
Towards Concepts and Solutions
for Testing High-Security
Software Architectures

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Elena Nuiding, BSc
Matrikelnummer 11925876

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 20. September 2023
Unterschrift Verfasserin Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards Concepts and Solutions
for Testing High-Security
Software Architectures

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Elena Nuiding, BSc
Registration Number 11925876

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 20th September, 2023
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards Concepts and Solutions
for Testing High-Security
Software Architectures

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Elena Nuiding, BSc
Matrikelnummer 11925876

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 20. September 2023

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Elena Nuiding, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. September 2023
Elena Nuiding

vii

Danksagung

Besonders möchte ich meinen Eltern, Birgit und Benedikt, danken, die mich während
der gesamten Zeit meines Studiums durchgehend unterstützt und bestärkt haben. Ohne
euch wäre das nicht möglich gewesen. Einen großen Dank auch an meine Freunde,
die mein Leben in Wien so besonders machen. Außerdem möchte ich mich bei allen
Interviewpartnern bedanken, die sich Zeit für die Interviews eingeräumt haben. Zu guter
Letzt möchte ich mich bei meinen Betreuern für deren stetigen Rat und ihr Feedback
während des gesamten Prozesses der Diplomarbeit bedanken.

ix

Acknowledgements

I especially want to thank my parents, Birgit and Benedikt, who supported and encouraged
me throughout my studies. Without you, this would not have been possible. A big thank
you also to my friends who make my life in Vienna so special. I would also like to thank
all the interviewees who participated in the interviews. Last but not least, I would like
to thank my supervisors for their excellent advice and feedback throughout the thesis
process.

xi

Kurzfassung

Durch die zunehmende Digitalisierung und einer damit einhergehenden Vernetzung ver-
schiedener Softwaresysteme steigt die Relevanz des Schutzes sensibler Daten immer
stärker an, besonders im E-Health-Bereich. Gleichzeitig nimmt die Anzahl an Cyber-
sicherheitsangriffen zu. Daher werden Softwarearchitekturen in einem solchen Bereich
durch zahlreiche Sicherheitsmechanismen abgesichert. Entsprechende Architekturen las-
sen sich auch als High-Security Software Architectures (HSSA) bezeichnen. Es handelt
sich dabei um komplexe Softwarearchitekturen mit einer großen Anzahl unterschiedlicher
integrierter Komponenten und Services, die über viele unterschiedliche Sicherheitsme-
chanismen abgesichert sind. Da die Architektur von HSSA sich von der von klassischen
Softwarearchitekturen unterscheidet, müssen sie beim Testen anders adressiert werden.
Die vorliegende Arbeit untersucht, welche Herausforderungen beim Testen von HSSA
bestehen und wie diese in der Praxis adressiert werden.

Zur Identifikation der Herausforderungen beim Testen von HSSA werden semistruktu-
rierte Experteninterviews durchgeführt. Um im Anschluss daran zu eruieren, wie die
identifizierten Herausforderungen in der Praxis mit Konzepten adressiert werden, wird
eine Case Study mit zwei Fällen mit HSSA aus dem E-Health-Bereich durchgeführt. Ab-
schließend wird die Gültigkeit der identifizierten Konzepte in Bezug auf Übertragbarkeit,
Qualität und Validität über semistrukturierte Experteninterviews evaluiert.

Die Ergebnisse der Evaluation zeigen, dass ein Großteil der identifizierten Konzepte
beim Testen von HSSA für weitere ähnliche Projekte im HSSA-Umfeld einen Mehrwert
darstellen und valide Ansätze bieten, um bestehende Herausforderungen beim Testen von
HSSA zu adressieren. Die Bereitstellung der Konzepte unterstützt Softwareunternehmen
beim Testen ihrer HSSA. Dies erweist sich beispielsweise bei initialer Etablierung des
Testprozesses oder beim Auftreten ähnlicher Herausforderungen zu denen, welche in
der Arbeit identifiziert wurden und für die somit bereits geeignete Lösungen vorhanden
sind, als vorteilhaft. Die Verwendung der sich in der Praxis als erfolgreich bewährten
Konzepte ermöglicht Unternehmen Zeit- und Kosteneinsparungen. Daher sind diese
Konzepte geeignet, Unternehmen darin zu unterstützen, ihre HSSA trotz ihrer speziellen
Softwarearchitektur testen zu können und somit die Qualität und Sicherheit ihrer Software
zu verbessern.

Keywords: High-Security Software Architectures, Software Testing, Case Study, Exper-
teninterviews, Security

xiii

Abstract

Due to the increasing interconnectivity of software systems and digitization of data, the
need to protect sensitive data is growing, especially in the eHealth sector. At the same
time, the number of cyber security attacks is increasing. Therefore, software architectures
in such areas are secured by numerous security mechanisms. These architectures can
also be referred to as High-Security Software Architectures (HSSA). They are complex
software architectures with many different integrated components and services that are
secured through various security mechanisms. Because their architecture differs from
that of classical software architectures, they must also be addressed differently during
testing. Therefore, this thesis investigates which challenges exist in testing HSSA and
how these are addressed with concepts in practice.

For this purpose, semi-structured expert interviews are conducted to determine the
challenges in testing HSSA. Subsequently, a case study with two cases of HSSA from the
eHealth domain is performed to determine how the identified challenges are addressed
with concepts in practice. Finally, further semi-structured expert interviews are conducted
to evaluate the validity of the identified concepts in terms of their transferability, quality,
and their mapping to the respective challenge categories in testing HSSA.

The results of this evaluation have shown that the majority of the identified concepts in
testing HSSA also represent added value for similar projects in the HSSA environment and
provide valid approaches to address existing challenges in testing HSSA. The knowledge
gained can support software companies that develop HSSA by providing them with ideas
on how to test their HSSA. This is particularly useful when they start testing their HSSA
for the first time or when they encounter similar problems to those identified in the
thesis and thus can address them with appropriate concepts. Companies can save both
time and costs by utilizing existing concepts rather than developing them from scratch.
Moreover, the concepts have already proven successful in existing projects. For this
reason, these concepts are suitable to support companies in testing HSSA despite the
specific architecture of these systems and, therefore, increasing their software’s quality
and security.

Keywords: High-Security Software Architectures, Software Testing, Case Study, Expert
Interviews, Security

xv

Contents

Kurzfassung xiii

Abstract xv

Contents xvii

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Expected Results . 2
1.3 Methodology . 3
1.4 Structure . 4

2 Foundations 5
2.1 Software Testing . 5
2.2 High-Security Software Architectures 17

3 State of the Art 23
3.1 Related Work . 23
3.2 Deductive Category System . 25

4 Conceptual Design 29
4.1 Methodology . 29
4.2 Interview Design . 31
4.3 Demographic Data . 32
4.4 Quantitative Data Analysis . 32
4.5 Qualitative Data Analysis . 34
4.6 Resulting Challenges . 42
4.7 Filtered Deductive Category System 43

5 Case Study 47
5.1 Methodology . 47
5.2 Case Selection . 49
5.3 Within-Case Analysis – Case 1 . 51
5.4 Within-Case Analysis – Case 2 . 55

xvii

5.5 Cross-Case Analysis . 61

6 Resulting Concepts 67
6.1 General Concepts . 67
6.2 HSSA-Specific Concepts . 68

7 Evaluation 73
7.1 Methodology . 73
7.2 Interview Design . 74
7.3 Data Analysis . 74

8 Discussion 83
8.1 Answering the Research Questions . 83
8.2 Threats to Validity . 87
8.3 Future Research . 88

9 Conclusion 89

List of Figures 91

List of Tables 93

Acronyms 95

Bibliography 97

Appendix 108

CHAPTER 1
Introduction

The need to protect personal data has gained significant importance over the past decade,
especially in the eHealth sector [1]. Software companies in this sector process, save,
and transmit these particularly sensitive digital data [2], [3]. Considerable investments
have been made in digitization to achieve better medical diagnoses and improve the
accessibility to and quality of health care [4]. At the same time, cyber security attacks
have increased sharply in recent years [5]. Healthcare data are particularly attractive
to attackers because they contain sensitive individuals’ data [6]. When conducting
cyber security attacks, attackers attempt to manipulate software or steal information [7].
Such manipulations and information thefts have devastating effects [6]. These pieces of
information can be misused, for example, for fraudulent billing, resulting in significant
financial losses [5]. However, cyber security attacks are harmful not only to individuals
but also to companies. Significant monetary damages often result from extortion, in
which the attackers demand ransom to prevent the publication of data or to regain access
to software [8]. To address these problems, software architectures must be as secure as
possible.

There are various approaches to achieving security in software architectures. Popular
approaches are layering, network segmentation and segregation, spatial separation from
the hardware, encryption and security certificates, secure communication protocols, and
the usage of authorization roles. In the context of this thesis, software architectures
that employ a combination of such security mechanisms are referred to as High-Security
Software Architectures (HSSA). Furthermore, such architectures are characterized by a
high degree of complexity resulting from many integrated services and components.

1.1 Problem Statement and Motivation
Due to the increasing interconnectivity of software systems, digitization of data, and
a drastic increase in cyber security attacks at the same time, the importance of HSSA

1

1. Introduction

is growing strongly. Meanwhile, software testing is becoming increasingly important in
that context for verifying the correct functionality of software and detecting security
vulnerabilities. The architecture of HSSA differs fundamentally from that of traditional
software architectures in their complex composition of components and services and the
security mechanisms, which are not found in such an extensive form within traditional
software architectures [9]. The problem, however, is that general testing approaches such
as [10] or [11] do not consider these HSSA-specific characteristics and are therefore only
suitable to a limited extent for testing HSSA. The identification of suitable concepts
for testing HSSA has not yet been thoroughly investigated in the literature. However,
software companies would benefit from such concepts in order to rely on successfully
proven approaches to overcome the challenges of testing HSSA.

Before suitable concepts for testing HSSA can be identified, it is necessary to develop
a deeper understanding of the specific challenges in testing HSSA. Challenges arise
when HSSA are to be tested because high security is contrary to high testability. The
characteristics of a software architecture that lead to security lead to poorer testability,
and better testability characteristics likewise lead to lower security. Particularly, the
aspects of controllability, observability, complexity, isolability and dependency are thereby
in contention.

It would be advantageous if software companies, for example, from the eHealth sector,
could draw upon an existing set of concepts for testing their HSSA without spending time
and financial resources developing appropriate concepts. The validity of these concepts
would be strengthened if they had already proven successful in practice, indicating that
they are applicable in real-world situations and not just in theory.

Therefore, this thesis investigates the challenges of testing HSSA and how they can be
addressed with concepts in practice. The main focus is on concepts that address the
technical aspects of testing but not the manual or organizational ones. In particular,
concepts in testing HSSA from the eHealth area are considered because HSSA from this
area require an exceptionally high degree of software testing due to the sensitivity of this
kind of data.

1.2 Expected Results
The objective of this thesis is to identify and categorize existing challenges in testing
HSSA, both in literature and in practice. Moreover, it aims to investigate how the
identified challenge categories are addressed with concepts in practice. In addition, it
further intends to evaluate the identified concepts and mapped challenge categories and
to derive implications for testing HSSA.

The research questions to be answered are the following:

RQ1: What are the challenges in testing in the context of HSSA and into which
categories can the identified challenges be divided?

2

1.3. Methodology

RQ2: How are the identified challenge categories addressed in practice?

RQ3: Which implications for testing HSSA can be derived from the empirical results
of the case study?

1.3 Methodology
The methodological procedures for answering the research questions are explained below.

1.3.1 Approach for Answering RQ1
The approach to answering the first research question comprises a theory portion and
an interview part. The first step is to deduce a deductive category system for the
expert interviews. Therefore, the category system’s main categories are derived from
two approaches. First, a literature review is conducted to identify known challenges
in testing HSSA in theory. Relevant papers are examined, and the most important
challenges are extracted from them. Second, those security mechanisms that are in conflict
with testability are added as main categories to the category system because security
mechanisms limit testability, and therefore, it must be investigated whether individual
security mechanisms create challenges when testing HSSA. Then, semi-structured expert
interviews are conducted to obtain the experts’ experiences of challenges in practice
in the previously derived categories. To structure the interview results in a more fine-
grained manner, a multilevel deductive-inductive category formation is employed, with
the main categories already being present from the previously derived deductive category
system and the subcategories being formed from the interview text material by applying
Kuckartz’s Content Structuring Content Analysis [12]. The result from this phase reveals
the challenges of testing HSSA, which are classified into different main and subcategories.
The final step of this phase is to select the challenge categories that focus on technical
aspects and that are deemed the most challenging by the experts, resulting in a filtered
deductive category system for the second phase.

1.3.2 Approach for Answering RQ2
The next step is identifying concepts for the challenge categories selected for closer
examination. Therefore, a qualitative embedded multiple-case study with two cases is
performed to determine how the identified challenge categories of the previous steps
are addressed with concepts in practice. The two cases are industrial projects from the
eHealth sector. Data triangulation, which is the use of several different data sources, is a
suitable method for data collection. In the context of this thesis, informal interviews,
code repositories, documents, test case specifications, and confluence articles are used as
data sources. The following data analysis involves a within-case analysis of each case
separately and a cross-case analysis to identify commonalities and differences between
the units of analysis [13]. The result of this phase is a set of concepts that are used in
practice to address the challenges of HSSA.

3

1. Introduction

1.3.3 Approach for Answering RQ3
The next step is to evaluate the identified concepts and mapped challenge categories to
be able to provide implications for testing HSSA in general. Therefore, semi-structured
expert interviews are conducted. The most relevant generified concepts and mapped
challenge categories are presented to the experts. The experts are requested to evaluate
the overall quality and transferability of each concept. In addition, they are to assess
whether the concepts represent valid approaches for the mapped challenge categories.
The questions are both qualitative and quantitative. The qualitative questions are
evaluated using Mayring’s qualitative content analysis form of Structuring, and the
quantitative questions are assessed by statistical calculations [14]. The result of this
phase is recommendations on concepts for testing HSSA.

1.4 Structure
This thesis analyzes challenges in and concepts for testing HSSA. A theoretical framework
is presented to create an understanding of the foundations of software testing and HSSA
in Chapter 2. Chapter 3 provides an overview of related work and explains which
challenge areas are examined in the expert interviews. Chapter 4 describes challenges in
the context of HSSA and the corresponding expert interviews and presents the design
of the deductive category system for the case studies. While Chapter 5 addresses the
identification of concepts for testing HSSA from the analysis of two case studies, Chapter
6 approaches the generified concepts. Chapter 7 explains the evaluation of the concepts
and the mapped challenge categories, and Chapter 8 answers the research questions,
describes the limits of the thesis, and proposes future work. The thesis concludes with a
summary in Chapter 9.

4

CHAPTER 2
Foundations

This chapter provides a theoretical framework for understanding the foundations of the
areas of software testing and HSSA.

2.1 Software Testing
This section introduces software testing and explains the essential concepts of this subject.
It first defines software testing in more detail and highlights its goals and purpose. It
then presents the Software Testing Life Cycle (STLC) and explains the most common
classifications of tests according to test techniques, test levels, and test types, followed by
an overview of test automation (TA), including the test pyramid. Finally, this section
discusses the definition of testability and the characteristics of a software architecture
that influence testability.

2.1.1 Definition, Goals and Purpose of Software Testing
The International Software Testing Qualifications Board (ISTQB) [15] defines software
testing as the following:

"The process consisting of all lifecycle activities, both static and dynamic, concerned
with planning, preparation, and evaluation of a component or system and related work
products to determine that they satisfy specified requirements, to demonstrate that they
are fit for purpose and to detect defects."

The Institute of Electrical and Electronics Engineers (IEEE) [16] instead defines software
testing in the following way:

"The process of operating a system or component under specified conditions, observing
or recording the results, and making an evaluation of some aspect of the system or
component."

5

2. Foundations

Software testing aims to evaluate the requirements of software. By performing tests,
specified software requirements are compared with the actual implementation of the
software, and the completeness of the implementation of the expected requirements is
determined [17].

The overall goal of software testing is to assess the quality of a test object, which
can be a single unit of software, combined units, or an entire system. According to the
norm International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) 25000 [18], the quality of software is measurable by the following quality
attributes: functionality, reliability, portability, security, maintainability, performance
efficiency, usability, and compatibility.

An advantage of testing is that it minimizes the risk of software failures that could trigger
significant financial damage and harm a company’s reputation. In the short term, testing
is time-consuming and costly. In the long term, however, it saves money, as fixing bugs
at later stages is significantly more expensive. Therefore, tests should be integrated
into the development process at an early stage. The earlier testing begins, the sooner
erroneous decisions or errors regarding software architecture, scalability, functionality, and
security can be discovered. Regarding security, software testing enables the detection of
vulnerabilities that could otherwise be potentially exploited. Fewer vulnerabilities increase
the probability of protecting sensitive information such as financial or health-related data.
Ensuring the security of the customer’s data also relates directly to increased customer
trust in the product. However, testing can only increase the probability of error detection
and cannot prove the absence of errors [19].

Nonetheless, when considering a software test, the costs must always be weighed against
the benefits. Exhaustive testing might not be possible due to a lack of time and cost
resources [20]. Therefore, the most important test cases must be selected and prioritized
so that the most important functionalities can be tested despite the cost, resources, and
time constraints [21].

2.1.2 Software Testing Life Cycle (STLC)
Software testing consists of various activities that can be grouped into specific phases,
and these phases form the so-called STLC. The STLC consists of seven activities: test
planning, test control, test analysis, test design, test implementation, test execution, and
test closure (shown in Figure 2.1) [19]. Depending on a project’s needs, these phases can
also be iterated through multiple cycles in a recurring manner. The following description
summarizes the individual phases based on [17], [19] and [22].

6

2.1. Software Testing

Figure 2.1: Software Testing Life Cycle [19]

Test Planning Test planning is conducted during the entire STLC. During test
planning, the required test documents are created. The test activities, levels, and types
of tests to be used are also defined in this phase.

Test Control Like test planning, test control must be performed throughout the entire
STLC. This activity checks whether the test plan and the associated activities are being
followed and allows for tracking and monitoring of the tests’ progress. Deviations from
the plan are recorded, and measures are determined to reestablish conformity with the
plan as soon as they occur.

Test Analysis During test analysis, the test basis is analyzed in detail. The test basis
comprises all the artifacts from which the requirements for the software to be tested can
be determined. In this phase, the test conditions are identified, and decisions are made
regarding which components should be tested and in what order of priority. Bidirectional
traceability between requirements and tests must be ensured.

Test Design Both abstract and concrete test cases are designed during the test design
process based on the results of the test analysis. The tests should always consider both
the positive and the negative cases. Test data, preconditions, and expected results must
be defined for each test case. Moreover, the testing infrastructure must be provided.

Test Implementation During test implementation, the final preparation for test-
ing occurs so that the tests can be performed in the subsequent phase. The testing
infrastructure and the test cases must now be realized in detail.

7

2. Foundations

Test Execution During test execution, the actual execution of the test cases occurs
either manually or automatically. For each test case, the actual result is compared with
the expected result. Deviations from the expected result must be recorded and reported
in some form so that the development team receives feedback regarding issues to be
resolved. Once the developers have made the appropriate changes, the test cases must
be repeated to verify that the issues have been corrected.

Test Closure During the test closure phase, a report is prepared in the form of
a summary of the test activities that were performed and the test results. The test
environment is also archived. Furthermore, a retrospective is performed so that the
test process may be improved in the future. Finally, responsibility is transferred to the
support and maintenance team.

2.1.3 Test Techniques
One aspect by which software tests can be classified is by test techniques, which can be
divided into static and dynamic tests (shown in Figure 2.2).

Figure 2.2: Test techniques (based on [19], [23], [24])

Static Testing Static testing is characterized primarily by the fact that it does not
involve the execution of code. Rather, the aim is to check work results, which are
typically documents or code, from different software development phases [24]. Overall,
a distinction is made between reviews and static analysis. While reviews are usually
performed manually, static analysis is performed using automated tools. The intention
of reviews is to detect errors in documents. Reviews can be divided into four types:
informal, walkthrough, peer review, and inspection. Static analysis aims to identify
irregularities in static artifacts such as documents or code [25]. It focuses on analyzing
the data flow or control flow of code, among other aspects [15].

Dynamic Testing Unlike static testing, dynamic testing involves the execution of
code [24]. Dynamic design techniques can be split into the following categories:

8

2.1. Software Testing

• White-box testing: This technique tests the internal structure of the test object.
Accordingly, the code and the architecture of the test object must be known [23].
The goal is that each portion of the code is executed at least once, resulting in
complete coverage of all code portions during the white-box tests [19]. This type of
testing is mainly used for unit or regression testing [23]. White-box tests can reveal
hidden errors in the code of individual software components, but they do not test
the overall completeness of the software [26]. Typical methods of white-box testing
are coverage-based methods (statement/ branch/ path condition coverage) [19].

• Black-box testing: This technique tests the externally visible behavior of the software
[23]. Its focus is on testing the fundamental aspects of the software, such as whether
the input is accepted correctly and whether the output is produced correctly [27].
Black-box tests are derived from the product specifications. This test method is
mainly used for integration and system testing [28]. Typical methods of black-
box testing are equivalence partitioning, boundary value analysis, state transition
testing, decision table testing, combinatorial testing, and use case testing [19].

• Gray-box testing: This technique combines black-box and white-box testing. When
using this technique, part of the code is known, but the respective internal code
structure is not known [23]. Some methods of gray-box tests include regression,
orthogonal array, pattern, and matrix tests [24].

• Experience-based testing: This technique is based on a tester’s experience and
ability, which grows with work experience. Typical methods of experience-based
tests are error guessing, checklist-based testing, attack testing, and exploratory
testing [24].

2.1.4 Test Levels
According to the ISTQB glossary [15], a test level is a "group of test activities that are
organized and managed together." The size of the unit to be tested differs depending on
the test level. Distinctions can be made between four levels: unit, integration, system,
and acceptance testing (shown in Figure 2.3).

Figure 2.3: Test levels (based on [19], [23], [28])

9

2. Foundations

Unit Testing Unit testing is defined as "testing of individual hardware or software
units or groups of related units" [16]. Its goal is to verify that the individual functions
of the components function as intended [23]. The respective test object is tested in
isolation from the rest of the code. This type of testing can and should be included in
the development of the software from the beginning [28].

Integration Testing Integration testing is defined as "testing in which software compo-
nents, hardware components, or both are combined and tested to evaluate the interaction
between them" [16]. As the name implies, tests at this level focus on the integration
and testing of interfaces between components rather than the internal functionality of
an individual component [19]. A basic distinction can be made between two different
forms of integration testing, namely incremental and big-bang integration testing. The
incremental approach involves different numbers of integration stages (depending on
the complexity of the software), during which increasing numbers of components are
integrated and successively tested in interaction with one another. In the big-bang
approach, all components are integrated in a single step and tested as a single unit [28].

System Testing System testing is defined as "testing conducted on a complete, inte-
grated system to evaluate the system’s compliance with its specified requirements" [16]. In
contrast to unit and integration tests, tests at this level consider the customer’s point of
view rather than that of the developers’ [19]. System tests are normally implemented as
black-box tests and are usually performed in a test environment simulating the production
environment as realistically as possible [23].

Acceptance Testing Acceptance testing is defined as "formal testing conducted to
determine whether or not a system satisfies its acceptance criteria and to enable the user,
customer or other authorized entity to determine whether or not to accept a system"
[16]. This type of testing focuses on the satisfaction of the customers and end users
of the software, and these groups are typically involved in the tests. Acceptance tests
determine whether the product can be delivered. Thus, they involve testing whether the
product complies with the contract and whether the users accept the product as it is
[19]. Particular focus is placed on whether the needs and requirements of the end users
are met [23]. Acceptance tests, however, should no longer reveal errors as such because
these issues should already have been resolved during tests at the previous levels [28].

2.1.5 Test Types

The ISTQB glossary [15] defines a test type as "a group of test activities based on specific
test objectives aimed at specific characteristics of a component or system." Test types can
be classified into functional, non-functional, structural, and change-related tests (shown
in Figure 2.4) and can be applied to the different test levels discussed above [19].

10

2.1. Software Testing

Figure 2.4: Test types (based on [19])

Functional Testing Functional testing focuses on validating the functional require-
ments of the software being tested. Each function of the software is to be tested by
providing input to the function and verifying its output. Black-box tests are most
commonly used in this case [19]. Examples of functional tests are technical functional
tests, which determine the completeness of the specified functionality, and interoperability
tests, which test the interfaces between the individual components of the software [29].

Non-Functional Testing Non-functional testing, as the name implies, tests the non-
functional aspects of the software. The focus of this testing is on checking the quality of
the software [19], ensuring that non-functional requirements such as reliability, efficiency,
usability, modifiability, and transferability are met [29]. Examples of non-functional tests
are performance tests, stress tests, and load tests [19].

Structural Testing Structural tests are usually designed as white-box tests, testing the
internal structure of the various components or systems. These types of tests ensure that
each program instruction performs its intended function. They are mainly used on the
lower two test levels (unit and integration levels) as they are usually too time-consuming
to perform on the higher test levels [19].

Change-Related Testing Change-related tests are used to verify changes made to
the software. They determine whether the changes have been implemented correctly and
have not led to any new errors or undesired behavior. Usually, this type of testing is
implemented as a confirmation or regression test. A confirmation test is performed after
fixing a bug to verify the problem has been eliminated in the new version of the software
[20]. Regression tests are used to verify that no new errors have been included in the
changed version of a previously functioning piece of software [30]. Regression tests are
conducted at all test levels [19]. Because running entire test suites in regression testing
is time-consuming and costly, a combination of minimization of redundant tests and
appropriate test case selection and prioritization must be used [30]. Confirmation tests
are usually executed before regression tests. While confirmation tests primarily test the

11

2. Foundations

part of the software in which an error has previously occurred, regression tests focus on
testing the overall functionality of the software [20].

2.1.6 Test Automation
In this section, TA and its advantages, disadvantages, and preconditions are briefly
explained. Moreover, the concept of Continuous Integration (CI) and the test pyramid
are described.

Definition TA is the automation of the test activities to be performed, including the
automatic comparison of the expected results with the actual results [17]. In manual
testing, the tester usually assumes the role of the user, performing activities that a user
typically performs when using the system, verifying them, and uncovering any errors.
Automated tests, on the other hand, involve arranging code or scripts for testing and
executing them without human intervention [31].

Advantages Automating tests may save time, as the tests are no longer executed
manually. This savings is especially evident when running regression tests [17]. In addition,
TA may reduce testing costs and increase test reusability [31]. Furthermore, defects may
be detected more quickly and frequently, improving product quality. Moreover, TA may
reduce execution times, leading to higher test coverage [32].

Disadvantages The introduction of TA may be associated with considerable costs,
and there is a risk that the benefits of TA may not outweigh the costs it incurs. Moreover,
depending on the project, TA may be too complex to implement based on the knowledge
of the testers. In addition, depending on the time frame, the time and resources required
to automate the tests may be too scarce [33].

Preconditions Successful introduction of TA requires establishing an automation
strategy, including precise planning and a detailed definition of related activities. A
further prerequisite for successful implementation is a certain period of time and sufficient
financial and human resources [33]. However, not every activity can be automated.
Therefore, manual tests are sometimes necessary [32].

Continuous Integration CI is a concept in software development used to increase
software quality. Its principles are applied to the daily work of software development
teams. To integrate newly developed or modified code into existing software, certain
quality standards must be met. For this purpose, pipeline-supported tools are used to
examine this quality and permit code integration only with a successful pass [34], [35].

A CI pipeline consists of several stages, for example, build, test, and package stages. The
pipeline is executed every time a developer pushes code to the repository. In the test
stage, automated tests rather than manual tests are integrated to accelerate the testing
process. Overall, TA supports the CI process by ensuring that code is properly tested

12

2.1. Software Testing

and that problems are identified at an early stage [36]. Examples of tools that enable the
integration of TA into the CI process and allow the creation of pipelines are Jenkins1,
GitLab CI2, and Bitbucket3 [36].

Test Pyramid A key concept of TA is the test pyramid introduced by Mike Cohn that
shows where and in which order automation efforts should be invested, indicating the
types of tests and the frequency with which they are to be performed. The test pyramid
consists of the following three layers [37] (shown in Figure 2.5):

Figure 2.5: Test pyramid (based on [37])

• Unit tests: show in detail exactly where the software contains an error.

• Service tests: combine Application Interface (API) and integration testing.

• User Interface (UI) tests: focus on the end-to-end testing of the software.

The pyramid shows that a large number of unit tests should first be executed in TA.
Subsequently, a medium number of service tests should be carried out. Finally, automated
UI testing should be performed with the smallest number of tests. The reason for this
order is that it only makes sense to perform service tests once the individual functions
are working correctly, and UI tests are only rational once the backend of the underlying
software has been sufficiently tested [38].

1https://www.jenkins.io/, Accessed: 22.08.23
2https://docs.gitlab.com/ee/ci/, Accessed: 22.08.23
3https://bitbucket.org/product/de/features/pipelines/, Accessed: 22.08.23

13

https://www.jenkins.io/
https://docs.gitlab.com/ee/ci/
https://bitbucket.org/product/de/features/pipelines/

2. Foundations

2.1.7 Testing Infrastructure

This section defines the term testing infrastructure, introduces static and on-demand test
environments, and explains the concepts of virtualization, containerization, and container
orchestration.

Definition The ISTQB glossary [15] defines testing infrastructure as "the organizational
artifacts needed to perform testing, consisting of test environments, test tools, office
environment and procedures." Test environments are the environments in which tests are
conducted, containing both software and hardware components [15]. Their purpose is
to avoid damage in the production environment when testing. The test environment
should closely emulate the production environment but, at the same time, should contain
simplifying mechanisms so that testing is as easy as possible [23]. Test environments
contain test data, which are generated either manually or automated with test data
generation tools [39]. Test tools are designed to assist humans in the execution of tests,
thereby achieving consistency, especially in test execution and test results [19].

Static Test Environment Static environments are traditional environments with
permanent infrastructure4. This approach is mainly used in traditional quality assurance
and is used for testing after merging the code5. All software is deployed at the end
of a release cycle, and all tests are run simultaneously in the same environment. The
advantage of permanent test environments is that they only need to be created and
configured once. A problem with the permanent infrastructure is that resources are
permanently occupied, and the number or size of possible environments is, therefore,
limited. If the test environment is damaged, the other testers are also blocked, as all
teams test in the same environment4.

On-Demand Test Environment An on-demand test environment is an independent,
fully functional test environment that exists temporarily, can be created quickly, and
allows isolated testing6. This approach is mainly used when testing is to be performed
before the code is merged5. The main advantage of this approach is that the test
environment can be quickly started and stopped so that resources are only temporarily
blocked. The challenge in this case, especially in a highly integrative system with many
software components, is to ensure that all components can be dynamically ramped in an
encapsulated manner4. On-demand test environments can be established by employing
concepts like virtualization, containerization and orchestration using technologies such as

4https://www.qovery.com/blog/from-static-to-dynamic-environments-why-and-h
ow, Accessed: 22.08.23

5https://www.uffizzi.com/blog/test-environments, Accessed: 22.08.23
6https://testguild.com/on-demand-environments/, Accessed: 11.08.2023

14

https://www.qovery.com/blog/from-static-to-dynamic-environments-why-and-how
https://www.qovery.com/blog/from-static-to-dynamic-environments-why-and-how
https://www.uffizzi.com/blog/test-environments
https://testguild.com/on-demand-environments/

2.1. Software Testing

Docker or Kubernetes7,8.

Virtualization Virtualization is the execution of a virtual instance of a computer
system [40]. Using this concept, the hardware resources of a physical machine are
partitioned and allocated to Virtual Machines (VMs) [41]. VMs are virtual, isolated
instances of a computer system [42]. Each VM possesses its own guest operating system
and resources [43]. Between the physical resources and the VMs themselves lies the
abstracted intermediate layer of the hypervisor, which is installed on the hardware layer
[42]. Hypervisors are used to create, manage, and execute VMs [44].

Containerization Containers are isolated environments that incorporate all necessary
elements to run an application, including all dependencies. Therefore, containers are
platform-independent and can run on any infrastructure [40]. In contrast to VMs,
containerization uses the resources of the same operating system [45]. An example of
container-based virtualization of software applications is Docker9,10(shown in Figure 2.6).

Figure 2.6: Docker10

Container Orchestration The term container orchestration refers to the tool-based
management and coordination of containers in container-based applications. Processes
such as deployment of containers and resource allocation are automated. One such tool
is Kubernetes11, in which the containers run in a cluster [46].

7https://www.digitalocean.com/community/tutorials/how-to-configure-a-conti
nuous-integration-testing-environment-with-docker-and-docker-compose-on-ubu
ntu-14-04, Accessed: 22.08.2023

8https://blog.getambassador.io/kubernetes-development-environments-from-l
ocal-to-remote-4e33131147c6, Accessed: 15.08.2023

9https://www.docker.com/, Accessed: 21.08.2023
10https://www.docker.com/resources/what-container/, Accessed: 22.08.2023
11https://kubernetes.io/, Accessed: 21.08.2023

15

https://www.digitalocean.com/community/tutorials/how-to-configure-a-continuous-integration-testing-environment-with-docker-and-docker-compose-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-configure-a-continuous-integration-testing-environment-with-docker-and-docker-compose-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-configure-a-continuous-integration-testing-environment-with-docker-and-docker-compose-on-ubuntu-14-04
https://blog.getambassador.io/kubernetes-development-environments-from-local-to-remote-4e33131147c6
https://blog.getambassador.io/kubernetes-development-environments-from-local-to-remote-4e33131147c6
https://www.docker.com/
https://www.docker.com/resources/what-container/
https://kubernetes.io/

2. Foundations

2.1.8 Software Testability
This section defines the term testability and explains the characteristics that affect the
testability of software.

Definition Numerous different definitions of software testability exist. ISO/ IEC
25010 [47] defines software testability as "degree of effectiveness and efficiency with
which test criteria can be established for a system, product or component and tests can
be performed to determine whether those criteria have been met." Garousi et al. [48],
in comparison, define software testability as "the degree to which a software system or
component facilitates the establishment of test criteria, generation, and execution of test
cases, and also the probability that a piece of software will fail during testing if it includes
a fault." Overall, all definitions have in common that testability is the extent to which
the characteristics of a software allow for testing. A high degree of testability indicates
the possibility of testing the system quickly and easily. On the other hand, a low degree
of testability means that testing is more complex, which in turn leads to higher time
and cost expenditures [49]. As a result, software companies aim for a high degree of
testability to save time and money [48].

Characteristics According to Garousi et al. [48], among the attributes of software
that most influence software testability are the following (in descending order):

• Observability: Observability is the degree to which the behavior of a program can
be observed [48]. For example, should an error occur during testing, observability
allows the state of the test object to be examined more closely [50].

• Controllability: Controllability refers to the extent to which a component can be
brought to the desired state for testing. A distinction must be made between the
controllability of the test environment on the one hand and the controllability of
the state of the test object on the other [48].

• Complexity (and therefore also simplicity): Complexity refers to the intricacies of
software in terms of its functionality, structures, and code. The likelihood of errors
and the associated difficulty of testing increase as complexity increases [50].

• Dependency (cohesion, coupling): Cohesion indicates the extent to which the
software components are interdependent, while coupling refers to the extent to
which the modules of a software product are dependent on each other. With
high cohesion, classes and their methods are usually more compact, reducing their
complexity and resulting in higher testability. In contrast, high coupling leads to
lower testability because of the high dependency between components, making it
difficult to test individual components in isolation [48].

• Understandability: Understandability refers to the extent to which the software
(component) to be tested is self-explanatory. Depending on the level of understand-
ing, tests can be easier or more difficult created [48].

16

2.2. High-Security Software Architectures

• Inheritance: Inheritance indicates that new classes are created based on existing
classes in the production code [51]. More complex inheritance hierarchies thus lead
to higher dependency and lower testability [48].

• Availability: Availability indicates that the software is in a constant state for a
longer period of time so that it can perform operations without failures to a certain
degree. Testing the software at runtime can limit its availability. Therefore, software
with high availability requirements can only be tested at runtime to a limited extent
[48].

• Flexibility: Flexibility refers to the ability of software to adapt to changes [47]. With
highly adaptive, flexible software, the tests are usually also flexible and adaptable
[52].

• Maintainability: This term refers to the degree of simplicity with which a software
component can be modified [47]. High modifiability is usually associated with high
testability because the tests for highly modifiable software are often also highly
adaptable [53].

Lal and Kumar [50] have identified observability, controllability, complexity, and under-
standability as essential factors influencing testability.

According to Poston [54], factors that influence the testability of software are the following:

• Isolability: Isolability indicates that the object under test can be tested separately
from the rest of the software.

• TA: TA refers to the possibility of automating a test. A high degree of TA is
associated with high testability.

In summary, the above concepts indicate that the highest degree of testability can
be achieved when the software is well-controlled, observable, simple, understandable,
automatable, and isolable.

2.2 High-Security Software Architectures
This section defines the term High-Security Software Architectures (HSSA) and explains
the mechanisms that are used for the implementation of security.

2.2.1 Definition
The ISO/IEC/IEEE 42010 standard [55] defines software architectures as the following:

"Fundamental concepts or properties of an entity in its environment and governing
principles for the realization and evolution of this entity and its related life cycle processes."

17

2. Foundations

A software architecture can be considered as a blueprint that provides instructions
regarding how the software is to be implemented in concrete terms [56]. It is composed
of various software components and describes their relationships to one another [57].

Forms of software architectures include, for example, Microservices Architecture-Based
Applications (MSA) and Internet of Things (IoT) architectures [58], [59].

However, this work focuses on secure software architectures, referred to as HSSA in
the context of the thesis. While literature does not offer a precise definition of this
term, it can be deduced from the following definitions. Reza and Mazumder [60]
describe secure software architectures as software systems that employ a combination of
security mechanisms at the architectural level to implement security. Pirker and Lechner
[61] mention that security in software architectures is essential in healthcare software.
Furthermore, they emphasize that such a secure architecture of health software has a
high degree of complexity, often involves many other software systems, and communicates
with many different other components.

In the context of this thesis, HSSA is understood as complex software architectures
containing a large number of different integrated hardware and software components that
combine different security mechanisms at the architecture level to produce the most secure
software possible. Such security mechanisms can include, for example, layering, network
segmentation and segregation, spatial separation from the hardware, encryption and
security certificates, secure communication protocols, and the use of authorization roles
[62]–[68]. The various components and services mainly communicate through technical
interfaces.

2.2.2 Security Mechanisms

Various mechanisms are used individually or in combination to implement security in
software architectures. The security mechanisms may be code-related, as well as hardware-,
network- and environment-related. The following section explains the concepts of layering,
network segmentation and segregation, spatial separation from the hardware, encryption
and security certificates, secure communication protocols, and authorization roles (shown
in Figure 2.7).

Layering Layering, also called an n-tier architecture, is a classic software architecture
pattern. Each layer is responsible for a certain functionality, a concept also called
separation of concerns, as each layer only addresses the functionality of its layer. The
software can have many different layers, but the four typical ones that are generally
present are the presentation, business, persistence, and database layers. The presentation
layer is the UI that allows interaction with the application. The business layer performs
the business and domain logic. The persistence layer is responsible for data access, and
the database layer is responsible for data storage. Each layer only interacts with the
layer directly above or below it, ensuring separation of functionality and responsibility.

18

2.2. High-Security Software Architectures

Figure 2.7: Security mechanisms (based on [62]–[68])

The separation of areas of responsibility and the fact that each layer may access only the
data in its own area of responsibility ensure stronger security in the software [62].

Network Segmentation and Network Segregation Network segmentation divides
a network into different subnets, each operating as a separate network, independent of
the other subnets. Network segmentation allows easier monitoring of the data traffic
between the individual subnets because the subnets in which the data flow occurs can be
precisely localized. Closely related to network segmentation is network segregation, which
means that additional rules are added to network segmentation. For example, these
rules may take the form of individual user profiles and security policies. Such detailed
guidelines allow for precise control of data traffic. In general, critical network elements
are separated and compartmentalized from less sensitive networks. This separation
can be accomplished by isolation of sensitive resources from an external network, for
example. Network segregation is typically achieved through the separation of hardware
and data, the use of virtual Local Area Network (LAN)s and private Virtual Local Area
Network (VLAN)s, network access control, or the presence of different firewalls (network,
host-based, or application firewalls).

In the case of attacks, network segmentation and network segregation ensure that the
spread of the attack within the IT system is restricted. For example, malware cannot
spread across all subsystems easily in that case. The attack surface is fundamentally
smaller due to the smaller segments. Moreover, the attacks can be isolated because

19

2. Foundations

the individual segments are additionally shielded from one another by firewalls and
segregation rules, which make it even more challenging to penetrate the other subnets.
Furthermore, network segregation allows for the protection of vulnerable endpoints. Net-
work segmentation and segregation can prevent malicious traffic from reaching vulnerable
devices [63].

Spatial Separation from the Hardware As soon as hardware becomes part of an
IT system, security can be increased by physically separating it from the software. This
separation can be performed, for example, by building data centers with devices that
are used for data transmission or storage and placing them in specially guarded rooms
to which only certain groups of personnel have access. This access restriction can be
implemented by means of a key, for example, thus restricting access to the hardware [64].

Encryption and Security Certificates Encryption is used to protect the visibility
of data and messages so that unauthorized persons cannot view them. Data can be
encrypted symmetrically, asymmetrically, or through hybrid methods [65], [69]:

• Symmetric encryption: A secret key is used for encryption and decryption. This
key is known only to the sender and the recipient and must be exchanged secretly
[65].

• Asymmetric encryption: Each communication partner has a public and a private
key. The public key is publicly known and is used to encrypt a message. Only
the recipient is aware of the private key which is used to decrypt the message. By
using asymmetric encryption, no secret keys need to be exchanged through secret
communication [70].

• Hybrid methods: These techniques combine symmetric and asymmetric encryption
methods [69]. With this approach, communication is usually encrypted with a
shared secret key, and the secret key is exchanged through asymmetric encryption.
Further communication occurs via the previously exchanged shared secret key [71].

The advantage of asymmetric encryption over symmetric encryption is that the former is
significantly more secure. At the same time, however, considerably higher computing effort
is required to encrypt messages using asymmetric encryption [65]. Hybrid encryption uses
the advantages of both methods and is, therefore, usually more efficient than symmetric
and asymmetric methods [69].

Encryption is often linked with digital certificates, which can be seen as a form of digital
ID card. A digital certificate typically contains information such as the issuer, the
validity period, the issue date, and the public key and is only valid for a limited period
of time [72], [73]. The most commonly used standard for issuing digital certificates is the
X.509 standard [73]. A digital certificate can be used to verify the identity of a person
[74]. Furthermore, the functionality of digital certificates includes the creation of digital

20

2.2. High-Security Software Architectures

signatures and the encryption of data transfers [75]. Digital certificates aim to protect
sensitive data or content and to prevent data misuse and identity theft [74], [75].

A key concept related to digital certificates is a Public Key Infrastructure (PKI). Through
this infrastructure, it is possible to issue and manage digital certificates [76]. A central
component in this system is the Certificate Authority (CA), which is responsible for
issuing, verifying, and signing the certificates [73]. The validity status of a certificate can
be queried from a responder via protocols such as the Online Certificate Status Protocol
(OCSP) [77].

Digital certificates can be used virtually. An example of virtual use involves, for example,
Transport Layer Security (TLS) certificates, which are used for secure data transfer
between two systems. Encryption algorithms ensure that no attacker can read or modify
the data during transmission [66].

Secure Communication Protocols Communication protocols are rules for data
transmission between two or more participants [67]. Common protocols of the application
layer of the ISO/OSI layer model include Hypertext Transfer Protocol (HTTP), Simple
Mail Transfer Protocol (SMTP), Post Office Protocol Version 3 (POP3), File Transfer
Protocol (FTP) [78]. HTTP is mainly used to transmit Hypertext Markup Language
(HTML) pages on the Internet. It is a connectionless protocol and works by means of
a request-response scheme [67]. SMTP is primarily applied for sending mails between
mail servers [78]. The client sends commands and information to the server to execute
transactions. The server then executes the corresponding transactions and informs the
client regarding the success or failure of the transaction. POP3 is a communication
protocol that is used to fetch messages from a mail server [79]. As in SMTP, the client
communicates with the server via commands. FTP is mainly used for uploading and
downloading files. Two channels are established for an FTP connection: the control
channel, which is used on the client side to send commands or receive the corresponding
status codes, and the data channel, over which the data files are transferred. To make
protocols such as SMTP, POP3, FTP, and HTTP secure, encryption techniques must be
used. TLS certificates are most commonly employed [67].

Authorization Roles The role-based access control model was originally introduced
in 1992 by Ferraiolo and Kuhn [68]. The fundamental idea behind role-based access
control is to manage and control access to files and work processes based on different
authorization roles. Each role has different permissions to view, modify, or delete specific
data and to perform work processes. However, a role is not bound to a person. One person
can assume different authorization roles [80]. An example division is an administrator
role versus a basic user role [81].

21

CHAPTER 3
State of the Art

This chapter presents related work that addresses issues and challenges in testing in
related areas such as IoT and MSA. Based on the findings obtained, areas are identified
for which more detailed challenges in testing HSSA are to be investigated in Section 4.

3.1 Related Work
This section summarizes challenges in testing software architectures similar to HSSA.

3.1.1 Paper 1: Internet of Things: Current Challenges in the Quality
Assurance and Testing Methods

Because IoT systems differ from traditional software architectures due to their high
number of different components, various communication protocols, and physical nature,
typical software testing approaches are unsuitable for quality assurance. Therefore,
Bures et al. [82] conducted literature research to identify aspects that influence testing
techniques and a survey of 10 IT solution providers to determine which aspects of quality
assurance were perceived as particularly challenging. Based on the problems identified,
the authors were able to derive requirements for testing IoT systems.

Some IoT aspects that significantly influence testing techniques, according to these
authors’ literature research, are described in the following paragraph. The installation
of IoT devices in public areas is considered problematic. The main problem is that
devices that collect data are often easily accessible to attackers and can be manipulated
or exploited by them. Furthermore, the possibilities for updating devices are often
limited, leading to security gaps that cannot be closed by updates and, thus, potential
exploitation. However, if the performance of updates is possible, many different software
versions are present on the devices. The high number of different devices with different
versions means that an exponential variety of configurations is required. Testing such a

23

3. State of the Art

setup results in many tests, high associated testing effort, and high testing costs. Another
aspect is that certain physical layers, such as network protocols, are no longer tested by
the suppliers as in other systems but must be tested by oneself. Moreover, many different
communication protocols are used due to the heterogeneity of IoT systems, leading to
more tests.

Part of the study was to determine which aspects of quality assurance in IoT solutions
are perceived as particularly challenging by industry participants. One of the challenging
aspects is testing the interoperability between different components, as hardly any
standardization exists for IoT architectures. Furthermore, the number of platform
configuration options is perceived as difficult to test due to the heterogeneity of systems.
In addition, the integration and associated testing of the interaction of many individual
components are seen as challenging aspects.

Based on the previous findings, the authors identified the following requirements for
testing. There is a fundamental need to automate tests, especially integration tests.
Furthermore, it must be possible to generate test data efficiently. However, implementing
these needs is considered problematic due to their complexity and time-consuming nature.

3.1.2 Paper 2: Challenges of Testing Complex IoT Devices and
Systems

Gomez and Bajaj [83] investigated which types of tests are used for IoT systems and
which challenges are involved when testing such complex systems. Only the challenges,
rather than the test types, are summarized in the following since only the former are
relevant to this thesis.

According to the authors, the challenges in testing such systems arise mainly from the
heterogeneity of the system, standardization issues, security and privacy issues, inter-
operability complexity, and the test environment. The heterogeneity of the system’s
composition of hardware and software components leads to a tremendous amount of
testing that is needed. One reason for the high number of tests required in this context
is the version diversity of each component and the large number of possible combina-
tions of components. Standardization problems exist, for example, with the testing
of communication protocols and the associated verification of whether the standards
have been maintained. The problem of testing security and privacy arises primarily
from the fact that IoT systems often only implement lightweight security mechanisms
instead of all-encompassing ones. These minor security functions are implemented to keep
battery consumption low. Therefore, this setting must be tested with different approaches
from those for traditional IT systems. Regarding interoperability, the challenge arises
primarily from the fact that many different layers and combinations of components must
be tested. It is also considered difficult to simulate interoperability as well as the setup
of the test environment. Due to the complexity of the systems and the high degree of
interoperability between individual components and layers, it is challenging to build a
testbed or a virtualized environment.

24

3.2. Deductive Category System

3.1.3 Paper 3: Testing Microservices Architecture-Based Applications:
A Systematic Mapping Study

Waseem et al. [84] conducted a systematic mapping study of the use of testing practices
in MSA by analyzing peer-reviewed literature. This study aimed to determine which
test-related challenges occurred in MSA in recent years.

In MSA, each component is an independent modular unit, possibly with its own release
cycle. Therefore, multiple versions of each service exist. Due to the agile nature of
microservices, the interface of each component often changes from version to version,
resulting in the need to adapt the corresponding tests frequently. The more services are
part of the application, the more challenging it becomes to test the interaction between
them and, therefore, to find an efficient test solution. Another challenge in testing the
communication between the services is to verify that the protocol standards are followed.
In addition, dependencies occurring between the services are considered demanding, for
example, if only two services are actually to be tested as part of an integration test,
but the start of a third service is necessary to be able to perform this test. Among
the identified challenges in testing is TA. The challenge of TA increases proportionally
with the complexity of the system to be tested. Problems arise primarily due to the
heterogeneous configuration of the individual microservices. Moreover, there is the risk
of deciding on an unsuitable tool for conducting TA in MSA, leading to undesired side
effects or even the impossibility of applying TA. Overall, the authors found TA and
intercommunication testing to be the most significant challenges in this area.

3.1.4 Further Related Work
Fadhil and Sarhan [85] describe challenges in testing IoT systems, such as standardization
problems in testing and the complexity of interoperability tests. In their opinion, testing
and identifying security problems are difficult. Therefore, it is necessary to identify
solutions for testing the different layers of an IoT system with the added security aspects.
Furthermore, they see a challenge in the test environment and testing tools.

Söylemez et al. [86] see challenges in testing MSA with regression testing, as all testing
activities must be handled agilely due to the agile nature of MSA. Furthermore, they
identify acceptance testing as a challenge due to the maintenance expenses arising from
the agile nature of MSA. Moreover, it is difficult to form a test framework due to the
difficulty of validating interfaces and integrations between services. They also consider
TA to be a fundamental challenge.

3.2 Deductive Category System
The purpose of this section is to deduce a deductive category system for examination
of challenges in testing HSSA in the expert interviews. The main categories of the
category system are derived from two approaches. First, the most essential challenge
categories of the previously analyzed papers are extracted. Second, main categories of

25

3. State of the Art

security mechanisms are added because of the trade-off between security and testability.
Therefore, this section first explains the categories derived from the papers, second
the extent to which there are conflicts between security and testability, and third the
additional categories added because of these conflicts.

3.2.1 Challenge Categories Derived from Related Work
In the previous section, challenges in testing software architectures such as IoT or MSA
were identified from the literature. These areas could also be challenging when testing
HSSA as some of its characteristics are similar to those of IoT and MSA. Such similarities
are, for example, that the software consists of many individual components with their own
release cycles (in HSSA to separate the functionalities more strongly to increase security),
that many different communication protocols are present (in HSSA these are additionally
secured protocols), and that both hardware and software components are involved that
may be located at different locations. The categories to be investigated in terms of
challenges in testing HSSA are spatial separation from the hardware, many different
secure communication protocols, TA, interoperability testing, testing infrastructure, and
test data.

Spatial Separation from the Hardware IoT systems have proven that easy access
to hardware presents an easy possibility for attackers to access or modify data. Therefore,
hardware should be protected by security measures such as storage in rooms to which
only authorized persons have access. Hence, the absence of hardware access must be
considered during testing. This raises the question of the resulting challenges.

Many Different Secure Communication Protocols The presence of many different
communication protocols in MSA and IoT systems has led to challenges in testing,
including increased testing effort, a lack of standardization, and an inability to use tools.
These problems could also exist with HSSA. Additional problems could arise because the
protocols are secured by mechanisms such as TLS. Therefore, it is necessary to investigate
challenges that arise during testing of HSSA due to the large number of different protocols
and, moreover, challenges that are added due to the limited visibility resulting from the
use of secure instead of non-secure protocols.

Test Automation In MSA and IoT systems, it has been shown that TA is needed to
reduce costs and time. At the same time, however, this area can be challenging because,
for example, not every aspect can always be automated, and suitable approaches must
be selected in these cases. Therefore, the approach to TA in the area of HSSA and the
resulting challenges should be investigated.

Interoperability Testing In the case of MSA and IoT systems, it has been shown
that interoperability testing between components is crucial to ensure that the interactions
between the individual components function as intended. Studies have shown, however,

26

3.2. Deductive Category System

that interoperability testing becomes increasingly challenging, especially as the number
of components increases, partly because of the many different versions of the interfaces.
This raises the question of what challenges are encountered in interoperability testing of
HSSA.

Testing Infrastructure In IoT systems, it has been shown that establishing the test
environment is a challenge, especially concerning the question of whether all resources
can be virtualized. In HSSA, as in IoT, the architecture is more specialized due to the
security mechanisms and complexity of integrated services. Therefore, questions arise
regarding the possibility of creating a purely virtualized test environment and what other
challenges exist when creating the test environment. Because the test environment is
part of the testing infrastructure, it is worth approaching the topic from a higher level
and directly examining the challenges that affect the testing infrastructure.

Test Data To be able to execute tests, test data are required. The papers that have
been presented have shown that it can be challenging to generate test data efficiently.
Similarly, due to all of the security mechanisms applied in HSSA, test data may not be
provided as easily as usual. More specific configurations and operations may be required
for generation and deployment.

3.2.2 Trade-Off between Security and Testability
To make software as secure as possible, security mechanisms such as those mentioned in
Section 2.2.2 are used. At the same time, software testing is important for verifying the
software’s functionality and identifying security gaps. However, security and testability
may conflict with one another. The following discusses those characteristics mentioned
in Section 2.1.8 that exhibit a potential conflict.

• Controllability: In HSSA, only selected authorized persons should be allowed to
control the state of the software or the state of the software environment. In testing,
however, it is precisely this controllability that should be ensured for every tester.
The tester should be able to easily change the status of the test object at any time
to be able to conduct the tests.

• Observability: Data should not be observable within secure software architectures.
In testing, however, the observability and visibility of the data must be ensured
because input and output must be controllable during testing.

• Complexity: Another point of trade-off is the complexity of software. Security
mechanisms add an additional level of complexity to a piece of software. At the
same time, this complexity makes testing more time-consuming and difficult.

• Isolability and dependency: An important point in this context is the possibility of
isolating a part of the software. If a component is to be tested, then it is necessary

27

3. State of the Art

to perform this process independently from the remaining system. At the same time,
however, security mechanisms often create dependencies on trustworthy third-party
components, meaning that some parts of the software are not isolable.

Because testing is an indispensable factor in producing high-quality software, ways must
be identified to test HSSA despite its security mechanisms.

3.2.3 Challenge Categories Derived from Security Mechanisms
Due to the trade-offs between security and testability, further areas should be examined to
determine testing challenges that may arise due to the use of certain security mechanisms.
The additional areas included for investigation in the following chapter are key material
and security certificates, logical network separation, and testing with different authorization
roles.

Key Material and Security Certificates Key material and security certificates
change the setup of software by mainly restricting the visibility of data. A resulting issue
is to what extent this affects testing if specific data can no longer be viewed. Indeed,
many tests check the software for internal functions and structures and require specific
data to be visible. In this respect, challenges concerning the tests and the execution
of certain test levels could arise. This category addresses the trade-off in the fields of
observability, complexity, isolability, and dependency.

Logical Network Separation Logical network separation allows data traffic between
and within subnets to be closely monitored based on defined rules. The fundamental
difference from conditions of no logical network separation is the division into several
subnets and these additional rules. Therefore, it should be investigated whether the
division into subnets leads to increased testing effort, whether testing different user
profiles leads to challenges, and whether challenges arise if an element is to be tested in
a subnet containing especially sensitive resources. This category addresses the trade-off
in the fields of observability and complexity.

Testing with Different Authorization Roles Software systems often include many
different user roles. Therefore, it is necessary that each role has different access and
action rights in order to protect sensitive data. A question, therefore, arises as to how
these different authorization roles affect testing and what challenges arise in the process.
This category addresses the trade-off in the field of controllability.

28

CHAPTER 4
Conceptual Design

Because previous literature has not thoroughly examined challenges in testing HSSA, the
work described in this chapter investigates this context by conducting semi-structured
expert interviews. The categories to be examined for challenges in testing HSSA have been
specified in the previous chapter. This chapter presents the methodology and the design
of the interviews, explains the results of the data analysis (demographic, quantitative,
and qualitative), summarizes the resulting challenges, and presents the emerging filtered
deductive category system containing main categories and corresponding subcategories
of challenges.

4.1 Methodology
This section presents the theory of the methodical procedure by explaining the difference
between quantitative and qualitative research, the data collection form semi-structured
expert interviews, and the data analysis method of content structuring content analysis.

4.1.1 Quantitative versus Qualitative Research
In research, a distinction is made between quantitative and qualitative research methods.
Table 4.1 shows the main differences between both research approaches. The decision to
use one of the two forms depends on the type of research question. Quantitative methods
primarily aim at making statistically evaluable and generalizable statements based on the
aggregation of numerical data. In contrast, qualitative research aims to explore unknown
phenomena and create new theories focusing on individual cases [87].

In the context of this thesis, a combined research approach is chosen. Given the
insufficient literature available regarding the challenges of testing HSSA, a qualitative
research approach is necessary to answer the first research question RQ1. The open
and flexible nature of qualitative data collection allows for capturing new knowledge in

29

4. Conceptual Design

Quantitative Research Qualitative Research
Hypothesis Testing of hypotheses Generation of hypotheses
Sample size Large number of cases Single individual cases

Measurement size Variable oriented Case oriented
Data type Numeric data Data requiring interpretation

Goal Causal explanation Description, understanding
Analysis Statistical analyses Category formation

Table 4.1: Comparison between quantitative and qualitative research (based on [87])

an all-encompassing way. However, to assess the degree of challenge of the individual
challenging categories, quantitative questions are employed as well.

4.1.2 Data Collection
A frequently used method to collect qualitative data is through the use of guideline-
based expert interviews [88]. In this form of semi-structured interview, a guideline with
questions is developed in advance. However, the sequence of questions is flexible, and the
questions are open [87]. Expert interviews are interviews with specialists in the matter
under investigation who have acquired this specialized knowledge through practice and
experience. Expert interviews aim mainly to acquire new knowledge [89].

For this thesis, guideline-based expert interviews are deemed suitable to answer the
first research question RQ1, related to the challenges in testing HSSA, for the following
reasons:

1. Knowledge generation: As studies in the literature have hardly investigated the
challenges of testing HSSA, new knowledge must be generated, and expert interviews
can enable this. Moreover, interviewing experts allows for rapidly generating
knowledge that would otherwise require time-consuming observations.

2. Openness and flexibility: The openness and flexibility of guideline-based expert
interviews can overcome the lack of clarity regarding potential challenges by allowing
the investigation of new fields of knowledge that only become apparent during the
interviews.

3. Practical orientation: Experts have considerable expertise in a particular area due
to their employment in that field. They often work in industry and, therefore,
have a practical orientation to their field of expertise. Hence, they are suitable as
interviewees and for answering the first research question RQ1.

4.1.3 Data Analysis
After conducting the interviews, analysis methods are applied to the experts’ answers to
structure the textual material and generate new knowledge from it in a targeted manner.

30

4.2. Interview Design

Expert Abbr. Role Interview date Medium
Expert 1 E1 Software tester with focus on test

automation and manual testing
25.10.2022 Jitsi Meet

Expert 2 E2 Technical lead, Software architect 08.11.2022 Jitsi Meet
Expert 3 E3 Software developer with focus on

testing, IT infrastructure manager
14.11.2022 Jitsi Meet

Expert 4 E4 Software developer with focus on test
automation

23.12.2022 Jitsi Meet

Table 4.2: Overview of experts (challenge interviews)

One possible analysis method is content structuring content analysis by Kuckartz, a
category-guided text analysis. It identifies topics and systematizes them by applying a
multilevel deductive-inductive category-building process. In inductive category formation,
the category formation is established from the interview material after conducting the
interviews. In deductive category formation, the category system is already in place
before the interviews are conducted and is derived in advance based on literature or
existing studies [12]. In the present thesis, this form of analysis is suitable because
the main categories have already been derived from the theory framework, but due
to the large volume of interview material, the main categories need to be more finely
differentiated into subcategories.

In the first coding process, the text material is assigned to the existing main categories.
During the second coding process, the entire set of textual material is reprocessed
by coding it into subcategories that are created inductively by differentiating the main
categories into more finely granular subcategories. Once all text passages are finally coded,
the data are further analyzed. The category-based analysis along the main categories by
Kuckartz is chosen for this thesis. This form of analysis is a descriptive analysis, mainly
used to answer the question of what is said about a topic in terms of content. For each
main category, the contents of the subcategories should be described. Interpretations
may also be made to better explain the relationships within each subcategory [12].

4.2 Interview Design
This section presents the selected interviewees and a summary of the interview guideline.

4.2.1 Selection of Experts
The experts were selected from a large IT company whose projects are in the area of
HSSA. All four experts are involved in different projects for the company, and their
primary work activity involves testing. Table 4.2 shows their exact roles. The experts
were selected in such a manner to include those who are directly involved in test execution
and test implementation, as well as experts who are more involved in test management.
In this way, the challenges of testing HSSA can be addressed from different perspectives.

31

4. Conceptual Design

The interviews were all conducted via the video messenger Jitsi, and the planned duration
for each interview was one hour.

4.2.2 Interview Guideline
An interview guideline was created to ensure the comparability of the expert interviews’
results and to structure the content thematically. The guideline questions address the
categories of the deductive category system presented in Section 3.2. The questions include
demographic questions and content questions. Each content question about the challenges
in testing HSSA contains two parts - a quantitative assessment of how challenging the
expert considers the area to be - and a qualitative question concerning the explanation
of the actual challenges. The complete guideline can be found in Appendix C. A pilot
interview was conducted in advance to ensure that all questions were understandable,
and the questions were subsequently adapted.

4.3 Demographic Data
The following section presents the results of the demographic questions. Half of the
experts are between 25 and 34 years old, and the other half are between 35 and 44.
All experts are male. One has a high school diploma, two have a B.Sc., and one has a
PhD. All experts work in the industrial area (with half of them working for 5 - 10 years
and the other half working for 11 - 20 years). Half of the experts work additionally in
the scientific area. The average working experience of the experts in general software
development is 15.25 years, in software testing 9.75 years, and in the area of HSSA 4.25
years. Three of the four experts actively work in software testing. On average, they rate
their experience concerning TA at 1.75 on a scale of one to four, with one being very
experienced and four being not experienced. The individual results of the demographic
questions per expert can be found in Appendix B.

4.4 Quantitative Data Analysis
This section presents the results of the quantitative data analysis. Figure 4.1 shows how
challenging the experts rate each area concerning testing HSSA on a scale of one to four,
with one being very challenging and four not challenging.

Figure 4.2 shows the distribution of the quantitative assessment, including the median
values as a boxplot. Statistical evaluation of the median values shows that in the area
of HSSA, TA is rated as very challenging. Testing interoperability between different
components is rated as challenging to very challenging. Testing when using key material
and security certificates, when logical network separation and many different secure
communication protocols are present, is rated as challenging. The setup of testing
infrastructure, handling of test data, and testing when there is spatial separation from
the hardware is rated as rather not challenging to challenging. Testing with different
authorization roles is estimated to be rather not challenging in the area of HSSA.

32

4.4. Quantitative Data Analysis
Vo

te
s

(i
n

%
)

1 2 3 4
0

25

50

75

100

Key material &
security certificates

1 2 3 4
0

25

50

75

100

Logical network
separation

1 2 3 4
0

25

50

75

100

Spatial separation from
the hardware

1 2 3 4
0

25

50

75

100

Many different se-
cure communication

protocols

1 2 3 4
0

25

50

75

100

Test automation

1 2 3 4
0

25

50

75

100

Testing with different
authorization roles

1 2 3 4
0

25

50

75

100

Test data

1 2 3 4
0

25

50

75

100

Interoperability
testing

1 2 3 4
0

25

50

75

100

Testing infrastructure

Challenge level (very challenging (1) to not challenging (4))

Figure 4.1: Quantitative estimation of the challenge level in terms of testing HSSA

very
challenging

(1)

challenging
(2)

rather not
challenging

(3)

not challenging
(4)

Testing infrastructure

Interoperability testing

Test data

Testing with different authorization roles

Test automation

Many different secure communication protocols

Spatial separation from the hardware

Logical network separation

Key material and security certificates

Challenge level

Figure 4.2: Quantitative estimation of the challenge level in testing HSSA boxplot

33

4. Conceptual Design

4.5 Qualitative Data Analysis
This section presents the results of the qualitative data analysis of the expert interviews.
The deductive main categories of challenges were derived in Chapter 3.2. The corre-
sponding subcategories were formed using the deductive-inductive approach of Kuckartz’s
content structuring content analysis. Subsequent analysis of the coded text segments
was performed using the category-based analysis along the main categories (presented in
Section 4.1.3). Different subcategories could be developed inductively based on the de-
ductively formed main categories. Table 4.3 shows the deductively-inductively developed
category system. All categories refer to challenges concerning the testing of HSSA.

4.5.1 Key Material and Security Certificates

The main category of key material and security certificates can be divided into the subcat-
egories of dependency on certificate authority, creation and manipulation of certificates,
PKI, and validation of encrypted and decrypted data.

Dependency on Certificate Authority A challenge arising from using security
certificates is the dependency from the Certificate Authority (CA). To be able to perform
tests, a CA is required to issue the certificates. This dependency becomes problematic
when the test instance of the CA cannot be reached reliably. Such outages block the
testing process as the tests cannot be performed without valid certificates [E1].

Creation and Manipulation of Certificates All four experts consider creating and
manipulating key material and security certificates for testing HSSA to be challenging.

• Customer requirements: The main challenge in self-generated key material and
certificates for the tests is that customers often have requirements for creation that
contradict the recommendations of recognized organizations such as the National
Institute of Standards and Technology. As a result, libraries often do not support
these specifications. Thus, the test code must first be extended to support the
corresponding generation requirements [E4].

• Manipulation: For testing, it is often necessary to manipulate officially obtained
certificates [E1], [E3]. The challenge is to implement their use in such a way that
the CA still recognizes manipulated certificates as valid [E1].

• Temporal validity: Certificates are only valid for a certain period. These temporal
aspects are potential sources of error concerning the stability of automated tests.
Test pipelines may fail because the certificates have not been exchanged in time or
the validity period has been calculated as too short, resulting in maintenance effort
[E3].

34

4.5. Qualitative Data Analysis

Main Category Subcategory

Key material and security certifi-
cates

Dependency on certificate authority
Creation and manipulation of certificates
Public key infrastructure
Validation of encrypted and decrypted data

Logical network separation Dependency on the data center
Configuration effort

Spatial separation from the hard-
ware

Manual interaction
Setting up a test station with hardware

Many different secure communica-
tion protocols

Test tools and libraries
Higher complexity arising from transport en-
cryption

Test automation

Initial setup
Test code architecture
State controllability
Resources
Difference local vs. virtual execution of TA
Simulation of human interaction

Testing with different authorization
roles

Increased number and complexity of tests
Generalization of test data

Test data Temporal validity
Test data management

Interoperability testing
Third-party systems
Complex environment management
Increased testing effort

Testing infrastructure
Resource problems
Hardware
Configuration complexity

Further challenges

Restricted rights and complicated debugging
Secure execution environment and storage
management
Library version updates
Trade-off development and testing status

Table 4.3: Category system with main categories and corresponding subcategories

Public Key Infrastructure If the production code includes an entire PKI, a PKI
for testing must also be set up. The challenge in establishing the PKI for the tests is
that all aspects, including root certificates, TLS, and the content security policy, must
be duplicated from the production code. Even after the initial setup, managing the
infrastructure remains challenging, as keys must be issued and revoked continually [E2].

35

4. Conceptual Design

Validation of Encrypted and Decrypted Data Validating encrypted or decrypted
data during testing can be challenging. The main challenge is that validation or veri-
fication requires to have control over the encryption and decryption functionality and
the possession of the key to decrypt or encrypt the data. However, this key is often not
possessed [E4].

4.5.2 Logical Network Separation
The main category of logical network separation can be divided into the subcategories of
dependency on the data center and configuration effort.

Dependency on the Data Center Logical network separation creates a dependency
on the data center during testing when specific tests require obtaining access rights to
individual network segments. The data center is responsible for this assignment of rights.
Because the assignment of rights is often unclear, this condition frequently leads to delays
[E3].

Configuration Effort Some projects require routers for tests to access secure networks
(VPN), resulting in a high configuration effort for the computer and hardware [E1]. Both
must be configured to interact correctly, as must the software’s individual and external
components, which are located in other network segments [E3]. However, only two of four
experts ([E1] and [E3]) consider the configuration effort to be a challenge in this context.

4.5.3 Spatial Separation from the Hardware
The main category of spatial separation from the hardware can be categorized into the
subcategories of manual interaction and setting up a test station with the hardware.

Manual Interaction For tests involving hardware, a challenge with spatial separation
is that manual interaction with the hardware is usually necessary at some point [E1],
[E2], [E4]. However, manual interaction is not easily possible because the hardware is
spatially isolated. There are three options in this case. First, testers can communicate
with authorized persons who have access to the hardware and can perform the necessary
actions on the devices. However, this option requires planning and time and eventually
blocks further test execution [E1]. Second, the hardware can be automated with a second
piece of hardware that performs the previously manually performed interactions, but
this is usually too complex. Third, all devices can be fully virtualized, which is too
time-consuming [E4]. Overall, three of the four experts see a challenge in testing in the
manual interaction with the devices.

Setting up a Test Station with Hardware If a test station is set up with the
hardware at one location, the testers at other locations must still be able to perform their
tests that involve the hardware. The challenges in that context are to make it possible

36

4.5. Qualitative Data Analysis

to perform those tests without direct access for the testers but also to set up the test
station in such a way that the devices are separated from each other and individually
reachable [E3].

4.5.4 Many Different Secure Communication Protocols

The main category of many different secure communication protocols contains the subcat-
egories test tools and libraries, and higher complexity arising from transport encryption.

Test Tools and Libraries One challenge is that using standardized test tools or
libraries is challenging due to the heterogeneous setup resulting from many different
protocols [E2]. If no library may be used or no suitable library is available to test a specific
protocol, the code must be implemented manually [E4]. The degree of difficulty differs
depending on the protocol. Especially proprietary protocols or dedicated protocols such
as SMTP or POP3 are much more complicated to test than standard protocols like HTTP
[E2], [E4]. Adding security to the protocols (e.g., through TLS) increases the challenge
because the libraries do not necessarily provide adequate support for this function, or if
they do, the behavior of a library differs from protocol to protocol [E4]. This condition
implies that implementing the tests for the protocols can be very time-consuming [E4].

Higher Complexity Arising from Transport Encryption Due to the presence of
transport encryption, it is more difficult to test the functionality of a communication
protocol, including its correct data transmission [E2]. The presence of TLS requires
the possession and correct handling of the TLS keys and certificates, which involves
additional configuration effort in the test environment [E4].

4.5.5 Test Automation

The main category of TA can be divided into the subcategories of initial setup, test code
architecture, controllability, resources, difference local vs. virtual execution of TA and
simulation of human interaction.

Initial Setup The initial introduction of TA in a project requires configuring the entire
setup, including the virtual resources on which the TA runs remotely. The main challenge
is to find the proper settings and the configuration of special cases for which the solution
is not immediately obvious [E3].

Test Code Architecture HSSA consist of many different components and services.
Due to the large number of components and the overall complexity of such software
systems, the architecture of the TA becomes particularly complex. Implementing TA
can, therefore, involve a large amount of necessary test code, especially because there are
also many different test data involved [E1].

37

4. Conceptual Design

State Controllability Testing HSSA involves testing many different scenarios, espe-
cially due to the complexity and numerous security mechanisms of HSSA. Therefore,
it is crucial to be able to control the state of the SUT or the components with which
it interacts. Thus, it must be possible to produce not only standard states but also
especially error and invalid states. This requirement is especially challenging due to the
complexity of HSSA [E4].

Resources There are challenges regarding physical and virtual resources.

• Physical resource problem: Once hardware is part of a HSSA, full TA requires
preparing a large number of devices. In that case, each device contains a different
state to be tested. This situation leads to high costs and a spatial problem for the
setup [E1], [E3].

• Virtual resource problem: This problem arises when only a certain contingent
of virtual resources is available due to high resource costs. If too few virtual
resources for TA are available, the tests cannot all run in parallel, and therefore
the throughput time is very long. Moreover, testers are delayed in their testing
process if only one can run the remote pipeline at a time. With HSSA, resources are
primarily scarce because testing them involves starting many different components,
including resource-intensive processes and simulators [E3].

Difference Local vs. Virtual Execution of TA In some projects, testers can
perform automated tests locally in their specific setup and remotely in virtual pipelines.
Virtual execution involves steps such as starting servers, runners, and virtual instances,
which are not part of the local execution. If errors that did not occur in the local
setup occur virtually, it is difficult to reproduce them locally, making it more difficult to
understand the cause of the error. In the context of HSSA, common differences between
running TA locally versus virtually involve using different certificates or starting resources
differently. Another challenge is determining the appropriate settings so that the entire
system continues to function correctly after a switch from local TA execution to a virtual
form [E3].

Simulation of Human Interaction Simulation of human interaction in TA is chal-
lenging because human interactions are complex, and the simulation usually differs
significantly from reality in the implementation [E1].

4.5.6 Testing with Different Authorization Roles

The challenges that arise when testing with different authorization roles can be categorized
into the subcategories of increased number and complexity of tests and generalization of
test data.

38

4.5. Qualitative Data Analysis

Increased Number and Complexity of Tests Each role has different authorization
rights within an application. Therefore, tests must be performed from the perspective of
each role. Compared to an application in which each role has the same permissions, this
condition results in significantly more test cases and thus more test code [E1], [E2], [E4].
Complexity is added in tests with a security focus, which requires verification that the
expected role image has been enforced [E2]. While [E1] considers testing with different
authorization roles to be very complex, both [E2] and [E4] disagree on that.

Generalization of Test Data Test data should be generalized such that they can be
applied to all roles in the same way and under comparable conditions. However, different
roles usually have different rights, and therefore, different test data are needed. Hence, it
is challenging to generalize the test data as much as possible so that they are valid for as
many roles as possible [E3].

4.5.7 Test Data
The main category of test data can be categorized into the subcategories of temporal
validity and test data management.

Temporal Validity One challenge with test data in the area of HSSA is temporal
validity. For example, if tests are not executed for a long period, the temporal test data
can expire, causing the entire TA to fail. The maintenance overhead mostly results from
the fact that temporal test data must often be entered manually into the SUT [E1].

Test Data Management Test data management is challenging regarding versioning,
modification, generation, import, and clean-up of test data.

• Versioning: Test data management involves frequent test data modification or the
generation of new test data. However, older software versions might still require old
test data. The challenge is to achieve proper versioning so that only the test data
that are still necessary remains without creating a massive data repository [E3].

• Modification: A challenge in test data management arises when the TA has modified
the test data during the test in such a way that a manual maintenance effort is
required afterward to restore the original test data [E1].

• Generation of test data: Test data can usually be generated automatically. A
prerequisite for this generation is that all third-party systems from which the
data are obtained are fully virtualized. In some cases, this condition can not
be implemented, posing the challenge of manual and time-consuming test data
generation [E4].

• Import and clean-up: Another challenge is the import of test data and the corre-
sponding environment configuration during test preparation and the clean-up after

39

4. Conceptual Design

testing. The clean-up is essential to ensure that no test data remains in the system
after the execution of the tests so that further tests can be performed smoothly
without any blocking processes [E2].

4.5.8 Interoperability Testing
The main category of interoperability testing can be divided into the subcategories of
third-party systems, complex environment management, and increased testing effort. While
three of the four experts see this category as a challenge, one ([E4]) does not.

Third-Party Systems Testing the interoperability of the SUT with third-party systems
creates a dependency that leads to blocking of the test process in cases of outages of
the third-party systems. Moreover, there is usually no access to the source code of the
third-party systems, making troubleshooting more difficult [E1]

Complex Environment Management When testing interoperability between com-
ponents of an HSSA, it is necessary to start a large number of different components and
mocks [E2], [E3]. The challenge is to retain an overview despite this complexity on the
one hand and, to choose the right setup (local or remote), and to determine the required
resources on the other [E2]. Moreover, it is challenging that interoperability testing often
requires at the network level that components can communicate with each other that
usually do not interact [E3].

Increased Testing Effort Components in an HSSA often have different release cycles
[E4]. Thus, the interfaces of the individual components change regularly [E3]. If their
interoperability is to be tested, a multiplicity of different versions of the components
must be tested, resulting in many more combination variants and, thus, a higher number
of necessary test cases and test executions [E2], [E4]. This situation has the negative side
effect of creating a resource problem because insufficient resources are usually available
to test the entire combinatorics of the interoperabilities [E2]. To overcome this overhead,
tests must be prioritized and selected to test the most critical interactions [E2], [E3].

4.5.9 Testing Infrastructure
The main category of testing infrastructure can be divided into the subcategories of
resource problems, hardware, and configuration complexity.

Resource Problems The interaction of the software and hardware components and
the provision and maintenance of the testing infrastructure becomes increasingly complex
with increasing size and accordingly devours resources. Virtualizing all components is
not a solution because it only changes the physical resource problem to a virtual one.
Especially complex environments, such as HSSA, require multiple test environments
utilizing further resources [E2].

40

4.5. Qualitative Data Analysis

Hardware The testing infrastructure includes the hardware that is required to execute
the tests. The challenge is to create a place for the hardware and establish it there in
such a way that all functions are reliably accessible and reachable for testing [E1].

Configuration Complexity Difficulties in configuring the testing infrastructure arise
when specific non-standard cases must be configured [E3]. Because HSSA involve many
different components, many areas exhibit incorrect configurations [E2]. The configuration
complexity increases if the SUT requires connections to several external systems. In this
case, the testing infrastructure must be configured accordingly [E4].

4.5.10 Further Challenges
The main category of further challenges consists of the subcategories of restricted rights
and complicated debugging, secure execution environment and storage management, library
version updates, and trade-off development and testing status.

Restricted Rights and Complicated Debugging The security mechanisms in an
HSSA lead to the following restrictions:

• Restricted log data and more difficult debugging: Due to security measures, an HSSA
is only allowed to release limited information to the outside world, and therefore
log output is severely limited. As a result, fault localization and debugging are
challenging [E3].

• Log analysis: HSSA involves many diverse components. Therefore, it is challenging
to analyze and evaluate the log entries of these numerous components because there
are so many log files in different places [E3].

• Restricted rights: Testers are restricted in testing because they cannot arbitrar-
ily create states and perform actions due to action rights restricted by security
mechanisms [E2].

Secure Execution Environment and Storage Management Another challenge
in testing HSSA is testing with a secure execution environment and secure storage
management. The secure execution context must be encrypted and booted individually
for each execution. After each test execution, the execution context must be cleaned up
accordingly. To verify that no sensitive information has been left in the main memory
after execution, tests must be implemented. The main challenges are how to use, evaluate,
and search main memory snapshots of the relevant areas after each test and how to verify
that no sensitive data remains in the main memory snapshot [E2].

Library Version Updates A fundamental problem with testing in the area of HSSA
concerns library versions. Overall, as many libraries as possible are used to facilitate
test code implementation, however, the problem is that these libraries must always

41

4. Conceptual Design

be updated to the most recent versions to ensure that the library code complies with
the latest security standards. The challenge is to maintain the test code when a new
library contains many changes, with many functionalities that no longer work as they did
previously. Frequent updates to library dependencies often result in failing test pipelines.
In these cases, extensive troubleshooting is necessary to conclude that the library updates
have caused the failure [E3].

Trade-Off Development and Testing Status Another challenge is the trade-off
between development and testing status. To ensure security, a feature should only be
merged when the tests for it are ready. However, because the number of testers is usually
less than the number of developers, the testers are often behind schedule [E3].

4.6 Resulting Challenges
Data analysis of the interviews showed that numerous challenges exist when testing HSSA
due to the various implemented security mechanisms and the complexity of integrated
services and components. The following summarizes the resulting challenges.

• Key material and security certificates: Most challenging are the dependency on the
CA and the need to successfully obtain and manipulate the certificates, as testing
cannot occur without this availability. Moreover, the duplication of a PKI for the
tests, as well as the validation of encrypted and decrypted data during testing, is
challenging.

• Logical network separation: If the data center is not instantly available to assign
rights to different subnets, the tests requiring those rights are blocked. In addition,
a high level of configuration effort is necessary to access individual subnets during
the tests.

• Spatial separation from the hardware: If the hardware is spatially separated during
the tests, manual interaction is necessary at some point. Moreover, setting up a
test station poses the challenge of fully separating the hardware devices from each
other.

• Many different secure communication protocols: Challenging in this context is that
using standardized test tools and libraries is difficult due to the heterogeneous nature
of HSSA. Therefore, libraries often must be extended manually. Another challenge
is that adding transport encryption to the protocols increases the complexity of
testing them.

• Test automation: The initial introduction of TA is particularly challenging. Fur-
thermore, creating the desired error and invalid states for the tests is demanding
because the controllability of the entire system is required for this process. In
addition, resource scarcity, both virtual and physical, poses a challenge. Apart

42

4.7. Filtered Deductive Category System

from these factors, the difference between the local and virtual test environments is
challenging, as both behave differently, and the test conditions, therefore, differ.
Moreover, simulating human actions poses a challenge.

• Testing with different authorization roles: Testing from the perspective of each role
results in a higher number and complexity of tests. To be able to reuse test data,
these test data must be generalized for the different roles. However, this task is
demanding due to the different rights that each role has been assigned.

• Test data: A further challenge is the generation of temporally valid test data. The
challenges in test data management are the achievement of proper versioning of
the test data, the generation of test data, importation of test data, and subsequent
clean-up after test execution.

• Interoperability testing: Testing the interoperability of the SUT with third-party
systems creates a potential blocking of the test process in case of outages of the
third-party systems. Complex environment management is a particular challenge
during interoperability tests of an HSSA. Due to the many different versions of the
individual components, higher testing effort is necessary.

• Testing infrastructure: Testing with a testing infrastructure involves resource
scarcity. Moreover, it is complex to configure the testing infrastructure as HSSA
involve many non-standard cases.

• Further challenges: Other challenges arise concerning the limited rights of the
testers, limited log data, and complex log analysis due to the complex setup. A
secure execution environment and secure storage management have also proven
challenging during testing. Furthermore, library updates and related changes in
the software can lead to failed tests. In addition, there is often a trade-off between
the development and testing status,

4.7 Filtered Deductive Category System
Based on the results of the interviews regarding the challenges in testing HSSA, the main
and corresponding subcategories of investigation are selected, which are to be investigated
in the subsequent case studies. The selection of these categories is performed in two
stages. In the first stage, filtering is performed in technical areas, and in the second
stage, filtering is performed based on the experts’ votes regarding how challenging a main
category should be classified.

• First step: Because the case studies are intended to address technical areas of
testing, the first step is to highlight all subcategories involving technical challenges
in testing HSSA (these subcategories are printed in bold in Table 4.4).

43

4. Conceptual Design

• Second step: The second step is to ascertain how challenging the experts rated
the different main categories on a scale of one to four, with one being the most
challenging and four being the least challenging. All main categories that were
assessed by at least 50 percent of the experts as rather less challenging (3) or not
challenging (4) are excluded from further examination. All main categories that
were not deleted are highlighted in gray in Table 4.4.

Table 4.4 shows the resulting filtered deductive category system. The subcategories to
be examined in the case study for concepts in testing HSSA have been highlighted in
gray and bold.

44

4.7. Filtered Deductive Category System

Main Category Subcategory

Key material and security certifi-
cates

Dependency on certificate authority
Creation and manipulation of certifi-
cates
Public key infrastructure
Validation of encrypted and decrypted
data

Logical network separation Dependency on the data center
Configuration effort

Spatial separation from the hard-
ware

Manual interaction
Setting up a test station with hardware

Many different secure communica-
tion protocols

Test tools and libraries
Higher complexity arising from trans-
port encryption

Test automation

Initial setup
Test code architecture
State controllability
Resources
Difference local vs. virtual execution of
test automation
Simulation of human interaction

Testing with different authorization
roles

Increased number and complexity of
tests
Generalization of test data

Test data Temporal validity
Test data management

Interoperability testing
Third-party systems
Complex environment management
Increased testing effort

Testing infrastructure
Resource problems
Hardware
Configuration complexity

Further challenges

Restricted rights and complicated de-
bugging
Secure execution environment and stor-
age management
Library version updates
Trade-off development and testing status

Table 4.4: Filtered category system

45

CHAPTER 5
Case Study

A case study is conducted to determine which concepts are used in testing HSSA in
practice. Therefore, the methodology used in the process and the selection of the two
studied cases are presented below. Subsequently, the results of the within-case analyses
and the subsequent cross-case analysis are explained.

5.1 Methodology
This section presents and explains case study as research methodology, the data collection
form, and the data analysis form.

5.1.1 Case Study as a Scientific Method
Yin et al. define a case study as the following [13]:

"A case study is an empirical method that investigates a contemporary phenomenon (the
’case’) in depth and within its real-world context, especially when the boundaries between
phenomenon and context may not be clearly evident."

Case studies can be conducted either qualitatively or quantitatively, with the qualitative
approach being chosen more frequently [90]. According to Yin, case studies can be divided
into four different design types. A distinction is made between single- and multiple-case
designs, on the one hand, and between a unit of analysis (holistic approach) and multiple
units of analysis (embedded approach) on the other. Yin has further distinguished among
explanatory, exploratory, and descriptive case studies [13].

In this thesis, a descriptive embedded-multiple case study is deemed suitable to answer
the second research question RQ2, how the identified challenge categories are addressed
in practice, for the following reasons:

47

5. Case Study

1. Type of research question: The type of research question strongly influences the
choice of research method. Case studies are particularly suitable for answering
"how" or "why" research questions [13].

2. Comparability: The deductive category system allows comparison of the different
cases in a structured way in the individual units, making it possible to identify
common and differing concepts and thus to better explain interrelationships.

3. Meaningfulness: By analyzing several cases, the validity of the concepts is increased,
especially if they occur in multiple cases.

5.1.2 Data Collection
Data triangulation, or the use of several different data sources, is a suitable method for
data collection [13]. In the context of this thesis, informal interviews, code repositories,
confluence articles, test case specifications, and documents are used as data sources.
Through data triangulation, a higher validity of the research results can be achieved
because the object of study is examined from different angles, thus providing a broader,
more objective view [91].

5.1.3 Data Analysis
Figure 5.1 presents the procedure for conducting the case study research and the sub-
sequent data analysis. The methodology suggested by Yin for conducting multiple
case studies is as follows. First, a within-case analysis, or the independent detailed
investigation, of each case is conducted. A cross-case analysis is conducted next to
uncover cross-case differences and similarities. The cross-case analysis thus increases the
generalizability of the concepts found [13]. Both within-case and cross-case analysis work
with a deductive category system with main categories and subcategories, which has
been described in Chapter 4.7.

Figure 5.1: Multiple-case study procedure (based on [13])

48

5.2. Case Selection

5.2 Case Selection
This section presents the motivations behind the selection of the two case studies chosen
for the investigation to determine which concepts are used in practice when testing
HSSA and summarizes the essential information related to the cases, including technical
background information.

Both projects originate in the eHealth sector. Software projects from the eHealth area
are particularly suitable for the case study for the following reasons:

• Data sensitivity: Health data are particularly worthy of protection due to their
sensitivity. This protection serves to ensure the privacy of personal data [92].

• Data protection laws: Due to the sensitivity of health data, the security requirements
for such data are exceptionally high. Strict legal regulations and laws, such as the
General Data Protection Regulation, have been introduced throughout Europe to
ensure compliance [92].

• Requirements compliance: To ensure that security standards are met, the functional
and security-specific requirements that software must fulfill are specified in detail in
eHealth projects (such as BSI TR-03161 [93] for example). To guarantee compliance
with these requirements, a high degree of software testing is necessary12.

• High degree of integration: Since eHealth systems usually have a high degree of
integration with other services as well as other eHealth systems both on a national
and international level, they have a high degree of complexity [94].

The reasons that both cases are suitable for investigation are as follows:

• The projects involve HSSA: Due to the previously mentioned reasons, numerous
security mechanisms are used to make these software architectures secure.

• Special focus on testing: In both projects, particular focus is placed on testing
to ensure the security of the infrastructure so that the handling of sensitive data
is secure. Therefore, the techniques and strategies used to test HSSA despite its
security characteristics and complex composition can be investigated.

Table 5.1 provides an overview of the case-specific characteristics of both cases.

5.2.1 Case Summary – Case 1 (C1)
This section describes the first case and provides technical background information.

12https://www.qamadness.com/fundamentals-of-ehealth-software-testing/, Ac-
cessed: 21.08.2023

49

https://www.qamadness.com/fundamentals-of-ehealth-software-testing/

5. Case Study

Case Description The first case is a middle-scale software project from the eHealth
sector. It consists of several hardware and software components and focuses on a device
that can be used to read sensitive health data and transmit them to other components
via a secure infrastructure. The data transfer and communication of the device to most
other components runs through one interface. The focus of the TA is on testing the
correct implementation of this interface in the software running on the device.

Technical Background Information In this project, Jira’s test management tool
Zephyr Scale13 is used to specify test cases, their preconditions, and test execution steps.
Tests are run only locally and not remotely. Each tester, therefore, requires an own test
device to be able to test the software on it. To be able to execute the automated tests,
a tester needs to enter the device-specific data into the TA code. Depending on which
state of the software the tester wish to test with the automated tests, they install the
relevant software on the device.

Case 1 Case 2
Communication
protocols

HTTP (secured via TLS), SSH HTTP, SMTP, POP3, LDAP,
SOAP, CETP ⇒ all secured via
TLS

Number of
components/
services

13 different components and ser-
vices

19 different components and ser-
vices

UI and technical
interfaces

UI for configuring the setup and
display of status information
available; otherwise primarily
technical interfaces

UI for configuring the setup
available; most of the other ser-
vices only have technical inter-
faces

Security mecha-
nisms (relevant
for conduction of
case study)

Secure communication proto-
cols, PKI, different authoriza-
tion roles, certificates, key ma-
terial

Secure communication proto-
cols, PKI, VPN, spatial sepa-
ration to the hardware, certifi-
cates, key material

Examples of used
technologies

Java16, Python14, Docker17,
OpenSSH15, GitLab20, Maven21

Java16, Docker17, Kubernetes18,
Minikube19, GitLab20, Maven21,
Postgres22

Table 5.1: Case specific characteristics

13https://smartbear.com/test-management/zephyr-scale/, Accessed: 21.08.2023
14https://www.python.org/, Accessed: 25.08.2023
15https://www.openssh.com/, Accessed: 25.08.2023
16https://www.java.com/de/, Accessed: 25.08.2023
17https://www.docker.com/, Accessed: 25.08.2023
18https://kubernetes.io/, Accessed: 25.08.2023
19https://minikube.sigs.k8s.io/docs/, Accessed: 25.08.2023
20https://about.gitlab.com/, Accessed: 25.08.2023
21https://maven.apache.org/, Accessed: 25.08.2023
22https://www.postgresql.org/, Accessed: 25.08.2023

50

https://smartbear.com/test-management/zephyr-scale/
https://www.python.org/
https://www.openssh.com/
https://www.java.com/de/
https://www.docker.com/
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/
https://about.gitlab.com/
https://maven.apache.org/
https://www.postgresql.org/

5.3. Within-Case Analysis – Case 1

5.2.2 Case Summary – Case 2 (C2)
This section describes the second case and provides its technical background information.

Case Description The second case is an industrial project from the eHealth sector.
It is a large-scale project that is deployed throughout Germany. The project’s software
is a complex system composed of many independent services and components, each
containing a unique functionality. The individual components communicate with each
other via different secure communication protocols. The system is deployed in a secure
infrastructure in which sensitive health data can be transmitted securely.

Technical Background Information Because this project involves sensitive data,
the customer demands evidence of compliance with precisely specified requirements. To
comply with this demand, each requirement must be covered by test cases. Therefore,
the aim is to achieve a high degree of test automation. Each test implemented in the
TA is defined with preconditions and detailed test execution steps in the Zephyr Scale13

test management tool before implementation. The TA is implemented in a separate
GitLab23 repository, and GitLab CI is used to implement CI. The CI pipelines run in
a Kubernetes24 cluster environment. To be able to run the automated tests not only
remotely but also locally, testing is performed locally with Minikube25.

5.3 Within-Case Analysis – Case 1
This section presents the within-case analysis of the first case.

5.3.1 Key Material and Security Certificates
This section presents concepts identified in testing this HSSA concerning key material
and security certificates.

Dependency on Certificate Authority During testing, certificates are partially
manually obtained once (static approach). The CA must, therefore, be accessible during
certificate obtaining but not during test execution. More details are presented below.

Creation and Manipulation of Certificates To obtain valid certificates, two ap-
proaches, static and dynamic, are implemented in this case.

• Static approach: In the static approach, certificates are obtained once. The requests
from the SUT to the CA to fetch the certificates are intercepted via a mock server
(for more details regarding the mock server, cf. Section 5.3.3). The tester sends the

23https://about.gitlab.com/de-de/, Accessed: 21.08.2023
24https://kubernetes.io/, Accessed: 21.08.2023
25https://minikube.sigs.k8s.io/docs/, Accessed: 21.08.2023

51

https://about.gitlab.com/de-de/
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/

5. Case Study

intercepted request manually via Postman26 to be able to subsequently read the
certificate from the response. The certificate is stored in the TA’s project resources
and loaded into the system when used in the tests.

• Dynamic approach: In the dynamic approach, certificates are obtained from a CA
each time a test is performed. Device-specific data are required to send a request
to the CA to retrieve a certificate. Therefore, the device is first accessed via SSH
to retrieve these data. The request is then completed with this data and sent to
the CA, and the response is intercepted via the mock server to be able to read the
certificate. This process is fully automated via implemented methods in the TA.

For some tests, the manipulation of the certificates is necessary. Manipulation of the
certificates in this context indicates that they become either textually or temporally
invalid. Textual manipulation in this context involves adding random bytes to the end
of a certificate. For temporal invalidity, the expiration date is manipulated. In both
approaches, the procedure is to obtain a valid certificate and then manipulate it. In the
static approach, this manipulation is performed manually; in the dynamic approach, it is
performed automatically via the test code.

Public Key Infrastructure No concept is identified for this subcategory. Although
this aspect is present in the case, it is not tested.

Validation of Encrypted and Decrypted Data No concept is identified for this
subcategory. Although this aspect is present in the case, it is not tested.

5.3.2 Many Different Secure Communication Protocols
This section presents concepts identified in testing this HSSA concerning many different
secure communication protocols.

Test Tools and Libraries In this case, the tests for testing the secure communication
protocols are implemented manually, but a supporting library is employed. The used
library allows to send requests to the SUT and to receive its responses. However, the
requests must be built manually since the library does not provide any supporting
functions to that. However, like that, the library also allows to send requests containing
errors. In this respect, the protocol can also be tested under misbehavior.

Higher Complexity Arising from Transport Encryption No concept is identified
for this subcategory. Although this aspect is present in the case, it is not tested.

5.3.3 Test Automation
This section presents concepts identified in testing this HSSA concerning test automation.

26https://www.postman.com/, Accessed: 27.08.2023

52

https://www.postman.com/

5.3. Within-Case Analysis – Case 1

Initial Setup In this case, test frameworks with built-in configuration capabilities
are used to manage test environments, test data, and other dependencies. The two test
frameworks employed are the following:

• Selenium: The Selenium27 framework is used to test the web GUI of the software.
The configuration options used are, for example, the logging configurations at which
level of detail is logged, as well as prebuilt settings to configure the web drivers for
different browsers.

• JUnit: The JUnit28 test framework is employed. This framework offers prebuilt
configuration options, thus, the code for this does not need to be implemented
manually. The prebuilt configuration options used are, for example, annotations
with which specific actions can be executed before and after each test or the use of
test suites to combine several test classes that are to be executed together.

Test Code Architecture Parameterized tests are used in the TA. Abstract test scripts
are employed, and test data providers are used to control which data are used to execute
a test. The test is executed once for each test data set. The library used for this is
JUnit28. Parameterized tests are used particularly frequently in error scenarios in which
numerous different error data sets are available.

State Controllability As already mentioned, the project’s central component commu-
nicates with most other components via an interface. In the TA, a mock server simulates
this interface and the components behind it. The following special features are present:

• Saving the executed requests: The mock server (unlike the real component) has an
endpoint that stores all executed requests. This endpoint can be queried via the
TA (or manually) if necessary to check whether the sent requests, including their
values, have arrived at the mock server exactly as desired.

• Variable configuration of the mock server : The mock server provides another
endpoint that can be used to configure the exact values to be returned for a desired
endpoint. When the endpoint is called, the desired response code, return values,
and the endpoint to which these values should be supplied are returned. Thus, it is
possible to create desired error scenarios and states and normal cases.

• Encapsulation: All mock server connections and configuration details are encapsu-
lated in their management classes.

27https://www.selenium.dev/, Accessed: 22.08.2023
28https://junit.org/junit5/, Accessed: 21.08.2023

53

https://www.selenium.dev/
https://junit.org/junit5/

5. Case Study

Resources A semi-automatic test approach is combined with test groups when testing
the hardware. The tests are divided into different groups, whereby the tests of a test
group test the device in exactly one state. The states are recorded in tags, and each
test is annotated with the state required for the test. The concrete procedure for the
actual execution is the manual preparation of the desired state on the hardware, the
subsequent selection of a test grouping for which the tests are to be started, and the
subsequent automatic execution of the tests. In this approach, the device does not need
to be available in large numbers.

Difference Local vs. Virtual Execution of Test Automation No concept is
addressed in this context, as the tests are only executed locally and not remotely.

Simulation of Human Interaction No concept is identified for this subcategory.
Although this aspect is present in the case, it is not tested.

5.3.4 Interoperability Testing

No concepts for this main category are addressed in this context because no interoperability
tests are present.

5.3.5 Further Challenges

This section presents concepts identified in testing this HSSA in relation to further
challenges.

Restricted Rights and Complicated Debugging

• Log reporting library: In this case, a log reporting library is used to examine the
logs of the individual test execution steps. This approach is combined with a central
listener that allows logging of the specific configurations made for the test execution
at the beginning of each test. This is relevant because many different states need
to be configured for the device under test.

• Testing with debug and prod build: Testing is performed using different software
versions. In addition to the product version of the software (prod build), a test
version of the software (debug build) is set up to make testing easier for the testers.
With the debug build, the tester can more easily perform desired actions or create
required states. For example, in the debug state of the software, it is possible to
log sensitive data or read out logs in general. SSH access to the hardware is also
available so that the device can be manipulated directly to create initial states for
the tests without accessing the UI.

54

5.4. Within-Case Analysis – Case 2

Secure Execution Environment and Storage Management Test data are stored
in a configuration file. These data are specific to each test device and, therefore, not
pushed to the remote repository. Instead, they are entered manually by each tester locally.
During test execution, data from the configuration file are loaded into the system and
deleted after test execution.

Library Version Updates No concept is identified for this subcategory. Although
this aspect is present in the case, it is not tested.

5.4 Within-Case Analysis – Case 2
This section presents the within-case analysis of the second case.

5.4.1 Key Material and Security Certificates
This section presents concepts identified in testing this HSSA concerning key material
and security certificates.

Dependency on Certificate Authority In this case, static certificates are obtained
once from a CA and used for testing. Further details are presented directly below.

Creation and Manipulation of Certificates Valid certificates are obtained once
from an authentic CA. To obtain them, a selected person runs a script, as not all testers
have access to the root certificate; therefore, most testers cannot create the certificates
themselves. The certificates are created with the longest possible validity period so that
they do not need to be frequently replaced. Once created, they are stored in a keystore
with password protection and only loaded into the system when the individual tests are
executed. Depending on the requirements, certificates or private keys are loaded into the
test environment. The certificates are then either used as test data, for example, to read
data from the certificate, or for encryption, decryption, or generation of signatures.

For some test cases, it is necessary to work with manipulated certificates. Certificates for
which the validity period is to be manipulated to a non-valid period are obtained directly
from the CA as temporally invalid certificates when they are created and stored in the
project resources. Other content manipulations are performed dynamically at runtime
by loading the valid certificates and then manipulating them in the test so that certain
content becomes invalid.

Public Key Infrastructure OCSP and TLS simulators are used, which are not
standard simulator software but explicitly implemented for this case study. While an
actual OCSP responder is used in the production environment, a simulator is used for
testing. The OCSP simulator allows checking of whether a certificate status is authentic
and valid or has been revoked. The simulator checks the general validity of the certificate

55

5. Case Study

and also checks the project-specific certificate validity requirements. Moreover, the OCSP
simulator can also be used to configure which status is to be returned for a certificate.
This function is used, for example, to test how the SUT behaves when the certificate
status is invalid or unknown. If a tester does not wish to configure the OCSP simulator
for each certificate individually, the status (also valid) can as well be set for several
certificates simultaneously.

The TLS simulator is a TLS proxy that uniformly handles TLS termination for all other
simulators in the TA. It acts as an intermediate component for connections between
the SUT and the simulators. It accepts all HTTP(S), TLS connections on both sides,
forwards the requests from the SUT to the simulator or in the reverse direction and
performs their encryption or decryption.

Validation of Encrypted and Decrypted Data In this case, encryption and decryp-
tion methods are implemented in the TA. These methods prepare or manipulate data and
send calls to encryption or decryption services, which are usually called automatically in
the production system when data are sent.

To check the decryption functionality of the SUT, it is necessary to produce encrypted
data in the TA. Therefore, the implemented encryption methods are used to produce
encrypted data in the TA and send them to the SUT. Thus, encryption can be performed
with different encryption ciphers, and it can be determined whether the SUT can process
all inputs or if it rejects certain encryption ciphers. It can also be used to check particular
special cases, such as those in which the encryption is present but the signature is
not valid. The prerequisite for using these methods is that one requires control over
encryption, signatures, and respective keys in the TA.

The decryption methods implemented in the TA are used to test the encryption func-
tionality of the SUT. Specifically, unencrypted data are sent to the SUT, which encrypts
the data and sends it to a component mocked in the TA via a simulator. The simulator
functionality allows the encrypted data to be intercepted. The encrypted data are then
decrypted using the decryption methods implemented in the TA. In this way, it is possible
to check whether the original data are identical to the decrypted data and, thus, whether
the SUT has performed the encryption correctly.

5.4.2 Many Different Secure Communication Protocols
This section presents concepts identified in testing this HSSA concerning many different
secure communication protocols.

Test Tools and Libraries In this case, the code for the tests is manually implemented.
However, libraries with supporting functions are employed. The supporting mechanisms
of the libraries help to verify whether the SUT has implemented the protocol correctly
according to specification. The libraries are used in the tests to send commands or
requests to the SUT. Partially, functions of the library are used, and partially custom

56

5.4. Within-Case Analysis – Case 2

commands are sent. Moreover, they have functionality that allows the response of the
SUT to be stored and queried by the library to assess the correctness of the responses of
the SUT. The original libraries do not cover some special cases, so they are extended
with additional code, or certain functions are overwritten. In connection with the secure
communication protocols, a central logger is used. This library automatically logs all
commands and requests sent to a server and their responses. This central logger is
registered as a listener with the respective library.

Higher Complexity Arising from Transport Encryption Testing is performed
in multiple layers. When testing in multiple layers, tests are first performed without
transport encryption to verify the correct transmission of the data and the functionality of
the protocols as simply as possible without requiring a focus on complicating mechanisms.
Only at a later stage is a complexity level added, and the tests are performed with
transport encryption from that point forward.

5.4.3 Test Automation
This section presents concepts identified in testing this HSSA concerning test automation.

Initial Setup The JUnit29 test framework with its prebuilt configuration options is
employed. Prebuild configuration options used are, for example, annotations with which
specific actions can be executed before and after each test or the use of test suites to
combine several test classes that are to be executed together.

Test Code Architecture The following different techniques are used:

• Parameterized tests: Test data providers and abstract test scripts are used to
decouple the test data from the test code.

• Preconditions: Preconditions, reusable encapsulated code, are used to prepare a
condition before the actual test execution, for example, by retrieving interfaces to
fetch certificates or tokens. If a test case is annotated with a specific precondition,
it is executed before the test code execution.

• Modularization: Subtests are also used in the TA. These are reusable tests that do
not represent completely independent standalone tests by themselves but can be
integrated and combined as desired.

State Controllability Two concepts, simulators, and unique test data, are used in
this category:

29https://junit.org/junit5/, Accessed: 21.08.2023

57

https://junit.org/junit5/

5. Case Study

• Simulators: The simulators used in this case are complex structures that are
completely self-implemented. Each simulator is a separate, independent Java30 or
Kotlin31 project. They are used to simulate real actions or components.

– Configurability from TA: The simulators are fully dynamically configurable
from within the TA for each test case individually. Configurability in this
context indicates that the simulators respond to requests exactly as desired.
A simulator is configured for the subsequent call, a call of a specific path, or
via a call that uses a unique identifier.

– Creating error states: To be able to test the system during fault behavior, it
is required that the SUT can be placed in every desired state. In the present
project, the simulators allow the creation of error states. By default, the
simulators are configured to respond to good cases. However, if an error state
is to be created, a simulator is configured to respond with the desired error
code or error state. Error codes are response codes, while error states can be
complex structures such as invalid files or certificates.

– Verifiability of incoming and outgoing values: The implementation of the
simulators allows that from the TA, it is possible to query what information is
arriving at or being sent from the simulator. Thereby, it can be checked whether
requests on certain paths have (not) been sent and whether the content of a
request sent by the simulator or a request arriving at the simulator corresponds
to the expected value.

– Encapsulation: Simulator connections are managed in their own manager
classes.

• Unique test data: In the tests, unique test data are used. Name identifiers, or id
identifiers, are created uniquely for each execution of a test case using random
generators and UUIDs. For example, unique test data are used when configuring
the simulators, allowing the isolation of a test and each of its executions.

Resources

• On-demand setup of a test environment: A test environment can be established
automatically on demand. The following special features are available:

– Flexibility of setup: The on-demand test environment can be started locally
and remotely, enabling local and remote testing. The technology used locally
is Minikube32, while Kubernetes33 is used remotely in the Gitlab34 CI pipeline.
The individual services are integrated and configured as Docker35 containers.

30https://www.java.com/de/, Accessed: 25.08.2023
31https://kotlinlang.org/, Accessed: 25.08.2023
32https://minikube.sigs.k8s.io/docs/, Accessed: 21.08.2023
33https://kubernetes.io/, Accessed: 21.08.23
34https://about.gitlab.com/, Accessed: 25.08.2023
35https://www.docker.com/, Accessed: 25.08.2023

58

https://www.java.com/de/
https://kotlinlang.org/
https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/
https://about.gitlab.com/
https://www.docker.com/

5.4. Within-Case Analysis – Case 2

– Scalability: The test environment is launched depending on the number of
components and services required and the resources involved.

– Fully automated start and stop: The test environment can be started or shut
down fully automatically by executing a script. A console script is executed
locally, and a CI configuration script is executed remotely.

– SUT version: The on-demand test environment can be started with exactly
the version of the SUT that is needed. By default, the script extracts the
image of the version to be tested from the name of the test branch and starts
the test environment with this version. Otherwise, it is also possible to specify
a different version via a console parameter.

• Long and short-running tests: There is a division into long-running and short-
running tests. Long-running tests are marked via annotations and explicitly
excluded from the GitLab36 pipelines executed on every push to the repository.
They are only run in nightly pipelines to avoid blocking resources during the day.

Difference Local vs. Virtual Execution of Test Automation Two concepts are
applied in this regard:

• Connection to the remote cluster : If errors occur only in the remote environment but
not in the local environment, then a local connection to the remote cluster is used.
In doing so, the tester configures the GitLab36 configuration so that Minikube37

uses GitLab’s36 remote pipelines rather than a local Kubernetes38 environment as
in standard local testing. When a test is executed, it is executed in the remote
cluster rather than the local cluster. This condition allows testers to see the logs in
the local setup and better investigate, for instance, why a bug has occurred in the
remote cluster but not in the local cluster.

• Possible configurable test setup: By making the test setup as configurable as possible,
it is possible to quickly switch from local to remote testing. The configuration data
are not hardcoded in the test code but are stored in external configuration files.
Depending on the test environment (local or remote), a different configuration file
is used in each case, thus allowing a rapid switch.

Simulation of Human Interaction In this case, simple human interactions are simu-
lated with hardware simulators. Methods simulating human interactions are implemented
on the simulator. These methods consist primarily of various HTTP calls, which would
be executed automatically in certain real-world interactions. The required simulator
methods can be called from TA.

36https://about.gitlab.com/de-de/, Accessed: 21.08.2023
37https://minikube.sigs.k8s.io/docs/, Accessed: 21.08.2023
38https://kubernetes.io/, Accessed: 21.08.23

59

https://about.gitlab.com/de-de/
https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/

5. Case Study

5.4.4 Interoperability Testing
This section presents concepts identified in testing this HSSA concerning interoperability
testing.

Third-Party Systems No concept is identified for this subcategory as this aspect is
not tested in the case.

Complex Environment Management The environment and its instances for the
interoperability tests are controlled automatically via scripts. Command line parameters
are used to configure how many instances of each component can run and how many
components attempt to access and interact with the SUT. This condition is particularly
relevant for the interoperability tests performed in this case because the SUT is to be
tested under different environmental conditions. This requirement is facilitated by the
condition that no complex instances need to be manually started.

Increased Testing Effort No concept is identified for this subcategory as this aspect
is not represented in the case.

5.4.5 Further Challenges
This section presents concepts identified in testing this HSSA in relation to further
challenges.

Restricted Rights and Complicated Debugging

• Real time log analysis: With this mechanism, the log data of the individual
Kubernetes39 containers are accessed from the TA. Thus, it is checked whether
individual components have carried out certain actions or have not carried them
out. In addition, it can be checked whether sensitive data is logged or not logged.
The procedure for this is as follows. In the TA, a checkpoint is initiated, from
which point in time the logs of a container are tracked. For this process, the user
provides the name of the container whose logs should be tracked. If the logs are
now required for verification, they can be read out, and assertions can be made on
them.

• Log reporting and log data aggregation: Another mechanism in this context is log
reporting. This library is self-implemented. When this mechanism is enabled in
the TA, a test execution log is created. In this case, each test execution step is
provided with a log that describes in detail which configuration (for simulators, for
example) has been established in the test step, which action has been executed, or
which assertions have been made. The library writes the logs to a test execution

39https://kubernetes.io/, Accessed: 21.08.23

60

https://kubernetes.io/

5.5. Cross-Case Analysis

protocol. Like that, log data aggregation is achieved. This mechanism can be used
in the local setup as well as in the GitLab40 pipeline.

• Testing in multiple environments: Testing is performed in several different environ-
ments. In addition to the production environment, different test and integration
environments are employed. The rights of a tester differ by stage. In purely internal
test environments, for example, testers have full rights and can perform any desired
action that is not possible in the production environment. In addition, simulators
are also used in these environments, and it is also possible to log more sensitive
data to better track errors.

Secure Execution Environment and Storage Management The focus in this
context is on two concepts: containerization and virtualization, as well as secure storage.

• Containerization and virtualization: As explained in previous sections, isolated
in-house test environments are primarily used for the tests. There, each simulator
and test object runs in its own Docker41 container. Therefore, each container can
be reinitialized at the runtime of a test with the desired version number. Because
each container is a standalone compartmentalized environment, each test running
in a container is completely isolated from the other tests.

• Secure storage: Sensitive test data are stored in encrypted files, loaded into the
system individually for each test run, and deleted again afterward.

Library Version Updates One way to monitor that deployed software versions still
function correctly despite library version updates is to rely on automated smoke tests.
At certain scheduled time intervals, automated smoke tests are run against the various
test, integration, and production environments in GitLab40 pipelines, and their results
are reported in the testers’ communication platform. If library version updates occurred
in the meantime, it can be checked whether the software’s basic functionality has been
maintained despite the library updates.

5.5 Cross-Case Analysis
This section presents a cross-case analysis to specify the similarities and differences
between the concepts of the respective subcategories. Table 5.2 shows for which subcate-
gories concepts are found. Because comparisons are only possible if a concept is available
for a subcategory in both cases, only those subcategories for which a test concept is
available for both are compared. The reasons for the similarities and differences are
discussed to conclude the cross-case analysis.

40https://about.gitlab.com/, Accessed: 27.08.2023
41https://www.docker.com/, Accessed: 27.07.2023

61

https://about.gitlab.com/
https://www.docker.com/

5. Case Study

Main Category Subcategory Case 1 Case 2

Key material and
security certificates

Dependency on certificate authority ✓ ✓
Creation and manipulation of certificates ✓ ✓
Public key infrastructure × ✓
Validation of encrypted and decrypted
data

× ✓

Many different se-
cure communication
protocols

Test tools and libraries ✓ ✓
Higher complexity arising from transport
encryption

× ✓

Test automation

Initial setup ✓ ✓
Test code architecture ✓ ✓
State controllability ✓ ✓
Resources ✓ ✓
Difference local vs. virtual execution of
TA

× ✓

Simulation of human interaction × ✓

Interoperability
testing

Third-party systems × ×
Complex environment management × ✓
Increased testing effort × ×

Further challenges

Restricted rights and complicated debug-
ging

✓ ✓

Secure execution environment and storage
management

✓ ✓

Library version updates × ✓

Table 5.2: Cross-case comparison of concepts

5.5.1 Key Material and Security Certificates
This section presents, across cases, the similarities and differences between the case-specific
concepts identified in testing HSSA concerning key material and security certificates.

Dependency on Certificate Authority In both cases, static certificates are used for
testing. To obtain valid certificates they are obtained once from an authentic CA. While
the certificates are stored in a keystore for additional security in C2, they are stored in
the project resources in C1.

Creation and Manipulation of Certificates As mentioned in the previous sections,
valid certificates are obtained via a static approach in both cases. In the case of C1, a
dynamic approach, in which certificates are obtained from an CA each time they are
used in the tests, is also implemented for some certificates.

For C1, manipulation occurs manually for the static certificates, while this process is
performed at runtime via the test code in the dynamic approach. For C2, the manipulation

62

5.5. Cross-Case Analysis

occurs via a script.

5.5.2 Many Different Secure Communication Protocols
This section presents, across cases, the similarities and differences between the case-specific
concepts identified in testing HSSA concerning many different secure communication
protocols.

Test Tools and Libraries The tests for testing the secure communication protocols
are implemented manually. However, both cases use libraries with supporting functions to
send requests to the SUT and receive requests from the SUT. While in C2, libraries have
pre-implemented functionality for some requests, in C1, all requests are built manually.
In C2, the libraries are extended with additional code; in C1 not.

5.5.3 Test Automation
This section presents, across cases, the similarities and differences between the case-specific
concepts identified in testing HSSA concerning test automation.

Initial Setup Both cases rely on the use of test frameworks. JUnit42 is used in both
cases with its prebuilt configuration options like annotations and test groupings. The use
of Selenium43 for GUI testing only occurs in C1.

Test Code Architecture

• Parameterized tests: Both cases use parameterized tests to decouple test data and
test code.

• Preconditions: Preconditions are only applied in C2 to prepare a certain state
before test execution.

• Modularization: Subtests are only applied in C2 to modularize the code.

State Controllability The concept of simulators and mock servers are used in both
cases.

• Configurability: In both cases, the simulators or mock servers are configurable from
within TA. In C1, a request is sent to an endpoint of the mock server, which sets
the values for the desired endpoint. However, in this case, no default values can be
used. Instead, the values must be configured for each call to a desired endpoint.
In C2, however, fixed default values are set in the simulator. The configuration to

42https://junit.org/junit5/, Accessed: 27.08.2023
43https://www.selenium.dev/, Accessed: 27.08.2023

63

https://junit.org/junit5/
https://www.selenium.dev/

5. Case Study

different values is set only for a subsequent call but is not permanent. Thus, no
configuration must occur for default values. In addition, in C2, the endpoint does
not need to be unique and can also target the next request with a suitable subpath.

• Creation of error states: In both C1 and C2, error and invalid states can be created
arbitrarily by the simulators and mock servers.

• Verifiability: In both cases, it is possible to check in TA which values have arrived
at the simulator. In C1, the verifiability is provided by a special endpoint that
stores all sent requests. In C2, the verifiability is done via asynchronous methods
that are configured to match paths, and once it has matched, the result of the
request is saved.

• Encapsulation: In both cases, simulators and mock servers, as well as their connec-
tions, are encapsulated in and managed through their own management classes.

• Degree of complexity: The simulators used in C2 have a significantly more complex
and expanded functionality than those used in C1. For example, the simulators
used by C2 can handle all TLS termination for all other simulators, unlike those
used by C1.

Resources

• Short and long-running pipelines: The concept of dividing tests based on their
throughput time is only found in C2 and not in C1.

• Complete start of an on-demand test environment via script: The use of an on-
demand, automatable startup test environment is only present in C2, and not in
C1.

• Semi-automatic testing with test groups: This approach to saving physical resources
is only present in C1 and not in C2.

5.5.4 Further Challenges
This section presents, across cases, the similarities and differences between the case-specific
concepts identified in testing HSSA with respect to further challenges.

Restricted Rights and Complicated Debugging

• Establishment of sufficient rights for testing: Both cases have adopted the concept
that an alternative version to the production software should be created to provide
testers with additional rights so that they can more easily create states needed
for testing. In both cases, however, the concrete implementation differs. In C1,
different software images are used for testing (debug and prod build), whereas, in

64

5.5. Cross-Case Analysis

C2, multiple test and production environments are used for testing. The basic
difference lies in how more rights are established for the testers.

• Log reporting and log data aggregation: This approach is found in both cases.

• Real time log analysis: This approach is only found in C2 and not in C1.

Secure Execution Environment and Secure Storage Management In C2, sen-
sitive test data are stored in encrypted files and loaded into the system individually
for each test run. In C1, on the other hand, each tester stores test data locally in a
configuration file, which is then loaded into the system as needed.

While every test object and simulator runs in its own container in C2, this approach
cannot be found in C1.

5.5.5 Reasons for Differences in Concepts in Cases
There are numerous reasons that so many concepts are only applied in one of the two
cases. One fundamental difference between the two cases is that C1 has a hardware
device at its center, while C2 depends on hardware but does not require it for much
of the testing process. Another difference is that the number of software components
is significantly higher for C2 than for C1. The reason that considerably more concepts
were identified in C2 in comparison to C1 is probably because the project scope of C2 is
remarkably larger than that of C1, therefore requiring more testing. In addition, the test
team for C2 is also significantly larger than that for C1. To avoid a one-sided evaluation
of the test concepts, not only the few test concepts common to both but also selected
test concepts from both are evaluated.

65

CHAPTER 6
Resulting Concepts

The following chapter summarizes the concepts identified from the case studies and
generifies them. Those concepts that provide added value to testing HSSA, but are not
considered specific to HSSA only, but represent general concepts for good testing are
presented first. Second, those concepts that are specific for testing HSSA are presented
in more detail.

6.1 General Concepts
The concepts listed below can be used to address the complexity of HSSA.

• Test frameworks: Test frameworks such as JUnit44 are particularly useful due to
their prebuilt configuration capabilities to simplify the initial setup of TA.

• Parameterization: Parameterized tests are used in TA to decouple test data and
test code. This process results in abstract reusable test scripts.

• Preconditions: Preconditions are used to prepare a state before the actual execution
of an automated test.

• Modularization: Subtests are used to quickly assemble tests with reusable blocks.

• Unique test data: Generation of unique and independent test data leads to the
complete isolation of tests and thus enables test parallelization. This process allows
each test to run independently with its own data set, providing isolation through
the test data.

44https://junit.org/junit5/, Accessed: 25.08.2023

67

https://junit.org/junit5/

6. Resulting Concepts

• Configurability of test setup: Encapsulating configuration parameters in separate
files and thus obtaining separation from the test code allows a rapid switch between
different test environments, such as local and remote testing.

• Short and long-running pipelines: Splitting tests based on their throughput time
addresses virtual resource scarcity.

• Connection to the remote cluster : Connecting the local setup to the remote cluster
when errors occur only remotely but not locally allows better traceability of errors.

• Environment management via scripts: This concept focuses on using executable
scripts to automatically control how many and which components of a system are
started to perform interoperability tests to different environmental conditions.

• Saving data to configuration files: This concept deals with storing test data in
configuration files to separate it from the test code.

• Automated smoke tests: Automated smoke tests allow the functionality of deployed
software states, including states after library version updates, to be monitored to
ensure that functionality remains after an update.

6.2 HSSA-Specific Concepts
This section explains the generified test concepts that are presented to the experts for
evaluation.

6.2.1 Certificate Creation and Manipulation - Static and Dynamic
Approaches

Many certificates are involved in the testing of HSSA. Valid certificates can be obtained
from a CA in two ways:

• Static approach: In this approach, certificates are obtained once from a real instance
of a CA before test execution and stored in the project resources. The validity
period should be as long as possible so that they do not have to be replaced until
the latest possible time. The certificates are only loaded into the system during
test execution.

• Dynamic approach: This approach assumes that the instance of CA is available
during testing. With this approach, certificates are obtained from the CA with
each test execution.

Manipulation of the certificates can be performed manually with the static approach or
dynamically in the test code during test execution.

68

6.2. HSSA-Specific Concepts

While the dynamic approach offers the advantage that certificates do not have to be
exchanged manually, the static approach offers the advantage that there is no dependency
on a CA during the tests.

6.2.2 PKI Simulators

The idea behind this concept is that individual components of a PKI are simulated so that
no entire PKI has to be duplicated for the tests. The simulators should be configurable,
which certificates they return and what the validity status of a certificate is. Furthermore,
one component should handle the TLS termination for all other components so that this
is implemented centrally, and not each component does have to implement this part.

6.2.3 Implementation of Encryption and Decryption Methods in Test
Automation

To be able to check that the SUT correctly implements the encryption and decryption
functionality, there should be the possibility of encrypting and decrypting data in the TA.
This process allows sending encrypted data to the SUT or receiving encrypted data from
the SUT. When producing encrypted data in the TA, it is possible to test whether the
SUT can process data that is encrypted and signed in different ways, including invalid
signatures or encryption. When receiving encrypted data from the SUT, it is possible
to check if the SUT implemented the encryption correctly by using the implemented
decryption methods in the TA.

6.2.4 Usage of Libraries when Testing Secure Communication
Protocols

When testing secure communication protocols, if the tests are implemented manually,
libraries should always be used whenever possible. Before applying the library, it should
be checked whether the library allows library code to be extended or overwritten. This is
particularly relevant if functionality that deviates from the standard case is to be tested.
Furthermore, it should be checked whether the library allows custom commands to be
sent. This is relevant when testing how the SUT reacts to misbehavior. Especially in the
case of HSSA, these two aspects are to be considered since the SUT is to be tested often
with special cases.

6.2.5 Testing in Several Layers (With and Without Transport
Encryption)

Testing in several layers is employed to simplify the validation of a communication
protocol’s functionality and its correct data transmission. The idea behind this concept
is to first perform tests without transport encryption to check the correct transmission of
data and the functionality of the protocols as simply as possible. A complexity level is

69

6. Resulting Concepts

added at a later stage, and the tests are performed with transport encryption from that
point forward.

6.2.6 Simulators
The complexity of HSSA, including its numerous security mechanisms, requires that
numerous complex scenarios can be created during the tests to ensure that the SUT is
tested in every form. Simulators are particularly suitable for implementing this process.
With this approach, the problem of state control can be solved.

When using simulators to test HSSA, the following should be considered:

• Desired state creation: It should be possible to create any desired state, such as
standard scenarios, invalid scenarios, and error scenarios, using the simulators.
The default values for the good cases should be implemented on the simulators
themselves so that only invalid or error scenarios require additional configuration.

• Verifiability: It should also be possible to check whether the expected values have
arrived at the simulator or whether certain calls have actually been made.

• Configuration: It should be possible to configure a simulator dynamically in each
test case.

• Encapsulation: Simulator connections should be encapsulated in their own manage-
ment classes.

6.2.7 Semi-Automatic Testing with Test Groups
The approach of semi-automatic testing with test groups is particularly applicable to
HSSA in which different complex hardware states are present. To reach a high test
coverage, it is necessary to conduct tests for as many hardware states as possible. The idea
of this concept is to divide tests into logical groupings, with each grouping corresponding
to one state of the device. As soon as a device has been prepared in exactly one state,
the tests of that test group can be executed automatically. In this approach, a test device
is only needed once, saving physical resources (number of hardware devices).

6.2.8 On-Demand Setup of a Test Environment
In HSSA, many different components are involved, which can lead to virtual resource
scarcity. One approach to resolving this problem is an on-demand test environment. It is
recommended that the isolated test environment can be started fully automated without
a need for manual interaction. This condition can be implemented using a script, for
example. The script should be applicable for a local test environment as well as a remote
test environment so that testers are flexible in their test setup. In addition, the test
environment should be able to be started against any desired state and version of the
SUT.

70

6.2. HSSA-Specific Concepts

6.2.9 Establishment of Sufficient Rights for Testing
Due to the security mechanisms of HSSA, testers are severely restricted in their options
for action. To be able to test more effectively, alternatives in which testers are unrestricted
in their possibilities of action must be created.

• Testing in different environments: In this approach, test environments in which
security mechanisms have been inactivated to give testers more rights are created.
In dedicated test environments, it is, therefore, possible for the testers to use test
certificates and simulators.

• Testing with debug and prod build: In this approach, a software version alternative to
the production software is deployed for testing. The software debug build contains
additional software features, but these features are used exclusively for testing and
are not intended to enter the production version. With the additional features,
testers can create states more directly without having to perform all actions end to
end.

6.2.10 Log Reporting and Log Data Aggregation
In TA tests, each test execution step should be documented with a log that should
contain information regarding which specific configurations are made for the test case,
what occurs in detail in a test step, and what exactly is checked. Subsequently, these
logs should be stored and aggregated in a test execution log protocol by automatically
rewriting the log outputs.

The detailed test execution logs help to trace what caused a test execution to fail even
though no sensitive content may be logged due to HSSA security restrictions.

6.2.11 Real Time Log Analysis
The idea of this approach is to be able to analyze the logs of many different components.
Therefore, a mechanism must be implemented in the TA that allows easy access to these
logs. This allows checking for specific log contents in different components and verifying
if certain actions occurred or did not occur or if sensitive data was logged or not. This
approach is needed to deal with the high number of different log files due to the various
components of a HSSA.

6.2.12 Containerization and Virtualization
Because highly sensitive data are involved in HSSA, the tests should also be executed
in an environment as secure and isolated as possible. One way to increase isolation is
through containerization and virtualization. In TA, each simulator and test object should
be executed in its own container. Thus, a higher degree of isolation can be achieved.
This approach creates the possibility that a container can be restarted quickly and easily
before each test execution to create the same initial state for all tests.

71

CHAPTER 7
Evaluation

By conducting a case study, concepts for testing HSSA were identified and assigned
to the different challenge subcategories of the deductive category system (cf. Chapter
5). Subsequently, these concepts were generified (cf. Chapter 6). The current chapter
presents the evaluation of the HSSA-specific generified concepts (cf. Section 6.2) and their
mapped challenge categories. For this purpose, semi-structured interviews are conducted
with three experts.

7.1 Methodology
This section presents the chosen data collection form and the data analysis method.

7.1.1 Data Collection
Semi-structured expert interviews are conducted to evaluate the identified concepts and
the mapped challenge categories. A mixed-methods approach is employed. This data
collection form is deemed suitable due to the following reasons:

1. Expertise: Through their many years of practical experience, the experts have
acquired specialist knowledge and are therefore qualified to evaluate the identified
concepts in terms of their quality, transferability, and validity.

2. Validation of results: By validating the results of the case study through expert
interviews, a higher objectivity and generalizability of the results can be generated.

7.1.2 Data Analysis
Quantitative results are evaluated by calculating the average value (�), and the qualitative
results are evaluated using Mayring’s [14] qualitative content analysis of Structuring.

73

7. Evaluation

Expert Abbr. Role Interview date Medium
Expert 5 E5 Software tester with focus on

test automation
17.07.23 Jitsi Meet

Expert 6 E6 Software developer 18.07.23 Jitsi Meet
Expert 7 E7 Software tester with focus on

test automation
25.07.23 Jitsi Meet

Table 7.1: Overview of experts (evaluation interviews)

The structuring approach is suitable for evaluating the identified concepts and mapped
challenging subcategories, as content-related aspects of the interview material are of
interest. The experts’ answers are classified into the deductive category system. Each
category corresponds to one of the concepts presented in Section 6.2.

7.2 Interview Design

This section presents the selection of experts and the interview guideline.

Selection of Experts The experts were selected from a large IT company whose
projects lie in the area of HSSA. Table 7.1 shows their exact roles. The interviews were
all conducted via the video messenger Jitsi, and the planned duration for each interview
was 45 minutes.

Interview Guideline An interview guide was created to ensure comparability of the
expert responses. The interview questions refer to the concepts generified in Section 6.2.
The experts were presented with each concept and the corresponding mapped challenging
category, along with two optional qualitative and quantitative questions, each with two
sub-questions about their assessment of the quality and transferability of the respective
concept and its validity concerning the challenging category. The entire guide can be
found in Appendix D.

7.3 Data Analysis

This section explains the quantitative and qualitative assessments of the experts. The
quantitative assessment of the transferability and quality, or validity of a concept is based
on a scale of one to four, with one being very high or highly valid and four being very
low or not at all valid. Figure 7.1 shows the average values of the quantitative estimation
regarding the transferability, quality, and validity of each concept. Table 7.2 shows the
ranking of all concepts in descending order.

74

7.3. Data Analysis

Figure 7.1: Quantitative evaluation results

7.3.1 Certificate Creation and Manipulation - Static and Dynamic
Approaches

The overall quality and transferability of the static approach are rated as high (�2.33)
and that of the dynamic approach as very high (�1.33).

• Static approach: This approach has the advantage that there is no dependence on
a CA during testing, and no such high implementation effort is required in contrast
to the dynamic approach [E5].

75

7. Evaluation

• Dynamic approach: This approach has the advantage of being future-proof as
certificates do not need to be manually replaced within certain time periods [E5].
Regarding certificate manipulation, this approach is more suitable because the
manipulation can be performed dynamically and flexibly, depending on the need
for a particular test case, and it is especially preferable in non-standard cases [E6].

Both the static approach (�1.0) and the dynamic approach (�1.0) are considered to be
highly valid concepts for creating and manipulating certificates.

All experts prefer the dynamic approach, but at the same time, they state that the
preferable approach strongly depends on the specific project setting for testing.

7.3.2 PKI Simulators
One expert abstained from voting regarding the quality and transferability of this concept
as the transferability of the concept is too dependent on the specific project context for
him to be able to assess it. The remaining experts rate its quality and transferability as
high to very high (�1.5). An advantage of this approach is that it facilitates configuring
simulators to issue desired certificates [E6].

The experts rate the concept as a highly valid approach to avoid having to duplicate
an entire productive PKI for testing and instead simulating single components (�1.0).
However, the actual applicability depends on which aspects of the PKI are to be used
for the tests and whether it is accordingly, first of all at all, possible to simulate the
corresponding PKI component or whether it is also reasonable to do so [E6].

7.3.3 Implementation of Encryption and Decryption Methods in Test
Automation

One expert abstained completely from this concept due to a lack of experience regard-
ing this concept. The remaining experts rate the quality and transferability of this
concept as moderate (�2.5). Prebuild services and libraries should be used wherever
possible when implementing encryption and decryption methods in the TA. Complete
self-implementation without their help is highly error-prone [E5].

The concept’s validity in checking the validity of encrypted or decrypted data during
testing is also rated as moderate (�2.5). It is not a desirable but absolutely necessary
concept. To verify the decryption functionality of the SUT, it is necessary to produce
encrypted data in the TA and send it to the SUT. This ability is made possible by the
presented solution concept [E7].

7.3.4 Usage of Libraries when Testing Secure Communication
Protocols

The experts rate the overall quality and transferability of this concept as very high (�1.0).
The procedure mentioned above for using libraries is a generally valid approach that

76

7.3. Data Analysis

applies not only when testing secure communication protocols but also generally when
using libraries [E5], [E6], [E7]. A problem with this approach is that libraries are often
initially classified as applicable, and non-standard cases that are not covered may emerge
at a later time. Therefore, before using the libraries, it should be determined as precisely
as possible which potential application scenarios will be necessary. Because libraries are
expected to support correct behavior, they often permit no error cases at all or correct
them automatically [E7].

In the opinion of the experts, the above approach is a highly valid approach for accommo-
dating the lack of supported functions in libraries (�1.0). It is especially valid to try to
extend libraries with additional code in case the library does not cover the corresponding
behavior. It only has to be considered that some libraries might not allow for extending
or overriding library functions [E6].

7.3.5 Testing in Several Layers (With and Without Transport
Encryption)

One expert abstained from both votes regarding this concept. Overall, the quality and
transferability of the concept are rated as moderate (�2.5), although the remaining
experts rated this point very differently. [E6] considers the quality and transferability
to be very high because, in his opinion, testing without transport encryption allows a
level of complexity to be removed from the tests without encryption. [E7] considers the
quality and transferability to be very low because, in his opinion, it offers no added value
from a testing perspective to omit encryption because the system must be tested with
transport encryption in the final state in any case.

The experts’ opinions differ widely regarding whether this concept is a valid approach
to accommodating the increased complexity of testing communication protocols due to
transport encryption. The overall rate was moderate (�2.5). One expert ([E6]) considers
the validity to be very high, as he states that it is advantageous to test without transport
encryption during initial functional tests because this method places a stronger focus
on actual functionality, making verification of the correct transmission of data more
straightforward and also simplifies troubleshooting in the event of errors. However, [E7]
states that this approach is primarily dictated by development, as only the already
implemented functionality of the software, whether with or without transport encryption,
can be tested.

7.3.6 Simulators
Overall, the quality and transferability of the concept of simulators in testing HSSA is
considered to be very high (�1.33). This concept is particularly appealing in that it does
not involve simple mock interfaces but rather a complex entity with a high level of detail,
which allows the simulators to be controlled very precisely [E6]. Moreover, simulators
can often be used in practice for multiple projects rather than just one because they
are implemented as a separate product. Due to this transferability across projects, the

77

7. Evaluation

implementation effort can be reduced significantly [E7]. The transferability of the concept
has also been shown in practice in which different teams have independently chosen the
same approach [E5].

The concept’s validity is rated as very high (�1.0). Simulators can be used to address
the problem of controllability during testing because any error scenarios can be created
using them [E5], [E7].

7.3.7 Semi-Automatic Testing with Test Groups
The overall quality and transferability of semi-automatic testing with test groups is rated
as high (�1.67). However, it should be noted that this concept is only transferable to
projects involving hardware in which the state is statically preparable [E5], [E6]. For
example, if human interaction is required during testing, state preparation is impossible
[E5]. Full instead of semi-automation of tests would be desirable, but this approach
provides an attractive optimization opportunity for projects in which this is not possible
[E7].

According to the experts, the approach of semi-automatic testing with test groups is a
valid approach (�2.0) to minimize the number of hardware needed to be tested. Through
this approach, hardware is no longer needed in large numbers but only one device, saving
many physical resources [E7]. However, this approach is only a short-term and not a
long-term solution [E5].

7.3.8 On-Demand Setup of a Test Environment
Overall, the experts rate the quality and transferability of this concept as very high
(�1.0). This approach can be transferred very well to software-only projects. However,
if hardware is involved, it is project-specific if this concept is applicable [E5]. This
approach is particularly appealing because the environment can be started in a completely
automatable way with every desired version of the SUT. The test environment can also
be easily reset to the status quo at any time through automation [E6].

According to the experts, the approach of using an on-demand test environment is highly
valid (�1.33) in addressing the virtual resource scarcity that occurs during HSSA testing.
With this approach, resources are not permanently blocked, as would be the case with a
fixed stage [E5], [E6].

7.3.9 Establishment of Sufficient Rights for Testing
For this category, two concepts are evaluated because different approaches could be
identified in how the testers get sufficient rights in both case studies.

Testing in Different Environments This concept’s overall quality and transferability
are rated as very high (�1.0). The advantage of this approach is that it can be used to

78

7.3. Data Analysis

test whether the deployed software also functions as intended with the varying conditions
that are present in the different environments (such as differences in databases) [E6].

The concept is also designated as a valid approach to establishing additional rights for
the testers (�2.0). However, testing in different environments is standard and represents
a consideration not only in HSSA to address limited rights due to security mechanisms
but also in any other software architecture. In addition, the test environments are
usually located in the company’s internal area of control, and any desired rights can be
established there at any time [E7].

Testing with Debug and Prod Build The quality and transferability of this concept
are rated as very high (�1.0). However, one risk in this area is that this approach
presents many more vulnerabilities and sources of error in comparison to the previously
mentioned approach because the various debug feature flags could potentially also be
activated in production [E5].

According to the experts, testing with debug and prod build is a highly valid approach
(�1.33) to establish sufficient rights for the testers. This approach allows testers to view
certain data that cannot be seen in production, take certain actions, and create states
more directly [E7].

Preferred Use of which Concept Both [E5] and [E6] prefer the approach of testing
in different environments, as this approach is much less error-prone than that of testing
with debug and prod build. [E7] would prefer a third approach, in which the additional
features needed for testing are packaged into additional artifacts and thus separated from
the production code.

7.3.10 Log Reporting and Log Data Aggregation

According to the experts, the quality and transferability of the concept of log reporting
and log data aggregation are very high (�1.0). This concept is attractive in that it
creates a test execution step log protocol that can be given to the development team or
even to the customer as proof that requirements have been met [E6], [E7]. In addition,
this strategy can be used to compare with the test specification to determine whether all
steps have indeed been executed and that the functionality has thus been fulfilled [E7].

The experts consider this concept to be a highly valid solution (�1.33) for addressing
restricted log output. Although sensitive content is not logged, log reporting clarifies
during which action errors occur and what causes these errors as every test execution
step is provided with a detailed description of what is happening [E5], [E6]. In cases
in which log interceptors are used to log the various protocol requests and responses,
events occurring in the network at that moment are clear. Especially in non-standard
cases, logging the description of the configuration also increases traceability, making it
unnecessary to log sensitive data because traceability is still ensured [E7].

79

7. Evaluation

7.3.11 Real Time Log Analysis
The experts rate the quality and transferability of this concept as very high (�1.0). This
concept is particularly useful for HSSA because so many different components are present
and so many different log files, therefore, must be considered when debugging during
testing [E6]. However, it must be noted that if the real-time logs are used to examine
conditions out of the TA, these logs may be delayed, and they are then read out too
early, which means that certain actions have not been logged yet, although they have
occurred and therefore an action is incorrectly asserted as not done [E7].

Furthermore, according to the experts, this concept is a highly valid approach to dealing
with the high number of different log files of various components [�1.33]. This approach
makes it easy to access the log outputs of individual components [E6].

7.3.12 Containerization and Virtualization
Overall, the experts rate the quality and transferability of this concept as very high
(�1.0). An advantage of this concept is that containerization makes resetting the test
system or individual components of the test system rapid and straightforward [E6]. In
addition, it is easier to create certain states for tests that require isolation, such as
network isolation [E5].

However, in their opinion, this concept is not at all a valid solution (�3.67) for creating
a secure execution environment. Containerization creates a higher degree of isolation
but does not provide a more secure execution environment. In addition, whether a more
secure execution environment is even necessary for testing must be considered [E5], [E7].

80

7.3. Data Analysis

Transferability and Quality Validity

• Usage of libraries when test-
ing secure communication proto-
cols (�1.0)

• On-demand setup of a test envi-
ronment (�1.0)

• Testing in different environ-
ments (�1.0)

• Testing with debug and prod
build (�1.0)

• Log reporting and log data aggre-
gation (�1.0)

• Real time log analysis (�1.0)

• Containerization and virtualiza-
tion (�1.0)

• Certificate creation and manipula-
tion - dynamic approach (�1.33)

• Simulators (�1.33)

• PKI simulators (�1.5)

• Semi-automatic testing with test
groups (�1.67)

• Certificate creation and manipu-
lation - static approach (�2.33)

• Implementation of encryption and
decryption methods in test au-
tomation (�2.5)

• Testing in several layers (with
and without transport encryp-
tion) (�2.5)

• Certificate creation and manipu-
lation - static approach (�1.0)

• Certificate creation and manipu-
lation - dynamic approach (�1.0)

• PKI simulators (�1.0)

• Usage of libraries when test-
ing secure communication proto-
cols (�1.0)

• Simulators (�1.0)

• On-demand setup of a test envi-
ronment (�1.33)

• Testing with debug and prod
build (�1.33)

• Log reporting and log data aggre-
gation (�1.33)

• Real time log analysis (�1.33)

• Semi-automatic testing with test
groups (�2.0)

• Testing in different environ-
ments (�2.0)

• Implementation of encryption and
decryption methods in test au-
tomation (�2.5)

• Testing in several layers (with
and without transport encryp-
tion) (�2.5)

• Containerization and virtualiza-
tion (�3.67)

Table 7.2: Ranking of the concepts according to expert evaluation

81

CHAPTER 8
Discussion

This chapter discusses and interprets the results of this work in light of the research
questions defined in Section 1.2. Furthermore, it discusses the threats to validity and
mentions potential future research.

8.1 Answering the Research Questions
The following section answers the research questions, interprets the results, and explains
lessons that have been learned.

8.1.1 Answering RQ1
This section summarizes the results for research question RQ1 ("What are the challenges
in testing in the context of HSSA and into which categories can the identified challenges
be divided?"), interprets and discusses them. The details for answering this research
question can be found in Chapter 4.

Summary The challenges identified for testing HSSA can be divided into the main
categories of:

• Key material and security certificates

• Logical network separation

• Spatial separation from the hardware

• Many different secure communication protocols

• Test automation

83

8. Discussion

• Testing with different authorization roles

• Test data

• Interoperability testing

• Testing infrastructure

• Further challenges

Based on their average votes, the experts considered the main categories of key material
and security certificates, test automation and interoperability testing to be the three most
challenging categories.

Interpretation When comparing the actual results of this analysis with the challenge
categories identified in Chapter 3, it is surprising that the categories test data, spatial
separation from the hardware and testing infrastructure were considered by at least 50%
of the experts to be rather not challenging even though these aspects were identified as
challenges in the papers investigated in Chapter 3. One reason for this result may be
that the literature review for challenges in testing was based on systems similar to HSSA
but not on HSSA themselves because no papers that would have covered this aspect were
available.

It would also have been expected that the security mechanism categories (key material and
security certificates, logical network separation, testing with different authorization roles)
added to the deductive category system for the expert interviews would be considered
challenging in testing HSSA, because security limits testability. However, the main
categories of key material and security certificates and logical network separation were
indeed considered challenging, but testing with different authorization roles was considered
rather not challenging. The reason that testing with different authorization roles was
rated as rather not challenging is presumably that the challenges of the subcategories are
rather general. Therefore, they might also occur with other software architectures.

Overall, expectations were mainly met in that the experts named challenges in testing
HSSA for each category identified by the literature review that had been conducted in
advance.

8.1.2 Answering RQ2
This section summarizes the results for research question RQ2 ("How are the identified
challenge categories addressed in practice?"), interprets and discusses them. The details
for answering this research question can be found in Chapter 5 and Chapter 6.

Summary Based on the case studies, the concepts that were identified as the most
relevant for testing HSSA were the concepts of:

84

8.1. Answering the Research Questions

• Certificate creation and manipulation - static and dynamic approaches

• PKI simulators

• Implementation of encryption and decryption methods in test automation

• Usage of libraries when testing secure communication protocols

• Testing in several layers (with and without transport encryption)

• Simulators

• Semi-automatic testing with test groups

• On-demand setup of a test environment

• Establishment of sufficient rights for testing

• Log reporting and log data aggregation

• Real time log analysis

• Containerization and virtualization

Interpretation Overall, it is surprising that far fewer test concepts could be identified
in C1 than in C2. One probable reason for this result is the smaller project and test team
size of C1. In addition, the testers in C1 do not have as much professional experience as
those in C2. For the interoperability testing area, no concepts at all could be found in C1
because no interoperability testing has been performed in C1. Another reason that no
concepts were identified for C1 in some areas is that the environment for testing is only
local and not remote.

One particularly crucial concept is that of simulators, which are extensively used in
both projects in slightly different ways but with fundamentally similar ideas. The most
significant feature of this concept is that invalid and error states can be optimally
produced due to the complexity of the implementation. This effect makes it possible to
test HSSA under error conditions exceptionally well.

Overall, the concepts that have been identified assist in testing HSSA because they
provide approaches to testing this architecture despite its complexity and additional
security mechanisms.

8.1.3 Answering RQ3
This section summarizes the results for research question RQ3 ("Which implications for
testing HSSA can be derived from the empirical results of the case study?"), interprets
and discusses them. The details for answering this research question can be found in
Chapter 7.

85

8. Discussion

Summary The experts rated seven out of 14 concepts as very transferable and qualita-
tive, and highly valid approaches for the respective mapped challenge subcategory. Four
of the 14 concepts were rated at least high to very high in transferability, quality, and
validity concerning the mapped challenge subcategory. Only three of the 14 concepts
were rated as rather low in transferability, quality, or validity concerning the respective
challenge subcategory.

Interpretation Overall, most of the concepts generified in Chapter 6 are of high quality
and transferable to other projects and can address numerous challenges. Thus, the result
corresponds to the expectations.

Implications and recommendations for concepts that were rated as the least transferable
and with the least quality, the least valid, or both are the following:

• Implementation of encryption and decryption methods in test automation: Although
this concept was classified as only moderately transferable, qualitative, and valid
overall, it is probably necessary to employ it because otherwise, the ability of the
SUT to correctly encrypt and decrypt data including non-standard cases, cannot be
checked. However, it is recommended to use libraries with supporting functionality
if possible.

• Testing in several layers (with and without transport encryption): This concept
was classified as moderately transferable, qualitative, and valid. Because the
development team and not the test team determine which features are ready for a
test, it should instead not be used.

• Containerization and virtualization: This concept was seen as very transferable but
not as a solution for the secure execution environment and storage management
challenge. However, it can be used to achieve higher isolation between tests and to
be able to reset individual containers to the status quo at any time.

Implications and recommendations for concepts that were rated as very transferable, of
high quality, and highly valid are the following:

• Certificate creation and manipulation - dynamic approach: To obtain certificates
during testing, the dynamic approach is generally preferable to the static one.

• Usage of libraries when testing secure communication protocols: Libraries should
always be used when possible. Before using them, however, the scenarios that the
library is to cover should be known.

• Simulators: The use of simulators is highly recommended, especially when testing
invalid or error scenarios. They should also be used when tests should be performed
independently of other components.

86

8.2. Threats to Validity

• On-demand setup of a test environment: The use of this concept is beneficial for
pure software projects and creates a high degree of flexibility for the testers, as
testers can start up the test environment in the desired state automatically.

• Testing with debug and prod build: When using this approach, tests should not
only be conducted with the debug build but also with the prod build in the initial
phases so that errors in the production version of the software can be detected at
an early stage.

• Log reporting and log data aggregation: This approach is beneficial for error analysis
when no sensitive data is logged as the aggregated logs nevertheless allow the
discovery of specific patterns that point to the reason for the errors.

• Real time log analysis: This concept is particularly useful when many different
components with different log outputs are present.

It should be particularly emphasized that the majority of the generified concepts (79
percent) have a high to very high quality and transferability and are classified as valid
to very valid solutions and can, therefore, be employed as recommended to address the
mapped challenge subcategories in practice. It should be noted that the concepts could
also represent solutions for other challenges. This high percentage of well-rated concepts
shows the contribution to generating new knowledge in testing HSSA.

8.2 Threats to Validity
This section explains the threats to validity.

Interviewee Selection and Number of Interviewees The seven experts interviewed
regarding the challenges of testing HSSA on the one hand and the evaluation of the
identified concepts and the mapped challenges on the other hand all worked in the same
IT company. Although this IT company is vast and the experts were involved in a wide
variety of projects, it would have been ideal to interview experts from different companies
to increase the objectivity of the results. Moreover, it would have been more desirable to
interview a larger number of experts to improve the generalizability of their arguments.

Number of Investigated Cases The case study of this thesis only investigated two
cases to identify concepts in testing HSSA. This number may be too small to generalize
the concepts that were found, as this would usually require a more significant number of
cases to be investigated. Moreover, both cases originated from the eHealth sector. Cases
should also be examined from other sectors, such as the banking or government sectors,
to better generalize the results.

87

8. Discussion

Concepts Investigated in the Case Study It would have been ideal if all concepts,
rather than only those perceived as HSSA-specific, had been examined in the final
evaluation. However, the limited time span of an interview was the limiting factor in this
case. In addition, the assessment of the HSSA specificity of the concepts was subjective.
It would have been preferable to briefly present all concepts to a panel of experts and
then allow them to select which ones were relevant to testing HSSA and deserve closer
examination in the evaluation.

8.3 Future Research
In the future, the findings of this thesis could be extended by evaluating the concepts
that were not presented to the experts for evaluation. In addition, further case studies in
areas other than the eHealth sector, such as the financial sector, could be investigated.
In addition, the challenge categories that were excluded based on the experts’ votes on
the degree of difficulty could also be examined.

88

CHAPTER 9
Conclusion

Previous literature has not thoroughly examined concepts for testing HSSA. However, this
is becoming increasingly important due to the increasing digitization and interconnectivity
of software systems as sensitive data in digitized form becomes ever more significant in
everyday life. To continue to protect them, it is important to be able to test such HSSA
despite their complex architecture. The thesis offers a scientific contribution by proposing
concepts for testing HSSA, which will support software companies in the future to test
their HSSA and thus improve the quality and security of their software.

The first step was to deduce a deductive category system for the expert interviews
conducted in the second step. The main categories were derived from two approaches.

• Literature review: A literature review was conducted to identify challenges in
testing HSSA in theory. Since challenges of testing HSSA itself have hardly been
studied in the literature, challenges of software architectures similar to HSSA were
investigated. Based on this, challenge main categories could be deduced.

• Security mechanisms: Security mechanisms limit testability. Therefore, to determine
whether individual security mechanisms create challenges when testing HSSA,
selected security mechanisms were added as main categories to the category system.

The second step was to conduct semi-structured expert interviews to determine the
existing challenges in testing of HSSA (RQ1). The four experts interviewed all work in
an IT company in the field of testing HSSA. Based on the deductive category system
deduced in the first step, the experts were asked how challenging they consider each
main category to be and which challenges arise concerning each main category when
testing HSSA. During data analysis, challenge subcategories were inductively added
to the existing main categories. The data analysis results showed that, based on the
average values, the three most challenging main categories are: key material and security

89

9. Conclusion

certificates, test automation and interoperability testing in the context of testing HSSA.
Next, the categories to be examined more thoroughly during the case study were chosen.
From the most challenging ones, those categories with a technical focus were selected.

The third step aimed to determine which concepts are used to address the identified
challenge categories in practice. Therefore, a multiple-embedded case study with two
cases was conducted investigating two projects with HSSA from the eHealth field. Due to
the sensitivity of health data, there is a particular focus on testing in this area. During the
case study, the individual concepts identified were assigned to the individual subcategories
of the deductive category system. The data analysis has shown that both cases feature
numerous different concepts for testing HSSA.

The fourth step was to evaluate the concepts’ quality, transferability, and validity
concerning the mapped challenge subcategories. Therefore, semi-structured expert
interviews with qualitative and quantitative questions were conducted with three experts.
The concepts that were rated as high to very high in both quality and transferability, as
well as a valid approach to the respective mapped challenge subcategory when testing
HSSA, were the concepts of certificate creation and manipulation - dynamic approach, PKI
simulators, usage of libraries when testing secure communication protocols, simulators,
semi-automatic testing with test groups, on-demand setup of a test environment, testing
in different environments, testing with debug and prod build, log reporting and log data
aggregation, and real time log analysis.

Upon examining the methodology, it can be concluded that interviewing experts was
reasonable because their practical experience allowed for determining challenges in real-
world projects. Moreover, the chosen methodology of the case study was beneficial, as
its practical reference enabled the identification of concepts that had already proven
successful in practice. Evaluation by experts increased the objectivity and meaningfulness
of the concepts and the mapped challenge categories.

The results of the thesis contribute to building new knowledge about the challenges
of testing HSSA and concepts that are used in practice to address them, especially
since a very high proportion of concepts were deemed to be beneficial regarding their
transferability, quality, and validity by the subsequent evaluation of the experts. The
knowledge gained can primarily support software companies that develop HSSA by
providing them with ideas on how to test their HSSA, allowing them to save time and
cost as they can draw upon existing solutions. This is particularly useful when they start
testing their HSSA for the first time or when they encounter similar problems to those
identified in the thesis and thus can address them with appropriate concepts.

Both cases studied originated from the eHealth industry. Therefore, it could be interesting
to investigate further cases from other areas with sensitive data, such as the financial
sector, to add additional perspectives. Moreover, a higher number of cases should be
investigated to enhance generalizability. In the future, a wide range of possible concepts
for testing HSSA could be generated and help companies to test their HSSA in detail
and thus improve the quality and security of their software.

90

List of Figures

2.1 Software Testing Life Cycle [19] . 7
2.2 Test techniques (based on [19], [23], [24]) 8
2.3 Test levels (based on [19], [23], [28]) . 9
2.4 Test types (based on [19]) . 11
2.5 Test pyramid (based on [37]) . 13
2.6 Docker . 15
2.7 Security mechanisms (based on [62]–[68]) 19

4.1 Quantitative estimation of the challenge level in terms of testing HSSA . 33
4.2 Quantitative estimation of the challenge level in testing HSSA boxplot . . 33

5.1 Multiple-case study procedure (based on [13]) 48

7.1 Quantitative evaluation results . 75

91

List of Tables

4.1 Comparison between quantitative and qualitative research (based on [87]) 30
4.2 Overview of experts (challenge interviews) 31
4.3 Category system with main categories and corresponding subcategories . 35
4.4 Filtered category system . 45

5.1 Case specific characteristics . 50
5.2 Cross-case comparison of concepts . 62

7.1 Overview of experts (evaluation interviews) 74
7.2 Ranking of the concepts according to expert evaluation 81

93

Acronyms

API Application Interface. 13

C1 Case 1. 49, 50, 62–65, 85

C2 Case 2. 50, 51, 62–65, 85

CA Certificate Authority. 21, 34, 42, 51, 52, 55, 62, 68, 69, 75

CI Continuous Integration. 12, 13, 51, 59

FTP File Transfer Protocol. 21

GUI Graphical User Interface. 53, 63

HSSA High-Security Software Architectures. xiii, xv, 1–5, 17, 18, 23, 25–34, 37–44, 47,
49, 51, 52, 54–57, 60, 62–64, 67–71, 73, 74, 77–80, 83–85, 87–91, 108, 110, 112–114

HTML Hypertext Markup Language. 21

HTTP Hypertext Transfer Protocol. 21, 37, 50, 56, 59

IEC International Electrotechnical Commission. 6, 16, 17

IEEE Institute of Electrical and Electronics Engineers. 5, 17

IoT Internet of Things. 18, 23–27

ISO International Organization for Standardization. 6, 16, 17

ISTQB International Software Testing Qualifications Board. 5, 9, 10, 14

LAN Local Area Network. 19

MSA Microservices Architecture-Based Applications. 18, 23, 25, 26

OCSP Online Certificate Status Protocol. 21, 55, 56

95

PKI Public Key Infrastructure. 21, 34, 35, 42, 50, 69, 76

POP3 Post Office Protocol Version 3. 21, 37, 50

SMTP Simple Mail Transfer Protocol. 21, 37, 50

SSH Secure Socket Shell. 50, 52, 54

STLC Software Testing Life Cycle. 5–7, 91

SUT System Under Test. 38–41, 43, 51, 52, 56–60, 63, 69, 70, 76, 78, 86

TA test automation. 5, 12, 13, 17, 25, 26, 32, 35, 37–39, 42, 50–53, 56–60, 62–64, 67, 69,
71, 76, 80

TLS Transport Layer Security. 21, 26, 35, 37, 50, 55, 56, 64, 69

UI User Interface. 13, 18, 50, 54

VLAN Virtual Local Area Network. 19

VM Virtual Machine. 15

VPN Virtual Private Network. 36, 50

96

Bibliography

Scientific References

[1] S. Chenthara, K. Ahmed, H. Wang, and F. Whittaker, „Security and privacy-
preserving challenges of e-health solutions in cloud computing“, IEEE Access, vol. 7,
pp. 74 361–74 382, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.291998
2.

[2] E.-Y. Daraghmi, Y.-A. Daraghmi, and S.-M. Yuan, „Medchain: A design of
blockchain-based system for medical records access and permissions management“,
IEEE Access, vol. 7, pp. 164 595–164 613, 2019, issn: 2169-3536. doi: 10.1109
/ACCESS.2019.2952942.

[3] E. Yaacoub, K. Abualsaud, T. Khattab, M. Guizani, and A. Chehab, „Secure
mhealth iot data transfer from the patient to the hospital: A three-tier approach“,
IEEE Wireless Communications, vol. 26, no. 5, pp. 70–76, Oct. 2019, issn: 1536-1284.
doi: 10.1109/MWC.2019.1800590.

[4] M. Z. Chowdhury, M. T. Hossan, M. Shahjalal, M. K. Hasan, and Y. M. Jang, „A
new 5g ehealth architecture based on optical camera communication: An overview,
prospects, and applications“, IEEE Consumer Electronics Magazine, vol. 9, no. 6,
pp. 23–33, Nov. 2020, issn: 2162-2248. doi: 10.1109/MCE.2020.2990383.

[5] J. D. Miranda-Calle, V. Reddy, P. Dhawan, and P. Churi, „Exploratory data
analysis for cybersecurity“, World Journal of Engineering, vol. 18, no. 5, pp. 734–
749, Feb. 2021, issn: 1708-5284. doi: 10.1108/WJE-11-2020-0560.

[6] W. Firmansyah, T. Mantoro, and P. D. Persadha, „Regulatory support to prevent
health data breaches“, in 2022 IEEE 8th International Conference on Computing,
Engineering and Design (ICCED), IEEE, Jul. 2022, pp. 1–4, isbn: 978-1-6654-5389-
9. doi: 10.1109/ICCED56140.2022.10010539.

[7] A. F. Altwairqi, M. A. AlZain, B. Soh, M. Masud, and J. Al-Amri, „Four most
famous cyber attacks for financial gains“, International Journal of Engineering and
Advanced Technology, vol. 9, no. 2, pp. 2131–2139, Dec. 2019, issn: 2249-8958. doi:
10.35940/ijeat.B3601.129219.

97

https://doi.org/10.1109/ACCESS.2019.2919982
https://doi.org/10.1109/ACCESS.2019.2919982
https://doi.org/10.1109/ACCESS.2019.2952942
https://doi.org/10.1109/ACCESS.2019.2952942
https://doi.org/10.1109/MWC.2019.1800590
https://doi.org/10.1109/MCE.2020.2990383
https://doi.org/10.1108/WJE-11-2020-0560
https://doi.org/10.1109/ICCED56140.2022.10010539
https://doi.org/10.35940/ijeat.B3601.129219

[8] Y. Li and Q. Liu, „A comprehensive review study of cyber-attacks and cyber security;
emerging trends and recent developments“, Energy Reports, vol. 7, pp. 8176–8186,
Nov. 2021, issn: 2352-4847. doi: 10.1016/j.egyr.2021.08.126.

[9] G. Murad, A. Badarneh, A. Qusef, and F. Almasalha, „Software testing techniques
in iot“, in 2018 8th International Conference on Computer Science and Information
Technology (CSIT), IEEE, Jul. 2018, pp. 17–21, isbn: 978-1-5386-4152-1. doi:
10.1109/CSIT.2018.8486149.

[16] „Ieee standard glossary of software engineering terminology“, IEEE Std 610.12-1990,
pp. 1–84, Dec. 1990. doi: 10.1109/IEEESTD.1990.101064.

[17] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, „Software testing tech-
niques: A literature review“, in 2016 6th International Conference on Information
and Communication Technology for The Muslim World (ICT4M), IEEE, Nov. 2016,
pp. 177–182, isbn: 978-1-5090-4521-1. doi: 10.1109/ICT4M.2016.045.

[18] „Systems and software engineering—systems and software quality requirements and
evaluation (square)—guide to square“, ISO/IEC 25000:2014(E), pp. 1–27, Mar.
2014.

[21] R. Mukherjee and K. S. Patnaik, „A survey on different approaches for software test
case prioritization“, Journal of King Saud University - Computer and Information
Sciences, vol. 33, no. 9, pp. 1041–1054, Nov. 2021, issn: 1319-1578. doi: 10.1016
/j.jksuci.2018.09.005.

[22] M. Shaw, „Prospects for an engineering discipline of software“, IEEE Software,
vol. 7, no. 6, pp. 15–24, Nov. 1990, issn: 0740-7459. doi: 10.1109/52.60586.

[23] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, „Automated testing
of android apps: A systematic literature review“, IEEE Transactions on Reliability,
vol. 68, no. 1, pp. 45–66, Mar. 2019, issn: 0018-9529. doi: 10.1109/TR.2018.2
865733.

[24] M. A. Umar and C. Zhanfang, „A comparative study of dynamic software testing
techniques“, International Journal of Advanced Networking and Applications, vol. 12,
no. 03, pp. 4575–4584, 2020, issn: 0975-0290. doi: 10.35444/IJANA.2020.123
01.

[25] „Iso/iec/ieee international standard - software and systems engineering –software
testing –part 1:general concepts“, ISO/IEC/IEEE 29119-1:2022(E), pp. 1–60, Jan.
2022. doi: 10.1109/IEEESTD.2022.9698145.

[26] S. L. Jurj, R. Rotar, F. Opritoiu, and M. Vladutiu, „White-box testing strategy for
a solar tracking device using nodemcu lua esp8266 wi-fi network development board
module“, in 2018 IEEE 24th International Symposium for Design and Technology
in Electronic Packaging (SIITME), IEEE, Oct. 2018, pp. 53–60, isbn: 978-1-5386-
5577-1. doi: 10.1109/SIITME.2018.8599250.

98

https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/10.1109/CSIT.2018.8486149
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1109/52.60586
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.35444/IJANA.2020.12301
https://doi.org/10.35444/IJANA.2020.12301
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/SIITME.2018.8599250

[27] Z. Kaprocki, V. Pekovic, and G. Velikic, „Combined testing approach: Increased
efficiency of black box testing“, in 2015 IEEE 1st International Workshop on
Consumer Electronics (CE WS), IEEE, Mar. 2015, pp. 76–78, isbn: 978-1-5090-
4268-5. doi: 10.1109/CEWS.2015.7867160.

[30] S Yoo and M Harman, „Regression testing minimization, selection and prioritization:
A survey“, Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120,
Mar. 2012, issn: 0960-0833. doi: 10.1002/stvr.430.

[31] Y. Amannejad, V. Garousi, R. Irving, and Z. Sahaf, „A search-based approach
for cost-effective software test automation decision support and an industrial
case study“, in 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops, IEEE, Mar. 2014, pp. 302–311, isbn: 978-1-
4799-5790-3. doi: 10.1109/ICSTW.2014.34.

[32] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, „Benefits and
limitations of automated software testing: Systematic literature review and prac-
titioner survey“, in 2012 7th International Workshop on Automation of Software
Test (AST), IEEE, Jun. 2012, pp. 36–42, isbn: 978-1-4673-1821-1. doi: 10.1109
/IWAST.2012.6228988.

[33] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, „Impediments for software
test automation: A systematic literature review“, Software Testing, Verification
and Reliability, vol. 27, no. 8, e1639, Dec. 2017, issn: 0960-0833. doi: 10.1002/s
tvr.1639.

[34] R. Jongeling, J. Carlson, and A. Cicchetti, „Impediments to introducing continuous
integration for model-based development in industry“, in 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE, Aug.
2019, pp. 434–441, isbn: 978-1-7281-3421-5. doi: 10.1109/SEAA.2019.00071.

[35] M. Meyer, „Continuous integration and its tools“, IEEE Software, vol. 31, no. 3,
pp. 14–16, May 2014, issn: 0740-7459. doi: 10.1109/MS.2014.58.

[36] A. Deshpande, S. Veenadevi, and S. Aleti, „Test automation and continuous
integration using jenkins for smart card os“, in 2021 12th International Conference
on Computing Communication and Networking Technologies (ICCCNT), IEEE,
Jul. 2021, pp. 01–05, isbn: 978-1-7281-8595-8. doi: 10.1109/ICCCNT51525.20
21.9580021.

[38] V. Mukhin, Y. Kornaga, Y. Bazaka, et al., „The testing mechanism for software and
services based on mike cohn’s testing pyramid modification“, in 2021 11th IEEE
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), IEEE, Sep. 2021, pp. 589–595,
isbn: 978-1-6654-4209-1. doi: 10.1109/IDAACS53288.2021.9660999.

[39] R. Romli, S. Sulaiman, and K. Z. Zamli, „Automatic programming assessment and
test data generation a review on its approaches“, in 2010 International Symposium
on Information Technology, IEEE, Jun. 2010, pp. 1186–1192, isbn: 978-1-4244-6715-
0. doi: 10.1109/ITSIM.2010.5561488.

99

https://doi.org/10.1109/CEWS.2015.7867160
https://doi.org/10.1002/stvr.430
https://doi.org/10.1109/ICSTW.2014.34
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1002/stvr.1639
https://doi.org/10.1002/stvr.1639
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/ICCCNT51525.2021.9580021
https://doi.org/10.1109/ICCCNT51525.2021.9580021
https://doi.org/10.1109/IDAACS53288.2021.9660999
https://doi.org/10.1109/ITSIM.2010.5561488

[40] A. M, A. Dinkar, S. C. Mouli, S. B, and A. A. Deshpande, „Comparison of
containerization and virtualization in cloud architectures“, in 2021 IEEE Inter-
national Conference on Electronics, Computing and Communication Technologies
(CONECCT), IEEE, Jul. 2021, pp. 1–5, isbn: 978-1-6654-2849-1. doi: 10.1109
/CONECCT52877.2021.9622668.

[41] Y. Li, D. Ou, C. Jiang, et al., „Virtual machine performance analysis and prediction“,
in 2020 International Conference on Communications, Computing, Cybersecurity,
and Informatics (CCCI), IEEE, Nov. 2020, pp. 1–5, isbn: 978-1-7281-7315-3. doi:
10.1109/CCCI49893.2020.9256518.

[42] A. Abuabdo and Z. A. Al-Sharif, „Virtualization vs. containerization: Towards a
multithreaded performance evaluation approach“, in 2019 IEEE/ACS 16th Interna-
tional Conference on Computer Systems and Applications (AICCSA), IEEE, Nov.
2019, pp. 1–6, isbn: 978-1-7281-5052-9. doi: 10.1109/AICCSA47632.2019.90
35233.

[43] R. Dua, A. R. Raja, and D. Kakadia, „Virtualization vs containerization to support
paas“, in 2014 IEEE International Conference on Cloud Engineering, IEEE, Mar.
2014, pp. 610–614, isbn: 978-1-4799-3766-0. doi: 10.1109/IC2E.2014.41.

[44] A. M, A. Dinkar, S. C. Mouli, S. B, and A. A. Deshpande, „Comparison of
containerization and virtualization in cloud architectures“, in 2021 IEEE Inter-
national Conference on Electronics, Computing and Communication Technologies
(CONECCT), IEEE, Jul. 2021, pp. 1–5, isbn: 978-1-6654-2849-1. doi: 10.1109
/CONECCT52877.2021.9622668.

[45] P. P. W. Pathirathna, V. A. I. Ayesha, W. A. T. Imihira, W. M. J. C. Wasala, N.
Kodagoda, and E. A. T. D. Edirisinghe, „Security testing as a service with docker
containerization“, in 2017 11th International Conference on Software, Knowledge,
Information Management and Applications (SKIMA), IEEE, Dec. 2017, pp. 1–7,
isbn: 978-1-5386-4602-1. doi: 10.1109/SKIMA.2017.8294109.

[46] S. Miller, T. Siems, and V. Debroy, „Kubernetes for cloud container orchestration
versus containers as a service (caas): Practical insights“, in 2021 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, Oct.
2021, pp. 407–408, isbn: 978-1-6654-2603-9. doi: 10.1109/ISSREW53611.2021
.00110.

[47] „Systems and software engineering - systems and software quality requirements and
evaluation (square) - system and software quality models“, ISO/IEC 25010:2011,
pp. 1–34, Mar. 2011.

[48] V. Garousi, M. Felderer, and F. N. Kılıçaslan, „A survey on software testability“,
Information and Software Technology, vol. 108, pp. 35–64, Apr. 2019, issn: 0950-
5849. doi: 10.1016/j.infsof.2018.12.003.

[49] J. Voas and K. Miller, „Software testability: The new verification“, IEEE Software,
vol. 12, no. 3, pp. 17–28, May 1995, issn: 0740-7459. doi: 10.1109/52.382180.

100

https://doi.org/10.1109/CONECCT52877.2021.9622668
https://doi.org/10.1109/CONECCT52877.2021.9622668
https://doi.org/10.1109/CCCI49893.2020.9256518
https://doi.org/10.1109/AICCSA47632.2019.9035233
https://doi.org/10.1109/AICCSA47632.2019.9035233
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1109/CONECCT52877.2021.9622668
https://doi.org/10.1109/CONECCT52877.2021.9622668
https://doi.org/10.1109/SKIMA.2017.8294109
https://doi.org/10.1109/ISSREW53611.2021.00110
https://doi.org/10.1109/ISSREW53611.2021.00110
https://doi.org/10.1016/j.infsof.2018.12.003
https://doi.org/10.1109/52.382180

[50] A. Lal and G. Kumar, „Intelligent testing in software industry“, in 2021 12th
International Conference on Computing Communication and Networking Tech-
nologies (ICCCNT), IEEE, Jul. 2021, pp. 01–06, isbn: 978-1-7281-8595-8. doi:
10.1109/ICCCNT51525.2021.9580012.

[52] R. Srivastava, M. Khan, and Abdullah, „Flexibility: A key factor to testability“,
International Journal of Advanced Information Science and Technology (IJAIST),
vol. 6, no. 1, pp. 89–99, Jan. 2015, issn: 0976-2221. doi: 10.5121/ijsea.2015
.6108.

[53] R. Srivastava, M. Khan, and Abdullah, „Modifiability: A key factor to testability“,
International Journal of Advanced Information Science and Technology (IJAIST),
vol. 3, no. 6, pp. 85–94, Jun. 2014, issn: 2319-2682. doi: 10.15693/ijaist/20
14.v3i6.81-84.

[54] R. Poston, J. Patel, and J. Dhaliwal, „A software testing assessment to manage
project testability“, in ECIS 2012 Proceedings, Association for Information Systems,
May 2012, 219––, isbn: 978-84-88971-54-8.

[55] „Ieee/iso/iec international standard for software, systems and enterprise–architecture
description“, ISO/IEC/IEEE 42010:2022(E), pp. 1–74, Nov. 2022. doi: 10.1109
/IEEESTD.2022.9938446.

[58] A. Razzaq, „A systematic review on software architectures for iot systems and future
direction to the adoption of microservices architecture“, SN Computer Scienc, vol. 1,
no. 6, p. 350, Oct. 2020, issn: 2662-995X. doi: 10.1007/s42979-020-00359-w.

[59] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi, „Microservice
architecture reconstruction and visualization techniques: A review“, in 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE), IEEE,
Aug. 2022, pp. 39–48, isbn: 978-1-6654-7534-1. doi: 10.1109/SOSE55356.2022
.00011.

[60] H. Reza and N. Mazumder, „A secure software architecture for mobile computing“,
in 2012 Ninth International Conference on Information Technology - New Gen-
erations, IEEE, Apr. 2012, pp. 566–571, isbn: 978-0-7695-4654-4. doi: 10.1109
/ITNG.2012.122.

[61] A. Pirker and N. H. Lechner, „Designing secure architecture of health software
using agile practices“, in 30th Central European Conference on Information and
Intelligent Systems, University of Zagreb, Faculty of Organization and Informatics
Varaždin, Oct. 2019, pp. 269–280.

[63] J Arnaud and J. Wright, „Network segregation in the digital substation“, in 13th
International Conference on Development in Power System Protection 2016 (DPSP),
IET, 2016, p. 4, isbn: 978-1-78561-138-4. doi: 10.1049/cp.2016.0056.

101

https://doi.org/10.1109/ICCCNT51525.2021.9580012
https://doi.org/10.5121/ijsea.2015.6108
https://doi.org/10.5121/ijsea.2015.6108
https://doi.org/10.15693/ijaist/2014.v3i6.81-84
https://doi.org/10.15693/ijaist/2014.v3i6.81-84
https://doi.org/10.1109/IEEESTD.2022.9938446
https://doi.org/10.1109/IEEESTD.2022.9938446
https://doi.org/10.1007/s42979-020-00359-w
https://doi.org/10.1109/SOSE55356.2022.00011
https://doi.org/10.1109/SOSE55356.2022.00011
https://doi.org/10.1109/ITNG.2012.122
https://doi.org/10.1109/ITNG.2012.122
https://doi.org/10.1049/cp.2016.0056

[65] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, „A comparative survey of
symmetric and asymmetric key cryptography“, in 2014 International Conference
on Electronics, Communication and Computational Engineering (ICECCE), IEEE,
Nov. 2014, pp. 83–93, isbn: 978-1-4799-5748-4. doi: 10.1109/ICECCE.2014.7
086640.

[66] P. Szalachowski, „Evla: Extended-validation certificates with location assurance“,
in Proceedings of the 2019 ACM International Symposium on Blockchain and Secure
Critical Infrastructure, Association for Computing Machinery, Jul. 2019, 73––79,
isbn: 9781450367868. doi: 10.1145/3327960.3332379.

[68] K. R. Ferraiolo D., „Role-based access controls“, in 15th National Computer Security
Conference, National Institute of Standards and Technology, Oct. 1992, pp. 554–
563.

[69] Q. Zhang, „An overview and analysis of hybrid encryption: The combination of
symmetric encryption and asymmetric encryption“, in 2021 2nd International
Conference on Computing and Data Science (CDS), IEEE, Jan. 2021, pp. 616–622,
isbn: 978-1-6654-0428-0. doi: 10.1109/CDS52072.2021.00111.

[70] Z. Meng and Y. Wang, „Asymmetric encryption algorithms: Primitives and appli-
cations“, in 2022 IEEE 2nd International Conference on Electronic Technology,
Communication and Information (ICETCI), IEEE, May 2022, pp. 876–881, isbn:
978-1-7281-8115-8. doi: 10.1109/ICETCI55101.2022.9832032.

[71] Y. Guo, P. Wu, W. Huang, Y. Zhang, and J. Meng, „A secure and efficient hybrid
encryption scheme for power regulation and control business“, in 2022 IEEE 5th
Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), IEEE, Dec. 2022, pp. 149–154, isbn: 978-1-6654-
7968-4. doi: 10.1109/IMCEC55388.2022.10020036.

[72] A. S. Wazan, R. Laborde, D. W. Chadwick, et al., „On the validation of web x.509
certificates by tls interception products“, IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 1, pp. 227–242, Jan. 2022, issn: 1545-5971. doi:
10.1109/TDSC.2020.3000595.

[73] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza, „Pki4iot: Towards public key
infrastructure for the internet of things“, Computers Security, vol. 89, p. 101 658,
Feb. 2020, issn: 0167-4048. doi: 10.1016/j.cose.2019.101658.

[74] J. Zhu, C. Wan, P. Nie, Y. Chen, and Z. Su, „Guided, deep testing of x.509 certificate
validation via coverage transfer graphs“, in 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME), IEEE, Sep. 2020, pp. 243–254,
isbn: 978-1-7281-5619-4. doi: 10.1109/ICSME46990.2020.00032.

[75] M. Zulfiqar, M. U. Janjua, M. Hassan, T. Ahmad, T. Saleem, and J. W. Stokes,
„Tracking adoption of revocation and cryptographic features in x.509 certificates“,
International Journal of Information Security, vol. 21, no. 3, pp. 653–668, Jun.
2022, issn: 1615-5262. doi: 10.1007/s10207-021-00572-5.

102

https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1145/3327960.3332379
https://doi.org/10.1109/CDS52072.2021.00111
https://doi.org/10.1109/ICETCI55101.2022.9832032
https://doi.org/10.1109/IMCEC55388.2022.10020036
https://doi.org/10.1109/TDSC.2020.3000595
https://doi.org/10.1016/j.cose.2019.101658
https://doi.org/10.1109/ICSME46990.2020.00032
https://doi.org/10.1007/s10207-021-00572-5

[76] B. Zou, G. Zhao, H. Tang, R. Nie, R. Huang, and J. Tang, „Archiveschain:distributed
pki archives system“, in 2021 4th International Conference on Advanced Electronic
Materials, Computers and Software Engineering (AEMCSE), IEEE, Mar. 2021,
pp. 1009–1013, isbn: 978-1-6654-1596-5. doi: 10.1109/AEMCSE51986.2021.0
0206.

[77] J. Graefe, L. Leonardon, and M. Esmael, „Using trusted responders in constrained
aviation environments to reduce authentication overhead“, in 2023 Integrated
Communication, Navigation and Surveillance Conference (ICNS), IEEE, Apr. 2023,
pp. 1–4, isbn: 979-8-3503-3362-6. doi: 10.1109/ICNS58246.2023.10124308.

[78] H. P. Shitole and P. Divekar, „Secure email software using e-smtp“, International
Research Journal of Engineering and Technology (IRJET), vol. 6, no. 3, pp. 3967–
3971, Mar. 2019, issn: 2395-0072.

[82] M. Bures, T. Cerny, and B. S. Ahmed, „Internet of things: Current challenges in the
quality assurance and testing methods“, in International Conference on Information
Science and Applications, Springer Science and Business Media LLC, Jul. 2018,
pp. 625–634, isbn: 978-981-13-1056-0. doi: 10.1007/978-981-13-1056-0_61.

[83] A. K. Gomez and S. Bajaj, „Challenges of testing complex internet of things (iot)
devices and systems“, in 2019 11th International Conference on Knowledge and
Systems Engineering (KSE), IEEE, Oct. 2019, pp. 1–4, isbn: 978-1-7281-3003-3.
doi: 10.1109/KSE.2019.8919324.

[84] M. Waseem, P. Liang, G. Márquez, and A. D. Salle, „Testing microservices
architecture-based applications: A systematic mapping study“, in 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), IEEE, Dec. 2020, pp. 119–128,
isbn: 978-1-7281-9553-7. doi: 10.1109/APSEC51365.2020.00020.

[85] J. A. Fadhil and Q. I. Sarhan, „A survey on internet of things (iot) testing“, in
2022 International Conference on Computer Science and Software Engineering
(CSASE), IEEE, Mar. 2022, pp. 77–83, isbn: 978-1-6654-2632-9. doi: 10.1109
/CSASE51777.2022.9759705.

[86] M. Söylemez, B. Tekinerdogan, and A. K. Tarhan, „Challenges and solution direc-
tions of microservice architectures: A systematic literature review“, Applied Sciences,
vol. 12, no. 11, p. 5507, Jun. 2022, issn: 2076-3417. doi: 10.3390/app12115507.

[90] J. Seawright and J. Gerring, „Case selection techniques in case study research: A
menu of qualitative and quantitative options“, Political Research Quarterly, vol. 61,
no. 2, pp. 294–308, Jun. 2008, issn: 1065-9129. doi: 10.1177/1065912907313
077.

[91] P. Runeson and M. Höst, „Guidelines for conducting and reporting case study
research in software engineering“, Empirical Software Engineering, vol. 14, no. 2,
pp. 131–164, Apr. 2009, issn: 1382-3256. doi: 10.1007/s10664-008-9102-8.

103

https://doi.org/10.1109/AEMCSE51986.2021.00206
https://doi.org/10.1109/AEMCSE51986.2021.00206
https://doi.org/10.1109/ICNS58246.2023.10124308
https://doi.org/10.1007/978-981-13-1056-0_61
https://doi.org/10.1109/KSE.2019.8919324
https://doi.org/10.1109/APSEC51365.2020.00020
https://doi.org/10.1109/CSASE51777.2022.9759705
https://doi.org/10.1109/CSASE51777.2022.9759705
https://doi.org/10.3390/app12115507
https://doi.org/10.1177/1065912907313077
https://doi.org/10.1177/1065912907313077
https://doi.org/10.1007/s10664-008-9102-8

[92] I. M. Lopes and P. Oliveira, „Implementation of the general data protection regula-
tion: A survey in health clinics“, in 2018 13th Iberian Conference on Information
Systems and Technologies (CISTI), IEEE, Jun. 2018, pp. 1–6, isbn: 978-989-98434-
8-6. doi: 10.23919/CISTI.2018.8399156.

[94] T. Hyla and J. Pejaś, „Ehealth integrity model based on a permissioned blockchain“,
in 2019 Cybersecurity and Cyberforensics Conference (CCC), IEEE, May 2019,
pp. 172–177, isbn: 978-1-7281-2600-5. doi: 10.1109/CCC.2019.00013.

Book References

[10] P. E. Teichreber, Praktische Software-Qualitätssicherung: Leitfaden für Testorgan-
isation und -dokumentation, 1. Auflage. Düsseldorf, Germany: Symposion, 2008,
isbn: 3939707406.

[11] J. Gao, H.-S. Tsao, and Y. Wu, Testing and quality assurance for component-based
software. Norwood, MA: Artech House, 2003, isbn: 1-58053-480-5.

[12] U. Kuckartz and S. Rädiker, Qualitative Inhaltsanalyse. Methoden, Praxis, Com-
puterunterstützung (Grundlagentexte Methoden), 5. Auflage. Weinheim Basel: Beltz
Juventa, 2022, isbn: 978-3-7799-6231-1.

[13] R. K. Yin, Case Study Research and Applications: Design and Methods, 6th edition.
Los Angeles et al.: SAGE Publications, 2018, isbn: 1506336167.

[14] P. Mayring, Qualitative Inhaltsanalyse: Grundlagen und Techniken, 13., überarbeit-
ete Auflage. Weinheim: Beltz, 2022, isbn: 978-3-407-25898-4.

[19] A. Spillner and T. Linz, Basiswissen Softwaretest: Aus- und Weiterbildung zum Cer-
tified Tester - Foundation Level nach ISTQB-Standard (iSQI-Reihe), 6. überarbeit-
ete und aktualisierte Auflage. Heidelberg: dpunkt.verlag, 2019, isbn: 3864905834.

[20] P. Morgan and B. Hambling, Software testing: an ISTQB-BCS certified tester
foundation guide, 4th edition. Swindon, United Kingdom: BCS Learning and
Development, 2019, isbn: 1523148268.

[28] F. Witte, Testmanagement und Softwaretest: Theoretische Grundlagen und praktis-
che Umsetzung, 2. erweiterte Auflage. Wiesbaden: Springer Fachmedien Wiesbaden
Imprint: Springer Vieweg, 2019, isbn: 978-3-658-25086-7. doi: 10.1007/978-3-
658-25087-4.

[29] T. Cleff, Basiswissen Testen von Software: Vorbereitung zum Certified Tester
(Foundation Level) nach ISTQB-Standard (Informatik). Herdecke [u.a.]: W3L-Verl.,
2010, isbn: 3868340122.

[37] M. Cohn, Succeeding with Agile: software development using Scrum (The Addison-
Wesley signature series: a Mike Cohn signature book), 2010th ed. Upper Saddle
River, NJ [u.a.]: Addison-Wesley, 2010, isbn: 0321579364.

104

https://doi.org/10.23919/CISTI.2018.8399156
https://doi.org/10.1109/CCC.2019.00013
https://doi.org/10.1007/978-3-658-25087-4
https://doi.org/10.1007/978-3-658-25087-4

[51] O. Musch, Design Patterns with Java: An Introduction, 1st ed. 2023. Wiesbaden:
Springer Fachmedien Wiesbaden Imprint: Springer Vieweg, 2023, isbn: 3658398299.
doi: 10.1007/978-3-658-39829-3.

[56] G. Starke, Effektive Softwarearchitekturen: ein praktischer Leitfaden, 9., überar-
beitete Auflage. München: Hanser, 2020, isbn: 3446465898. doi: 10.3139/97834
46465893.

[57] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice (SEI Series
in Software Engineering), 4. edition. Addison Wesley, 2021, isbn: 0136886094.

[62] M. Richards, Software architecture patterns, 2nd edition. Sebastopol, CA: O’Reilly
Media, Inc., 2022, isbn: 1098134281.

[64] H. Geng, Data Center Handbook: Plan, Design, Build, and Operations of a Smart
Data Center. Newark: Wiley, 2021, isbn: 9781119597551. doi: 10.1002/978111
9597537.

[67] D. Hercog, Communication Protocols: Principles, Methods and Specifications. Cham:
Springer Science and Business Media LLC, 2020, isbn: 978-3-030-50404-5. doi:
10.1007/978-3-030-50405-2.

[79] X.-Z. Gao, S. Tiwari, M. C. Trivedi, and K. K. Mishra, Advances in Computational
Intelligence and Communication Technology: Proceedings of CICT 2019, 1st ed.
2021. Singapore: Springer Singapore Imprint: Springer, 2021, isbn: 9811512752.
doi: 10.1007/978-981-15-1275-9.

[80] M. Cross, J. A. Martin, T. A. Walls, M. Grasdal, D. L. Shinder, and T. W.
Shinder, MMCSE Planning, Implementing, and Maintaining a Microsoft Windows
Server 2003 Active Directory Infrastructure (Exam 70-294): Study Guide and DVD
Training System. Rockland: Syngress Publishing, 2003, isbn: 9781931836944.

[81] J. F. Eric Conrad Seth Misenar, CISSP Study Guide, 4th edition. Rockland, MA:
Syngress, 2023, isbn: 978-0-443-18734-6. doi: 10.1016/C2022-0-00490-6.

[87] S. Misoch, Qualitative Interviews, 2., erweiterte und aktualisierte Auflage. Berlin: De
Gruyter Oldenbourg, 2019, isbn: 3110545861. doi: 10.1515/9783110545982.

[88] U. Froschauer and M. Lueger, Das qualitative Interview: zur Praxis interpreta-
tiver Analyse sozialer Systeme (UTB 2418 Soziologie, Wirtschaftswissenschaften),
2., vollständig überarbeitete und erweiterte Auflage. Wien: facultas, 2020, isbn:
9783825252809. doi: 10.36198/9783838552804.

[89] A. Bogner, B. Littig, and W. Menz, Interviews mit Experten: eine praxisorientierte
Einführung (Qualitative Sozialforschung). Wiesbaden: Springer VS, 2014, isbn:
3531194151. doi: 10.1007/978-3-531-19416-5.

Online References

[15] ISTQB. „Istqb glossary“. (N.A.), [Online]. Available: https://glossary.istq
b.org/ (visited on 08/11/2023).

105

https://doi.org/10.1007/978-3-658-39829-3
https://doi.org/10.3139/9783446465893
https://doi.org/10.3139/9783446465893
https://doi.org/10.1002/9781119597537
https://doi.org/10.1002/9781119597537
https://doi.org/10.1007/978-3-030-50405-2
https://doi.org/10.1007/978-981-15-1275-9
https://doi.org/10.1016/C2022-0-00490-6
https://doi.org/10.1515/9783110545982
https://doi.org/10.36198/9783838552804
https://doi.org/10.1007/978-3-531-19416-5
https://glossary.istqb.org/
https://glossary.istqb.org/

[93] B. Group. „Bsi tr-03161 security requirements for ehealth applications“. (2020),
[Online]. Available: https://www.bsi.bund.de/EN/Themen/Unternehme
n-und-Organisationen/Standards-und-Zertifizierung/Technisch
e-Richtlinien/TR-nach-Thema-sortiert/tr03161/tr-03161.html
(visited on 08/23/2023).

106

https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03161/tr-03161.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03161/tr-03161.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03161/tr-03161.html

107

Appendix

Appendix A – Deductive Category System with Main
Categories

Main category Definition
Key material and security cer-
tificates

All text passages that mention challenges con-
cerning testing HSSA that arise from using key
material and security certificates. They refer to
virtual and physical certificates.

Logical network separation All text passages that mention challenges con-
cerning testing HSSA that result from logical
network separation (combination of network seg-
mentation and segregation).

Spatial separation from the
hardware

All text passages that mention challenges con-
cerning testing HSSA that arise due to a spatial
separation from the hardware.

Many different secure commu-
nication protocols

All text passages that mention challenges con-
cerning testing HSSA that arise from using many
different secure communication protocols. Ex-
amples of secure communication protocols are
HTTPS, FTPS, and SMTPS.

Testing with different autho-
rization roles

All text passages that mention challenges con-
cerning testing HSSA that arise from using dif-
ferent authorization roles. A typical distinction
is between an admin and a not-admin role.

Test automation All text passages that indicate challenges that
arise in test automation in the area of HSSA.

Interoperability testing All text passages that point out challenges that
arise when testing the interoperability of different
components in the area of HSSA.

Testing infrastructure All text passages that refer to challenges that
arise when setting up the testing infrastructure
in the area of HSSA. The testing infrastructure
includes the test environment, tools, and other
components.

Test data All text passages that point out challenges that
arise when dealing with test data in the area of
HSSA.

Deductive category system with main categories
108

Appendix B – Demographic Data Challenges Expert
Interviews

Variable Expert 1 Expert 2 Expert 3 Expert 4
Age 25-34 35-44 35-44 25-34
Gender Male Male Male Male
Highest degree or
level of education

B.Sc. PhD High school
diploma

B.Sc.

Working in in-
dustrial area (in
years)

5 - 10 11 - 20 5 - 10 11 - 20

Working in sci-
entific area (in
years)

< 5 11 - 20 not working
in scientific
area

not working
in scientific
area

Experience in soft-
ware development
(in years)

7 17 20 17

Experience in soft-
ware testing (in
years)

5 17 5 12

Working in area of
HSSA (in years)

5 3 5 4

Current role Software
tester with a
focus on test
automation
and manual
testing

Technical
lead, software
architect

Software de-
veloper with a
focus on test-
ing, IT infras-
tructure man-
ager

Software de-
veloper with a
focus on test
automation

Experience in test
automation

2 (experi-
enced)

2 (experi-
enced)

2 (experi-
enced)

1 (very experi-
enced)

Demographic data challenges expert interviews

109

Appendix C – Challenges Interview Guideline
Process

• Thanking for agreeing to be interviewed

• Presenting myself

• Explain questionnaire structure

• Obtain consent for audio recording

• Ask demographic questions

• Mention that all questions regarding challenges relate to the practical experience of
the experts on the field of HSSA

• Ask content questions

• Thanking for interview

Demographic questions

1. I consent to screen/ audio recordings being made of this interview session for
evaluation purposes.

• Yes
• No

2. How old are you?

• 18 - 24
• 25 - 34
• 35 - 44
• 45 - 54
• 55 - 64
• Over 64

3. What is your gender?

• Female
• Male
• Other

4. What is the highest degree or level of education you have completed?

110

• High school degree
• Bachelor’s degree
• Master’s degree
• Ph.D. or higher

5. Are you currently working in the industrial area?

• Yes
• No

6. If yes, how long have you been working in the industrial area?

• Less than 5 Years
• 5 - 10 Years
• 11 - 20 Years
• More than 20 Years

7. Are you currently working in the scientific area?

• Yes
• No

8. If yes, how long have you been working in the scientific area?

• Less than 5 Years
• 5 - 10 Years
• 11 - 20 Years
• More than 20 Years

9. What is your experience in (general) software development in years?

10. What is your experience in software testing in years?

11. How would you rate your experience with test automation on a scale from 1 (one)
to 4 (four) with 1 being very experienced and 4 not experienced?

Very
experienced

Not
experienced

1 2 3 4

12. How long have you been working in the area of High-Security Software Architectures
in years?

13. What is/ are your role(s) in this area?

111

Content questions

1. Which mechanisms make software architectures secure in this area?

2. How challenging do you consider the use of key material and security certificates
in terms of testing HSSA?

Very
challenging

Not
challenging

1 2 3 4

3. Which challenges in terms of testing HSSA arise from the use of key material and
security certificates?

4. How challenging do you consider a logical network separation in terms of testing
HSSA?

Very
challenging

Not
challenging

1 2 3 4

5. Which challenges in terms of testing HSSA arise from a logical network separation?

6. How challenging do you consider a spatial separation from the hardware in terms
of testing HSSA?

Very
challenging

Not
challenging

1 2 3 4

7. Which challenges in terms of testing HSSA arise from a spatial separation from
the hardware?

8. How challenging do you consider the use of many different secure communication
protocols in terms of testing HSSA?

112

Very
challenging

Not
challenging

1 2 3 4

9. Which challenges in terms of testing HSSA arise from the use of many different
secure communication protocols?

10. How challenging do you consider testing HSSA with different authorization roles?

Very
challenging

Not
challenging

1 2 3 4

11. Which challenges in terms of testing HSSA arise from the use of different autho-
rization roles?

12. How challenging do you consider test automation in the area of HSSA?

Very
challenging

Not
challenging

1 2 3 4

13. Which challenges arise with respect to test automation in the area of HSSA?

14. How challenging do you consider testing the interoperability between components of
a HSSA?

Very
challenging

Not
challenging

1 2 3 4

15. Which challenges arise with respect to testing the interoperability between compo-
nents of a HSSA?

16. How challenging do you consider the testing infrastructure of HSSA?

113

Very
challenging

Not
challenging

1 2 3 4

17. Which challenges arise with respect to the testing infrastructure of HSSA?

18. How challenging do you consider the handling of test data when testing HSSA?

Very
challenging

Not
challenging

1 2 3 4

19. Which challenges arise with respect to the handling of test data when testing HSSA?

20. Which other challenges not yet mentioned do you see in testing HSSA?

114

Appendix D – Evaluation Interview Guideline
Process

• Thanking for agreeing to be interviewed

• Presenting myself

• Explain questionnaire structure

• Obtain consent for audio recording

• Ask quantitative and qualitative questions

• Thanking for interview

Content questions
Each concept and the corresponding mapped challenging category is explained to the
experts.

• Certificate creation and manipulation- static approach

• Certificate creation and manipulation - dynamic approach

• PKI simulators

• Implementation of encryption and decryption methods in test automation

• Usage of libraries when testing secure communication protocols

• Testing in several layers (with and without transport encryption)

• Simulators

• Semi-automatic testing with test groups

• On-demand setup of a test environment

• Testing in different environments

• Log reporting and log data aggregation

• Real time log analysis

• Containerization and virtualization

115

For each presented concept, the following questions are asked:

Very high Very low

1 2 3 4

1. On a scale of 1 to 4, with 1 being very high and 4 being very low, how would you
rate the overall quality and transferability of the concept? (optional)

2. What do you consider to be good in the concept? (optional)

3. What do you consider to be lacking in the concept? (optional)

4. What do you consider to be not transferable in the concept? (optional)

Highly
valid Not valid

1 2 3 4

5. On a scale of 1 to 4, with 1 being highly valid and 4 being not valid, do you
consider the presented concept as a valid solution to the mapped challenge category?
(optional)

6. Why do you consider the concept (not) to be a valid solution to the mapped challenge
category? (optional)

116

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Expected Results
	Methodology
	Structure

	Foundations
	Software Testing
	High-Security Software Architectures

	State of the Art
	Related Work
	Deductive Category System

	Conceptual Design
	Methodology
	Interview Design
	Demographic Data
	Quantitative Data Analysis
	Qualitative Data Analysis
	Resulting Challenges
	Filtered Deductive Category System

	Case Study
	Methodology
	Case Selection
	Within-Case Analysis – Case 1
	Within-Case Analysis – Case 2
	Cross-Case Analysis

	Resulting Concepts
	General Concepts
	HSSA-Specific Concepts

	Evaluation
	Methodology
	Interview Design
	Data Analysis

	Discussion
	Answering the Research Questions
	Threats to Validity
	Future Research

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendix

