + df (1.73)

with some arbitrary scalar function f , which does not change (1.71).
It should be stressed once more what this means. The Hamiltonian charges associated with

the same diffeomorphisms of the exact same spacetime will, in general, not agree in the first
and second order formulation of Einstein gravity. This is due to the additional symmetry of
local Lorentz transformations that is only present in the Cartan formulation. However, there is
a systematic way of compensating the difference in Hamiltonian charges. First, one can quantify
the difference in the presymplectic potentials, which leads to the concept of the dressing form.
From the dressing form the difference in the Hamiltonian charges can be calculated.
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1.4.3 Kosmann derivative

For a spacetime isometry
δξgµν = Lξgµν = 0 (1.74)

the metric is invariant under δξ. For the same isometry in the Cartan formulation, the dreibein
need not be invariant as long as the metric is invariant. Since

δλgµν = δλ
�
eaµe

b
νηab

�
= δλe

a
µe

b
νηab + eaµδλe

b
νηab + eaµe

b
νδληab = 0, (1.75)

where δλ denotes a local Lorentz transformation

δλe
a
µ = λa

be
b
µ, δληab = 0 (1.76)

with the antisymmetric generator λab, the triad is allowed to transform with a gauge transfor-
mation in addition to the diffeomorphism ξ. This freedom can be used to solve a particular issue
with the generic Lie derivative. Note that the expression

δξe
a
µ = Lξe

a
µ (1.77)

is, in general, not gauge covariant. This is solved by formulating a gauge covariant Lie derivative
Lξ = Lξ + δiξω, that contains an additional gauge transformation with gauge parameter iξω

a
b.

Replacing Lξ → Lξ in (1.77) yields

Lξe
a
µ = Lξe

a
µ + iξω

a
be

b
µ = ξν∂νe

a
µ + eaν∂µξ

ν + ξνωa
bνe

b
µ (1.78)

and under an arbitrary infinitesimal gauge transformation

δλLξe
a
µ = ξν∂νλ

a
be

b
µ + λa

bξ
ν∂νe

b
µ + λa

be
b
ν∂µξ

ν − ξν∂νλ
a
be

b
µ + ξνλa

cω
c
bνe

b
µ

− ξνωa
cνλ

c
be

b
µ + ξνωa

bνλ
b
ce

c
µ

= λa
b

�
ξν∂νe

b
µ + ebν∂µξ

ν + ξνωb
cνe

c
µ

�
= λa

bLξe
b
µ.

(1.79)

So, to recap, if Lξ is a spacetime isometry, it will still be an isometry if an arbitrary gauge
transformation is added to it. Thus, the ordinary Lie derivative Lξ can be replaced by the gauge
covariant Lie derivative Lξ. But since this is a spacetime isometry it is still a transformation
that leaves the metric invariant and as such can be written solely as a gauge transformation, i.e.

Lξe
a
µ = Lξe

a
µ + iξω

a
be

b
µ = λ(ξ)abe

b
µ (1.80)

and
Lξω

a
bµ = Lξω

a
bµ − ∂µ(iξω

a
b) + (iξω

a
c)ω

c
bµ − ωa

cµ(iξω
c
b)

= −∂µλ(ξ)
a
b + λ(ξ)acω

c
bµ − ωa

cµλ(ξ)
c
b.

(1.81)

Both conditions are fulfilled by [11]

λ(ξ)ab = eµb ξ
ν∂νe

a
µ + eaνe

µ
b ∂µξ

ν + iξω
a
b. (1.82)

A gauge transformation with the gauge parameter of (1.82) reproduces the isometry generated
by ξ. This can now be used to define the Kosmann derivative [11] acting on the dreibein as

K(e)
ξ eaµ := Lξe

a
µ − δλ(ξ)e

a
µ, (1.83)
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which, if ξ is a Killing vector (i.e. an isometry), fulfills

K(e)
ξ eaµ = 0 (1.84)

by construction. One can split the Kosmann derivative in a diffeomorphism Lξ and a Lorentz
transformation with parameter

λ̄a
b = iξω

a
b − λ(ξ)ab = −eµb ξ

ν∂νe
a
µ − eaνe

µ
b ∂µξ

ν (1.85)

Its total Hamiltonian charge in the Cartan formulation then reproduces the charge of the diffeo-
morphism ξ in the metric formulation. This can be seen by first computing

Θe(δλ̄Φ;Φ) =
σ

16πG
�abc

�− dλ̄bc ∧ ea + 2λ̄b
dω

dc ∧ ea
�

=
σ

16πG
�abc

�
d
�
λ̄ba ∧ ec

�
+ λ̄bc dea + 2λ̄bdea ∧ ωc

d

�
.

(1.86)

Writing all the index summations of the last term explicitly (using the antisymmetry of ωab and
λab) gives

2
�
λ̄21e1 ∧ ω3

1 + λ̄13e3 ∧ ω2
3 + λ̄32e2 ∧ ω1

2 − λ̄23e3 ∧ ω1
3 − λ̄31e1 ∧ ω2

1 − λ̄12e2 ∧ ω3
2

�
. (1.87)

Doing the same for −λbced ∧ ωa
d yields

− 2
�
λ̄12ed ∧ ω3

d + λ̄23ed ∧ ω1
d + λ̄31ed ∧ ω2

d

�
= 2

�
λ̄21e1 ∧ ω3

1 − λ̄12e2 ∧ ω3
2 + λ̄32e2 ∧ ω1

2

−λ̄23e3 ∧ ω1
3 + λ̄13e3 ∧ ω2

3 − λ̄31e1 ∧ ω2
1

�
.

(1.88)

So,
2�abcλ̄

bdea ∧ ωc
d = −�abcλ

bced ∧ ωa
d = �abcλ

bcωa
d ∧ ed. (1.89)

This can be used in (1.86) to obtain

Θe(δλ̄Φ;Φ) =
σ

16πG
�abc

�
d
�
λ̄baec

�
+ λ̄bc dea + λbcωa

d ∧ ed
�

≈ σ

16πG
�abc d

�
λ̄baec

�
.

(1.90)

And since
α(δξΦ;Φ) =

σ

16πG
�abcδξe

aµebµe
c = − σ

16πG
�abce

aµδξe
b
µe

c

= − σ

16πG
�abce

aµ
�
ξν∂νe

b
µ + ∂µξ

νebν
�
ec

=
σ

16πG
�abcλ̄

baec

(1.91)

it holds that
Θe(δλ̄Φ;Φ) = dα(δξΦ;Φ) . (1.92)

This means that one can compute the Hamiltonian charge of the Kosmann derivative, a combina-
tion of diffeomorphism and gauge transformation, within the Cartan formulation and reproduce
the result for the same diffemorphism in the metric formulation.
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1.5 Chern-Simons formalism

Einstein gravity in three spacetime dimensions with negative cosmological constant can be de-
scribed by the difference of two Chern-Simons (CS) actions, each of the form

SCS[A] =
k

4π



M

�
A ∧ dA+

2

3
A ∧A ∧A

�
(1.93)

with the Killing form 
�, the gauge connection form A = Aata = Aµ dx
µ = Aa

µta dx
µ with gauge

generators ta and k = 1/(4G). The Killing form introduces a metric

κab := 
ta, tb� (1.94)

on the Lie algebra. It is symmetric since the Killing form is invariant under cyclic permutations.
This also means that


tatbtc� = 1

2

ta, [tb, tc]� = 1

2
κadf

d
bc =

1

2
κbdf

d
ca =

1

2
κcdf

d
ab (1.95)

with the structure constants fa
bc of the Lie algebra. The CS action can then be written as

SCS[A] =
k

4π



M

�
Aa

µ∂νA
b
ρ +

1

3
Aa

µA
c
νA

d
ρf

b
cd

�
κab dx

µ ∧ dxν ∧ dxρ . (1.96)

The action that recovers the Cartan formulation of Einstein gravity in three spacetime dimensions
consists of the difference of two CS actions and is given as

SAdS3
=

σk

4π



M

�
A+ ∧ dA+ +

2

3
A+ ∧A+ ∧A+ −A− ∧ dA− − 2

3
A− ∧A− ∧A−

�
. (1.97)

Varying the Lagrangian with respect to A+ and A−

δLAdS3 =
σk

4π

�
2
�
dA+ +A+ ∧A+

� ∧ δA+ − d
�
A+ ∧ δA+

�
−2

�
dA− +A− ∧A−� ∧ δA− + d

�
A− ∧ δA−�� (1.98)

yields the equations of motion (EOM)

F± := dA± +A± ∧A± = 0, (1.99)

or, in components,
Fa±

µν =
�
∂µA

a±
ν − ∂νA

a±
µ +Ab

µA
c
νf

a
bc

�
= 0. (1.100)

These EOM are equivalent to the Einstein equations on 3-dimensional anti-de Sitter space (AdS3)
for the metric given the identifications

A± := (ωa
µ ± eaµ/ )Ja dx

µ (1.101)

with the so(2, 1) algebra elements Ja. Since


Ja, Jb� =  

2
ηab (1.102)

the metric is then recovered by

gµν =
 

2

��
A+

µ −A−
µ

� �
A+

ν −A−
ν

��
. (1.103)
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1.5.1 Gauge transformations and diffeomorphisms

Since the CS gauge connections A± are one-forms in their spacetime content, they transform
under a diffeomorphism ξ in the usual sense

δξA
± =

�
ξν∂νA

±
µ + ∂µξ

νA±
ν

�
dxµ . (1.104)

On the other hand one can act on the gauge connections with an (infinitesimal) gauge transfor-
mation with parameters λ± to obtain

δλA
± = dλ± +

�
A±, λ±
. (1.105)

A particularly interesting case is λ± = A±
µ ξ

µ. Then

δλA
± = ∂νA

±
µ ξ

µ dxν +A±
µ ∂νξ

µ dxν + ξµ[A±
ν , A

±
µ ] dx

ν

=
�
∂νA

±
µ ξ

µ +A±
µ ∂νξ

µ + ξµ∂µA
±
ν − ξµ∂µA

±
ν + ξµ[A±

ν , A
±
µ ]
�
dxν

= δξA
±
ν dxν + ξµF±

νµ dx
ν

≈ δξA
±,

(1.106)

that is, gauge transformations with infinitesimal parameter λ± = A±
µ ξ

µ are on-shell equivalent
to diffeomorphisms of the CS form.

The Chern-Simons action is not exactly invariant under infinitesimal gauge transformations,
but rather

δλLAdS3 = dYλ ≈ σk

4π
d
�
dλ+ ∧A+ − dλ− ∧A−� . (1.107)

Note that this expression was already simplified using the equations of motion.

1.5.2 Conserved surface charges

As can be seen from (1.98), the presymplectic potential for 3d Einstein gravity in the CS formu-
lation is

Θ(δA±;A±) = −σk

4π

�
A+ ∧ δA+ −A− ∧ δA−� . (1.108)

It can now be used to find the Hamiltonian surface charges for gauge transformations and dif-
feomorphisms in the Chern-Simons formulation of 3d Einstein gravity.

Gauge transformations

To find the charges associated with gauge transformations with parameters λ± for the plus and
minus sectors one has to keep in mind that these gauge transformations do not leave the La-
grangian invariant, but introduce a surface term dYλ. Furthermore, the presymplectic potential
is not invariant under gauge transformations and thus the simplification (1.16) is not necessarily
correct. Instead one may compute

ω(δA±, δλA±;A±) = δΘ(δλA
±;A±)− δλΘ(δA±;A±)−Θ([δ, δλ]A

±;A±)

= −σk

2π

�
δA+ ∧ δλA

+ − δA− ∧ δλA
−�

= −σk

2π

�
δA+ ∧ dλ+ + δA+ ∧ �

A+, λ+



− δA− ∧ dλ− − δA− ∧ �
A−, λ−
�
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=
σk

2π

�
d(δA+ ∧ λ+)− δ dA+ λ+ − 2δA+ ∧A+λ+

− d(δA− ∧ λ−) + δ dA− λ− + 2δA− ∧A−λ−� (1.109)

=
σk

2π

�
d(δA+ ∧ λ+)− δ dA+ λ+ − δ(A+ ∧A+)λ+

− d(δA− ∧ λ−) + δ dA− λ− + δ(A− ∧A−)λ−�
=

σk

2π

�
d(δA+ ∧ λ+)− δF+λ+ − d(δA− ∧ λ−) + δF−λ−�

≈ σk

2π
d
�
δA+ ∧ λ+ − δA− ∧ λ−� .

Then

/δHCS
λ =

�
∂Σ

kCS
λ (1.110)

with

kCS
λ =

σk

2π

�
δA+λ+ − δA−λ−� . (1.111)

Diffeomorphisms

The Noether current associated with an infinitesimal diffeomorphism ξ is given as

Jξ = Θ[δξA
±;A±]− iξL[A

±]

=
σk

4π

�−A+
ν δξA

+
ρ +A−

ν δξA
−
ρ

−ξµ
�
3A+

[µ∂νA
+
ρ] + 2A+

[µA
+
ν A

+
ρ] − 3A−

[µ∂νA
−
ρ] − 2A−

[µA
−
ν A

−
ρ]

��
dxν ∧ dxρ

=
σk

4π

�−A+
ν ξ

µ∂µA
+
ρ −A+

ν ∂ρξ
µA+

µ +A−
ν ξ

µ∂µA
−
ρ +A−

ν ∂ρξ
µA−

µ

− ξµ
�
A+

µ ∂νA
+
ρ +A+

ν ∂ρA
+
µ +A+

ρ ∂µA
+
ν + 2A+

µA
+
ν A

+
ρ

�
(1.112)

+ ξµ
�
A−

µ ∂νA
−
ρ +A−

ν ∂ρA
−
µ +A−

ρ ∂µA
−
ν + 2A−

µA
−
ν A

−
ρ

��
dxν ∧ dxρ

=
σk

4π

�−∂ρ
�
A+

ν ξ
µA+

µ

�− ξµA+
µF

+
νρ + ∂ρ

�
A−

ν ξ
µA−

µ

�
+ ξµA−

µF
−
νρ

�
dxν ∧ dxρ

≈ σk

4π
d
�
A+ξµA+

µ −A−ξµA−
µ

�
≈ dQξ .

Thus

Qξ =
σk

4π

�
A+ξµA+

µ −A−ξµA−
µ (ξ)

�
. (1.113)

Then
kCS
ξ = δQξ − iξΘ[δA±;A±]−Qδξ

=
σk

4π

�
δA+ξµA+

µ +A+δξµA+
µ +A+ξµδA+

µ − δA−ξµA−
µ

−A−δξµA−
µ −A−ξµδA−

µ + ξµA+
µ δA

+ − ξµδA+
µA

+

− ξµA−
µ δA

− + ξµδA−
µA

− −A+δξµA+
µ +A−δξµA−

µ

�
=

σk

2π

�
ξµA+

µ δA
+ − ξµA−

µ δA
−� .

(1.114)
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Note in particular that this agrees with the result (1.111) for the gauge parameters λ± = ξµA±
µ ,

which is consistent with (1.106).
Also,

kCS
ξ =

σk

2π

�
ξµA+

µ δA
+ − ξµA−

µ δA
−�

=
σ

8πG

 

2
ηabξ

µ
�
Aa+

µ δAb+ −Aa−
µ δAb−

�
=

σ 

16πG
ηabξ

µ
�
(ωa

µ + eaµ/ )(δω
b + δeb/ )− (ωa

µ − eaµ)(δω
a − δea/ )

�
=

σ

8πG
ξµ

�
ωa

µδea + eaµδωa

�
= ke

ξ.

(1.115)

The Hamiltonian charge for a diffeomorphism in the Chern-Simons formulation will be the same
as in the Cartan formulation. The implications are the same as already discussed for the metric
and Cartan formulation. Computing Hamiltonian charges in the Chern-Simons formulation will
not necessarily reproduce the results from the metric formulation unless one actively compensates
that difference. This is accomplished by translating the form kα

ξ into CS variables. First, note
that

eaµ =
 

2

�
A+a

µ −A−a
µ

�
(1.116)

This can be inserted into (1.70) to obtain kα
ξ in terms of the gauge connections. Since all that

matters is its on-shell value, all Lie derivatives can be replaced with gauge transformations.
This concludes the general discussion of Hamiltonian surface charges in 3d Einstein gravity.

The following section is devoted to specific examples that highlight the differences in charges
between different formalisms that sometimes, but not always appear.
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Chapter 2

Examples of boundary conditions and
charges

The analysis of the previous chapter will now be applied to certain boundary conditions for 3d
Einstein gravity with negative cosmological constant.

2.1 Bañados geometries

Consider the Bañados geometries [4] with metric

ds2 = dρ2 + L+(x+)(dx+)2 + L−(x−)(dx−)2 + (e2ρ/� + L−(x−)L+(x+)e−2ρ/�) dx− dx+ (2.1)

(L±(x±) are some state-dependent functions of the lightcone-coordinates x±) and the asymptotic
Killing vector

ξ =−  

2

�
�+�(x+) + �−�(x−)

�
∂ρ

+

�
�+(x+)− 1

2
e−2ρ/� 2�−��(x−) +O(e−4ρ/�)

�
∂+

+

�
�−(x−)− 1

2
e−2ρ/� 2�+��(x+) +O(e−4ρ/�)

�
∂−

(2.2)

with arbitrary functions �±(x±). The asymptotic Killing vector preserves the asymptotic struc-
ture of the metric at ρ → ∞. The corresponding Hamiltonian surface charge is given by

/δHξ = − 1

8πG

�
ρ→∞

dφ
�
�+�(x+)δL(x+)− �−�(x−)δL(x−)

�
(2.3)

where the angular coordinate φ = (x+ + x−)/(2 ) runs from 0 to 2π. The charge is integrable if
the functions �±(x±) are not state-dependent.

The same calculation can be performed in the Cartan formalism with the triad

eρ = J3, (2.4a)

e+ =
1

2

�
eρ/� − L+(x+)e−ρ/�

�
J1 − 1

2

�
eρ/� + L+(x+)e−ρ/�

�
J2, (2.4b)

e− = −1

2

�
eρ/� − L−(x−)e−ρ/�

�
J1 − 1

2

�
eρ/� + L−(x−)e−ρ/�

�
J2. (2.4c)
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The gauge connection forms are then given as

A± =
±1

 
J3 dρ+

dx±

 

�
eρ/� (J1 ∓ J2)− L±e−ρ/� (J1 ± J2)

�
. (2.5)

A brief calculation shows that α → 0 as ρ → ∞ . Therefore, in the case of the Bañados
geometries, the presymplectic potentials agree in the asymptotic region and the results for the
Hamiltonian charges of the metric and Cartan formalism agree.

2.2 Near horizon symmetry algebra

One can formulate boundary conditions for BTZ geometries at the horizon instead of the asymp-
totic region [8, 9]. In the metric formalism and Gaussian normal coordinates such boundary
conditions are given by

ds2 =dr2 − �
(a2 2 − Ω2) cosh2(r/ )− a2 2

�
dt2 + 2

�
γΩcosh2(r/ ) + aω 2 sinh2(r/ )

�
dt dφ

+
�
γ2 cosh2(r/ )− ω2 2 sinh2(r/ )

�
dφ2 .

(2.6)
The symbols a,Ω, ω, γ represent functions of t and φ and the equations of motion demand that
∂tγ = ∂φΩ and ∂tω = −∂φa. The Killing vector that preserves the general form of this metric is
given as

ξ =
η+J− + η−J +

ζ+J− + ζ−J +
∂t +

η+ζ− − η−ζ+

ζ+J− + ζ−J +
∂φ. (2.7)

The η± are arbitrary functions of φ while J± and ζ± are just reparametrizations of the functions
γ,Ω, ω, a in the metric related via

J± = γ −1 ± ω (2.8)

and
ζ± = −a± Ω −1. (2.9)

Only the functions J± are allowed to vary while the chemical potentials ζ± are considered to
be fixed.

This allows to rewrite the metric (2.6) in terms of the functions J± and ζ±. It is then
straightforward to compute its variation (only allowing J± to vary). The Hamiltonian surface
charge is

/δHξ =
 

16Gπ

�
r=0

dφ
�
η+(φ)δJ +(t, φ) + η−(φ)δJ−(t, φ)

�
. (2.10)

The integral is performed over r = 0, which corresponds to the horizon of the spacetime (2.6),
but the radial coordinate actually drops out in (2.10).

In the Chern-Simons formalism the triad

et =

�
 2a2 sinh2(r/ )− cosh2(r/ )Ω2J1, (2.11a)

er = J3, (2.11b)

eφ = −  2a sinh2(r/ )ω + cosh2(r/ )γΩ�
 2a2 sinh2(r/ )− cosh2(r/ )Ω2

J1 +
 sinh(2r/ )(aγ + ωΩ)�

4 2a2 sinh2(r/ )− 4 cosh2(r/ )Ω2

J2, (2.11c)

reproduces the metric (2.6) via (1.35). The Hamiltonian charge calculated in the Cartan formal-
ism reproduces again the result from the metric formalism. Again, there is no need to compute
the dressing form and worry about different results in different formalisms.
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2.3 3d spacetime in Gaussian null coordinates

In this section a general 3d spacetime in Gaussian null coordinates will be discussed in detail.
Consider the gauge choice

grr = grφ = 0, gvr = η(v, φ). (2.12)

Here v takes the role of an advanced time coordinate, r can be seen as radial and φ as angular
spatial coordinates. The same gauge was used to expand the metric near a null hypersurface,
which is additionally defined by grr|r=0 = 0. This led to three towers of charges [20]. In the
following, however, the requirement for r = 0 to be a null hypersurface will be dropped. The
most general line element compatible with this gauge choice can be written as

ds2 = −V(v, r, φ) dv2 + 2η(v, φ) dv dr + h(v, r, φ) (dφ+ U(v, r, φ) dv)2 . (2.13)

The equations of motion

Eµν = Rµν − 1

2
gµνR− 1

 2
gµν = 0 (2.14)

constrain the functions V, h and U . Err fixes

h = Ω2 + rh1 + r2
h2
1

4Ω2
. (2.15)

Ω and h1 appear as integration constants and are functions of v and φ. In order to guarantee a
negative determinant of the metric, the function h1 most be positive everywhere. Erφ gives

U =
4f0Ω

2 + rf1
�
rh1 + 4Ω2

�− r2h1∂φη

(rh1 + 2Ω2)
2 (2.16)

with the integration constants f0 and f1, which are again functions of v and φ. Eφφ fixes

V =− 1

(rh1 + 2Ω2)
2

�
r2F0h

2
1 + r3F1h

2
1 + r4h2

1η
2/ 2 + 4f2

0Ω
2 + 4rF0h1Ω

2

+ 4r2F1h1Ω
2 + 4r3h1η

2Ω2/ 2 + 4F0Ω
4 + 4rF1Ω

4 + 4r2η2Ω4/ 2

+ r2f2
1

�
rh1 + 3Ω2

�
+ 2r2f1Ω

2∂φη − r3h1 (∂φη)
2 − r2Ω2 (∂φη)

2

+ 2rf0
�
f1

�
rh1 + 4Ω2

�− rh1∂φη
��

(2.17)

with integration constants F0 and F1 as functions of v and φ. Then Evr allows to express F1 in
terms of the other integration constants and η

F1 =
1

 2h1Ω

�
−f2

1Ω+ 4η2Ω3/ 2 +Ω(∂φη)
2 − 2f1η∂φΩ

+ 2η
�
∂φη∂φΩ+ Ω

�
∂φf1 − ∂2

φη − ∂vh1

�
+ h1∂vΩ

� �
.

(2.18)

The solution is then parametrized by the six functions η, F0, f0, f1, Ω and h1 of v and φ. The
last two equations constrain, but do not fully determine these functions, for example one can
find expressions for ∂vF0 and ∂vf1.

Taylor expanding the metric around r = 0 yields

gµν =

−F0(v, φ)− rF1(v, φ) +O(r2) η(v, φ) f0(v, φ) + rf1(v, φ) +O(r2)
η(v, φ) 0 0

f0(v, φ) + rf1(v, φ) +O(r2) 0 Ω(v, φ)2 + rh1(v, φ) +O(r2)

 . (2.19)
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All the O(r2) contributions are exactly of second order in r. There are no higher order contri-
butions. The function F1(v, φ) is not arbitrary, but given by (2.18).

To find the diffeomorphisms that preserve the form of (2.19) the Ansatz

ξ = ξv(v, r, φ)∂v + ξr(v, r, φ)∂r + ξφ(v, r, φ)∂φ (2.20)

can be inserted into the Killing equation

Lξgµν = δξgµν . (2.21)

The equation Lξgrr = 0 gives
ξv(v, r, φ) = T (2.22)

with some arbitrary function T (v, φ). In a similar fashion Lξgrφ fixes

ξφ = Y − 2rη∂φT

rh1 + 2Ω2
, (2.23)

with the integration constant Y (v, φ). In the equation Lξgvr = δξη(v, φ) the right hand side
must not be r-dependent. Integration then yields

ξr =
1

η (rh1 + 2Ω2)

�
rh1 (ηK − r (∂vTη + T∂vη + Y ∂φη) + rδξη) + 2ηΩ2K + 2r∂φTf0η

+ r2∂φTf1η + r2∂φTη∂φη − 2r∂vTηΩ
2 − 2rT∂vηΩ

2 + 2rδξηΩ
2 − 2rY ∂φηΩ

2
�
.

(2.24)

This expression contains a v- and φ-dependent integration constant that includes the arbitrary
function K(v, φ). Furthermore, δξη(v, φ) can be chosen at will. It is convenient to choose

δξη = −Wη − f0η∂φT

Ω2
+ Y ∂φη + 2η∂vT + T∂vη (2.25)

with the new arbitrary function W (v, φ). In total, the Killing vector

ξv = T

ξr =
1

rh1Ω2 + 2Ω4

�
rh1

�
KΩ2 − r

�
WΩ2 + f0∂fT − Ω2∂vT

��
+ Ω2

�
2KΩ2 + r

�−2WΩ2 + rf1∂φT + 2Ω2∂vT + r∂φT∂φη
���

ξφ = Y − 2rη∂φT

rh1 + 2Ω2

(2.26)

is parametrized by four arbitrary functions T (v, φ), Y (v, φ), K(v, φ) and W (v, φ). Since in the
following the surface charges will be computed at the r = 0 hypersurface and they only contain
single derivatives of the Killing vector, it is only relevant up to linear order and a Taylor expansion
yields

ξv = T,

ξr = K + (∂vT −W ) r +O(r2),

ξφ = Y − η∂φT

Ω2
r +O(r2).

(2.27)

The transformation behavior of all state-dependent functions is given by comparing the leading
and subleading order in a Taylor expansion of (2.21). Then the commutator algebra of the
Killing vector can be computed making use of the adjusted bracket [21]

[ξ1, ξ2]adj. bracket := [ξ1, ξ2]− δ̂ξ1ξ2 + δ̂ξ2ξ1. (2.28)
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The first term is the usual commutator of vector fields, equivalent to the Lie derivative, whereas δ̂
requires the components of the following vector to be viewed as functions of the state-dependent
functions, which are then transformed under the subscript vector. This gives the Killing vector
algebra

[ξ(K1, T1,W1, Y1), ξ(K2, T2,W2, Y2)]adj. bracket = ξ(K12, T12,W12, Y12) (2.29)

with

K12 = Y1∂φK2 + T1∂vK2 +K2 (W1 − ∂vT1)− (1 ↔ 2),

T12 = Y1∂φT2 + T1∂vT2 − (1 ↔ 2),

W12 = Y1∂φW2 + T1∂vW2 + ∂φT2∂vY1 +
f1K2∂φT1 + η∂φK2∂φT1 +K2∂φT1∂φη

Ω2

+
f0h1K1∂φT2

Ω4
− (1 ↔ 2),

Y12 = Y1∂φY2 + T1∂vY2 +
ηK2∂φT1

Ω2
− (1 ↔ 2) .

(2.30)

Here − (1 ↔ 2) refers to repeating all the previous terms with opposite sign and exchanging the
labels 1 and 2.

Under the Killing vector (2.26) the state-dependent functions transform as

δξF0 = 2F0∂vT + T∂vF0 − 2η∂vK − 2f0∂vY + Y ∂φF0

+
K(∂φη)

2 − f2
1K − 2Kη∂2

φη + 4Kη2Ω2/ 2

h1

+
2Kη∂φη∂φΩ

h1Ω
+

2KηΩ

h1

�
∂φ

�
f1
Ω

�
− ∂v

�
h1

Ω

��
,

(2.31)

δξη = Y ∂φη −Wη − f0η∂φT

Ω2
+ 2η∂vT + T∂vη, (2.32)

δξf0 = f1K + η∂φK − F0∂φT + ∂φ(f0Y ) + ∂v(f0T ) + Ω2∂vY, (2.33)

δξΩ =
h1K

2Ω
+

f0∂φT

Ω
+ ∂φ(ΩY ) + T∂vΩ, (2.34)

δξf1 = 2f1∂vT + h1∂vY + ∂φ(Y f1)− η∂φW − f1W + T∂vf1 − ∂φT∂vη

+ ∂φT

�
(f2

1 − 2η∂φf1 − (∂φη)
2 + 2η∂2

φη + 2η∂vh1 − 4η2Ω2/ 2)

h1

+
2η∂φΩ(f1 − ∂φη)

h1Ω
− 1

Ω
∂φ

�
ηf0
Ω

�	
+

Kh1(f1 − ∂φη)− 2f0η∂
2
φT

2Ω2
,

(2.35)

δξh1 =
h2
1K

2Ω2
+ 2f1∂φT − 2Ω∂φ

�
η∂φT

Ω

�
+ h1 (2∂φY −W ) + Y ∂φh1 + ∂v(Th1). (2.36)

The variation of the Hamiltonian surface charge as computed in the metric formalism is given
by1

/δHg
ξ =

1

16πG

�
r=0

dφ
�
WδΩ+ Y δΥ+ T/δA+K/δB� (2.37)

1In computing
√−g it was assumed that the product ηΩ is positive. Otherwise, the Hamiltonian surface charge

receives an overall negative sign.
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where

Υ :=
f0h1

ηΩ
− f1Ω

η
. (2.38)

The expressions /δA and /δB are no total variational derivatives and are defined as

/δA :=
(F1 + ∂vη) δΩ

η
− δ

�√
F0h1

Ωη

��
F0 − δ

�
f1
ηΩ

�
f0 + δ

�
∂φ

�
f0
Ω

�
1

η

�
η

− 2δ

�
∂vΩ√

η

�√
η + η∂φ

�
δΩf0
Ω2η

�
,

(2.39)

/δB := δ

�
h1

Ω

�
− h1δη

2ηΩ
. (2.40)

Hence, the Hamiltonian surface charge is, for state-independent W , Y , T and K, not integrable.
In general, integrability can be achieved by an invertible redefinition (“change of basis”) of these
functions and the addition of a “corner term” to the presymplectic potential [22, 23], i.e. a shift

Θ → Θ+ dc . (2.41)

To compute the charge in the Cartan formulation the triad

ev =
hU2 − V − η2

2η
J1 +

hU2 − V + η2

2η
J2, (2.42a)

er = J1 + J2, (2.42b)

eφ =
hU
η

J1 +
hU
η

J2 +
√
hJ3 (2.42c)

can be used. It leads to the Hamiltonian surface charge

/δHe
ξ =

1

16πG

�
r=0

dφ

�
Y δ

�
Υ− Ω∂φη

η

�
+ T/δC +Kδ

�
h1

Ω

��
(2.43)

with

/δC := f0δ

�
∂φη

ηΩ

�
− δ

�
F0h1 + f0f1

ηΩ

�
− 2δ (∂vΩ) +

2δη∂vΩ+ F1δΩ

η
+

2f1δf0 + h1δF0

2ηΩ
. (2.44)

Note that the function W does not appear in (2.43). Assuming state-independent Y , T and K,
the term containing K is now integrable. The coefficient of T is different, but still not integrable.
The main point, however, is that the charges in the two formalisms do not agree. This is due to
a nonzero dressing form leading to

kα
ξ =

1

16πG

�
WδΩ− Kh1δη

2ηΩ
+

Tf0δΩ∂φ
Ω2

− 2Tδf0∂φ
Ω

+
Tf0δη∂φ

ηΩ

+
Y δΩ∂φη − Y δηΩ∂φ − Y δη∂φΩ+ TδΩ∂vη − Tδη∂vΩ

η

�
.

(2.45)

One can now check that

(kg
ξ)φ − (ke

ξ)φ − (kα
ξ )φ =

1

16πG
∂φ

�
Tδf0
Ω

+
Y δηΩ

η
− Tf0δη

ηΩ

�
, (2.46)
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which vanishes when integrated over φ given that the functions in (2.46) are 2π-periodic in φ.
Since φ is an angular coordinate with identification φ ∼ φ + 2π any single-valued function of φ
must be periodic. In all previous sections it was assumed that functions of φ are single-valued, but
this assumption could also be dropped. For example, one could allow a quasi-periodic function

T (v, φ) =
�
n∈Z

Tn(v)e
inφ + Tφ(v)φ (2.47)

for which
T (v, φ+ 2π) = T (v, φ) + 2π Tφ(v) (2.48)

As a consequence, the integral of (2.46) over φ from 0 to 2π would not necessarily vanish.
To conclude, the general 3d spacetime in Gaussian null coordinates serves as an example

where the Hamilonian surface charge differs between the metric and first order Cartan (and
therefore Chern-Simons) formalism. By introducing the form kα

ξ the difference between kg
ξ and

ke
ξ can be compensated, but only up to an additional exact term. Allowing only single-valued

functions, this term (of which in the previous example only the φ-component is of relevance)
then vanishes upon integration.

30



Conclusion and outlook

A careful treatment of the Hamiltonian surface charge in 3d Einstein gravity using the covariant
phase space formalism shows that there are, in general, differences depending on whether the
charges are computed in second order metric or first order Cartan formalism. A calculation in
the Chern-Simons formalism recovers the results from the first order Cartan formalism. The
difference can be attributed to an additional symmetry that is present in the Cartan formulation
of Einstein gravity, the symmetry under local Lorentz transformations. To resolve the difference
in surface charges one can make use of the ambiguity in the presymplectic potential. Since the
latter is only defined up to a closed and thus locally exact form, one can add a specific corner
term, which has been called the dressing form, to the presymplectic potential. This procedure is
well supported in the covariant phase space formalism as there is no a priori prescription how to
resolve the ambiguity surrounding the presymplectic potential. The addition of corner terms to
the presymplectic potential is also intimately related to the renormalization of charges and the
integrability problem [22].

However, as the examples from chapter 2 highlight, ignoring the ambiguity regarding the
presymplectic potential and strictly following the Iyer-Wald prescription can lead to contradicting
results for the Hamiltonian surface charges, but this is not always the case. In the example of the
Bañados geometries and the near horizon boundary conditions presented in chapter 2 there is no
difference in the Hamiltonian surface charge between metric and first order Cartan formalism,
even without adding a corner term. This is not the case, however, for the general 3d spacetime in
Gaussian null coordinates, where different results for the (variation of the) Hamiltonian surface
charge were found in the metric and first order Cartan formalism. Only by explicitly computing
the contribution from the dressing form the contradiction can be resolved. It remains an open
question why the first two examples exhibit vanishing dressing form while the third example does
not.

There is another interesting question surrounding the results of section 2.3. Assuming the
problem of integrability can be solved, there will be a Hamiltonian surface charge parametrized
by four arbitrary functions. This is two less than what is maximally possible [7], but the only
restriction on the spacetime of section 2.3 is the gauge choice. It appears that the gauge choice
alone removes two towers of charges. Exactly why and how this happens could be a topic of
further research.
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