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Abstract
Process integration addresses the challenge of reduction in energy consumption by heat
recovery in the processing industry. Its main focus lies on the grassroot design for new
plants. However, a large portion of existing plants were built during times with low energy
prices and thus, little focus on energy efficiency. Hence, retrofitting existing plants has a
high potential to improve the overall energy efficiency in the process industry. Due to
the industry’s orientation towards small volume, high value-added production demanding
multi-product and multi-purpose plants, the focus of the process industry shifts to multi-
period operation. Hence, process integration for such processes is more challenging as heat
exchanger networks need to be flexible to handle multi-period operation. To overcome
these challenges, research is also shifting more towards retrofitting existing plants and
multi-period production. Further, for industry, it is more important to consider practical
challenges within the optimization and be able to guide the optimization towards more
practical plant designs rather than finding the best possible solution requiring complex
and expensive controlling systems.

The research in this thesis focuses on developing a method addressing the challenge of
retrofitting multi-period processes for practical heat exchanger network design. To ensure
practical designs, additional constraints are considered in the optimization. These con-
straints increase the complexity of the already N P-hard in the strong sense optimization
problem. Hence, the developed method resorts to metaheuristic optimization algorithms.
A possible hybrid trajectory-based as well as a hybrid evolutionary-based algorithm
are investigated whereby the latter has prevailed. The implemented algorithm is split
into two stages. A Genetic Algorithm optimizes the heat exchanger network topology
and a Differential Evolution optimizes the heat loads for every operating period. To
ensure feasible heat transfer in every operating period, bypass and admixer configurations,
which ensure flexible operation of the heat exchangers, are analyzed to ensure feasible
mixer temperatures by solving the logarithmic mean temperature analytically using
the Lambert W-function. In recent years, reduction in greenhouse gas emissions has
become more important for industry. Hence, greenhouse gas emissions are considered
as a second objective in addition to the total annual cost. Therefore, the algorithm is
using an NSGA-II sorting algorithm and hypervolume indicators to perform a Pareto
optimization.

The developed algorithm is applied successfully to a case study from the literature and
one from the industry. The results for the multi-objective optimization showed that the
weighting between capital costs for retrofit and utility demand, causing operating costs
and greenhouse gas emissions, has a large impact on the final design. This also implies
that a change in energy costs or an improvement in the efficiency of the utility system
has a significant impact on the final design.
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Kurzfassung
Prozessintegration befasst sich mit der Reduzierung des Energiebedarfs durch Wärmerück-
gewinnung in der Prozessindustrie. Der Hauptfokus liegt auf der Planung neuer Anlagen.
Allerdings wurde ein Grossteil der bestehenden Anlagen in Zeiten niedriger Energiepreise
gebaut als Energieeffizienz in der Planung keine grosse Rolle gespielt hat. Daher besteht
ein grosses Potenzial in der Nachrüstung bestehender Anlagen zur Verbesserung der
Energieeffizienz in der Prozessindustrie. Aufgrund des Trends zur Herstellung von kleinen
Produktmengen mit hoher Wertschöpfung werden Mehrproduktanlagen und Mehrzweck-
Anlagen benötigt welche flexibel in verschiedenen Betriebsfällen betrieben werden können.
Um den Betrieb für jedes Produkt gewährleisten zu können nimmt die Komplexität des
Designs sowohl als auch der Optimierung mit der Anzahl der Betriebsfälle zu. Um diese
Herausforderungen zu meistern setzt sich auch die Forschung mehr mit der Nachrüstung
von bestehenden Anlagen und der Produktion mit mehreren Betriebsfällen auseinander.
Weiter ist es für die Industrie wichtig, dass Herausforderungen aus der Praxis in die Opti-
mierung mit einbezogen werden und dass die Optimierung in Richtung praxistauglichen
Analgendesigns gelenkt werden, ohne dass auf komplexe Kontrollsysteme zurückgegriffen
werden muss.

Der Fokus dieser Thesis liegt in der Entwicklung einer Optimierungsmethode für die
Nachrüstung von Prozessen mit mehreren Betriebsfällen. Um praxisnahe Designs zu
gewährleisten, werden zusätzliche Randbedingungen in der Optimierung mitberücksichtigt
welche Herausforderungen aus der Praxis mit einbeziehen. Diese zusätzlichen Randbedin-
gungen erhöhen die Komplexität des ohnehin schon N P-schweren Optimierungsproblem.
Daher verwendet der entwickelte Optimierungsansatz metaheuristische Algorithmen. Für
den Algorithmus wurde ein hybrider, auf Trajektorien basierter, Algorithmus wie auch
ein hybrider evolutionärer Algorithmus untersucht, wobei sich letzterer durchgesetzt hat.
Dieser Algorithmus ist zweistufig wobei ein Genetischer Algorithmus für die Optimierung
der Topologie des Wärmeübertragernetzwerkes und eine Differential Evolution für die
Optimierung der Wärmeleistungen der Wärmeübertrager in jedem Betriebsfall eingesetzt
wird. Mit der Integration von Beipass- und Beimischschaltungen kann die Flexibiltät
des Wärmeübertragernetzwerkes gewährleistet werden. Dabei werden die Mischtempe-
raturen mithilfe der Lambert W-Funktion analytisch berechnet. Die Reduzierung von
Treibhausgasemissionen hat in den letzten Jahren für die Industrie an Bedeutung gewon-
nen. Daher werden Treibhausgasemissionen, zusätzlich zu den jährlichen Gesamtkosten,
als zweite Zielfunktion mitbetrachtet. Für die Pareto-Optimierung werden dafür ein
NSGA-II-Sortieralgorithmus und Hypervolumenindikatoren verwendet.

Der entwickelte Algorithmus wurde erfolgreich auf ein Fallbeispiel aus der Literatur
und ein Fallbeispiel aus der Industrie angewendet. Die Ergebnisse der multikriteriellen
Optimierung zeigen, dass die Gewichtung zwischen den Nachrüstungkosten und dem
Energiebedarf, der die Betriebskosten und Treibhausgasemissionen verursacht, einen
grossen Einfluss auf das Design haben. Dies bedeutet auch, dass eine Änderung der Ener-
giekosten oder eine Verbesserung der Effizienz des Versorgungssystems einen signifikanten
Einfluss auf das Design haben.
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Research Summary

This chapter serves as a guide through the thesis. Section 1 highlights the motivation
for the research and discusses the topic of industrial energy efficiency in broader terms.
In Section 2, the research background is provided as well as gaps in the literature are
highlighted. The resulting problem statement including research questions is formulated
in Section 3. Section 4 shows how the posed research questions are addressed in the
publications and gives an overview of the developed algorithm. In Section 5, the used
case studies are introduced and the findings from the application of the algorithm to
said case studies are summarized. Finally, in Section 6, the findings of the research are
discussed, conclusions are drawn, and an outlook for future work is given.

1 Introduction

Energy plays a key role in almost every aspect of life. In 2022, 41.3 GtCO2eq energy-
related greenhouse gas (GHG) emissions were released worldwide (IEA, 2022). While
increased CO2 concentration in the atmosphere positively influences the greening of
the Earth due to the carbon dioxide fertilization effect (Zhu et al., 2016), higher GHG
concentrations (including CO2) also amplify the greenhouse effect causing the global
mean temperature to increase. In comparison to pre-industrial temperatures (1850-1900,
a period chosen by the IPCC as reference due to the relatively widespread although still
sparse, temperature observations (Hawkins et al., 2017)), the global mean temperature in
2017 has increased by approximately 1 ℃ (Allen et al., 2018). This correlation indicates
that human-induced GHG emissions contribute to the global mean temperature rise. In
2015, at the 21st Conference of the Parties (COP21) of the United Nations Framework
Convention on Climate Change (UNFCCC), 195 nations adopted the Paris Agreement
to limit global warming to 1.5 ℃. To reach this goal, Switzerland, among many other
nations, aims to reach net-zero emissions by 2050 (The Federal Council, 2021). Climate
policies tackle the reduction in various ways such as increased investment in research and
development, carbon taxes, and technology bans. It is important to notice that global
warming and the mitigation measures needed disproportionately affect the poor and
vulnerable and therefore, effects on them must be observed and considered in the policy
making. Lomborg (2020) showed, that the most cost-effective climate policy is to increase
investment in green research and development to reduce the cost of decarbonization,
rather than slowing down economic growth.
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Research summary

In 2022, the industry sector was the second largest contributor to global CO2 emissions ac-
counting for 26 % (9.15 GtCO2), after the energy sector accounting for 42 % (14.65 GtCO2)
(IEA, 2022). Hence, decarbonization and electrification of the industrial sector are of
large interest.

For the industry sector, increased profitability is an important incentive to improve
energy efficiency. The COVID-19 pandemic and an energy supply shock, evoked by a gap
between supply and demand, more volatile energy sources, and ineffective global strategic
planning, caused the emergence of an energy crisis resulting in a significant increase in
energy prices (Chofreh et al., 2021). As a result, a reduction in energy demand is of the
highest priority to ensure competitiveness. Thereby, the interest to ensure energy-efficient
production and the reduction of GHG emissions are closely linked.

In the process industry, improvement of energy efficiency and GHG emissions reduction
is particularly challenging due to the high complexity of the systems, the heterogeneity
within the sector, and in many cases, for the processes, required high temperature
levels. To tackle these challenges, the use of methods from Process Integration (PI) is
common. These methods usually tackle the challenge of finding a trade-off between
capital costs for equipment and operating costs from energy consumption. Usually, PI
methods focus on grassroot design. However, with the increase in energy prices and
environmental awareness, brownfield design becomes more viable leading to an increase
in the development of PI methods for retrofit (Sreepathi and Rangaiah, 2014b). The
most recent energy crisis is likely to expedite this development even further.

The market drives towards high value-added products, demanding flexible plant designs
for multi-period operation (Jiao et al., 2003). However, research in the field of PI focusing
on retrofit and multi-period operation simultaneously is rather sparse, hence creating a
need for the development of such methods.

2 Context

This section provides the background to this thesis. First, in Section 2.1, PI is introduced
and some of the key contributions are highlighted. Optimization is a core part of PI.
Hence, in Section 2.2 optimization problems are characterized based on their properties.
Further, an overview of optimization techniques to tackle these problems is given, and in
PI commonly used optimization techniques are highlighted.

2.1 Process Integration

In this thesis, PI only refers to energetic PI and thus, can be referred to as a holistic
thermo-economic approach aimed at improving efficiency in the process industry by
analyzing the heating and cooling demands of an entire system and exploring possible
heat recovery (HR) rather than improving the efficiency of individual components.

2



2 Context

Traditionally, the goal is to minimize the total annual cost (TAC) of the system, which
is a trade-off between annualized capital costs and operating costs (Smith, 2005). As
Gundersen (2000) stated, the International Energy Agency (IEA) defines PI as follows:

“Systematic and General Methods for Designing Integrated Production Sys-
tems, ranging from Individual Processes to Total Sites, with special emphasis
on the Efficient Use of Energy and reducing Environmental Effect.”

(IEA, 1993)

In response to the oil crisis and the resulting increase in energy prices in the early
1970s, energy efficiency technologies gained more interest. The field of PI emerged in
this period. Early works involved the development of the insight-based method called
Pinch Analysis (PA). Hohmann (1971) introduced the concept of Heat Integration which
laid the foundation for the integration of energy conversion units such as heat pumps.
Linnhoff and Flower (1978) and Linnhoff (1979) introduced the Problem Table Algorithm
and the concept of the Pinch which led to the foundation of the PA (Linnhoff and
Hindmarsh, 1983). Umeda et al. (1978) and Umeda et al. (1979) developed the concept
of the T-Q̇ diagram and the Composite Curves, which is a visualization of the heating
and cooling demand, and are up to this day a crucial part of PA and PI. In the early
days of PI, PA was seen as controversial as it uses simple techniques rather than complex
mathematical approaches. However, the method has proven itself useful in its practical
application in industry and is now generally accepted among researchers and consultants
(Kemp and Lim, 2020).

Another branch of PI, which was initially in opposition to PA, but later complemented
it, approaches the problem from the mathematical optimization side and is called Heat
Exchange Network Synthesis (HENS). The problem of HENS was introduced by Broeck
(1944). Hwa (1965) and Ponton and Donaldson (1974) were among the first to study how
to solve the HENS problem.

Bogataj et al. (2023) summarized the key developments in PI in the last 50 years, with the
focus on PA and Mathematical Programming (MP) showing that for both approaches the
research has advanced from simple continuous process synthesis towards more complex
problems considering multi-period operation, detailed heat exchanger (HEX) design,
retrofit, and multi-objective optimization. Due to the high complexity, methods tend to
simplify or break down the problem into smaller sub-problems. Thereby, it is also not
uncommon to combine PA and MP techniques to take advantage of both approaches.

With the increase of complexity in PI, new approaches addressing the HENS problem
using metaheuristic optimization techniques started to emerge with Dolan et al. (1989)
being the first to use a Simulated Annealing (SA) algorithm for HENS. Toimil and Gómez
(2017) provide a comprehensive review of recent metaheuristic approaches to the HENS
problem.

3
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2.1.1 Heat Exchanger Network Synthesis

HENS can be seen as the core sub-problem of PI. It addresses the problem of designing a
heat exchanger network (HEN) for HR of a defined system with regard to minimal TAC.
In his review paper on HENS, Furman and Sahinidis (2002) stated that Masso and Rudd
(1969) defined HENS as follows:

“Given (i) a set H of hot process streams to be cooled from the inlet tem-
peratures to the outlet temperatures, (ii) a set C of cold process streams to
be heated from the inlet temperatures to the outlet temperatures, (iii) the
heat capacities and flow rates of the hot and cold process streams, (iv) the
utilities available and the temperatures or temperature ranges and the costs
for these utilities, and, (v) heat-exchanger cost data, develop a network of
heat exchangers with minimum annualized investment and operating costs.”

(Masso and Rudd, 1969)

Among others, Shenoy (1995) and Biegler et al. (1997) provide a comprehensive intro-
duction to the topic of HENS. In general, HENS can be divided into sequential and
simultaneous approaches. Thereby, early published works such as by Floudas et al. (1986)
usually address the problem sequentially to reduce the computation cost. Therefore,
HENS is decomposed into three sub-problems which have to be solved in sequence using
the transshipment model by Papoulias and Grossmann (1983):

1. The minimum utility demand / Maximum Energy Recovery (MER)

2. The minimum number of HEX

3. The minimum area/capital costs of the HEN

The result of the sub-problems is used in the initial conditions for the next sub-problem.
A global optimum of one of the sub-problems might lead to a local optimum of the whole
problem. Therefore, this approach might lead to convergence to a local optimum, rather
than the global optimum (Ciric and Floudas, 1991). In opposition, simultaneous HENS
formulations address the problem without decomposition to omit convergence in a local
optimum. Simultaneous HENS is usually posed as a minimization of TAC which is a
combination of annualized capital costs and operating costs. A simultaneous HENS
formulation widely used to date is the stage-wise superstructure (SWS; shown in Fig. 1)
by Yee and Grossmann (1990). The SWS formulation divides the HEN into enthalpy
stages in which each hot steam can be connected to each cold stream. The number of
enthalpy stages directly influences the number of possible HEXs and is, therefore, an
important parameter to find the optimal solutions but also affects the complexity of
the system and thus, computation costs. To fulfill the energy balance a balance utility
HEX is placed at the end of each stream. Inlet and outlet temperatures for the HEX
are determined using the energy balance of each process stream in each enthalpy stage.
The outlet temperature can be determined using the enthalpy change of the stream
caused by the heat loads of the HEX connected to the stream. This formulation for

4



2 Context

Hi

Hi+1

Cj

Cj+1

k k+1

Fig. 1 Stage-wise superstructure with two hot streams (Hi) and two cold streams (Cj) and two
enthalpy stages (k) proposed by Yee and Grossmann (1990)

the calculation of the outlet temperatures only allows isothermal mixing. With this
limitation, the problem can be represented in a linear formulation with except of the
objective function. The nonlinearity is caused by the logarithmic mean temperature
differences (LMTDs), which are needed to determine the HEX areas, the heat transfer
equation used to determine the areas, and the cost functions used to determine the
capital costs for the needed area. Among others, Ciric and Floudas (1991) proposed a
HENS approach that includes mass balance equations for the stream splitting to include
non-isothermal mixing as well. Such formulations add additional non-convex equations,
which increase the complexity of the solution space and thus, the difficulty of finding the
global optimum.

Furman and Sahinidis (2001) showed that the complexity of the HENS problem is N P-
hard (non-deterministic polynomial-time hard) in the strong sense. The high complexity
evoked due to the non-linearity, non-convexity, and combinatorial discontinuities, led to
explore other optimization approaches such as metaheuristic algorithms. Dolan et al.
(1989) were the first to propose an approach using a SA algorithm for HENS which found
better solutions compared to current available MP approaches. The first approach using
a Genetic Algorithm (GA) for HENS was published by Lewin et al. (1998). Thereby, the
approach consisted of two stages using GA for the topology optimization of the HEN
and a Linear Programming (LP) model to address the MER problem. Lewin (1998) also
extended the model using a cascaded LP model to minimize TAC.

2.1.2 Retrofit

For companies, profitability is one of the key motivations. For a long time, energy prices
were rather low and thus, there was no incentive for energy-efficient production. Hence,
a large share of existing plants were built without having energy efficiency in mind. Such
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plants have usually a high HR potential. To improve the overall energy efficiency of the
industry, Heat Exchanger Network Retrofit (HENR) methods are needed.

In retrofit the HEN is modified rather than designed from the ground up. Thereby,
the topology of the HEN can be modified by re-piping or re-sequencing existing HEXs.
Usually, existing HEXs can also be removed and new HEXs can be added. To address
the changes in heat loads, HEXs can also be retrofitted by extending their area. In
addition to considering the capital costs for new HEXs and operating costs for utility
consumption, modification costs for the retrofit and added area need to be considered as
well. An example of such a HENR formulation can be found in Article 2.

Sreepathi and Rangaiah (2014b) showed that a trend in research towards retrofit is
evident, as the amount of published articles in the field has doubled within 5 years. The
first research in the field of retrofit was done by Ciric and Floudas (1989), which adopted
the sequential transshipment model (Papoulias and Grossmann, 1983). Thereby, the
investment costs for new HEXs, additional HEX area, and piping costs for a fixed HR
were minimized. The first simultaneous approach was proposed by Ciric and Floudas
(1990). As the objective function, reassignment costs for existing HEXs, investment costs
for new HEXs, and piping costs are minimized. Another simultaneous approach was
proposed by Yee and Grossmann (1991) by extending the SWS (Yee and Grossmann,
1990) to a retrofit formulation.

By extending the HENS formulation (Athier et al., 1997), Athier et al. (1998) proposed
one of the first metaheuristic approaches to HENR using a two-stage SA in combination
with a Nonlinear Programming (NLP) formulation. Thereby, the SA is used to optimize
the topology of the HEN and the NLP formulation optimizes the needed areas. Bochenek
and Jezowski (2006) proposed a two-stage HENR method using GA for the top-level
as well as for the sub-level. It has been shown that the results of both approaches are
better in comparison to current available MP-based methods. Sreepathi and Rangaiah
(2014b) provides a comprehensive review of HENR methods including MP as well as
metaheuristic approaches.

2.1.3 Multi-Period Operation

PI was first developed for continuous processes only. However, market trends towards
high value-added products (e.g., fine chemicals, pharma, food, beverages) and thus,
the demand for flexible production to address dynamic customer demands and highly
customized products, require more flexible plant designs (Jiao et al., 2003). This adds an
additional time dimension and thus constraints for HR. A non-continuous operation may
also arise in total site heat integration. Inter-plant HR between continuous plants can
cause time constraints for HR due to different scheduling of the plants. In such cases,
inter-plant HR is often achieved using intermediate loops to bypass the time constraints for
HR (e.g., Stampfli et al., 2019b). In this thesis, the focus lies on HR within single plants
and, therefore does not consider inter-plant HR. In general, non-continuous production
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within a single plant can be categorized into batch and multi-period processing. Batch
processes are characterized as a sequence of operations or tasks to treat a charge, also
called a batch. A certain step could take an extended period of time to complete (e.g., a
chemical reaction) before the next step can be started. Therefore, batch processes can
be characterized as distributed in time (Majozi, 2010). On the other hand, multi-period
processes, also known as processes with multiple operating cases (Olsen et al., 2017) or
multiple base cases (Jones, 1991), can also be referred to as continuous in periods. In
Fig. 2, the multi-period behavior is categorized into the following three process types:

• A single-product process refers to a single plant used to produce one product.
The production can be influenced by changes in the material feed (depending on
customer demands) or changes in properties of streams from the outside (caused
by seasonal changes) such as temperature and humidity of intake of ambient air, or
of material stored outside.

• A multi-product process refers to a single plant used to produce various products
passing through the equipment in the same order. The production can be influenced
by the different temperature or mass flow requirements of each product.

• A multi-purpose process refers to a single plant used to produce various products
passing through the equipment in a changed order. Due to the completely different
characteristics of each process and its requirements, the re-arrangement of the
equipment can influence production significantly.

Equipment 1 Equipment 2 Equipment 3 Equipment 4

Single-product

Material 1, period 1

Material 1, period 2

Product 1, period 1

Product 1, period 2

Air, period 1 Air, period 2

Equipment 1 Equipment 2 Equipment 3 Equipment 4

Multi-product

Material 1, period 1

Material 2, period 2

Product 1, period 1

Product 2, period 2

Equipment 1 Equipment 2 Equipment 3 Equipment 4

Multi-purpose

Material 1, period 1

Material 2, period 2

Product 1, period 1

Product 2, period 2

Fig. 2 Categorization of multi-period plants with four exemplary equipment (in this case
equipment do not include HEXs)
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The time dependence in processes can be addressed in two ways. Either the process is
decomposed in periods with continuous operation using the Time Slice Model (TSM),
introduced by Linnhoff et al. (1988), or is analyzed as if all the heating and cooling
demands would occur at the same time using the Time Average Model (TAM), introduced
by Clayton (1986). The two models have distinct advantages for either direct or indirect
HR. By the use of the TSM, direct HR potential between simultaneously existing
streams can be analyzed. The TAM on the other hand is used to analyze the total
HR potential (including direct and indirect) of the process and can be used to explore
the potential of thermal energy storage integration (Kemp and Deakin, 1989). Some
approaches also combine the two concepts to explore direct HR potential with the TSM
in a first step and analyze the residual indirect HR with the TAM for storage integration
(e.g., Krummenacher, 2001).

Due to the characteristics of multi-period processes, their time slices (continuous periods)
tend to be rather long (e.g., in a multi-product plant the switch between two products
might occur every few weeks or months). Hence, the potential for direct HR is more
interesting than indirect HR between time slices which might lead to significant losses
due to long storage periods. Even though the TSM is typically used in PA, HENS
utilizes the same concept to formulate the multi-period problem. Thereby, heat loads and
temperatures are split into continuous periods called operating periods. The HENS formu-
lation is therefore extended by an additional dimension in time. Grossmann and Sargent
(1979) were the first to introduce a mathematical formulation for the multi-period HENS
problem. By adapting the sequential transshipment model (Papoulias and Grossmann,
1983) for multi-period operation, Floudas and Grossmann (1986) proposed a systematic
approach to solve the formulation. Based on the SWS by Yee and Grossmann (1990),
Aaltola (2002) proposed a simultaneous framework to multi-period HENS minimizing
TAC and flexibility.

Kang and Liu (2014) proposed a two-stage sequential approach to solve the multi-period
HENR problem using a reverse order matching method minimizing TAC. Thereby, in the
first step, the multi-period HENS formulation by Verheyen and Zhang (2006) is solved.
In the second step, the required HEX areas of the new HEN design are matched with the
HEX areas of the existing design in reversed order. In the third step, the minimization of
capital costs for the additional area is substituted by minimizing the additional needed
area of existing HEXs. This substitution was later replaced by minimizing the capital
costs instead (Kang and Liu, 2015). Isafiade (2018) proposed a similar approach using a
two-stage sequential reduced superstructure synthesis approach to solve the multi-period
HENR problem. Like Kang and Liu, Isafiade solved the multi-period HENS model by
Verheyen and Zhang (2006) in the first step. In the second step, instead of only matching
the areas of the HEXs in the new HEN with the areas of the HEXs in the existing HEN,
Isafiade solves the reduced superstructure as a Mixed-Integer Nonlinear Programming
(MINLP) model. This allows the model to update the topology and remove the no longer
needed HEXs or add new HEXs. Langner et al. (2020) splits the multi-period HENR
problem into five sequential steps to consider the temperature of process variables such as
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the inlet temperatures. Thereby, the problem is broken down into simpler sub-problems
that can be solved with well-established single-period HENR methods.

2.1.4 Multi-Objective Optimization

In the industry there are often multiple, with each other conflicting, objectives. A prime
example from PI is minimizing annualized capital costs and operating costs. Other
examples of conflicting objectives are maximizing HR and minimizing space requirements
or maximizing safety. Only limited research on multi-objective multi-period HENR
has been conducted. Sreepathi and Rangaiah (2015) extended the single-period multi-
objective optimization (MOO) for HENR (Sreepathi and Rangaiah, 2014a), which uses
the non-dominated sorting Genetic Algorithm (NSGA-II) for the Pareto optimization, to
consider variations in heat capacities. Thereby, annualized capital costs and utility costs
are used as the objectives. Kang and Liu (2017) proposed an approach to solve the MOO
multi-period HENR problem using a three-stage sequential procedure to minimize TAC
and GHG emissions based on the reverse order matching method. The first stage solves
a simplified formulation of the multi-period HENS (Kang et al., 2016). In the second
step, the GHG emissions are included as a second objective in the multi-objective HENS
model. Therefore, the ε-constraint method is adopted to solve the new formulation.
In the last step, the reverse order matching method is applied to match HEX areas of
the new HEN design with HEX areas from the existing HEN by considering the four
objectives minimizing the modifications of the existing HEN structure, maximizing the
number of substituted HEXs, minimizing the additional required areas, and minimize
the annualized capital costs for the retrofit.

2.2 Optimization and Mathematical Programming

Optimization is a core part of PI, hence, this section introduces the concept and chal-
lenges of mathematical optimization as well as commonly used optimization techniques.
Optimization is a branch of mathematics concerned with the search for the optimal
solution of a mathematical model. Research in optimization dates back to ancient times.
Notable contributions in the 18th century helped to lay the foundation of the field.
Bernoulli (1713) introduced the concept of probability theory and its application in the
field of optimization, while Euler (1744) introduced the concept of the Euler-Lagrange
equation which has become a fundamental tool in the field of optimization. Lagrange
(1797) introduced the concept for calculus of variations and Gauss (1809) the concept of
least squares.

With the introduction of the simplex algorithm for solving linear problems, Dantzig
(1948) laid the foundation of MP and revolutionized the field of optimization. In contrast
to solving optimization problems using calculus, Dantzig’s work focused on formulating
the problem as a mathematical model which can be solved using an algorithm. Since
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then, a variety of algorithms has been developed, tackling not only linear problems but
also nonlinear or mixed-integer problems. In general, an MP can be formulated as a
minimization problem (Floudas, 1995)

min
x,y

f(x, y) x ∈ X ⊆ Rn, y ∈ Y ⊆ Zm (2.1a)

s.t. hi(x, y) = 0 i = 1, . . . , p (2.1b)
gj(x, y) ≤ 0 j = 1, . . . , q (2.1c)

whereby, Eq. 2.1a is the objective function, based on a vector of n continuous variables
x and m integer variables y contained in the feasible regions X and Y. These regions
can be constrained by a set of equality constraints, Eq. 2.1b, and a set of inequality
constraints, Eq. 2.1c. For unconstrained problems, Eq. 2.1b and Eq. 2.1c do not exist
resulting in X = Rn and Y = Zm. For maximization problems, the objective function
(Eq. 2.1a) can be rewritten as

max
x,y

f(x, y) = min
x,y

−f(x, y) (2.2)

2.2.1 Characterization of Optimization Problems

Optimization problems are classified based on their attributes which determine what
techniques can be used. One major distinction is between continuous and discrete solution
spaces. Discrete optimization, dealing with decision processes represented using integer
variables (Z), is commonly used in operations research for combinatorial problems such
as the Traveling Salesman Problem or the Bin Packing Problem. On the other hand,
continuous optimization problems deals with real numbers (R). Thereby, linear and
nonlinear problems are distinguished. To determine if a continuous optimization problem
is linear, the objective function, as well as all constraints, need to satisfy the superposition
principle (according to Brillouin (1946), introduced by D. Bernoulli in 1753):

• Additivity: f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2, y2)

• Homogeneity: f(a x, a y) = a f(x, y)

whereby, x1, x2 and y1, y2 are two different variables evaluated at two points (1 and 2)
and a is a constant parameter. Linear optimization problems can usually be solved with
ease. In contrast, nonlinear problems are more complex and require more demanding
approaches in general based on gradients of the objective function. To find extreme points,
the methods search for stationary points x∗ where the gradient is zero ∇f(x∗) = 0.
Fig. 3, visualizes stationary points for the Peaks and hyperbolic paraboloid functions.
To find such stationary points, the nonlinear problem needs to be twofold continuously
differentiable (f ∈ C2).
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Global minimum

Global maximum
Local maxima

(a)

Saddle point

(b)

Fig. 3 (a) Peaks function marked with its global maximum, its global minimum, and local
maxima as stationary points and (b) hyperbolic paraboloid function with its saddle point
as its only stationary point

To determine the type of a stationary point, all Eigenvalues λi with i = 1, . . . , n of the
Hessian ∇2f(x∗) need to be considered:

• Positive definite Hessian (∀i : λi > 0): x∗ is a local minima

• Negative definite Hessian (∀i : λi < 0): x∗ is a local maxima

• Indefinite Hessian (∀i : (∃λi > 0) ∧ (∃λi < 0) ∧ (∀λi ̸= 0)): x∗ is a saddle point

For cases where some Eigenvalues are zero and others are either positive or negative, the
Hessian is semi-definite. In these cases, it cannot be said if x∗ is a local extremum or a
saddle point. Hence, gradient and Hessian can only identify local extrema. However, for
convex problems, a local extremum is always a global extremum. For a problem to be
convex, its solution space as well as its objective function need to be convex. The solution
space X ⊆ Rn is convex if for all x1, x2 ∈ X and all reel numbers α with 0 < α < 1,

(α x1 + (1 − α) x2) ∈ X (2.3)

is fulfilled. For a convex solution space a function f(x) is convex if for all x1 ̸= x2 ∈ X ,

f(α x1 + (1 − α) x2) < α f(x1) + (1 − α) f(x2) (2.4)

is fulfilled. If one of these conditions is not fulfilled, the problem is non-convex and
might contain local optima in which a gradient-based algorithm, depending on its step
size, can converge prematurely. Hence, solving non-convex problems is more complex
and is usually considered N P-hard (Murty and Kabadi, 1987). The topic of extrema
and convexity is widely documented in various optimization-themed books, such as in
Nonlinear and Mixed-Integer Optimization by Floudas (1995).

11



Research summary

Deterministic

Continuous Discrete

Linear

Nonlinear

Derivative-based

Derivative-free

Combinatiorial
Exact

Heuristic

Integer

Stochastic

HeuristicMetaheuristic

Population

Evolutionary

Swarm Behavior

Trajectory

Nature-InspiredMathematical Programming

Simplex
Criss-Cross
Ellipsoid

Gradient Descent
Newton
Levenberg-Marquardt
Trust Region
Interior-Point

Nelder-Mead

Dijkstra
Prim
Ford-Fulkerson

k-Opt
Christofides

Cutting Plane
Branch & Bound
Branch & Cut
Branch & Price

Genetic Algorithm
Differential Evolution
Evolution Strategies
Genetic Programming

Particle Swarm
Ant Colony
Artificial Bee Colony
Artificial Swarm
Firefly

Random Walk
Random Local Search
Hill Climbing

Greedy Randomized
Adaptive Search
Procedure
Tabu Search
Variable Neighborhood
Search
Guided Local Search
Iterative Local Search
Stochastic Local Search

Simulated Annealing

Fig. 4 Classification of exemplary optimization algorithms based on the problems attributes and
algorithm techniques (non-exhaustive)

2.2.2 Classification of Optimization Techniques

To adapt to the different characteristics of optimization problems, various optimization
techniques have been developed. Fig. 4 gives an overview of optimization techniques
classified by their attributes and techniques. The major distinction is drawn between
deterministic and stochastic optimization. A deterministic algorithm follows a given
procedure and will always generate the same output for a specific input. In contrast,
a stochastic algorithm includes randomness in the optimization to explore a broader
solution space to omit premature convergence in local optima. This is especially useful
for discontinuous and non-convex problems.

In literature, Pinch Analysis is sometimes referred to as an insight-based heuristic
approach. It is important to notice that PA is an algorithm because it only provides a set
of rules which have to be followed rather than a complete procedure for PI. Hence, PA is
not treated as an optimization technique and is therefore not included in this chapter
and in Fig. 4.

2.2.2.1 Deterministic Optimization

Deterministic optimization is subdivided by variable type. In the field of continuous
optimization (R), mainly linear and nonlinear problems are distinguished. Thus, all linear
problems are convex, simple algorithms such as the Dantzig’s Simplex (Dantzig, 1948)
can be used to find the global optimum. In contrast, nonlinear problems are usually

12



2 Context

addressed using gradient-based methods such as Newton’s Method (Newton, 1711). As
an alternative, derivative-free algorithms, such as the Simplex method by Nelder and
Mead (1965) can be used.

Convex nonlinear problems are usually easy to solve with conventional nonlinear algo-
rithms, however, for non-convex problems, such methods might converge prematurely
in local optima. Most nonlinear algorithms can be extended for global optimization.
Therefore, additional methods for analyzing, or simplifying the problem are incorporated.
Methods that analyze the solution space are for e.g., interval analysis which can be used
to verify the optimality of a local optimum or a multi-start approach which performs
the optimization multiple times with various initial conditions, usually determined using
stochastic methods. Other methods approach the problem by simplification for e.g.,
convex relaxation which solves a convex approximation of the non-convex problem, surro-
gate modeling replacing complex functions with easier-to-evaluate functions, or dividing
the search space into smaller regions to optimize separately with divide-and-conquer or
branch and bound methods. Deterministic global optimization methods are discussed in
detail in various books such as Deterministic Global Optimization: Theroy, Methods and
Applications, by Floudas (2013).

Discrete optimization (Z) is widely used in combinatorial optimization for example
Dijkstra’s algorithm (Dijkstra, 1959) which is a greedy algorithm used to find the shortest
path for graphs such as the Traveling Salesman Problem. Another branch of discrete
optimization addresses the optimization of integer problems. These problems are usually
formulated, similar to continuous problems, in the form of a mathematical program.
Branch and bound as well as cutting plane algorithms are usually used in this field.
The field of integer optimization is commonly combined with either linear or nonlinear
algorithms to solve MI(N)LP problems whereby the integer algorithm subdivides the
solution space into continuous problems which are then solved by a linear or nonlinear
solver. In the field of MP, in general, deterministic continuous linear as well as nonlinear,
and discrete integer optimization techniques are used.

Constraint Handling Techniques: In MP, constraint problems are usually transformed
into unconstrained problems by incorporating their constraints into the objective func-
tion using Lagrange multipliers (Lagrange, 1775) and the Karush-Kuhn-Tucker (KKT)
condition to ensure a well-posed problem and that the solution satisfies the primal-dual
problem (Karush, 1939; Kuhn and Tucker, 1951). The KKT conditions are a set of
necessary conditions for optimality in constraint optimization and can be stated as
follows:

1. Stationarity condition is fulfilled if the gradient of the objective function is orthog-
onal to the tangent space of the feasible region defined by the constraints at the
point x∗:

∇f(x∗) + λT∇h(x∗) + µT∇g(x∗) = 0 (2.5)
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whereby ∇h(x∗) is the gradient of all equality constraints, ∇g(x∗) is the gradient of
all inequality constraints, and λ, µ are vectors containing the associated Lagrange
multiplier.

2. Primal feasibility is fulfilled if none of the equality h(x∗) and inequality constraints
g(x∗) are violated at the point x∗:

h(x∗) = 0 (2.6a)
g(x∗) ≤ 0 (2.6b)

3. Dual feasibility is fulfilled if the Lagrange multipliers of all inequality constraints
are positive:

µ ≥ 0 (2.7)

4. Complementary slackness is fulfilled if the product of the Lagrange multipliers and
the inequality constraints is zero:

µTg(x∗) = 0 (2.8)

It is important to notice that KKT conditions are necessary but not sufficient conditions
for optimality. KKT constraints are an essential part of many constraint-handling
procedures. Floudas (1995) summarized constraint handling techniques for MP as
follows:

• Penalty methods add a term to the objective function for any violation of a constraint.
The penalization of the violations ensures that the optimization is guided towards
the feasible region.

• Barrier methods generate a wall around the feasible region to omit the algorithm
leaving the feasible space. Therefore, the value of the objective functions increases
drastically towards the constraints by incorporating the constraints with e.g.,
logarithmic penalty functions.

• Successive linear/quadratic programming methods approximate the objective func-
tion and constraints using Taylor first-order (linear) or second-order (quadratic)
series approximation. The approximation is used to generate the search direction
and is repeated for every step. In this approach, the constraints are incorporated
into the objective function by penalization.

• Gradient projection methods project the gradient of infeasible solutions onto the
closest feasible point and perform a gradient decent step. Hence, it is ensured that
the algorithm is not leaving the feasible region. This approach does not integrate
the constraints into the objective function.
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• Generalized reduced gradient methods compute the reduced gradient by considering
the objective and constraints simultaneously and using first-order Taylor approx-
imation. If the current point is infeasible, gradient projection methods are used
toward the feasible region. As long the solution is infeasible a new approximation
of the gradient is performed which is then used for a new gradient projection step.

2.2.2.2 Stochastic Optimization

Stochastic algorithms can generally be subdivided into heuristic and metaheuristic
algorithms. Thereby, heuristic algorithms are usually simpler problem-specific algorithms
that use practical knowledge of the problem and thus, commonly suffer from premature
convergence in local optima. In contrast, metaheuristic algorithms are high-level methods
that combine local and global search methods. Often probabilistic techniques are
incorporated to explore complex solution spaces or escape local optima. Among others,
in Methaheuristics From Design to Implementation, Talbi (2009) provides an exhaustive
overview and guidelines on how to design metaheuristic algorithms. Metaheuristic
algorithms can generally be subdivided into population-based and trajectory-based
algorithms.

Population-based algorithms are usually inspired by processes in nature and work with
a set of solutions that are compared, recombined, and modified. Two major types of
population-based algorithms are evolutionary-based and swarm-behavior-based algo-
rithms. Evolutionary algorithms follow the concept of natural selection in which fitter
individuals from the population are more likely to survive. Typical evolutionary algo-
rithms such as Genetic Algorithms or Differential Evolution are based on the evolution
of genes over generations in organisms. Swarm behavior algorithms are inspired by the
collective behavior of social animals such as swarms of insects, flocks of birds, or schools
of fish. Individuals of the population, usually called agents or particles, move based on
their and other closeby individuals’ position and velocity.

In contrast to population-based algorithms, trajectory-based algorithms usually follow
a single agent iteratively updating and evaluating the solution. The decision in which
direction the agent is moving is usually determined using neighborhood functions that
describe possible movements from the actual point in the solution space. The decision
of which neighborhood move is performed is decided by comparing the results between
various moves. A typical trajectory-based algorithm is SA which is inspired by the
annealing process in metallurgy which is a heat treatment process to alter the physical
properties of the material.

Constraint Handling Techniques: In stochastic optimization, constrained optimization
problems are usually approached with metaheuristics, however, simpler problems can
also be addressed using heuristics. Talbi (2009) provides an overview of commonly used
constrained handling techniques for metaheuristics:
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• Reject strategies discard all solutions which violate constraints. This means for
population-based methods, only feasible individuals are considered in the selection
process and trajectory-based algorithms reject neighborhood moves resulting in
infeasible solutions. This strategy is only possible for constraints that are violated
rarely and thus does not restrict the search excessively.

• Penalizing strategies include the constraints as an additional term in the objective
function or replace the objective function if the constraints are violated. Thereby,
it is possible to only count the number of violations or to consider the distance
to the feasible region. The latter guides the algorithm towards the feasible region.
The penalization function can either be constant, linear, or quadratic.

• Repair strategies consist of an additional optimization that modifies the infeasible
solutions by minimizing the constraint violations. To ensure only feasible solutions,
repair strategies are often combined with reject strategies whereby, irreparable
solutions are rejected after a repair attempt.

• Decoding strategies extend the search to infeasible regions and, similar to repair
strategies, try to repair the solution. However, decoding strategies identify a reason
for the infeasibility and transform the solution based on the reason into the feasible
region. Decoding strategies are usually very problem specific in contrast to repair
strategies.

• Preserving Strategies limit the search space by forbidding variables to reach certain
regions which are known to be infeasible. Preserving strategies do not only ensure
feasible solutions but might also improve the performance of the algorithm by not
wasting computational resources on infeasible regions. However, this approach
might lead to small feasible regions which can limit a sufficient exploration.

2.2.3 Optimization in Process Integration

In Section 2.1, various optimization approaches for HEN design were discussed. Due to
the high complexity, the optimization of such formulations can be approached in two
different ways. On one hand, the problem is simplified by decomposition or linearization.
Therefore, well-established models such as the SWS by Yee and Grossmann (1991), are
modified. Such models are usually formulated using Algebraic Modeling Languages such
as AMPL (Fourer et al., 1990) or Pyomo (Bynum et al., 2021), which are used to transform
the equations into MP solver readable matrix formulations. Due to the simplifications,
such approaches tend to neglect practical influences such as mixer configurations as they
increase the complexity of the problem. On the other hand, rather than simplify the
problem, the optimization approach is changed by using stochastic methods instead
which can deal better with highly complex problems. This approach can handle the
additional complexity resulting from practical constraints, but it cannot guarantee to
find the global optimal solutions. The most commonly used stochastic algorithms in PI
are GA and SA.
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3 Problem Statement

In Section 1, the need for the development of PI methods, dedicated to retrofit of
multi-period processes for practical heat exchanger network design, was emphasized. In
Section 2, existing PI methods and optimization approaches from literature are reviewed.
Derived from these two chapters, the aim of this thesis can be formulated as:

Aim: Development of an approach for retrofit of multi-period processes for practical heat
exchanger network designs.

To achieve this aim, two main objectives are proposed. Objective 1 focuses on the practical
design aspect and Objective 2 focuses on the implementation of the optimization method
and how measures to achieve Objective 1 can be incorporated into the optimization.

Objective 1: Identification of the key aspects to incorporate in an approach to practical
heat exchanger network design for industrial application.

Q 1.1: What are the key challenges to consider when retrofitting multi-period pro-
cesses for the industry?

Q 1.2: What assumptions in the modeling of retrofit for multi-period processes have
a significant impact on the final design?

Q 1.3: What specific steps in the optimization should be considered to find more
practical designs?

Objective 2: Development of an optimization approach for practical heat exchanger
network retrofit in industry.

Q 2.1: Which optimization techniques should the approach be based on?

Q 2.2: Which practical measures need to be included in the optimization for practical
designs?

Q 2.3: Which objective functions are needed to find relevant solutions?
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4 Research Approach

This section covers the development of a method for HENR for multi-period processes
based on the aim and objectives defined in the problem statement (Section 3). An
overview of the contributions in the form of articles and developed software, and how
they are connected, is provided in Fig. 5.

Algorithm and data structures

Hop
i

Hop
i+1

Cop
j

Cop
j+1

k k+1


e i j k bh ah bc ac ex
1 1 2 4 1 0 0 0 1
2 1 1 3 0 0 0 1 1
3 1 2 2 1 0 0 0 1
4 1 1 1 1 0 0 0 1
5 2 2 3 1 0 0 0 1



Article 1: Algorithm concept
Article 3: Detailed structure

Flexibility

Hop
i

Cop
j

T op
i ,k T op

i ,k+1

T op
j ,k T op

j ,k+1

k

T op
e,h,out T op

e,h,in

T op
e,c,in T op

e,c,out

HEXe

Ḣ
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Fig. 5 Overview of the development of the method and related articles

Article 1 introduces the concept of a two-stage GA/DE algorithm for HENR for multi-
period processes using a metaheuristic approach. The article includes the structure of
the algorithm as well as the fitness function for minimizing TAC and how constraints are
incorporated in the metaheuristic approach. The algorithm is applied to an illustrative
case study from the literature. In Article 3, the algorithm and data structures used for the
optimization are introduced. To ensure flexible HEN designs, Article 4 explains how mixer
configurations are integrated into the network design. Thereby, the approach for the mixer
configuration selection as well as the analytical calculation of the mixer temperatures
using Lambert W-functions are introduced. The single-objective optimization (SOO)
approach, introduced in Article 2 and Software 1, combines the flexible HEN designs and
algorithm and data structures into one. Further, practical constraints and additional
costs such as piping are introduced and the results are analyzed in detail by applying the
algorithm to a case study from industry.
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Article 5 introduces a multi-objective optimization (MOO) approach using NSGA-II and
hypervolume indicators for a Pareto optimization considering GHG emissions besides
TAC. With Article 6 and Software 2, the SOO is extended with the multi-objective
approach. Thereby, both optimization approaches are compared to each other as well as
the selection of objective functions is discussed.

The following sections serve as the guide through the thesis and cover how the objectives,
from the problem statement, can be achieved. Thereby, Section 4.1 identified which
practical key points need to be addressed in the method to achieve Objective 1. In
Section 4.2, the optimization concepts to achieve Objective 2 are introduced, and in
Section 4.3 shows how the method can be integrated into a practical workflow.

4.1 Practical Design

This section discusses how Objective 1 can be achieved. Hence, practical aspects of
the retrofit of multi-period processes are illustrated. In Section 4.1.1, the demand for
flexibility of multi-period processes is introduced. Section 4.1.2, discusses what practical
measures need to be included in the optimization to ensure practical HEN design. Finally,
in Section 4.1.3, the topic of multi-objective optimization is addressed.

4.1.1 Flexibility

Multi-period plants need to have a flexible HEN design to ensure feasible heat transfer
in every operating period. Therefore, the mass flow in HEXs needs to be adaptable to
account for varying heating and cooling demands and temperature levels for a fixed HEX
area. In industry there are three commonly used approaches to ensure flexibility:

1. Utility compensation to address the varying heating and cooling demands

2. Bypassing a HEX with a fraction of the mass flow

3. Admixing a fraction of the outlet mass flow of a HEX back to the inlet

To address varying heating or cooling demands, industry plants feature utility HEXs
within the process for utility compensation (1). Another option is the integration
mixer configurations. An example of a possible mixer configuration is shown in Fig. 6.
This example shows how a bypass configuration (2) on the hot stream and an admixer
configuration (3) on the cold stream can be integrated into the SWS model (Yee and
Grossmann, 1990). Besides the enthalpy stage temperatures (T op

i,k, T op
j,k) from the SWS

model, each mixer configuration introduces an inlet T op
e,h,in, T op

e,c,in and outlet T op
e,h,out,

T op
e,c,out temperature for the HEX. Fig. 6(b) shows how the temperatures T op

e,h,out and
T op

e,c,in can be adjusted for the depicted mixer configuration. If T op
e,h,in or T op

e,c,out has to be
adjusted, an admixer configuration on the hot steam or a bypass configuration on the
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Fig. 6 Example mixer configuration (a) with a bypass configuration on the hot stream and
admixer configuration on the cold stream (published in Article 2) and (b) associated
possible temperature modifications

cold stream is needed. If the heat load of a HEX is different in an operating period, one
of the temperatures has to be adjusted to fulfill the heat transfer equation

Q̇op
e = Uop

e max
op ∈ OP

(Aop
e ) ∆T op

m,e. (4.1)

The logarithmic mean temperature difference (LMTD), in Eq. 4.1, can conventionally
only be solved implicitly for one of the inlet or outlet temperatures. However, Chen (2019)
developed a method utilizing the Lambert W-function (Lambert, 1758; Euler, 1779) to
solve the LMTD analytically which can be incorporated into a HEN formulation.

By reducing the mass flow in a HEX with a bypass, the inlet or outlet temperatures
can reach unrealistic high or low levels. The adjusted temperature is limited due to a
minimal possible mass flow within the HEX, but also other limitations such as material
constraints of the equipment or process stream (phase change, chemical reactions). To
omit such temperatures, extreme temperatures for process streams are introduced as
constraints. More details on flexibility and how it is implemented in the optimization
approach is published in Article 2 and 4.

4.1.2 Practical Retrofit Measures

Besides the flexibility aspect of the multi-period behavior, practical aspects of plant
design are to be considered in the HEN model. Process streams in multi-period plants
might not be active or do not have heating or cooling demands in some of the operating
periods. In such cases, a bypass mixer configuration is needed which completely bypasses
the still active streams connected to the inactive process stream to omit unwanted effects
on the temperature and unnecessary pressure drops.

Another aspect of the practical design is soft streams. In contrast, to process streams,
these streams do not have required heating or cooling demands but can be used for HR.
Examples of soft streams are flue gas, exhaust air, or wastewater streams, which can but
do not have to be cooled down before releasing it into the environment. Soft streams are
to be considered in the optimization as potential matches with process streams, however,
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cannot be connected to utility streams as they do not have a target temperature that
needs to be reached.

Another important factor is the complexity of the plant. For example, having a higher
number of splits in the plant might decrease the TAC but increases the complexity and
thus, demands a more sophisticated control system of which costs are usually neglected
in the TAC. Therefore, the HEN model has to include practical constraints to limit the
complexity that can be adjusted depending on the demands of the plant. First, the
number of splits a stream can have at one point has to be restricted. Hence, the number
of HEXs connected to a stream in one enthalpy stage is limited by a user-defined value.
Further, the number of possible HEXs of the HEN can be limited to omit a high number
of HEXs which cover only a small fraction of the HR.

In addition to these constraints, further costs for the retrofit are included in the TAC.
Besides the usual costs of new HEXs and added HEX area, also costs for splits and
mixer configurations are considered. Thereby, modification costs for adding, or removing
equipment, as well as re-piping, and re-sequencing are determined. Depending on the
layout of the plant, process streams might have a large distance between each other
leading to high match costs for these streams. On average, piping accounts for 13 % of
capital costs of fluid-processing plants (Peters and Timmerhaus, 1991). For multi-period
processes, some connections might be only in use for a short amount of time, depending
on the scheduling of the process. Therefore, it is important to consider these additional
match costs (piping costs) in the HEN model. More details on the implementation of
practical retrofit measures is published in Article 2.

4.1.3 Multi-Objective Problems

Multiple objective problems are common occurrences in industry. Besides cost reductions,
common objectives in PI are reduction in GHG emissions, space, or complexity. The
latter two are difficult to quantify and are therefore, accounted for with extensions and
constraints in the HEN model. GHG emissions are accounted for by Pareto optimization.
The implementation of the multi-objective optimization (MOO) as well as the objective
functions selection is discussed in Article 5 and 6.

4.2 Optimization Approach

As discussed in Section 2, due to its complexity, HENS is usually tackled either by
simplification of the problem or by the use of stochastic algorithms. Thus the objectives
of this thesis explore the extensions demanding flexibility of the HEN and require
further practical measures and constraints, the developed algorithm rather uses stochastic
algorithms than a simplification of the problem.
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Within the scope of this thesis, two different hybrid metaheuristic nature-inspired op-
timization approaches are analyzed to achieve Objective 2. The resulting algorithm is
published in Article 3. To ensure the availability of the algorithm to the industry, the
optimization model is available online (Software 1). The extended model for the MOO is
published in Article 6 and is also available online (Software 2).

4.2.1 Hybrid Evolutionary-Based Approach

Evolutionary algorithms are based on the process of how populations evolve over gen-
erations in nature. Hence, these algorithms optimize a population (set of individual
solutions, called chromosomes) with each other based on the concept of survival of the
fittest. Thereby, three evolutionary operators are applied in the optimization process:
(1) selection, (2) recombination, and (3) mutation. The selection process (1) is usually
based on the fitness (objective) of the chromosomes, whereby also a certain amount of
random selection is included to ensure a broader exploration of the solution space. In
the recombination process (2), two or more parent chromosomes mate, meaning a child
chromosome is generated by recombining genes (type of information; e.g., containing all
the information on how a HEX is integrated into the HEN) of the parent solutions. In
nature, during this process copying errors might occur which are called mutations (3).
Thereby, single alleles (values in the genes), might randomly change. This operation helps
to broaden the search in the solution space. An overview of this approach is shown in
Fig. 7. The proposed algorithm is separated into two-stages. In the top-level algorithm,
all integer variables representing the topology of the HEN are optimized.

Topology optimization by Genetic Algorithm using hypervolume indicators as fittness
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Fig. 7 Overview of the two-stage hybrid evolutionary algorithm for multi-objective optimization
(adapted from Article 6)

22



4 Research Approach

In the sub-level algorithm, the heat loads of the HEXs in each operating period are
optimized (continuous variables). While for the top-level algorithm, a GA is used, for
the sub-level algorithm two potential approaches are analyzed. The first approach uses
Ipopt (Interior Point Optimizer) solver developed by Wächter and Biegler (2006). Ipopt
is an open-source software using the interior point line search filter method, which is a
gradient-based deterministic algorithm, to solve continuous large-scale nonlinear problems.
The second approach uses DE which is another population-based algorithm based on
evolution.

Population-based approaches are predestined for parallel computing as all the chro-
mosomes in the population need to be evaluated before their fitness can be compared
in the selection process. With a two-stage algorithm, it is predestined to distribute
the chromosomes of the top-level algorithm, in this case, HEN topologies, to multiple
threads on which the sub-level algorithm will optimize the heat loads and evaluate the
chromosomes based on the given topology from the top-level algorithm simultaneously.

4.2.1.1 Topology Optimization with Genetic Algorithm

The chromosome (topology of the HEN) can be represented in the form of an exchanger
address matrix (EAM). This is a common approach often used in HEN synthesis (among
others used by Rezaei and Shafiei (2009), and Soltani and Shafiei (2011)). An example
of an EAM is shown in Fig. 8. The chromosome consists of all the information needed
to design the HEN, whereby each gene stores the needed information to place a HEX.
A gene consists of the following information: HEX number (e), hot stream the HEX is
connected to (i), cold stream the HEX is connected to (j), and enthalpy stage the HEX
is placed in (k). Binary information about the mixer configuration and the existence of
the HEX (1 if existing, 0 is not existing) is stored as follows: bypass configuration on the
hot side (bh), admixer configuration on the hot side (ah), bypass configuration on the
cold side (bc), admixer configuration on the cold side (ac), and HEX exists (ex).

The optimization with the GA starts by initialing a population of random chromosomes
(EAMs). For all feasible topologies, the sub-level algorithm optimizes the heat loads
and evaluates the fitness based on the HEN model (more details on the HEN model are
published in Article 2). The fitness of the chromosomes in the selection step of the GA is
determined using the objective function, thereby a tournament selection is performed.
This means that a given number of randomly selected chromosomes is compared based on
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Fig. 8 Example of a exchanger address matrix for the GA (published in Article 2)
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their fitness and the fittest of them are selected and used as parents for the recombination.
In the recombination step, a one-point crossover is performed. Thereby, a random
gene number (HEX number) is selected. The selected gene is used to split both parent
chromosomes at its position. All genes, above the selected gene, in parent 1 and all genes,
below the selected gene, in parent 2 are recombined into a new child chromosome. Next,
the mutation step is performed, in which alleles in the new child chromosome are modified
with a certain probability. These three evolutionary operators together represent one
generation of the GA. The algorithm repeats these generations till a stopping criteria
is fulfilled. To keep track of the best solutions, a Hall of Fame list keeps track of the
best-found solution and is updated at the end of every generation.

In order to consider constraints decoding and penalizing strategies are implemented. For
the latter, a quadratic penalty function is used which replaces the objective function if a
constraint is violated.

For multi-objective optimization the sub-level algorithm returns a list of Pareto-optimal
solutions rather than a single best solution. Therefore, the selection process in the GA
needs to be adapted. The fitness of each Pareto front is determined using hypervolume
indicators (Zitzler et al., 2007). The hypervolume of a Pareto front is defined as the
volume between all points of the Pareto front and a selected reference point that is worse
than all found solutions. If there are only two objective functions, the hypervolume
reduces itself to an area. By comparing the size of the hypervolume, the quality and
thus, the fitness of the Pareto front can be determined.

This algorithm is implemented in Software 1 and 2. A detailed explanation of the
implementation is published in Article 3 and the extension for multi-objective optimization
in Article 6.

4.2.1.2 Heat Load Optimization with Interior-Point Filter Line-Search Algorithm

In the sub-level algorithm, the HEN model (explained in Article 2) is optimized with a
fixed HEN topology. Thus, the problem is simplified to a nonlinear, non-convex problem.
This problem can be tackled using a global optimizer such as Ipopt (Wächter and Biegler,
2006), comparable to commercial solvers such as BARON. Ipopt is based on the Newton
method, whereby the derivative of the objective function is used to direct the algorithm
to the optimal solution. This approach is extended using barrier methods to account
for the constraints. Thereby, the constraints of the problem are incorporated into the
objective function as a logarithmic penalty function. With the line-search method, the
barrier problem is interpreted as a bi-objective optimization, whereby the second objective
represents the barrier function of the constraints. To ensure global convergence and avoid
premature convergence at a point where the KKT condition is fulfilled, the backtracking
line-search method is used to determine the step size by exploring a decreasing sequence
of trial step sizes. With the filter method, only trial step sizes that improve the objective
function or the barrier function are accepted.
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To extend this approach to cover multi-objective problems, the objective function needs
to be adapted using linear scalarization:

min
x ∈ X

i = I�
i = 1

(wi OFi(x)) with
i = I�
i = 1

wi = 1 and 1 ≥ wi ≥ 0 ∀ wi (4.2)

By varying the weight factors wi of each objective OFi(x), a Pareto front containing all
the non-dominated results can be produced.

4.2.1.3 Heat Load Optimization with Differential Evolution

Another approach to solving the nonlinear, non-convex optimization problem is using
DE, which is an evolutionary algorithm designed to handle continuous variables. In
contrast to a deterministic algorithm, like the Interior-Point method, DE does not need
any gradient information. DE instead, uses the same three evolutionary operators as GA
but in the reversed order: mutation, recombination, and selection. The chromosome for
the DE (called heat load matrix), consists of the heat loads of every existing HEX in each
operating period, resulting in a two-dimensional matrix. For every feasible topology from
the GA, the DE algorithm initializes a population of random heat load chromosomes,
which are then evaluated using the HEN model from Article 2. After the initialization,
the evolutionary process starts by randomly selecting three non-equal chromosomes. A
new donor chromosome is generated by combining the three selected chromosomes using
a perturbation factor. In the recombination step, a new trial chromosome is generated by
replacing alleles in the first of the three selected chromosomes with alleles from the donor
chromosome. The newly generated trial chromosome is then evaluated using the HEN
model and compared to the first of the three randomly selected chromosomes. The fitter
of these chromosomes is chosen using a greedy selection process. If the trial chromosome
is fitter than the first of the three randomly selected chromosomes, it is therefore replaced
in the population, otherwise the first of the three randomly selected chromosomes stays
in the population. The three evolutionary operators are applied in this order for every
generation till the termination criteria are fulfilled.

The constraints for continuous variables such as energy balances are usually violated,
hence penalizing strategies are used in the sub-level algorithm. This helps to guide the
search toward the feasible region.

To extend the DE for multi-objective optimization, the selection process needs to be
adapted. To find the Pareto-optimal chromosomes, the greedy selection is updated to
include the non-dominated sorting Genetic Algorithm (NSGA-II). Instead of choosing the
chromosome with the fittest objective, NSGA-II determines all the chromosomes which
are not dominated by another chromosome (no other chromosome exists that is better in
one objective without being worse in other objectives). In the greedy optimization step
the population is then updated accordingly to only include non-dominated chromosomes
generating a Pareto front.
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This algorithm is implemented in Software 1 and 2. A detailed explanation of the
implementation is published in Article 3 and the extension for multi-objective optimization
in Article 6.

4.2.2 Hybrid Trajectory-Based Approach

The research on using a trajectory-based instead of an evolutionary-based algorithm was
initiated by the application of the single-objective algorithm to the case studies published
in Article 1 and 2. The results showed that the optimized topology differs significantly
from the initial design. The more different the networks are, the more retrofit work
is needed. This is an important factor for the practical application as it increases the
down times of the plant. For evolutionary-based algorithms, it is difficult to limit the
number of modifications as randomly initialized topologies are used in the optimization.
In contrast, a trajectory-based algorithm starts the optimization with the initial design
and modifies it to find better solutions. Hence, with a trajectory-based algorithm, the
number of modifications and therefore, the needed retrofit work can be limited.

Trajectory-based algorithms have only a single agent (solution) which moves through the
solution space. Thereby, improved solutions are always accepted and worse solutions are
only accepted with a given probability. In this approach uses SA. Possible moves of the
agent in the solution space are called neighborhood moves and need to be tailored to
the problem. Often violated constraints are addressed using a repair strategy. Hence, a
repair algorithm is used as a sub-level algorithm for the SA. Therefore, the constraints
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Fig. 10 Example of a exchanger address matrix for the SA

are reformulated as a nonlinear least-squares problem. If the repair algorithm is not
able to find a feasible solution, the solution is rejected and another neighborhood move
is performed. An overview of the algorithm is shown in Fig. 9. The here presented
algorithm procedure is similar to the approach published by Ochoa-Estopier et al. (2015).
However, in contrast to Ochoa-Estopier et al. (2015), the EAM is used to represent the
HEN topology and further, the HEN model includes multi-period operation and addresses
multi-objective problems.

4.2.2.1 Topology and Heat Load Optimization with Simulated Annealing

The general idea of SA is having one individual, called agent, moving through the solution
space. The agent has a similar format as in the evolutionary algorithm (EAM and heat
load matrix) shown in Fig. 10. However, instead of enthalpy stages (k), the HEXs are
numbered on each hot (ei) and cold stream (ej) and an additional split number (si) and
(sj) is added to keep track of in which split the HEX is. Possible moves in the solution
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space are called neighborhood moves. These moves describe modifications on the network
which are reachable from the existing design. The following 7 neighborhood moves are
considered in the optimization (all topology-based neighborhood moves are visualized in
Fig. 11):

1. Add a HEX: For a random non-existing HEX (ex = 0), hot and cold stream (i,j),
stream HEX numbers (ei, ej) are randomly chosen from a set of possible new stream
matches. The stream HEX numbers of all existing HEXs, including and above the
chosen number, are increased by one. The heat load for each operating period is
defined by

Q̇op
e = random.uniform

�
Q̇min, min

�
∆Ḣop

i ∈ e, ∆Ḣop
j ∈ e

��
(4.3)

whereby, Q̇min is a user-defined variable to omit HEXs with small heat loads. Ḣop
i ∈ e

and Ḣop
j ∈ e are the enthalpy flows of the connected streams. If the new HEX is

connected to a utility, it is connected in parallel to another utility HEX. To ensure
a feasible mass balance the split fraction for all HEXs in the utility split is updated
using the Dirichlet distribution (the sum of all random variables always adds up to
1). If no new match is possible, instead, the move remove a HEX is performed.
Constraints:

• Number of HEXs: if all HEXs are existing, no new HEX can be added.

• Forbidden matches: matches which are infeasible (T oc
i,in ≤ T oc

j,in ∀ i, j, oc) and
restricted by the user due to practical reasons are not possible.

2. Remove a HEX: First, fixed HEXs are updated to include HEX which are the sole
ones on a stream (to omit infeasible solutions where the energy balance of a stream
cannot be fulfilled). An existing HEX (ex = 1) is randomly chosen and its stream
numbers (i and j), stream HEX numbers (ei, ej), and existence of the HEX (ex)
are set to 0 and the mixer configuration is set to no mixer (bh/ah/bc/ac = 0).
Stream HEX numbers (ei, ej) above the removed HEX are decreased by one. If the
HEX is in a split, the split fraction of the remaining HEXs is recalculated using
the Dirichlet distribution. If there is only one additional HEX in the split, it is
removed (si and/or ej are set to 0). If no HEX can be removed, instead, the move
add a new HEX is performed.
Constraints:

• Fixed HEXs: HEXs which are the sole ones on a stream cannot be removed
to fulfill the energy balance of the stream and user-defined fixed HEXs which
cannot be removed due to specific practical reasons.
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3. Re-pipe a HEX: First, it is randomly decided if the hot or cold side of a HEX is
re-piped. In the next step, re-pipeable HEXs are identified (depending on the HEX
side: HEXs which are the sole ones on a stream can only be re-piped on the other
side) by creating a new set

Xre−pipe = (Xmatch,fixed ∪ Xforb)C (4.4)

which contains all re-pipable HEXs. Next, a random re-pipeable HEX as well as a
random new stream are chosen. On the old stream, the stream HEX numbers (ei,
ej) above the selected HEX are reduced by one and on the new stream increased
by one. If the HEX was in a split and there is more than one remaining HEX, the
split fractions for the remaining HEXs are updated with the Dirichlet distribution.
If there is only one remaining HEX in the split, the split is removed. The mixer
configuration on the new stream is set to no mixer (bh/ah/bc/ac = 0) and its
fraction to 0. If the move is not possible, instead, the move modify a heat load is
performed.
Constraints:

• Forbidden matches: matches which are infeasible (T oc
i,in ≤ T oc

j,in ∀ i, j, oc) or
restricted by the user due to practical reasons are not possible.

• Fixed matches: HEXs which are the sole ones on a stream cannot be re-piped
and user-defined fixed HEXs cannot be re-piped.

4. Re-sequence a HEX : First, it is randomly decided which side of a HEX is re-
sequenced. Next, fixed matches are updated with HEXs which are between two
fixed HEXs. Then, a HEX is randomly chosen to be re-sequenced. By default, the
HEX is always re-sequenced with the HEX below on the stream as far as it is not
the first HEX or the HEX below is fixed. The stream HEX number (ei, ej), the
split number (si and/or ej), and the mixer configuration (bh/ah/bc/ac) for both
matches are switched with each other. If the move is not possible, instead, the
move modify a heat load is performed.
Constraints:

• Fixed matches: HEXs which are in between two fixed HEXs and user-defined
fixed HEXs due to practical reasons.

5. Add a HEX to a split: First, it is randomly decided which side of a HEX is added
to a split. Next, possible HEXs for a split are identified (HEXs without splits
excluding utility streams). Two HEXs which are next to each other on a stream are
chosen randomly. If one of the chosen HEX already is in a split, the other is added
to this split as long the number of HEXs in the split does not exceed a user-defined
maximum of HEXs. If both HEXs are not in a split, a new split, with the lowest
non-existing split number is created. The split fractions of all HEXs are updated
using the Dirichlet distribution. The mixer configuration and fraction are updated
if the mixer configuration for one HEXs has changed. If the move is not possible,
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instead, the move remove a HEX from a split is performed.
Constraints:

• Number of HEXs in a split: if the user-defined value is reached no additional
HEX can be added to a split.

• No new utility splits: all utility HEXs are already in parallel and therefore,
no new split on utility streams is possible.

6. Remove a HEX from a split: First, it is randomly decided which side of a HEX is
removed from a split. If there are more than two HEXs left in the split, the split
fraction is updated using the Dirichlet distribution, otherwise, the split is removed
and the split fractions are set to zero. The mixer configuration of the removed
HEX is set to no mixer (bh/ah/bc/ac = 0) and the mixer fraction to zero. If the
move is not possible, instead, the move add a HEX to a split is performed.
Constraints:

• No utility splits are removed: utility splits HEXs are considered to be always
in parallel and therefore, no splits on utility streams can be removed.

7. Modify a heat load: First, non-modifiable HEXs are identified. In a next step,
an existing modifiable HEX (ex = 1), as well as an operating period are chosen
randomly. The heat load is modified according to Eq. 4.3. If the chosen HEX
is connected to a split, split fractions are updated accordingly to the heat load
distribution. This move can always be performed.
Constraints:

• Non-modifiable HEXs: HEXs which are the sole ones on a streams cannot be
modified (user-defined fixed matches are not included).

For the start of the SA, the existing plant design is used as the initial position of the agent.
For every iteration, neighborhood moves are performed till the equilibrium condition is
satisfied. This is usually a number of iterations such as a multiple of the neighborhood
size. In each iteration it is chosen which neighborhood move is performed based on their
probabilities. During the iteration, the agent makes a move if the objective improves. To
explore the solution space, also worse solutions are accepted if the Metropolis-criterion
(Metropolis et al., 1953) is fulfilled:

P < exp −|f(x′) − f(x)|
T

(4.5)

whereby, P is a random number between 0 and 1, f(x) is the current objective value,
f(x′) the objective value after the move x′, and T is the temperature. The temperature is
an algorithmic parameter controlling the likelihood of replacing the actual solution with
a worse solution. The temperature parameter is degrading using geometric cooling

T+1 = T α with α < 1 (4.6)
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each time the equilibrium condition is satisfied and is initialized to reject 3 % of the moves.
By using the annealing of the temperature, the likelihood of accepting a worse solution
decreases until the stopping criteria, usually a final temperature, is satisfied. This process
allows the SA to narrow the search over time from global to local optimization.

To extend SA for multi-objective optimization, various approaches are proposed in the
literature. One promising approach is to incorporate an archive that keeps track of non-
dominated solutions (Bandyopadhyay et al., 2008). Thereby, the probability to accept
worse solutions is adapted to consider the distance to the non-dominated solutions.

4.2.2.2 Nonlinear Least-Squares Repair Algorithm

By modifying the topology and heat loads of the HEN, constraints such as the energy
balance of the streams or feasible heat transfer will usually be violated due to the
randomness of the neighborhood moves. To still fulfill these constraints a repair algorithm
is needed to adjust the heat loads. The constraints (stream energy balances and feasible
temperature differences) are reformulated as an objective function:
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e ) =

�
∀ i

∆Ḣop
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whereby, the subscripts a and b indicate here the enthalpy stage temperatures (T op
i,k, T op

j,k)
before (b) and after (a) the mixer configuration of HEX e. If this function is solved
successfully, the feasibility of the HEN without mixer configurations is guaranteed.
Including the mixer configurations into the objectives would require solving the LMTD
and thus lead to a non-convex problem which cannot be solved with nonlinear least-
squares solver such as the Levenberg-Marquard algorithm (Levenberg, 1944; Marquardt,
1963), defeating the concept of having a simple solver in the sub-level.

To ensure feasibility, all constraints (including the constraints for the mixer tempera-
tures published in Article 2) need to be checked for violation. If the solution is still
infeasible after the repair attempt, the neighborhood move is rejected and a new move is
performed.

4.2.3 Comparison of the Optimization Approaches

Both algorithms have two stages to break down the problem into smaller sub-problems
and simplify the solution process while still solving the problem simultaneously. In
contrast to the evolutionary-based approach, which splits the stages between integer and
continuous variables and handles constraints directly within the respective algorithms,
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the trajectory-based algorithm optimizes integer and continuous variables in the top-level
algorithm and uses the sub-level to ensure feasibility. A key advantage for HEN retrofit
with the trajectory-based algorithm is that the existing design can be used as the initial
solution of the algorithm and the neighborhood moves can be defined to represent actual
modifications to the HEN that would need to be implemented in the actual retrofit of
the plant. Further, it is beneficial that the sub-level can be modeled as a nonlinear
least-squares problem. However, the fact that not all constraints can be included, without
increasing the complexity significantly, finding feasible solutions cannot be guaranteed.
If the non-convex constraints would be included, a more complex solver would be needed,
losing the advantage of having an algorithm with low computation cost in the sub-level.
Therefore, the evolutionary-based approach is pursued instead. Further, the evolutionary-
based approach is that the algorithm provides multiple solutions at once. Despite the
increased computation cost, multiple solutions also have their benefits. Multiple near-
optimum solutions can be provided as a result. This is beneficial for the application
of the approach as the user can still decide which of the solutions is more suitable to
implement. Another advantage is that the adaption to multi-objective optimization
is simple as the solutions for generating a Pareto front already exist and only have to
be sorted considering the additional objectives. This simplifies the implementation of
multi-period problems significantly.

To optimize the continuous variables in the evolutionary-based approach a deterministic
and an evolutionary algorithm are compared. While a deterministic algorithm such as
Ipopt is generally faster at finding solutions, gradient-based approaches have difficulties
finding feasible solutions for highly complex problems such as HENR problems. In
contrast to this, DE is able to find feasible solutions but might not find the global
optimal solutions. However, as Objective 1 focuses on practical design rather than global
optimum, this is not a substantial problem. By considering the interaction between the
two levels, the GA algorithm produces with the random initialized networks a lot of
infeasible solutions for the sub-level algorithm. This leads to a problem for a deterministic
algorithm, whereby, the evolutionary-based algorithm does not need to converge and
thus can use the penalty function to guide the algorithm towards the feasible region.

4.3 Integration into a Practical Workflow

In this section, it is shown how the evolutionary-based optimization approach can be
integrated into a workflow for the conceptual design in a retrofit project. An exemplary
workflow with the integrated optimization approach is shown in Fig. 12.

Step 1: System Boundary: First, the system boundaries for the project need to
be determined. The boundaries are usually based on plant layout, environment, and
production schedules. Further, access to existent heat sinks and sources such as utility
systems, district heating, geothermal probes, ambient air, or waters can influence retrofit
possibilities and thus, are an important factor in the selection of the system boundary.
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1. System Boundary 2. Process Analysis 3. Optimization 4. Design Selection 5. Post-optimization

± kW

± kW

Fig. 12 Overview of a practical workflow for a retrofit project with integrated optimization
approach

Step 2: Process Analysis: As soon as the system boundaries are set, essential process
requirements such as stream temperatures, mass flows, and the multi-period behavior,
need to be determined. This is usually done by identifying crucial process and soft
streams within the boundaries. Depending on the plant, the needed stream data might
be accessible via a process control system. However, this is uncommon in small and
medium-sized production plants and process data usually needs to be determined by
directly measuring the parameters. A further important part of this step is the plant
layout. New pipes might be required for the retrofit. Therefore, distances between heat
sources and sinks need to be clarified to estimate match costs. Further, costs for potential
new equipment as well as utilities need to be determined, which is usually done using
quotes and invoices. With this information coefficients for the cost functions can be
estimated. Process simulation can be a helpful tool for this step. For example, if the
plant also has to be adapted for a new production scenario such as a new product, part
load operation, or a different schedule.

Step 3: Optimization: In the optimization step, first, suitable objectives for the project
specifications need to be determined. Usually in retrofit, TAC and GHG emissions are
the most relevant. Depending on the problem size the algorithm parameters need to
be adapted. Therefore, usually, rules of thumb are used as a first guess. Due to the
randomness of the algorithm, to achieve confident results, a statistical analysis with
multiple computations for each configuration would need to be performed. This is a
time-consuming process and might be, due to that the global optimum does not have to
be found, abbreviated by the use of sensitivity and convergence analysis of the actual
solution as shown in Article 2 and 6. As soon as all the parameters are fixed, the actual
optimization using the multi-objective hybrid evolutionary algorithm based on GA and
DE can be used to solve the problem.

Step 4: Design Selection: After the optimization, there are multiple near-optimum
Pareto fronts stored in the Hall of Fame list. Out of these, the user has to decide which
solution should be implemented. Decision factors for this might be the payback period,
which equipment need to be retrofitted, how many modifications on the plant are needed,
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how long the plant needs to be shut down for the retrofit, as well as not-in-use HEX area
which indicates how well the HEX area is utilized in each operating period (for more
detail see Article 6).

Step 5: Post-optimization: The selected HEN design might contain a high number of
small HEXs. These HEXs increase the complexity of the HEN and the control system.
Therefore, it is reasonable to analyze the HEN using relaxation concepts from graph
theory such as loops and paths (Smith, 2005; Kemp and Lim, 2020). For large HENs,
MP-based algorithms might be used to simplify this process.

5 Case Studies

In this section, the case studies used to illustrate the application of the developed
algorithm are introduced and the results are summarized.

5.1 Crude Oil Production

This case study was introduced by Jones (1991) in his PhD thesis. The case study is
a simple multi-period process from the crude oil industry. The case study has been
anonymized and therefore, only limited information is provided. It consists of four
process streams of which two are hot and two are cold streams and with two operating
periods. All process streams are active in both operating periods. The temperatures
differ significantly between both operating periods suggesting that the data is most likely
from a multi-product or multi-purpose plant. Process requirements and cost data are
provided in Article 1. Due to its size and simplicity, this case study was selected to
introduce the GA/DE algorithm at the 30th European Symposium on Computer Aided
Process Engineering (ESCAPE). Since Jones studied the grassroot design of multi-period
processes no information about the existing HEN was provided. Hence, an initial HEN,
shown in Fig. 13, was designed using PA. The best and the second best-found solution by
the algorithm are shown in Fig. 14. Compared to the PA design, both of solutions can
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Fig. 13 Existent HEN design established using PA (published in Article 1)
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Fig. 14 Optimized HEN design for the (a) best and (b) second best solution using the GA/DE
algorithm (published in Article 1)

reduce TAC by around 55 %. However, the designs are significantly different compared
to the existing design leading to long down times for retrofit work. Due to the random
initialization of HEN topologies in the GA/DE algorithm, the number of modifications
cannot simply be limited. By including more cost factors such as piping, the number
of unfavorable results can be reduced. Hence, the plant layout should be considered by
accounting for piping costs in the optimization.

5.2 Potato Chips Production

This case study is based on a PA from industry conducted by Fotsch (2006). In the PA,
the fritter line 1 of a potato chips production plant from the company Zweifel Pomy-Chips
AG is optimized. The flow chart of the process is shown in Fig. 15. The core part of the
plant is the fritter which has its associated utility system which cannot be modified. The
waste gas of the boiler from the fritter utility system is a soft stream that can but does
not have a target temperature to which it has to be cooled down. Its excess heat can be
released into the environment. The plant is used to produce chips with two different oil
contents: regular chips (woil = 0.35) and Cractive chips (woil = 0.25).

Boiler

Supply air
(C2)

Natural gas

Waste gas
(H1, soft)

Make-up oil
(C3)

Fried chips
(H2)

Raw chips

Direct stream
(C5)Fritter utility system
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229 / 226.1 ℃

Fritter
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Frying-oil cycle
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Degreaser
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30 / 30 ℃

CU
151 / 150℃ 24 / 24 ℃

HU - / x = 0- / x = 1

HU- / 163.4 ℃
- / 174 ℃Hot air cycle (C4)

Fig. 15 Flow chart of the fritter line 1 for chips production (published in Article 6)
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Fig. 16 Resulting retrofitted HEN design using the single-objective GA/DE algorithm
(published in Article 6)

Therefore, two operating periods are needed whereby, in the second operating period, an
additional degreaser unit is used to reduce the oil content of the chips. The degreaser has
additional process requirements extending the number of streams in one of the operating
periods. Since the degreaser unit is not running in every operating period it can be
argued that this process can be categorized as a multi-purpose plant. The case study
consists of seven streams of which two are hot and five are cold streams and has two
operating periods. A more detailed process explanation including process requirements
and cost data is provided in Article 2 and the GHG emission factors needed for the
multi-objective optimization are provided in Article 6.
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Fig. 17 Resulting retrofitted HEN design using the multi-objective GA/DE algorithm
(published in Article 6)
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Tab. 1 Comparison of results between the resulting designs of the SOO and MOO optimization
and the initial design

Design TAC CAP COP GHG QHU QCU

(CHF/y) (CHF/y) (CHF/y) (tCO2e/y) (MWh/y) (MWh/y)
Initial 141,080 0 141,080 331.68 1451 623
SOOTAC 48,198 35,419 12,780 30.14 132 55
MOOTAC,GHG 61,341 54,453 6,888 15.04 62 48

This case study was selected because it is a real, but not a too extensive case study
from the industry on which the practicability of the algorithm can be tested. It includes
important occurring factors from the industry such as streams that not only have changing
temperatures between operating periods but also streams that are inactive in certain
operating periods, or soft streams which cannot be connected with utility streams. Hence,
constraints that forbid certain connections such as soft streams and utility streams or
no heat transfer for HEX connected to inactive steams, can be tested. Further, its
manageable size allows computation times to stay within a reasonable range, qualifying
it as an ideal selection as the main case study for the thesis.

In Article 2 and 4 the single-objective GA/DE algorithm is applied to this case study
and the resulting optimized HEN design is shown in Fig. 16. In Article 5, and 6 the
multi-objective GA/DE algorithm is applied to this case study and the resulting optimized
HEN design is shown in Fig. 16. In Tab. 1, the results for both approaches are compared.
It can be seen that both approaches improve TAC and GHG emissions significantly
compared to the initial design.

The only difference between the approaches is that in addition to the TAC, GHG emissions
are considered as a second objective. By comparing Fig. 16 and Fig. 17, it can be seen
that the topology for both is similar. The MOO has a higher weight on the utility
demand as it is part of the TAC (operating costs) and GHG emissions. Hence, the utility
demand is reduced significantly which is also evident in Tab. 1. It can be seen, that the
utility demand and the GHG emissions are about halved, however the capital costs and
thus, the TAC is increased due to the higher weight on the utility demand. In Article 6,
various combinations of objectives have been compared to show their influence on the
results. It has been shown that by adjusting the weights using capital costs and operating
costs as objectives, similar results as for the SOO can be achieved verifying the MOO
algorithm and illustrating the importance of the objective function selection.
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6 Conclusions and Outlook

This thesis contributes to the research topic of heat exchanger networks retrofit of
processes with multi-period operation. The aim of this thesis is to develop a method,
with a focus on practical application. Hence, key extensions, for practical design, to the
multi-period heat exchanger network retrofit formulation are identified and implemented.
One of the major extensions is the detailed analysis of the mixer configurations to ensure
flexibility. Therefore, logarithmic mean temperatures are determined analytically using
the Lambert W-functions. To ensure practicality, mixer temperatures are limited by
constraints that omit unrealistic temperature levels and split fractions. Another key
extension is to allow the user to have some degree of control over the decision-making
process. Hence, constraints limiting the complexity of the heat exchanger network,
such as a maximal number of splits or a maximum number of total heat exchangers,
are included in the formulation. To ensure practical heat exchanger network designs,
additional costs, such as costs for splits, mixers, or piping costs, are considered in the
optimization. Decision-making factors in the process industry are often based on multiple
objectives, therefore the formulation also includes a multi-objective approach analyzing
total annual cost and greenhouse gas emissions simultaneously. To generate a Pareto
front, a non-dominated sorting Genetic Algorithm and hypervolume indicators are used.
The resulting HEN designs are stored in a Hall of Fame list to help the user in the decision-
making process. Due to the high complexity of the formulation, a two-stage hybrid
evolutionary-based algorithm, using Genetic Algorithm for the topology optimization
and Differential Evolution for the heat load optimization, is developed.

The algorithm is applied to two case studies. Thereby, an illustrative case study from the
crude oil industry and a real case study from the food industry are analyzed. The crude oil
industry case study is optimized using the single-objective algorithm. The algorithm was
able to reduce total annual cost by 55 % compared to the existing design created by Pinch
Analysis. The second case study from the food industry is more complex and features
challenges from the industry. The analyzed process is a fritter line in a potato chips
production plant whereby two types of chips with different oil content are produced. This
case study is optimized by the single-objective algorithm as well as the multi-objective
algorithm. The single-objective optimization is able to reduce total annual cost by 66 %.
With the extension to multi-objective optimization, greenhouse gas emissions can be
halved. However, the reduction in greenhouse gas emissions increases the total annual
cost by 27 % (compared to the single-objective solution). The application to the case
study showed the importance of the selection of the objective functions. By minimizing
total annual cost and greenhouse gas emissions simultaneously, a higher weight is given
to utility consumption as it is part of both objectives. Hence, minimizing capital costs
and greenhouse gas emissions as well as minimizing capital costs and operating costs are
analyzed as alternative objective functions. As expected, the latter optimization provides
similar results as the single-objective optimization minimizing total annual cost. The
analysis shows that the selection of the objective function is an important part of the
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optimization. It also showed that the solution is highly dependent on operation costs and
greenhouse gas emission factors. Hence, a change in energy prices or an improvement in
the efficiency of utility systems has a high impact on the final network design.

The computation cost for the algorithm strongly depends on the algorithm and model
parameters. Due to limited computational resources, it was not possible to perform a
detailed parameter study. Hence, the algorithm parameters, which depend on the problem
size, are chosen based on experience and convergence. The industrial case study has 7
streams and 2 operating periods. Computation times for the single-objective optimization
are between 6 to 8 hours. These are rather high values but could possibly be improved with
a comprehensive parameter study. Combining two population-based algorithms increases
the number of heat exchanger network solutions that need to be evaluated drastically as
for every feasible topology a population of heat load distributions is introduced. Even
though the heat load distributions are evaluated in parallel on multiple threads, the
resulting computation times are still high. Replacing the Differential Evolution with
a nonlinear programming solver could reduce the computation times. However, the
random initialized topologies by the Genetic Algorithm are likely to cause many infeasible
solutions for the heat load distributions. Therefore, a large share of the population would
have to be discarded as the deterministic algorithm would not be able to converge. On the
other hand, Differential Evolution works with a penalty function considering infeasible
solutions and uses them as a guide toward the feasible region. A possible solution to
this problem would be to start the optimization using the Differential Evolution until a
major part of the solutions is feasible and then switch from the Differential Evolution to
a Nonlinear Programming solver to speed up the optimization.

In order to ensure practicality in the industry and minimize modifications to the heat
exchanger network, ideally, the retrofitted design is as close as possible to the existing
design. The application to the case study showed, that due to the random initialization
of the Genetic Algorithm, final solutions are often quite different from the existing design.
An approach to control the number of modifications is to introduce another objective
that minimized the number of modifications. However, a more practical approach would
be to explore the trajectory-based algorithm further using Simulated Annealing because
its neighborhood moves can be defined in such a way that they represent actual retrofit
modification steps such as re-piping a heat exchanger. Although, the problem with
the Simulated Annealing approach using a repair algorithm is that the sub-stage is
non-convex and therefore needs a global nonlinear programming solver. Hence, the
benefit of the simple quadratic convex problem is lost and thus, the repair algorithm in
the sub-stage could also include the computation of the mixer temperatures using the
Lambert W-function.

In summary, this thesis addresses the demand for a broader understanding of flexible plant
design and practical retrofit of such plants. Further, the application of the algorithm to a
real case study from the industry demonstrated the importance of retrofit for companies
to ensure energy-efficient production and reduction in greenhouse gas emissions to ensure
competitiveness while the industry is transitioning towards the net-zero goal.
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Abstract 
An essential method to improve industrial energy efficiency is through the retrofitting of 
existing heat exchanger networks. This method presents a difficult challenge that is often 
compounded by the need to handle multiple operating cases behavior as well. Most 
research has been tackling retrofitting of such processes by deterministic mathematical 
approaches. With the increase in size and complexity, however, metaheuristic algorithms 
provide advantages in the search for the global optimum due to their exhaustive 
exploration of the search space. Hence, this research provides a two-level metaheuristic 
approach for the retrofit of processes with multiple operating cases. The retrofit problem 
is decomposed into a master and slave problem, whereby a genetic algorithm optimizes 
the network topology, and a differential evolution algorithm optimizes continuous 
variables such as the heat loads of heat exchangers. The developed algorithm has been 
successfully applied to a case study from literature with results showing that the 
incorporation of the suggested modifications can halve the total annual cost of the 
process. 

Keywords: heat exchanger network (HEN), retrofit, multiple operating cases, genetic 
algorithm, differential evolution 

1. Introduction 
Energy optimization of industrial processes is an essential aspect of the general goal of 
improving energy efficiency worldwide. A key approach to help reach this goal is to use 
process integration techniques that focus on the network of heat exchangers (HEXs) used 
extensively in industry. A large portion of these process integration projects involves the 
retrofitting of existing industrial plants. However, industrial processes also exhibit 
multiple operating cases (MOCs) over time such as in the pharmaceutical, chemical, food, 
and beverage industries. Methods to help optimize MOCs design for the retrofit case are 
needed. To date, most research has focused on each challenge individually. Both are 
commonly solved as optimization problems using mathematical programming (MP). The 
MP approach can also be used to optimize for the retrofit case subject to MOCs behavior. 
The resulting mixed-integer nonlinear programming (MINLP) problem formulation can 
be solved using either deterministic or metaheuristic algorithms. Common deterministic 
methods that address retrofit MOCs design are the reverse matching approach (Kang and 
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Liu, 2014) and the reduced superstructure synthesis (Isafiade, 2018). However, the search 
for the global optimum is hampered by the increase in problem size and complexity, in 
particular by the implementation of mixers (bypassing and admixing). Metaheuristic 
algorithms are capable of a broader exploration of the search space owing to their ability 
to escape local optima by generating a random new solution. Aguitoni et al. (2018), in 
particular, showed the applicability of a metaheuristic for heat exchanger network (HEN) 
synthesis.  
The specific contribution of this research to literature is to use a metaheuristic approach 
for the retrofit MOCs design. Thereby a two-level optimization approach is used based 
on a genetic algorithm (GA) for topology optimization and a differential evolution (DE) 
algorithm for continuous optimization. 

2. Methodology 
2.1. Heat Exchanger Network Retrofit of Processes with Multiple Operating Cases 
In processes with multiple operating cases, the mass flows, specific heat capacity, supply, 
and target temperatures change over the course of the production period. To ensure a 
feasible HEN for each operating case, bypassing as well as admixing around key HEXs 
is often needed. There are basically five distinct operations to modify the existing HEN 
design which are often combined together: (1) re-piping of a HEX, (2) re-sequencing of 
a HEX, (3) modifying the area of a HEX, (4) adding bypasses or admixers to a HEX, and 
(5) incorporating a new HEX into the design. In practice, the cost to modify the area may 
differ between HEXs. Therefore, it is necessary to have different cost factors for each 
HEX. Fig. 1 shows the associated superstructure model of the retrofitting of MOCs 
design. In each enthalpy stage k, every hot process stream i can be matched with every 
cold process stream j and utility matches are possible (utility optimization). To ensure the 
energy balance of every process stream is balanced, utilities are also placed at the streams 
end. Each HEX can be bypassed (shown in stage 2) or admixed (shown in stage 1). 
2.2. Metaheuristic approach 
The metaheuristic approach uses an evolutionary concept of survival of the fittest. 
Thereby, a population of solutions (chromosomes) is initialized. In each generation, 
evolutionary operations (selection, crossover, and mutation) are applied. During the 
evolution, n best solutions are stored in a list, which is updated as soon as a better solution 
is found. As a result, several near-optimal solutions are determined, which can be 
compared in terms of practicability for detail engineering. The MINLP problem is 
decomposed into a master and slave problem (two-level optimization). To solve the 
master problem (modification of the HEN topology) a GA, and to solve the slave problem 
(modification of heat loads, bypassing, and admixing of fractions) a DE algorithm is used. 

 
Fig. 1: Superstructure for retrofit of MOCs design (i: hot process streams, j: cold process streams, 
k: enthalpy stages, oc: operating cases) 
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The algorithm is implemented in Python 3.7 using by using the Distributed Evolutionary 
Algorithms in Python (DEAP) library (Fortin et al. 2012). Experiments are run on a 
2.8 GHz Intel i7 computer with 16 GB RAM. 
2.2.1. Master Problem: Topology Optimization by Genetic Algorithm 
A GA is used to optimize integer variables of the topology (HEX matches as well as the 
existence of bypassing or admixing). Thereby, the exchanger address matrix (EAM) 
represents individual solutions (chromosomes). Among others, Rezaei and Shafiei (2009) 
have used this approach. For the selection of a new chromosome, tournament selection is 
performed. Thereby, the fittest among n randomly chosen chromosome is selected. For 
evaluation of the fitness of each chromosome, the DE algorithm (described in section 
2.2.2) solves the slave problem. With the probability of crossover PC, selected parents 
mate to generate new children using the one-point crossover operation. By the probability 
of mutation PM, genes (vector which, e.g., represents matches of a HEX to a process 
stream) in a chromosome are mutated based on a uniform distribution. 
2.2.2. Slave Problem: Continuous Optimization by Differential Evolution 
The DE algorithm initializes individuals consisting of continuous optimization variables 
(heat loads and split fractions for bypassing and admixing). The standard algorithm is 
configured as DE/rand/1/bin. This means that individuals for mutation are selected 
randomly, only one difference for perturbation (FP: perturbation factor) is considered, and 
a binomial crossover is performed. Further, a stopping criterion is implemented, which 
terminates the DE evolution if no improvement in fitness after n generations is achieved. 
2.2.3. Fitness Function and Constraints 
For evaluation of the population, the fitness (maximization) is given by the inverse of the 
total annual cost (TAC) composed of yearly utility cost and annualized retrofit cost for 
area extensions, splits, re-piping, bypasses, admixers, and new HEXs: 

1

C
fitness

TA
=  (1) 

In order to ensure thermodynamically feasible solutions, some constraints must be 
defined. First, the energy balance for all process streams i, j is fulfilled in each OC by:  

, , ( )oc oc oc oc

i j k i S T
k j

Q P TC T≤ −∑∑   i∀  (2) 

, , ( )oc oc oc oc

i j k j T S
k i

Q CP T T≤ −∑∑   j∀  (3) 

Thereby, the sum of all heat loads matched with the actual process stream Q̇ needs to be 
smaller or equal to the enthalpy flow of the process stream, which is given by the heat 
capacity flow CP and supply and target temperatures TS, TT. Further in each HEX e, 
feasible heat transfer is ensured by having a temperature difference between hot and cold 
process stream, which is larger than the minimum allowed temperature difference ΔTmin: 

, , , ,

oc oc

e i in e j out minT T T≥ ∆−  e∀  (4) 

, , , ,

oc oc

e i out e j in minT T T≥ ∆−  e∀ . (5) 
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In order to ensure practicality, the number of splits (corresponds to the sum of Match) per 
stage k and process stream is limited by 

, , 1oc

i j k
j

Match MaxSplits+ ≤∑  , ,i k oc∀  (6) 

, , 1oc

i j k
i

Match MaxSplits+ ≤∑  , ,j k oc∀  (7) 

whereby MaxSplit is a user-defined parameter. All constraints are implemented using 
quadratic penalty functions described by 

2( )opt violpenalty X X= ∆ − .  (8) 

This penalty function is applied to the fitness of each infeasible chromosome. Xviol 
describes the violation of the constraints (distance to the feasible region). Xopt describes 
the optimal value of Xviol. The weight Δ ensures that an infeasible solution is always larger 
than a feasible solution. 

3. Illustrative Case Study 
The introduced methodology is applied to a case study first introduced by Jones (1991). 
Stream data for the two operating cases (OCs) are shown in Tab. 1 and Tab. 2. Tab. 3 
provides utility and cost data.  

 
Fig. 2: Existent HEN design 

Tab. 3: Optimization parameters 

Alg. Pop. size 
C

P   
M

P   
P

F  Max. iterations 

GA 50 0.9 0.1 - 50 

DE 100 0.9 - 0.5 200 

 

Tab. 1: Stream data of OC 1 (4,664 h/y) 

#  (°C)  (°C)  (kW/K) 

H1 280 50 50 

H2 210 100 70 

C1 30 190 40 

C2 150 280 60 

For all streams: = 0.1 kW/(m2K) 

 Tab. 2: Stream data of OC 2 (3,336 h/y) 

#  (°C)  (°C)  (kW/K) 

H1 290 80 60 

H2 180 110 50 

C1 160 300 40 

C2 70 130 60 

For all streams: = 0.1 kW/(m2K) 

S
T

T
T CP

h

S
T

T
T CP

h

Publications and Software

56



Heat Exchanger Network Retrofit for Processes with Multiple Operating Cases  5 

Tab. 4: Utility and cost data 

Utility stream 
S

T  (°C) 
T

T  (°C) h  (kW/m2/K) 
UT

c (CHF/MWh) 

Steam (HU) 350 349 6 80 

Cooling water (CU) 10 11 2 8  

Cost for area extension of existing HEX (CHF): 1,474Aext0.63; Cost for new HEX (CHF): 
18,920+1,474A0.63; Split, bypassing, admixing, and re-piping cost per changed stream (CHF): 
4,000; Plant lifetime: n = 5 y; Interest rate: i = 10% 

Tab. 4 includes optimization parameters of for the algorithm. Fig. 2 shows the actual 
MOCs design established by Pinch Analysis. The investment cost of the existent plant is 
depreciated, and thus resulting in TAC of 2,295,000 CHF/y. 

4. Results and Discussion 
Depending on the size of the EAM, it can be defined how many new HEX can be 
integrated during the retrofit process. For the actual case study, it was decided to have the 
possibility to integrate two new HEX (6 and 7). In Fig. 3, the resulting HENs for the best 
and the 2nd best solution are shown. Thereby, it can be seen that only existent HEXs are 
re-piped, re-sequenced, and extended but no new HEXs, splits, bypasses, or admixers are 
incorporated. A comparison of heat loads and corresponding areas of the retrofitted 
networks, as well as the existing design, is shown in Tab. 5. The TAC for the best solution 
amounts to 1,038,000 CHF/y, which is composed of 538,000 CHF investment cost and 
896,000 CHF/y yearly operating cost. For the 2nd best solution, TAC accumulates to 
1,046,000 CHF/y consisting of 555,000 CHF investment cost and 900,000 CHF/y yearly 
operating cost.  It is imperative to notice that due to the assumption of constant re-piping 
cost, it cannot be clearly determined which of these solutions would be favorable to 
implement in practice. Nevertheless, compared to the existing design, a reduction of TAC 
of around 55 % can be achieved. For both solutions, substantial modifications to the HEN 
are needed. 
Tab. 5: Comparison of heat loads and installed area of existent design with optimized solutions 

 Existing design Best solution 2nd best solution 

HEX 1OCQ  2OCQ  A  1OCQ  2OCQ  A  1OCQ  2OCQ  A  

 (kW) (kW) (m2) (kW) (kW) (m2) (kW) (kW) (m2) 

1 3,500 0 1,726 2,803 3,500 1,726 6,400 5,080 4,222 

2 0 3,800 1,546 - - - - - - 

3 0 100 13 - - - - - - 

4 5,800 0 2,414 6,400 5,070 4,022 4,143 100 7,107 

5 1,500 3,500 1,594 4,096 100 7,264 2,741 3,500 1,594 

8 600 1,800 708 0 530 708 0 520 708 

9 2,800 0 505 901 0 505 916 0 505 

10 2,200 8,700 262 1,004 7,430 736 958 7,420 735 

11 6,200 0 313 4,897 0 485 4,959 0 490 
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Fig. 3: Optimized HEN design for the best solution (left) and 2nd best solution (right) 

5. Conclusions 
The presented approach introduces metaheuristic algorithms to the retrofitting of MOCs 
HEN designs. The method has been successfully applied to the case study. However, due 
to the assumption of fixed costs for splitting, re-piping, bypassing, and admixing, it cannot 
be clearly stated which solution is most beneficial to implement in practice. Therefore, 
these costs should be refined by making them dependent on plant layout, mass flow, and 
pressure drop. Using an evolutionary-based algorithm for topology optimization leads to 
substantially different solutions compared to the existing design. It should be investigated 
whether algorithms based on neighborhood structures (e.g., simulated annealing or 
variable neighborhood search) would be more appropriate to use. Such algorithms apply 
retrofit modifications such as re-piping and re-sequencing as neighborhood moves on the 
existing design. 
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a b s t r a c t 

In Swiss process industry, process integration is often applied to retrofit existing plants with multi-period 

operation. Such periods may experience a high degree of variation in temperature or mass flow. Some 

process streams may not exist in every period or are soft streams. The resulting retrofitted network 

needs to be able to ensure feasible heat transfer in each period by the integration of mixer configura- 

tions to control the temperature. These attributes increase the complexity of the solution space. Hence, 

this work proposes an evolutionary two-level algorithm for heat exchanger network retrofit. Genetic al- 

gorithm is used for topology optimization and a differential evolution algorithm handles the heat loads. 

The algorithm is extended with practical constraints such as a maximum number of heat exchangers. Ex- 

plicit mixer temperature calculations are implemented using the Lambert W-function. The algorithm was 

successfully applied to an industrial case study, reducing its total annual cost by approximately 66%. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

With the growing awareness on the need to mitigate green- 

house gas (GHG) emissions and the inevitable depletion of fos- 

sil fuel, the world is transitioning towards more sustainable and 

energy-efficient alternatives. The current global focus is to opti- 

mize energy production and consumption with their associated 

sustainability and environmental impacts, which provides indus- 

try the incentive and necessary policies to improve their processes 

( Zore et al., 2017 ). The European Commission established a set of 

binding measures to help the EU to reach its energy efficiency 

target by 2030, where EU countries will have to achieve energy 

savings of at least 0.8% each year for the period of 2021–2030 

( European Commission, 2020 ). To offset the deficit, one of the key 

steps is to increase energy efficiency ( Maus et al., 2020 ). The Swiss 

industrial sector is responsible for 18% of total Swiss energy con- 

∗ Corresponding author at: Lucerne University of Applied Sciences and Arts, Com- 

petence Center Thermal Energy Systems and Process Engineering, Technikumstrasse 

21, Horw 6048, Switzerland. 
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(B.H.Y. Ong), donald.olsen@hslu.ch (D.G. Olsen), beat.wellig@hslu.ch (B. Wellig), 

rene.hofmann@tuwien.ac.at (R. Hofmann). 

sumption, with more than half used for process heating, contribut- 

ing 20% to Swiss CO 2 emissions ( Kemmler and Spillmann, 2020 ). 

Since industry is a major consumer in the Swiss energy system, 

optimizing heat recovery (HR) is the first crucial step in achiev- 

ing deep decarbonization. One methodology addressing this chal- 

lenge is Process Integration, which was developed during the oil 

crisis in the 1970’s. The methodology focused on reducing hot and 

cold utility consumption to help improve energy efficiency and en- 

ergy savings. Reducing process heat demand of industrial process- 

ing plants is a critical step for emissions reduction, with multiple 

long-term economic and environmental benefits. These targets can 

be realized with heat exchanger networks (HEN) ( Klemeš, 2013 ). 

Most current project improvements are dedicated to retrofitting of 

existing industrial plants rather than grassroots design. As a result, 

the focus of this contribution is on HEN retrofit of multi-period 

processes in industry. The chemical, pharmaceutical, food, and bev- 

erage industries cover 45% of the total Swiss energy for process 

heat demand ( Kemmler and Spillmann, 2020 ). These processes of- 

ten have multiple periods due to production of multiple products 

in the same plant as well as seasonal changes in ambient temper- 

atures. 

Numerous studies have been carried out to improve the ef- 

ficiency of HEN design. There are three notable methods to 

https://doi.org/10.1016/j.compchemeng.2022.107771 
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Sets 

C = { 0 . . . j . . . NC } Set of cold streams 

CH = { 1 . . . ch . . . NCH } Set of heat load chromosomes 

C T = { 1 . . . ct . . . NC T } Set of topology chromosomes 

E = { 0 . . . e . . . NE } Set of heat exchangers 

H = { 0 . . . i . . . NH } Set of hot streams 

K = { 0 . . . k . . . NK } Set of enthalpy stages 

GH = { 1 . . . gh . . . NGH } Set of heat loads generatrions 

GT = { 1 . . . gt . . . NGT } Set of topology generatrions 

OP = { 0 . . . op . . . NOP } Set of operating periods 

Parameter 

A Heat exchanger area (m 

2 ) 

C Cost coefficient (CHF) 

CR Crossover probability (–) 

c Specific cost coefficient (e.g., CHF/m 

2 ) 

c p Specific heat capacity (kJ/kg K) 

f d Degression factor (–) 
˙ H Enthalpy flow (kW) 

HoF Hall of fame list (–) 

h Film heat transfer coefficient (W/(m 

2 K)) 

i r Interest rate (–) 

LMT D Logarithmic mean temperature difference (K) 

MT Mutation probability (–) 

˙ m Mass flow (kg/s) 

n Deprecation lifetime (y) 
˙ Q Heat flow (kW) 

T Temperatures ( ◦C) 
T AC Total annual costs (CHF) 

U Overall heat transfer coefficient (W/(m 

2 K)) 

W Lambert W-function (–) 

w mass fraction (–) 

Greek letters 

� Penalty constant (–) 

�T Temperature difference (K) 

�t Time duration (s) 

ψ Temperature difference ratio (–) 

Subscripts 

a Annualized 

c Cold side 

h Hot side 

in Inlet 

out Outlet 

S Supply 

T Target 

Abbreviations 

CU Cold utility 

DE Differential evolution 

GA Genetic algorithm 

HEN Heat exchanger network 

HENR Heat exchanger network retrofit 

HENS Heat exchanger network synthesis 

HEX Heat exchanger 

HR Heat recovery 

HU Hot utility 

MINLP Mixed-integer nonlinear programming 

OP Operating period 

retrofit a HEN ( Sreepathi and Rangaiah, 2014 ): 1) Pinch-based 

HEN retrofit analysis, 2) Mathematical Programming (MP), and 3) 

hybrid of graphical-insight based and MP approach. Asante and 

Zhu (1996) developed Network Pinch retrofit, a two-stage pinch- 

ing approach that ensures minimal structural changes and capital- 

energy optimization. Jiang et al. (2014) uses sensitivity analy- 

sis to improve HEN energy performance by increasing of HEX 

area with fixed network structure to improve utility savings. 

Akpomiemie and Smith (2015) developed a retrofit methodology 

on the installation of heat transfer enhancement without addi- 

tional heat transfer area to reduce the implementation time. 

Pinch-Analysis (PA) relies on thermodynamic and physical in- 

sights of processes to identify the potential energy savings from 

retrofitting a HEN using graphs (composite curves, grand com- 

posite curves). One of the key advantages of this method is 

the efficient visualization of the problem, which allows stake- 

holder internal communication and development of practical so- 

lutions based on the engineers inputs. There are several devel- 

opments in the graphical-insight based approach from the recent 

years. The Retrofit Thermodynamic Diagram (RTD) plots the heat 

loads and driving forces of the HEN ( Lakshmanan and Bañares- 

Alcánt ara, 1996 ), which was later modified to incorporate thermo- 

dynamic feasibility representation and minimum allowed temper- 

ature difference, known as Shifted RTD (SRTD) ( Yong et al., 2014 ). 

Yong et al. (2015) later extended the SRTD to include Grid Dia- 

gram to accurately visualize the HEN arrangements and key pa- 

rameters, known as the Shifted Retrofit Thermodynamic Grid Di- 

agram (SRTGD), with the inclusion of maintenance planning by 

Chin et al. (2020) . Wan Alwi and Manan (2010) presented Stream 

Temperature vs. Enthalpy plots (STEP), a graphical tool that si- 

multaneously carries out targeting and design of HEN, and was 

further extended to include HEN retrofit by allowing users to si- 

multaneously diagnose and retrofit existing HEN ( Lai et al., 2018 ). 

Lai et al. (2019) further extends STEP to include heat exchanger 

(HEX) area versus enthalpy to minimize the overall required HEX 

area to reduce the payback period. Kamel et al. (2017) presented 

temperature driving force (TDF) that revamps the graphical ap- 

proach of Network Pinch ( Gadalla, 2015 ) by structural and non- 

structural modifications. Bonhivers et al. (2016) links PA and bridge 

analysis to develop a retrofit tool, energy transfer diagram (ETD), to 

identify suitable HEN configuration based on the rate of cascaded 

heat through each existing HEX. Lal et al. (2018) modified the ETD 

by adding the support of Heat Surplus-Deficit Table for high po- 

tential energy savings. 

According to Sreepathi and Rangaiah (2014) , MP-based methods 

are generally divided into two optimization methods, stochastic 

methods or deterministic methods. The focus of the review for MP 

is only on genetic algorithm (GA) and differential evolution (DE), 

as this paper develops its method based on those two stochas- 

tic algorithms. For more detailed reviews, Sreepathi and Ranga- 

iah (2014) reviewed the different methodologies for retrofits and 

Toimil and Gómez (2017) reviewed on metaheuristics used for HEN 

retrofit. The genetic algorithm (GA) is based on the evolution in na- 

ture ( Holland, 1975 ). Lewin uses GA to synthesize HENs in a two 

part series. Lewin et al. (1998) used GA to determine the struc- 

ture of the HEN and rate the efficiency of the maximum energy 

recovery units, without resorting to stream splitting. In the second 

part, Lewin (1998) aimed to obtain a family of cost-optimum HEN 

where stream splitting was supported. 

The optimization of retrofitting of HEN is usually solved with 

deterministic method, however, due to complex, non-linear, non- 

convexity of the vast solution space; GA can be applied to solve the 

problem. Liu et al. (2014) combines GA with deterministic method 

to solve the mixed-integer nonlinear programming (MINLP) prob- 

lem of minimizing the cost of newly added HEXs, utilities, and 

repiping, this is also applied to MINLP problem for retrofitting HEN 

in crude oil distillation unit ( Liu et al., 2016 ). Björk and Nord- 

man (2005) developed a hybrid optimization method that uses 

GA and MINLP to solve a large-scale retrofit heat exchanger net- 

work problem. GA divides the large retrofit HEN problem into sub- 
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systems and find the optimal structure for each subsystem. This 

reduces the computational time and effort f or a large-scale opti- 

mization problem. Rezaei and Shafiei (2009) retrofits HEN by cou- 

pling GA with NLP and ILP. GA is used to produce different net- 

works to find the best structural modifications. Genetic algorithms 

are typically suitable for structural optimization and are able to 

avoid being trapped in local optima as shown by Bochenek and 

Jezowski (2006) , where they used GA to solve retrofit problem 

by considering the actual network and potential savings related 

to reusing exchanger units. Biyanto et al. (2016) developed a ge- 

netic algorithm to solve the NLP formulation of a HEN retrofit with 

an emphasis on the increase and optimization of the overall heat 

transfer coefficient using heat transfer enhancement. It was found 

that coiled wire inserts had the greatest improvement out of all 

examined enhancement devices. 

Differential Evolution, first proposed by Storn (1996) , Storn and 

Price (1997) , is a population based algorithm designed to opti- 

mize continuous variables such as heat loads. To the authors best 

knowledge, DE has been applied mostly for HEN synthesis in- 

stead of retrofit processes. Yerramsetty and Murty (2008) applied 

DE to HEN synthesis, where the problem is not decomposed like 

GA but employs a simultaneous approach to optimize the struc- 

ture of HEN, heat loads of HEXs, split streams, and minimum 

approach temperature. Zhang and Rangaiah (2013) applied DE to 

the case study used by Bochenek and Jezowski (2006) , and found 

the solution to be better by preventing the algorithm from being 

trapped in a local optima and increase computational efficiency. 

Aguitoni et al. (2018) used both GA and DE, GA optimizes the 

variable related to topology and DE optimizes the heat loads and 

stream split fraction, and found that better or equal total annual 

cost (TAC) solutions were achieved for the six HEN synthesis case 

studies. 

Most of the reviewed case studies focuses on single period op- 

eration. However, industrial processes might exhibit multiple peri- 

ods over time. Methods to help optimize multi-period design for 

the retrofit case are needed. Jones (1991) mentioned that HEN 

design for multi-period processes have three fundamental design 

types, conventional design, re-sequence design, and re-piping de- 

sign. Kang and Liu (2014) presented a two-step HEN retrofitting 

approach for multi-period operations to improve the operational 

flexibility of the HEN. They used a reverse order matching method, 

which simultaneously adjust the heat transfer area, re-matching 

stream, and adjusting the heat transfer area to result in the least 

increase. They further extended the method to minimize the in- 

vestment costs by using different strategies to match the heat 

transfer areas ( Kang and Liu, 2015 ). The strategies applied com- 

prise maximum number of substituted HEXs after retrofit, min- 

imum additional heat transfer areas in the retrofitted HEN, and 

minimum investment cost for retrofit. The results based on these 

strategies were reported to be better than other literature results 

and provide greater benefit for a large-scale HEN retrofit prob- 

lem in practice. Kang and Liu (2017) also presented a systematic 

strategy to retrofit multi-period HEN using multi-objective opti- 

mization with multiple practical restrictions. The optimized objec- 

tives are minimizing TAC and total annual CO 2 emission by pro- 

viding a Pareto front to represent a series of retrofit targets, and 

the most desirable option to be selected. Isafiade (2018) applied a 

reduced superstructure synthesis approach to retrofit of HENs for 

multi-period operations. Langner et al. (2020) proposed a frame- 

work that splits the retrofit process into five sub-steps to reduce 

the complexity of the problem. The framework derives different 

design configurations through Pinch based approaches and uses 

MP to efficiently derive flexible and cost-efficient structural feasi- 

ble designs. Non-deterministic approaches, meta-heuristics are sel- 

dom used for multi-period HEN, the above studies mentioned for 

GA and DE are only applied to a single OP. Pavão et al. (2018) in- 

tegrated a post-optimization (PO) strategy to their two-level meta- 

heuristic method based on Simulated Annealing and Rocket Fire- 

works Optimization ( Pavão et al., 2017 ) to allow the method to 

handle multi-period HEN optimization. With the PO integrated, the 

solutions presented achieved lower TAC compared to other meth- 

ods and significantly improve the results. Wang et al. (2021) car- 

ried out bi-level optimization strategy that combines binary par- 

ticle swarm optimization and an Alopex-based evolutionary algo- 

rithm to establish a simultaneous flexible HEN model. The flexibil- 

ity analysis adjusts the HEX areas if a critical point arises during a 

non-convex problem. 

2. Problem statement 

The current EnergieSchweiz program is to promote energy ef- 

ficiency in Switzerland. In industry, one of the methods to im- 

prove energy efficiency of industrial processes is retrofit of exist- 

ing plants. Multi-period operation is common in the Swiss industry 

and is thus, the focus of this paper. Feasible heat transfer in each 

OP can be achieved by integrating mixer into the HEN to increase 

flexibility. Thereby, two mixer configurations are distinguished: by- 

passes which modify the outlet temperature and admixers which 

modify the inlet temperature of the heat exchanger. The heat ex- 

changer network optimization in the retrofit process is part of con- 

ceptual design and therefore the following assumptions are made: 

1) detailed heat exchanger design is not considered in this step; 2) 

only counter-current heat transfer is possible; 3) all heat transfer 

coefficients are considered to be constant; and 4) fouling is ne- 

glected. These points are to be investigated in a detail design step 

after the optimization. 

The introduction of mixer configurations into the network de- 

mand additional practical constraints. By reducing the mass flow, 

hazardous temperature levels might be point of concerns (e.g., 

phase change). Therefore, new constraints are introduced that limit 

the maximum or minimum temperature for each process stream. 

In industry, often more practical solutions are preferred over the 

global optimum solution. Therefore, one of the key challenges is to 

find a local optima which can be practically implemented instead 

of the global optimum. In addition to the required constraints, 

practical considerations such as a limited number of HEXs per split 

are to be considered. 

Furman and Sahinidis (2001) , showed that the formulation of 

MINLP HEN synthesis for single period processes is already N P - 

hard in the strong sense . In addition, due to the initial HEN de- 

sign in the retrofit problem, the complexity is increased. The ad- 

ditional constraints as well as the additional dimensions for the 

multi-period operation, with the possibility to integrate bypasses 

and admixers, increase the complexity of the solution space which 

might lead to not finding feasible solutions for large-scale prob- 

lems at all. Accordingly, stochastic rather than deterministic algo- 

rithms are utilized. 

In a previous work ( Stampfli et al., 2020 ), a two-level genetic al- 

gorithm with differential evolution algorithm was introduced and 

applied to a small case study from literature. In this work, the al- 

gorithm is applied to a more complex case study from industry. 

Therefore, the algorithm needs to be adapted in order to be able 

to handle soft streams (non-process streams with no fixed target 

temperature, e.g., waste gas from a boiler which is emitted to the 

environment), and streams which are not active in every OP. With 

the aim to increase practicability of the solutions, integration of 

bypasses and admixer is analyzed in more detail. Hence, the mix- 

ing temperature need to be calculated based on the HEX areas. Fur- 

ther constraints such as extreme stream temperatures (e.g. phase 

change or equipment constraints) at any mixing point need to be 

considered. Finally, piping can have a large impact on the retrofit 

design and, therefore, must also be included. 
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Fig. 1. Superstructure for retrofit of multi-period heat exchanger networks. 

3. Heat exchanger network retrofit model 

The retrofit model (see Fig. 1 ) is based on the stage-wise su- 

perstructure (SWS) from Yee and Grossmann (1990) . In each en- 

thalpy stage k , every hot stream H i can be connected with every 

cold stream C j . At the end of each stream, an utility re-balancing 

HEX can be placed to fulfill the energy balance. The mixing pro- 

cess in splits is considered to be isothermal. The SWS is extended 

with (1) an additional dimension of operating periods (OPs) (e.g., 

Verheyen and Zhang, 2006 ) with different process requirements 

(existence of a process stream, mass flows, specific heat capaci- 

ties, film heat transfer coefficients) and operation parameter (tem- 

peratures, heat loads, mixing fractions), (2) possible utility HEX 

within each enthalpy stage, and (3) possible mixer (bypass and 

admixer) for each HEX. The latter increases the flexibility of the 

network and ensures to achieve the process requirements in each 

OP. 

With a bypass, only a fraction of the mass flow passes through 

the HEX and is heated up, resulting in a change of the outlet tem- 

perature. The remaining partial mass flow and the outlet mass flow 

of the HEX are mixed together non-isothermally. With an admixer 

to a HEX, a partial fraction of the outlet mass flow of the HEX is 

non-isothermally mixed to the inlet mass flow of the HEX. Thereby, 

the mass flow in the HEX is increased resulting in a change of the 

inlet temperature. 

In contrast to heat exchanger network synthesis (HENS), an in- 

tial network of the existing process is given for heat exchanger net- 

work retrofit (HENR). Therefore, the minimal number of required 

enthalpy stages k is given by the existing topology. In an enthalpy 

stage, each stream can only have one heat exchanger in series. 

Multiple heat exchangers in parallel are possible with splits. Dur- 

ing the retrofit process, the following modifications on the network 

are possible: (1) re-piping of a HEX, (2) re-sequencing of a HEX, (3) 

adding area to a HEX, (4) adding a new HEX, and (5) removing an 

existing HEX. 

3.1. Heat exchanger network without mixer 

Hot streams H i are cooled down from the last to the first en- 

thalpy stage. With 

T op 
i,k 

= 

⎧ ⎨ ⎩ 

T op 
i,S 

if k = NK 

T op 
i,k +1 

−
� 

e ∈ E i,k 
˙ Q 

op 
e 

cp op 
i 

˙ m 

op 
i 

otherwise 
∀ i, k, op, (1) 

the temperature of the last enthalpy stage k = NK is equal to the 

supply temperature of the hot stream. For all other enthalpy stages, 

the temperatures are given by the enthalpy stage temperatures 

above and the heat loads within the stages. Thereby, E i,k repre- 

sents the set of all heat exchangers connected to the hot stream 

H i in enthalpy stage k , ˙ Q 

op 
e the heat load of a heat exchanger e in 

operating period op, cp oc 
i 

and ˙ m 

op 
i 
, are the given specific heat ca- 

pacity and mass flow of the process stream in operating period op. 

In contrast to this, cold streams C j are heated up from the first to 

the last enthalpy stage. Therefore, with 

T op 
j,k 

= 

⎧ ⎨ ⎩ 

T op 
j,S 

if k = 0 

T op 
j,k −1 

+ 

� 

e ∈ E j,k 
˙ Q 

op 
e 

cp op 
j 

˙ m 

op 
j 

otherwise 
∀ j, k, oc, (2) 

the temperature of the first enthalpy stage k = 0 is equal to the 

supply temperature of the cold stream. For all other enthalpy 

stages, the temperatures are given by the previous enthalpy stage 

temperature and the heat loads within the stage. 

Based on the enthalpy stage temperatures, the required area for 

each HEX can be determined by 

A e = max 
op∈OP 

�
A op e 

�
= max 

op∈OP 

	
˙ Q 

op 
e 

U 

op 
e �T op m,e 

�
∀ e (3) 

whereby, A e is the minimum required area (largest area of all OPs) 

of a HEX over all operating periods to ensure feasible heat transfer. 
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Fig. 2. Heat exchanger temperatures. 

U 

op 
e is the overall heat transfer coefficient computed by 

U 

op 
e = 

1 
1 
h op 
i 

+ 

1 
h op 
j 

∀ e, op (4) 

where, h 
op 
i 

and h 
op 
j 

are the corresponding film heat transfer coef- 

ficients of the connected hot and cold stream. The mean tempera- 

ture difference in the HEX �T 
op 
m,e is determined using the logarith- 

mic mean temperature difference (LMTD) given by 

�T op m,e = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

�T op 
e, 1 

− �T op 
e, 2 

ln 

	
�T op 

e, 1 

�T op 
e, 2 

� if �T op 
e, 1 


 = �T op 
e, 2 

�T op 
e, 1 

otherwise. 

∀ e, op (5) 

If the temperature differences on both sides of the heat exchanger 

are equal, there is no need to calculate the LMTD, as the tempera- 

ture difference between the streams is constant in the whole HEX. 

The temperature differences on both sides of the HEX are given 

by 

�T op 
e, 1 

= T op 
i,k 

− T op 
j,k 

∀ e, op (6) 

�T op 
e, 2 

= T op 
i,k +1 

− T op 
j,k +1 

∀ e, op (7) 

under consideration of counter-current operation. 

3.2. Heat exchanger and mixer temperatures 

Due to the inclusion of a mixer, HEXs can have four different 

temperatures on each side (see Fig. 2 ). Thereby, in this work the 

term mixer configuration, includes the splitter as well as the mixer 

before and after the HEX. The temperatures upstream and down- 

stream of the mixer configuration are the corresponding enthalpy 

stage temperature ( T 
op 

i,k 
, T 

op 

j,k 
, T 

op 

i,k +1 
, and T 

op 

j,k +1 
), which are deter- 

mined using the energy balance over one enthalpy stage as de- 

scribed in Eqs. (1) and (2) respectively. With a mixer, one of the 

inlet or outlet temperatures of the HEX ( T 
op 

e,h,in 
, T 

op 

e,h,out 
, T 

op 
e,c,in 

, or 

T 
op 
e,c,out ) can be manipulated. Non-isothermal mixing is considered 

for the calculation of these manipulated temperatures. 

For each operating period in which, 

A op e ≤ A e ∀ e, op (8) 

the area A 
op 
e is smaller than the minimal required area A e , a mixer 

configuration is needed to achieve the targeted enthalpy stage 

temperatures. In each of these OPs, the mixer configuration is al- 

ways chosen to be on the stream with the lower heat capacity flow 

CP (mass flow changes have a higher impact on the temperature 

(see Fig. 3 )). To decide which mixer configuration is selected, their 

feasible temperature ranges are compared to each other and the 

mixer configuration with the larger feasible range is selected. For 

a bypass on the cold stream, the outlet temperature of the stream 

is increased by reducing the mass flow passing through the HEX. 

Fig. 3. Relevant temperature differences for mixer type selection. 

To ensure feasible heat transfer, the outlet temperature of the cold 

stream cannot be increased beyond the inlet temperature of the 

hot stream. The feasible range of the temperature change for a by- 

pass �T b is shown in the left diagram in Fig. 3 . For an admixer 

on the cold stream, the inlet temperature is increased by increas- 

ing the mass flow passing through the HEX. The inlet tempera- 

ture of the HEX for the cold stream cannot be increased above 

it’s outlet temperature, therefore, the feasible range for the tem- 

perature change of an admixer �T a is, in this case, the change in 

temperature of the cold stream in the HEX. The right diagram in 

Fig. 3 shows the same concept for a mixer on the hot stream. An 

exception to this concepts, are HEXs with zero heat load in an OP 

connected to an active stream. In this case, the stream needs to be 

fully bypassed. 

In each operating period one mixer temperature ( T 
op 

e,h,in 
, T 

op 

e,h,out 
, 

T 
op 
e,c,in 

, or T 
op 
e,c,out ) has changed and needs to be determined. How- 

ever, these new mixer temperatures cannot simply be calculated 

because the LMTD ( Eq. (5) ) cannot be solved explicit for one of the 

temperature differences ( �T 
op 
e, 1 

or �T 
op 
e, 2 

). These temperature differ- 

ences are usually determined using an approximation ( Chen, 1987 ). 

However, Chen (2019) has proposed an explicit solution approach 

using the Lambert W-function ( Lambert, 1758; Euler, 1779 ). This 

work uses the explicit solution. The adapted derivation for the 

application of the Lambert W-function to the logarithmic mean 

can be found in Appendix A . The Lambert W-function is com- 

puted using the Python library Scipy ( Virtanen et al., 2020 ). The 

procedure for bypass on a hot stream is shown below. Thereby, 

T 
op 

e,h,out 

 = T 

op 

i,k 
because of the reduced mass flow through the HEX. 

To determine the new value of T 
op 

e,h,out 
the procedure is applied 

as follows: 

1. Determine the new LMTD for the given operating period by 

LMT D 

op = 

˙ Q 

op 
e 

U 

op 
e A e 

(9) 

whereby, A e is the needed minimum area which ensures feasi- 

ble heat transfer for every OP. 

2. Calculate the temperature difference ratio between the known 

temperature difference and the LMTD: 

ψ 2 = 

�T op 
e, 2 

LMT D 

op (10) 

3. Thus, the Lambert W-function is ill-defined (the solution can 

be on two different branches W 

−
0 

and W −1 and the point be- 

tween those), there are three different cases which need to be 

considered depending on ψ 2 . 

(a) If the LMTD is equal to the known temperature difference 

( LMT D 

op = �T 
op 
e, 2 

; ψ 2 = 1 ), the temperature difference is 

constant in the HEX. In this case the unknown temperature 
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difference is given by: 

�T op 
e, 1 

= �T op 
e, 2 

(11) 

(b) If the LMTD is smaller than the known temperature differ- 

ence ( LMT D 

op < �T 
op 
e, 2 

; ψ 2 > 1 ), the solution is on branch 

W 

−
0 
: 

ψ 1 = 

−W(−ψ 2 e 
−ψ 2 , W 

−
0 
) 

ψ 2 

(12) 

�T op 
e, 1 

= ψ 1 �T op 
e, 2 

(13) 

(c) If the LMTD is larger then the known temperature differ- 

ence ( LMT D 

op > �T 
op 
e, 2 

; ψ 2 < 1 ) the solution is on branch 

W −1 : 

ψ 1 = 

−W(−ψ 2 e 
−ψ 2 , W −1 ) 

ψ 2 

(14) 

�T op 
e, 1 

= ψ 1 �T op 
e, 2 

(15) 

4. The new mixer temperature is determined by replacing T 
op 

i,k 

with T 
op 

e,h,out 
in Eq. (6) : 

T op 
e,h,out 

= T op 
j,k 

+ �T op 
e, 1 

(16) 

3.3. Total annual cost 

Total annual cost of the HEN is given by 

T AC = 

i r ( 1 + i r ) 
n 

( 1 + i r ) 
n − 1 

C cap + C op,a . (17) 

whereby, i r is the interest rate and n the depreciation period. The 

capital costs C cap are given by 

C cap = 

� 

e 

�
C HEX,e + C mix,e + C split,e + C mov e,e + C match,e 

�
. (18) 

The HEX costs C HEX,e are given by 

C HEX,e = C 0 ,e + c A,e ( A e − A e,init ) 
f d,e (19) 

whereby, C 0 ,e are the base costs, c A,e the specific costs per area, 

and f d,e the degression factor which decreases cost per area as area 

increases for a particular HEX. If an existing HEX is removed, the 

costs are given by 

C HEX,e = C 0 ,e + c R,e A 
f d,e 

e,init 
(20) 

whereby, c R,e is a specific removal cost per area of the HEX. Addi- 

tional mixer costs C mix,e , and split costs C split,e are fixed costs inde- 

pendent from the area. However, the cost for adding and remov- 

ing can be different. Further costs for re-piping and re-sequencing 

C mov e,e are also constant coefficients per HEX. Each of these cost 

coefficients can be adapted for every HEX separately. Additional 

match costs C match,e are considered for HEX that are far apart. Due 

to the fact, that these costs are highly plant layout dependent (e,g. 

additional drilling), no equation is provided here. The cost for each 

match is a constant user input value. The annual operating costs 

C op,a are given by 

C op,a = 

� 

op∈OP 

� 

c HU 

� � 

e ∈ E HU 

˙ Q 

op 
e �t op 


 

+ c CU 

� � 

e ∈ E CU 

˙ Q 

op 
e �t op 


 
 

(21) 

whereby, c HU and c CU are specific utility cost per energy, �t op the 

operating period duration. E HU and E CU are the sets of hot and cold 

utility HEXs. 

4. Evolutionary optimization approach 

The model formulated in Section 3 is a MINLP formulation 

which is at least N P -hard in the strong sense . Therefore, a stochas- 

tic optimization algorithm with two levels is used ( Stampfli et al., 

2022 ). The algorithm is developed in Python and available under 

an open source license ( Stampfli, 2021 ). The algorithm is based 

on evolutionary concepts using a GA for the topology optimiza- 

tion (discrete variables) on the top level and on the sub level a 

DE for the optimization of the heat loads. In Fig. 4 , an overview of 

the algorithm is provided. The constraints used in both algorithms 

are described in Section 4.1 . The procedure is as follows. First, a 

random population of topologies is initialized and checked for fea- 

sibility. Thereby, the topology is checked for exceeding the allowed 

number of HEXs in a split as well as for connections between util- 

ity streams. These constraints are evaluated previously in order to 

reduce unnecessary computation of infeasible solutions. Instead of 

applying the DE for heat load optimization and the evaluation us- 

ing the HEN model, a penalty function, which results always in 

higher TAC than the initial solution, is applied to compute the ob- 

jective. 

In a next step, all feasible solutions are distributed to the avail- 

able CPU cores, and for each topology, a random population of 

heat loads is initialized. Thereby, the maximal and minimal pos- 

sible heat load of each heat exchanger is constrained by a stream 

dependent on the maximal heat load and a user defined mini- 

mum heat load. Next, all heat load populations are evaluated and 

checked for feasibility. Thereby, the objective is the TAC as de- 

scribed in Section 3.3 . The constraints for the DE evaluation are 

the energy balances of each process stream in every OP and posi- 

tive temperature differences for each HEX. Further, mixer temper- 

atures, cannot exceed or fall below stream specific extreme tem- 

peratures (e.g., phase change or equipment constraints). Costs for 

infeasible solutions are evaluated with another penalty function. In 

the DE, the three evolutionary operators’ mutation, crossover, and 

selection are performed to optimize the heat loads. The termina- 

tion criteria for the DE are a maximal number of generations and 

a maximal number of generations without improvement. After the 

DE, the best solutions are stored in a Hall of Fame list, which is al- 

ways updated as soon as a better solution is found. As long as the 

termination criterion of a maximal number of topology generations 

is not fulfilled, the evolutionary operators (selection, crossover, and 

mutation) are executed, and new modified topologies are evaluated 

by checking for feasibility and optimizing the heat loads with the 

DE. 

4.1. Constraints 

In order to provide feasible and practical solutions the use of 

some constraints is essential. To reduce the search space, the con- 

nection between utility streams is forbidden. The user has to set 

the maximal number of total possible HEXs. Splits in a HEN in- 

crease the complexity of the network and the controllability of the 

system. Therefore, an additional constraint limiting the number of 

possible HEX in a split is provided for the user to decide on the 

desired complexity of the system: � 

# E i,k ≤ # E max ∀ i, k (22) 

� 

# E j,k ≤ # E max ∀ j, k, (23) 

whereby # E i,k , # E j,k are cardinalities of the sets of HEXs on hot i 

or cold j stream in the enthalpy stage k . # E max is a user defined 

variable and represents the maximal possible number of HEX in a 
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Fig. 4. Overview of the evolutionary algorithm. 

split. The heat load of each HEX is limited to 

˙ Q min ≤ ˙ Q 

op 
e ≤ ˙ Q 

op 
e,max ∀ e, op (24) 

whereby, ˙ Q min is a user defined variable and ˙ Q e,max is given by 

˙ Q 

op 
e,max = min 

�
� ˙ H 

op 
i 

, � ˙ H 

op 
j 

� ∀ e, op (25) 

whereby the enthalpy flows of the process streams are given by 

� ˙ H 

op 
i 

= c op 
p,i 

˙ m 

op 
i 

�
T op 
i,S 

− T op 
i,T 

� ∀ i, op (26) 

� ˙ H 

op 
j 

= c op 
p, j 

˙ m 

op 
j 

�
T op 
j,T 

− T op 
j,S 

� ∀ j, op. (27) 

Non-negative re-balancing utilities at the end of the streams is en- 

sured by the energy balance given by 

� ˙ H 

op 
i 

−
� 

∀ e ∈ E i 
˙ Q 

op 
e = 

˙ Q 

op 
CU 

≥ 0 ∀ i, op (28) 

� ˙ H 

op 
j 

−
� 

∀ e ∈ E j 
˙ Q 

op 
e = 

˙ Q 

op 
HU 

≥ 0 ∀ j, op. (29) 

whereby, E i and E j are the sets of all HEXs on the hot i or cold j

stream. In order to ensure feasible heat transfer in each HEX, the 

temperatures on both sides of the HEX need to be positive which 

is given by 

T op 
e,h,in 

− T op e,c,out ≥ �T min ∀ e, op (30) 

T op 
e,h,out 

− T op 
e,c,in 

≥ �T min ∀ e, op. (31) 

The minimal temperature difference �T min is a user defined vari- 

able. If there is a mixer additional temperature constraints need 

to be considered. For admixers a positive temperature difference 

within the stream needs to be ensured for hot streams by 

T op 
e,h,in 

− T op 
e,h,out 

> 0 ∀ e, op (32) 

and for cold streams by 

T op e,c,out − T op 
e,c,in 

> 0 ∀ e, op. (33) 

For bypasses, additional stream specific extreme temperatures, 

which cannot be exceeded, need to be considered, given by 

T op 
e,h,out 

− T i,extr > 0 ∀ e, op (34) 

T j,extr − T op 
e,h,out 

> 0 ∀ e, op. (35) 

For evolutionary algorithms there are various constraint handling 

techniques such as penalizing or decoding strategy ( Talbi, 2009 ). In 

this case, constraints on topology modifications ( Eqs. (22) and (23) ) 

are based on the penalizing strategy. The distance to the feasible 

solution is used to guide the algorithm to the feasible region. This 

is achieved by a penalty function which replaces the objective if 

the solution is infeasible. The quadratic penalty function 

h = � + 

�
x f eas − x 

�2 
(36) 

is used. The value � is a penalty constants which ensure that ev- 

ery infeasible solution is more expensive than the worst feasible 

solution. The distance to the feasible solution 
�
x f eas − x 

�
is squared, 

since the optimum of a quadratic function is easy to find. For con- 

straining the heat loads ( Eq. (24) ) the decoding strategy is used. 

This means, that the algorithm cannot create solutions in the fea- 

sible region. This is achieved only by allowing to select a random 

value between ˙ Q min and ˙ Q 

op 
e, max . Equations (28) to (31) are con- 

straints which are often violated. Therefore, the penalizing strategy 

is applied. 

5. Industrial case study - potato chips production 

The developed algorithm is applied to a straightforward and 

realistic industrial case study to guide the readers application of 

the optimization. A potato chips production plant from the Zweifel 

Pomy-Chips AG (ZPC) is analyzed ( Fotsch, 2006 ). ZPC is a Swiss 

food company, producing snacks such as potato chips. The frying 

process (fritter line 1) for the potato chips has a heating demand 

of around 64% of their total heating demand. 

5.1. Process description 

The fritter line 1 (see Fig. 5 ), is used to fry two varieties 

of potato chips: (1) Regular chip (oil mass fraction w oil = 35% ; 

4’410 h/y) and (2) cractive chips (oil mass fraction w oil = 25% ; 

2’610 h/y). The HEN needs to be flexible to cover both OPs. The 

core operation of the process is the frying of the raw chips. The 

main heating demand is to maintain a constant temperature of the 

frying-oil. Therefore, a separate utility system consisting of a nat- 

ural gas boiler is installed. Hence, this match is considered to be 

fixed and not a process requirement. With the fried chips, a frac- 

tion of the frying-oil is removed. Therefore, a make-up-oil feed is 
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Fig. 5. Flow chart of the Fritter-line 1 plant for chips production at Zweifel. Stream temperatures correspond to the two OPs: regular chips / cractive chips. 

needed which is pre-heated by hot utility to the frying tempera- 

ture (C 3 ). The vapor (C 1 ) of the fritter is used as additional fuel for 

the boiler. In order to reduce the natural gas demand, the boiler 

waste gas (H 1 ) is used to heat the fritter vapor (C 1 ) and the boiler 

supply air (C 2 ). After frying, the chips are cooled down by cold 

utility to room temperature (H 2 ). For the production of the cractive 

chips, the degreaser is in operation to reduce the oil mass fraction 

of the fried chips. Hot air (C 4 ) and direct steam (C 5 ) are used to 

reduce the oil content. The heating of the air, as well as the evap- 

oration of the direct steam is covered by hot utility. In the crac- 

tive chips production, the frying-oil temperature is reduced from 

176 ◦C to 166 ◦C. Due to this, most temperatures of the cractive 

chips production are lower as in the regular chips production. The 

waste gas stream (H 1 ) from the natural gas boiler is a soft stream. 

After the heat recovery (vapor heating and boiler supply air heat- 

ing), the waste gas can be optionally cooled down to 30 ◦C. 
In Appendix B , the corresponding process requirements of the 

fritter line 1 for both OPs are shown in Table B.3 . The utility data is 

shown in Table B.4 and the equipment modification cost is shown 

in Table B.5 . Lang factors of 1.1 and 3.0 are assumed for the re- 

moval of existent and the installation of new equipment, respec- 

tively ( Lang, 1948 ). Table B.6 shows the match cost between the 

streams. The existing HEN is shown in Fig. 6 . 

5.2. Algorithm configuration 

For the GA, a population of NCT = 100 chromosomes is initial- 

ized. During the tournament selection, the best of NT = 5 chromo- 

somes is chosen. To monitor the best solutions, the HoF = 10 best 

solutions are stored in the Hall of Fame list. Crossover is performed 

with a probability of CR = 90% and mutation is performed with a 

probability of MT = 10% . For the GA, NGT = 50 are performed be- 

fore termination. For each feasible GA chromosome, a DE popula- 

tion of NCH = 200 chromosomes is initialized. With a probability 

of CR = 90% crossover is performed. The perturbation factor is set 

to F P = 0 . 5 . The DE is terminated after NGH = 100 generations or 

NGHOP = 5 generations without improvement. 

The algorithm was executed on a Linux based server with 256 

GB RAM, 128 threads distributed over 64 CPU cores. Thereby, the 

feasible GA chromosomes are distributed to all threads to run the 

DE and evaluate the solution. 

6. Results 

To evaluate the case study, the manual case study param- 

eters where chosen as follows: minimal temperature difference 

�T min = 2 K, minimal heat load ˙ Q min = 10 kW, cost penalty � = 

50 0,0 0 0 CHF/y. First, in Section 6.1 the best found solution is ana- 

Fig. 6. Initial HEN design with two process internal HEXs. Heat loads are given 

below each HEX corresponding to the two OPs: regular chips / cractive chips. The 

outlet temperature of the soft stream H 1 is given as well. 

lyzed by its comparison to the initial design. Thereby, the topology 

modifications, the heat load, area changes, and the resulting cost 

are analyzed. 

Section 6.2 , analyzes the performance of the algorithm as well 

as its sensitivity depending on the number of possible HEXs, en- 

thalpy stages, and allowed HEXs per split. 

6.1. Best found solution 

The topology of the best found solution is shown in Fig. 7 , 

whereby it cannot be guaranteed that this is the global optimum 

but rather a local optimum. The number of possible HEXs within 

the process was set to NE = 7 , the number of enthalpy stages 

to NK = 3 , and the number of possible HEX within one split to 

# E max = 2 . The retrofitted design resulted in one HEX being re- 

moved (HEX 2) and six new are being added (HEX 3–6). The topol- 

ogy of HEX 1 is not modified (no re-piping, re-sequencing with 

only one existing HEX is not possible). The new HEX, number 5, 

is directly connected to hot utility. All the other HEXs require a 

mixer to ensure feasible heat transfer in each OP. The admixer for 

HEX 1 and 4 have a very low mixer fraction. Such admixers are 

unlikely to be implemented and the heat balance is rather fulfilled 
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Fig. 7. Best found HEN design with six process internal HEXs. Heat loads are given below each HEX corresponding to the two OPs: regular chips / cractive chips. The mixing 

fractions for each mixer as well as the outlet temperature of the soft stream H 1 are shown. Stream C 5 is a steam evaporation (x is the vapor fraction). 

Table 1 

Comparison of heat loads and areas between the best found solution and the initial 

solution. 

HEX Initial design Best found design 

˙ Q 1 e ˙ Q 2 e A e ˙ Q 1 e ˙ Q 2 e A e 
kW kW m 

2 kW kW m 

2 

Process HEX 

1 234 245 16.0 232 242 15.2 

2 46 45 2.5 – – –

3 – – – 0 171 8.3 

4 – – – 44 44 5.7 

5 – – – 0 13 0.4 

6 – – – 0 245 19.1 

7 – – – 46 22 10.3 

Balance utility HEX ∗

CU 1 – – – – – –

CU 2 101 69 5.6 11 3 1.4 

HU 1 – – – 2 3 0.1 

HU 2 – – – 2 2 0.1 

HU 3 56 26 0.8 11 4 0.2 

HU 4 0 247 4.8 0 2 0.1 

HU 5 0 188 0.5 0 4 0.1 

Balance utility HEX number is corresponding to the connected process stream (e.g., 

CU 1 at the end of H 1 ). 

by utility compensation. HEX 3 and HEX 6 need to have a bypass 

because they are connected to cold streams which are only active 

in one OP. 

By comparing the topology to the initial design (see Fig. 6 ), 

it can be seen that in the new design, every stream (except soft 

stream H 1 ) is in need of a balancing utility HEXs. However, the 

heat loads of all utility HEXs are small, or even negligible. Further- 

more, more waste heat from the soft stream is recovered. In the 

initial design 280 kW in OP1 and 290 kW in OP2 are reused, re- 

sulting in a total of 1990 MWh/y. In the retrofitted design, 232 kW 

in OP1 and 658 kW in OP2 are reused, resulting in a total of 

2740 MWh/y. As a result, the outlet temperature is for OP1 slightly 

increased from 261 ◦C to 264 ◦C and for OP2 decreased from 

250 ◦C to 224 ◦C. 
The changes in heat loads and the resulting area are given in 

Table 1 . HEX 1 is the only reused HEX. The area does not need 

to be extended. The heat loads of the balance utility HEXs are re- 

duced significantly by increasing the heat loads of the process in- 

ternal HEX. Also HEX 5, which is connected to hot utility, is rather 

small compared to the other process internal HEXs. Therefore, it 

can be said that the HR of the process is exploited quite well. The 

two new balance utility HEX HU 1 and HU 2 are rather small (heat 

load of 2 kW to 3 kW). By a manual post-optimization, analyzing 

loops and paths within the network, such HEXs are likely to be 

avoided. E.g., by reducing the outlet temperature of the waste gas 

(H 1 ) and the utility consumption at the end of the chips cooling 

(H 2 ), HEX HU 1 and HEX HU 2 are likely to be redundant. 

For the comparison of TACs, it is assumed that the investment 

costs of the initial design are already depreciated ( C Cap = 0 ; re- 

ducing the TAC to the annual operating cost: TAC = C Op,a ). The HU 

demand is 1451 MWh/y and the CU demand 623 MWh/y. This 

results in annual operating costs of C Op,a = TAC = 141,080 CHF/y. 

By investing C cap = 273,495 CHF, respectively C cap,a = 35,419 CHF/y 

with interest rate of i r 5% over a depreciation lifetime of n = 10 y, 

HU and CU demand can be significantly reduced to 132 MWh/y 

and 55 MWh/y. This results in annual operating costs of C Op,a = 

12,780 CHF/y, reducing TAC by around 66% to 48,198 CHF/y. Such 

result is quite common for existing plants in industry which were 

not optimized for heat recovery. HR in such plants is often limited 

to pre-heating supply air with waste gas. 

6.2. Performance and sensitivity analysis 

Figure 8 shows the evolution of the previously discussed best 

found solution. The diagram shows the lowest TAC for each topol- 

ogy generation (comparing all TAC of the current population). 

TAC is observed falling sharply initially, although stagnates over 

time. After around 50 topology generations, no improvement is 

noted. The convergence is highly dependent on parameters such 

as the number of possible HEX NE, the number of enthalpy stages 

NK, and the number of allowed HEX per split # E max . Therefore, 

in Table 2 , the results of the sensitivity analysis on these parame- 

ters are shown. The experiments where performed under the Ock- 

ham’s Razor principle, plurality should not be posited without neces- 

sity “, meaning to keep the model as simple as necessary and not as 

accurate as possible. Hence, only reasonable parameter values are 

chosen to be investigated. 

In the first experiment, the number of possible HEX NE is in- 

creased, starting with the two existing ones. It can be seen that 

the T AC are nearly similar to the initial design, meaning there is 

no room for improvement without adding additional HEX. By in- 

creasing NE, T AC can be reduced to a certain amount. However, the 
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Fig. 8. Convergence of the best found solution ( N E = 7 , N K = 3 , # E max = 2 ). 

Table 2 

Comparison of heat loads and areas between the best found solution and the initial 

solution. 

Experiment Parameter Results 

NE NK # E max TAC �t

– – – CHF / y s 

Amount of possible HEX 

1 2 2 2 140,867 18,922 

2 3 2 2 108,648 26,195 

3 4 2 2 85,287 24,787 

4 5 2 2 75,281 26,573 

5 6 2 2 68,276 27,030 

6 7 2 2 62,280 25,852 

7 8 2 2 71,322 28,141 

Number of enthalpy stages 

8 7 3 2 48,198 27,207 

9 7 4 2 62,982 27,621 

10 7 5 2 60,380 29,842 

11 7 6 2 55,450 30,683 

Number of enthalpy stages (splits with three HEX possible) 

12 7 2 3 63,305 29,628 

13 7 3 3 65,967 27,812 

14 7 4 3 59,141 28,915 

15 7 5 3 57,357 30,481 

16 7 6 3 63,231 30,362 

reduction stagnates after five to six HEX. As expected, the compu- 

tation time increases with increasing number of HEX due to the 

increase of optimization parameters. 

For the next experiment, the number of enthalpy stages NK

is increased (additional empty enthalpy stages with no existing 

heat exchanger matches were added to the initial design). Thereby, 

NE = 7 is the best solution found solution in this configuration. By 

increasing the NK, a slight increase in T AC, as well as in computa- 

tion time is observed, with its best solution at NK = 3 . The same 

experiment was performed but with an increase in the maximal 

possible HEX number in a split to # E max = 3 . The results are quite 

similar to # E max = 2 , however the computation time is increased 

by 5 to 10%. The results of these experiments are to be taken with 

caution, as it is influenced by the randomness of the algorithm. 

However, the results are in a reasonable region. 

Computation time is dependent on hardware and software. 

python was used for the software development which is an inter- 

preted language. However, computation times could be improved 

by using a compiled language such as C++. 

7. Conclusions 

In this work, a two-level GA/DE algorithm for multi-period 

heat exchanger network retrofit was developed. For its application 

in industry, practical constraints are incorporated. The algorithm 

must handle soft streams, as well as streams which are only ac- 

tive in certain operating periods. Further practical constraints on 

the mixer temperatures to omit extreme temperatures (e.g.,phase 

change or equipment constraints), or a maximum number of possi- 

ble HEX in a split are implemented. In order to calculate the mixer 

temperature an explicit approach using the Lambert W-function is 

implemented. Piping usually has a significant impact on retrofit in- 

vestment costs. Therefore, additional match costs are considered in 

the optimization. 

The algorithm was successfully applied to an industrial case 

study, a frying process of two different potato chip variants. 

Thereby its application on a process with soft streams and partially 

existing streams is demonstrated. To achieve the retrofitted design, 

one of the existing heat exchangers is reused, one is removed, and 

six new heat exchangers are incorporated. The heat loads of the 

utility heat exchangers is reduced significantly resulting in a re- 

duction of approximately 66% in its total annual cost. By perform- 

ing a sensitivity analysis on the constraint parameters, it was found 

that the number of possible heat exchangers has the highest influ- 

ence on reducing cost. An optimum in the total annual cost was 

found to require 7 possible heat exchangers. Increasing the num- 

ber of enthalpy stages or increasing the number of possible heat 

exchangers within one split had a minor influence on the result- 

ing cost. This suggests that the number of possible heat exchang- 

ers is the most important parameter for the optimization and has 

to be chosen carefully. By increasing the constraint parameters, the 

number of decision variables increases, as well resulting in higher 

computation times. 

A high number of modifications is needed to get from the exist- 

ing to the retrofitted design. Therefore, future work should investi- 

gate methods to limit the number of modifications on the network 

to give more flexibility to the user. A promising approach would 

be to switch to a simulated annealing algorithm for the topology 

optimization. 
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Appendix A. Application of the Lambert W-function to the 

logarithmic mean 

The derivation for the application of the Lambert W-function, 

by Chen (2019) is slightly modified and updated to the here used 

variables below. The Lambert W-function is evaluated using Scipy 

Virtanen et al. (2020) . 

LMT D 

oc = 

�T oc e, 1 − �T oc e, 2 

ln 

	
�T oc e, 1 

�T oc 
e, 2 

� ����· 1 

�T oc 
e, 2 

(A.1) 

LMT D 

oc 

�T oc 
e, 2 

= 

�T oc e, 1 

�T oc 
e, 2 

− 1 

ln 

	
�T oc e, 1 

�T oc 
e, 2 

� (A.2) 

�T oc e, 1 

�T oc 
e, 2 

= exp 

⎛ ⎜ ⎜ ⎝ 

�
�T oc e, 1 

�T oc 
e, 2 

− 1 

�
�T oc e, 2 

LMT D 

oc � �� � 
ψ 2 

⎞ ⎟ ⎟ ⎠ 

(A.3) 

�T oc e, 1 

�T oc 
e, 2 

exp 

	
−�T oc e, 1 

�T oc 
e, 2 

ψ 2 

�
= exp ( −ψ 2 ) | ·( −ψ 2 ) 

(A.4) 

−�T oc e, 1 

�T oc 
e, 2 

ψ 2 � �� � 
x 

exp 

⎛ ⎜ ⎜ ⎝ 

−�T oc e, 1 

�T oc 
e, 2 

ψ 2 � �� � 
x 

⎞ ⎟ ⎟ ⎠ 

= −ψ 2 exp ( −ψ 2 ) � �� � 
y 

(A.5) 

which can be substituted into the form of 

x exp ( x ) = y. (A.6) 

Thereby, the variable y is known and x unknown. By the use of the 

Lambert W-function x can be defined by 

x = W ( y ) = W ( x exp ( x ) ) . (A.7) 

The application of Eq. (A.7) to right hand side Eq. (A.5) results in 

− �T oc e, 1 

�T oc 
e, 2 

ψ 2 = W ( −ψ 2 exp ( −ψ 2 ) ) . (A.8) 

The temperature difference can be determined by 

�T oc e, 1 = −W ( −ψ 2 exp ( −ψ 2 ) ) 

ψ 2 

�T oc e, 2 = ψ 1 �T oc e, 2 . (A.9) 

Due to the fact, that W is ill-defined, the Lambert W-function has 

three possible branches ( W 

+ 
0 
, W 

−
0 
, and W −1 ) which are depending 

on y = −ψ 2 exp ( −ψ 2 ) respectively ψ 2 . The minimal value of y 

function is y (ψ 2 = 1) = − 1 
e and thus, ψ 2 is always positive, the 

maximal value 0. Branch W 

+ 
0 

is only defined for y > 1 . Therefore, 

the only decision on which branch the solution is, is depending on 

which side of the minimum in y (ψ 2 = 1) = − 1 
e the solution is: 

• W 

−
0 

branch if ψ 2 > 1 
• W −1 branch if ψ 2 < 1 

For the case where ψ 2 = 1 = 

�T oc 
e, 2 

LMT D oc 
, the temperature differ- 

ence over the whole heat exchanger is constant and therefore, 

�T oc 
e, 1 

= �T oc 
e, 2 

. Hence, the Lambert W-function is not needed. 

Appendix B. Process requirements and cost data for the potato 

chips production case study 

Table B.4 

Utility data. 

Utility T S T T h c U 
◦C ◦C W / (m 

2 K) CHF / MWh 

Heating steam (HU) 300 299 5,000 80 

Cooling water (CU) 0 1 2,000 40 

Table B.3 

Process requirements of the fritter line 1 for the regular chips and cractive chips OC. 

Stream # T S T T T extr. CP h 

– ◦C ◦C ◦C kW / K W / (m 

2 K) 

Regular chips (4’410 h/y) 

Vapor heating C 1 136 229 500 2.51 400 

Boiler air pre-heating C 2 10 40 300 1.52 100 

Make-up oil pre-heating C 3 24 176 210 0.37 400 

Degreaser air heating C 4 – – – – –

Degreaser direct steam evaporation C 5 – – – – –

Waste gas cooling ∗ H 1 280 30 30 14.81 400 

Chips cooling H 2 151 24 24 0.79 300 

Cractive chips (2’610 h/y) 

Vapor heating C 1 125.9 226.1 500 2.45 400 

Boiler air pre-heating C 2 10 40 300 1.48 100 

Make-up oil pre-heating C 3 24 166 210 0.18 400 

Degreaser air heating C 4 163.4 174 500 23.31 100 

Degreaser direct steam evaporation C 5 144.9 145.1 145.1 940.00 5,000 

Waste gas cooling ∗ H 1 270.1 30 30 14.3 400 

Chips cooling H 2 150 24 24 0.55 300 

∗ Soft streams. 
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Table B.5 

Modification cost factors (including Lang factors ( Lang, 1948 ): 3 for adding equip- 

ment; 1.1 for removing equipment). Only cost for the removal of an equipment is 

listed, if it is existing (HEX, and admixer). 

Equipment C 0 Q c A c R d f 
CHF [ Q ] CHF / Q CHF / Q –

HEX 0 A (m 

2 ) 1,731 635 0.61 

Split 0 – 40,000 – 1.00 

Bypass 0 – 40,000 – 1.00 

Admixer 0 – 40,000 14,666 1.00 

Re-pipe 0 – 68,000 – 1.00 

Re-sequence 0 – 68,000 – 1.00 

Deprecation lifetime n = 10 y; interest rate i r = 5% . 

Table B.6 

Match cost matrix (including utility streams) in CHF. 

H \ C C 1 C 2 C 3 C 4 C 5 CU 

H 1 0 1,500 2,100 2,100 2,100 0 

H 2 900 3,000 600 300 300 0 

HU 0 0 0 0 0 0 
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Specification table 

Subject area: Chemical Engineering, Computer Science 

More specific subject area: Process Integration, Heat exchanger network retrofit 

Method name: Evolutionary based heat exchanger network retrofit for multi-period processes 

Name and reference of original 

method: 

n/a 

Resource availability: doi: 10.5281/zenodo.4 4 41140 

Sets 

C = { 1 . . . j . . . NC } Set of cold streams 

CH = { 1 . . . ch . . . NCH } Set of heat load chromosomes 

C T = { 1 . . . ct . . . NC T } Set of topology chromosomes 

E = { 1 . . . e . . . NE } Set of heat exchangers 

H = { 1 . . . i . . . NH } Set of hot streams 

K = { 1 . . . k . . . NK } Set of enthalpy stages 

GH = { 1 . . . gh . . . NGH } Set of heat loads generations 

GT = { 1 . . . gt . . . NGT } Set of topology generations 

OP = { 1 . . . op . . . NOP } Set of operating periods 

Parameter 

a Admixer existence (boolean) 

b Bypass existence (boolean) 

CR Crossover probability 

EAM Exchanger address matrix / GA chromosome 

ex Heat exchanger existence (boolean) 

F p Perturbation factor 

f Fitness function 

h Penalty function 

MT Mutation probability 

n number of infeasible solutions 

P Population 

U trial chromosome 

V donor chromosome 

X Heat load matrix / DE chromosome 

� Ineasibility penalty 

Subscripts 

best best found solution 

init Initial solution 

v iol constraint violations 

Abbreviations 

DE Differential evolution 

EAM Exchanger address matrix 

GA Genetic algorithm 

HEN Heat exchanger network 

HENS Heat exchanger network synthesis 

HEX Heat exchanger 

HoF Hall of Fame 

TAC Total annual cost 

Method details 

Heat exchanger network synthesis (HENS) is an important tool to design energy efficient 

production plants in process industry. Furman and Sahinidis [1] showed, that HENS is N P -hard 

in the strong sense . The heat exchanger network retrofit formulation, is an extension of HENS with 

increased complexity. Complexity is further increased by the additional dimension of operating 

periods, the possibility to integrate bypasses or admixers, and practical constraints. It is unlikely that 

deterministic algorithms can provide a feasible solution for such problems on a large-scale. Stochastic 

algorithms are able to handle such problems. Therefore, a hybrid two-level evolutionary algorithm 

based on genetic algorithm (GA) and differential evolution (DE) is developed. The concept of GA was 

first introduced by Holland [2] and further extended by Goldberg [3] . DE was introduced by Storn [4] , 
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Fig. 1. Flowchart of Genetic Algorithm for topology optimization. 

Storn and Price [5] . In the developed algorithm, a GA handles the topology optimization in the top 

level and a DE in the sub level is used to optimize the operation parameter. 

Topology optimization using genetic algorithm 

In order to define the topology of a HEN, integer values are used to address the position of each 

heat exchanger (HEX). Genetic algorithms, which are based on the evolution process in nature, are 

suitable to handle such discrete variables. Thereby, individuals within a population are compared and 

only the fittest of them survive. During the process, new individuals are generated through the mating 

of the fittest individuals. Coping errors (mutations) may occur during mating. An overview of the 

algorithm is shown in Fig. 1 . The following sections describe the evolutionary operators in detail. 

Genetic algorithm - initialization 

In a first step, a population P t = { EAM 0 . . . EAM NCT } with NCT random individual topologies, 

hereafter called chromosomes, is initialized. Each of these chromosomes represents a HEN topology 

and is described using an exchanger address matrix (EAM). An EAM of an example topology is shown 

in Fig. 2 . A chromosome contains the following genes (configurations of a HEX): (e) HEX number, (i) 

hot stream number, (j) cold stream number, (k) enthalpy stage number, ( b h ) bypass on hot stream, ( a h ) 

admixer on hot stream, ( b c ) bypass on cold stream, ( a c ) admixer on cold stream, and ( ex ) existence 

Article 3

77



4 J.A. Stampfli, D.G. Olsen and B. Wellig et al. / MethodsX 9 (2022) 101711 

Fig. 2. Example heat exchanger network with corresponding exchanger address matrix (bypasses on hot side of HEX 1, 3, 4, 

and 5; admixer on cold side of HEX 2). 

of the HEX. During the initialization, for heach HEX it is first randomly decided if the HEX exists. For 

all existing HEXs, a random hot stream, cold stream, and enthalpy stage is defined. To ensure only 

feasible solution, the preserving constraint handling technique is used (e.g., for the stream number a 

random value between zero and the number of hot streams NH is selected). Bypass and admixer are 

not initialized, thus their existence depends on the heat loads. Hence, the need of a mixer and its 

configuration is determined in the DE. 

Genetic algorithm - evaluation 

After the initialization, each chromosome needs to be evaluated. In order to define the required 

areas and thus, the resulting cost, the heat loads need to be defined first. The optimal heat loads 

are found by the DE. To reduce computation time, the penalizing constraint handling technique is 

used. Thereby, only feasible topologies are optimized using DE. Infeasible solutions are evaluated 

by a penalty function which is less computationally expensive. The fitness f 
gt 
GA ,ct 

of the topology 

chromosome ct in the topology generation gt is given by 

f 
gt 
GA , ct 

( EAM 

gt 
ct ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

f 
gt 
DE , best 

( EAM 

gt 
ct , X 

gt 
ct , best 

) if n 
gt 

GA , viol 
= 0 

1 

h 
gt 
GA 

(n gt 
GA , viol 

) 
otherwise 

(1) 

whereby, f 
gt 
DE , best 

is the fitness of the DE in function of the EAM and the heat loads of the best 

DE solution X 

gt 

ct,best 
. The distance of each violated constraint c is given by n 

gt 
GA , viol , c 

. For infeasible 

topologies, the fitness is defined by reciprocal value of the penalty function, given by 

h 
gt 
GA 

�
n 
gt 
GA , viol 

	
= � + 

� 

c ∈C GA 

�
0 − n 

gt 

v iol,c 

	2 
� �� � 

n 
gt 
GA , viol 

with � >> TAC init (2) 

whereby C GA is the set of all GA constraints. A constant value �, which is larger than the initial total 

annual cost of the existing process, is added to the sum of the squared distances to the feasible region. 

Genetic algorithm - selection 

To choose the parent chromosomes for mating, tournament selection is performed. This means 

that the fittest out of a given number of randomly selected chromosomes is chosen. 

Genetic algorithm - crossover 

With a crossover probability of CR GA , the parents mate. Thereby, a one-point crossover is 

performed. Both parent chromosomes are cut below a random selected HEX number. The HEXs above 

the cut are swapped between the two chromosomes. The two resulting children chromosomes replace 

the parent chromosomes and are evaluated. 

Genetic algorithm - mutation 

In nature, during the mating process in the crossover, coping errors (mutations) may occur. In the 

algorithm, with a mutation probability of MT GA , for each allele (a single scalar value within a gene), a 

mutation occurs. For the mutation in the existence of a HEX gene (ex), a random bit flip is performed. 
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In the genes (i), (j), and (k), the value is changed within the upper and lower boundary (e.g., for (i) 

the number of existent hot streams) of the gene using an uniform distribution. It is ensured by using 

the preserving strategy, none of these values exceed their boundaries. 

Genetic algorithm - next generation 

After the application of the evolutionary operators (selection, crossover, and mutation), the 

new generated topologies are evaluated and the population is updated by replacing the parent 

chromosome with the new children chromosomes for the next generation. In order to keep track 

of the best solutions, a Hall of Fame (HoF) list is created. This list contains the current best solutions. 

If in the evaluation step a fitter solution is found, the HoF list is updated. With this additional feature, 

the flexibility of the algorithm in use is increased as the engineer is now able to choose between 

the most promising solutions. The algorithm is terminated as soon the maximal number of topology 

generations NGT is reached. 

Heat load optimization using differential evolution 

In contrast to the topology optimization, the heat loads are continuous variables with upper 

and lower bounds. Differential evolution algorithms are best to deal with the continuous variables. 

Compared to deterministic algorithms such as gradient descent, DE does not require the model to be 

differentiable. DE algorithms use the same concepts of evolution as GAs. However, the order of the 

evolutionary operators is reversed. There are different options for the DE configuration. In this case, 

the standard configuration DE/rand/1/bin is used. This means that the individuals for mutation are 

selected randomly, only one difference for perturbation ( F P : perturbation factor) is considered, and 

a binomial crossover is performed. In Fig. 3 , an overview of the algorithm is shown. The following 

sections describe the algorithm in detail. 

Differential evolution - initialization 

For each feasible topology from the GA, a population P h = { X 0 . . . X NCH } with NCH random heat 

load chromosomes is initialized. Each of these chromosomes consists of all the heat loads of each 

heat exchanger in every OP , resulting in a two-dimensional array. Chromosome ch is given by 

X ch = 

�
˙ Q 

op 
e 

	
(3) 

whereby the heat load is an array of the size N E × N OP . The initialization of the heat loads of existing 

HEXs ˙ Q 

op 

ch,e 
is constraint by a minimal user defined value and a maximal value given by the enthalpy 

differences of the connected streams (case study dependent value). 

Differential evolution - evaluation 

For the evaluation of the population of heat loads, the fitness of each chromosome needs to be 

determined. Infeasible solutions are evaluated by a penalty function. In each generation gh the fitness 

f 
gh 

DE ,ch 
is given by 

f 
gh 

DE ,ch 
( EAM 

gt 
ct , X 

gh 

ch 
) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 

T AC( EAM 

gt 
ct , X 

gh 

ch 
) 

if n 
gh 

DE , v iol = 0 (4) 

1 

h 
gh 
DE 

(n gh 
DE , v iol ) 

otherwise. (5) 

whereby, the T AC is the total annual cost of the current topology and heat loads. TAC consists the 

yearly operating cost and the investment cost for the retrofit. The detailed model for calculating 

the TAC is formulated in the corresponding research paper [6] . In order to minimize the TAC, the 

reciprocal value represents the fitness of a chromosome. Each distance of a heat load constraint 

violation is given by n 
gh 

DE , v iol,c . For infeasible operation parameter, the fitness is defined by reciprocal 
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Fig. 3. Flowchart of Differential Evolution for operation parameter optimization. 

value of the penalty function, given by 

h 
gh 
DE 

(n gh 
DE , v iol ) = � + 

� 

c ∈C DE 

�
0 − n v iol,c 

	2 
� �� � 

n 
gh 
DE , v iol 

with � >> T AC init (6) 

whereby C DE is the set of all DE constraints. A constant value � which is larger than the initial TAC is 

added to the sum of the squared distances to the feasible region. 

Differential evolution - mutation 

The first evolutionary operation in a DE is mutation. Thereby, a three non-equal chromosomes 

X 

gh 
r1 

, X 

gh 
r2 

, X 

gh 
r3 

( r 1 	 = r 2 	 = r 3 ) of the current generation gh are selected randomly. A new donor 

chromosome is generated by 

V 

gh 

ch 
= X 

gh 
r1 

+ F P 

�
X 

gh 
r2 

− X 

gh 
r3 

�
(7) 

whereby one difference for perturbation is used and weighted with the perturbation factor F P ∈ [ 0 , 2 ] . 

After the mutation, for all infeasible heat loads a new random value within the boundaries is assigned. 
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Differential evolution - crossover 

In the crossover operator, a trial chromosome U 

gh 

ch 
is generated by 

u 
gh,oc 

ch,e 
= 

� 

v gh,oc 

ch,e 
, r gh < CR DE ∨ p = r 

x 
gh,oc 

ch,e 
, otherwise 

(8) 

whereby, r gh ∼ U(0 , 1) has a uniform distribution. With a probability of CR DE a crossover is performed. 

To ensure at least one crossover per operating parameter, a random index within the chromosome is 

chosen for which crossover is always performed. 

Differential evolution - selection 

In the selection operator, the new created trial chromosome is evaluated. To determine the new 

target chromosome for the next generation gh + 1 with 

X 

gh +1 

ch 
= 

� 

U 

gh 

ch 
, if f (U 

gh 

ch 
) > f (X 

gh 

ch 
) 

X 

gh 

ch 
, otherwise, 

(9) 

a simple greedy selection is performed. 

Differential evolution - next generation 

For each generation, the evolutionary operators (mutation, crossover, and selection) are executed 

till one of the termination criteria is fulfilled. The first termination criterion is satisfied when the 

maximal number of heat load generations NGH is reached. The second termination criterion is reached 

when the number of consecutive generations without improvement of the fitness exceeds its limit. 

Implementation and parallelization 

The algorithm is implemented in Python 3.8.2 using the library DEAP - Distributed Evolutionary 

Algorithms in Python [7] . Evolutionary algorithms are predestined for parallel computing as they work 

with populations of chromosomes which can be evaluated separately by distributing them among 

multiple processors. Therefore, all feasible GA chromosomes are distributed to multiple processors on 

which the heat loads are optimized using DE. The source code of the algorithm is published under an 

open-source license [8] . 
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ABSTRACT 
Heat exchanger network retrofit is a useful strategy to increase energy efficiency in process 
industry. In Switzerland, processes often have multiple operating cases caused by 
environmental or multi-product production. In order to consider such variations over time, 
additional mixers are included in the heat exchanger network retrofit. To ensure practicability 
in industrial application, additional practical constraints, such as a maximal number of heat 
exchangers in a split, are considered. These additions increase the complexity of optimization. 
Therefore, in this work, a two-level hybrid evolutionary algorithm is proposed. The network 
topology is optimized in a top-level genetic algorithm, and the heat loads are optimized using 
a differential evolution at a sub-level. The algorithm was successfully applied to a chips 
production plant from the industry. As a result, the total annual cost was reduced by around 
66%. 

KEYWORDS 

Heat exchanger network (HEN), Retrofit, Multi-period, Meta-heuristics, Genetic algorithm, 
Differential evolution, Parallel processing, Lambert W-function 

INTRODUCTION 
The current EnergieSchweiz program is to promote energy efficiency in Switzerland. In 
industry, one of the methods to improve energy efficiency of industrial processes. Multiple 
operating cases (MOCs) are common in the Swiss industry and thus are the focus of this 
paper. Feasible heat transfer in each operating case (OC) can be achieved by integrating 
bypasses and admixer into the heat exchanger network (HEN) to increase flexibility. 
 
In industry, often more practical solutions are preferred over the global optimum solution. 
Therefore, one of the key challenges is to find a local optima which can be practically 
implemented instead of the global optimum. In addition to the required constraints, practical 
considerations such as a limited number of heat exchangers (HEXs) per split are to be 
considered.  
 
Most the reviewed studies focus on a single OC. However, industrial processes might exhibit 
MOCs over time. Methods to help optimize MOCs design for the retrofit case are needed. 
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Jones mentioned that HEN design for processes that have MOCs have three fundamental 
design types, conventional design, re-sequence design, and re-piping design [1]. Kang and Liu 
presented a two-step HEN retrofitting approach for multi-period operations to improve the 
operational flexibility of the HEN [2]. They used a reverse order matching method, which 
simultaneously adjust the heat transfer area, re-matching stream, and adjusting the heat 
transfer area to result in the least increase. They further extended the method to minimize the 
investment costs by using different strategies to match the heat transfer areas [3]. The 
strategies applied comprise maximum number of substituted HEXs after retrofit, minimum 
additional heat transfer areas in the retrofitted HEN, and minimum investment cost for 
retrofit. The results based on these strategies were reported to be better than other literature 
results and provide greater benefit for a large-scale HEN retrofit problem in practice. Kang 
and Liu also presented a systematic strategy to retrofit multi-period HEN using multi-
objective optimization with multiple practical restrictions [4]. The optimized objectives are 
minimizing total annual cost (TAC) and total annual carbon dioxide emission by providing a 
Pareto front to represent a series of retrofit targets, and the most desirable option to be 
selected. Isafiade applied a reduced superstructure synthesis approach to retrofit of HENs for 
multi-period operations [5]. 
 
Furmann and Sahinidis, showed that the formulation of mixed-integer nonlinear programming 
(MINLP) HEN synthesis for single OC processes is already NP-hard in~the~strong~sense [6]. 
In addition, due to the initial HEN design in the retrofit problem, the complexity is increased. 
The additional constraints as well as the additional dimensions for the MOCs, with the 
possibility to integrate bypasses and admixers, increase the complexity of the solution space 
which might lead to not finding feasible solutions for large-scale problems at all. 
Accordingly, stochastic rather than deterministic algorithms are utilized.  
 
In a previous work [7], a two-level genetic algorithm (GA) with differential evolution (DE) 
was introduced and applied to a small case study from literature. In this work, the algorithm is 
applied to a more complex case study from industry. Therefore, the algorithm needs to be 
adapted in order to be able to handle soft streams, and streams which are not active in every 
OC. With the aim to increase practicability of the solutions, integration of bypasses and 
admixer is analyzed in more detail. Hence, the mixing temperature need to be calculated 
based on the HEX areas. Further constraints such as extreme stream temperatures (e.g. phase 
change or equipment constraints) at any mixing point need to be considered. Finally, piping 
can have a large impact on the retrofit design and, therefore, must also be included. 

HEAT EXCHANGER NETWORK RETROFIT MODEL 
The retrofit model (Figure 1) is based on the stage-wise superstructure (SWS) developed by 
Yee and Grossmann [8]. In each enthalpy stage k, every hot stream Hi can be connected with 
every cold stream Cj. At the end of each stream, an utility re-balancing HEX can be placed to 
fulfill the energy balance. The mixing process in splits is considered to be isothermal. The 
SWS is extended with (1) an additional dimension of OCs (e.g., [9]) with different process 
requirements (existence of a process stream, mass flows, specific heat capacities, film heat 
transfer coefficients) and operation parameter (temperatures, heat loads, mixing fractions), (2) 
possible utility HEX within each enthalpy stage, and (3) possible mixer (bypass and admixer) 
for each HEX. The latter increases the flexibility of the network and ensures to achieve the 
process requirements in each OC. With a bypass, only a fraction of the mass flow is heated up 
by passing through the HEX.  
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Figure 1. Superstructure for retrofit of HEN with multiple OCs 
 
The remaining partial mass flow and the outlet mass flow of the HEX are mixed non-
isothermally. By adding an admixer to a HEX, a partial fraction of the outlet mass flow of the 
HEX is non-isothermally mixed to the inlet mass flow of the HEX. Thereby, the mass flow 
through the HEX is increased. In contrast to heat exchanger network synthesis, in heat 
exchanger network retrofit an initial network of the existing process is given. The number of 
enthalpy stages depends on the topology of the existing network. During the retrofit process, 
the following modifications on the network are possible: (1) re-piping of a HEX, (2) re-
sequencing of a HEX, (3) adding area to a HEX, (4) adding a new HEX, and (5) removing an 
existing HEX. 

Temperature calculations 
The temperatures for all the enthalpy stages (Ti,k

oc, Tj,k
oc). are calculated using the energy 

balance of each enthalpy stage. Thereby mass flows, specific heat capacity as well as heat 
loads can be different in every OC. By calculating the area using the enthalpy stage 
temperatures, the maximal needed area can be determined. For each OC in which, the 
calculated area is smaller than the maximal needed area, a mixer is needed to achieve the 
targeted enthalpy stage temperatures.  
 

 
 

Figure 2. HEX temperatures (example of a bypass mixer on the hot stream and an admixer on 
the cold stream) 
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Figure 3. Relevant temperature differences for mixer type selection 
 
Due to the inclusion of a mixer, HEXs can have four different temperatures on each side (see 
Figure 2). Thereby, the temperatures upstream and downstream the mixer are the enthalpy 
stage temperature (Ti,k

oc, Tj,k
oc). The HEX inlet and outlet temperatures (Te,h,in

oc, Te,h,out
oc, 

Te,c,in
oc, Te,c,out

oc) change depending on the mixer type and its mass flow. In each of the OC, the 
mixer is always chosen on the stream with the lower heat capacity flow CP (mass flow 
changes have a higher impact on the temperature (see Figure 3)). The mixer type with the 
larger feasible range is always selected. For a bypass on the cold stream, the outlet 
temperature of the stream (Te,c,out

oc) is increased by reducing the mass flow passing the HEX. 
The maximum outlet temperature of the cold stream is limited by the heat transfer and thus 
equal to the inlet temperature of the hot stream resulting in a feasible temperature difference 
ΔTb shown in the left diagram in Figure 3. For an admixer on the cold stream, the inlet 
temperature can be increased. The feasible temperature difference ΔTa is in this case the 
change in temperature of the cold stream (the inlet temperature of stream which needs to be 
heated up cannot be higher than its outlet temperature). The right diagram in Figure. 3 shows 
the same concept for a mixer on the hot stream. An exception to this concept, are HEXs with 
zero heat load in an OC connected to an active stream. In this case, the stream needs to be 
fully bypassed. In each OC, the corresponding mixer temperature needs to be back calculated 
using the area difference between the calculated and the maximal area. As a result, a new 
logarithmic mean temperature can be determined by 
 

,
,max

oc
e

m new oc
e e

QT
U A

 =    (1) 

 
Thereby, oc

eQ  represents the heat load, oc
eU  the overall heat transfer coefficient, and ,maxeA the 

maximal area of HEX e in oc. In the next step, the unknown mixer temperature needs to be 
determined. However, the logarithmic mean temperature (see Equation 1; the temperature 
differences 1T  and 2T  are the temperature differences for a counter-current HEX) cannot be 
solved explicit for one of the temperature differences. 
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Therefore the Lambert W-function is used as an explicit solution, as proposed by Chen [10] is 
used to solve the logarithmic mean temperature. The Lambert W-function is computed using the 
Python library Scipy [11]. 

Total annual cost 
The TAC for the HEN is given by the annualized capital costs and the operating costs. As 
capital costs adding or removing of HEX, mixers, and splits are considered. Further re-piping 
or re-sequencing costs as well as match (e.g., cost for distance) costs are included as well. The 
annual operating cost are given by the utility consumption. 

EVOLUTIONARY OPTIMIZATION APPROACH 
The HEN retrofit model formulated is a MINLP formulation which is at least NP-hard 
in~the~strong~sense. Therefore, a stochastic optimization algorithm with two levels is used. 
The algorithm is developed in Python and available under an open source license [12]. The 
algorithm is based on evolutionary concepts using a GA for the topology optimization 
(discrete variables) on the top-level and on the sub-level a DE for the optimization of the heat 
loads. In Figure 4, an overview of the algorithm is provided. The procedure is as follow: First, 
a random population of topologies is initialized and checked for feasibility. Thereby, the 
topology is checked for exceeding the allowed number of HEXs in a split as well as for 
connections between utility streams. These constraints are evaluated previously in order to 
reduce unnecessary computation of infeasible solutions. Instead of applying the DE for heat 
load optimization and the evaluation using the HEN model, a penalty function, which results 
always in higher TAC than the initial solution, is applied to compute the objective.  
 
In a next step, all feasible solutions are distributed to the available central processing unit 
(CPU) cores, and for each topology, a random population of heat loads is initialized. Thereby, 
the maximal and minimal possible heat load of each HEX is constrained by a stream 
dependent on the maximal heat load and a user defined minimum heat load. Next, all heat 
load populations are evaluated and checked for feasibility. Thereby, the objective is to 
minimize the TAC. The constraints for the DE evaluation are the energy balances of each 
process stream in every OC and positive temperature differences for each HEX. Further, 
mixer temperatures, cannot exceed or fall below stream specific extreme temperatures (e.g., 
phase change or equipment constraints).  
 

 
 
Figure 4. Overview of the evolutionary algorithm 
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Costs for infeasible solutions are evaluated with another penalty function. In the DE, the three 
evolutionary operators’ mutation, crossover, and selection are performed to optimize the heat 
loads. The termination criteria for the DE are a maximal number of generations and a 
maximal number of generations without improvement. After the DE, the best solutions are 
stored in a Hall of Fame list, which is always updated as soon as a better solution is found. As 
long as the termination criterion of a maximal number of topology generations is not fulfilled, 
the evolutionary operators (selection, crossover, and mutation) are executed, and new 
modified topologies are evaluated by checking for feasibility and optimizing the heat loads 
with the DE. The evolutionary operators are explained in more detail in a previous paper [7].  

POTATO CHIPS PPRODUCTION CASE STUDY 
The developed algorithm is applied to an industrial case study. A potato chips production 
plant from the Zweifel Pomy-Chips AG (ZPC) is analyzed [13]. ZPC is a Swiss food 
company, producing snacks such as potato chips. The frying process for the potato chips has a 
heating demand of around 64% of their total heating demand and is used to produce two 
different chips types. The process requirements for both OCs are listed in Table 1. The Utility 
data is shown in Table 2 and the equipment modification costs are shown in Table 3. Lang 
factors of 1.1 and 3.0 are assumed for the removal of existent and the installation of new 
equipment, respectively [14]. Table 4 shows the match costs (e.g., piping) between the 
streams. The initial HEN is shown in Figure 5. 
 
For the GA, a population of 100 topologies is initialized. During the selection, the best of 5 
random selected topologies is chosen. To monitor the best solutions, the 10 best solutions over 
all generations are stored in a list. Crossover is performed with a probability of 90% and 
mutation is performed with a probability of 10%. For the GA, 50 generation are performed 
before termination. For each feasible GA chromosome, a DE population of 200 heat load 
configurations is initialized. 
 
Table 1. Process requirements of the fritter line 1 for the regular chips and the cractive chips OCs 
(*soft streams) 

 
Stream Supply 

temperature
(°C)

Target 
temperature
(°C)

Extreme 
temperature
(°C)

Heat capacity 
flow (kW/K)

Heat transfer 
coefficient
(W/(m2K))

Regular chips (4,410 h/y)
C1 136 229 500 2.51 400
C2 10 40 300 1.52 100
C3 24 176 210 0.37 400
C4
C5
H1

* 280 30 30 14.81 400
H2 151 24 24 0.79 300
Cractive chips (2,610 h/y)
C1 125.9 226.1 500 2.45 400
C2 10 40 300 1.48 100
C3 24 166 210 0.18 400
C4 163.4 174 500 23.31 100
C5 144.9 145.1 145.1 940.00 5,000
H1

* 270.1 30 30 14.3 400
H2 150 24 24 0.55 300

0116-6

Publications and Software

90



7 
 

Table 2. Utility data 
 

Utility Supply 
temperature 
(°C)

Target 
temperature
(°C)

Heat transfer 
coefficient
(W/(m2K))

Specific utility 
cost
(CHF/MWh)

Steam (HU) 300 290 5,000 80
Cooling water (CU) 0 1 2,000 40

 
Table 3. Capital costs for HEX, split, mixer (bypass or admixer), and moves (re-pipe or re-
sequence) 

 
Equipment Quantity

([Q])
Specific
addition costs
(CHF/[Q])

Specific 
removal costs
(CHF/[Q])

Degression 
factor
()

HEX A (m2) 1,731 635 0.61
Split / Mixer 1 () 40,000 0 1.00
Move 1 () 68,000 0 1.00
 
Table 4. Match costs matrix in CHF 

 
H \ C C1 C2 C3 C4 C5

H1 0 1,500 2,100 2,100 2,100
H2 900 3,000 600 300 300
 
With a probability of 90% crossover is performed. The perturbation factor is set to 0.5. The DE 
is terminated after 100 generations or 5 generations without improvement.  
 
The algorithm was executed on a Linux based server with 256 GB Random-access memory 
(RAM), 128 threads distributed over 64 CPU cores. Thereby, the feasible GA topologies are 
distributed to all threads to run the DE and evaluate the solution. 
 

 
 

Figure 5. Initial HEN design with two process internal HEXs. The heat loads for both OCs are 
noted as: regular chips / cractive chips. 
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RESULTS 
The topology of the best found solution is shown in Figure 6. The number of possible HEXs 
within the process was set to 7, the number of enthalpy stages to 3, and the number of 
possible HEX within one split to 2. The retrofitted design resulted in one HEX being removed 
(HEX 2) and six new are being added (HEX 3-6). The topology of HEX 1 is not modified (no 
re-piping, re-sequencing with only one existing HEX is not possible at all). The new HEX, 
number 5, is directly connected to hot utility. All the other HEXs require a mixer to ensure 
feasible heat transfer in each OC. The admixers for HEX 1 and 4 have very low mixer 
fraction. Such admixers are unlikely to be implemented and the heat balance is rather fulfilled 
by utility compensation. HEX 3 and HEX 6 need to have a bypass because they are connected 
to cold streams which are only active in one OC. 
 
By comparing the topology to the initial design (see Figure 5), it can be seen that in the new 
design, every stream (except soft stream H1) is in need of a balancing utility HEXs. However, the 
heat loads of all utility HEXs are small, or even negligible. Furthermore, more waste heat from 
the soft stream is recovered. In the initial design 280 kW in OC1 and 290 kW in OC2 are reused, 
resulting in a total of 1,990 MWh/y. In the retrofitted design, 232 kW in OC1 and 658 kW in 
OC2 are reused, resulting in a total of 2,740 MWh/y. As a result, the outlet temperature is for 
OC1 slightly increased from 261°C to 264°C and for OC2 decreased from 250°C to 224°C. The 
changes in heat loads and the resulting area are given in Table 5. HEX 1 is the only reused HEX. 
The area does not need to be extended. The heat loads of the balance utility HEXs are reduced 
significantly by increasing the heat loads of the process internal HEX. Also HEX 5, which is 
connected to hot utility, is rather small compared to the other process internal HEXs. Therefore, 
it can be said that the HR of the process is exploited quite well. The two new balance utility 
HEXs HU1 and HU2 are rather small (heat load of 2 kW to 3 kW). By a manual post-
optimization, analyzing loops and paths within the network, such HEXs are likely to be avoided. 
E.g., by reducing the outlet temperature of the waste gas (H1 and the utility consumption at the 
end of the chips cooling (H2), HEX HU1 and HEX HU2 are likely to be redundant. 
 

 
 
Figure 6. Best found HEN design with six process internal HEXs. The heat loads for both OCs 
are noted as: regular chips / cractive chips. The mixing fractions as well as the outlet 
temperature of the soft stream H1 are shown. 
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Table 5. Comparison of heat loads and areas between the best found solution and the initial 
solution. (balance utility HEX number is corresponding to the connected process stream: e.g., 
CU1 at the end of H1) 

 
HEX Initial design Best found design

Heat load 
OC1(kW)

Heat load 
OC2 (kW)

Area (m2) Heat load 
OC1 (kW)

Heat load 
OC2 (kW)

Area (m2)

Process HEX
1 234 245 16.0 232 242 15.2
2 46 45 2.5
3 0 171 8.3
4 44 44 5.7
5 0 13 0.4
6 0 245 19.1
7 46 22 10.3
Balance utility HEX
CU1
CU2 101 69 5.6 11 3 1.4
HU1 2 3 0.1
HU2 2 2 0.1
HU3 56 26 0.8 11 4 0.2
HU4 0 247 4.8 0 2 0.1
HU5 0 188 0.5 0 4 0.1
 
For the comparison of TACs, it is assumed that the investment costs of the initial design are 
already depreciated. The HU demand is 1,451 MWh/y and the CU demand 623 MWh/y. This 
results in annual operating costs of 141,080 CHF/y, which is equal to its TAC. By investing 
273,495 CHF, respectively 35,419 CHF/y with interest rate of 5% over a depreciation lifetime of 
10 y, HU and CU demand can be significantly reduced to 132 MWh/y and 55 MWh/y. This 
results in annual operating costs of 12,780 CHF/y, reducing TAC by around 66% to 48,198 
CHF/y. Such result is quite common for existing industrial which were not optimized for heat 
recovery. HR in such plants is often limited to pre-heating supply air with waste gas. 

CONCLUSIONS 
In this work, a two-level GA-DE algorithm was developed. For its application in industry, 
practical constraints are incorporated. The algorithm must handle soft streams, as well as 
streams which are only active in certain OCs. Further practical constraints on the mixer 
temperatures to omit extreme temperatures (e.g.,phase change or equipment constraints), or a 
maximum number of possible HEX in a split are implemented. In order to calculate the mixer 
temperature an explicit approach using the Lambert W-function is implemented. Piping 
usually has a significant impact on retrofit investment costs. Therefore, additional match costs 
are considered in the optimization.  
 
The algorithm was successfully applied to an industrial case study, a frying process of two 
different potato chip variants. Thereby its application on a process with soft streams and 
partially existing streams is demonstrated. The best found solutions proposes a reduction of 
approximately 66% in TAC. 
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To achieve the retrofitted design, one existing HEX is removed, and six new HEXs are 
incorporated. Future work should investigate methods to limit the number of modifications on 
the network to give more flexibility to the user. A promising approach would be to switch to a 
simulated annealing algorithm for the topology optimization. 
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NOMENCLATURE 

Symbols
A (m2) Area
C () Cold stream
H () Hot stream
Q (kW) Heat load
Q ([Q]) Quantity
T (°C) Temperature
ΔT (K) Temperature difference
Subscripts/superscripts
i Hot stream number
in Inlet
j Cold stream number
k Enthalpy stage number
m Logarithmic mean difference
oc Operating case number
out Outlet
Acronyms/abbreviations
CPU Central Processing Unit
CU Cooling water (CU)
DE Differential evolution
GA Genetic algorithm
HEN Heat exchanger network
HEX Heat exchanger
HU Steam (Hot utility)
MOCs Multi operating cases
MINLP Mixed-integer nonlinear programming
NP-hard Non-deterministic polynomial-time hardness
OC Operating case
RAM Random-access memory
SWS Stage-wise superstructure
TAC Total annual cost
ZPC Zweifel Pomy-Chips AG
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With the growing awareness of the need to mitigate greenhouse gas (GHG) emissions, the world is transitioning 
towards more sustainable and energy-efficient alternatives. A large share of the Swiss process industry relies 
on multi-period production. Retrofitting such plants often has a high potential to improve energy efficiency and 
thus reducing the GHG emissions. To analyze such processes, in this work, an existing two-level algorithm 
using a genetic algorithm for topology optimization and a differential evolution for heat load optimization is 
extended to a multi-objective algorithm to consider GHG emissions besides total annual cost (TAC). The 
algorithm is applied to a chips production plant from industry. Comparing the results to the single-objective 
algorithm, GHG emissions can be further reduced by 50 %, causing an increase in TAC by 27 %. With the 
introduction of GHG emissions as the second objective, utility demand is included in both objectives leading to 
having a larger impact on the results than capital costs. However, it has been shown beneficial compared to 
solutions omitting this higher impact. 

1. Introduction 
In view of the policy objective of net zero carbon emissions, the deepest possible level of decarbonization must 
be achieved in all sectors. However, decarbonization of the industry sector is challenging due to the high 
complexity of the systems, heterogeneity, and high temperature levels. The systematic overall optimization of 
processes, in terms of their energy, is referred to as Process Integration (PI; Linnhoff and Flower, 1978), with 
Heat Exchanger Networks (HEN) representing a key strategy (Klemeš, 2013). Methods and tools are required 
for retrofitting pre-existing processes (brownfield), particularly multi-period processes, considering the 
overwhelming share of high value-added industries present in Switzerland (e.g., fine chemicals, pharma, food, 
beverages). Furthermore, in many Swiss companies, one single processing line is used to manufacture a 
portfolio of products, resulting in multi-period problems and representing additional challenges for PI.  
To reach higher levels of rigor, reproducibility, and comparability, optimization based on Mathematical 
Programming (MP) needs to be developed. Some research on HEN retrofit has already been conducted with 
MP-based optimization, which can be divided into stochastic and deterministic methods. Deterministic 
approaches are very challenging for HEN retrofit being a more complex sub-problem of HEN synthesis. The 
latter is already hard to solve without metaheuristic solvers due to the high complexity of mixed-integer nonlinear 
programming (MINLP). Considering, among other things, the increased availability of computational power, 
Toimil and Gómez (2016) explained why there is a trend toward stochastic optimization methods, in particular 
towards metaheuristics. Metaheuristics combine local search methods (heuristics) with an algorithm to explore 
the search space to find an optimal or near-optimal solution. A subgroup of metaheuristics is population-based 
algorithms such as Genetic Algorithms (GA) and Differential Evolution (DE). GA is a stochastic method based 
on the concept of survival of the fittest by comparing a population of solutions and selecting the best for further 
exploration. DE is similar to GA but designed to optimize continuous variables such as heat loads. Application 
of both GA/DE has been conducted by Stampfli et al. (2020). 
HEN problems can be divided into two classifications, single objective optimization (SOO), focusing on reducing 
total annual cost (TAC), and multi-objective optimization (MOO). MOO adds a layer of complexity to the 
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optimization for the retrofit of existing HEN. Sreepathi and Rangaiah (2014) developed a MOO to retrofit HEN, 
where the objective functions are utility and investment costs. The authors used a program based on the non-
dominated sorting genetic algorithm (NSGA-II), resulting in better MOO solutions. The authors then extended 
the work to retrofit HEN involving streams with variable heat capacity (Sreepathi and Ranagaiah, 2015). Their 
continuous approach to handling the variable heat capacity provided better and more practical solutions for the 
retrofit of HEN. Kang and Liu (2017) developed a three-stage MOO procedure to retrofit multi-period HENs. 
Their optimization model aims have two objective functions, total annual CO2 emissions with capital cost for 
retrofit, number of substituted heat exchangers (HEXs), modification to the existing HEN structure, or additional 
heat transfer areas. With the current focus on reducing the GHG emissions of the industrial sector, this paper 
extends the work carried out in Stampfli et al. (2022a) to include GHG emissions in the MOO for multi-period 
HEN retrofit. 

2. Methods 
For the MOO, the single-objective hybrid evolutionary algorithm for HEN retrofit for multi-period processes 
(Stampfli et al., 2020) was later extended to consider detailed mixer configurations (Stampfli et al. 2022a) and 
has been further developed to optimize GHG emissions besides TAC. An overview of the algorithm is shown in 
Figure 1. A detailed explanation of the algorithm, including its application, is provided by Stampfli et al. (2022a), 
and details on the implementation in Python 3.8.2 using the library DEAP - Distributed Evolutionary Algorithms 
in Python (Fortin et al., 2012) is provided by Stampfli et al. (2022b). 
 

Figure 1: Algorithm overview (Stampfli et al., 2022a) 

The hybrid evolutionary algorithm has two stages whereby in the top-stage, the topology of the HEN (discrete 
variables) is optimized using a GA. For every feasible HEN design, the DE in the sub-stage optimizes to find 
the best heat load distribution on the network (continuous variables). Thereby, a population of potential solutions 
is evaluated using a HEN model. To determine the fitness of the solutions, the TAC is used. To ensure feasible 
solutions, constraints which are violated often, are handled using penalizing strategies. For other constraints, 
decoding strategies are used. In this work, GHG emissions are introduced as a second fitness function. The 
functions needed to extend the existing algorithm are provided in Section 2.1. For the selection of the multi-
objective fitness in the DE, the NSGA-II is used to produce a Pareto front in which every solution has a fixed 
HEN topology but different heat loads. The concepts of the NSGA-II selection and the integration into the DE 
are explained in Section 2.2. In the GA, topologies are evaluated. Therefore, the hypervolume for every Pareto 
front is calculated and used as its fitness. The hypervolume calculation and its integration in the GA are 
explained in Section 2.2. 

2.1 Heat exchanger network model 

The HEN model is based on Yee and Grossmann's (1990) stage-wise superstructure (SWS). It is extended with 
(1) an additional dimension of operating periods (OPs), (2) utility heat exchanger within the enthalpy stages, 
and (3) selection and calculation of detailed mixer configuration using Chen's (2019) explicit solution of the 
logarithmic mean. Therefore, (3) uses the Lambert W-function (Lambert, 1758) to ensure feasible heat transfer 
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in every OP, extreme temperatures. (4) In industry, non-process streams such as exhaust gas are often soft 
streams (they can but do not have to be cooled down). Thus, the SWS model is extended to handle such 
streams, which have no fixed target temperature and no need for utility.  
To ensure practical results, additional constraints are added to the SWS: (1) The number of splits per stream 
and enthalpy stage can be limited to prevent Spaghetti design (Ahmad and Smith, 1989), and (2) extreme 
temperatures (e.g., phase change) for every stream which cannot be exceeded or fallen short of, respectively. 
This constraint ensures feasible temperatures in the mixer configurations. 
The fitness of the retrofitted network is determined using the TAC as the objective function (OF), which is 
composed of capital and operating costs. Thereby, capital costs for adding or removing area, new HEXs, and 
new mixer configurations are considered. Further, capital costs include modification costs for re-piping and re-
sequencing HEXs and resulting piping costs (depending on the plant layout). Finally, the utility costs are 
considered as the operating costs. A detailed description of the model, including all the equations, is published 
by Stampfli et al. (2022a) and Stampfli et al. (2022b).  

2.2 Extension to multi-objective optimization 

The model described in Section 2.1 is extended for MOO by adding GHG emissions as a second OF. GHG 
emissions are based on utility consumption and can be determined by GHG =  ൫ܳ̇ு,  ξு, + ܳ̇, ,൯∀ ߦ   Δݐ (1) 

Thereby, ܳ̇ு, and ܳ̇, describe the hot and cold utility demands, respectively, in an operating period (OP). ξு, and ߦ, are specific CO2 emissions per MWh and Δݐ is the duration of the associated OP. The 
objective for the SOO is the TAC determined by TAC = ,ܥ + ,ܥ  = ,ܥ + ൫ܳ̇ு,  cு, + ܳ̇,  ܿ,൯∀   Δݐ (2) 

whereby ܥ, are the annualized capital costs. The operating costs ܥ, depend on the utility demand ܳ̇ு, 
and ܳ̇, in the same way as the GHG but using specific cost coefficients cு, and ܿ, instead of specific 
emission coefficients ξு, and ߦ,. This similarity of both functions creates a dependency between both 
objectives. Therefore, its effect on the results must be analyzed and compared to alternative objectives by 
omitting the operating costs ܥ, in Eq(2). To omit distorting the solutions due to different order of magnitudes 
of objectives, both are referenced to the existing HEN: OFେ =  TAC௫TAC  (3) 

OFୋୌୋ =  GHG௫GHG  (4) 
2.3 Differential evolution with NSGA-II selection for Pareto optimization 

For the extension to a MOO, the selection in the DE needs to be adapted because there are two objectives that 
counteract each other. Therefore, the selection is performed using NSGA-II (Deb et al., 2002). For a given HEN 
topology, non-dominated solutions (no other solution exists that is better in an objective without worsening 
another objective) with different heat load distributions are selected in a Pareto front (see points marked with an 
x in Figure 2 on the left). The NSGA-II algorithm stores multiple fronts. By ignoring the non-dominated solutions 
stored in the 1st front, a 2nd front (see points marked with an o on the diagram in Figure 2 on the left) can be 
generated, which is only dominated by solutions in the first front. The solutions are sorted using the generalized 
reduced run-time complexity non-dominated sorting algorithm (Fortin et al., 2013). 
During the optimization of the heat loads in the DE, the whole list with all the Pareto fronts is considered, but 
only the non-dominated Pareto front is returned to the genetic algorithm. 

2.4 Genetic algorithm with hypervolume indicator for Pareto selection 

The DE returns a Pareto front of non-dominated solutions for every HEN topology. To compare the Pareto fronts 
between different topologies, the fitness of each front is quantified using hypervolume indicators (Zitzler et al., 
2003). Thereby a reference point pref worse than every point in all the Pareto front is set. To avoid distorting the 
results, both TAC and GHG emissions are relativized with Eq(3) and Eq(4). Calculating the area between the 
reference point and the Pareto front determines the quality of the Pareto front (see Figure 2 on the right). The 
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areas (hypervolume indicator) are used as the topologies' fitness for the GA selection process (the larger the 
area, the higher the fitness). 
 

  
Figure 2: On the left, the 1st Pareto front (points marked with an x) and 2nd Pareto front (points marked with an 
o) created with the NSGA-II algorithm are shown. On the right, an exemplary hypervolume indicator for two 
different Pareto fronts is shown. In this case, the front, including points marked with an x, has a higher area 
resulting in a higher hypervolume indicator and thus a higher fitness. 

3. Industrial case study: potato chips production 
To illustrate the application of the algorithm, a potato chips production plant (fritter line 1) from the Zweifel Pomy-
Chips AG is analyzed (Fotsch, 2006). It produced two types of chips: regular chips (woil = 0.35) and Cractive 
chips (woil = 0.25). A flow chart of the process is shown in Figure 3, the process requirements and the utility data 
are listed in Tables 1 and 2. The GHG emission coefficients in Table 2 are determined using data from BAFU 
(2022) for emissions caused by natural gas and (Krebs and Frischknecht, 2021) for emissions caused by the 
consumer electricity mix. A natural gas boiler supplies hot utility (HU) with an efficiency of 90% (0.22 
tCO2eq/MWh), and a refrigeration unit provides cold utility (CU) with a COP of 5.90 (0.02 tCO2eq/MWh). A 10 y 
depreciation lifetime and 5 % interest rate are given for the cost evaluation. Further, cost data for equipment, 
modifications, and match costs are available by Stampfli et al. (2022a).  
For the optimization, the practical constraints are limited as follows: the minimum temperature difference is set 
to Δܶ = 2 K, the minimal possible heat load to ܳ ̇  = 10 kW, the maximum number of possible HEX is limited 
to ܰܧ =  7, the number of enthalpy stages is set to ܰܭ =  3, and the number of possible HEX within one split 
is limited to #ܧ௫  =  2. 
 

 
Figure 3: Flow chart of the fritter-line 1 plant for chips production at Zweifel. Stream temperatures correspond 
to the two OPs: regular chips / Cractive chips (Stampfli et al., 2022a). 
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Table 1: Process requirements of the fritter line 1 for both OPs 

Stream  # (-) ௌܶ (°C) ்ܶ (°C) ܶ௫௧. (°C) ܲܥ (kW/K) ℎ (W/(m2K)) 
Regular chips (4,410 h/y) 
Vapor heating C1 136 229 500 2.51 400 
Boiler air pre-heating C2 10 40 300 1.52 100 
Make-up oil pre-heating C3 24 176 210 0.37 400 
Degreaser air heating C4 - - - - - 
Degreaser dir. steam evap. C5 - - - - - 
Waste gas cooling* H1 280 30 30 14.81 400 
Chips cooling H2 151 24 24 0.79 300 
Cractive chips (2,610 h/y) 
Vapor heating C1 125.9 226.1 500 2.45 400 
Boiler air pre-heating C2 10 40 300 1.48 100 
Make-up oil pre-heating C3 24 166 210 0.18 400 
Degreaser air heating C4 163.4 174 500 23.31 100 
Degreaser dir. steam evap. C5 144.9 145.1 145.1 940.00 5,000 
Waste gas cooling* H1 270.1 30 30 14.3 400 
Chips cooling H2 150 24 24 0.55 300 
*Soft streams. 

Table 2: Utility data 

Utility  # (-) ௌܶ (°C) ்ܶ (°C) ℎ (W/(m2K)) ܿ (CHF/MWh) ߦ (tCO2eq/MWh) 
Heating steam HU 300 299 5,000 80 0.22* 
Cooling water CU 0 1 2,000 40 0.02** 
*Natural gas boiler (0.9 = ߟ)/ ** Refrigeration unit (COP = 5.90) 
 
To ensure comparability with the published results (Stampfli et al., 2022a), the algorithm parameters are chosen 
to be similar. Only populations sizes are increased since with the additional objective function a larger solutions 
space is to be explored. For the GA, the population size is set to ܰܶܥ =  150, for the tournament selection, the 
best of ܰܶ =  5 solutions is selected, the Hall of Fame size is set to ܨܪ =  100, the crossover probability is 
set to ܴܥ =  90 %, the mutation probability is set to ܶܯ =  10 %, and the number of generations is set to ܰ = ܪܥܰ For the DE, the population size is set to .75 = ܶܩ  200, the Pareto front size is set to ܰܲ =  20, the crossover 
probability is set to ܴܥ =  90 %, the perturbation factor is set to ܨ  =  0.5, the number of generations is set to ܰܪܩ =  100, and the number of generations without improvement is set to ܱܰܲܪܩ =  5. The optimization was 
performed on a Linux-based server with 256 GB RAM, using 50 of the 128 available threads distributed over 64 
CPU cores for parallel computing of the DE algorithm. 

4. Results 
The linear dependency between operating costs and GHG emissions is visible in the results by comparing TAC 
and GHG emissions (see Figure 4 on the left). Rather than a Pareto front, a single solution is found. By 
comparing the annualized capital costs and the GHG emissions in Figure 4 on the right, the linear dependency 
is omitted, and a Pareto front can be identified (red curve). Comparing the SOOTAC result from Stampfli et al. 
(2022a) to the MOOTAC,GHG results shows that it is on the Pareto front. However, with the MOOTAC,GHG no results 
in this region with similar TAC are found (see Figure 4 on the left). This can be explained by the fact that the 
MOOTAC,GHG has a higher weight on the utilities. Besides considering the operating costs in the TAC objective, 
caused GHG emissions from the utilities represent the second objective. In Table 3, the result from the SOOTAC 
is 12,780 CHF/y and 30.14 tCO2e/y, almost double the operating costs and GHG emissions, compared to 6,888 
CHF/y and 15.04 tCO2e/y of the solution from the MOOTAC,GHG. As a result of the lower utility demand, annualized 
capital costs for the MOOTAC,GHG are with 54,453 CHF/y higher than the 35,419 CHF/y of the SOOTAC, which 
results in 61,341 CHF/y TAC compared to 48,198 CHF/y.  
In Figure 4, on the right, grouped points represent a DE Pareto front. These fronts have all the same HEN 
topology but different heat load distributions. The range in annualized capital costs is relatively small compared 
to the range of GHG emissions. This indicates that changing the heat load distribution has a small effect on the 
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HEX areas, in contrast to the utility consumption, concluding that GHG emissions can be reduced without 
extensive topology modification. 

  
Figure 4: Optimization results using total annual cost and greenhouse gas emissions as objectives (MOOTAC, 

GHG). The green circle indicates the solution of the SOOTAC from Stampfli et al. (2022a). On the left, the linear 
dependency between TAC and GHG emissions is visible. On the right, the Pareto front (red curve) between 
annualized capital costs and GHG emissions can be identified. 

Table 3: Comparison of results for different objectives. 

Optimization  TAC 
(CHF/y) 

 ,ܥ
(CHF/y) 

 ,ܥ
(CHF/y) 

GHG 
(tCO2e/y) 

ܳு 
(MWh/y) 

ܳ 
(MWh/y) 

OFTAC  

(-) 
OFcap,a  

(-) 
OFGHG  

(-) 
 

Existing design 141,080 0 141,080 331.68 1451 623 1 - 1  
SOOTAC* 48,198 35,419 12,780 30.14 132 55 2.927 3.983 11.004  
MOOTAC,GHG 61,341 54,453 6,888 15.04 62 48 2.300 2.591 22.053  
MOOCAP,GHG 67,726 28,737 38,989 81.09 330 314 2.083 4.909 4.090  
*Results from Stampfli et al. (2022a) 
 
To analyze the influence, the weighting of the utility has, the operating costs ܥ, are excluded from the TAC 
objective. The results are visualized in Figure 5. Since utilities have a lower weight in this optimization, operating 
costs are a higher portion of the TAC. Therefore, on the left in Figure 5, the linear dependency between TAC 
and GHG emissions is more evident. On the right, it can be seen that the Pareto front is shifted down from the 
blue dashed curve (MOOTAC,GHG) to the red curve (MOOCAP,GHG). Thereby, no results in the region of the SOOTAC 
result (green circle) are found. In contrast to the TAC and GHG emission optimization, the SOOTAC result is not 
part of the Pareto front but dominates a large portion of the results. This indicates that by neglecting operating 
costs in the TAC objective, the weighting for the utilities is too low.  
The results for MOOTAC,GHG and MOOCAP,GHG suggest that cost and emission coefficients strongly impact the 
weighting between costs and GHG emissions. By analyzing the ratio of the impact of 1 MWh utility reduction on 
the TAC and GHG emissions, using the existing plant as a reference, it can be shown that utility has around 18 
% more impact on the cost than on the GHG emissions:  GHG௫൫cு, + ܿ,൯TAC௫൫ߦு, ,൯ߦ + =  331.68 tେଶୣ୯/80) ݕ CHF/MWh + 40 CHF/MWh)141,080 CHF/y ൫0.22 tେଶୣ୯/MWh + 0.02 tେଶୣ୯/MWh൯ = 1.176 (5) 

This confirms the results in Table 3, where the utility is reduced less by the MOOCAP,GHG than by the SOOTAC. 
By comparing all the objective values for the best-found solutions, the results suggest the SOOTAC had the 
highest impact on minimizing TAC, the MOOTAC,GHG had the highest impact on GHG emission minimization, and 
the MOOCAP,GHG has the highest impact on minimizing annualized capital costs. 
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Figure 5: The optimization results using annualized capital costs and greenhouse gas emissions as objectives 
(MOOCAP,GHG). The green circle indicates the solution of the SOOTAC from Stampfli et al. (2022a). On the right, 
the new Pareto front between annualized capital costs and GHG emissions (red curve) and the Pareto front 
from MOOTAC,GHG (blue dashed curve), are visualized. 

5. Conclusions 
The hybrid two-level evolutionary-based algorithm for heat exchanger network (HEN) retrofit for multi-period 
processes using genetic algorithm (GA) for topology optimization and differential evolution (DE) for heat load 
optimization (Stampfli et al. 2022a) has been extended from single-objective optimization (SOO) to multi-
objective optimization (MOO) to consider greenhouse gas (GHG) emissions as well. The selection process for 
both algorithms is modified to consider multiple objective functions. Using the non-dominated sorting genetic 
algorithm (NSGA-II), the DE algorithm returns a list of Pareto-optimal solutions for every HEN topology with 
respect to total annual cost (TAC) and GHG emissions. In the GA, the fitness of the Pareto fronts is quantified 
using hypervolume indicators. 
The MOO introduces a linear dependency between operating costs (part of the TAC) and GHG emissions. The 
difference between GHG emissions and operating costs is using GHG emission coefficients instead of cost 
coefficients. Therefore, regarding TAC and GHG emissions, instead of a Pareto front, a single Pareto-optimal 
solution is found. However, with regard to annualized capital costs and GHG emissions, a Pareto front is 
identified. Comparing the result of the SOO from Stampfli et al. (2022a) to the MOO, it can be seen that it is part 
of the found Pareto front. However, with the MOO, no solutions in this region are found. This is because the 
MOO has a higher weight on the utility demand (operating costs and GHG emissions) compared to the SOO 
(only operating costs). As a result, the best-found solution of the MOO has 27 % higher TAC but 50 % lower 
GHG emissions than the SOO result.  
The Pareto front analysis of a single topology (DE results) shows that changing the heat load distribution across 
the heat exchangers significantly impacts operating costs and GHG emissions but only a small impact on 
annualized capital costs. 
To analyze the impact of the utility demand, another MOO is performed, which uses only annualized capital 
costs as the TAC (excluding operating costs). As a result, TAC's share of operating costs outweighs the 
annualized capital costs. Therefore, a large part of the Pareto front is dominated by the SOO solution, and the 
best-found MOO solution has higher TAC and GHG emissions. 
Both results of the MOOs (with and without operating costs in the TAC objective) show that the introduction of 
GHG emission as a second objective shifts the optimum depending on the impact of utility reduction on the 
objective functions. The direction of the shift highly depends on the cost and emission coefficients. For the 
analyzed case study, the reduction of utility has an 18 % higher impact on operating costs than GHG emissions. 
Therefore, omitting operating costs in the TAC objective shifts the solution towards lower annualized capital 
costs but higher operating costs and GHG emissions. In contrast, considering operating costs in the TAC 
objective, the solution is shifted towards higher annualized capital costs but lower operating costs and GHG 
emissions. 
In conclusion, the SOO is already considering GHG indirectly with the operating costs. By introducing GHG 
emissions as a second objective, operating costs should still be considered in the TAC. The MOO weights utility 
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demand higher than the SOO, and thus results with lower GHG emissions can be expected. However, the 
awareness of the higher weight on utility demand is essential. Comparing the different objectives highlights the 
importance of cost and emission coefficients in the optimization. In future work, alternative objective 
combinations such as minimal operating costs and minimal annualized capital costs or minimal utility 
consumption and equipment sizes should be analyzed. 
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A B S T R A C T
Increase in energy efficiency and reduction in greenhouse gas (GHG) emissions in industry are important steps
towards a more sustainable economy. Due to the growing share of high value-added industries multi-period
operation becomes more common in process industry. Therefore, retrofit of existing multi-period production
plants is a key aspect towards more sustainable production processes. Hence, in this work, an existing two-level
evolutionary algorithm using a genetic algorithm and a differential evolution for multi-period heat exchanger
network retrofit is extended to consider GHG emissions as a second objective to the total annual cost (TAC).
The multi-objective problem is addressed by incorporating a non-dominated sorting genetic algorithm (NSGA-
II) and hypervolume indicators into the algorithm. By analyzing an industrial case study of a potato chips
production, the results of the multi-objective optimization shows that GHG emissions can be reduced by 50%.
However, compared to the single-objective optimization, TAC is increased by 27%. By selecting capital costs
and operating costs as objectives instead, similar results to the single-objective optimization are achieved
showing that the results are highly dependent on the selection of the objectives. Further, changes in utility
costs and caused emissions have a high impact on the results.

1. Introduction

In view of the policy objective of net-zero carbon emissions, the
deepest possible level of decarbonization must be achieved in all sec-
tors. However, decarbonization of the industry sector is challenging
due to the high complexity of the systems, heterogeneity, and high
temperature levels. The systematic overall optimization of processes,
in terms of their energy consumption, is referred to as Process Inte-
gration (PI) [1], with Heat Exchanger Networks (HEN) representing
a key strategy [2]. Methods and tools are required for retrofitting
pre-existing processes (brownfield), particularly multi-period processes,
considering the overwhelming share of high value-added industries
present in Switzerland (e.g., fine chemicals, pharma, food, beverages).
Furthermore, in many Swiss companies, one single processing line is
used to manufacture a portfolio of products, resulting in multi-period
problems and representing additional challenges for PI. Methods are
available for greenfield process design, e.g., Aguitoni et al. [3] used a
bi-level optimization approach of Simulated Annealing and Differential
Evolution (DE) to synthesize HEN. Pavão et al. [4] used metaheuristic

∗ Corresponding author at: Lucerne University of Applied Sciences and Arts, Competence Center Thermal Energy Systems and Process Engineering,
Technikumstrasse 21, 6048 Horw, Switzerland.

E-mail addresses: jan.stampfli@hslu.ch (J.A. Stampfli), benjamin.ong@hslu.ch (B.H.Y. Ong), donald.olsen@hslu.ch (D.G. Olsen), beat.wellig@hslu.ch
(B. Wellig), rene.hofmann@tuwien.ac.at (R. Hofmann).

approach, based on Simulated Annealing and Rocket Fireworks Opti-
mization, to synthesize and efficient multi-period HEN. The approach
was coupled with post-optimization strategy to further improve the
total annual cost. The challenges and research conducted to optimize
multi-period processes have been reviewed by Stampfli et al. [5].

To reach higher levels of rigor, reproducibility, and comparability,
HEN retrofit for multi-period processes based on mathematical opti-
mization needs to be developed. Some research has already been con-
ducted with mathematical-based optimization, which can be divided
into stochastic and deterministic methods. Deterministic approaches
are very challenging for HEN retrofit being a more complex sub-
problem of HEN synthesis. The latter is already hard to solve without
metaheuristic solvers due to the high complexity of mixed-integer non-
linear characteristics of the problem. Considering, among other things,
the increased availability of computational power, Toimil and Gómez
[6] explained why there is a trend towards stochastic optimization
methods, in particular towards metaheuristics. Metaheuristics combine
simple local search methods (heuristics) with an algorithm to explore
the search space to find an optimal or near-optimal solution.
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Nomenclature

Sets
𝐶 = {0… 𝑗…𝑁𝐶} Set of cold streams
𝐸 = {0… 𝑒…𝑁𝐸} Set of heat exchangers
𝐻 = {0… 𝑖…𝑁𝐻} Set of hot streams
𝐾 = {0… 𝑘…𝑁𝐾} Set of enthalpy stages
𝑂𝑃 = {0… 𝑜𝑝…𝑁𝑂𝑃 } Set of operating periods
Parameter
𝐴 Heat exchanger area (m2)
𝐶 Cost factor (CHF)
𝑐 Specific cost factor (e.g., CHF/m2)
𝐶𝑃 Heat capacity flow rate (kW/K)
𝑓𝑑 Degression exponent (–)
ℎ Film heat transfer coefficient (W/(m2 K))
𝑖𝑟 Interest rate (–)
𝑛 Depreciation period (y)
𝑄 Thermal energy (kWh)/ Quantity ([Q])
�̇� Heat flow (kW)
𝑇 Temperatures (℃)
𝑤 Mass fraction (–)
Greek letters
𝛥𝑇 Temperature difference (K)
𝛥𝑡 Time duration (h)
𝜂 Efficiency coefficient (–)
𝜉 Emission factor (tCO2∕MWh)
Subscripts
𝑎 Annualized
0 Base
𝑐𝑎𝑝 Capital
𝑜𝑝 Operating
𝑐 Cold side
ℎ Hot side
𝑖𝑛𝑖𝑡 Initial
𝑖𝑛 Inlet
𝑜𝑢𝑡 Outlet
𝑅 Removal
𝑆 Supply
𝑇 Target
𝑈 Utility
Abbreviations
CAP Annualized capital costs
COP Operating costs/Coefficient of perfor-

mance
CU Cold utility
DE Differential evolution
FOEN Federal Office for the Environment
GA Genetic algorithm
GHG Greenhouse gas
HEN Heat exchanger network
HEX Heat exchanger
HU Hot utility
MOO Multi-objective optimization
NSGA-II non-dominant sorting genetic algorithm

OF Objective function
SOO Single-objective optimization
SWS Stage-wise superstructure
TAC Total annual cost

A subgroup of metaheuristics is population-based algorithms such as
Genetic Algorithms (GA) and DE. GA is a stochastic method based on
the concept of survival of the fittest by comparing a population of
solutions and selecting the best for further exploration. DE is similar
to GA but designed to optimize continuous variables such as heat
loads. Application of both GA/DE has been conducted by Stampfli
et al. [7]. HEN problems can be divided into two classifications, single
objective optimization (SOO), focusing on reducing total annual cost
(TAC), and multi-objective optimization (MOO). MOO adds a layer of
complexity to the optimization for the retrofit of existing HEN. Only
limited research has been conducted on MOO of HEN retrofit, which is
the focus of this paper. Sreepathi and Rangaiah [8] developed a MOO to
retrofit HEN, where the objective functions are utility and investment
costs. The authors used a program based on the non-dominated sorting
genetic algorithm (NSGA-II), resulting in better MOO solutions. The
authors then extended the work to retrofit HEN involving streams with
variable heat capacity [9]. Their continuous approach to handling the
variable heat capacity provided better and more practical solutions for
the retrofit of HEN. Kang and Liu [10] developed a three-stage MOO
procedure to retrofit multi-period HENs. The model has two objective
functions, either total annual CO2 emissions with capital costs for
retrofit, number of substituted heat exchangers (HEXs), modification to
the existing HEN structure, or additional heat transfer areas. With the
current focus on reducing the GHG emissions of the industrial sector,
this paper extends the work carried out by Stampfli et al. [5] to include
GHG emissions in the MOO for multi-period HEN retrofit.

2. Problem statement

In previous work a two-stage genetic algorithm with differential
evolution was developed to solve HEN retrofit for multi-period prob-
lems with minimal TAC [5]. A large focus of this work was on the prac-
ticality and implementation of the new designs. Therefore, additional
practical constraints such as limiting the complexity by restricting
stream splitting or considering additional costs for piping and control
systems are considered in the optimization. As a result, the method aims
to find practical implementable designs rather than global optimum
designs.

An important factor for the environment in retrofit projects is the
emitted GHG. The main cause of GHG emissions is the utility which
is usually provided using natural gas boilers (Scope-2 emissions). Gray
GHG emissions (Scope-3 emissions) are not considered as they usually
account for a negligible share of the total emissions in HEN design [11].
Hence, this work extends the previous developed SOO to a MOO by
considering GHG emissions as a second objective. By introducing a
second objective, instead of having one single best solution, a Pareto
front of non-dominated solutions will be generated. Therefore, the
following research questions need to be addressed: (1) How can the
existing evolutionary algorithm be extended to handle multi-objective
problems and generate a Pareto front? and (2) What are the influences
on the solution by considering GHG emissions as a second objective?

To address the research question (1), the algorithm will be extended
by integrating an NSGA-II in the differential evolution to generate
Pareto fronts of the heat load distributions for a given HEN topology.
In the topology optimization, these fronts need to be compared with
each other. Therefore, the concept of hypervolume indicators is used
to create a fitness value for each Pareto front. To answer research
question (2), the impact of the utility demand on the two objectives
is to be analyzed as it is considered in both. Therefore, experiments
are performed using different objectives (e.g. excluding operating costs
(utility demand) in TAC).
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Fig. 1. Overview of the two-stage evolutionary algorithm for multi-objective optimization.

3. Methods

For the MOO, the single-objective hybrid evolutionary algorithm
for HEN retrofit for multi-period processes [7] was later extended to
consider detailed mixer configurations [5]. In this work, it has been
further developed to include GHG emissions as a second objective in
the optimization. An overview of the algorithm is shown in Fig. 1
and summarized in Section 3.1. A detailed explanation of the algo-
rithm, including its application, is provided by Stampfli et al. [5],
and details on the implementation in Python 3.8.2 using the library
DEAP - Distributed Evolutionary Algorithms in Python [12] is provided
by Stampfli et al. [13].

The hybrid evolutionary algorithm has two stages whereby in the
top-stage, the topology of the HEN (discrete variables) is optimized
using a GA. For every feasible HEN design, the DE in the sub-stage
optimizes for the best heat load distribution over the network (continu-
ous variables). Thereby, a population of potential solutions is evaluated
using a HEN model. To determine the fitness of the solutions, the TAC
is used. Constraints are implemented as following: (1) often violated
constraints such as energy balances are handled using penalizing strate-
gies, and (2) constraints which would create impossible solutions such
as maximal possible heat load of a HEX are handled with decoding
strategies. In this work, GHG emissions are introduced as a second
fitness function. The functions needed to extend the existing algorithm
are provided in Section 3.2. For the selection of the multi-objective
fitness in the DE, the NSGA-II is used to produce a Pareto front in which
every solution has a fixed HEN topology but different heat loads. The
concepts of the NSGA-II selection and the integration into the DE are
explained in Section 3.3. In the GA, topologies are evaluated. Therefore,
the hypervolume for every Pareto front is calculated and used as its
fitness. The hypervolume calculation and its integration in the GA are

Fig. 2. Superstructure for the mixer configurations whereas 𝑇 𝑜𝑝
𝑖,𝑘 and 𝑇 𝑜𝑝

𝑗,𝑘 are the
enthalpy stage temperatures, and 𝑇 𝑜𝑝

𝑒,ℎ,𝑖𝑛, 𝑇 𝑜𝑝
𝑒,𝑐,𝑖𝑛, 𝑇 𝑜𝑝

𝑒,ℎ,𝑜𝑢𝑡, and 𝑇 𝑜𝑝
𝑒,𝑐,𝑜𝑢𝑡 are the inlet and outlet

temperatures of the HEX which are manipulated by the selected mixer configuration
and determined using the Chen’s explicit solution approach [5,14].

explained in Section 3.4. The SOO as well as the MOO version of the
algorithm are available online and published under an open source
licence [15,16].

3.1. Heat exchanger network model

The HEN model introduced by Stampfli et al. [5,13] is reused in
this work and summarized in this section. Yee and Grossmann [17]
stage-wise superstructure (SWS) is used as a base of the model. It is
extended with (1) an additional dimension of operating periods (OPs),
(2) utility heat exchanger within the enthalpy stages, and (3) selection
and calculation of detailed mixer configuration (superstructure for the
mixer configurations is shown in Fig. 2) using the explicit solution
of the logarithmic mean [14]. Therefore, (3) uses the Lambert W-
function [18] to ensure feasible heat transfer in every OP. (4) In
industry, non-process streams such as exhaust gas are often so-called
soft streams which can, but do not have to be cooled down. Thus,
the SWS model is extended to handle such streams, which have no
fixed target temperature and no need for utility. To ensure practical
results, additional constraints are added to the SWS: (1) the number
of splits per stream and enthalpy stage can be limited to prevent an
unnecessary number of splits (Spaghetti design) [19], and (2) to set
limits on extreme temperatures (e.g., phase change) for every stream
which cannot be exceeded or fallen short of, respectively. This con-
straint ensures feasible temperatures in the mixer configurations. The
fitness of the retrofitted network is determined using the TAC as the
objective function (OF), which is composed of capital and operating
costs. Thereby, capital costs for adding or removing area, new HEXs,
and new mixer configurations are considered. Further, the capital costs
include modification costs for re-piping and re-sequencing of HEXs and
resulting piping costs (depending on the plant layout). Finally, the
utility costs are considered as the operating costs.

3.2. Extension to multi-objective optimization

The model described in Section 3.1 is extended for MOO by adding
GHG emissions as a second OF. GHG emissions are based on utility
consumption and can be determined by
GHG =

∑
∀𝑜𝑝

(
�̇�𝐻𝑈,𝑜𝑝 𝜉𝐻𝑈,𝑜𝑝 + �̇�𝐶𝑈,𝑜𝑝 𝜉𝐶𝑈,𝑜𝑝

)
𝛥𝑡𝑜𝑝 (1)

Thereby, �̇�𝑜𝑝
𝐻𝑈 and �̇�𝑜𝑝

𝐶𝑈 describe the hot and cold utility (HU and CU)
demands, respectively, in an operating period (OP). 𝜉𝑜𝑝𝐻𝑈 and 𝜉𝑜𝑝𝐶𝑈 are
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Fig. 3. (a) Exemplary Pareto fronts created by the NSGA-II selection. Multiple ranks of non-dominated Pareto fronts are created by ignoring the higher ranked fronts before. The
1st Pareto front points are marked with an ‘‘x’’ and 2nd Pareto front points are marked with an ‘‘o’’. (b) Exemplary hypervolume indicator for two different Pareto fronts is shown.
In this case, the front, including points marked with an ‘‘x’’, has a higher area, resulting in a higher hypervolume indicator and thus a higher fitness.

CO2 emission factors and 𝛥𝑡𝑜𝑝 is the duration of the associated OP. The
objective for the SOO is the TAC determined by

TAC = 𝐶𝑐𝑎𝑝,𝑎 + 𝐶𝑜𝑝,𝑎 = 𝐶𝑐𝑎𝑝,𝑎 +
∑
∀𝑜𝑝

(
�̇�𝐻𝑈,𝑜𝑝 𝑐𝐻𝑈,𝑜𝑝 + �̇�𝐶𝑈,𝑜𝑝 𝑐𝐶𝑈,𝑜𝑝

)
𝛥𝑡𝑜𝑝

(2)
whereby 𝐶𝑐𝑎𝑝,𝑎 is the annualized capital costs. The operating costs 𝐶𝑜𝑝,𝑎
depend on the utility demands �̇�𝑜𝑝

𝐻𝑈 and �̇�𝑜𝑝
𝐶𝑈 in the same way as the

GHG but using specific cost factor 𝑐𝑜𝑝𝐻𝑈 and 𝑐𝑜𝑝𝐶𝑈 instead of specific
emission factor 𝜉𝑜𝑝𝐻𝑈 and 𝜉𝑜𝑝𝐶𝑈 . This similarity of both functions creates
a dependency between both objectives. Therefore, its effect on the
results must be analyzed and compared to alternative objectives. To
omit distorting of the solutions due to the different order of magnitudes
in objectives, both are referenced to the initial HEN:

OFTAC =
TAC𝑖𝑛𝑖𝑡
TAC

(3)

OFGHG =
GHG𝑖𝑛𝑖𝑡
GHG

(4)

3.3. Differential evolution with NSGA-II selection for Pareto optimization

For the extension to a MOO, the selection in the DE needs to
be adapted so that the algorithm can select solutions based on two
instead of only one objective using NSGA-II [20]. For a given HEN
topology, non-dominated solutions (there is no solution that is fitter in
one objective without being less fit in another objective) with different
heat load distributions are selected in a Pareto front (see points marked

with an ‘‘x’’ in Fig. 3(a)). The NSGA-II algorithm stores multiple fronts.
By ignoring the non-dominated solutions stored in the 1st front, a 2nd
front (see points marked with an ‘‘o’’ on the diagram in Fig. 3(a)) can
be generated, which is only dominated by solutions in the 1st front. The
solutions are sorted using the generalized reduced run-time complexity
non-dominated sorting algorithm [21]. During the optimization of the
heat loads in the DE, the whole list with all the Pareto fronts is
considered, but only the non-dominated Pareto front is returned to the
GA.

3.4. Genetic algorithm with hypervolume indicator for Pareto selection

The DE returns a Pareto front of non-dominated solutions for ev-
ery HEN topology. To compare the Pareto fronts between different
topologies, the fitness of each front is quantified using hypervolume
indicators [22]. Thereby a reference point, 𝑝𝑟𝑒𝑓 , that is worse than
every point in all the Pareto fronts is set. To avoid distorting the results,
both TAC and GHG emissions are relativized with Eqs. (3) and (4).
The area between the reference point and each Pareto front is the
hypervolume and thus indicates the quality of the Pareto front (see
Fig. 3(b)). These hypervolumes are used as the topologies’ fitness for
the GA selection process (the larger the area, the higher the fitness).

4. Industrial case study: potato chips production

To illustrate the application of the algorithm, a potato chips produc-
tion plant (fritter line 1) from the Zweifel Pomy-Chips AG is analyzed
by Fotsch [23]. It produces two types of chips: regular chips (𝑤𝑜𝑖𝑙 =

Fig. 4. Flow chart of the fritter-line 1 plant for chips production. Stream temperatures correspond to the two OPs: regular chips/Cractive chips [5].
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Fig. 5. Retrofitted HEN optimized by the MOOTAC,GHG algorithm configuration.

0.35) and Cractive chips (𝑤𝑜𝑖𝑙 = 0.25). A flow chart of the process
is shown in Fig. 4, the process requirements and the utility data are
listed in Tables A.1 and A.2. The GHG emission factors in Table A.2
are determined using data published by the Federal Office for the
Environment [24] for emissions caused by natural gas, and by Krebs
and Frischknecht [25] for emissions caused by the consumer electricity
mix. A natural gas boiler supplies hot utility with an efficiency of
90% (0.22 tCO2e∕MWh), and a refrigeration unit provides cold utility
with a COP of 5.90 (0.02 tCO2e∕MWh). It is important to note, that
the published data by Fotsch [23] uses pseudo-utilities which are not
updated with realistic utilities in order to produce comparable results.
Related investement costs and match costs for retrofit are listed in
Tables A.3 and A.4. A 10 y depreciation period and 5% interest rate
are given for the cost evaluation. For the optimization, the practical
constraints are limited as follows: the minimum temperature difference
is set to 𝛥𝑇𝑚𝑖𝑛 = 2 K, the minimal possible heat load to �̇�𝑚𝑖𝑛 = 10 kW,
the maximum number of possible HEX is limited to NE = 7, the number
of enthalpy stages is set to 𝑁𝐾 = 3, and the number of possible HEX
within one split is limited to #𝐸𝑚𝑎𝑥 = 2. To ensure comparability with
the published results [5], the algorithm parameters are chosen to be
similar. Only populations sizes are increased since with the additional
objective function, a larger solutions space is to be explored. For the
GA, the population size is set to 150, for the tournament selection,
the best of 5 solutions is selected, the Hall of Fame size is set to 100,
the crossover probability is set to 90%, the mutation probability is set
to 10%, and the number of generations is set to 75. For the DE, the
population size is set to 200, the Pareto front size is set to 20, the
crossover probability is set to 90%, the perturbation factor is set to 0.5,

the number of generations is set to 100, and the number of generations
without improvement is set to 5. The optimization was performed on
a Linux-based server with 256 GB RAM, using 50 of the 128 available
threads distributed over 64 CPU cores for parallel computing of the DE
algorithm.

5. Results

The results are split in three sections. First, in Section 5.1 the MOO
solution is compared to the SOO solution published by Stampfli et al.
[5], then in Section 5.2, the influences of the different objectives on
the results is analyzed, and finally, in Section 5.3, the performance
of the algorithm is analyzed and compared to the SOO algorithm
configuration.

5.1. Comparison of the multi-objective to single-objective optimization

The resulting topology of the MOO, as shown in Fig. 5, is similar to
the SOO result (shown in Fig. 6). It is important to notice that HEXs 3-7
are new, and therefore interchangeable without causing additional cost.
For the MOO design, there is no process internal utility HEX. Although,
the stream matches are identical, on process stream H1, the order of
the two last HEX (in declining temperature direction) is exchanged.
In contrast to the SOO design, the MOO design re-uses HEX 2 from
the initial design. Therefore, its HEX area needs to be increased by
8.6 m2. Further, the placement of HEX 1 has changed and therefore,
needs to be re-piped. In the SOO design, HEX 1 was not modified
at all. In Table 1, the needed area to ensure feasible heat transfer in

Fig. 6. Retrofitted HEN optimized by the SOOTAC algorithm configuration [5].
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Table 1
Comparison of areas between the best found solution and the initial solution.
HEX Initial design SOOTAC MOOTAC,GHG

𝐴𝑜𝑝=1
𝑒 𝐴𝑜𝑝=2

𝑒 𝛥𝐴𝑒,𝑛𝑜𝑡 𝐴𝑜𝑝=1
𝑒 𝐴𝑜𝑝=2

𝑒 𝛥𝐴𝑒,𝑛𝑜𝑡 𝐴𝑜𝑝=1
𝑒 𝐴𝑜𝑝=2

𝑒 𝛥𝐴𝑒,𝑛𝑜𝑡
m2 m2 (m2 h)∕h m2 m2 (m2 h)∕h m2 m2 (m2 h)∕h

Process HEX
1 14.0 16.0 1.26 13.8 15.2 0.88 16.0 15.1 0.33
2 2.4 2.5 0.06 – – – 0.0 11.1 6.97
3 – – – 0.0 8.4 5.28 13.9 15.5 1.01
4 – – – 15.0 15.0 0.00 13.8 5.0 3.27
5 – – – 0.0 0.2 0.13 – – –
6 – – – 0.0 19.1 12.00 – – –
7 – – – 13.0 4.3 3.23 0.0 16.2 10.18
Balance utility HEXa

CU1 – – – – – – – – –
CU2 5.6 3.9 0.63 1.4 0.4 0.37 1.2 0.4 0.30
HU1 – – – 0.1 0.1 0.00 0.0 0.1 0.06
HU2 – – – 0.1 0.1 0.00 0.0 0.1 0.06
HU3 0.8 0.4 0.15 0.2 0.1 0.04 0.2 0.1 0.04
HU4 0.0 4.8 3.02 0.0 0.1 0.06 0.0 0.0 0.00
HU5 0.0 0.5 0.31 0.0 0.1 0.06 0.0 0.1 0.06∑

∀𝑒 𝛥𝐴𝑒,𝑛𝑜𝑡 ((m2 h)∕h) 5.43 22.05 22.28
𝛥𝐴𝑛𝑜𝑡,𝑟𝑒𝑙 ((m2 h)∕(m2 h)) 0.18 0.30 0.30

aBalance utility HEX number is corresponding to the connected process stream (e.g., CU1 at the end of H1).

Table 2
Comparison of results for different objectives configurations (lowest TAC).
Configuration TAC 𝐶𝑐𝑎𝑝,𝑎 𝐶𝑜𝑝,𝑎 GHG 𝑄𝐻𝑈 𝑄𝐶𝑈 OFTAC OFcap,a OFcop,a OFGHG

(CHF∕y) (CHF∕y) (CHF∕y) (tCO2e∕y) (MWh∕y) (MWh∕y) (−) (−) (−) (−)

Initial 141,080 0 141,080 331.68 1451 623 1.000 – 1.000 1.000
SOOTAC

a 48,198 35,419 12,780 30.14 132 55 2.927 3.983 11.039 11.004
MOOTAC,GHG 61,341 54,453 6,888 15.04 62 48 2.300 2.591 20.482 22.053
MOOCAP,GHG 67,726 28,737 38,989 81.09 330 314 2.083 4.909 3.618 4.090
MOOCAP,COP 50,427 37,299 13,128 30.82 131 67 2.798 3.782 10.746 10.762
MOOCAP,COP

b 49,002 35,153 13,848 33.27 142 62 2.879 4.013 10.188 9.969
aResults by Stampfli et al. [5].
bManually inserted topology of SOOTAC

a into the initial population.

every OP, are compared. The total area needed for the initial design is
30.2 m2, for the SOOTAC 72.9 m2, and for the MOOTAC,GHG 74.3 m2. To
determine how well the areas of the HEXs are utilized, the not-in-use
area is weighted by its downtime

𝛥𝐴𝑒,𝑛𝑜𝑡 =
∑
∀𝑜𝑝

((
max
∀𝑜𝑝

(
𝐴𝑜𝑝
𝑒
)
− 𝐴𝑜𝑝

𝑒

)
𝛥𝑡𝑜𝑝∑
∀𝑜𝑝 𝛥𝑡𝑜𝑝

)
. (5)

To compare the not-in-use area with other network configurations with
different total areas, the not-in-use area is expressed as a ratio to the
total area

𝛥𝐴𝑛𝑜𝑡,𝑟𝑒𝑙 =
∑

∀𝑒 𝛥𝐴𝑒,𝑛𝑜𝑡∑
∀𝑒 max∀𝑜𝑝

(
𝐴𝑜𝑝
𝑒
) . (6)

By reducing the utility demand, the HEXs need to be more flexible
to be able to compensate the different heat recovery in every OP.
Therefore, it is expected that the higher the heat recovery and/or the
number of HEX units in each OP is, the higher the difference in needed
HEX areas between the OPs. This leads to a higher overall not-in-use
areas. The results in Table 1 show the same conclusion, whereby the
ratio of not-in-use area for the initial design of 0.18 is increased to
0.30 for the SOOTAC and the MOOTAC,GHG designs. Utility demands
for the MOOTAC,GHG is halved compared to the SOOTAC solution (see
Table 2, however by having one less HEX, the ratio of not-in-use area
is insignificantly different.

5.2. Analysis of objectives

By including GHG emission as a second objective in the optimiza-
tion, a linear dependency on utility demand between both objectives
is introduced. This dependency is visible in the results by comparing

TAC and GHG emissions (see Fig. 7(a)). Rather than a Pareto front, a
single best solution is found. By comparing the annualized capital costs
and the GHG emissions in Fig. 7(b) the linear dependency is omitted,
and a Pareto front can be identified (red curve). By comparing the
SOOTAC result from Stampfli et al. [5] to the MOOTAC,GHG results shows
that SOOTAC is also a Pareto optimal solution for the MOOTAC,GHG
optimization (green dot). However, with the MOOTAC,GHG no results
in this region with similar TAC are found (see Fig. 7(b)). This can be
explained by the fact that the MOOTAC,GHG has a higher weight on the
utility demand as they are represented in both objectives. Fig. 7(b),
shows multiple sets of identifiable DE Pareto fronts. These fronts have
all the same HEN topology but different heat load distributions. The
range in annualized capital costs is relatively small compared to the
range of GHG emissions. This indicates that changing the heat load
distribution has a small effect on the HEX areas in contrast to the
utility consumption. This concludes that GHG emissions can be reduced
without extensive topology modification.

To analyze the influence of the weighting of the utility on the
results, operating costs 𝐶𝑐𝑎𝑝,𝑎 are excluded from the TAC objective.
The results are visualized in Fig. 8. Since utility demand has a lower
weight on the results, operating costs are a higher portion of the TAC.
Therefore, in Fig. 8(a), the linear dependency between TAC and GHG
emissions is more evident. In Fig. 8(b), it can be seen that the Pareto
front is shifted down from the blue dashed curve (MOOTAC,GHG) to
the red curve (MOOCAP,GHG). Thereby, no results in the region of the
SOOTAC result (green point) are found. In contrast to the TAC and
GHG emission optimization, the SOOTAC result is not part of the Pareto
front but dominates a large portion of the results. The results for
MOOTAC,GHG and MOOCAP,GHG suggest that cost and emission factors
strongly impact the weighting between costs and GHG emissions. By
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Fig. 7. Optimization results using TAC and GHG emissions as objectives (MOOTAC,GHG). The green point indicates the solution of the SOOTAC from Stampfli et al. [5]. In (a), the
linear dependency between TAC and GHG emissions is visible. In (b), the Pareto front (red curve) between annualized capital costs and GHG emissions can be identified.

analyzing the ratio of the impact of 1 MWh utility reduction on the
TAC and GHG emissions, using the existing plant as a reference, it can
be shown that utility has
GHG𝑖𝑛𝑖𝑡

𝜉𝐻𝑈 + 𝜉𝐶𝑈

𝑐𝐻𝑈 + 𝑐𝐶𝑈
TAC𝑖𝑛𝑖𝑡

= 1.176

more impact on the cost than on the GHG emissions. Thereby, the
values for the initial TAC and GHG emissions (TAC𝑖𝑛𝑖𝑡,GHG𝑖𝑛𝑖𝑡) are
listed in Table 2 and the values for the cost and emission factors
(𝑐𝐻𝑈 , 𝑐𝐶𝑈 , 𝜉𝐻𝑈 , 𝜉𝐶𝑈 ) are listed in Table A.2.

To have the same impact of utility demand on the result, operating
costs instead of GHG need to be considered (MOOCAP,COP). The results
are visualized in Fig. 9. It shows that the algorithm found a Pareto front
close the SOOTAC solution.

In Table 2, the results for the analyzed objective configurations
are compared. Due to the higher weight on utility demand for the
MOOTAC,GHG optimization, the operating costs and GHG emissions are
with 6, 888 CHF∕y and 15.04 tCO2e∕y, almost halved compared to the
SOOTAC with 12,780 CHF∕y and 30.14 tCO2e∕y. As a result of the lower
utility demand, the annualized capital costs for the MOOTAC,GHG are
with 54,453 CHF∕y higher than the 35,419 CHF∕y of the SOOTAC, which
results in 61,341 CHF∕y TAC compared to 48,198 CHF∕y. By excluding
the operating costs in the objectives (MOOCAP,GHG), the weight on the
utility demand is lower than the SOOTAC, leading with 38,989 CHF∕y
and 81.09 tCO2e∕y to the highest operating costs and GHG emissions.

However, with 28,737 CHF∕y, the lowest annualized capital costs are
found, resulting in TAC of 67,726 CHF∕y. TAC and GHG emissions are
both worse compared to the MOOTAC,GHG solution and therefore this
result is unlikely to be implemented.

By optimizing for annualized capital costs and operating costs
(MOOCAP,COP) the weighting is the same as for the SOOTAC. The results
of the optimization confirm this. The solution for MOOCAP,COP has with
37,299 CHF∕y slightly higher annualized capital costs than the SOOTAC
solution. Operating costs and GHG emissions are with 12,128 CHF∕y
and 30.82 tCO2e∕y the very similar to the SOOTAC solution. This results
in a slightly higher TAC of 50,427 CHF∕y. To verify the MOOCAP,COP
solution, the best found topology of the SOOTAC is manually inserted
in the initial population resulting in similar costs and GHG emissions
as for the MOOCAP,COP and the SOOTAC solutions.

In general, it cannot be said which objective configuration is best
as it is another Pareto problem depending on which objective is more
important. The differences in results based on the selection of the
configuration of objectives also indicates that changes in cost and
emission factors have a large impact on the solution.

5.3. Convergence analysis

In this section the convergence of the MOO algorithm is ana-
lyzed. To compare the results, with the SOOTAC solution, the results

Fig. 8. The optimization results using annualized capital costs (𝐶𝑐𝑎𝑝,𝑎) and GHG emissions as objectives (MOOCAP,GHG). The green point indicates the solution of the SOOTAC
from Stampfli et al. [5]. In (b), the new Pareto front between annualized capital costs and GHG emissions (red curve) and the Pareto front from MOOTAC,GHG (blue dashed curve),
are visualized.
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Fig. 9. The optimization results using annualized capital costs (𝐶𝑐𝑎𝑝,𝑎) and operating costs (𝐶𝑜𝑝,𝑎) as objectives (MOOCAP,COP). The green point indicates the solution of the SOOTAC
from Stampfli et al. [5]. In (b), the new Pareto front between annualized capital costs and GHG emissions (red curve) is drawn.

of MOOCAP,COP is selected in order to guarantee the same weighting
leading to similar results. Fig. 10 shows the convergence over the
number of generations for TAC and GHG. In Fig. 10(a), TAC of the
MOOCAP,COP as well as SOOTAC improve rapidly and stagnate over time.
In contrast to the SOOTAC which is constantly improving and reaching
its best found solution after around 50 generations, MOOCAP,COP stag-
nates after around 8 generations and reaches its best found solution
at around 60 generations. This stagnation can be explained by ana-
lyzing Fig. 10(b). It can be seen that the GHG emissions have a very
sharp convergence reaching its almost best found solutions already at
around 8 generations. This means that after 8 generations the utility
consumption and thus also operating costs are only improving slightly.
Hence, improvement of TAC after generation 8 are mostly due to
improvement of capital costs by changes in topology, HEX areas, and
mixer configurations.

6. Conclusions

The hybrid two-level evolutionary-based algorithm for heat ex-
changer network (HEN) retrofit for multi-period processes using genetic
algorithm (GA) for topology optimization and differential evolution
(DE) for heat load optimization has been extended from single-objective
optimization (SOO) to multi-objective optimization (MOO) by introduc-
ing greenhouse gas (GHG) emissions as a second objective. Therefore,

the algorithm is extended using a non-dominated sorting genetic al-
gorithm (NSGA-II) and hypervolume indicators to implement a Pareto
optimization.

With the introduction of the second objective, the weight on the
utility demand is increased because the utility consumption causes
operating costs as well as GHG emissions. Hence, the MOO result has
27% higher TAC but 50% lower GHG emissions compared to the SOO
result. By excluding the operating costs from the TAC, the weight on
utility demand is decreased resulting in 169% higher GHG emissions
and 41% higher TAC compared to the SOO result. This can be explained
by the fact that with the cost and emission factors of the analyzed
case study, the reduction of utility demand has a 18% higher impact
on operating costs than GHG emissions. To achieve comparable results
to the SOO capital costs and operating costs need to be selected as
objectives. In recent years, GHG emissions has itself established as
an important decision factor alongside costs and energy consumption.
The application to the industrial case study has shown that developed
algorithm is useful tool providing the industry with the needed infor-
mation for the decision-making process during the conceptual phase of
a retrofit project.

In conclusion, the selection of the objectives is a Pareto problem. It
depends on the project goals if GHG emissions or TAC are more critical
and should be prioritized. It is important to highlight the influence of
the weighting on the results. This influence also shows that a change
in cost or emission factors has a large impact on the solution. Energy

Fig. 10. Convergence of the MOOCAP,COP optimization over the number of topology generations. Whereby, (a) shows the convergence of the TAC in comparison with the SOOTAC
algorithm (dashed curve) and (b) shows the convergence of the GHG emissions.
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prices might vary between different sites due to other energy provider
and GHG emission depend on the technologies used to provide the
utilities. Hence, a change in energy prices or the use of different utility
systems, have a signigicant influence on the final design of the HEN.
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Appendix. Process requirements and cost data for the potato chips
production case study

Table A.1
Process requirements of the fritter line 1 for the regular chips and the cractive chips
OP [5].
Stream # 𝑇𝑆 𝑇𝑇 𝑇𝑒𝑥𝑡𝑟. 𝐶𝑃 ℎ

– ◦C ◦C ◦C kW∕K W∕(m2 K)

Regular chips OP (4,410 h/y)
Vapor heating C1 136 229 500 2.51 400
Boiler air pre-heating C2 10 40 300 1.52 100
Make-up oil pre-heating C3 24 176 210 0.37 400
Degreaser air heating C4 – – – – –
Degreaser direct steam evaporation C5 – – – – –
Waste gas coolinga H1 280 30 30 14.81 400
Chips cooling H2 151 24 24 0.79 300
Cractive chips OP (2,610 h/y)
Vapor heating C1 125.9 226.1 500 2.45 400
Boiler air pre-heating C2 10 40 300 1.48 100
Make-up oil pre-heating C3 24 166 210 0.18 400
Degreaser air heating C4 163.4 174 500 23.31 100
Degreaser direct steam evaporation C5 144.9 145.1 145.1 940.00 5000
Waste gas coolinga H1 270.1 30 30 14.3 400
Chips cooling H2 150 24 24 0.55 300

aSoft streams.

Table A.2
Utility data (pseudo-utilities) [5].
Utility 𝑇𝑆 𝑇𝑇 ℎ 𝑐𝑈 𝜉𝑈

◦C ◦C W∕(m2 K) CHF∕MWh tCO2eq∕MWh

Heating steam (HU) 300 299 5,000 80 0.22a
Cooling water (CU) 0 1 2,000 40 0.02b

aNatural gas boiler (𝜂 = 0.9).
bRefrigeration unit (COP = 5.9).

Table A.3
Modification cost factors (including Lang factors [26]: 3 for adding equipment (𝑐𝐴);
1.1 for removing equipment (𝑐𝑅)). Only cost for the removal of an equipment is listed,
if it is existing (HEX, and admixer) [5].
Equipment 𝐶0 𝑄 𝑐𝐴 𝑐𝑅 𝑑𝑓

CHF [𝑄] CHF∕Q CHF∕Q –
HEX 0 𝐴 (m2) 1,731 635 0.61
Split 0 – 40,000 – 1.00
Bypass 0 – 40,000 – 1.00
Admixer 0 – 40,000 14,666 1.00
Re-pipe 0 – 68,000 – 1.00
Re-sequence 0 – 68,000 – 1.00

Depreciation period 𝑛 = 10 y; interest rate 𝑖𝑟 = 5%.

Table A.4
Match cost matrix (including utility streams) in CHF [5].
H \C C1 C2 C3 C4 C5 CU

H1 0 1,500 2,100 2,100 2,100 0
H2 900 3,000 600 300 300 0
HU 0 0 0 0 0 0
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Publications and Software

Software 1
Evolutionary-Based Heat Exchanger Network Retrofit for Processes with
Multiple Operating Cases
published on Zenodo

This software package is published under the open-source license Apache 2.0 and is online
available. The software package includes the two-stage single-objective GA/DE algorithm
explained in Article 2, 3 and 4. This software is developed using the programming
language Python.

My contribution: Conceptualization, Methodology, Software, Validation.

Stampfli, J. A. (2021). J-a-st/moc_retrofit_ga_de: v1.0. Zenodo.

doi: 10. 5281/ zenodo. 4441140
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Software 2
Multi-Objective Evolutionary-Based Heat Exchanger Network Retrofit for
Multi-Period Processes
published on Zenodo

This software package is published under the open-source license Apache 2.0 and is online
available. The software package includes the two-stage multi-objective GA/DE algorithm
explained in Article 5 and 6. This software is developed using the programming language
Python.

My contribution: Conceptualization, Methodology, Software, Validation.

Stampfli, J. A. (2023). J-a-st/moc_retrofit_ga_de: v2.0. Zenodo.

doi: 10. 5281/ zenodo. 7568479
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Article A
Practical Heat Pump and Storage Integration into Non-Continuous
Processes: a Hybrid Approach Utilizing Insight Based and Nonlinear
Programming Techniques
published in Energy as a collaboration with Martin J. Atkins, Donald G. Olsen, Micheal
R.W. Walmsley, and Beat Wellig

This journal article is an invited contribution to the special issue of the 18th Conference
on Process Integration, Modelling and Optimisation for Energy Saving and Pollution
Reduction of the Energy journal. The research done for this article proposes hybrid
approach to the integration of heat pumps into non-continuous processes. Thereby, a PA
approach is used to narrow down the solution space of the MINLP to a NLP problem.
The proposed method is applied to a real case study from the dairy industry showing its
application for a non-continuous total site problem.

My contribution: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing –original draft, Visualization, Writing –review &
editing.

Stampfli, J. A., Atkins, M. J., Olsen, D. G., Walmsley, M. R., and Wellig, B. (2019b).
Practical heat pump and storage integration into non-continuous processes: a hybrid
approach utilizing insight based and nonlinear programming techniques. Energy 182,
pp. 236–253.

doi: 10. 1016/ j. energy. 2019. 05. 218
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Article B
Batch Process Integration: Management of Capacity-Limited Thermal
Energy Storage by Optimization of Heat Recovery
published in Chemical Engineering Transactions as a collaboration with Edward J. Lucas,
Donald G. Olsen, Pierre Krummenacher, and Beat Wellig

The research in this journal article was presented in the form of a talk by Jan A. Stampfli
at the 19th Conference on Process Integration, Modelling and Optimisation for Energy
Saving and Pollution Reduction in Crete, Greece. The research in this article deals with
the problem of space constraints for indirect heat recovery using stratified thermal energy
storage. Thereby, an LP model is used to optimize the ideal capacity management of a
volume-limited storage to maximize HR.

My contribution: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing –original draft, Visualization, Writing –review &
editing.

Stampfli, J. A., Lucas, E. J., Olsen, D. G., and Krummenacher, P. (2019a). Batch process
integration: management of capacity-limited thermal energy storage by optimization of
heat recovery. Chemical Engineering Transactions 76, pp. 1027–1032.

doi: 10. 3303/ CET1976172
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Article C
Heat Pump and Thermal Energy Storage Integration in Noncontinuous
Processes – an Application to the Food Industry
published in Proceedings of the 13th IEA Heat Pump Conference as a collaboration with
Edward J. Lucas, Lorenz P. Rast, Raphael Agner, and Beat Wellig

This research was presented in the form of a talk by Raphael Agner at the 13th IEA Heat
Pump Conference. This conference proceeding showed the application of the proposed
method in Article A to a threshold problem of a candy production plant.

My contribution: Conceptualization, Methodology, Software, Validation, Writing –original
draft, Writing –review & editing.

Lucas, E. J., Stampfli, J. A., Rast, L. P., Agner, R., and Wellig, B. (2021). Heat pump
and thermal energy storage integration in non-continuous processes – an application to
the food industry. In: Proceedings of the 13th IEA Heat Pump Conference, pp. 1478–
1490.
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Article D
Optimization of Volume-Limited Thermal Energy Storage in Non-Continuous
Processes
published in Energy as a collaboration with Edward J. Lucas, Benjamin H.Y. Ong,
Donald G. Olsen, Pierre Krummenacher, and Beat Wellig

This journal article is an invited contribution to the special issue of the 19th Conference
on Process Integration, Modelling and Optimisation for Energy Saving and Pollution
Reduction of the Energy journal. The research in this article extends the model from
Article B to include fixed temperature variable mass (FTVM) storage. The application
of both the stratified and the FTVM storages for two different breweries is shown.

My contribution: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing –original draft, Visualization, Writing –review &
editing.

Stampfli, J. A., Lucas, E. J., Ong, B. H. Y., Olsen, D. G., Krummenacher, P., and Wellig,
B. (2020b). Optimization of volume-limited thermal energy storage in non-continuous
processes. Energy 203, p. 117805.

doi: 10. 1016/ j. energy. 2020. 117805
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Article E
Integration von Wärmepumpen und Speichern zur Effizienzsteigerung
nicht-kontinuierlicher Prozesse
published in 27. Tagung des BFE-Forschungsprogramms Wärmepumpen und Kältetechnik
as a collaboration with Beat Wellig, Raphael Agner, and Benjamin H.Y. Ong

This research was presented in the form of a talk by Beat Wellig at the 27. Tagung des
BFE-Forschungs-programms Wärmepumpen und Kältetechnik. This research showed an
approach for heat pump integration into non-continuous processes. In contrast to the
research in Article A, this work explores the opportunities for heat pump integration
directly into the process.

My contribution: Writing –original draft, Writing –review & editing.

Wellig, B., Agner, R., Ong, B. H. Y., Stampfli, J. A., Olsen, D. G., and Krummen-
acher, P. (2021). Integration von wärmepumpen und speichern zur effizienzsteigerung
nicht-kontinuierlicher prozesse. In: 27. Tagung des BFE-Forschungsprogramms
"Wärmepumpen und Kältetechnik", pp. 1–14.
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Article F
Practical Integration of Heat Pumps with Thermal Energy Storage in
Non-Continuous Processes
published in Proceedings of the 24th Conference on Process Integration, Modelling and
Opimisation for Energy Saving and Pollution Reduction as a collaboration with Raphael
Agner, Benjamin H.Y. Ong, Pierre Krummenacher, and Beat Wellig

The research in this conference proceeding was presented in the form of a talk by Benjamin
H.Y. Ong at the 25th Conference on Process Integration, Modelling and Optimisation for
Energy Saving and Pollution Reduction in Brno, Czech Republic. This Article extends
the work from Article E using MP methods to explore the possible indirect HR.

My contribution: Writing –original draft, Writing –review & editing, Supervision.

Agner, R., Ong, B. H. Y., Stampfli, J. A., and Krummenacher, P. (2021). Integration of
heat pumps with thermal energy storage in non-continuous processes. In: Proceedings
of the 24 th Conference on Process Integration, Modelling and Optimisation for Energy
Saving and Pollution Reduction, pp. 1–10.
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Article G
A Graphical Method for Combined Heat Pump and Indirect Heat Recovery
Integration
published in Energies as a collaboration with Raphael Agner, Benjamin H.Y. Ong, Pierre
Krummenacher, and Beat Wellig

This journal article is an invited contribution to the special issue of the 24th Conference
on Process Integration, Modelling and Optimisation for Energy Saving and Pollution
Reduction of the Energies journal. This article explains the method presented in Article F
in more detail.

My contribution: Writing –original draft, Writing –review & editing, Supervision.

Agner, R., Ong, B. H. Y., Stampfli, J. A., Krummenacher, P., and Wellig, B. (2022). A
graphical method for combined heat pump and indirect heat recovery integration. Energies
15 (8), p. 2829.

doi: 10. 3390/ en15082829
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Software A
Capacity Limitation Tool in PinCH 3.5
available through pinch-analyse.ch

The approach developed in Article B and D is implemented in the commercial Software
PinCH 3.5. PinCH is a PA tool for practical application in industry. This software is
developed using the programming language C#. More information about PinCH can be
found on pinch-analyse.ch

My contribution: Conceptualization, Methodology, Software, Validation.
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