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Abstract—The training of computer vision models for human
pose estimation requires large amounts of data. Since labelling
image data with pose keypoints is very time consuming and
costly, we aim to alleviate this requirement by using synthetic
data during pre-training and thus relax the need for large
amounts of real data samples during fine-tuning. To this end,
we investigate the impact of synthetic data on the performance
of a 2D keypoint detection model in the context of driver body
pose estimation. We present our approach for synthetic data
generation to automatically provide large amounts of in-cabin
views as training data. The utilization of the generated synthetic
data is evaluated in different learning schemes. We achieve a
notable performance gain of +30.5% by pre-training with our
in-cabin synthetic data when only 1% of real training data
from the DriPE dataset is available. The proposed approach also
outperforms pre-training with PeopleSansPeople by +8.3% when
the reduced DriPE dataset is used for fine-tuning.

Index Terms—transfer learning, driver pose estimation, syn-
thetic data

I. INTRODUCTION

Human pose estimation has seen great progress in the last
decade, partly owed to the large labeled datasets that have
been published [1], [2]. These datasets require high effort to
create, mainly because labeling the data is very time and cost
intensive [3]. Moreover, the inclusion of real-life data is often
limited for security, ethical reasons, or privacy regulations [4],
[5]. A remedy is synthetic-generated data on which machine
learning algorithms can be trained and validated. The impact of
transfer learning via synthetic data on human pose estimation
has been studied in work such as [6]–[11], essentially using
domain-generalized synthetic data, which was generated with
the idea of enabling a broad range of applications for transfer
learning in human centered tasks.

In this paper, we address the impact of the domain in
which the synthetic data is generated on transfer learning. We
compare the effect of domain-generalized data versus domain-
specific data on the performance of human pose estimation
models. In domain-specific environments, there is often only
a limited amount of real-world data available to train and
validate models, which suggests improving models using
transfer learning with synthetic data as a viable alternative.
We investigate the impact of domain-specific synthetic data
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for human pose estimation in the special context of driver
monitoring.

Despite the great progress in the field of human pose
estimation in general and in applications such as monitoring
pedestrians in traffic scenes, the related task of driver pose
estimation in car interiors has been less addressed in the
literature so far. A major reason for this limited coverage is
the lack of suitable datasets for training and validating these
models. This shortage of data and studies motivates our work
on human pose estimation in vehicle interiors with a focus on
the impact of synthetic-generated data for real-world driver
pose estimation. More precisely, we investigate how driver
pose estimation with various-sized real-world datasets can be
improved by pre-training with synthetic datasets generated in
different domains. We train and validate the popular HRNet
approach for pose estimation [12] on the synthetic dataset
PeopleSansPeople [7] and fine-tune on the real-world dataset
DriPE [13]. Furthermore we introduce a methodology for
synthetic data generation for keypoint detection in a simulated
vehicle interior and the so created dataset SimulatedCabin. The
main contributions of our work are:

• We present our approach for synthetic data generation
called SimulatedCabin, which is used to render human
drivers from multiple views in a virtual car in large
quantity and great variety for the (pre-)training of human
pose estimation models.

• We train and evaluate HRNet for human pose estimation
by applying different learning schemes to utilize synthetic
data efficiently and to reduce the synthetic-to-real domain
gap. By utilizing our new synthetic data for pre-training,
we achieve a significant gain in accuracy of +30.5%
on DriPE when only 1% of the (real) training data is
available.

• We conduct a performance comparison between several
models trained on the general-purpose synthetic dataset
PeopleSansPeople and our specialized synthetic dataset
SimulatedCabin. We find that pre-training on Simulated-
Cabin outperforms the models pre-trained on PeopleSans-
People by +8.3% when real-world data for fine-tuning is
limited.

The remainder of the paper is organized as follows. Firstly,
we discuss related work in transfer learning and knowledge
transfer from other domains including methods for driver pose

© 2023 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



estimation and available datasets in II. We then elaborate our
approach for synthetic data generation based on a simulation
environment to generate data close to our target domain in
III. In IV, we continue to explain our method for training a
human pose estimation model with the aid of synthetic data
and afterwards show our experiments and results in V. To
reproduce the evaluations in this paper, we make our human
pose estimation models publicly available1.

II. RELATED WORK

After motivating the need for transfer learning, we start by
examining related literature using synthetic and/or real data.
We then review relevant work on driver pose estimation and
discuss available datasets in this field.

A. Transfer Learning

Transfer learning in computer vision or machine learning
aims to improve the performance by transferring knowledge
between different but related domains [14]. With this approach,
the dependence on large datasets for the target domain can be
reduced by adding data of a related domain. To further combat
the problem of data scarcity, a recently emerging approach is to
transfer knowledge from synthetic-generated data to real data
domains. Transfer learning with synthetic data was applied
previously for person detection and tracking [6], [15] and
human pose estimation [7], [8].

In [8], the authors generate a dataset with purely synthetic
humans and a real dataset augmented with synthetic humans
in a general context. While both data generation approaches
performed equally well, synthetic data was shown to improve
detection results. The goal in [15] is to utilize synthetic data
for human pose estimation to reduce the impact of occlusion
by larger variety in data. The authors of [7] also present a
data generation approach for synthetic humans, but different
to our approach they put a focus on variety rather than realistic
simulation. In contrast to [7], [8], [15], we concentrate in our
work on applying transfer learning with synthetic data to a
specific application context.

In works like [9], transfer learning is used in human pose
estimation for segmentation tasks, and the authors of [10] used
synthetic humans for action recognition of daily activities. In
[7], the authors investigate the impact of transfer learning
with synthetic data for human pose estimation when only a
limited amount of real data is available for training. They pre-
train on their developed synthetic data PeopleSansPeople and
fine-tune on the real data set COCO [16]. The focus of the
work is on general applications of human pose estimation,
independent of specific tasks or environments. We include their
data generation approach for comparison and evaluation in our
work.

Some recent works have published use cases of transfer
learning for driver pose estimation in car interiors. The authors
of [17] attempt to transfer knowledge from a human pose
estimator trained on real data to synthetic data to investigate

1https://mega.nz/folder/ob0HCJrB\#ye7Pg3btLqiL3icc8gdpyg

the influence of position and type of cameras to capture image
data for driver pose estimation in (virtual) car interiors. While
in that work a knowledge transfer from real to synthetic data
is intended, we analyze the transfer from synthetic to real data.

In our work, we investigate how driver pose estimation with
various-sized real-world datasets can be improved by transfer
learning with synthetic-generated datasets. We are not aware of
any study that examines the influence of the synthetic domain
for transfer learning in the context of driver pose estimation
in the car interior. We aim to fill this gap by contrasting the
influence of a domain-specific dataset over a general-purpose
human pose estimation dataset.

B. Driver Pose Estimation

The task of driver pose estimation or human pose estimation
for car interiors has started to raise interest in recent years. The
pose of the driver is relevant in various contexts, like head pose
estimation or gaze recognition [18]–[20], with applications
such as calibration [21] or drowsiness detection [22], [23],
and action recognition of the driver [24], [25].

Our work specifically looks at driver pose estimation in car
interiors. This can be performed based on 2D images [13],
[25], but point clouds or depth images can also be utilized [26],
[27]. The authors of [28] and [26] present fast and compact
algorithms for driver pose estimation that are especially suited
for embedded systems, addressing constraints imposed by the
car such as the limited computational and storage capabilities.
In [29], human pose estimation is performed on synthetic
persons (adults, children and babies) in the backseat of a
virtual car interior; contrarily, our focus is on pose estimation
of the driver. The authors of [13] investigate driver pose
estimation in a real car interior, without the use of synthetic
data. In our work we also deal with 2D keypoint detection
of the driver. As opposed to [13], however, we use synthetic
images of the driver taken from 3 different perspectives to
train the models.

C. Datasets for Driver Pose Estimation

While a wide range of general-purpose data sets exists
for human pose estimation (e.g., [16]), data sets for domain-
specific tasks are often limited. This is especially true for
driver pose estimation. One reason for the scarcity of ground
truth data in this domain is the effort to record human
poses in car interiors that need to be specially set up for
data acquisition. In addition to the labor intensive manual
annotation of human keypoints, regulations on data privacy
protection also need to be taken into account.

Since research on driver pose estimation is currently gaining
attention, several relevant datasets have been published only
recently. Some datasets like [30] were not recorded in a real
car, but in a re-created environment. The dataset presented in
[29] is a synthetic dataset which shows people in the backseat
of cars. A notable feature of this dataset is the inclusion of
children and infants, along with their human pose keypoints.
DriPE [13] is a dataset for estimating human posture in car
interiors under real driving conditions. Images were acquired



using an RGB camera positioned above the passenger door,
oriented towards the driver. The dataset encompasses 10.000
images featuring 19 drivers under diverse conditions, with
driver poses annotated utilizing the 17 COCO 2D keypoints.

Similar to [29], we use a simulated car interior to generate
our SimulatedCabin dataset. However, we concentrate on the
pose of the driver, which is not included in [29] due to its
focus on the backseat. In contrast to the dataset DriPE [13],
we simulate data from different camera perspectives and can
also change settings for the environment like backgrounds,
texture of cloths, and lighting conditions. With our approach
for synthetic data generation for car interiors and drivers, we
fill the gap of synthetic datasets for driver pose estimation.

III. SYNTHETIC DATA GENERATION

The SimulatedCabin generator is created based on a Unity
version 2020.3.17f1 simulation environment. It features three
different camera viewpoints with 50.000 RGB images with
ground truth information in JSON format for each camera and
puts a special focus on in-cabin monitoring. In this section, we
provide information on the data generation approach including
3D assets, camera characteristics, scene background, lighting
and ground truth. Statistical distributions of the randomized
parameters are outlined in Table I.

3D Assets We use 16 different textured 3D human char-
acters from RenderPeople [31] and 3 different textured 3D
vehicles from Hum3D [32] (see Figure 1). All characters
are varied in age, gender and ethnicity. To increase the
variation in texture, a similar approach to [33] is applied to
the characters. In particular, we keep the original normal maps,
which preserves the structures of the original textures such as
wrinkles in jeans, while the color textures are randomly varied
to increase the diversity of the base characters appearance.
Figure 2 shows a selection of these texture variations used,
as well as an example result when applied to the characters.
To simulate typical movements in the vehicle interior, such as
grabbing the steering wheel, procedural animations based on
an inverse kinematic workflow are applied. This involves first
defining the final positions of the external limbs such as the
hands and, based on this, we compute the angles and positions
of the remaining body parts such as the shoulders and elbows.
Figure 3 shows examples of animations using this procedural
animation workflow.

Camera Characteristics We use three different camera
positions, namely the A-pillar at the driver’s side, the A-pillar
at the co-driver’s side, and the rear-mirror. The same scene is
rendered from all three camera positions with a resolution of
960x540 pixels, in RGB modality and without any distortion.
We further vary the camera position and orientation and add
bloom, Gaussian blur, and chromatic aberration to the images
during every render pass as a post-processing step.

Scene Background and Lighting We choose a random
background from 10 different samples selected from Poly-
Haven [34] and rotate them randomly along the horizon’s axis.
Those samples feature different lighting situations, including
indoor and outdoor environments. For illumination, we use

a directional light and alter the rotation as well as the lux
intensity.

Ground Truth For every image we provide a 2D bounding
box surrounding the person and the 2D key point annotations
in both COCO and MPII dataset format. Moreover, we provide
3D information for every key point in the camera coordinate
system.

Fig. 1: Illustration of 4 out of the 16 3D human characters
(first row) and the 3 different 3D vehicles (second row).

Fig. 2: Illustration of texture synthesis. Left: Various texture
samples. Right: Result of texture synthesis applied on three of
the characters.

Fig. 3: Illustrations of possible applications of the procedural
animation workflow based on inverse kinematics. First row:
Grabbing different objects in the vehicle interior such as the
steering wheel. Second row: Variation of poses in the vehicle
interior.

IV. DRIVER POSE ESTIMATION

In this section we describe the employed methods to train
a human pose estimation model. Our strategy is motivated by
the limited availability of data for human pose estimation in



Category Parameters Domain

Human textures Probability to keep default texture 10%
Texture [1, 45] ∈ N (uniform)

Camera position Translation (cm) [0, 1] ∈ R (uniform)
Rotation (degree) [0, 5] ∈ R (uniform)

Bloom Probability of application 10%

Blur Probability of application 10%

Chromatic aberration Probability of application 30%

Background Background [1, 10] ∈ N (uniform)

Light
Pitch (degree) [100, 190] ∈ R (uniform)
Yaw (degree) [30, 50] ∈ R (uniform)
Lux [2000, 12000] ∈ R (uniform)

TABLE I: Domain randomization parameters of SimulatedCabin dataset. To generate a wide variety of data samples, we
randomize textures, camera views, lighting and post processing effects.

Fig. 4: Sample images from the datasets used to visualize the domain differences between the available synthetic dataset
PeopleSansPeople [7] (first row) and the newly generated synthetic dataset SimulatedCabin (last row). Sample images from
the real car interior dataset DriPE [13] (middle row) are shown for comparison.

the field of driver monitoring. In particular, we aim to improve
human keypoint detection for the DriPE dataset, where training
data is not abundant. As a solution to this problem, we resort
to synthetically generated data. However, successful utilization
of synthetic data for model training is not trivial, because
the domain gap typically prevents generalization from the
synthetic to the real domain. By generating data close to our
domain of application, we aim to reduce this gap preemptively
and hence improve performance on the target data distribution.
In addition to the SimulatedCabin data, whose generation
was described in III, we make use of the PeopleSansPeople

[7] dataset for comparison. PeopleSansPeople also provides
synthetic data for human pose estimation, but rather focuses
on domain randomization to generate data with large variety.
In total, it comprises 28 scanned 3D human models and over
1600 different background textures. The authors of People-
SansPeople provide the simulation environment, which we use
to generate a dataset comparable in size to SimulatedCabin for
our experiments in Section V.

We design our experiments in order to investigate how
knowledge transfer with synthetically generated data can im-
prove the performance of 2D keypoint detection on real data



from DriPE. We expect that domain specific datasets, such
as our SimulatedCabin dataset, are better suited than general-
purpose datasets, such as the PeopleSansPeople dataset, to
train detectors for application in the car interior. To prove this
hypothesis, we train models on these two synthetic datasets
and then fine-tune them on real-world DriPE datasets of
various sizes.

For keypoint detection we use the HRNet architecture for
human pose estimation [12]. The idea of HRNet is to maintain
high-resolution features by connecting high-to-low resolution
convolutions in parallel. This architecture features a top-down
approach to detect human keypoints. As such, the algorithm
detects exactly one pose per prediction. To put the focus onto
the person to detect (i.e., driver), the input image is clipped
to the region of interest.

Training We rely on the deep high-resolution representation
learning for human pose estimation with the HRNet architec-
ture [12] for our benchmark experiments. As input for this
approach, we use ground truth bounding boxes. Since we are
only interested in the driver, one bounding box is present in
each input image. We train our models by initializing the
backbone with weights from training with ImageNet [35].
We use an exponential learning rate scheduler for all our
models. The learning rate is reduced every epoch by the
factor 0.97 with an initial learning rate of γ=1e-3. We perform
the learning rate reduction during the whole training process.
The remaining training parameters correspond to the standard
settings in [12]. We employ an input image size of 192x256px
at a batch size of 32. We use an NVIDIA GeForce GTX 1080
GPU to train our models. Parameters for data augmentation are
kept the same as in the original HRNet training procedure.

Domain Differences To give an intuition of the differences
in domain, we illustrate examples from the used datasets
in Figure 4. The first row contains sample images from
PeopleSansPeople, showing randomly varied backgrounds,
positioning of people, occluding objects and lighting. The
second row shows images from DriPE, displaying drivers in
real car interiors while driving. In the last row, we present
images from our SimulatedCabin data generator. Different to
PeopleSansPeople, the domain of SimulatedCabin is visually
quite close to DriPE. While we use similar, but not coinciding,
camera views, the positioning of the driver and the car
interior are mimicked. As a result, our approach based on
SimulatedCabin appears better suited to the target domain than
the more randomized PeopleSansPeople data.

V. EXPERIMENTS AND RESULTS

In this section, we describe two experiments for transfer
learning with synthetic data for driver pose estimation in real
car interiors. We go into the procedure of each experiment and
discuss the results. We use the metric Average Precision (AP)
for 2D-keypoint detection performance [36].

In the first experiment, we investigate the performance
of several models trained only on synthetic data in their
application to real test data. To assess the impact of domain-
specific versus general-purpose synthetic data, we train one

model on the common PeopleSansPeople dataset and another
model on our SimulatedCabin dataset. For the training of these
two models, we first take the complete training dataset with
49k images and then a 4.9k images subset of it. All trained
models are evaluated using the DriPE test set. The results can
be seen in the first four rows of Table II. The shown AP scores
demonstrate that synthetic training data alone is not sufficient
to train a reasonable model. However, when comparing the
SimulatedCabin and PeopleSansPeople results, we observe a
performance difference of 28.3% (29.1% vs. 0.8%) between
the AP values of the respective best models. We attribute the
performance gain achieved by SimulatedCabin to the domain
shift from general-purpose to the in-cabin environment.

For comparison with models trained only on real data, we
train and evaluate additional models on the real DriPE data set
using training data sizes of 1%, 10%, 50% and 100% of the
training set, amounting to 74, 745, 3727, and 7453 images,
respectively. The results are listed in the last four rows of
Table II. As expected, we observe a significantly higher AP
when both training and evaluation are performed on the real
DriPE dataset. While the accuracy increases with growing size
of the training data set, we can see that even 1% of the real
data training set is enough to outperform the models trained
on synthetic data only. This obvious limitation of exclusive
training with simulated data leads to the design of our next
experiment.

The second experiment deals with transfer learning from
synthetic data to the real car interior domain. In this ex-
periment, we use the synthetic data to pre-train the models
and then fine-tune them with real data. For this purpose,
we pre-train one model on the PeopleSansPeople dataset and
one model on the SimulatedCabin dataset. In both cases,
we generate two variants with the complete training dataset
comprising 49k images and the reduced dataset containing
4.9k images, respectively. These models were already trained
in the first experiment. The two models are now fine-tuned
on differently sized fractions of the DriPE train set. More
precisely, we use the pre-trained models and fine-tune them
on subsets of 1%, 10%, 50%, and 100% of the entire DriPE
train set. The resulting models are evaluated on the DriPE
test set, and the results are shown in Table III. The table also
lists the results of models generated without pre-training on
synthetic data in the first row of each group. The AP scores
presented in Table III reveal that the performance of all models
improves with pre-training on synthetic data. The overall best
performing model is the one pre-trained on SimulatedCabin
and fine-tuned on the whole DriPE dataset. It outperforms
the corresponding model without pre-training by 2.0% (97.9%
vs. 95.9%). These improvements are more significant when
a smaller amount of real-world DriPE data is used for fine-
tuning. For the smallest subset of 1% DriPE images, we find
an improvement in AP score of 30.5% (84.1% vs. 53.6%).

Regarding the impact of the domain of the simulated dataset,
Table III demonstrates that the AP values resulting from
using the SimulatedCabin dataset for pre-training in all cases
outperform the corresponding PeopleSansPeople results. The



Training data Data size Training steps AP

PS
P 4.9 x 103 8700 0.0

49 x 103 156300 0.8

SC

4.9 x 103 8700 1.2
49 x 103 156300 29.1

D
ri

PE

74 300 53.6
745 2400 68.9

3727 11700 92.3
7453 23300 95.9

TABLE II: Keypoint test metrics for three models trained on different sets of training data with initialized weights from ImgNet
and evaluated on the DriPE test set. PSP stands for PeopleSansPeople dataset and SC stands for SimulatedCabin dataset. The
highest metrics in each category of training data are in boldface.

Fine-tune data
size DriPE

Pre-train data Fine-tune
training steps AP ∆

74

None 300 53.6 -
4.9 x 103 PeopleSansPeople 300 64.2 +10.6
49 x 103 PeopleSansPeople 300 75.8 +22.2

4.9 x 103 SimulatedCabin 300 77.3 +23.7
49 x 103 SimulatedCabin 300 84.1 +30.5

745

None 2400 68.9 -
4.9 x 103 PeopleSansPeople 2400 69.6 +0.7
49 x 103 PeopleSansPeople 2400 82.1 +13.2

4.9 x 103 SimulatedCabin 2400 80.3 +11.4
49 x 103 SimulatedCabin 2400 88.2 +19.3

3727

None 11700 92.3 -
4.9 x 103 PeopleSansPeople 11700 92.5 +0.2
49 x 103 PeopleSansPeople 11700 92.7 +0.4

4.9 x 103 SimulatedCabin 11700 94.8 +2.5
49 x 103 SimulatedCabin 11700 95.4 +3.1

7453

None 23300 95.9 -
4.9 x 103 PeopleSansPeople 23300 96.6 +0.7
49 x 103 PeopleSansPeople 23300 96.9 +1.0

4.9 x 103 SimulatedCabin 23300 97.3 +1.4
49 x 103 SimulatedCabin 23300 97.9 +2.0

TABLE III: Keypoint test metrics for models pre-trained on PeopleSansPeople (PSP) or SimulatedCabin and fine-tuned on
DriPE train sets. For all models, we report the results on the DriPE test set. The highest AP in each category is in boldface.
∆ describes the improvement of a model’s AP when pre-training is applied.

difference amounts to 8.3% (84.1% vs. 75.8%) for the smallest
amount of real data for fine-tuning, and 1% (97.9% vs.
96.9%) when the whole DriPE dataset is used for fine-tuning.
Also noteworthy is the better performance of the reduced-
size SimulatedCabin dataset (with 4.9k images) compared
to the full-size PeopleSansPeople (with 49k images) which
we observe for 1%, 50%, and 100% of the DriPE test set.
This reinforces the observed benefit of the simulated cabin
environment.

VI. CONCLUSIONS

In this work, we presented various benchmark results for
driver pose estimation using transfer learning from synthetic
to real-world data. We investigated the impact of the synthetic
environment of the datasets on the 2D-keypoint detection
performance. While the models trained purely on synthetic
data suffer from poor performance on the real DriPE dataset,
we report a remarkable performance gain of up to 30% for the
investigated models when combining pre-training on synthetic

data with fine-tuning on real data. The improvement becomes
particularly visible when only a small amount of real data is
available for fine-tuning, which underlines the relevance of our
approach for practical applications.

As part of our work, we describe a simulation procedure for
generating synthetic images of drivers in a vehicle cockpit.
Our evaluation results document the advantage in terms of
increased accuracy achieved by shifting the simulation to the
application (i.e., car interior) domain. Generally, the simulated
data not only helps overcome a lack of real annotated data, but
has the additional benefit of avoiding potential violations of
data protection and privacy regulations. Regarding ethics and
prevention of data bias, variations in age, gender and ethnicity
are taken into account in the design of our SimulatedCabin
simulator.

We have shown that data generation in a similar synthetic
domain improves human pose estimation. While we have
verified the applicability of our approach in the domain of



driver pose estimation, further research is needed to assess
if comparable results can also be obtained from images of
other application domains. Another topic for future research
would be to explore whether further increasing the complexity
and photorealism of the simulation can lead to additional
improvements of the estimation results. To overcome a current
limitation of our simulation, future work could involve the sim-
ulation of authentic lighting conditions, which are inherently
complex and challenging to replicate. Future extensions to
the simulator could pay specific attention to pose interactions
with different objects, such as smartphones, in the car cockpit,
and rare scenarios including hazardous driving behavior or
accidents.
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