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A B S T R A C T

In this work, we study the effect of electron–electron scattering on the high-energy tail of the electron
distribution function in FET channels. A new Monte Carlo algorithm for solving a two-particle kinetic equation
in the presence of a position-dependent electric field is proposed. In stationary bulk simulations, no visible
effect of electron–electron scattering on the distribution function and consequently on its moments is observed.
In stationary device simulations, however, a clear effect on the high-energy tail can be seen. The enhancement
of the tail relative to the thermal tail is found to scale with the electron concentration.
1. Introduction

Accurate knowledge about the energy distribution function (EDF)
is essential to model the formation of hot carrier damage in semicon-
ductor devices [1]. Electron–electron scattering (EES) can substantially
impact the EDF [2–4] and has to be properly included in the transport
model. Solution methods for the Boltzmann equation which becomes
nonlinear in the presence of EES are either based on deterministic
iterative methods [2] or ensemble Monte Carlo methods [5–7]. In this
work we resort to a two-particle kinetic equation which remains linear
also in the case of inter-particle interactions. Monte Carlo algorithms
for the solution of that equation are based on the computation and sam-
pling of trajectory pairs. Two wave vectors, 𝐤1 and 𝐤2, are considered
simultaneously, which means that the method is actually sampling the
six-dimensional momentum space. Doubling the dimension of momen-
tum space, however, does not degrade the efficiency of the Monte Carlo
method as it does not suffer from the curse of dimensionality, in stark
contrast to deterministic methods.

2. Transport model

In the presence of a uniform electric field, the Boltzmann equation
for electrons is of the form
( 𝜕
𝜕𝑡

+ 𝑒
ℏ
𝐄 ⋅ ∇𝑘

)

𝑓 (𝐤, 𝑡) = 𝑄[𝑓 ](𝐤, 𝑡). (1)

This single-particle kinetic equation becomes nonlinear when EES is
included in the scattering operator 𝑄.

𝑄[𝑓 ](𝐤) = ∫ 𝑆(𝐤,𝐤′)𝑓 (𝐤′) − 𝑆(𝐤′,𝐤)𝑓 (𝐤′)𝑑𝐤′. (2)
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In the case of EES, the single-particle scattering rate 𝑆 will depend on
the unknown distribution function 𝑓 .

𝑆(𝐤1,𝐤′1) = ∬ 𝑃 (𝐤1,𝐤2,𝐤′1,𝐤
′
2)𝑓 (𝐤2)𝑑𝐤2𝑑𝐤

′
2 (3)

Integration is over all degrees of freedom of the partner electron,
i.e., its initial momentum 𝐤2 and final momentum 𝐤′2. In the case of
two-particle interactions, it is advantageous to resort to a two-particle
kinetic equation.
( 𝜕
𝜕𝑡

+ 𝑒
ℏ
(

𝐄 ⋅ ∇1 + 𝐄 ⋅ ∇2
)

)

𝑔(𝐤1,𝐤2, 𝑡)

=
(

𝑄ph +𝑄ee
)

[𝑔](𝐤1,𝐤2, 𝑡)
(4)

In this formulation, 𝑄ee is a linear operator acting on the two-particle
distribution function 𝑔.

𝑄ee[𝑔](𝐤1,𝐤2, 𝑡) = ∬ 𝑃 (𝐤1,𝐤2,𝐤′1,𝐤
′
2)

[𝑔(𝐤′1,𝐤
′
2) − 𝑔(𝐤1,𝐤2, 𝑡)] 𝑑𝐤′1𝑑𝐤

′
2

Stationary and transient Monte-Carlo algorithms for the solution of (4)
have been proposed in [8].

3. Scattering rates

Electron–phonon scattering in silicon is treated by the model re-
ported in [9]. The concept of self-scattering with a constant self-
scattering rate is used for efficient calculation of the free flight
time.
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For electron–electron scattering a screened Coulomb interaction
potential 𝑈𝑠 is assumed.

𝑈𝑆 (𝑢) =
𝑒2

4𝜋𝜀𝑠

exp(−𝑢𝛽𝑠)
𝑢

(5)

The distance between two electrons is denoted by 𝑢 = |𝐫2 − 𝐫1| and
the inverse screening length by 𝛽𝑠. In order to calculate the scattering
rate, the transition rate according to Fermi’s golden rule has to be
evaluated first. The state of an electron pair is written as a prod-
uct of two plane wave states. The wavefunction of a state |

|

𝐤1,𝐤2⟩
reads

𝛹𝐤1,𝐤2(𝐫1, 𝐫2) =
1
𝛺
𝑒𝑖(𝐤1⋅𝐫1+𝐤2⋅𝐫2) (6)

sing wavefunctions of this form, the matrix element of (5) evaluates
o

𝐤′1,𝐤
′
2
|

|

|

𝑈𝑆
|

|

𝐤1,𝐤2⟩ =
[

𝑒2

𝜀𝑠𝛺

] 𝛿𝐤1+𝐤2 ,𝐤′1+𝐤′2
|𝐤1 − 𝐤′1|

2 + 𝛽2𝑠
. (7)

The transition probability is then given by Fermi’s golden rule.

𝑃 (𝐤1,𝐤2,𝐪) =
2𝜋
ℏ

[

𝑒2

𝜀𝑠𝛺

]2

×
𝛿[𝜖(𝐤1 + 𝐪) + 𝜖(𝐤2 − 𝐪) − 𝜖(𝐤′1) − 𝜖(𝐤′2)]

(|𝐪|2 + 𝛽2𝑠 )
2

(8)

The Kronecker-𝛿 in (7) and the Dirac-𝛿 in (8) express the fact that
only such transitions are allowed which conserve total momentum
and total energy of the electron pair. In the above equation, we have
introduced the momentum transfer vector 𝐪 = 𝐤′1 − 𝐤1. The total
scattering rate 𝛤ee is found by multiplying the transition rate (8)
with the density of states and integrating over all momentum transfer
vectors.

𝛤𝑒𝑒(𝐤1,𝐤2) =
𝑛𝑒4𝑚

4𝜋ℏ3𝜀2𝑠𝛽2𝑠

𝐾
𝐾2 + 𝛽2𝑠

(9)

n this equation, 𝐾 is defined as 𝐾 = |𝐊| with 𝐊 = 𝐤2 − 𝐤1.
For the evaluation of the two electron states after an EES event,

random momentum transfer vector has to be generated. Integration
f (8) over the polar angle 𝜗, defined via 𝐪 ⋅ 𝐊 = 𝑞𝐾 cos 𝜗, yields the
robability distribution of 𝑞.

(𝑞) = 𝐶
𝑞2

(𝑞2 + 𝛽2𝑠 )2
, 0 ≤ 𝑞 ≤ 𝐾 (10)

The magnitude 𝑞 is calculated using the inversion method. From two
andom numbers 𝑟1, 𝑟2 ∈ [0, 1) the spherical coordinates of the random
ector 𝐪𝑟 are obtained as follows.

2
𝑟 =

𝑟1𝐾2𝛽2𝑠
𝐾2(1 − 𝑟1) + 𝛽2𝑠

(11a)

os 𝜗𝑟 =
𝑞𝑟
𝐾
, 𝜑𝑟 = 2𝜋𝑟2. (11b)

The new wave vectors 𝐤′1 and 𝐤′2 are given by

′
1 = 𝐤1 + 𝐪𝑟, 𝐤′2 = 𝐤2 − 𝐪𝑟. (12)

4. Bulk algorithm

The stationary and transient MC algorithms are based on the com-
putation of trajectory pairs. At each instant in time the motion of two
electrons is considered. The duration of the simultaneous free flights
is generated from an exponential distribution. For this purpose the
self-scattering method can be used which requires the addition of a
self-scattering rate 𝛤ss to the physical scattering rate so as to obtain

constant rate 𝛤max. The difference 𝐊 = 𝐤2(𝑡) − 𝐤1(𝑡) remains constant
during a free flight, and so does the rate 𝛤 . Therefore, self-scattering
2

ee
rates have to be added only to the phonon rates 𝛤ph.

𝛤max = 𝛤ph(𝐤1) + 𝛤ss(𝐤1) + 𝛤ph(𝐤2) + 𝛤ss(𝐤2)

+2𝛤ee(𝐤2 − 𝐤1) (13)

Here, the rate 𝛤ph(𝐤)+𝛤ss(𝐤) has to be a positive constant in the energy
range of interest. Having set up 𝛤max, the free-flight time is generated
from a random number 𝑟 as

𝑡𝑓 = − 1
𝛤max

log(1 − 𝑟). (14)

At the end of a free flight, a scattering mechanism has to be selected.
With probability 𝛤ph(𝐤1)∕𝛤max a phonon scattering event for particle 1
is selected, whereas the state of particle 2 remains unchanged. Con-
versely, with probability 𝛤ph(𝐤2)∕𝛤max a phonon scattering event for
particle 2 is selected, and the state of particle 1 is not affected. With
probability 2𝛤ee∕𝛤max, electron–electron scattering is selected. This
event changes the states of both particles simultaneously. As mentioned
above, the total momentum and the total energy of both particles
are strictly conserved. The complementary event is the self-scattering
event, leaving the states of both particles unchanged.

Stationary averages can be computed using the before-scattering
method. In this case a statistical weight of 𝛤−1

max has to be considered.
If the trajectory pair is sampled at equidistant points in time, each
sampling value has equal statistical weight. This latter sampling tech-
nique is also suitable for the ensemble Monte Carlo algorithm. This
algorithm calculates the response of a carrier system to a spatially
uniform, time-varying electric field 𝐄(𝑡) by simulating an ensemble of
trajectory pairs [8].

5. Device algorithm

To simulate transport in spatially varying electric fields, the bulk
algorithm has been extended. For an easier understanding, we call one
electron ‘‘sample electron’’ (SE) and the other one ‘‘partner electron’’
(PE). The simulation domain is decomposed into cells, each holding
one PE. Whenever a SE crosses a cell boundary, one simultaneously
calculates the free flight trajectories of the SE and PE in that cell. After
a sequence of free-flight and scattering events one of the two electrons
will reach the cell boundary. In that case, the state at the cell boundary
is used to update the averages, whereby a statistical weight of |𝑣⟂|−1,
i.e., the reciprocal of the normal component of the velocity, has to be
used. In the next cell, a new pair of trajectories with the local field
is calculated. If the PE leaves before the SE, the electrons swap their
roles as PE and SE. The swap ensures that every cell always holds one
PE and that the algorithm treats both electrons equally. This algorithm
is restricted to time-independent field distributions since it relies on
the time-invariance of the trajectories. The free flight of one electron
is interrupted when the other reaches a cell boundary and will be
continued at a later point in time when another SE enters that cell.
In the special case of non-interacting particles, which can be used as a
test case, this two-particle algorithm reproduces exactly the results of
the single-particle algorithm.

6. Results

Numerical results were obtained for a single-valley band structure
model assuming the material parameters of silicon [9]. Fig. 1 shows
that EES has no visible effect on the distribution function in a bulk
semiconductor. This is consistent with the observation, that the field-
dependences of mean values such as mean velocity and mean energy
are also not altered by EES. This is remarkable since EES is a dominant
mechanism, and in many situations EES occurs more frequently than
phonon scattering.

For the device simulations, an analytical potential profile has been
assumed. The electric field is zero in the contacts, whereas in the
channel of length 50 nm it varies quadratically. In the simulation of
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Fig. 1. Distribution functions in bulk for different field strengths, calculated with and
without EES. EES has no visible influence.

Fig. 2. Energy distribution in a channel calculated without EES. The wavelike pattern
has the period of the dominant phonon energy. At positions A and B the potential drop
amounts to 0.5 eV and 1 eV, respectively.

the EDF shown in Fig. 2, only phonon scattering was considered. The
dominant phonon energy gives the period of the wavelike pattern.
Whenever the potential drops below 𝑛 times the phonon energy, a new
period of the pattern begins. The effect is much weaker when EES is
included (Fig. 3). We also analyzed EDFs at certain positions in the
channel where the potential dropped below specific energies (at point
A the potential drop is 0.5 eV, at point B 1 eV). In Fig. 4, the oscillations
at positions A and B are clearly visible. In Figs. 5 and 6, the influence
of the electron density can be seen at points A and B, respectively.
EES causes a deviation from the thermal tail, which is obtained if only
phonon scattering is assumed. For higher carrier concentrations, many
more high-energetic electrons are obtained.

7. Conclusion and outlook

We showed that EES plays an important role in the calculation
of the EDF. Results from [2] regarding the enhancement in the
3

Fig. 3. Energy distribution when phonon scattering and EES are included. The
additional EES suppresses the wavelike pattern.

Fig. 4. Oscillations in the EDF at position 𝐴 and 𝐵 calculated without EES. The thermal
tails are separated by 0.5 eV.

Fig. 5. Distribution functions at position 𝐴 with and without EES at three different
carrier densities.

high-energy tail have been qualitatively reproduced. For a better res-
olution of the high-energy part of the EDF, we currently work on sta-
tistical enhancement methods such as the particle splitting/gathering
method.
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Fig. 6. Distribution functions at position 𝐵 with and without EES at three different
carrier densities.
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