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Abstract
Salt  pans are  unique  wetland ecosystems.  In the  Austrian Seewinkel  region,  salt  pans are  in an
increasingly  vulnerable  state  due  to groundwater  drainage  and  heightened  climatic  pressures.  It
is  crucial  to model  how  seasonal  and  long-term  hydrological  and  climatological  variations  affect
the  salt  pan  dynamics  in  Seewinkel,  yet  a comprehensive  understanding of  the  driving processes
is  lacking.  The  goal  of  this  study  is  to develop  random  forest  machine  learning models  driven  by
hydrological  and  meteorological  data that  allow  us  to predict  in  early  spring (March)  of  each
year  the  inundation  state  in  the  subsequent  summer  and  fall.  We  utilize  Earth  observation  data
from Landsat  5 (L5),  8 (L8),  and 9 (L9)  to derive  the  time  series of  the  inundation state  for  34
salt  pans  for  the  period  1984–2022.  Furthermore,  we  demonstrate  that  the  groundwater  level  

observed  in  March  is  the  strongest  predictor  of  the  salt  pan  inundation  state  in  summer  and
fall.  Utilizing local  groundwater  data yields  a Matthews  correlation  coefficient  of  0.59.  Models
using globally  available  meteorological  data,  either  instead  of  or  in  addition  to groundwater
data,  provide  comparable  results.  This  allows  the  global  transfer  of  the  approach  to comparable
ecosystems  where  no in  situ  data are  available.
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Preface
This  master  thesis  builds  on  a paper  that  was  recently  published  in  MDPI Remote Sensing
journal:  Schauer  et  al.  (2023).  The  submitted  paper  is  lead-authored  by  me,  goes  under  the
same  title  as  this  thesis  and  has  been  published  on  the  22 September  2023.  The  co-authors  of
the  submitted  paper  are:  Stefan  Schlaffer,  Emanuel  Bueechi,  and  Wouter  Dorigo.  I  contributed
to the  paper  by  providing the  predictor  data sets,  by  analyzing the  predictor  and  target  datasets,
by  coding the  machine  learning models,  by  doing the  analysis,  by  plotting and  by  drafting the
manuscript  except  for  Section  2.2,  Section  3.1.1 and  the  first  paragraph  and  Table  3 of  Section
4.1 of  Schauer  et  al.  (2023).  These  sections  are  not  part  of  this  master  thesis  to ensure  complete
independence  of  this  thesis  from  work  that  has  been  done  by  anyone  but  myself.  Generally,  the
derivation  of  the  water  extent  time  series  of  the  salt  pans  was  performed  by  Stefan  Schlaffer  (see
indication  in  Section  2.2,  Section  3.1.4 and  Section  4.1 (first  sentence)  of  this  thesis).  Here,  the
exact  methods  used  to derive  the  time  series  are  not  presented  (see  Section  2.2,  Section  3.1.1
of  Schauer  et  al.  (2023)),  whereas  a more  general  overview  over  remote  sensing of  wetlands,  and
salt  pans  in  particular,  will  be  given.

For  this  master  thesis  the  paper  was  extended  by  providing more  theoretical  background  with
a focus  on  the  methods.  Special  focus  is  put  on  salt  pans  and  the  role  of  earth  observation  in  

the  quantification  of  salt  pan  water  extent.  Furthermore,  the  theory  behind  Random  Forest
machine  learning models  is  explained.  All  sections  except  for  Sections  1.1,  3.1 (the  paragraph
until  Section  3.1.1),  3.1.1,  3.1.2,  3.1.3,  and  3.2.2 are  directly  adopted  from  Schauer  et  al.  (2023).
Other  exceptions  are  Section  2.2,  Section  3.1.4 and  Section  4.1 (first  sentence)  that  are  used  to
indicate  work  done  by  Stefan  Schlaffer.  All  figures  except  for  Figure  3.1 are  adopted  from  Schauer
et  al.  (2023).  The  abstract  was  also adopted  from  Schauer  et  al.  (2023).
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1.  Introduction

Salt  pans  are  a special  type  of  terrestrial  wetlands,  which  are  formed  in  relation  to arid  climates,
topographic  depressions,  and  salt-rich  groundwater  (Lowenstein  et  al. 1985;  Shaw  et  al. 2011).
They  can  be  defined  as  “(. . . )  arid  zone  basins  (. . . ),  subject  to ephemeral  surface  water  

inundation  of  variable  periodicity  and  extent” (Shaw  et  al. 2011).  Saline  lakes,  such  as  salt
pans,  are  of  vital  importance  for  biodiversity  and  water  management  (Shaw  et  al. 2011;  Leemans
et  al. 2003);  however,  at  the  global  scale,  their  number  is  declining mainly  due  to direct  human
intervention  in  their  hydrology  and  climate  change  (Wurtsbaugh  et  al. 2017;  W.  D.  Williams
2004).  Although  global  data on  salt  pans  are  missing (Safaee  et  al. 2020),  many  case  studies
suggest  a global  trend  toward  salt  pan  degradation  and  decline  (Shaw  et  al. 2011;  W.  D.  Williams
2004;  Wasserman  et  al. 2022;  Nayak  et  al. 1989;  Picado et  al. 2009;  Silva et  al. 2022).  These  trends  

also apply  to the  salt  pans  in  Seewinkel  in  eastern  Austria (Herzig 2020;  Boros  et  al. 2013),  where  

key  regional  ecosystem  functions  are  under  threat.  The  lives  of,  among others,  halophytes  (Albert
et  al. 2020),  amphibians,  reptiles  (Krachler  et  al. 2012;  Cabela et  al. 2001),  and  birds  (Dvorak
et  al. 2017;  Dvorak  et  al. 2020)  depend  on  these  wetlands.  Halophytes,  such  as  communities  of
Puccinellio-Salicornietea,  require  a high  groundwater  level  facilitating capillary  rise  to ensure  their
water  supply  (Albert  et  al. 2020).  Birds,  such  as  the  kentish  plover  (Charadrius  alexandrinus),
use  high  water  levels  in  spring (for  hatching (Dvorak  et  al. 2016))  and  summer  (Dvorak  et  al.
2020),  as  do amphibians  and  reptiles  (Krachler  et  al. 2012;  Cabela et  al. 2001).  In  Central
Europe,  such  ecosystems  can  only  be  found  in  the  Pannonian  Basin  (Boros  et  al. 2017)  due  to
the  unique  tectonic  conditions  in  the  region  (Krachler  et  al. 2000).  In  recent  years,  processes  

such  as  eutrophication,  paludification,  siltation,  overgrowth  with  vegetation,  fragmentation,
long-term  drying,  and  in  consequence,  habitat  loss,  have  accelerated  (Zimmermann-Timm  et  al.
2021;  Horváth  et  al. 2019).  These  are  largely  connected  to excessive  groundwater  drainage  for
land  use  change  (Zimmermann-Timm  et  al. 2021;  Mitter  et  al. 2021).  The  potential  impact  of
climate  change  on  the  salt  pans  in  Seewinkel  is  not  yet  fully  understood  (Mitter  et  al. 2021),
although  small,  geographically  isolated  wetlands  reportedly  react  rather  quickly  to meteorological
forcing (M.  K.  Vanderhoof  et  al. 2018).

The  salt  pans  in  the  Seewinkel  region  follow  the  salt  pan  cycle  (Lowenstein  et  al. 1985),  

in  which  the  dry  basin  is  the  default,  central,  and  recurrent  moment,  which  is  alternated  by  

its  opposite  state:  the  varying presence  of  water  (Lowenstein  et  al. 1985;  Sharma et  al. 2021).
In  summer,  high  evaporation  rates  in  combination  with  an  interruption  of  groundwater  supply
tend  to outweigh  precipitation  (Krachler  et  al. 2012)  leading to salt  pan  desiccation.  Especially
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during late  winter  and  early  spring (Zimmermann-Timm  et  al. 2021),  low  evaporation  rates  

allow  precipitation  combined  with  an  increased  contribution  of  groundwater  to fill  the  basins.
Wind  contributes  to important  ecosystem  processes  as  it  influences  evaporation  rates  and  drives
the  mixing of  water  when  the  salt  pan  is  inundated  (Zimmermann-Timm  et  al. 2021).  It  also 

strengthens  capillary  rise  and  blows  out  inorganic  sediments  from  the  salt  pan  basins  during 

periods  of  desiccation  (Krachler  et  al. 2000).  Salt  pans  in  poor  hydrological  conditions  lose  

additional  water  by  surface  water  infiltrating into deeper  soil  layers  (Krachler  et  al. 2012).
Thus,  monitoring and  predicting both  the  long-term  and  short-term  variability  of  surface  water
occurrence  in  the  Seewinkel  salt  pans  is  needed  to assess  ecosystem  change  and  their  resilience.

Wetland  hydroperiod  (D.  D.  Williams 2006),  a key  characteristic  and  ecological  indicator  

of  intermittent  wetlands,  such  as  salt  pans  (Nhiwatiwa et  al. 2017;  Boros  et  al. 2017),  can  

be  characterized  by  means  of  water  height  (WH),  water  extent  (WE),  or  water  volume  (WV)  

(Turak  et  al. 2017;  Shaw  et  al. 2011;  Foti  et  al. 2012).  WH derived  from  in  situ  water  level
gauges  offers  the  most  reliable  and  temporally  frequent  source  of  information.  However,  water
gauges  provide  merely  vertical,  locally  tied  measurements  and  are  costly  to install  and  maintain.
Especially  for  salt  pans,  the  water  level  gauge  must  be  positioned  at  the  deepest  point  due  to
increased drying towards the  edges.  In many  regions of  the  world,  long-term,  automatic  in situ
measurements  are  not  widely  available,  as  is  also the  case  for  the  Seewinkel  region  (web  address:
https://wasser.bgld.gv.at/hydrographie/die-seen and https://ehyd.gv.at/ (accessed
on  14 August  2023)).

WE  is  especially  suited  for  studying the  inundation  state  of  the  salt  pans  due  to their  shallow
topography  so that  small  changes  in  water  volume  cause  substantial  changes  in  water  surface  

area.  WE  can  be  reliably  retrieved  from  Earth  observation  (EO)  satellite  data that  provide
global,  freely  available  information  of  high  spatial  and  sufficient  temporal  resolution  (Hess  et  al.
2003;  Reschke  et  al. 2012).  Multispectral  imagery  has  proven  to be  suitable  for  studying salt  

pans  because  of  the  high  reflectivity  of  exposed  salt  surfaces  and  the  absorption  of  infrared  

radiation  by  water  surfaces  (Safaee  et  al. 2020).  Although  commonly  suffering from  cloud  

cover,  multispectral  observations  are  less  affected  by  wind  than  radar  systems  (Krzepek  et  

al. 2022;  Kseňak  et  al. 2022;  Bartsch  et  al. 2012),  which  have  been  widely  used  to monitor
wetlands  (Schlaffer  et  al. 2022;  Hess  et  al. 2003;  Prigent  et  al. 2007;  Reschke  et  al. 2012).  Most
studies  use  data from  the  moderate  resolution  imaging spectroradiometer  (MODIS)  (Justice
et  al. 1998)  or  a series  of  the  Landsat  missions,  which  together  cover  an  observation  period  of
nearly  50 years (Wulder  et  al. 2019).  Examples of  global  satellite-derived WE products are  the
global  surface  water  (GSW)  product  (Pekel  et  al. 2016)  and  the  dynamic  surface  water  extent
product  (Jones 2019).  Additionally,  continental-scale  products  exist  (Sheng et  al. 2016).  These
large-scale  products  include  data on  salt  pans  (Figure 1.1);  however,  they  are  often  inaccurate
for  small-size  ecosystems,  such  as  those  encountered  in  Seewinkel  (Pekel  et  al. 2016).  Local  case
studies  using remote  sensing to derive  WE  and  inundation  states  are  numerous  (Heintzman  et  al.
2017;  Lefebvre  et  al. 2019;  Castañeda et  al. 2005;  Bowen  et  al. 2017;  Chiloane  et  al. 2020;  Bryant
et  al. 2002;  Chew  et  al. 2020;  H.  Li  et  al. 2019;  Schlaffer  et  al. 2016).

https://wasser.bgld.gv.at/hydrographie/die-seen
https://ehyd.gv.at/
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Fig.  1.1: Location  of  Seewinkel  in  Eastern  Austria.  Outlines  of  salt  pan  basins  were  provided
by  Lake  Neusiedl—Seewinkel  National  Park  administration  (Nationalpark  Neusiedler
See  -  Seewinkel 2022).  Additionally,  the  groundwater  stations  used  in  the  study  

are  marked.  The  salt  pans  are  colored  based  on  the  water  occurrence  product  of  

the  Global  Surface  Water  (GSW)  data set  (Pekel  et  al. 2016).  The  basemap  stems
from  basemap.at  (web  address: https://basemap.at/ (accessed  on  14 August  2023)).
The  coordinate  reference  system  is  the  MGI/Austria GK  M34 (EPSG:31259;  web  

address: https://epsg.io/31259 (accessed  on  14 August  2023)).  The  map  inset
shows  the  location  of  the  study  area (marked  with  an  X)  within  Austria.

Several  modeling approaches  exist  that  link  various  drivers  to salt  pan  hydrological  properties.
Traditional  hydrological  modeling (Jajarmizadeh 2012;  Z.  Liu  et  al. 2017;  G.  Liu  et  al. 2011)
applied  to wetlands  depends  on  a certain  quantity  and  quality  of  data for  parameterization,  which
often  hampers  their  spatial  transferability  to regions  where  these  data are  not  available  (Blöschl
et  al. 1995;  Patil  et  al. 2015;  Chouaib  et  al. 2018;  C.  Z.  Li  et  al. 2012;  Yang et  al. 2022).  Stochastic
modeling has  long been  recognized  as  a vital  alternative  to process-based  modeling (Farmer
et  al. 2016).  A number  of  studies  have  focused  on  summarizing past,  present,  and  perspective
machine  learning (ML)  methodology  in  estimating different  hydrological  variables  (C.  Shen  et  al.
2021;  Nearing et  al. 2021;  Lange  et  al. 2020;  Mosaffa et  al. 2022;  Osman  et  al. 2022;  Afrifa 

et  al. 2022;  Ahmadi  et  al. 2022;  Ardabili  et  al. 2020;  Zounemat-Kermani  et  al. 2021;  T.  Xu  

et  al. 2021;  Papacharalampous  et  al. 2022),  such  as  groundwater  (Osman  et  al. 2022;  Afrifa 

et  al. 2022;  Ahmadi  et  al. 2022).  Conventional  ML models,  such  as  the  random  forest  (RF)

https://basemap.at/
https://epsg.io/31259
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approach  (Breiman 2001;  Tyralis  et  al. 2019),  have  been  the  most  commonly  used  concepts  

for  modeling hydrological  variables  (T.  Xu  et  al. 2021;  Papacharalampous  et  al. 2022).  They
encompass  the  advantage  of  being well  explored,  non-parametric,  often  robust  estimators  that,
in  many  cases,  offer  extensive  algorithmic  options  for  model  interpretation  (T.  Xu  et  al. 2021).
Hybrid  models  (Kraft  et  al. 2022;  Fahimi  et  al. 2017;  Nourani  et  al. 2014;  Khandelwal  et  al. 2020)
and  deep  learning models  (Sit  et  al. 2020)  have  only  recently  gained  attention  in  hydrological
research  (Khandelwal  et  al. 2020;  Sit  et  al. 2020).  Hybrid  models  are  meant  to incorporate  the
advantages  of  traditional  hydrological  modeling and  ML modeling (Kraft  et  al. 2022;  Fahimi  et  al.
2017;  Nourani  et  al. 2014;  Khandelwal  et  al. 2020).  Although  fit  for  complex  pattern  recognition
tasks,  deep  learning models  typically  require  large  amounts  of  data for  model  training (LeCun
et  al. 2015;  Sit  et  al. 2020)  and  are  harder  to interpret  (Chakraborty  et  al. 2017).

Advances  in  ML (T.  Xu  et  al. 2021;  Papacharalampous  et  al. 2022)  have  boosted  the  relevance
of  stochastic  modeling for  predicting lake  WH (Wee  et  al. 2021;  Hussaini  et  al. 2020;  S.  Zhu  

et  al. 2020;  B.  Li  et  al. 2016;  Choi  et  al. 2020).  Past  research  in  modeling wetland  inundation
dynamics  using ML methods  is  often  restricted  to using in  situ  measurements  for  identifying the
presence  of  water  (Cartwright  et  al. 2022;  Riley  et  al. 2023).  Greater  data availability  provided  by
EO  (Dorigo et  al. 2021;  Sogno et  al. 2022;  Pekel  et  al. 2016)  has  contributed  to studies  utilizing
WE  for  modeling wetlands,  although,  to our  knowledge,  not  for  salt  pans  and  in  different  temporal
resolutions.  The  monthly  inundation  state  of  freshwater  playas  in  the  Great  Plains  of  North  America
has  been  modeled  on  a large  spatial  scale  using a monthly  global  water  extent  product  based  on
Landsat  (Pekel  et  al. 2016)  and  climate  and  land  cover  data (Solvik  et  al. 2021).  Inundation  patterns
in  the  Darling River  Floodplain,  Australia,  were  modeled  using Landsat  data and  topography,
meteorological,  and  hydrological  data (Shaeri  Karimi  et  al. 2019).  Satellite-derived  WE  (lake  surface
area)  of  Lake  Gregory,  Australia’s  salt  lake,  has  been  modeled  using ML with  precipitation  and  

temperature  as  predictors  (Soltani  et  al. 2020).  Quantification  of  wetland  permanence  of  four  

water  body  permanence  classes  in  the  Prairie  Pothole  Region,  although  not  carried  out  for  salt
pans,  was  executed  by  Daniel  et  al.  (2022),  who,  in  addition  to climate  and  land  cover,  introduced
features  based  on  topography  to ML modeling.  Various  ML models  were  used  for  the  mentioned
studies.  Solvik  et  al.  (2021)  used  a long short-term  memory  neural  network,  Shaeri  Karimi  et  al.
(2019)  used  RF,  Soltani  et  al.  (2020)  applied  a generalized  group  method  of  data handling,  and  Daniel
et  al.  (2022)  used  extreme  gradient  boosting techniques.

1.1 Objective  of  this  thesis

The  goal  of  this  master  thesis  is  to build  ML models  to predict  the  inundation–desiccation  

state  of  34 salt  pans  in  Seewinkel,  Austria from  1984-2022.  Three  models  combine  the  yearly  

salt  pan  inundation–desiccation  state  during July,  August,  September,  or  October  (JASO)
retrieved  from  the  Landsat  satellite  archive  (Wulder  et  al. 2016;  Wulder  et  al. 2019)  as  model
target  with  either  in  situ  groundwater  measurements,  meteorological  data from  the  ERA5-Land
global  reanalysis  (Muñoz-Sabater  et  al. 2021)  or  both  as  predictors.  In  order  to understand  the
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influence  of  changing meteorological  patterns  and  groundwater  withdrawal  on  salt  pan  dynamics,
explainable  artificial  intelligence  (Gunning et  al. 2019)  is  utilized.

This  master  thesis  is  structured  the  following:  in  chapter  2 the  study  area and  the  data sets
used  to model  salt  pan  inundation  state  are  presented.  Chapter  3 focuses  on  the  derivation  of  salt  

pan  WE  by  means  of  remote  sensing with  a focus  on  multispectral  remote  sensing and  it  explains  

the  concept  of  Random  Forest  algorithms.  Chapter  3 additionally  provides  a detailed  description
of  the  model  setup,  feature  importance  and  evaluation  metrics.  Chapter  4 presents  the  results,
while  Chapter  5 discusses  the  results  with  a focus  on  the  model  assumptions,  predictors,  targets,
model  error,  and  model  transferability.  Finally,  in  chapter  6,  conclusions  are  drawn  and  an
outlook  is  provided.





2 Materials  7

2.  Materials

2.1 Study area

The  study  area is  located  in  the  Lake  Neusiedl—Seewinkel  National  Park  (Figure 1.1).  Salt  pans
in  Seewinkel  are  steppe  wetlands  (Krachler  et  al. 2012)  and  mostly  relicts  of  the  Würm  glacia-
tion  (Draganits  et  al. 2022;  Häusler 2007).  Their  size  ranges  between  0.03 km2 and  1.5 km2 (based  

on  the  data collected  in  the  scope  of  this  study).  The  salt  pans  are  highly  heterogeneous  in  their  

hydrological  and  ecological  condition  (Krachler  et  al. 2012;  Kirschner  et  al. 2007).  Due  to various  

causes,  the  number  of  salt  pans  in  Seewinkel  has  decreased  from  139 in  the  year  1855 to about  59
ecologically  intact  specimens  in  2012 (Krachler  et  al. 2012).  Historically,  the  landscape  has  been
subject  to strong economic  utilization,  most  notably  through  the  intensification  and  expansion  of  

agricultural  practices  since  the  1960s  (Draganits  et  al. 2022)  and  because  of  tourism  (Krachler  et  

al. 2012).  A process  referred  to as “drying from  beneath” (Krachler  et  al. 2000) has  been  identi-  

fied  as  the  main  driver  behind  “dying salt  pans” (Krachler  et  al. 2012),  although  diverging theories
exist  (Häusler 2020;  Häusler 2007).  Due  to human-induced  groundwater  drainage,  the  capillary
rise  is  disrupted  starting at  a depth  to groundwater  of  approximately  70 cm  (Zimmermann-Timm  

et  al. 2021).  This  finally  results  in  the  failure  of  the  water  retention  capacity  of  the  salt  pans  and
desalinization  (Zimmermann-Timm  et  al. 2021).  Some  salt  pans  tend  to be  naturally  filled  with
water  all  year  (type:  ‘naturally  perennial’),  and  some  artificially  hold  water  over  the  whole  year
(type:  ‘artificially  perennial’).  Others  tend  to desiccate  over  continuous  periods  of  time  (type:
‘periodically  filled’)  (Krachler  et  al. 2012).

The  climate  in  Seewinkel  can  be  classified  as  Dfb-climate  (warm-summer  humid  continental;
based  on  monthly  ERA5-Land  data from  1984 to 2022;  Köppen-Geiger  climate  classification  (Köp-
pen 2011)).  The  total  annual  potential  evaporation  (𝐸pot)  is  602 mm  (1978–2010; (Soja et  al.
2013)),  the  total  annual  precipitation  (P)  is  556 mm  (1971–2020; (Hackl  et  al. 2023)),  and  the
annual  mean  2 m  temperature  (T)  is  11.1 °C  (1971–2020; (Hackl  et  al. 2023)).  P  is  highest  from  

May  to September  and  lowest  from  October  to April  (based  on  monthly  ERA5-Land  from  1984 to 

2022;  verified  via Crocetti  et  al.  (2020)).  While  there  is  research  on  the  impact  of  climate  change  

on  Lake  Neusiedl  (Hackl  et  al. 2023;  Soja et  al. 2013;  Tolotti  et  al. 2021;  Eitzinger  et  al. 2005),  it  

remains  unclear  whether  climate  change  currently  affects  the  salt  pans  in  Seewinkel  (Mitter  et  al.
2021).  Most  scenarios  (Representative  Concentration  Pathway  (RCP)  4.5 and  RCP  8.5)  for  the
Austrian  state  of  Burgenland  predict  a significant  increase  in  temperature  for  all  seasons,  whereas
a slight  increase  in  mean  annual  precipitation  is  expected  together  with  a significant  increase
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(+33%)  in  winter  precipitation  in  the  distant  future  (RCP  8.5)  (Burgenland 2016).  Based  on
climate  scenarios,  it  is  estimated  that  the  return  period  of  moderate  and  extreme  droughts  will
decrease  in  lowland  Austria over  the  course  of  the  21st  century  (Haslinger  et  al. 2023),  suggesting
greater  pressure  on  vulnerable  wetland  ecosystems  in  the  future.

2.2 Target  data

The  WE  time  series  of  34 salt  pans  in  Seewinkel  were  provided  by  Stefan  Schlaffer  and  are
explained  in  Schauer  et  al.  (2023),  Section  2.2.

2.3 Predictor  data

2.3.1 Predictor  selection

The  selected  features  relate  to the  main  drivers  of  salt  pan  variability,  i.e.,  groundwater,  precipi-
tation,  temperature,  and  evaporation  (Table 2.1).  They  were  narrowed  down  from  a larger  set  of
potential  drivers  based  on  the  literature  on  wetlands  and  salt  pan  modeling in  general,  as  well  

as  the  salt  pans  in  Seewinkel,  in  particular  (Lowenstein  et  al. 1985).  For  example,  topography,
a feature  proposed  by  Daniel  et  al.  (2022),  was  excluded  as  a predictor  since  the  variation  between
salt  pan  basins  is  likely  to be  minimal  (based  on  a local  digital  elevation  model  (DEM)  (web  ad-
dress: https://geodaten.bgld.gv.at/de/downloads/hoehenmodelle-orthofotos.html (ac-
cessed  on  14 August  2023))).  Information  on  anthropogenic  drivers  in  sufficient  resolution,
e.g.,  well  extraction  amounts  or  channel  discharge,  was  not  available  (RH 2020).

WE  in  spring is  expected  to have  a major  impact  on  inundation  state  estimates  in  sum-  

mer  (Zimmermann-Timm  et  al. 2021).  However,  we  did  not  include  WE  as  a predictor  for
the  following reasons:  First,  its  inclusion  potentially  results  in  overshadowing other  predictors.
Although  possibly  improving model  performance,  this  would  limit  model  interpretability  and
ecosystem  understanding.  Second,  natural  spring WE  is  the  result  of  the  underlying processes
steered  by  groundwater,  precipitation,  temperature,  and  evaporation.  Hence,  WE  information  is
implicitly  included  in  the  nine  predictors  used  in  this  study.

To account  for  interannual  variability  in  hydrological  and  meteorological  conditions,  we  applied  

various  integration  periods  to the  selected  predictors.  However,  the  overall  focus  is  on  integration
over  12 months  as  this  period  covers  the  entire  time  since  the  last  prediction  was  made.  Other
integration  periods  span  6 months,  whereas  the  SGI  is  a continuous  variable,  as  indicated  in
Table 2.1.  To detect  trends  in  the  features,  we  applied  the  Mann-Kendall  test  (Hamed  et  al. 1998)
to the  nine  predictors.  We  abstained  from  feature  selection  methods  (Jović  et  al. 2015)  as  we
wanted  to obtain  information  on  feature  importance  and  partial  dependencies  on  all  introduced
predictors.  Importantly,  our  sample  size  is  expected  to be  large  enough  with  respect  to the  

maximum  number  of  features  (nine  features  for  the  combined  model),  hence  decreasing the
likelihood  of  overfitting (Sima et  al. 2006).

https://geodaten.bgld.gv.at/de/downloads/hoehenmodelle-orthofotos.html
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Tab.  2.1: The  nine  predictors  used  for  modeling inundation  state  are  divided  into meteorology  and  hydrology.  Furthermore,  the  relation  to the  salt  pan  cycle  is
explained,  and  additional  information  is  provided.

Field Variable
[Unit]

Derived  Predictor
[Unit]  (Abbrev.)  

Integ.  

Period  

Relation  to Salt  Pan  Cycle  Data Source

Hydrology  

Groundwater  

[m.a.s.l.]  

Anomalies  [unitless]  

(GW  Anom.)  

12 m. Groundwater  is  of  key  importance  for  salt  pan  water  abundance  in
Seewinkel  (Zimmermann-Timm  et  al. 2021)
Short-term  and  especially  long-term  groundwater  depletion  leads  to salt
pan  degradation  (Krachler 2007)  

Austrian  eHyd  portalSGI  [unitless]  

(SGI)  

Cont. The  Standardized  Groundwater  Index  can  serve  as  a robust  estimation  of
groundwater  drought  (Bloomfield  et  al. 2013;  Turkeltaub  et  al. 2023)
Groundwater  drought  in  March  influences  the  salt  pan  water  extent  in
spring and  therefore  the  inundation  state  in  summer

Level  ratio [unitless]  

(GW  level  ratio)
Oct./March
(6 m.)

Fall-winter  groundwater  level  ratio is  closely  connected  to regional  precipi-
tation  during that  time  (Hughes  et  al. 2021)
The  level  ratio stands  in  relation  to salt  pan  water  extent  in  spring (Krach-
ler  et  al. 2012)

Meteorology  

Temperature  

[°C]  

Anomalies  [unitless]  

(T  Anom.)  

12 m. Higher  temperature  increases  water  temperature  (Oroud 1999;  Oroud 2001;
T.  Liu  et  al. 2017;  Zimmermann-Timm  et  al. 2021)
Higher  summer  temperature  increases  evaporation  and  therefore  the  number
of  drying events  (Krachler  et  al. 2012)
Higher  temperatures  in  winter  decrease  spring water  extent  (Krachler  et  al.
2000)  

ERA5-Land  (Muñoz-  

Sabater  et  al. 2021),  

DOI:  

10.24381/cds.68d2bb30

Numb.  of  days  

above  25 °C  [days]  

12 m. The  number  of  days  above  25 °C  is  connected  to heatwaves  and  extensive
evaporation  (WMO 2017)

Evaporation  

[mm]  

Anomalies  [unitless]  

(Epot  Anom.)  

12 m. Evaporation  leads  to salt  pan  concentration  and  desiccation  (Lowenstein
et  al. 1985;  Bloch  et  al. 1951)

Precipitation  

[mm]  

Anomalies  [unitless]  

(P  Anom.)  

12 m.  Precipitation  leads  to salt  pan  filling (Lowenstein  et  al. 1985)
Precipitation  leads  to eluviation  of  the  saliferous  horizon  (Krachler  et  al.
2000)
Precipitation  as  observed  over  a 12-month  period  is  related  to hydrological
drought  (Vicente-Serrano et  al. 2010)

SPI  6 [unitless]  6 m. Standardized  Precipitation  Index  6 is  connected  to medium-term  precipi-
tation  patterns  and  agricultural  drought  (McKee  et  al. 1993;  Kumar  et  al.
2016)

SPI  24 [unitless]  24 m. Standardized  Precipitation  Index  24 is  connected  to long-term  precipitation
patterns  and  hydrological/socioeconomic  drought  (Vicente-Serrano et  al.
2010;  McKee  et  al. 1993;  Kumar  et  al. 2016;  Secci  et  al. 2021)
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2.3.1.1 Groundwater  level

Seewinkel  is  equipped  with  84 groundwater  gauges  located  in  relative  proximity  to the  salt
pans.  Of  these,  only  six  provide  continuous  observations  throughout  the  time  span  covered  by
the  Landsat  observations  and  could  thus  be  used  for  our  study  (i.e.,  stations  306043,  319418,
316174,  305755,  305813,  and  319426).  The  point-based  data are  provided  natively  as  monthly
means  through  eHyd  (web  address: https://ehyd.gv.at/ (accessed  on  14 August  2023)).  First,
we  derived  the  mean  monthly  groundwater  level  of  the  six  stations.  We  then  calculated  the
groundwater  anomalies  to exclude  long-term  climatology.  This  was  completed  by  subtracting the
mean  seasonal  component  from  the  original  time  series  (Bueechi  et  al. 2023;  Papagiannopoulou
et  al. 2017):

𝐴t = 𝐷t − 𝐶t, (2.1)

where 𝐴t is  the  anomaly  at  time  t, 𝐷t is  the  monthly  averaged  values  at  time  t,  and 𝐶t is  the
long-term  seasonal  climatology. 𝐶t was  calculated  by  averaging groundwater  levels  per  month
for  the  entire  reference  period  from  1984 to 2022.  Finally,  we  calculated  the  12-month  average  of
the  time  series  between  April  (previous  year)  and  March  (current  year)  to derive  presummer
season  groundwater  anomalies  for  each  year.  All  of  these  steps  were  executed  with  the  Python
packages numpy  (Harris et  al. 2020)  and pandas (team 2023).  We  decided not  to apply  further
detrending to the  anomalies  to inform  the  model  about  long-term  environmental  changes  (e.g.,
introduced  by  human  management).

Other  predictors  that  were  derived  are  the  Standardized  Groundwater  Index  (SGI)  in  March
of  each  year  and  the  October/March  groundwater  level  ratio (Bloomfield  et  al. 2013).  The  SGI
is  the  only  predictor  with  a continuous  accumulation  period  and  is  based  on  a non-parametric
normal  scores  transform  of  the  groundwater  level  data for  each  calendar  month  (Bloomfield  et  al.
2013).  It  represents  information  on  the  groundwater  level,  not  as  an  average  over  12 months,
but  as  derived  in  March.  The  SGI  was  also calculated  based  on  the  monthly  groundwater  values
averaged  across  all  six  stations.  The  calculation  was  executed  through  the  Python  package  

pastas  (Collenteur  et  al. 2019).  The  groundwater  level  ratio was  calculated  as  the  ratio of  

the  groundwater  level  in  March  (the  time  of  prediction  and  typically  the  time  of  year  of  the
groundwater  level  maximum  (Zimmermann-Timm  et  al. 2021))  divided  by  the  level  in  October
of  the  previous  year  (approx.  the  lowest  level  (Zimmermann-Timm  et  al. 2021)).  It  serves  as  a
proxy  for  groundwater  recharge  during winter.

2.3.1.2 ERA5-Land  meteorology

The  ERA5-Land  reanalysis  (Muñoz-Sabater  et  al. 2021)  is  aimed  at  land  applications.  It  has  the  

following main  characteristics:  the  data from  ERA5-Land  offers  a high  spatial  (ca.  9 km × 9 km)  

and  temporal  resolution,  global  availability,  and  temporal  coverage  dating back  to the  1950s,  thus,
overlapping with  Landsat  retrieval  periods  (Bandhauer  et  al. 2022;  Lavers  et  al. 2022;  Hersbach
et  al. 2020;  Bell  et  al. 2021).  Three  variables  were  used:  the  total  precipitation  P,  the  potential

https://ehyd.gv.at/
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evaporation 𝐸pot,  and  the  2 m  temperature  T.  The 𝐸pot in  ERA5-Land  is  higher  than  the
Pannonian  average  of  600-800 mm  per  year  (Nistor  et  al. 2017)  as  the 𝐸pot is  often  overestimated
because  of  representing open  water  evaporation  (Muñoz-Sabater  et  al. 2021).  We  used  the
ERA5-Land  monthly  averaged  data from  1950 to the  present  (DOI:  10.24381/cds.68d2bb30)  for
the  calculation  of  nearly  all  meteorological  predictors.  Only  the  number  of  days  in  a year  with  a
maximum  temperature  above  25 °C  was  derived  from  hourly  2 m  temperature  data based  on  the
ERA5-Land  hourly  data (DOI:  10.24381/cds.e2161bac).

First,  the  seven  pixels  covering the  study  area were  combined  by  spatial  averaging for  each  vari-  

able.  Preprocessing of  the  ERA5-Land  variables  was  performed  in  accordance  with  Equation  (2.1)  

and  the  Python  packages  numpy  (Harris  et  al. 2020)  and  pandas  (team 2023).  Subsequently,  a 12-
month  average  was  performed  in  the  case  of  T  and  a 12-month  summation  in  the  cases  of  P  and
𝐸pot.  For  the  same  reason  mentioned  in  Section 2.3.1.1,  detrending was  not  performed  for  these
three  features  either.  In  addition,  we  used  the  ERA5-Land  monthly  P  to compute  the  drought
indicator  standardized  precipitation  index  (SPI)  over  6 months  and  24 months  (SPI;  (McKee  

et  al. 1993;  Cheval 2015))  using the  R  package  SPEI  (Vicente-Serrano et  al. 2010).  The  SPI
represents  the  precipitation  conditions  of  a predefined  time  period  in  relation  to the  respective
normal  values.  It  builds  on  the  calculation  of  a normal  distribution  as  in  reference  (Cheval
2015).  Furthermore,  the  number  of  days  in  a year  with  a maximum  temperature  above  25 °C
was  derived.
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3.  Methods

3.1 Remote  sensing of  salt  pans

Based  on  the  atmospheric  windows,  two different  frequency  domains  can  be  considered  to acquire
high-resolution  images  of  salt  pans:  the  optical  domain  and  the  microwave  domain  (Rees 2012).
Both  optical  imagery  (Heintzman  et  al. 2017;  Lefebvre  et  al. 2019;  Castañeda et  al. 2005;  

Bowen  et  al. 2017;  Chiloane  et  al. 2020;  Bryant  et  al. 2002;  H.  Li  et  al. 2019)  and  microwave
imagery  (Schlaffer  et  al. 2022;  Hess  et  al. 2003;  Prigent  et  al. 2007;  Reschke  et  al. 2012;  Chew  et  al.
2020;  Schlaffer  et  al. 2016)  have  been  widely  used  for  water  body  and  soil  salinity  monitoring.  The
crucial  procedure  for  deriving the  inundation state  of  salt  pans,  independent  of  the  wavelength,
is  pixel-wise  recognition  of  spectral  signatures  of  water  and  non-water  surfaces  (Jensen 2007).  

This  is  based  on  the  unique  physical  properties  of  water,  desiccated  (saline)  surfaces,  and  the
riparian  zone  surrounding the  salt  pans  (Jensen 2007).

3.1.1 Multispectral  remote  sensing of  salt  pans

Multispectral  remote  sensing data are  characterized  by  their  radiometric,  spatial,  spectral,  and
temporal  resolution  (Vijayaraj  et  al. 2006).  The  former  represents  the  amount  of  radiometric  

information  in  each  pixel,  that  is,  the  dynamic  range  of  the  total  radiance  (TR)  (level  1 data;
represented  in  bits).  Applying radiometric  models  can  help  identify  whether  the  radiation  stems
from  the  different  components  of  the  equation  for  aquatic  environments:

𝐿t = 𝐿p + 𝐿s + 𝐿v + 𝐿𝑏, (3.1)

where 𝐿t is  the  TR, 𝐿p is  the  radiance  from  atmospheric  scattering (path  radiance), 𝐿s is  the
water  surface  radiance, 𝐿v is  the  subsurface  volumetric  radiance  and 𝐿𝑏 is  the  radiance  from  the
bottom  of  the  water  body  (Jensen  (2007);  for  a more  complex  formulation  see  Mustard  et  al.
(2001)).  Radiometric  corrections  based  on  analytical  or  empirical  models  can  help  isolate  terms
and  therefore  provide  information  on,  e.g.,  the  surface  component  of  the  TR  within  a specific  pixel
or  the  subsurface  volumetric  radiance  of  suspended  particulate  matter  concentrations  (Doxaran
et  al. 2002).

To identify  water  and  non-water  pixels,  it  is  useful  to treat  them  not  merely  as  a function  of
energy  (radiometric  resolution),  but  as  a function  of  frequency  (spectral  resolution)  (Wezernak
et  al. 1976;  Jensen 2007).  Here,  the  use  of  spectral  reflectance  products  (level  2;  property  of  the
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material  being observed;  relative  reflection  between  0 and  1)  instead  of  TR  products  is  helpful
(Bowker 1985).  The  necessary  corrections  to allocate  spectral  radiance  to the  earth’s  surface
(instead  of  the  atmosphere  or  measurement  geometry)  are  already  included  and  ensure  ease  of
use  (Wulder  et  al. 2022).

Optical  remote  sensing is  a passive  technique  that  relies  on  solar  radiation  (Booysen  et  al.
2021).  It  is  based  on  electromagnetic  radiation  frequencies  ranging from  0.3 𝜇m to 15 𝜇m (visible:
0.38 𝜇m to 0.75 𝜇m;  near-infrared  (NIR):  0.75 𝜇m to 1.4 𝜇m;  short-wave  infrared  (SWIR):  

1.4 𝜇m to 3.0 𝜇m)  (Kerekes 2008),  although  there  are  different  spectral  subdivisions  (Rees
2012).  The  continuous  electromagnetic  spectrum  is  commonly  separated  into up  to 15 bands
for  multispectral  systems  and  more  than  200 bands  for  hyperspectral  systems  (Landgrebe 2003;
Bioucas-Dias  et  al. 2013;  Jensen 2007).  We  decided  to use  the  visible,  NIR  and  SWIR  bands  

as  baseline,  as  they  work  best  for  discriminating water  pixels  (which  typically  appear  dark  in
the  image)  from  non-water  pixels  (which  appear  more  bright  in  the  image)  (Jensen 2007).  To
retrieve  the  salt  pan  water  surface  extent,  it  is  necessary  to differentiate  between  the  two main
land  surface  constituents  in  and  around  the  salt  pan  basins,  i.e.,  vegetation  and  (saline)  soil  

from  water.  To maximize  the  contrast  between  pixels,  the  unique  spectral  properties  of  the
constituents  are  utilized  (Figure 3.1).  To detect  water  surfaces,  we  rely  on  the  property  of  water
as  a strong absorber  of  incident  radiation  throughout  the  visible,  NIR,  and  SWIR  spectrum.  The
spectral  signatures  between  different  types  of  soil  and  vegetation  are  less  distinct  (Figure 3.1).

For  wavelengths  between  0.74 𝜇m and  2.5 𝜇m,  clear  water  absorbs  most  incident  radiation  

(Figure 3.1;  Jensen  (2007)).  Due  to the  increased  radiant  flux  of  organic  and  non-organic  

constituents  in  some  water  bodies,  Jensen  (2007)  suggested  particular  care  in  the  use  of  the
NIR  spectral  region  to discriminate  water  surfaces  from  surrounding soil  and  vegetation.  Here,
SWIR  is  reported  to be  particularly  useful  (Safaee  et  al. 2020).  Inundated  salt  pans  in  Seewinkel
exhibit  considerable  amounts  of  suspended  materials,  such  as  clay  (phyllosilicates)  in  the  water
that  influence  the  spectral  properties  depending on  the  concentration  level  (Figure 3.1 for
montmorillonite;  Lodhi  et  al.  (1997)).  Krachler  et  al.  (2012)  identified  the  phyllosilicates  kaolinite,
talc,  and  smektite,  as  well  as  carbonates  calcite,  magnesiumcalcite  and  protodolomite  as  the
dominant  drivers  of  salt  pan  turbidity,  i.e.  the  amount  of  suspended  materials  (Jensen 2007),  in
Seewinkel.  Montmorillonite  cannot  be  found  in  Seewinkel  salt  pans,  but  is  used  here  as  it  is  the
only  phyllosilicate  mixed  with  water  that  can  be  found  in  the  USGS  spectral  library  (Kokaly
et  al. 2017).  It  is  also a member  of  the  smektite  mineral  group  that  can  be  found  in  Seewinkel
(Krachler  et  al. 2012).  When  abundant  in  water,  it  exerts  a strong influence  on  the  spectral  

properties  between  0.38 𝜇m and  0.9 𝜇m as  well  as  around  1.1 𝜇m.  Depending on  the  mineral
content,  similar  spectral  curves  can  be  expected  from  inundated  salt  pans,  as  shown  in  Figure 3.1.

The  spectral  signature  of  the  soil  that  sometimes  surrounds  the  salt  pans  in  question  depends
on  the  texture  of  the  soil,  the  moisture  content  of  the  soil,  the  content  of  organic  matter,  the
iron  oxide  content,  the  salinity  of  the  soil  and  the  surface  roughness  (Jensen 2007).  Generally,
the  spectral  curve  of  (dry)  soil  is  characterized  by  moderate  reflectivity  in  parts  of  the  visible
spectrum  and  by  increasing  reflectance  towards  the  NIR  domain  (∼ 1.0𝜇m)  (Jensen  (2007);
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Figure 3.1).  Non-saline  soil  is  similarly  reflective  as  saline  soil  (Mougenot  et  al. 1993),  but  more
reflective  than  water  surfaces  throughout  the  visible,  NIR  and  SWIR  spectrum  (called  middle
infrared  in  Mougenot  et  al.  (1993)).  The  reflectance  of  saline  soils  is  strongly  influenced  by  

the  moisture  content  and  the  spectral  signatures  of  the  observed  minerals  (Mougenot  et  al.
1993).  Here,  the  SWIR  spectrum  can  be  used  to quantify  the  moisture  content  (Mougenot  et  al.
1993).  In Seewinkel,  Csaplovics et  al.  (2018)  identified the  minerals halite,  thermonatrite,  trona,
thenardit,  burkeite,  and  hydroxilapatit  as  the  most  dominant  in  most  salt  pans,  which  can  also
be  found  on  the  ground  of  bare  salt  pans  (Krachler 2007).  Due  to the  similar  spectral  signatures
between  minerals  abundant  in  the  salt  pans  in  Seewinkel  and  Stonewall  Playa (US;  Dickerson
et  al.  (2014)),  it  is  likely  that  the  spectral  signature  of  the  salt  pans  in  Seewinkel  will  roughly
correspond  to the  spectral  curve  of  Stonewall  Playa (Figure 3.1).  Playa evaporites  in  the  form
of  polyhalite  additionally  indicate  the  possible  spectral  signature  of  the  salt  pans  in  Seewinkel
(Figure 3.1).

The  reflectance  of  vegetation  is  conditioned  by  the  leaf  pigments  and  the  leaf  water  con-  

tent  (Jensen 2007).  The  photosynthetic  activity  is  influenced  by  vegetation  vitality  and  the
amount  of  incident  photosynthetically  active  radiation  (PAR).  The  reflectance  of  PAR  (that  is
roughly  equivalent  to visible  light)  is  largely  driven  by  chlorophyll  absorption  of  red  and  blue  

light.  In  the  NIR  spectrum,  the  spongy  mesophyll  drives  scattering,  while  the  amount  of  leaf
water  is  responsible  for  a decrease  in  reflectance  in  the  NIR  and  SWIR  domains  (around  1.45 𝜇m,
1.94 𝜇m and  2.7 𝜇m)  (Jensen 2007;  Gitelson  et  al. 1998).  Hence,  in  the  case  of  low  leaf  water
content,  the  spectral  curve  after ∼ 1.2𝜇m appears  more  flat  (Gitelson  et  al. 1996).  This  is  also
visible  for  the  spectral  signature  of  rangelands  in  Figure 3.1.  The  vegetation  around  the  salt  pans
in  Seewinkel  is  mostly  grass,  reeds,  bushes,  and  rarely  trees  (Zimmermann-Timm  et  al. 2021;  

Krachler 2007)  and  is  therefore  comparable  to rangeland.  In  some  cases,  agriculture  borders
directly  on  the  salt  pans  basins.  Due  to the  observation  period  spanning April-October,  seasonal  

changes  in  vegetation  health  and  cover  occur,  especially  in  the  case  of  farmland.  This  seasonality
has  been  taken  into account  by  training a separate  model  for  each  month  (see  Schauer  et  al.
(2023)).
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Fig.  3.1: Spectral  properties  of  various  types  of  solids,  vegetation  and  liquids  in  the  context  of  salt  

pans  in  the  range  of  0.38 𝜇m to 2.4 𝜇m based  on  the  USGS  spectral  library  (Kokaly  et  

al. 2017).  Spectral  domains  (visible,  near-infrared  (NIR),  short-wave  infrared  (SWIR))
are  additionally  indicated  together  with  the  respective  Landsat  4-5 Thematic  Mapper
(TM)  bands  (web  address: https://www.usgs.gov/landsat-missions/landsat-5
(accessed  on  27 October  2023)).

Landsat  bands  for  identifying water  pixels  and  non-water  pixels  can  be  used  separately  (see
Figure 3.1)  or  in  combination.  We  utilized  three  indices  that  are  suitable  for  identifying surface
water:  the  normalized  difference  vegetation  index  (NDVI,  Rouse  et  al.  (1974)),  the  normalized
difference  water  index  (NDWI,  McFeeters  (1996))  and  the  modified  normalized  difference  water
index  (MNDWI,  H.  Xu  (2006)).  NDVI  is  a widely  used  remote  sensing technique  used  to
assess  and  monitor  vegetation  abundance  and  health  and  has  been  shown  to aid  the  successful
identification  of  water  bodies  (Pekel  et  al. 2016).  It  quantifies  the  photosynthetic  activity  and
density  of  vegetation  cover  by  calculating the  normalized  difference  between  NIR  and  red  light
reflected  by  the  Earth’s  surface  via the  formula:

𝑁  𝐷  𝑉  𝐼 = 𝑁  𝐼  𝑅 − 𝑅  𝑒𝑑

𝑁  𝐼  𝑅 + 𝑅  𝑒𝑑
(3.2)

The  NDVI  can  take  on  values  between  -1 (low  photosynthetic  activity)  and  1 (high  photosyn-
thetic  activity),  depending on  the  strength  of  reflectance  increase  towards  the  NIR  domain.  The
same  concept  is applied to water  in the  case  of  the  NDWI (McFeeters 1996),  although utilizing
the  strength  of  reflectance  decrease  towards  NIR  frequencies  (Ji  et  al. 2009).  The  NDWI  is  

designed  to detect  and  quantify  the  presence  of  water  in  various  landscapes.  It  is  calculated
using the  ratio of  the  difference  between  green  light  and  NIR  radiation:

𝑁  𝐷  𝑊  𝐼 = 𝐺r  𝑒𝑒n − 𝑁  𝐼  𝑅

𝐺r  𝑒𝑒n + 𝑁  𝐼  𝑅
(3.3)

https://www.usgs.gov/landsat-missions/landsat-5
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NDWI  has  been  shown  to exhibit  suboptimal  performance  in  pixels  characterized  by  the
presence  of  urban  built-up  (Chiloane  et  al. 2020),  as  these  surfaces  exhibit  a weaker  NIR  spectral
response  (H.  Xu 2006).  Therefore,  the  MNDWI  utilizes  the  SWIR  domain  instead  of  the  NIR
domain  to improve  surface  water  detection.  The  spectral  absorption  of  water  throughout  the  

SWIR  domain  is  large  and,  more  importantly,  differs  more  strongly  from  the  built-up  areas
compared  to the  NIR  domain  (H.  Xu 2006;  Jensen 2007).  It  is  calculated  using the  ratio of  green
light  to SWIR  radiation:

𝑀  𝑁  𝐷  𝑊  𝐼 = 𝐺r  𝑒𝑒n − 𝑆  𝑊  𝐼  𝑅

𝐺r  𝑒𝑒n + 𝑆  𝑊  𝐼  𝑅
(3.4)

Additional,  more  recent,  indices  have  been  developed,  such  as  the  Automated  Water  Extraction
Index  (Feyisa et  al. 2014),  the  Water  Ratio Index  (L.  Shen  et  al. 2010)  and  the  Land  Surface
Water  Index  (Sakamoto et  al. 2007).  Still,  the  three  indices  presented  above  have  proven  to be
performant  indices  and  provide  a stable  basis  for  the  classifcation  task.

3.1.2 Problems  of  optical  remote  sensing for  salt  pan  water  extent

In  the  context  of  optical  remote  sensing for  the  analysis  of  the  WE  of  salt  pans,  there  are  three
primary  problems  that  need  to be  addressed  (Jensen 2007):

• Suspended  material:  as  explained  above,  large  amounts  of  suspended  material  in  salt  pan
water  bodies  may  impeed  the  clear  discrimination  between  water  and  the  surrounding
soil  in  the  visible  and  NIR  spectrum  (Figure 3.1).  Especially  the  identification  of  turbid
water  in  contrast  to the  minerals  part  of  the  desiccated  salt  pan  soil  has  been  proven  to be
problematic  (Bowen  et  al. 2017).

• Illumination  Conditions:  optical  remote  sensing relies  on  solar  radiation  to capture  images.
The  quality  of  the  data is  affected  by  factors  such  as  the  acquisition  angle,  which  determines
the  angle  at  which  the  sensor  observes  the  surface,  and  whether  the  data are  collected
during diurnal  or  nocturnal  conditions  (Schaepman-Strub  et  al. 2006).  Different  lighting
conditions  can  impact  the  visibility  and  accuracy  of  salt  pan  WE  information.

• Clouds:  cloud  cover  in  the  atmosphere  can  obstruct  the  passage  of  light  and  affect  the
quality  of  optical  remote  sensing data (X.  Li  et  al. 2021).  Cloud  cover  can  result  in  limited
or  obscured  images,  making it  difficult  to accurately  assess  salt  pan  WE  (Ju  et  al. 2008),
especially  in  areas  with  regular  cloud  cover  such  as  Seewinkel  during winter.  Additionally,
pixels  affected  by  cloud  shadowing should  be  treated  to increase  retrieval  accuracy  (Zhai
et  al. 2018;  Shahtahmassebi  et  al. 2013;  Amin  et  al. 2012).

Addressing these  problems  is  crucial  for  ensuring the  effectiveness  of  optical  remote  sensing
techniques  in  monitoring and  analyzing salt  pan  WE,  as  they  directly  impact  data quality  and
the  ability  to make  accurate  assessments.  Further  details  are  described  in  Schauer  et  al.  (2023).
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3.1.3 Alternative  remote  sensing techniques  of  salt  pans

Microwave  remote  sensing commonly  encompasses  frequencies  from 1mm to 1m and  can  be  

divided  into active  systems  (radars)  and  passive  systems  (radiometers)  (Ulaby  et  al. 1981).
Radiometers  build  on  the  radiation  that  is  naturally  emitted  by  the  earth’s  surface  and  typically  

have  a very  coarse  resolution  of  over 10k  m × 10k  m (Le  Vine  et  al. 2006).  Thus,  radiometers  have
not  been  used  for  small-scale  lake  and  water  body  monitoring.  Active  microwave  remote  sensing
has  been  frequently  used  to monitor  wetlands,  because  radar  systems  have  the  ability  to penetrate  

through  clouds  and  acquire  images  independently  of  solar  illumination  (Schlaffer  et  al. 2022;  Hess  

et  al. 2003;  Prigent  et  al. 2007;  Reschke  et  al. 2012).  Synthetic-aperture  radar  (SAR)  sensors  offer  

high-resolution  imagery  based  on  radiation  that  is  highly  sensitive  to open  water  surfaces  (Schlaffer
et  al. 2022).  However,  due  to the  susceptibility  of  SAR  imagery  to wind  (Bartsch  et  al. 2012),
which  is  a large  factor  in  Seewinkel  (Krachler  et  al. 2000),  microwave  frequencies  were  not  used
in  the  scope  of  this  study.  WH derived  from  radar  altimeters  is  restricted  to narrow  tracks
beneath  satellite  overpasses  and,  furthermore,  too coarse  for  environments  of  small  size  (Birkett
2000;  Schwatke  et  al. 2015).  Additionally,  understanding salt  pan  water  variability  can  be  done
using WV.  Data from  satellite  gravity  missions  (e.g.  GRACE-FO;  Kornfeld  et  al.  (2019))  are  too
coarse  to understand  the  salt  pan  WV in  sizes  down  to 0.1 k  m2.

3.1.4 Derivation  of  target  variable

The  methods  to derive  the  target  data (JASO  inundation  state)  were  provided  by  Stefan  Schlaffer
and  are  explained  in  detail  in  Schauer  et  al.  (2023),  Section  3.1.1.

3.1.5 Derivation  of  JASO  inundation  state

To derive  the  model  target  variable,  an  inundation  state,  that  is  ‘desiccated’  (0)  or  ‘inundated’
(1),  was  assigned  to each  year.  This  was  completed  based  on  the  WE  time  series  in  JASO
described  above  for  nearly  every  year  (1984–2022)  and  for  each  of  the  34 salt  pans  individually.
Due  to the  WE  data gaps  caused  by  cloud  cover  during the  year  2002 (only  acquisitions  on  13
June  2002 and  on  20 June  2002),  this  year  could  not  be  used  for  inundation  state  modeling.  

The  only  acquisition  for  the  year  1999 in  JASO,  on  25 September  1999,  did  not  result  in  WE
data for  Kiesgrube  and  St.  Martins  Therme  2 due  to cloud  masking.  We  decided  to manually
insert  two states  ’inundated’  into the  time  series  for  the  two salt  pans  after  a visual  inspection  of
the  image,  as  otherwise  the  entire  year  would  have  been  discarded.  The  year  2012 is  missing in
the  inundation  state  time  series  due  to the  reasons  described  in  Section 3.1.4.

In the  case  of  a desiccation event,  that  is,  a WE of  zero,  in any  of  the  four  JASO months for
each  year,  the  year  was  tagged  as  ‘desiccated’.  Correspondingly,  in  the  event  that  no desiccation
occurred,  meaning a non-zero WE  was  present  during the  entire  JASO  period,  the  year  was
tagged  as  ‘inundated’.  Hence,  a yearly  and  binary  target  space  was  formed.  This  resulted  in  a
total  of  1258 data points  (37 years  times  34 salt  pans).
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We  decided  to display  the  inundation  state  for  each  salt  pan  and  year  to increase  the  under-
standing of  the  model  target.  This  was  completed  with  the  Python  package  matplotlib  (Hunter
2007),  as  well  as  with  all  other  data visualizations.  Additionally,  the  month  of  the  first  desiccation
event  per  year  between  April  and  October  was  visualized  based  on  the  original  WE  time  series
for  spotting inundation  events  outside  the  JASO  period.  The  first  desiccation  event  per  year  is,
furthermore,  of  key  ecological  importance  (Krachler  et  al. 2012;  Zimmermann-Timm  et  al. 2021).

3.2 Inundation  state  prediction

3.2.1 Exploratory data analysis:  separability and  correlation  analysis

As  a first  step,  we  analyzed  the  feature  space  to unveil  underlying distributions,  feature  relations,
possible  non-linearities  in  modeling,  data complexity,  and  class  separability  (Morgenthaler 2009).
This  was  completed  by  visual  inspection  of  histograms  per  predictor  and  scatter  plots  between
all  predictor  pairs  in  combination  with  class-based  coloring using a seaborn  pair  plot  (Waskom
2021).  The  complexity  analysis  was  performed  for  two exemplary  salt  pans:  Lange  Lacke,  which
is  one  of  the  largest  salt  pans,  and  Unterer  Stinkersee,  which  is  known  for  its  close  connection  to
groundwater  (Krachler  et  al. 2012).  We  abstained  from  a complete  analysis  for  all  salt  pans  via
the  maximum  Fisher’s  discriminant  ratio or  other  complexity  metrics  (Lorena et  al. 2019)  due  to
compactness  and  the  ability  of  the  RF  to detect  multi-dimensional  patterns.

Furthermore,  we  performed  a correlation  analysis  to gain  an  understanding of  the  temporal
agreement  between  the  predictive  features.  For  this  purpose,  both  Pearson’s  correlation  coefficient
r and  Spearman’s  rank  correlation  coefficient 𝜌 were  calculated  between  the  nine  features  with
the  scipy  stats  Python  package  (Virtanen  et  al. 2020).

3.2.2 Random  forests

The  RF  approach  was  first  proposed  by  Breiman  (2001)  and  has  since  become  a well-established
algorithm  in  a number  of  scientific  disciplines  (Hastie  et  al. 2001).  RF  algorithms  are  commonly
used  in  remote  sensing (Belgiu  et  al. 2016;  Dorigo et  al. 2012)  and  are  a widely  applied  method  in
practical  data-driven  hydrological  research  (Zounemat-Kermani  et  al. 2021;  Tyralis  et  al. 2019).
RF  is  built  on  ensembles  of  decision  trees  (Breiman 2001).  The  RF  classifier  can  be  expressed  as
the  predicted  value  at  the  query  point m𝑀  ,n (Biau  et  al. 2016):

m𝑀  ,n(x; Θ1,  ..., Θ𝑀 , Dn)  =

⎧  ⎨  ⎩1 if 1
𝑀

∑︀𝑀  

j=1 mn(x; Θj ; Dn) > 1
2

0 otherwise,  

(3.5)

where m𝑀  ,n is  a Borel  measureable  function1,  M  is  the  number  of  trees, Θ𝑀 are  independent
random  variables  used  to resample  the  training set,  x  is  a event  of  the  random  variable  X,  and

1A  Borel  measurable  function is  a  function that  preserves  the  measurability  of sets.  This  concept  is  important  in
probability  theory,  integration theory,  and various  areas  of analysis,  as  it  allows  to  work  with functions  that
behave  congruently  with respect  to  measurable  sets  and helps  in defining  integrals  and handling  probabilistic
concepts  (Trabs  et  al. 2021).
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Dn is  the  original  data set.  In  simpler  terms,  given  X and 𝐷n the  model  estimates  a value  of  

Y that  is  specified  by  the  majority  vote  among the  classification  trees.  The  majority  vote  is
estimated  relative  to the  total  number  of  trees  M  and  results  in  class  1 given m𝑀  ,n > 1

2 .
The  RF  conceptual  idea represents  a twofold  implementation  of  bagging,  or  bootstrap  aggre-

gation,  more  precisely  both  sample  bagging (aimed  at  averaging)  and  feature  bagging (aimed
at  tree  decorrelation)  (Breiman 2001)  with  the  common  goal  of  variance  reduction.  This  focus
turns  out  to be  sensible,  as  sufficiently  deeply  grown  decision  trees  naturally  tend  towards  low
bias  (Hastie  et  al. 2001).  The  algorithm  is  expected  to work  well  with  small  sample  sizes  (Biau
et  al. 2016;  Ferreira 2022),  despite  limiting the  functioning of  both  bootstrapping and  decision
tree  subsampling.  Furthermore,  since  RF  is  a sufficient  algorithm,  it  uses  all  available  data.
Moreover,  we  assumed  a strong relationship  between  the  target  pans  (based  on  (Krachler  et  al.
2012))  which  we  exploited  by  using the  scikit-  learn  (Pedregosa et  al. 2011)  multi-output  option
(web  address: https://scikit-learn.org/stable/modules/tree.html#tree-multioutput
(accessed  on  14 August  2023)).  This  aims  to improve  generalization  accuracy  by  estimating 

different  salt  pans  in  a simultaneous  fashion  within  a single  model  (Faddoul  et  al. 2012).  Its
principal  is  that  "(...)  during traversal  of  the  tree,  every  node  is  checked  to determine  whether  a
decision  can  be  made  for  any  of  the  currently  undecided  tasks  (...)"  (Linusson 2013;  Faddoul  

et  al. 2012).  We  applied  extensive  tools  for  model  interpretability  such  as  the  calculation  of  

the  feature  importance,  e.g.,  by  mean  decrease  in  impurity  (MDI,  also gini  index)  or  mean
decrease  in  accuracy  (MDA,  also permutation  importance)  or  partial  dependencies  (Friedman
2001;  Goldstein  et  al. 2015)  inside  this  study.  The  calculations  here  are  based  on  the  respective
scikit-learn  packages  (Pedregosa et  al. 2011).  Among the  predictors  used  in  this  study,  all  are
time  series exhibiting high cardinality.  Hence,  the  use  of  feature  importance  based on MDI to
comparison  to ones  based  on  permutation  importance  is  justified  (Breiman 2001;  Altmann  et  al.
2010;  Saarela et  al. 2021).  The  RF  approach  is  not  susceptible  to overfitting if  hyperparameter
tuning is  applied  (Probst  et  al. 2019).

3.2.3 Model  setup

The  inundation  state  in  summer/fall  serves  as  the  target  variable  in  our  models.  Using data 

until  the  end  of  March  of  each  year,  we  predict  whether  a salt  pan  dries  out  (’desiccated’)  

or  remains  ’inundated’  during JASO  of  the  same  year.  This  binary  classification  scheme  

has  already  been  used  as  the  basis  for  modeling WE  in  a number  of  studies  (Solvik  et  al.
2021;  Shaeri  Karimi  et  al. 2019;  Riley  et  al. 2023).  The  simplicity  of  the  inundation  state  in
summer/fall,  meaning its  low  temporal  resolution,  its  low  number  of  classes,  and  its  low  degree
of  mathematical  abstraction  (Section 3.1.5),  in  combination  with  our  predictor  setup  and  the  RF  

algorithm,  leads  to relatively  good  model  performance  and  model  interpretability.  The  inundation
state  in  summer/fall  comprises  a number  of  advantages:  it  is  relatively  robust  considering the
inhomogeneous  number  of  acquisitions  per  year;  it  closes  the  lack  of  preceding research  by
introducing a classification  task  with  a low  number  of  classes;  it  addresses  important  hydrological
and  ecological  issues,  as  many  plants  and  animals  in  Seewinkel  rely  on  water  abundance  within

https://scikit-learn.org/stable/modules/tree.html#tree-multioutput
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the  salt  pans  during summer/fall  (Dvorak  et  al. 2016;  Dvorak  et  al. 2020;  Krachler  et  al. 2012);  it  

is  of  interest  to decision-makers  that  can  use  our  models  to enable  efficient  water  management  by,
e.g.,  steering artificial  inundation;  and  it  further  helps  us  to identify  the  most  useful  predictors
quantifying refilling during winter/spring months,  as  it  is  aimed  at  the  core  characteristic  of  

salt  pans  (Lowenstein  et  al. 1985),  namely  the  yearly  inundation  state  in  JASO.  The  main
limitations  of  the  target  chosen  in  this  study  are  its  coarse  temporal  resolution  and  the  omittance
of  spring inundation/desiccation  events  that  are  of  high  ecological  importance  (Dvorak  et  al.
2020;  Krachler  et  al. 2012).

Although  the  prediction  is  only  made  once  per  year,  lead  times  vary  between  three  and  six
months  as  the  drying events  accounted  for  by  our  model  can  happen  in  any  month  from  July  to
October.  Despite  desiccation  sometimes  also occurring before  July,  we  aimed  for  a setup  that
enables  forecasting.  This  is,  on  the  one  hand,  more  challenging because  we  include  longer  lead
times,  but,  on  the  other  hand,  more  valuable  for  policymakers  and  stakeholders.

To gain  a thorough  understanding of  the  predictors  of  salt  pan  desiccation  while  ensuring global
model  transferability,  we  developed  four  RF  models.  The  model  GROUNDWATER  only  uses
in  situ  groundwater  information,  the  model  METEOROLOGY uses  only  meteorological  data,
and  the  COMBINED  model  uses  both  groundwater  and  meteorological  predictors  (Table 2.1;
sometimes  referred  to as  main  models).  In  addition,  we  developed  the  RANDOM  model,  based
on  a single  predictor  randomly  sampled  from  a uniform  distribution  to create  a baseline  for
testing model  performance  by  involving chance.

For  each  of  the  four  models,  we  followed  the  same  training,  validation,  and  test  splitting (Joseph
2022;  Y.  Xu  et  al. 2018).  We  use  the  definition  of  Ripley  (2007),  who defines  the  validation  set  via 

the  use  of  hyperparameter  tuning and  the  test  set  via the  use  of  a final  and  independent  evaluation
of  the  model.  The  model  splits  are  presented  in  Figure 3.2.  We  followed  an  approximate  overall
70%  (training),  10%  (validation),  and  20%  (testing)  split.  For  hyperparameter  tuning (described
in  Section 3.2.5),  we  applied  a six-fold  stratified  cross-validation  (CV)  within  the  80%  model
validation  set  that  recurrently  applied  the  approximate  70%/10%  split.  This  roughly  translates
into an  85%/15%  split  relative  to the  entire  model  validation  set  (Figure 3.2).
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Fig.  3.2: Model  splits  separated  into training sets  (blue),  validation  sets  (green),  and  test  sets
(pink).  The  years  that  correspond  to each  fold  are  indicated.  Additionally,  the  cross-
validation  (CV)  schemes  are  marked  on  the  left  side,  and  the  arrows  represent  the
introduction  of  the  seven  independent  test  folds  to the  leave-one-out  cross-validation
(LOOCV)  scheme.

3.2.4 Model  testing

Inside  model  testing (∼20%  of  the  entire  data set),  we  made  use  of  a leave-one-out  cross-validation
(LOOCV)  (Fukunaga et  al. 1989;  Wong 2015).  This  is  meant  to improve  the  prediction  skill  as
always  all  other  folds,  except  for  the  current  single  test  fold,  were  used  for  model  training as
part  of  a recurrent  97%/3%  split  with  respect  to the  entire  data set  (Figure 3.2).  Hence,  seven
LOOCV runs  were  executed  to test,  each  time,  one  year  (at  this  point  the  independent  year)  

of  the  overall  seven  independent  test  years.  This  independent  test  set  (Test  7 in  Figure 3.2)  

comprises  the  years  1985,  1991,  1997,  2004,  2010,  2017,  and  2022.  The  years  were  chosen  at
roughly  similar  intervals  across  the  entire  temporal  domain  to ensure  a balanced  distribution  of
folds  over  time  while  maintaining the  class  balance  of  the  entire  data set.

While  independent  model  testing uses ∼20%  of  the  data (seven  test  years),  we  aimed  to 

understand  the  year-wise  model  performance  from  1984 to 2022.  Hence,  we  reintroduced  the  

folds  used  for  model  validation  to model  testing as  part  of  a dependent  test  set.  Here,  the  

training data (∼80%,  30 additional  years)  were  reused  from  model  validation  in  the  scope  of
the  overall  LOOCV (Test  30 in  Figure 3.2).  The  year-wise  information  on  metrics  additionally
benefits  model  understanding,  as  the  target  data exhibits  skewed  fold-wise  class  distributions
that  affect  fold-wise  model  performance.  Although  the  reintroduction  enables  the  calculation  of
feature  importance  and  partial  dependencies  for  all  folds,  we  abstained  from  such  analysis  due  to
small  year-wise  sample  sizes.  The  reintroduction  of  the  years  used  for  model  validation  inherits
the  predisposition  that  these  folds  have  been  part  of  the  hyperparameter  tuning.  Therefore,
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the  metrics  for  the  folds  of  the  dependent  test  set  might  be  inflated  as  the  hyperparameters  were
adjusted  to exactly  this  set  (model  validation  set).

As  we  did  not  want  to exclude  fold  estimation  for  the  initial  training set,  we  used  LOOCV 

instead  of  nested  CV (Cerqueira et  al. 2020),  which  is  more  commonly  used  for  time  series.
The  metrics  for  some  salt  pans  may  also be  heightened  due  to a large  target  autocorrelation  as  we
apply  an  LOOCV scheme  (Cerqueira et  al. 2020),  although  the  effect  is  expected  to be  minimal
due  to the  random  characteristics  (sample  bagging)  of  the  RF  algorithm  (Breiman 2001).

The  estimations  within  the  LOOCV scheme  were  carried  out  in  the  scope  of  30 runs  per  

main  model.  These  repetitions  aim  to address  the  stochastic  variability  (randomness  within
the  sampling and  selection  of  features)  of  the  RF  approach  (Breiman 2001).  The  results  of  the
LOOCV were  divided  into training and  test  scores  for  the  four  model  setups  and  two test  sets
(independent  test  set  and  dependent  test  set)  and  averaged  over  all  runs.  We  calculated  the
standard  deviation  (SD)  for  model  variability  quantification  but  did  not  include  it  in  the  results,
as  it  was  generally  low  (max.  SD  of  the  Matthews  correlation  coefficient  (MCC;  Section 3.2.6)  of
0.02 for  the  dependent  test  set  (model  GROUNDWATER);  max.  SD  of  the  MCC  of  0.03 for  the
independent  test  set  (model  RANDOM)).

For  more  insight,  we  calculated  the  average  fold-wise  LOOCV performance  over  all 30 model
runs  for  the  three  main  models  (not  the  RANDOM  model;  Section 4.2.2).  This  provides  

information  on  the  development  of  the  test  metrics  over  time.  Additionally,  random  model
realizations  for  the  three  main  models  were  chosen  to gain  an  in-depth  understanding of  model
test  set  behavior  (Section 4.2.3).  This  allows  for  studying the  salt  pan-wise  inundation  prediction,
meaning the  outcome  as  true  positive  (TP),  false  positive  (FP),  true  negative  (TN),  and  false
negative  (FN),  for  every  year.  The  results  for  the  RANDOM  model  were  based  on  200 repetitions
to account  for  the  random  nature.

3.2.5 Model  validation

For  model  validation,  hyperparameter  tuning was  applied  using GridSearchCV (Bergstra et  al.
2012).  The  final  hyperparameters  used  for  the  three  models  can  be  seen  in  Table 3.1.  We  used  

the  hyperparameters  from  the  COMBINED  model  for  the  calculation  of  the  RANDOM  model,
as  they  offer  the  most  robust  solution  against  overfitting due  to the  larger  number  of  features
compared  to the  GROUNDWATER  model  and  METEOROLOGY model.
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Tab.  3.1: Hyperparameters  chosen  for  the  three  model  setups:  GROUNDWATER,  METE-  

OROLOGY,  and  COMBINED.  The  numbers  in  parentheses  relate  to the  average  

test  set  and  training set  performance  given  together  with  the  standard  deviation
(SD;  again,  in  parentheses).  Furthermore,  the  entire  selection  of  tested  parameters,
as  well  as  the  default  parameters  as  proposed  by  scikit-learn  (Pedregosa et  al. 2011),
are  indicated.

Hyperparameter GROUND-  

WATER
(0.6  (0.15)/0.65
(0.03))

METE-  

OROLOGY
(0.53  (0.12)/0.58
(0.02))

COMBINED
(0.58  (0.14)/0.65
(0.03))

Tested  Range
by
GridSearchCV

Default

n_estimators 40 40 40 40,  100,  300 100
max_feature log2 log2 all sqrt,  log2,  all sqrt
max_depth 2 4 2 1,  2,  3,  4 ultd.
min_samples_leaf 5 3 7 3,  5,  7,  9,  10 1
min_samples_split 10 17 10 6,  10,  13,  17 2
max_leaf_nodes 5 2 7 2,  3,  5,  7 ultd.

Throughout  the  parameter-tuning process, GridSearchCV was  performed  with  a six-fold
stratified  CV that  uses  an  approx.  85%/15%  split  within  the  model  validation  set,  as  described  in
Section 3.2.4.  Hence,  for  each  validation  run,  five  years  were  introduced  as  the  actual  validation
set.  The  hyperparameter  tuning was  based  on  the  definition  of  a range  of  values  deemed
sensible  by  the  literature  (Probst  et  al. 2019).  Individual  hyperparameters  were  varied  within
the  predefined  range  and  compared  with  performance  differences  of  the  training and  validation
sets.  This  gave  a rough  indication  of  and  lever  against  overfitting.  Subsequently,  a further,  more
restricted  range  of  hyperparameters  was  declared  that  allowed  for  training–test  score  differences
of  a maximum  of  25%.  Once  more  applying GridSearchCV,  this  range  of  values  (Table 3.1)  was
tested  using the  MCC  as  the  indicator.  This  resulted  in  the  final  set  of  hyperparameters  also
displayed  in  Table 3.1.

The  hyperparameters  were  chosen  using a different  CV scheme  and,  hence,  different  model
splits  compared  to the  LOOCV scheme  of  the  main  models.  The  results  obtained  in  the  scope  of  

the  hyperparameter  tuning were  slightly  worse  compared  to the  test  scores.  In  combination  with
the  removal  of  the  seven  test  folds,  independent  model  testing is  ensured,  as  hyperparameters
adjusted  to a certain  split  are  prevented.  The  hyperparameters  for  all  models  (Table 3.1)  are
less  complex  compared  to the  default  scikit-learn  ones  that  are  designed  to fit  a maximum  of  use
cases  (Buitinck  et  al. 2013).  Generally,  the  decision  trees  have  similar  complexity  between  the
models.  The  exact  number  of  trees  (40,  100,  or  300)  is  not  essential  for  model  performance,  as  was
verified both by  varying the  number  of  trees and by  the  CV results provided by GridSearchCV.

3.2.6 Evaluation  metrics

Global  confusion  matrices  with  an  MCC,  F1-Score,  and  OA were  calculated  for  the  training sets,
test  sets  (Test  7 and  Test  30),  and  validation  sets  as  the  main  indicators  of  the  classification
performance.  Since  we  have  a slight  class  imbalance,  but  both  classes  are  equally  important,  we
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performed  macro-averaging to compute  the  F1-score  to put  equal  weight  on  both  classes  (Opitz
et  al. 2019).  As  the  F1-Score  does  not  consider  TNs,  and  the  overall  accuracy  is  vulnerable  

to a skewed  class  distribution  (Chicco et  al. 2020),  the  main  metric  considered  in  this  study  

is  the  MCC.  It  is  a robust  metric  regardless  of  class  imbalances  (Q.  Zhu 2020).  In  the  case  of  

the  main  models,  the  metrics,  in  addition  to being averaged  over  the  30 model  runs  (200 for
the  RANDOM  model),  were  either  averaged  over  all  folds  and  salt  pans  based  on  the  LOOCV
scheme  (Fukunaga et  al. 1989;  Wong 2015)  or  averaged  over  all  salt  pans  for  a single  fold.  To gain
a salt  pan-wise  understanding of  the  model  performance,  the  metrics  were  averaged  across  all  

years  for  the  random  model  realizations  described  in  Section 3.2.4 for  the  eight  salt  pans  that
exhibit  a balanced  class  distribution.  It  was  not  possible  to include  the  results  for  many  of  the
salt  pans  due  to the  model’s  tendency  to predict  a single  class  in  the  case  of  a highly  skewed  class  

distribution  per  salt  pan.  We  applied  the  formulation  of  the  MCC  used  in  scikit-learn  (Pedregosa
et  al. 2011):  

MCC = 𝑇  𝑁 × 𝑇  𝑃 − 𝐹  𝑁 × 𝐹  𝑃√︀
(𝑇  𝑃 + 𝐹  𝑃 )(𝑇  𝑃 + 𝐹  𝑁)(𝑇  𝑁 + 𝐹  𝑃 )(𝑇  𝑁 + 𝐹  𝑁)

(3.6)

3.2.7 Feature  importance

For  model  interpretability,  we  calculated  the  feature  importance  by  the  mean  decrease  in  impurity
(MDI,  also Gini  index)  (Rebala et  al. 2019)  and  partial  dependencies  (Friedman 2001;  Goldstein
et  al. 2015).  The  results  for  the  MDI  were  averaged  separately  for  each  of  the  three  main  models
over  all  CV folds  and  model  runs.  Since  the  predictors  used  in  this  study  are  all  time  series  that
exhibit  high  cardinality,  the  use  of  feature  importance  based  on  the  MDI  is  justified  (Breiman
2001;  Altmann  et  al. 2010;  Saarela et  al. 2021).  Partial  dependency  plots  (PDP)  and  individual
conditional  expectation  (ICE)  plots  (Friedman 2001;  Goldstein  et  al. 2015)  were  calculated  for
each  salt  pan  individually  using the  training set  for  the  test  fold  1984,  as  this  includes  the  

most  recent  information.  We  interpret  the  PDP  or  ICE  curve  as  the  probability  of  predicting 

’inundated’  or  ’desiccated’  given  different  predictor  values,  as  can  be  performed  for  a binary
classification  (Molnar 2020).  The  PDP  and  ICE  plots  were  based  on  the  COMBINED  model’s
run,  which  is  also displayed  in  Section 4.2.3.  Salt  pans  with  an  especially  large  partial  dependency,  

spread  with  regard  for  the  respective  predictor,  were  manually  chosen  and  visualized,  in  addition
to the  PDP,  by  the  ICE  plots  (Goldstein  et  al. 2015).  The  spread  was  calculated  by  subtracting
the  minimum  partial  dependence  value  from  the  maximum  partial  dependence  value  for  each  salt  

pan  and  predictor  combination.  For  Heidlacke,  Hottergrube,  and  Gsigsee,  no partial  dependencies
could  be  calculated  as  only  the  state  ’desiccated’  is  present.  Both  algorithms  are  based  on  the
respective  scikit-learn  packages  (Pedregosa et  al. 2011).
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4.  Results

4.1 Salt  pan  mapping

The  results  of  the  models  used  for  the  retrieval  of  WE  were  provided  by  Stefan  Schlaffer  and  are
described  in  section  4.1 in  Schauer  et  al.  (2023).

A total  of  60%  of  the  complete  inundation  state  data set  (754 combinations  of  years  and  salt
pans)  are  classified  as  ‘desiccated’,  and  40%  (504 events)  are  classified  as  ‘inundated’  (Figure 4.1a).
For  individual  salt  pans,  the  class  distribution  is  highly  heterogeneous,  with  a class  imbalance  of
up  to 100%  in  the  case  of  Hottergrube,  Heidlacke,  and  Gsigsee.  For  some  salt  pans,  e.g.,  Lange
Lacke,  Unterer  Stinkersee,  or  Herrnsee,  extensive  years  of  drought  are  needed  to force  drying.
Unterer  Stinkersee  (type:  ‘naturally  perennial’)  falls  dry  less  frequently  compared  to Lange  Lacke  

(type:  ‘periodically  filled’).  Salt  pans  that  regularly  fall  dry  are,  e.g.,  Hochstätten,  Fuchslochlacke
1 and  2,  Huldenlacke,  or  Oberer  Stinkersee.  For  Darscholacke,  Zicksee,  Kiesgrube,  and  Badesee
Apetlon  (type:  ‘artificially  perennial’),  an  inundated  state  can  be  observed  for  nearly  all  years.
Numerous  salt  pans  fell  dry  six  years  in  a row  from  2016 to 2022,  the  longest  (nearly  common)
desiccation  period  since  1984.  In  many  cases,  the  year-wise  distribution  is  similarly  skewed  as
in  recent  years.  The  ‘inundated’  state  commonly  occurs  clustered  in  time  and  over  multiple
pans.  For  example,  the  three  periods  in  (and  around)  the  years  1987,  1997,  2010,  and  2015 are
dominated  by  the  state  ‘inundated’,  while  around  the  years  1984,  1992,  2003,  and  2007,  and  all
years  since  2016,  the  class  ‘desiccated’  prevails.
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Fig.  4.1: (a)  Binary  classification  into ’desiccated’  state  (light  grey)  and  ’inundated’  state  (dark
blue)  for  each  salt  pan  and  for  each  year.  The  years  2002 and  2012 are  missing due  to
data gaps.  (b)  First  month  of  each  year  in  which  the  salt  pans  desiccate.  Only  months
between  April  and  October  are  shown.

As  Figure 4.1b  shows,  in  some  years,  (early)  desiccation  is  prevalent;  for  others,  inundation  is  

present  throughout  the  year  (assuming the  presence  of  water  in  winter).  Since  2016,  desiccation
occurs  earlier  in  the  year  compared  to earlier  periods.  A total  of  41 desiccation  events  outside
the  JASO  period  can  be  found  when  the  ‘inundated’  state  is  prevalent.
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4.2 Inundation  state  prediction

4.2.1 Exploratory data analysis

We  detected  no trend  over  the  study  period  for  five  features  (GW  Anom.,  GW  lvl.  ratio,  SGI,  P
Anom.,  and  SPI  6)  and  an  increasing trend  for  the  other  four  features  (T  Anom.,  Number  of
days  above  25 ° C,  E  Anom.,  and  SPI  24).  As  expected,  the  features  that  are  connected  to an
increase  in  WE,  e.g.,  groundwater  and  precipitation  anomalies,  have  positive  correlations  with
each  other  (Figure 4.2).  The  same  applies  to the  features  that  are  assumed  to be  connected  to a
decrease  in  WE,  i.e.,  temperature,  evaporation,  and  number  of  days  above  25 ° C.  Consequently,
correlations  between  predictors  associated  with  water  gain  and  water  loss,  respectively,  are  

negative.  The  relationships  between  features  that  build  on  integration  periods  other  than  12
months  (e.g.,  SPI  6)  are  less  clear.

The  histograms  in  Figure 4.2 suggest  a better  separability  between  the  desiccation  and  

inundation  states  for  Lange  Lacke  (a)  compared  to Unterer  Stinkersee  (b).  This  is  indeed
confirmed  by  the  inundation  state  classes  in  the  scatter  plots,  which  show  more  distinct  clusters
in  the  case  of  Lange  Lacke.  The  plots  suggest  that  groundwater-based  features,  especially  

SGI,  are  the  most  promising predictors  for  desiccation  forecasting.  They  also reveal  that  no
two-dimensional  predictor  combination  can  lead  to perfect  class  separability  on  its  own  and  that
multiple  features  should  be  included  in  the  models.
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Fig.  4.2: Cont.
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Fig.  4.2: Histograms  and  scatterplots  for  Lange  Lacke  (a)  and  Unterer  Stinkersee  (b)  for  all  nine
predictors  with  coloring in  the  respective  classes.  Correlation  coefficients  (Pearson’s r
and  Spearman’s 𝜌)  are  additionally  displayed  on  blue  background.

4.2.2 Average  prediction  skill

On  average  over  all  37 folds  provided  by  the  LOOCV and  30 model  runs,  the  three  models  have
moderate  skill  with  an  MCC  of  approximately  0.6 (GROUNDWATER:  0.6,  METEOROLOGY:
0.59,  COMBINED:  0.6).  For  the  independent  test  sets  (seven  test  folds),  a 0.24 performance  

increase  with  respect  to the  RANDOM  model  is  obtained  on  average  for  the  three  models.  

Generally,  the  test  metrics  as  averaged  over  all  folds  (described  above)  and  the  dependent  

folds  (Table 4.1)  confirm  the  abilities  of  GROUNDWATER  in  modeling the  inundation  state.
The  independent  test  set  performance  metrics  of  METEOROLOGY exceed  those  of  GROUND-
WATER.  The  COMBINED  model  does  not  show  any  increase  in  performance  with  respect  to
METEOROLOGY or  GROUNDWATER.  Averaged  over  all  independent  test  folds  and  30 model
runs  together,  the  MCC  of  METEOROLOGY is 0.09 (0.07) higher  than  that  of  COMBINED
(GROUNDWATER).

Differences  between  the  confusion  matrices,  as  averaged  over  30 model  runs,  are  minimal  

between  the  three  models  (below  1%  in  regard  to the  entire  sample;  Figure 4.3).  All  three
models  struggle  more  with  the  correct  estimation  of  state  ‘inundated’  compared  to ‘desiccated’
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(relation  of  FPs  and  FNs  to the  total  number  of  state  ‘inundated’  and  ‘desiccated’,  respectively).
GROUNDWATER  exhibits  more  skill  in  the  classification  of  TNs  (a surplus  of  nine  TNs)
compared  to the  METEOROLOGY model.  COMBINED  manages  to achieve  a surplus  of  one
TP  and  nine  TNs  compared  to METEOROLOGY.  As  discussed  in  Section 4.2.1,  large  salt  pan
inundation state  variability  results in extensive  year-wise  heterogeneity  in the  class distribution
and  model  performance.  As  indicated  by  Figure 4.3,  the  performance  between  the  folds  is
heterogeneous.  The  models  perform  better,  and  with  less  variability  in  terms  of  the  MCC,  for  the  

independent  test  folds  (GW  7,  METEO  7,  and  COM  7)  compared  to the  30 dependent  test  folds
(GW  30,  METEO  30,  and  COM  30).  Outliers  excluded,  the  tested  folds  exhibit  a pronounced
dynamic  over  the  years.  Beginning in  2004,  the  estimates  tend  to improve.  Here,  the  MCC  does
not  fall  below  0.5,  neither  for  the  seven  test  folds  nor  for  the  additional  30 test  folds.  In  the
years  2006 and  2007,  the  GROUNDWATER  model  performed  much  better  for  the  30 dependent
test  folds  compared  to the  other  two models.  A very  different  picture  is  observed  pre-2004:  all
three  models struggle  to achieve  scores from above 0.5 to 0.6.  Especially  1992 presents itself  as
challenging for  the  RF  models.

All  GW  7,  METEO  7,  and  COM  7 (Figure 4.3)  perform  better  compared  to GW  30,  METEO
30,  and  COM  30.  With  this  in  mind,  the  difference  in  metrics  between  the  two sets,  as  displayed
in  Table 4.1 can  be  integrated  more  clearly.

Tab.  4.1: Average  performance  of  different  model  setups  inside  LOOCV scheme  separated  for
testing the  seven  independent  test  folds  (1985,  1991,  1997,  2004,  2010,  2017,  and  2022),
and  the  thirty  dependent  test  folds  that  have  already  been  part  of  the  validation  set.
Results  are  averaged  over 30 model runs.  As  the  SD  was,  in  all  cases,  below  0.03,  we
disregarded  this  information  for  each  metric.

Model/Score GROUND-  

WATER  

7

METE-
OROLOGY
7

COMB-  

INED  

7

RAN-  

DOM 

7

GROUND-  

WATER  

30

METE-
OROLOGY
30

COMB-  

INED  

30

𝑀  𝐶  𝐶-Test 0.59 0.66 0.57 0.36 0.61 0.57 0.61
𝑀  𝐶  𝐶-Train 0.68 0.66 0.68 0.56 0.68 0.66 0.68  

F1-Macro  Test 0.79 0.83 0.78 0.68 0.80 0.79 0.81  

F1-Macro  Train 0.84 0.83 0.84 0.78 0.84 0.83 0.84  

Accuracy  Test 0.80 0.83 0.79 0.7 0.81 0.80 0.82  

Accuracy  Train 0.85 0.83 0.85 0.79 0.85 0.84 0.85
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Fig.  4.3: Fold-wise  average  Matthews  correlation  coefficient  (MCC)  over  30 model  run  for  every  

model  (GW—GROUNDWATER,  METEO—METEOROLOGY,  COM—COMBINED)
and  split.  The  averaged  confusion  matrices  over  30 models  run  for  all  37 folds  are  

additionally  displayed  for  all  three  models.  The  folds  from  independent  test  set  are
marked  with  (T).

4.2.3 Detailed  analysis  of  single  LOOCV  model  runs

All  three  models  successfully  predict  the  diverse  interannual  dynamics  of  the  inundation  state
per  salt  pan  (Figure 4.4).  TPs  and  TNs  are  numerous,  especially  in  the  years  with  average
conditions.  Overall,  an  accurate  estimation  in  times  of  pronounced  dry  and  especially  wet  periods
appears  more  challenging.  For  instance,  the  models  lack  adequate  prediction  for  the  dry  periods
in  1986,  1992,  2003,  2007,  2011,  and  2016,  as  well  as  for  the  wet  periods  in  1987 and  around
1996 (1997),  2010,  and  2015.
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Fig.  4.4: Confusion  matrix  outcomes  for  all  years  (part  of  this  study)  from  1984 to 2022 for  the
three  main  models  based  on  the  results  for  the  dependent  and  independent  test  sets.
For  each  salt  pan  (3 rows),  the  top-most  row  represents  the  GROUNDWATER  model,
the  middle  row  represents  the  METEOROLOGY model,  and  the  last  row  represents
the  COMBINED  model.  The  underlying confusion  matrix  is  rolled  out  for  all 34 salt
pans  as  a function  of  time.  Again,  the  folds  from  the  independent  test  set  are  marked
with  (T).

For  18 salt  pans  with  a dominant  state,  the  events  are  correctly  predicted  in  favor  of  the  

majority  class  (a co-occurrence  of  light  blue  and  dark  red  and  of  light  red  and  dark  blue,  

respectively,  in  Figure 4.4).  In  these  cases,  the  estimates  between  the  three  main  models  

(i.e.,  GROUNDWATER,  METEOROLOGY,  and  COMBINED)  do not  differ,  e.g.,  Badesee  

Apetlon.  Differences  between  the  models  exist  for  16 salt  pans  but  are  only  marginal  for  

Standlacke,  Ochsenbrunnlacke,  Wörtenlacken  1,  Sechsmahdlacke,  Fuchslochlacke  1,  Herrnsee,  

Birnbaumlacke,  and  Albersee.  The  eight  cases  with  varying results  between  the  models  are
Zicklacke,  Katschitzlacke,  Fuchslochlacke  3,  Oberer  Stinkersee,  Mittlerer  Stinkersee,  Wörtenlacken
2,  Neubruchlacke,  and  Lange  Lacke.  These  salt  pans  feature  a more  balanced  underlying class
distribution  with  varying class  succession.  Here,  the  models  demonstrate  their  flexibility,  i.e.,  the
ability  to estimate  different  states  for  subsequent  years.  When  there  is  a shift  from  periods
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of  ’inundated’  to ’desiccated’,  or  vice-versa,  the  models  do not  correctly  predict  wet  and  dry  

states  for  many  salt  pans.  For  instance,  correct  estimates  for  wet  conditions  in  1994 and  for  

dry  conditions  in  2016 emerge  one  year  later  after  a dry  period  (around  1993)  or  wet  period
(around  2015)  (Figure 4.4).  The  strength  of  model  GROUNDWATER  lies  in  its  ability  to more
precisely  identify  wet,  and,  in  particular,  dry  episodes  compared  to model  METEOROLOGY (the
identification  can  be  salt  pan-specific).  Examples  here  include  Lange  Lacke  and  Wörtenlacken  2
around  1991 and  Neubruchlacke,  Katschitzlacke,  and  Zicklacke  after  2004.  The  METEOROLOGY
model  struggles  to achieve  this,  often  failing to correctly  estimate  for  a number  of  years  in  a 

row  (e.g.,  Neubruchlacke  around  2006 and  Zicklacke  around  2014).  However,  for  many  salt  

pans,  the  model  performed  better  in  1986 and  1988.  In  a number  of  additional  instances,  

the  METEOROLOGY model  manages  to outperform  the  other  two.  This  translates  into the
correct  estimation  of  single  anomalous  events  before  and  after  extremely  wet  or  dry  conditions.
Examples  include  Ochsenbrunnlacke,  Mittlerer  Stinkersee,  Fuchslochlacke  1,  Fuchslochlacke  3,
and  Katschitzlacke  in  2016 (as  outcome  TP)  or  Lange  Lacke  and  Wörtenlacken  2 in  1994 (as  

outcome  TN).  The  COMBINED  model  performs  similarly  to the  GROUNDWATER  model,
though  it  surpasses  its  performance  in  a few  cases  (e.g.,  Mittlerer  Stinkersee  in  1999 and  2000).
In  these  cases,  the  model  is  able  to integrate  meteorological  and  groundwater-based  information
in  a productive  manner.

The  MCCs  for  the  eight  salt  pans  that  exhibit  a more  balanced  class  distribution  differ  between
the  three  models  and  between  the  salt  pans  (Table 4.2.  On  average,  the  GROUNDWATER
model  performs  best  with  a moderate  MCC  of  0.44 and  the  METEOROLOGY model  performs
the  worst  (0.29).  The  COMBINED  model  attains  an  MCC  of  0.37.  For  Fuchslochlacke  3 and
Mittlerer  Stinkersee,  the  METEOROLOGY model  performs  better  than  the  GROUNDWATER
and COMBINED  models,  whereas the  opposite  is true  for  the  other  six  salt  pans.  Compared to
the  overall  model  performance  of  0.6,  the  models  perform  worse  for  these  eight  salt  pans  with  an
average  MCC  of  0.37.

Tab.  4.2: Salt  pan-wise  MCC  (as  averaged  over  all  folds)  for  the  three  single  model  realiza-  

tions  (GW–GROUNDWATER,  METEO–METEOROLOGY,  COM–COMBINED)
displayed  in  Figure 4.4 for  the  eight  salt  pans  that  exhibit  a balanced  class  distribution.

Average
MCC

Zick-  

lacke  

Katschitz-

Lacke

Fuchsloch-

Lacke  3  

Oberer
Stinkersee  

Mittlerer  

Stinkersee
Wörten-  

Lacken  2
Neubruch-

Lacke

Lange  

Lacke  

Mean

Model  GW 0.46  0.51  0.13  0.5  0.15  0.6  0.57  0.6  0.44
Model  METEO 0.2  0.34  0.37  0.51  0.49  0.13  0.19  0.11  0.29  

Model  COM  0.46  0.35  0.15  0.4  0.28  0.44  0.4  0.44  0.37

4.2.4 Feature  importance

In  the  GROUNDWATER  model,  GW  anomalies  and  the  SGI  have  comparable  importance  (around  

0.35,  respectively)  while  this  is  lower  for  the  GW  level  ratio (Figure 4.5).  In  the  METEOROLOGY
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model,  SPI  6 has  little  importance  while  the  predictors  derived  from  temperature  have  highest
importance.  SPI  24,  although  substantially  correlated  with  GW  anomalies  and  the  SGI  (r =
0.64,  r =  0.53,  respectively;  Section 4.2.1),  which  are  important  in  the  GROUNDWATER  model,
has  a lower  importance  than  the  temperature  predictors.  These  observations  are  in  contrast  with
COMBINED,  where  the  SGI  has  the  highest  importance  by  far.  With  a mean  importance  of
0.47,  it  is  much  larger  than  the  other  predictors,  most  of  which  lie  at  a maximum  of ∼0.05.  Only
groundwater  and  temperature  anomalies  have  an  importance >∼0.05.

Fig.  4.5: Feature  importance  calculated  as  average  across  all  folds  and  30 model  runs  for  the
three  main  models.

4.2.5 Partial  dependency

The  potential  significance  of  groundwater-based  predictors  to estimate  the  inundation  state  of
Lange  Lacke  (Section 4.2.1)  translates  into a pronounced  evolution  of  partial  dependency  against
the  SGI  (Figure 4.6,  steel-gray  dashed)  in  the  COMBINED  model  (also for  Wörtenlacken  2).
SPI  24 has  a comparable  impact  on  Unterer  Stinkersee  (light  blue  dash-dotted),  although  to a lesser
extent.  It  is  striking that  the  other  predictors  do not,  or  only  slightly,  affect  the  prediction  skills
in  both  cases.  Statistically,  when  involving the  entire  population  of  34 salt  pans,  the  variability
in  the  inundation  states  of  nine  salt  pans  can  be  explained  mainly  by  meteorological  predictors,
whereas,  in  22 cases,  groundwater-based  features  perform  best  (Table A.1,  Appendix A).  In  some
cases,  there  is  only  little  variability  of  the  partial  dependency  when  plotted  against  any  of  

the  predictors.  This  is  also indicated  by  Table A.1,  though  it  is  not  further  regarded  here  

due  to compactness.  We  find  that,  except  for  the 𝐸pot and  SPI  6,  every  predictor  exhibits  a
strong interaction  with  the  dynamics  of  at  least  one  salt  pan  (Table A.1;  Figure 4.6 in  dotted
red).  Groundwater-based  features  exhibit  more  pronounced  curves  that  span  a wider  partial
dependency  range  compared  to the  other  predictors.

In  general,  the  partial  dependencies  agree  with  the  underlying physical  process.  For  instance,
higher  temperature  anomalies  (Kirchsee)  or  the  number  of  days  above  25 °C  (Katschitzlacke)  

contribute  to a prediction  probability  in  favor  of  the  ‘desiccated’  inundation  state.  This  rule
is  not  true  for  all  salt  pans,  although  this  dependence  commonly  applies.  The  PDP  reveals  all
important  probability  thresholds  for  inundation  state  prediction.  For  example,  at 𝑆  𝐺𝐼 =  0,  the
class  attribution  probability  switches  from  the  ‘desiccated’  state  to the  ‘inundated’  state  for
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Lange  Lacke.  At  around  60 days  above  25 °C  in  the  previous 12 months,  the  estimates  change
from  ‘inundated’  to ‘desiccated’  for  Katschitzlacke.  Similar  inferences  for  nearly  all  salt  pans  can
be  made.  These  are  summarized  in  Appendix A.

Fig.  4.6: The  Partial  Dependency  Plots  (PDP)  are  displayed  for  each  predictor  inside  the
COMBINED  model  for  three  selected  salt  pans:  Lange  Lacke,  Unterer  Stinkersee,  and,
additionally,  a salt  pan  with  a pronounced  partial  dependency  dynamic  against  the
respective  predictor.  For  these  salt  pans,  the  individual  conditional  expectation  (ICE)
plots  are  also included  in  red  with  reduced  line  width.
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5.  Discussion

5.1 Assumptions

The  modeling framework  has  been  built  on  several  assumptions.  First,  the  targets  (i.e.,  inundation
dynamics  for  different  salt  pans)  are  correlated.  Second,  the  accumulation  periods  (particularly,
the  dominant  12-month  period)  hold  explanatory  power  in  regard  to the  inundation  state  in
summer.  Third,  the  salt  pans are  in an environmental  condition that  is good enough to allow
them  to react  to the  natural  drivers  applied  in  this  study.  In  other  words,  the  salt  pans  need  to be  

at  least  sufficiently  well  connected  to the  salt  pan  cycle  to respond  to the  groundwater-based  and  

meteorological  predictors.  Fourth,  we  assume  that  the  climatology  always  leads  to the  prediction
of  a drying from  spring toward  summer.  Hence,  the  models  cannot  predict  the  ’inundated’  

state  based  on  dry  conditions  in  spring.  This  is  unless  the  salt  pan-wise  class  distribution  is
skewed  towards  the  ’inundated’  state,  causing the  models  to always  predict  the  ’inundated’  state
(outcome  TN).  In  other  words,  if  the  situation  during the  lead  time  deviates  much  from  the  

climatology,  the  models  will  not  capture  many  of  the  effects  on  the  salt  pan  inundation  state.
This  is  a disadvantage  in  years  when  drivers  strongly  change  and  may  lead  to misclassifications.

In  total,  desiccation  in  spring (in  April  to June;  here  used  as  a proxy  for  dry  conditions)  in
combination  with  the  ’inundated’  state  in  JASO  occurred  for  41 events  (Figure 4.1a)  and  resulted
in  20 TNs  and  21 FPs  for  the  GROUNDWATER  model.  The  year  2008 accumulated  a notable
number  of  fourteen  FP  outcomes.  This  circumstance  also reveals  that  not  all  annual  desiccation  

events  were  captured.  Taking into account  the  desiccation  events  from  the  beginning of  April  to
the  end  of  October  would  result  in  a class  distribution  of  63%/ 37%.

5.2 Predictors

The  results  of  the  EDA (only  for  Lange  Lacke;  Figure 4.2a),  feature  importance  (Figure 4.5),
and  calculation  of  partial  dependencies  (Figure 4.6)  support  the  assumption  of  a close  connection
between  salt  pans  and  groundwater  (Krachler  et  al. 2012;  Zimmermann-Timm  et  al. 2021).  We
suspect  that  the  rather  long time  steps  of  the  model  and  the  respective  long-term  predictor  

setup  support  the  forcing of  the  slow-reacting features  evolving around  groundwater  as  a key
predictor.  It  is  to be  determined  whether  the  high  importance  of  groundwater  is  actually  due
to the  contribution of  groundwater  to salt  pan water  status directly  or  more  generally  to water
abundance,  i.e.,  drought  conditions,  in  the  region.  The  outstandingly  high  feature  importance
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of  SGI  is  presumptively  connected  to its  continuous  nature,  rather  than  relying on  artificially
thresholded  integration  periods  (Bloomfield  et  al. 2013).

Still,  the  METEOROLOGY model  achieved  similar  scores  compared  to the  GROUNDWATER
model.  Both  were  able  to capture  many  of  the  interannual  differences  in  the  inundation  state.
We  managed  to find  meteorological  predictors  that  are  of  importance  for  spring salt  pan  water
abundance,  which  is  essential  for  the  salt  pan  inundation  state  in  JASO.  The  importance  of
meteorological  predictors  could  stem  from  their  temporal  autocorrelation  from  one  year  to the
next  (Sun  et  al. 2018;  Cancelliere  et  al. 2010).  For  the  meteorological  predictors,  a single  (or  more)
not  included  month(s)  from  the  previous  year  could  make  a change  in  spring water  abundance.

We  find  that,  other  than  the  continuous  SGI,  time  periods  of  12 months  or  more  work  best
for  predicting  salt  pan  inundation  state.  Such  predictors  exhibited  large  feature  importance  

within  their  model  setups.  It  is  up  to  further  research  to  determine  whether  the  12-monthly
anomaly  mean  is  the  most  appropriate  integration  period.  This  argument  is  particularly  relevant
as  shifting climate  patterns  influence  groundwater  recharge.  The  SPI  6 and  the  GW  level  ratio
relate  to a similar  time  period  (6 months).  This  period  does  not  seem  to be  particularly  relevant,
as  both  predictors  were  comparatively  insignificant  in  all  three  models  (also when  disregarding
the  SGI).  Temperature-based  predictors  were  most  important  in  the  METEOROLOGY model
despite  exhibiting low  correlations  with  the  SGI.

For  some  combinations  of  salt  pans  and  predictors,  the  PDP  (Figure 4.6)  exhibited  sigmoid
curves  with  a wide  spread.  The  PDPs  for  Lange  Lacke  and  Unterer  Stinkersee  showed  a 

clear  progression  against  the  SGI  and  SPI  24,  respectively.  The  SPI  24 is  closely  related  to
groundwater  drought  as  suggested  in  the  literature  (McKee  et  al. 1993)  and  by  the  correlation
analysis  (r𝑆  𝑃  𝐼24,𝑆  𝐺𝐼 =  0.53 and 𝜌𝑆  𝑃  𝐼24,𝑆  𝐺𝐼 =  0.55;  Section 4.2.1).  Therefore,  our  results  can
confirm  the  observation  made  by  Krachler  et  al.  (2012)  that  both  salt  pans  are  closely  connected
to groundwater.  This  is  even  more  true  for  Wörtenlacken  2,  which  is  reported  to have  an
atypically  strong connection  to groundwater,  even  greater  than  that  of  Lange  Lacke  (Krachler
et  al. 2012).  Similar  inferences  can  be  made  for  all  other  salt  pans  (Appendix A).  Additionally,
the  probability  thresholds  for  the  SGI  were  similar  in  the  case  of  Lange  Lacke  and  Wörtenlacken
2 (Figure 4.6).  However,  such  an  analysis  is  prone  to misinterpretations  as  partial  dependency
behavior  can  vary  depending on  the  model  setup  and  the  underlying training data.  For  example,
the  hydrology  of  Katschitzlacke  is  reportedly  similar  to Lange  Lacke  (Krachler  et  al. 2012),
whereas  our  results  indicate  a closer  connection  to the  predictor  number  of  days  above  25 °C.

A drawback  associated  with  the  input  data is  their  low  spatial  resolution.  The  argument  is  par-  

ticularly  valid  for  P  anomalies,  since  groundwater  level, 𝐸pot anomalies,  and  T  anomalies  vary  less  

in  space  and  time  (Tallaksen  et  al. 2009;  Miralles  et  al. 2011).  Here,  future  models  could  improve
the  (spatial)  representation  of  precipitation.  An  understanding of  the  inundation  state  in  JASO
would  require  seasonal  forecasts  of  hydrological  and  meteorological  variables.  Meteorological
predictors  that  focus  on  depicting changing precipitation,  evaporation,  and  temperature  patterns
in  the  region  due  to climate  change  should  additionally  prove  beneficial  (M.  K.  Vanderhoof  et  al.
2018).
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Features  evolving due  to the  human  impact  on  the  ecosystem,  such  as  the  (e.g.,  monthly)
amount  of  groundwater  extraction  from  wells  and  discharge  into drainage  canals,  were  not  used,
as,  to our  knowledge,  no such  information  is  available  in  the  region.  However,  the  use  of  this
information  could  potentially  enhance  the  knowledge  to be  gained  from  the  models,  especially  if
such  information  was  available  at  the  subregional  scale  or  for  each  salt  pan.

5.3 Target

Our  results  confirm  that  the  EO-based  inundation  state  is  a useful  target  variable  for  ML-based
modeling.  Data from  the  Landsat  mission  has  been  shown  to form  a useful  basis  for  quantifying
interannual  dynamics  in  surface  water  dynamics  (M.  Vanderhoof  et  al. 2016;  G.  Liu  et  al. 2011;
Pekel  et  al. 2016).  Although  in  some  years,  the  impact  of  cloud  cover  was  high,  the  summer/fall
inundation  status  could  be  retrieved  for  all  salt  pans  over  the  entire  study  period  except  for  the
years  2002 and  2012.  The  variation  in  this  target  variable  roughly  showed  similar  dynamics  to
some  of  the  variables  considered  in  other  studies  on  a larger  area,  e.g.,  SPEI3 (Crocetti  et  al.
2020)  or  long-term  precipitation  (Hackl  et  al. 2023).  The  year  2015 represents  an  exception,  as  it
is  referred  to as  drought  year  in  Crocetti  et  al.  (2020)  but  appears  rather  wet  in  our  analysis.  

This  might  be  because  of  the  rather  wet  conditions  in  fall-winter  2014,  which  is  also visible
in  Crocetti  et  al.  (2020).

Uncertainties  in  the  salt  pan  time  series  are  expected  to be  larger  for  smaller  salt  pans,  which
have  a larger  relative  proportion  of  mixed  pixels  with  bordering land  (Section 4.1).  However,  this
argument  turns  out  to be  secondary  since  the  accuracy  of  the  model  target  is  dependent  on  the
exact  recognition  of  desiccation  and  not  on  the  precise  sensing of  the  true  WE.  Higher  resolution  

remote  sensing products,  such  as  Sentinel-2 imagery,  could  reduce  the  error  connected  to spotting 

desiccation  inside  the  ’last’  pixels.  Such  data would  need  to be  used  in  combination  with,  e.g.,  the
Landsat  archive,  to build  the  models  on  extensive  time  series.  In  addition  to using satellite  data
with  higher  resolutions,  we  propose  the  use  of  alternative  target  variables  to avoid  the  skewed
salt  pan-wise  (and  year-wise)  class  imbalances.  The  time  of  the  first  desiccation  (Figure 4.1)
would  constitute  an  interesting target  variable  (Krachler  et  al. 2012;  Zimmermann-Timm  et  al.
2021).

5.4 Model  error

Although  in  this  study  we  were  able  to predict  the  salt  pan  inundation  state  in  Seewinkel  with
only  moderate  accuracy,  the  average  performance  of  the  three  independent  test  sets  indicates  

a gain  of  0.24 compared  to the  RANDOM  model.  We  regard  the  average  score  between  the  

models  of  0.6 as  acceptable  only  insofar  as  the  assumed  reasons  for  the  observed  model  error
are  numerous  and,  depending on  the  salt  pan  and  year,  heavy-weighing.  Therefore,  the  model
error  can  be,  approximately,  explained.  Increasing the  model  performance  based  on  the  issues
described,  in  detail,  below  is  largely  limited  by  data uncertainty  and  data availability.  The  failure
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of  the  model  to make  correct  predictions  if  the  meteorological  conditions  deviate  much  from  

the  climatology,  the  artificial  inundation,  and  the  uncertain  hydrological  condition,  meaning 

surface  water  possibly  infiltrating into deeper  layers,  explain  the  results  and  provide  starting
points  for  future  improvements  to the  model.  In  general,  we  consider  the  model  setup  performant
and  stable.

Many  years  exhibit  highly  skewed  class  distributions,  especially  since  2016.  This  influences  the
metrics  since  different  years  are  connected  to varying degrees  of  difficulty  in  correct  estimation.
The  total  skill  of  the  three  models  is  very  similar.  The  indirect  setup  of  the  model,  which  

means  the  prediction  of  the  inundation  state  in  summer  via the  water  balance  at  the  end  

of  March,  can  be  considered  a major  contributor  to this  outcome.  Salt  pans  with  a more  

balanced  class  distribution  are  more  challenging to correctly  estimate  for  the  three  models
(Table 4.2).  On  average,  the  GROUNDWATER  model  performed  best  in  predicting these  eight
salt  pans  (Zicklacke,  Katschitzlacke,  Fuchslochlacke  3,  Oberer  Stinkersee,  Mittlerer  Stinkersee,
Wörtenlacken  2,  Neubruchlacke,  and  Lange  Lacke),  although  interpreting these  results  proved
difficult  due  to the  widely  varying hydrological  conditions  of  the  salt  pans  (Krachler  et  al. 2012).
Section 4.2.2 stresses  the  importance  of  the  underlying physical  conditions  on  the  fold-wise
performance.  As  already  discussed  in  Section 5.1,  moderate  success  mainly  lies  in  the  struggle
to estimate  extreme  dry,  and,  especially,  wet  conditions  in  summer  (e.g.,  drought  around  1992,
2003,  and  2016,  and  wet  periods  around  especially  1996 (1997)  and  2010).

As  stated  in  Section 4.2.3,  estimates  were  worse  for  years  in  which  the  inundation  state  shifted
to the  alternative  state.  The  misclassifications  are  probably  due  to some  salt  pans  reacting
faster  to hydrometeorological  changes  than  others.  Hence,  for  some  salt  pans,  the  environmental
conditions  of  the  previous  months  and  year(s)  have  a stronger  influence  on  the  prediction  of  the
current  year  than  for  others.  Furthermore,  the  misclassifications  may  be  partly  due  to the  fact
that  the  input  features  are  coarse  resolution  (i.e.,  do not  differ  between  Lacken)  and  partly  to
the  model  trying to get  a best  fit  over  all  the  years.

Although  we  did  not  apply  feature  selection  (Jović  et  al. 2015)  to reduce  the  number  of  features
used  in  this  study,  we  were  able  to inhibit  overfitting in  model  testing.  This  was  completed
by  trimming the  decision  trees  used  in  the  four  RF  models  in  the  scope  of  the  hyperparameter
optimization.  This  built  on  our  model  design,  which  enables  independent  model  testing and,
practically,  on  closely  monitoring training–test  differences  throughout  this  study.

In  addition  to changing climate  patterns,  a process  referred  to as  “drying from  beneath” (Krach-  

ler  et  al. 2000)  challenges  the  water-holding capacity  of  the  salt  pans.  Depending on  the  ecological
state  of  the  salt  pans,  this  mechanism  can  directly  influence  WE  and,  therefore,  the  inundation
state.  We  suppose  that  the  worse  the  ecological  health  of  the  salt  pan,  the  higher  the  negative
impact  on  model  performance.  However,  it  is  not  possible  to characterize  this  ecological  state
based  on  our  models  and  using the  available  input  data.  Due  to the  skewed  class  distribution,
the  assumption  that  our  predictor  selection  works  better  for  more  natural/ecologically  healthy
salt  pans  could  not  be  answered  inside  this  model  setup.  The  disregarded  large  human  influence
on  the  water  cycle  (Zimmermann-Timm  et  al. 2021)  constitutes  an  additional  source  of  error.
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All  models  are  subject  to a division  between  the  periods  before  and  after  2004 (Figure 4.3).
This  pattern  cannot  be  found  in  the  target  variable  (Figure 4.1).  Additional  research  is  needed  to
clearly  connect  climate  change  and  the  phenomenon  of  “dying salt  pans” to these  observations.
As  artificially  inundated  salt  pans  were  introduced  into the  modeling,  year-wise  estimates  could
additionally  have  been  affected  due  to misguided  thresholding.

5.5 Model  transferability

The  model  based  on  meteorological  predictors  can  be  transferred  to any  other  salt  pan  ecosystem
worldwide  in  combination  with  the  use  of  high-resolution  remote  sensing imagery,  such  as  that
provided  by  Landsat.  In  general,  globally  available  predictor  data in  sufficient  temporal  and
spatial  resolution  with  respect  to the  studied  ecosystem  are  needed,  at  best  in  combination  with
uncertainty  quantification.  This  can  be  ensured  by  choosing an  adequate  spatial  resolution  of  the  

predictors  with  regard  to the  catchment  size.  Here,  ERA5-Land  offers  a good  starting point  with
its  9 km × 9 km  spatial  resolution.  The  EO  data should  have  a suitable  temporal  and  spatial
resolution  to capture  the  dynamics  of  the  studied  ecosystem.  For  example,  it  is  not  possible  to
retrieve  the  water  extent  information  of  ecosystems  of  a smaller  size  than  the  Landsat  resolution  

of  30 m × 30 m.  Another  important  constraint  is  that  this  approach  will  likely  not  be  suitable  in  

the  case  of  water  bodies  whose  water  extent  shows  a low  sensitivity  with  respect  to water  volume,
i.e.,  with  steep  bathymetry  in  which  a drop  in  the  water  level  will  not  lead  to a proportional
decrease  in  the  water  area.
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6.  Conclusion and outlook

As  salt  pans  in  Seewinkel  are  increasingly  vulnerable  ecosystems  in  often  poor  hydrological  

conditions,  we  aimed  at  improving ecosystem  understanding and,  finally,  decision-making by
predicting the  salt  pan  inundation  state  in  summer  and  fall  with  ML models.

Our  models  stress  the  importance  of  groundwater  for  the  estimation  of  the  inundation  state  in  

summer/fall.  This  solidifies  the  general  notion  represented  in  the  literature  (Zimmermann-Timm  

et  al. 2021;  Krachler  et  al. 2012)  and  calls  for  sustainable  groundwater  management  in  the  region
to ensure  the  conservation  of  this  ecosystem.  We  stress  that  the  use  of  the  SGI  (Bloomfield
et  al. 2013)  as  a predictor  is  promising.  The  model  based  on  meteorological  predictors  can  be
transferred  to any  other  salt  pan  ecosystem  worldwide  in  combination  with  the  use  of  high-
resolution  remote  sensing imagery,  such  as  the  Landsat  archive.  METEOROLOGY achieved  an
MCC  of  0.66 compared  to GROUNDWATER  with  0.59 and  COMBINED  with  0.57,  with  respect  

to the  independent  test  set.  We  identified  the  most  likely  sources  of  error,  namely  the  struggle  to 

estimate  the  inundation  state  correctly  in  the  case  of  extreme  environmental  conditions  developing 

after  March,  human  intervention  into the  water  cycle  by  artificially  inundating the  salt  pans,  and
surface  water  loss  due  to the  possible  infiltration  into deeper  layers  due  to a failure  of  the  water
retention  capacity  (Krachler  et  al. 2000).  Furthermore,  we  highlight  the  potential  of  the  concept
of  partial  dependency  (Goldstein  et  al. 2015)  to understand  threshold-dependent  ecosystems,
such  as  salt  pans  in  the  Seewinkel  region.

To our  knowledge,  the  results  represent  the  first  data-driven  prediction  and  understanding 

of  salt  pan  dynamics  in  the  Seewinkel  region.  We  identified  the  main  drivers  and  potential  

improvements  for  future  model  development.  In  this  context,  the  use  of  more  advanced  ML
algorithms  could  prove  beneficial.

Furthermore,  the  possibility  of  transferring the  METEOROLOGY model  to other  salt  pan
ecosystems  in  combination  with  EO  data makes  this  study  particularly  valuable.  We  propose  the  

application  of  our  models  to salt  pans  of  larger  sizes  and  ones  that  are  less  influenced  by  humans
and  in  a better  ecological  condition.  This  could  improve  both  performance  and  interpretability.

The  possibility  of  predicting the  salt  pan  inundation  state  in  summer/fall  is  of  potential
importance  to decision-makers  in  conservation  and  tourism  (Dvorak  et  al. 2020;  Krachler  et  al.
2012).  A better  understanding of  salt  pans  can  contribute  to preserving this  unique  geographic
space  in  the  Pannonian  Basin.
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A.  Appendix

Tab.  A.1: Most  important  predictors  for  each  salt  pan  according to PDP  displayed  together
with  the  largest  spread  (in  parentheses).  Furthermore,  the  threshold  for  predicting a
certain  class  for  the  most  important  predictor  is  indicated.

Predictor  with  Largest  PDP  Spread  Threshold  for  Predictor

Badesee  Apetlon  GW Anomal  (0.18) −0.09  

Lange  Lacke  SGI  (0.51) −0.09  

Neubruchlacke  GW Anomal  (0.43)  0.1  

Kiesgrube  GW Anomal  (0.12) −0.12  

Standlacke  GW Anomal  (0.25)  0.14  

Ochsenbrunnlacke  GW Anomal  (0.25)  0.1  

Gsigsee  GW Anomal  (0.0) −0.45  

Wörtenlacken  2  SGI  (0.61) −0.03  

Kirchsee  T  Anomal  (0.21) −0.62  

Wörtenlacken  1  GW Anomal  (0.49) −0.09  

Mittlerer  Stinkersee  SPI  24  (0.28)  0.09  

Huldenlacke  T  Anomal  (0.13) −0.2  

Kleine  Neubruchlacke  SPI  24  (0.21)  0.29  

Heidlacke  GW Anomal  (0.0) −0.45  

Unterer  Stinkersee  SPI  24  (0.17) −0.41  

Sechsmahdlacke  GW Anomal  (0.2)  0.14  

Martenhofenlacke  SGI  (0.22)  0.09  

Oberer  Stinkersee  SPI  24  (0.55)  0.29  

Kuhbrunnlacke  GW Anomal  (0.08)  0.1  

Hottergrube  GW Anomal  (0.0) −0.45  

Fuchslochlacke  3  SGI  (0.32)  0.09  

St.  Martins  Therme  2  SPI  24  (0.23) −0.47  

Fuchslochlacke  2  SGI  (0.12)  0.09  

St.  Martins  Therme  1  GW level  ratio  (0.15)  1.0  

Fuchslochlacke  1  GW Anomal  (0.31)  0.16  

Hochstätten  P  Anomal  (0.16)  42.27  

Herrnsee  SGI  (0.33) −0.03  

Birnbaumlacke  SPI  24  (0.17)  0.73  

Katschitzlacke  #  Days  ab.  25 °C  (0.33)  64.0  

Albersee  GW Anomal  (0.21)  0.14  

unbekannt  GW Anomal  (0.08)  0.06  

Zicksee  GW level  ratio  (0.09  )  1.0  

Darscholacke  GW Anomal  (0.12) −0.13  

Zicklacke  SGI  (0.59) −0.03
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