
Sports Activity Suggestions: A
Visual Analytics Approach

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

B.Sc. Anca Cismasiu
Registration Number 0727280

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Silvia Miksch
Assistance: M.Sc. Albert Amor-Amorós

Vienna, 1st September, 2018
Anca Cismasiu Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Vorschläge für Sportaktivitäten:
Ein Visual Analytics Ansatz

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

B.Sc. Anca Cismasiu
Matrikelnummer 0727280

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Silvia Miksch
Mitwirkung: M.Sc. Albert Amor-Amorós

Wien, 1. September 2018
Anca Cismasiu Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

B.Sc. Anca Cismasiu
Theresianumgasse 14/4, 1040, Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. September 2018
Anca Cismasiu

v

Abstract

As companies gather more and more data, we need to find a way to allow interested
decision makers to access this data in an efficient way. In the context of sports practice,
users could benefit from suggestions about new sports they could try out and the company
could increase its sales. This work aims to support the analysts, simultaneously domain
experts and IT laymen, in their data exploration and suggestion retrieval tasks through a
user friendly interface, abstracting away the complexity of formulating expressive queries
into the visual domain.

We present a characterization and task analysis for this domain, and a prototype that
meets the requirements emerging from them, based on an interdisciplinary literature
research.

The resulting prototype combines a visual query language with a collaborative filtering
approach to render suggestions for new activities, and show multiple types of relationships
in a visually compelling way. It has been implemented as a web application that handles
the transformation of user input from a graphical pattern into a database query language
and the results of this query into an easy to digest information representation.

We conclude with an expert interview to validate the design for analysis and exploration.

vii

Kurzfassung

Während Unternehmen immer mehr Daten sammeln, brauchen interessierte Entschei-
dungsträger eine Möglichkeit, auf diese Daten effizient zuzugreifen. In dem Kontext einer
Sportbuchungsplattform, könnten User über Vorschläge neuer Sportarten neue Interessen
entdecken und das Unternehmen könnte den Umsatz erhöhen.

Das Ziel dieser Arbeit ist die Analysten zu unterstützen, da sie gleichzeitig Domänenex-
perten und IT-Laien sind. Ein benutzerfreundliches Interface, das die Komplexität der
Formulierung von Abfragen wegabstrahiert, soll ihnen in ihren Datenexplorations- und
Vorschlagsfindungsaufgaben unterstützen.

Wir präsentieren eine Beschreibung der vorliegenden Domäne und deren Aufgaben
und ein Prototyp das die hervorgehenden Anforderungen erfüllt, basierend auf einer
interdisziplinären Literaturrecherche.

Das resultierende Prototyp kombiniert eine visuelle Abfragesprache mit einem kolla-
borativen Filtern Ansatz für das Finden der neuen Vorschläge. Die unterschiedlichen
Beziehungen zwischen den Daten werden in einer optisch ansprechenden Form angezeigt.

Das Prototyp wurde als Webapplikation entwickelt, das ein visuelles Muster als Input
akzeptiert, dieses in eine Graphdatenbankabfrage umwandelt, die Ergebnisse davon dann
wieder als leicht verständliche Visualisierung anzeigt.

Die Validierung des Designs für Analyse und Exploration wurde durch ein Experteninter-
view durchgeführt.

ix

Contents

Abstract vii

Kurzfassung ix

List of Figures xii

1 Introduction 1
1.1 Main Research Question . 3
1.2 Methodology . 3

2 Related Work 7
2.1 Large data visualization . 8
2.2 Visual graph query languages . 10
2.3 Time and Temporal event sequence visualization 13

3 Problem characterization 21
3.1 Data . 22
3.2 Analysts . 22
3.3 Tasks . 23

4 Design 25
4.1 Data Abstraction . 25
4.2 Visual Encoding and Interaction Design 29

5 Prototype Architecture & Implementation 41
5.1 Implementation . 41
5.2 Visual Query Language . 42
5.3 Use case scenarios . 44
5.4 Limitations . 46

6 Evaluation 49
6.1 Expert evaluation . 51

7 Conclusion 57

xi

Bibliography 61

Appendix A Sports categories 65

Appendix B Client-side visual pattern encoding structure 67

Appendix C Server-side visual pattern encoding structure 69

Appendix D Use case scenarios: data structures 71
D.1 People that live in Vienna and have attended events for the Sport Yoga . 71
D.2 People that live in Vienna or Berlin and have bookings or events for a

Racquet Sport . 72

List of Figures

1.1 Task Clarity and Information Location Axes 4

2.1 Sankey(Pipes-and-filter visualization) . 9
2.2 Screenshot of APOLO . 10
2.3 Queries using hyperedges . 11
2.4 Candid - Query Results . 12
2.5 Coquito . 14
2.6 Outflow - Visual encoding . 14
2.7 Outflow - Interactive Exploration . 15
2.8 Frequence . 16
2.9 ActiviTree Exploration . 17
2.10 TimeWheel . 19
2.11 Themeriver . 19
2.12 Spiral Graph . 20

3.1 Data-Users-Tasks Design Triangle . 21

4.1 Data Metagraph . 26
4.2 Sports Category Polyarchy - A visual representation of the JSON object in

Appendix A - Sports categories. The edges show the –isSubcategoryOf–>
relationships . 27

4.3 Similarity Function Tennis - Badminton . 28
4.4 Similarity Function Tennis - Gymnastics . 29

xii

4.5 Time Tree Diagram . 30
4.6 Sports Overview . 31
4.7 Sports Overview - Filtering . 31
4.8 Sports Overview - Highlighting . 32
4.9 Sports Overview - Direct Manipulation . 32
4.10 Sports Detail: Tennis . 34
4.11 Sports Detail: Running . 35
4.12 Sports Detail - Highlighting . 36
4.13 Visual Query Overview . 37
4.14 Visual Query - Filtering . 38
4.15 Visual Query - Results highlighting . 39
4.16 Individual Results and Suggestions Table . 40

5.1 Collaborative Filtering . 43
5.2 Use Case 1 - Complexity Comparison . 44
5.3 Use Case 2 - Complexity Comparison . 45
5.4 Limitation of OR-connected paths . 46

6.1 Use Case 3 - Complexity Comparison . 54
6.2 Parallel Sets result for Use Case 3 . 54
6.3 Use Case 4 - Complexity Comparison . 55
6.4 Parallel Sets result for Use Case 4 . 55

CHAPTER 1
Introduction

Many people play sports as a hobby, in a more or less organized and consistent fashion,
ranging from a spontaneous game of beach volleyball between friends, to playing tennis
every other week, or to attending camps, classes and workshops. The logs of an online
sports venue booking platform that facilitates such activities hold information of their
users’ interests. This information could be leveraged to provide suggestions to the users
of such platforms regarding new events they might be interested in, with the goal of
sparking people’s interest in trying new, different types of sport. In order to be able
to make appropriate and meaningful suggestions, several aspects need to be taken into
account:

Sports and Event Type
The different sport types can be classified based on a large number of objective,
inherent characteristics (racquet sports, indoor or outdoor, team or single player,
winter or summer sport, etc.). By factoring in these objective properties, some
sports might seem very similar. The question that needs to be answered is whether
these perceived similarities translate to user preferences, and whether the users’
interest can be sparked to take up new "similar" sports. For example, would an
indoor, 6-person team volleyball player be more interested in beach volleyball or
handball? Is it safe to assume that someone that enjoys canoeing will be interested
in yachting as well, seeing as they are both boat sports?

Social Context
With some exceptions, playing sports is a social activity. People in classes, camps
and clubs play with the same teammates for extended periods of time, under the
supervision of a trainer. Others still play with the same partner and/or against the
same opponent(s) in less organized settings, choosing them from their friends or
acquaintances. This is often the case in football, tennis or one-on-one sports like

1

1. Introduction

squash. This social dimension can be used to identify groups of users and leverage
the relationships among them.

Temporal Context
In addition to this relational aspect of the data, there is also a temporal one that
needs to be explored. For example, do users prefer certain times of year or days of
the week for different sports?

Another interesting aspect that prompts exploratory analysis is the seasonality of
some sports like beach tennis or skiing, as it forces the users to either switch to
available sports or to stop being active until their preferred activity is in season
again. These users could be incentivized to take up a new, similar sport in the
meantime.

In order to extract the information contained in these large amounts of raw data, we
need to tackle the information overload problem, as to not get lost in the vast amounts of
potentially disparate and conflicting data (Keim et al. [KAF+08]). Different approaches
are appropriate, depending on how well the problems are defined and understood.
Fully automated data analysis works well when the problems are well-defined and well-
understood. As our tasks are not so well-defined, we chose a Visual Analytics approach.
Visual Analytics is a young, multidisciplinary field, that Cook et al. [CT05] define as
"the science of analytical reasoning facilitated by interactive visual interfaces". This
semi-automated analytic approach lets humans and machines combine forces and divide
labor along their respective distinct strengths.

We try to follow Keim’s Visual Analytics mantra of “Analyze first, Show the Important,
Zoom, filter and analyze further, Details on demand”. This is an adjustment to Shnei-
derman’s “Overview first, Filter and zoom, Details on demand” [Shn96], that shifts the
focus from visualization to analytics in the knowledge discovery process.

In order to find new activities for a cohort of users, we propose a visual query language
based on a graph database, that enables analysts to construct expressive queries, without
the need to write complex queries directly.

The advantage of using graphs and graph databases is that pretty much any domain can
be expressed as entities and relationships. Because of this, graphs are used in a variety
of domains for structural modeling as they "turn semantic proximity into topological
connectivity" (Keim et al. [KAF+08]). Domains that are commonly modeled as graphs
include social networks, chemical bonds, fraud detection, real-time recommendation
engines, network and IT operations. Graphs are a natural way to model this type of data,
because the queries usually rely on exploring and exploiting the relationships. Query
performance and scalability is greatly improved as queries don’t rely on joins, like in
relational database systems. Graph databases store relationships as first-class entities on
insert, which means that deep and complex queries are reduced to walking the graph
data following these direct connections between nodes instead of computing expensive

2

1.1. Main Research Question

join index lookups. This allows for the traversal of millions of nodes per second and
super fast response times.

We chose Neo4J as our graph database for a number of reasons. First, it’s open source.
Second, Neo4J uses a native graph storage, unlike some other graph database systems
that use a much slower relational or object-oriented database in the background. Third,
Neo4J ensures data integrity through ACID compliance. Fourth, Neo4J comes bundled
with its own query language Cypher, which is expressive, powerful and easy to use.

1.1 Main Research Question

Our main research question is

How can Visual Analytics support the discovery of alternative and
complementary sporting activities?

and is based on following hypotheses:

H1 Interactive visual querying can be an effective tool to find alternative and comple-
mentary sporting activities.

H2 More insight can be provided by taking into account both the relational, as well as
the temporal aspects of the data.

H3 Additionally, interactive methods of the visualization can also help the analyst
assess the value of these suggestions.

1.2 Methodology

This paper is problem driven research, that focuses on solving users’ real world problems.
We found that the information is mostly in the computer, while the semantics and domain
knowledge is still in the analyst’s head, allowing them to filter out false positives, such
as sports that only seem similar when observing the category links and the structure of
the classification graph, but that fail to meet other extrinsic criteria (e.g., being in same
price range, having a different target group).

By examining the task clarity and information location axes in Figure 1.1, we found that
the task clarity falls somewhere in the middle of the axis. Some tasks are defined, but
there is an exploration part, which should support gaining new insights into the data.
Consequently, we found it appropriate to follow a methodology roughly based on the
nine-stage framework proposed by Sedlmair et al. [SMM12].

As described in this model, there are nine stages, grouped into three phases.

3

1. Introduction

Figure 1.1: The task clarity and information location axes from Sedlmair et al. [SMM12],
as a way to analyze the suitability of design study methodology.

I. Precondition Phase

1. Learn - Consult Visualization Literature
2. Winnow - Select Promising Collaborators
3. Cast - Identify collaborator roles

II. Core Phase

4. Discover
Characterize the problems and data of the domain at hand
Define the tasks
Determine who or what defines the "relevance of information" for a given

task
Abstract Operations
Gather data from its (possibly) heterogeneous sources
Transform and clean the data in order to bring it to a consistent state and

format, which is a precondition to performing any kind of analysis
5. Design

Abstract the Data
Design the visual encoding
Design the interaction

6. Implement Prototype
7. Deploy

III. Analysis Phase

4

1.2. Methodology

8. Reflect
9. Write

As needed, there was less focus on preconditions, like winnow and cast, with more
emphasis on the core phase. The thesis structure follows the methodological approach,
which consists of following steps:

1. Literature review - Chapter 2: provide necessary background and concepts,
get an overview of the topic and its many related fields and identify the possible
approaches to the problem

2. Problem characterization - Chapter 3: requirement analysis to identify users
and tasks, to determine how to support them in fulfilling their needs

3. Design - Chapter 4: design the interactive visualization by choosing a data
abstraction, visual encodings and interactions

4. Implement prototype - Chapter 5: implementation of a working prototype as
a web application

5. Evaluation - Chapter 6: validate if the chosen approach is suitable to answer
the research questions

5

CHAPTER 2
Related Work

In this chapter we explain the background and important concepts for this thesis, as well
as give an overview of the current state of the art of the fields relevant to our project
like large data visualization, visual graph query languages and time and temporal event
sequence visualizations.

Information Visualization, often abbreviated "InfoVis", is defined by Card et al. [CMS99]
as "the use of computer-supported, interactive visual representations of data to amplify
cognition" while Keim et al. [KMSZ06] define it as "communication of abstract data
relevant in terms of action through the use of interactive visual interfaces". A related field
that also deals with visual representations of data is Scientific Visualization. The key
difference here being that Scientific visualization handles data sets captured from the real
world, from sensors, simulations or laboratory tests, that have a given spatialization. It
has a limited set of application domains and a smaller design space, like medical imaging,
satellite photograph processing or 3D-rendering.

Information Visualization is more general, and seeks to communicate abstract data
through interaction to aid humans in task solving. Keim et al. [KMSZ06] explain the
major goals of InfoVis as threefold:

• presentation communicate the results efficiently and effectively

• confirmatory analysis serves to confirm or reject an existing hypothesis regarding
the data

• exploratory analysis search the data for structures and trends without a starting
hypothesis

Visual Analytics is a young, multidisciplinary field that combines the strength of humans
and computers, and it is both user-driven and data-driven. Keim et al. [KAF+08]

7

2. Related Work

define it as "Visual analytics combines automated analysis techniques with interactive
visualizations for an effective understanding, reasoning and decision making on the basis
of very large and complex data sets." and Thomas et al. [TC06] outline its main focus
areas as

• analytical reasoning techniques

• visual representations and interaction techniques

• data representations and transformations

• techniques to support production, presentation, and dissemination of analytical
results

The paper intersects multiple research areas, each having a large body of relevant work.
We briefly describe relevant work in some of the related areas.

2.1 Large data visualization

The ideas from the fundamental article by Shneiderman [Shn96] are still very much valid
and relevant today, 20 years after its publication. The information overload is even more
an issue now, since the volume of data produced, logged and processed only went up.
To mitigate information overload, the paper introduces the Visual Information Seeking
Mantra, “Overview first, zoom and filter, then details on demand”, to serve as a guide
for the design of graphical user interfaces for exploration. In defining a task-by-data-type
taxonomy for 7 data types(1-, 2-, 3-dimensional data, temporal and multi-dimensional
data, and tree and network data), the paper also identifies 7 high-level abstract user
tasks needed for their exploration:

• Overview: Gain an overview of the entire collection

• Zoom: Zoom in on items of interest

• Filter: Filter out uninteresting items

• Details-on-demand: Select an item or group and get the details when needed

• Relate: View relationships among items

• History: Keep a history of actions to support undo, replay, and progressive refine-
ment

• Extract: Allow extraction of sub-collections and of query parameters

8

2.1. Large data visualization

The paper highlights the reason why translating advanced filtering queries from the user’s
natural language to the system is a complex matter. For a dynamic query approach,
where user interface elements like sliders, buttons, table views, etc., that correspond
to data properties are directly manipulated, the advantages are the rapid, incremental
changes with immediate feedback and no error messages, but as the data set grows, we
run into issues relating to scalability and searching of the data space.

Another important aspect of translating complex user queries into Boolean expressions
is the difference in meaning between natural language “AND”, “OR” and their logical
equivalents. While in natural language “AND” is mostly understood as a union of sets,
satisfying either of the conditions (“People that play tennis and people that play squash”),
Boolean “AND” denotes the intersection, which would result only in the items satisfying
all. Similarly, natural language “OR” is usually taken to mean a Boolean “XOR” (“Play
tennis or squash on Monday”).

A “water flow” pipes-and-filter graphical metaphor is proposed to manage this query
complexity and be able to offer full Boolean expressions, together with nested parentheses
and negations. “AND”-operators are filters that narrow the “water” flow, while “OR”-
operators laid out in parallel merge the streams. “NOT”-operators invert the selection.
One example of such a visualization is a Sankey diagram, as exemplified in Figure 2.1

Figure 2.1: An example of a Sankey diagram, which is a flow visualization, based on a
pipes-and-filter graphical metaphor

Other approaches have their merits, based on the use case, such as APOLO, depicted in
Figure 2.2 and described in Chau et al. [CKHF11], which takes a different visualization
approach in order to make sense of large network data. Its core idea is to start small
and make the exploration user-driven, instead of data-driven, leaving the structure of the
data to act solely as a guide for the exploration. This way the user can build a mental
model for himself, being supported by a rich user interface and visualizations on top of
machine learning.

9

2. Related Work

Figure 2.2: Screenshot of APOLO: User exploring the landscape of research around a
the article highlighted in black, giving relevance feedback which papers he’s interested in
(color dot underneath) and how they should be categorized (color) [CKHF11]

2.2 Visual graph query languages

Visual Query Languages are used to extract information from databases by using a
direct manipulation paradigm of visual representations of the underlying database, while
striving to achieve the same semantic expressiveness as textual query languages. Graph
query languages can be divided into graph traversal and graph pattern matching.

In pattern matching, like SPARQL, we check if the sequence of tokens contains a pattern
(a sequence or tree structure) and return the exact match. These patterns are defined
using regular expressions and matched by backtracking.

Graph pattern matching is more common than graph traversal. GRAPHITE, in Chau et
al. [CFT+08] uses G-Ray algorithm for approximate subgraph matching in attributed
graphs. The user can visually construct query patterns of arbitrary shapes by drawing
them and assigning values to node attributes, and the system retrieves both exact and
approximate matches, ranking them by quality criteria.

QGraph, described in Blau et al. [BIJ02] is a visual language for querying and updating
graph databases, in which the user can draw a query consisting of some vertices and
edges with specified relations between their attributes and cardinality. The response will
be the collection of all subgraphs of the database that have the desired pattern.

On the other hand, graph traversal is procedural and allows for recursion.

10

2.2. Visual graph query languages

An example of graph traversal is visKWQL in Hartl et al. [HWB10], which is a visual
alternative to the textual KWQL, used for querying semantic wikis. In this form based
approach, resources, qualifiers, and operators are represented as boxes, and resource-value
or qualifier-value associations are represented as nestings.

Shadoan et al. [SWS13] observe the increasing difficulty of visual exploration and analysis
brought forth by increasing data dimensionality and approach visual querying of n-ary
relationships by constructing them as hypergraphs, where nodes correspond to a subset
of values and hyperedges to conjunctive relationships, as shown in Figure 2.3.

Figure 2.3: Conjunctive queries using hyperedges.
TOP: equivalent OR-queries "Which books were written by Neil Gaiman OR Terry
Pratchett?”.
BOTTOM LEFT: AND-query on the same attribute “Which books were written by Neil
Gaiman AND Terry Pratchett?”
BOTTOM RIGHT: AND-query on different attributes “Which books published by
William Morrow won Nebula awards?”

The visual query language presented is expressive, as it also supports queries with nested
hyperedges, but this approach works best when the user already knows what they’re
looking for, and we need a more accessible exploration technique.

The interactive visual tool that uses this query language, Candid, allows for simple
interactions to build and modify queries dynamically. There is one UI window, with a
panel for each relevant dimension, where the values are listed as a table. The explanation
of the query building process interactions relies on Figure 2.4: a user successively selects
the desired subset of values for nodes (1) and the type (2) and adds them to the “Query

11

2. Related Work

graph” panel. The nodes are then connected with a hyperedge (3). When run (4), the
query produces a result in graph form in the “Attribute Relationship Graph” panel. Nodes
are connected if there is at least one data item that satisfies the attribute conditions. The
edge width is proportional to the number of items. The edges can be adjusted (toggled)
(5).

Figure 2.4: Display of Candid query results regarding the nationality and location of
mistresses in the Electronic Enlightenment data set. The process is (1) user successively
selects the desired subset of values for nodes (recipient occupation “mistress”), (2) then
the type of nodes, so the user adds nodes representing any recipient nationality, author
nationality, or destination country, (3) the nodes are then connected by a hyperedge (4)
the query is run (5) when the results are shown, the user adjusts the edges

from Shadoan et al. [SWS13]

The tool combines cross filtering with an attribute-relationship graph to mitigate the
disadvantages of both: cross-filtering is most useful for exploring one-to-one / one-to
many relationships, and attribute-relationship graphs are visually overwhelming on their
own, as they employ one node per attribute value and edges connecting them.

Cross filtering is a design pattern that uses multiple coordinated views to analyze
multidimensional data. Data is partitioned based on its dimensions, and each dimension of
interest gets its own view. The users can then filter and select desired values for attributes
in these views, which triggers a filtering of the values for the other dimensions. Attribute
relationship graphs are undirected graphs, where nodes represent unique attribute values
that are connected to data points that exhibit these values. The combination approach is
to cross filter the attribute relationship graph and visualize the result, so only connected
nodes to data that match are shown.

Kojaph in Didimo et al. [DGM15] is a visual query language for graph databases where
complex queries are defined through a mixture of interactions. As the usage scenario
of the tool is querying, not data exploration, it doesn’t follow the Visual Information

12

2.3. Time and Temporal event sequence visualization

Seeking Mantra, but has a pattern specification approach. The web interface is split into
the query window and the result window, and doesn’t provide an initial overview of data.
This lack of context means that the user has to know what they’re looking for. The user
interface has some drawbacks: it relies solely on clicks for interaction and doesn’t seem
to be built with the average user in mind, who is not familiar with graph databases, and
adding constraints to the property tree is unintuitive, as it’s unclear in which order the
buttons should be clicked to add a constraint. The UI is also restricted to constructing a
query by first choosing a set of criteria which is sent to the database and waiting for the
result to be displayed, which makes incremental querying and data exploration impossible
and makes it only accessible to advanced users that know what they are looking for.

For our visual graph querying use case, we need an “overview first, then filter” approach
to specify a query, because the analyst may have no expectation of data properties. An
overview gives him a chance to observe “interesting” patterns, whether that may mean,
frequent, infrequent, novel, etc and then filter on demand. A dynamic, incremental
querying approach is also indispensable for data exploration and analysis.

2.3 Time and Temporal event sequence visualization

There are different visualization techniques for visualizing time-oriented data, where
the focus is on the representation of qualitative and quantitative data attributes with a
simple time axis. But when visualizing time per se, then the focus is on the structure
and characteristics of time itself, with a simple data representation.

The "pipe-and-filter" approach is often encountered in visualizing temporal event sequences
as flows, like in Outflow (Wongsuphasawat et al.[WG12]), Frequence (Perer et al. [PW14])
and COQUITO (Krause et al. [KPS15]). COQUITO is a visual tool for analyzing disease
progression, where the user first defines patient cohorts (groups of individuals that display
some common features) visually, and can then analyze their behavior using temporal
queries against an event database. In the case of disease progression patterns, the order
and timing of symptom occurrence is very important. The temporal patterns can be
explored through iterative querying, intermediate results are displayed, as well as hints
to the database contents. In our case, the order in which events occur is less relevant,
but the visual representation used here is interesting. As shown in Figure 2.5, starting
from the junction on the left, which represents all patients, successive filters are applied
to obtain the cohort at the rightmost junction.

The user interface provides the user with valuable feedback: the temporal queries are
shown as links with labels between the junctions, whose radius and color saturation is
log-scale proportional to the number of data points that satisfy the constraints. The
junctions also have labels for the events and data set cardinality. Users can choose
constraints from either of the complimentary visualization panels: a text search panel
with real time event filtering or the treemaps showing the event distributions that are
updated after each junction selection.

13

2. Related Work

Figure 2.5: Coquito (Krause et al. [KPS15]): Defining a cohort as a set of patients with
a diagnosis of Diabetes, followed by Proteinuria, then by Unspecified Renal Failure, that
then had Hemodialysis and/or Peritoneal dialysis performed.

The visual queries are built using Drag&Drop of these event constraints. Clicking on a
route opens an input box for adding a time window constraint for the occurrences of the
events that it joins.

The queries can express AND-operators by adding several events in the same junction,
OR- operators through parallel paths, and NOT-operators by a red outline, but other
analyses are supported through different Drag&Drop interactions, for example, to compare
junctions, which translates to a data set intersection, a junction can be dragged and
dropped on top of another.

Figure 2.6: Visual encoding in Outflow (Wongsuphasawat et al.[WG12])

14

2.3. Time and Temporal event sequence visualization

Outflow and Frequence are both visualizations based on Sankey diagrams (usually found
in flow visualizations) but use different approaches to visualize event sequences.

Outflow is a flow-based visualization for aggregated event progression pathways. If
the outcomes are measurable, like win/loss, life/death, then they will be connected to
the different pathways, and the behavior is analyzed as a cumulative flow. It uses a
combination of state transition graphs, modified to allow modeling of transition time, and
Sankey diagrams. For an example from the medical domain, the flow symptom A —>
symptom B means that the patient went from having no symptoms, to having symptom
A, to having both symptom A and B.

For disease evolution patterns, the order and time of onset of different symptoms is
relevant and correlates with patient outcome. For our case, the order of events is irrelevant,
and timing is only partially interesting, when it shows seasonality or a certain recurrence.

Figure 2.7: Interactive exploration of the aggregate event progression pathways with
associated statistics in Outflow (Wongsuphasawat et al.[WG12])

Nevertheless, the Outflow visualization and its interaction techniques are interesting. It
uses a combination of state transition graphs, modified to allow modeling of transition
time, and Sankey diagrams, usually found in flow visualizations. As depicted in Figure
2.6, the states are modeled as rectangles, with a height proportional to the data set size,
that are aligned vertically, according to time, past (left) to present(right). Transitions
are drawn as cubic Bézier curves with a time edge, where the width is proportional to
the average time gap, and the height proportional to the entity count. The outcomes are
color coded.

Data exploration is made possible not only through the interactions available (Pan-
ning&Zooming, Event Type Selection, Filtering, Brushing, Hovering and Tooltips, Pin-
ning) but also because of the simplification algorithm, which hierarchically clusters similar

15

2. Related Work

states in the same vertical level to reduce visual clutter (Figure 2.7) For our domain,
such an aggregation approach is not ideal, as it excludes outliers and seldom occurring
patterns, even if they might be of interest. Another limitation to the applicability to
our domain is that this technique doesn’t incorporate external factors, for example,
medication given at certain stages of the disease that influence the event progression
pathways. In our case, external factors are if the sport is in season, but also the social
relationships (the decision to book a certain course is influenced by it being lead by a
trainer the player knows beforehand).

Figure 2.8: Overview vs. most detailed view in Frequence (Perer et al. [PW14]).
This follows the Visual Information Seeking Mantra

Frequence, in Perer et al. [PW14] is an approach that combines frequent sequence mining
with an interactive visualization to find frequent temporal event sequences, for example

16

2.3. Time and Temporal event sequence visualization

for understanding progression of diseases among patients. It is a flow visualization
inspired by Sankey diagrams and by alluvial diagrams. Alluvial diagrams are usually
used to show how networks change over time. It follows the Visual Information Seeking
Mantra, to start with an overview of frequent patterns at a coarse level of detail, and
then zoom in or filter, as seen in Figure 2.8.

These approaches are interesting and could, to an extent, be extrapolated and applied to
our use case, but they are missing support for the network aspect of both the users and
the sport types. Another interesting approach is presented in Vrotsou et al. [VJC09] as
ActiviTree, a tool for interactive visual exploration of event sequences that uses a tree
like structure and a matrix similarity algorithm, although it has very limited querying
expressivity.

Figure 2.9: Exploration in ActiviTree (Vrotsou et al. [VJC09]) Query sequence drop off
others -> travel by car -> work

The data is encoded as a directed graph, where nodes are activities and edges show the
transitions between them. Users define sequences stepwise, starting from a significant
event, incrementing the sequence by one event in each step, linking the next by choosing
a branch. In each step, the significance of other events is calculated by using a matrix

17

2. Related Work

similarity algorithm and next events are shown as in/out branches. The events have
similarity scores, that can be based on connectivity, frequency and/or other factors, and
users can tune the weights to reflect the sequence they consider to be important. Figure
2.9 shows the query sequence "drop off others -> travel by car -> work".

Users can also weight the significance of events in the analysis, and influence the matrix
similarity algorithm in this way. Because the visualization relies on a linear temporal
ordering of events to build the patterns, and the created path is the query, dynamic
query modification is limited to adding and removing events to and from either end.
An advantage of expanding the on user interaction is that it ensures that even unusual
patterns, not just frequent ones, can be found.

When visualizing time-oriented data, we need to differentiate between different "types
of time". This allows us to then choose an appropriate visualization for the given data
and time characteristics, and to finally make a meaningful visual analysis. Aigner et al.
[AMM+08] describe the most important criteria for types of time:

• linear time vs. cyclic time While linear time has a starting point and a linear domain
(from past to future), the ordering of points of a cyclic domain is meaningless with
respect to a cycle (Monday before Tuesday but also Tuesday before Monday). For
cyclic time, a Spiral Graph visualization Weber et al. [WAM01], when correctly
parameterized, makes the periodic pattern stand out.

• time points vs. time intervals Discrete time points are an abstraction and have no
duration, and time interval data points are defined for a duration between two time
points.
TimeWheel, in Tominski et al. [TAS04] a multi-axis visualization of multivariate
data over time is a good example of a visualization for point-based time. As seen
in Figure 2.10, the time axis is in the center, with axes for the other attributes
arranged circularly around it. For each data point, a line is drawn to connect the
values on the time and variable axes.

• ordered time vs. branching time vs. time with multiple perspectives While events
happen one after another in ordered time, branching time allows for description
and comparison of different scenarios in multiple time threads, and time with
multiple perspectives allows more than one point of view for the same situation.
Most techniques are suited for ordered time only, such as ThemeRiver Havre et al.
[HHWN02], which visualizes thematic variations over time using a river metaphor.
A wide current in the river indicates heavy use of a topic, while changes in color
distribution correlate to changes in themes as in Figure 2.11.

For time-oriented data with periodic behavior, it is important to choose a visualization
that highlights patterns, so that trends and anomalies can be easily discovered. This helps
users confirm or refute their hypotheses with one glance, but also lead to new insights

18

2.3. Time and Temporal event sequence visualization

Figure 2.10: 2D and 3D view of the TimeWheel technique(Tominski et al. [TAS04]),
figure from Aigner et al. [AMM+08]

Figure 2.11: ThemeRiver Havre et al. [HHWN02], representing AP data from July -
August 1990

and foster knowledge discovery. For the identification of periodic structures, Weber et al.
[WAM01] propose a visualization using Spiral Graphs (Figure 2.12) The visualization
metaphor is based on Archimedes spiral and is based on a spirally shaped time axis. This
representation captures the continuity of data and is well suited to humans’ ability to
detect structures, and supports easy identification and confirmation of periodicity. To
make periodic behavior apparent, the cycle length has to be chosen appropriately, so
that data with the same phase have the same phase in the spiral, for example, if a daily
period is expected, one cycle should represent 24 hours.

19

2. Related Work

Quantitative properties of the data are usually encoded as color and thickness of the line,
and this allows for comparison of data sets can be done by using intertwined spirals of
the same cycle length, with different data encoding (color, texture, etc).

For very large data sets, where the spiral wouldn’t fit on the screen, the data set can be
mapped to a 3D helix instead. A subset of the data can then be chosen to be visualized
as a 2D spiral. This approach limits the ability to identify periodic behavior, as the user
can’t see full cycles, it is more of a navigation tool.

Figure 2.12: Comparison between two visualizations for sunshine intensity, a bar chart
vs. Spiral Graph, which allows for much better pattern detection when parameterized
with the right cycle length, 24h in this case (Weber et al. [WAM01])

20

CHAPTER 3
Problem characterization

Figure 3.1: Data, Users and Tasks as major design factors for Visual Analytics, from
Miksch et al. [MA14]

In this chapter we look at the major design factors for Visual Analytics and define then
for our project, following the Data-Users-Tasks Design Triangle for Visual Analytics of
time-oriented data proposed in Miksch et al. [MA14], depicted in Figure 3.1. It aims
to answer the same questions as the first 3 steps of the Discovery phase, "Characterize
the problems and data of the domain at hand", "Define the tasks" and "Determine
who or what defines the ’relevance of information’ for a given task", but gives more
detailed guidelines for finding the major factors that determine suitable visualization
and interaction methods. In order to avoid confusion, we will be referring to the "users"
mentioned in the Data-Users-Tasks Design Triangle as "analysts" and to the platform’s
customers as "users".

21

3. Problem characterization

Miksch et al. [MA14] also lists expressiveness, effectiveness and appropriateness as
quality criteria that the Visual Analytics methods need to meet in order to be of use in
accomplishing the goals. Following the corners of the design triangle we have identified:

3.1 Data

Qualitative and quantitative multivariate sport activity booking behavior data from a
online booking platform. The following data entities were identified:

Users with demographic information like date of birth, gender, city

Bookings the date and time of sport activities

Facilities sports venues that offer bookings and/or events

Events sporting activities organized by the facilities, like classes, camps, workshops, etc.

Cities city and country information of users and facilities

Sports sport type name

Categories a polyarchy for classifying the sports

Other important information we have are the social relationships between users: if they
have played a booking together (e.g., booked a tennis court and played against each
other) or attended the same events (e.g., attended the same Yoga class)

Time is a separate dimension that needs to be considered to allow observation of trends
and patterns. For this, we consider a cyclical time arrangement with an instant as the
time primitive.

The problems encountered are incomplete/inconsistent data, which makes an automated
approach infeasible and ineffective. Demographic data like gender, date of birth, address
is only available for around half of the user entries.

3.2 Analysts

The analysts that are the primary target group of this project are non-technical people,
mostly with a marketing or business background. As a rule, they will not be familiar
with any programming or query language, but possess good domain knowledge on the
plethora of available sports types and venues.

22

3.3. Tasks

3.3 Tasks
Through an informal survey with the analysts two types of tasks were identified: suggestion
retrieval and data exploration.

The main task is calculating and visualizing the affinity of users or groups of users for
new sports, which can materialize in booking a court at a venue that offers it, or in
attending an event such as a camp, class, workshop, etc., for this sport.

This potential interest of a user for a sport will result from a (weighted) combination of
different factors. Users should be more affine to events

• involving sports similar to the ones they usually practice

• involving people that are similar to them

Similarity between sports is calculated as a function of the inherent (objective) charac-
teristics of the sport. For this purpose, a hierarchical sport category graph has been set
up and a similarity function defined based on it, as described in 4.1.1.

Similarity between users is based on a collaborative filtering approach, and is defined as
users played a booking together, attended the same event(class, camp, workshop...), or
have played the same sport.

The tasks identified for suggestion retrieval were:

• define the user target group (cohort) for which suggestions should be computed
based on demographic data by drawing a graph pattern

• find users that belong to this cohort

• retrieve general suggestions for the cohort

• retrieve individual suggestions for each user from the cohort

For the data exploration part, the most common questions were:

• what other sports are closely related to a given one?

• when was a given sport most often played? what is the booking behavior for a
given sport?

From the questions posed, to enable data analysis explore qualitative and quantitative
data relating to sports, we derived the following tasks:

• for a given sport, show booking information like time and frequency

23

3. Problem characterization

• for a given sport, show similar sports as defined by the similarity function

• give the analyst a way to correct the similarity function output, if the computed
value seems unreasonable

• allow for node based navigation of sports, as an explorative data browsing mechanism

24

CHAPTER 4
Design

This chapter describes the design of visual analytics process. We started the design
following the problem characterization in Chapter 3, drawing the requirements for the
prototype from the data, users and tasks that we identified.

In section 4.1 we describe the structure and the domain of the data, as well as the ETL
process. For the sports, we create a category tree and define our own similarity function
based on the topology of this tree. Then, in section 4.2 we define the visual encoding
and interaction design, based on the learnings from Chapter 2.

4.1 Data Abstraction

The domain data can be seen in Figure 4.1. We are handling two types of data in this
project. First we have the qualitative, nominal data for the entities Person, City, Facility,
Sport, Category, and then there is the quantitative, discrete data for Booking and Event,
as these represent the discrete dates when they were held.

Data for city, facility, event, user, booking data, sports was imported from the companies
relational database. Then, in order to bring it to a consistent state and format, which is
a precondition to performing any kind of analysis, the data was transformed, cleaned
and imported into a Neo4j graph database.

The next step in gathering the data was to build a sports classification tree, in order to
augment the existing data in Neo4J and build the basis of the project. The different
types of sports were pulled from Wikipedia through a script that starts from the "Sports
by Type" page in Wikipedia [wik], follows each subcategory link recursively and generates
a nested JSON object of the subcategories. The resulting JSON object can be seen in
Appendix A and a visual representation in Figure 4.2. This data was then imported into
our graph database.

25

4. Design

Figure 4.1: Metagraph, showing how the data entities are linked

4.1.1 Sports similarity function

The next step was finding a way to compute the intrinsic similarity of the sports, based
on their characteristics, as revealed by the categorization. As sports can belong to several
different (sub)categories, e.g., Tennis can be played both indoor and outdoor, so it belongs
to both "Indoor Sport" and "Outdoor Sport", they were linked to all categories that they
could fall under and also always connected to the most specialized one (the deepest level)
Then we defined our own "sports similarity function" that made use of this topology.

By considering all sport-category links, we can have several paths between any two sports
Sx and Sy, as exemplified by the pairs Tennis and Badminton in Figure 4.3 or Tennis
and Gymnastics in Figure 4.4.

For each of these paths, we define Cx and Cy as the most specific categories that Sx

and Sy, respectively belong to, and Ca as the branching category, the closest common
ancestor of Cx and Cy.

The level of a category LC is defined incrementally from the root, the root being level 1.

The weight function for each path is then computed as

weight(path) = 1− 0.5LCa

f : (S × S)→ [0, 1]

where f(Sx, Sy) = 0 means not at all similar and f(Sx, Sy) = 1 means they are the same
sport.

26

4.1. Data Abstraction

Figure 4.2: Sports Category Polyarchy - A visual representation of the JSON object in
Appendix A - Sports categories. The edges show the –isSubcategoryOf–> relationships

f(Sx, Sy) =
∑n

i=0 weight(pathi)
n

where the weight of each path between the two sports is defined as a function of the
category levels Cx of Sx, Cy of Sy, and Ca of the closest common ancestor of the sports
on this path.

After defining this function, a script was run on all sports pairs and edges were added to
Neo4J between the sports with the resulting values properties.

27

4. Design

Figure 4.3: Categories and paths for Tennis and Badminton, f(Tennis, Badminton) =
0.45

4.1.2 Modeling time

For fast querying of time data, a tree structure as described in [MB] was chosen to
represent the years, months and days, exemplified in Figure 4.5.

The time tree structure has a node for each year, and each year is connected to its separate
set of Month nodes, labeled by the month number, by [HAS_MONTH] relationship edges.
Each month is in turn connected to its own Day nodes by [HAS_DAY] edges.

The leaf nodes of the tree represent days, and they each have a pointer to the next day,
materialized as [NEXT] edges.

Each of the Booking and Event nodes is then connected to the Day, Month and Year
node that they belong to. As each Day node is only connected to one Month node, which
in turn is connected to one Year node, the full date can be determined by traversing
three edges.

The advantage of having [NEXT] pointers on the day leaf nodes is that one can quickly
perform time queries. For range queries one must find the beginning of the time interval,
follow the [NEXT] pointers until the end date and retrieve for each the nodes (Bookings
or Events in this case) that are connected. This approach is much faster than doing
index lookups on a text date fields stored in the Bookings and Events entities.

28

4.2. Visual Encoding and Interaction Design

Figure 4.4: Categories and paths for Tennis and Gymnastics, f(Tennis, Gymnastics) =
0.25

4.2 Visual Encoding and Interaction Design
Following Keim’s definition of Visual Analytics in Keim et al. [KAF+08]

Visual analytics combines automated analysis techniques with interactive
visualizations for an effective understanding, reasoning and decision making
on the basis of very large and complex data sets.

we present the information in a task-oriented way and provide the analysts with interac-
tions that facilitate problem solving. Interactive techniques are important for the visual
exploration of data.

Based on the design requirements that we have determined through the task analysis we
decided we should have two types of interactive visualizations for our graph data as they
address different aspects of the problem and have different challenges.

• the Sports Overview page and the Sports Detail page, for exploratory purposes

• the Visual Query canvas, for information extraction

In this section, we briefly describe purpose and characteristics of the proposed views.

29

4. Design

Figure 4.5: Time tree diagram, showing the connections for transitions between
months(30th of November - 1st of December) and years (31st of December 2016 - 1st of
January 2017)

4.2.1 Sports Overview

The Sports Overview page is a force-directed graph layout of all sports that uses the
similarity values as separation constraints and serves to give the analyst a mental map of
what’s available.

Both the sports overview and the closely related sports detail page are driven primarily
by the exploratory and analytic needs of the analysts. They are node-link representations
of a view of the graph, where the sports nodes are represented as circles and classic
straight lines are used to visualize connectivity, as seen in Figure 4.6.

The size of the nodes encodes booking information, as it corresponds to the total number
of bookings and event participations for that sport. It it a proportional encoding using a
logarithmic scale, as we have a very large domain (0 to 500000). The scale information
panel is displayed underneath the fold to save space for the visualization.

The overview shows all sport nodes but, in order to reduce visual clutter, only those links
are shown which represent a similarity function value >=0.5 (50%).

The overview allows for several observations:

• clusters of sports form, like the highly connected martial arts at the top left or the
ball sports at the bottom right

• which sports are very popular, based on the node size (Tennis, Soccer, Squash,
Beach Volleyball, etc)

• which sports don’t have closely related sports (Paintball, Kart, Ice Stock Sport,
Freestyle Jump)

30

4.2. Visual Encoding and Interaction Design

Figure 4.6: Sports overview graph with scale information at the bottom

Figure 4.7: Sports overview filtering with autocomplete, for the string "hock", zoomed in
view

31

4. Design

(a) Sports overview graph with scale information
at the bottom

(b) Edge labels display similarity information

Figure 4.8: Node click interaction on the sport Soccer highlights it and its connections

Figure 4.9: Editing the similarity value between Soccer and Beach Volleyball

This view enables following interactions:

Drag node to rearrange The layout isn’t fixed, it’s a dynamic layout that uses the
similarity information on graph links as constraints, the analyst can drag nodes to

32

4.2. Visual Encoding and Interaction Design

slightly rearrange the layout for better visibility in case the edges overlap.

Pan&Zoom Different areas of the view can be zoomed in and explored using the mouse
wheel.

Filter In order to enable fast lookup of a sport in the overview, a search box has been
added to the top right of the view. First, it highlights the sport names containing
the input string in real time in red, as seen in Figure 4.7. The desired sport can then
be explored in the overview, or, alternatively, in the detail view. The sports detail
view can be accessed by choosing it from the suggestions, or by double clicking the
sport in the graph and is discussed in greater depth in Section 4.2.2.

Autocomplete The sport filter has autocomplete, to eliminate typos and errors caused
by different spellings.

Details-on-demand If an analyst wants more information on a sport, they can click
on it in order to highlight it and its connections, which retain their full opacity,
unconnected elements fading out. String labels on the edges provide textual
information about the similarity between sports as a percentage (Figure 4.8).

Direct Manipulation of similarity value The analyst is the ultimate authority mak-
ing use of the interaction techniques provided to correct system behavior. If they
come across a value that they consider to be inaccurate, they can change it by
double clicking the edge. This renders a popup with the names of the sports and
the current value. The new value is saved on ENTER and the new value is visible
in the graph. Pressing ESC discards the unsaved changes and closes the popup
(Figure 4.9).

Node-based navigation Node-based navigation by double clicking on a node to open
the desired sport in the detail view

4.2.2 Sport Detail

The Sport Detail visualization is an extracted graph macro-view, small enough to fit
on the available screen. The detail view focuses on one sport and its connections. The
selected sport is in the middle and all others that have a similarity >=10% are arranged
radially around it. There are mechanisms to filter nodes and edges via range sliders.

Here, both color and size of the nodes are used to encode numerical attributes. The node
colors, together with the link lengths encode the similarity to the central node, with
more similar sports being darker and displayed closer to it. As in the overview, the size
reflects the booking numbers.

If booking information is available, it is visualized in two time spiral diagrams, which
can be used to show recurrent patterns in booking behavior. A winding of each spiral
corresponds to a year. For the top visualization, the breakdown is monthly, and the
bottom one, daily. The color saturation for each sector corresponds linearly to the number

33

4. Design

of bookings for that time interval. By hovering over points in the diagrams, we get
absolute booking numbers for the corresponding time interval.

In Figure 4.10, the detail view for Tennis, we can observe that the total monthly booking
frequency has steadily increased since November 2015. In the daily breakdown, we see a
recurring pattern of weekdays being busier than weekends.

Figure 4.10: Detail view for Tennis, with monthly and daily booking information encoded
in two time spirals on the right

Figure 4.11 shows that Running has a very different booking behavior, only September
2016, January and February 2017 have bookings on single days. This is a case that can
benefit from the analyst’s domain knowledge that this sport can be done freely, without
needing a booking. However, people take part in events, like races, that do need booking,
which explains the data points visualized.

34

4.2. Visual Encoding and Interaction Design

Figure 4.11: Detail view for Running, with monthly and daily booking information
encoded in two time spirals on the right

According to our task definition, analysts are interested in the booking behavior of a
given sport. In order to support them in fulfilling this task and identifying patterns
and relationships between time and the booking numbers, we consider a cyclical time
arrangement and instants as time primitives. The Spiral Graph described in Section
2.3 is an appropriate visualization for quantitative data, in this case, the number of
bookings per time interval. Spiral Graphs support the comparison of values both in a
neighborhood, so we can observe how the number of bookings changes from one month
to the next, and in cycles, e.g., same month in different years. Although we only have
data for three years, this approach is scalable, and can visualize large data sets.

In addition to supporting the interactions from the Sports Overview, the Sport Detail
view also allows following interactions:

Filter Because there can be a lot of sports that have a similarity of at least 10% with
the currently chosen node, the connected sports can be filtered by the similarity
value to the central node by using the double slider, as in Figure 4.12. The value
range can be selected by sliding or by inputting the values manually. The analyst
sees the changes in real time.

35

4. Design

Details-on-demand By hovering over the time spiral sectors, the time interval identifier
(month-year or day-month-year) and the aggregated number of bookings for that
interval is shown.

Figure 4.12: Filtered detail view for Tennis, showing sports with a similarity >= 30%

In both the Sports Overview and the Sports Detail visualization, exploration is made
possible by the node-based navigation.

4.2.3 Visual Query

The Visual Query canvas consists of several views:

• the query canvas

• the cohort results visualization

• individual results table

The first step in suggesting new sporting activities to users is defining which subset of
the users the analyst wants to target. As the common analyst will most likely not have a
background in IT, they will have difficulties in directly describing the data they want as
a correct text query. To facilitate the specification of the sought data set, we developed
an abstraction layer for the graph database in the form of a visual query language.

36

4.2. Visual Encoding and Interaction Design

Figure 4.13: Overview of the Visual Query view. The query pattern is drawn in the
query canvas (B) by Drag&Drop from the entity menu (A), with the results visualized as
parallel sets in the results area (C) and the individual results as a table (D)

To formulate their queries, the analyst uses the query panel to define the user target
group that they want to find suggestions for. These target groups, or cohorts, are defined
as a graph pattern that is created by using Drag&Drop to pull their chosen data entities
from the menu to the query panel and connect them by clicking and dragging the mouse
with depressed left mouse button between nodes. The edge types and possible connections
are predefined to only allow relationships that are valid.

37

4. Design

Each data entity type is encoded as a colored circle with an icon and a text label to
make recognition easy at a glance. The relationships between entities are also labeled
and the edges are directed, to indicate the direction of reading the label, e.g., Person
–[in]–> City, or Booking –[for]–> Sport.

A special entity that has been added is the OR-node. The Cypher query language does
not support this kind of alternative paths, so it is our extension to the Cypher query
language and is used here to build queries where at least one of the two outgoing paths
yields results.

Figure 4.14: Filter for City is Vienna OR City is in Germany

The analyst can add constraints to the nodes through filters, like in Figure 4.14, which
are accessed on right click on the node. This opens a popup context menu with initially
one filter group that contains each property once. These filters are all optional and
AND-connected. Each such group can be negated using the "Negate" button, and any
number of further groups can be added to be OR connected by clicking the "Add Filter"
button.

For ease of use, the input fields for the name filters for most entities(Sport, Category,
Facility, City) are autocomplete search fields that allows the analyst to select the desired
entity name using only a few keystrokes.

After drawing the pattern that corresponds to the target group definition, the analyst
can run the query by pressing the "Find" button located at the bottom of the screen.

The cohort query results are then visualized using the Parallel Sets technique, described
in Kosara et al. [KBH06]. There are two dimensions, which hold information as to
what sports the users in the cohort have engaged in in the past and which should be
suggested to them. The boxes in each dimension represent the different categories (sports
in this case) and are scaled according to their corresponding frequency, so their size

38

4.2. Visual Encoding and Interaction Design

is relative to all the data samples. The colored parallelograms show the relationship
between categories.

As we can see in Figure 4.13, for the query People that live in Vienna or Berlin and have
bookings or events for a Racquet Sport the most played sport in the past is unsurprisingly
Tennis, followed by Squash, Badminton, Padel but that some of these users also attended
Yoga. It’s also easy to see that the suggestions for this cohort are Badminton, Squash,
Beach Volleyball, Soccer, Tennis and Table Tennis.

This overview of the results can be augmented with details on demand by hovering the
mouse over a category or a connection to get quantitative information, like absolute
numbers and percentages, as shown in Figure 4.15. For example, by selecting Squash,
we learn that has been played by 24 (15%) of cohort users in the past, and for these,
Badminton, Soccer, Tennis and Table Tennis should be suggested. By selecting only the
Squash -> Badminton relationship, we see that this particular suggestion occurs in 7
(4%) of cohort users.

The categories are by default sorted randomly, but can also be sorted either alphabetically
or by size.

Figure 4.15: Results for the query People that live in Vienna or Berlin and have bookings
or events for a Racquet Sport visualized as Parallel Sets. Highlighting of the Squash
category in the dimension Past (top) and the relationship Squash-Badminton (bottom)

For better insight, the individual results are shown underneath the cohort result visual-
ization as a table view. The analyst can scroll through the user list, where past activities
and the suggestions are displayed and can be analyzed. In Figure 4.16 we see the first
five users with their top three suggestions. As per our query, all have at least one Raquet

39

4. Design

Figure 4.16: The individual results of the query as a table, with past activities and top
suggestions

Sport among their past activities (Details column), but some have other interests as well
(Yoga for Klaus).

Although each user only receives suggestions for sports they haven’t tried out yet, the
cohort suggestions will contain the union of these individual sets.

After the iterative creation of this design, the prototype was built and evaluated, which
we detail in the next chapters.

40

CHAPTER 5
Prototype Architecture &

Implementation

In this chapter we describe the prototype and its inner workings. First, in Section 5.1 we
give a short overview of the technologies used and a high-level architecture description.
Then, in Section 5.2, we describe all the steps that were necessary to get from drawing a
pattern in the browser to finding matching results in the graph database.

5.1 Implementation

Our prototype has a client/server architecture. The client side is responsible for requesting
the data from the server using JSON-RPC over HTTP and WebSocket calls based on
user input, visualizing it and handling user interactions. It it a JavaScript web client that
relies on D3.js as the visualization library, with JQuery support for DOM manipulation.

The server side handles data processing, by transforming query data to the query language
of Neo4J, Cypher, querying the database and extracting the results to a usable format.
The web server is built on top of the NodeJS and Express frameworks and communicates
with a Neo4J database server using Neo4J’s new binary network protocol Bolt, which
works over a TCP connection or WebSocket. Is a highly efficient, lightweight client-server
protocol designed for database applications.

This decoupled setup allows for system distribution and scaling of the backend if very
large data sets need to be processed, but for this proof of concept a single machine with
2,4 GHz Intel Core i5 CPU and 8GB RAM was sufficient for a graph of >855.000 and
>6.000.000 edges.

41

5. Prototype Architecture & Implementation

5.2 Visual Query Language
The first task in the process of retrieving suggestions for users is to define which users
are of interest. In this sense, the analyst can describe the target group by drawing a
pattern by Drag&Drop in the query panel. This pattern then undergoes parsing and
transformations in a series of steps, so we can translate it to a Cypher query. Cypher is
the declarative graph query language that comes bundled with Neo4J. It is expressive
and powerful, while still being human-readable.

Client-side visual pattern encoding

After the analyst has drawn the visual pattern and clicked the "Find!" button, the pattern
is encoded on the client side as a JSON object, with an array of nodes with filters and
an array of links, as seen in Appendix B. A query request containing this structure is
then sent to a server endpoint.

Server-side paths data structure

On the server, the query request is transformed to a new JSON data structure that
describes the paths and the subpaths that need to be matched, filtered and disjunctively
connected in the graph. The terminology used in this structure (match, path, where)
was chosen intentionally to map to the Cypher keywords used in the query language. A
formal description of the server side data structure can be found in Appendix C.

The structure is an array of paths, where each path is an object containing a array of
matches and an optional so called disjunct-field. This is simply the ID of the OR-node,
if applicable. This is needed to be able to correctly assign the paths that need to be
OR-connected. Each match contains an array of nodes, and an array of conditions
imposed on them, as well as a "negated"-flag, which, if set, determines that the results
matching that subpath are to be filtered out of the results.

Translation to Cypher

The last transformation step was translating the paths data structure described above
into a Cypher query, which is run against the Neo4J database. This returns an array
that is limited to a maximum 1000 IDs of Persons that fall into the defined target group.

Suggestion Retrieval

The previous step returned the cohort as an array of Person IDs. For these IDs, suggestions
are then computed by using a collaborative filtering approach, which we explain using
the example in Figure 5.1.

For all users in the cohort, Florentin and Tanja, we find all sports for which they bookings
or event participations, in this case Badminton, Squash, Tennis and Table Tennis. Then
we find all other users with similar interests, that have also partaken in these sports. For

42

5.2. Visual Query Language

Figure 5.1: Collaborative filtering used for suggestion retrieval

these new users, Magda, Michael, and Oliver, we get all new activities and the associated
sports. This is how we find our suggestions. We have 3 sports that are new for and
should be suggested to all cohort users, Beach Volleyball, Soccer, and Beachminton, but
also some that are only relevant for some Table Tennis for Florentin, Beach Volleyball
for Tanja.

43

5. Prototype Architecture & Implementation

5.3 Use case scenarios

We present some use case scenarios that align with our requirements and show how our
prototype can support analysts in their tasks.

People that live in Vienna and have attended events for yoga

Visual Query Pattern� �
1 MATCH (P8:Person)--(C1:City)
2 WITH P8,C1
3 MATCH (P8:Person)--(E2:Event)--(S5:Sport

)
4 WHERE (S5.name = ’Yoga’)
5 RETURN distinct P8.id as PersonId
6 LIMIT 1000
7 � �

Generated Cypher Query

Figure 5.2: Comparing the complexity of querying for "People
that live in Vienna and have attended events for yoga"

The corresponding client-side and server-side data structures for this pattern can be seen
in Appendix D.1.

44

5.3. Use case scenarios

People that live in Vienna or Berlin and have bookings or events for a
Racquet Sport

Visual Query Pattern� �
1 MATCH (P8:Person)
2 WITH P8
3 OPTIONAL MATCH (P8:Person)--(B3:Booking)--(S5x7_1:Sport)--(

C6x7_1:Category)
4 WHERE (C6x7_1.name = ’Racquet Sport’)
5 WITH P8,B3,S5x7_1,C6x7_1
6 OPTIONAL MATCH (P8:Person)--(E2:Event)--(S5x7_2:Sport)--(

C6x7_2:Category)
7 WHERE (C6x7_2.name = ’Racquet Sport’)
8 WITH P8,B3,S5x7_1,C6x7_1,E2,S5x7_2,C6x7_2,
9 (S5x7_1 IS NOT NULL AND S5x7_2 S NOT NULL) AS S5x7_both

,
10 (S5x7_1.id = S5x7_2.id) AS S5x7_same,
11 (C6x7_1 IS NOT NULL AND C6x7_2 IS NOT NULL) AS

C6x7_both,
12 (C6x7_1.id = C6x7_2.id) AS C6x7_same
13 MATCH (P8:Person)--(C1:City)
14 WHERE (C1.name = ’Wien, AT’) OR (C1.name = ’Berlin, DE’)
15 WHERE (NOT S5x7_both OR S5x7_same)
16 AND (NOT C6x7_both OR C6x7_same)
17 AND (B3 IS NOT NULL OR E2 IS NOT NULL)
18 RETURN distinct P8.id AS PersonId LIMIT 1000
19 � �

Generated Cypher Query

Figure 5.3: Comparing the complexity of querying for "People that live in Vienna
or Berlin and have bookings or events for a Racquet Sport"

45

5. Prototype Architecture & Implementation

The corresponding client-side and server-side data structures for this pattern can be seen
in Appendix D.2.

5.4 Limitations
In order to be able to describe queries containing disjunctive paths (e.g., get users that
have played a booking or attended an event for a Racquet Sport that isn’t Tennis) we
added an OR node. This does not belong to the standard set of Cypher features.

Cypher only supports optional paths, which are of the form

Users that have played a booking or attended an event for a Racquet Sport that
isn’t Tennis� �

1 MATCH (P:Person) WITH P
2 OPTIONAL MATCH (P)-[:played]->(B:Booking)-[:for]-(S:Sport)-[:ofType

]->(C:Category)
3 WHERE NOT(S.name = ’Tennis’) AND (C.name = ’Racquet Sport’)
4 WITH P
5 OPTIONAL MATCH (P)-[:attended]->(E:Event)-[:for]-(S:Sport)-[:ofType

]->(C:Category)
6 WHERE NOT(S.name = ’Tennis’) AND (C.name = ’Racquet Sport’)
7 RETURN P
8 � �

Cypher query

Figure 5.4: Limitation of OR-connected paths

As the "OPTIONAL MATCH" clauses don’t need to be fulfilled for a valid result, the
query this will return

• persons that have played at least one booking but have no events

46

5.4. Limitations

• persons that have attended at least one event but have no bookings

• persons that have at least one of both

• persons that have none

To narrow down the search result to that of a boolean OR, constraints must be added to
make sure that the s:Sport-nodes on both paths reference the same node in the database.
The same goes for any further common nodes on the paths, like Category, in this case.
Cypher doesn’t allow node alias reuse on different paths, so we must make sure that if
both paths exist, and so, two s:Sport-nodes are present, that they are the same node.
This means that we give each node on the common path a different alias (sport S becomes
S1 and S2, Category becomes C1 and C2), and then constrain them to point to the same
node in the database if both exist.

Using the Sports nodes as an example, this is achieved by introducing two new variables

Sboth := (S1 is not null AND S2 is not null)
Ssame := (S1.id = S2.id)

and the condition

(NOT Sboth OR Ssame)

which means that S1 and S2 can’t both be defined or, if they are, that they must point
to the same node.

Following this reflection, the query becomes� �
1 MATCH (P:Person) WITH P
2 OPTIONAL MATCH (P:Person)-[:played]->(B:Booking)-[:for]-(S_1:Sport)--(C_1:

Category)
3 WHERE NOT(S_1.name = ’Tennis’) AND (C_1.name = ’Racquet Sport’) WITH P8,

B3,S_1,C_1
4 OPTIONAL MATCH (P:Person)-[:attended]->(E:Event)-[:for]->(S_2:Sport)-[:in

]->(C_2:Category)
5 WHERE NOT(S_2.name = ’Tennis’) AND (C_2.name = ’Racquet Sport’)
6 WITH P8,B3,S_1,C_1,E2,S_2,C_2,
7 (S_1 is not null AND S_2 is not null) AS S_both,
8 (S_1.id = S_2.id) AS S_same,
9 (C_1 is not null AND C_2 is not null) AS C_both,

10 (C_1.id = C_2.id) AS C_same
11 WHERE (NOT S_both OR S_same) AND (NOT C_both OR C_same) AND (B3 IS NOT NULL

OR E2 IS NOT NULL)
12 RETURN P� �

As we can see, this technique works reasonably well for one OR-node, but introducing
more than one OR node per path would lead to an exponential increase in variable
number and query complexity, which is infeasible.

47

CHAPTER 6
Evaluation

With the growing interest and amount of research in the field of Information Visualiza-
tion, it is becoming increasingly important to validate the research results, to see if a
visualization does or does not support users in their information tasks. This is no easy
feat, and the challenges in evaluating Information Visualization have been discussed
extensively, i.e. by Carpendale [Car08], Plaisant [Pla04], Fekete et al. [FWSN08]. It is
hard to evaluate Information Visualization techniques, because it’s difficult to quantify
how effective and efficient they are.

Carpendale in [Car08] explains how Information Visualization has some of the same
challenges as other empirical research fields, like HCI, perceptual psychology or cognitive
reasoning. First, the usability of a system is conditioned by the appropriateness of the
visual representations and by the interactions with the interface, as this provides access
to the data. Second, the results might be skewed by a number of factors. The user’s
motivation, domain knowledge or familiarity with other, older solutions are among the
things which might influence the perception of new visualizations. Third, the level of
insight gained is difficult to quantify and varies from person to person, especially when
handling complex tasks that are not well defined. Also, insight triggered by a visualization
might occur to a user with a substantial time delay and might not be traced back to the
system. Lastly, decomposing a system in an attempt to evaluate it’s components might
not be useful, as the total might be greater than the sum of it’s parts. It’s difficult to
tell if some results come from a specific visualization, or if it’s an effect of the overall
system solution.

Plaisant [Pla04] summarizes current evaluation practices, reviews challenges specific
to information visualization and proposes refined evaluation methodologies. Based on
an extensive literature survey, they identified four types of evaluation for information
visualization

1. Controlled experiments comparing design elements

49

6. Evaluation

2. Usability evaluation of a tool

3. Controlled experiments comparing two or more tools

4. Case studies of tools in realistic settings

Fekete et al. [FWSN08] discusses the value of Information Visualization and the challenges
behind identifying and communicating it. First of all, the role of Information Visualization
is to amplify cognition, but measuring the level of amplification is not straightforward,
so the value of InfoVis needs to be communicated differently. Second, the problems
in this field don’t have a ground truth, unlike algorithms that solve or don’t solve a
problem. This is why InfoVis is best suited for exploratory tasks, as is ours, where the
user examines the data without a specific goal in mind, just to gain potential new insight
into it. The user is being guided through the data to the parts that are potentially
interesting by the InfoVis process itself and is also influenced by it, so measuring value of
a InfoVis prototype as an exploratory aid is not easily quantifiable. Third, as a system
incorporates several visualization and interaction techniques, it becomes more difficult to
evaluate.

Some of the ways in which InfoVis can amplify cognition are

• Increasing memory and processing resources available

• Reducing search for information

• Enhancing the recognition of patterns

• Enabling perceptual inference operations

• Using perceptual attention mechanisms for monitoring

• Encoding info in a manipulable medium

Fekete et al. [FWSN08] also name some scenarios when browsing is useful and the value
would be most evident

• When there is a good underlying structure so that items close to one another can
be inferred to be similar - for example, similar sports being shown closer together
in the sports overview and detail page

• When users are unfamiliar with a collection’s contents - the users are familiar with
the object types (Sports, Categories, etc) but might not be familiar with all the
relations between the different sports, or what the cross-booking behavior is

• When users have limited understanding of how a system is organized and prefer a
less cognitively loaded method of exploration

50

6.1. Expert evaluation

• When users have difficulty verbalizing the underlying information need - drawing
patterns for quering, adding/removing filters iteratively is much easier than writing
a text query

• When information is easier to recognize than describe - for example, similarity
between sports and the booking patterns

We chose to focus early on the users, get feedback and design iteratively and the evaluation
method was to conduct expert interviews in real world application scenarios.

6.1 Expert evaluation
In oder to validate our research question, we have tested our prototype on a domain
expert from the business development department for feedback on the user interface and
interaction techniques.

6.1.1 Evaluation method

• Present user with prototype

• Short explanation

• Give user tasks

• Observe while user tries to complete tasks

• Give the user time to explore the data on their own

• Note findings

The user is familiar with the domain, but received a short explanation on the structure
of the prototype, on the different views with the corresponding interaction techniques
and on the definition of the similarity function used.

To verify that the prototype actually fulfilled its intended purpose, we asked the analyst
to try and complete instances of the tasks identified in section 3.3, split into suggestion
retrieval and data exploration.

Suggestion Retrieval Tasks

Task 1 Define the cohort "People that live in Vienna or Berlin and have attended events
for Yoga"

Task 2 Identify the users that belong to this cohort

Task 3 Retrieve cohort suggestions

51

6. Evaluation

Task 4 Retrieve individual suggestions

For the querying and suggestion retrieval, the analyst reported that the Drag&Drop for
the query builder was intuitive to use. Connecting nodes and adding filters was done
without error on the first try, fulfilling Task 1.

He suggested that, with each node addition to the query pattern, the next potential
connecting node types could be made more prominent in the menu. This would make
the underlying data structure more transparent and enable users that are less familiar
with the domain to use the tool as well. For himself though, the constraint that an edge
can’t be drawn between unrelated node types was enough.

Running the query drawn in Task 1 displayed the results, leading to Tasks 2-4.

Identifying the users that belong to this cohort and the individual suggestions consists of
reading the results table view.

The parallel set view of the cohort suggestion was greatly appreciated, as these flows and
intersections are of great interest and were previously difficult to grasp using spreadsheets.
Task 3 is fulfilled by reducing the cognitive load. The analyst remarked that the
interactions on the parallel set visualization help a lot in digesting the information and
understanding the users’ preferences and partitioning.

Data Exploration Tasks

Task 5 Identify booking time and frequency for the sport Padel

Task 6 Identify most similar sports to Padel

Task 7 Correct similarity function between Padel and Tennis

Task 8 Navigate from Padel to Tennis

Starting in the sports overview, the user didn’t need the search bar on the top right,
letting his knowledge of the sport types guide him to the one he sought. When asked
about it, he answered he knew it had to be very close to Tennis, which happens to have
a large number of booking and is, subsequently, displayed as a very large bubble. He
mentioned the search bar might prove useful for less connected and/or less often booked
sports.

Highlighting the connected sports and fading the others in this view was very useful to
reduce the visual clutter that the multitude of connections can cause, and see at a glance
what sports are most similar. In this case, only Tennis has a similarity score of over 60%
and is therefore connected, completing Task 6.

The user then selected Padel with a double click, opening the sport detail view. Observing
the spiral graph, the user said it confirmed his intuition on the booking patterns of the

52

6.1. Expert evaluation

sport, with the vast majority happening between April and September, and some outliers
in February and March, completing Task 5.

For Task 7, the user managed to update the similarity value after filtering the similar
sports using the slider to reduce the visual clutter and more easily be able to click on the
edge connecting Padel and Tennis.

The user completed Task 8 by double clicking the Tennis-node in the sports detail view,
navigating to the Tennis detail view.

Free exploration

Given time to freely browse the data, the analyst mentioned new insight they gained on
the similarity of certain sports, that hadn’t occurred to him, for example Bowling and
Boccia (54%), which are both target sports that can be played individually or in a team.

On the other hand, the analyst felt that some of the computed values are off, like the
75% similarity between Budo and Carambol, which he was easily able to change.

The color encoding for the similarity in the detail view was considered meaningful,
especially as the colors are mirrored in the slider, which made it intuitive to use.

The user observed an interesting trend in the booking pattern for Bouldering, where
every second month has around 3 times as many bookings as the month before, which he
then explained as one of the largest venues offers courses in these months.

The user also tried out some more use case scenarios for the visual querying part.

People that don’t live in Vienna, but have booking for facilities in Vienna
The analyst wanted to see if the prototype could answer questions like "Are people that
don’t live in Vienna booking facilities in the city?", "Which sports are booked most often
in this scenario?". The visual pattern drawn and the Cypher query can be seen in Figure
6.1. Results show that this is very strongly represented by Bowling, as can be seen in
Figure 6.2.

What should be suggested to People that have attended events for "Boulder-
ing" or "Indoor Rock Climbing"? Another use case the analyst wanted to try was
to see what should be suggested to users that have attended events for Bouldering or
Indoor Rock Climbing. The visual pattern drawn and the Cypher query can be seen in
Figure 6.3.

According to the results in in Figure 6.4, the best matches, excluding Bouldering and
Rock Climbing, would be Yoga and Soccer.

53

6. Evaluation

Visual Query Pattern� �
1 MATCH (P8:Person)--(C11:City)
2 WITH P8,C11
3 MATCH (P8:Person)--(B3:Booking)--(F4:Facility)--(C1:City)
4 WHERE (C1.name = ’Wien, AT’)
5 RETURN distinct P8.id as PersonId LIMIT 1000
6 � �

Generated Cypher Query

Figure 6.1: Comparing the complexity of querying for "People that don’t live in
Vienna, but have bookings for facilities in Vienna"

Figure 6.2: Parallel Sets result: The sport played most often in Vienna by people that
don’t live in Vienna is Bowling

54

6.1. Expert evaluation

Visual Query Pattern� �
1 MATCH (P8:Person)--(E2:Event)
2 WITH P8,E2
3 OPTIONAL MATCH (E2:Event)--(S5:Sport)
4 WHERE (S5.name = ’Bouldering’) WITH P8,E2,S5
5 OPTIONAL MATCH (E2:Event)--(S11:Sport)
6 WHERE (S11.name = ’Indoor Rock Climbing’)
7 WITH P8,E2,S5,S11
8 WHERE (S5 IS NOT NULL OR S11 IS NOT NULL)
9 RETURN distinct P8.id as PersonId LIMIT 1000

10 � �
Generated Cypher Query

Figure 6.3: Comparing the complexity of querying for "People that have attended
events for "Bouldering" or "Indoor Rock Climbing"

Figure 6.4: Parallel Sets result: Suggestions for People that have attended events for
"Bouldering" or "Indoor Rock Climbing"

6.1.2 Summary

All in all, the domain expert found it intuitive and useful as both an exploratory aid and
as a querying tool.

55

6. Evaluation

Some improvements were suggested, such as storing frequently used queries for later
reuse, to allow having a repository of queries that the domain expert can simply select,
maybe add a filter parameter and run; or highlighting the next viable connections in the
node menu for drawing the patterns.

These improvements might be included in a future iteration, if the target audience of
the prototype is expanded to include non-domain experts. These are great nice-to-have
improvements and something we want to follow up on in future work.

56

CHAPTER 7
Conclusion

During this thesis, we tried to create a tool that enables analysts to synthesize information
and derive insights from their company’s large data set. The data was modeled as a
graph and stored in a graph database, Neo4J, which is able to handle huge data sets.

The problem characterization revealed the data, users and tasks, and led to extensive
multidisciplinary literature research from Information Visualization, human-computer in-
teraction, Visual Analytics, graph databases and graph visualization. From the literature
research we identified the need for a new tool for the domain of retrieving suggestions for
sports activities, that allows for both visual querying as well as exploration and editing
of the underlying sports similarity graph, as this combination was not found during our
research.

From our main research question How can Visual Analytics support the discovery
of alternative and complementary sporting activities?, we derived the hypotheses
that H1 Interactive visual querying can be an effective tool to find alternative and
complementary sporting activities, that H2 more insight can be provided by taking into
account both the relational, as well as the temporal aspects of the data, and that H3
interactive methods of the visualization can also help the analyst assess the value of these
suggestions.

A prototype application that includes a visual query language was built based on the
learnings from the literature research and on the aforementioned hypotheses. This
prototype seeks to support users in fulfilling their exploration and querying tasks, to
detect the expected and discover the unexpected.

The evaluation in Chapter 6 show that these requirements are met with the implementation
of the three related data views, which communicate information effectively.The Sports
Overview and Sports Detail show how closely related different sports are, and what the
booking behavior was, also allowing the manual editing of similarity values. The Visual
Query View makes it possible to define a cohort of users graphically by Drag&Drop and

57

7. Conclusion

retrieves suggestions for the cohort and also the individual users, without the analyst
having to write complex queries themselves.

As the defined tasks can be neatly split into two categories, suggestion retrieval and
exploration, we devised two types of views to be able to support both. The visualization
design was validated by a domain expert who solved instances of these tasks.

According to the evaluation results, the query view allowed the user to intuitively define
cohorts and read suggestions, but also to better understand which sports co-occur in
users’ booking patterns, positively answering the first hypothesis of our research question,
H1, that interactive visual querying can be an effective tool to find alternative and
complementary sporting activities. Also, the value of these suggestions can be assessed
using the interaction techniques of the parallel set view of the cohort suggestions, where
the cognitive load is reduced, confirming the third hypothesis H3.

For the exploratory tasks, much insight came from the similarity function that decided
the layout of the sports bubbles, as well as the Spiral graph, which helped reveal expected
and detect unexpected patterns in booking times for a sport, confirming the second
hypothesis H2, that more insight can be provided by taking into account both the
relational, as well as the temporal aspects of the data.

From this we can conclude that Visual Analytics supports the discovery of alternative
and complementary sporting activities, answering the main research question.

We see our main contribution from a Visual Analytics perspective to be in line with
the goals outlined in Keim et al. [KAF+08] of the creation of tools and techniques that
enable people to

• Synthesize information and derive insight from massive, dynamic, ambiguous, and
often conflicting data.

• Detect the expected and discover the unexpected.

• Provide timely, defensible, and understandable assessments.

• Communicate assessment effectively for action.

As a design study we bring contributions in the areas of problem characterization and
abstraction and validated visualization design, in line with Sedlmair et al. [SMM12]

The benefits this paper brings are the development of a visual query language for the
relevant subset of Neo4J’s Cypher, which demonstrates the ability to construct graph
queries significantly faster than using a conventional query language. This part is domain
agnostic, and can be transferred to any problem if the data is transformed to a graph
structure. As any real life problem can be described as a set of entities with relationships,
this should be straightforward, although possibly time consuming.

58

During this thesis, a working prototype was developed. We had to limit the supported
complexity of queries, like queries with several disjunctive paths sets, as explained in
Section 5.4.

During the implementation and evaluation of the prototype, following suggestions for
future work were made. From usability evaluation, we learned that some users would like
more transparency regarding the "hidden" part of the query, the collaborative filtering
pattern, to gain more insight in the data being processed to achieve the outputted
result. Some also would like to make this configurable to gain more control. Another
improvement was to be able to label and save the queries, so they can easily be run at a
later time again. From a functional perspective, we wish to focus on making drawing more
complex queries possible, with filtering on date ranges and allowing edges themselves to
be negated. These improvements are great opportunities for future work.

59

Bibliography

[AMM+08] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visual
methods for analyzing time-oriented data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(1):47–60, Jan 2008.

[BIJ02] Hannah Blau, Neil Immerman, and David D. Jensen. A visual language
for relational knowledge discovery. Technical Report UM-CS-2002-37, De-
partment of Computer Science, University of Massachusetts, Amherst, MA,
2002.

[Car08] Sheelagh Carpendale. Evaluating Information Visualizations, pages 19–45.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[CFT+08] Duen Horng Chau, Christos Faloutsos, Hanghang Tong, Jason I. Hong, Brian
Gallagher, and Tina Eliassi-Rad. Graphite: A visual query system for large
graphs. 2008 IEEE International Conference on Data Mining Workshops,
pages 963–966, 2008.

[CKHF11] Duen Horng Chau, Aniket Kittur, Jason I. Hong, and Christos Faloutsos.
Apolo: Making sense of large network data by combining rich user interaction
and machine learning. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 167–176, New York, NY,
USA, 2011. ACM.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Readings
in Information Visualization: Using Vision to Think. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[CT05] Kristin A. Cook and James J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. 2005.

[DGM15] Walter Didimo, Francesco Giacchè, and Fabrizio Montecchiani. Kojaph:
Visual definition and exploration of patterns in graph databases. In Emilio
Di Giacomo and Anna Lubiw, editors, Graph Drawing and Network Visual-
ization, pages 272–278, Cham, 2015. Springer International Publishing.

61

Bibliography

[FWSN08] Jean-Daniel Fekete, Jarke J. Wijk, John T. Stasko, and Chris North. Infor-
mation visualization. chapter The Value of Information Visualization, pages
1–18. Springer-Verlag, Berlin, Heidelberg, 2008.

[HHWN02] Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. The-
meriver: Visualizing thematic changes in large document collections. IEEE
Transactions on Visualization and Computer Graphics, 8(1):9–20, January
2002.

[HWB10] Andreas Hartl, Klara Weiand, and François Bry. visKQWL, a visual renderer
for a semantic web query language. Proceedings of the 19th international
conference on World wide web - WWW ’10, page 1253, 2010.

[KAF+08] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn
Kohlhammer, and Guy Melançon. Visual Analytics: Definition, Process, and
Challenges, pages 154–175. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[KBH06] Robert Kosara, Fabian Bendix, and Helwig Hauser. Parallel sets: Interactive
exploration and visual analysis of categorical data. IEEE Transactions on
Visualization and Computer Graphics, 12(4):558–568, July 2006.

[KMSZ06] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges
in visual data analysis. In Tenth International Conference on Information
Visualisation (IV’06), pages 9–16, July 2006.

[KPS15] Josua Krause, Adam Perer, and Harry Stavropoulos. Supporting Iterative
Cohort Construction with Visual Temporal Queries. 2626(c), 2015.

[MA14] S. Miksch and Wolfgang Aigner. A matter of time: Applying a data-users-
tasks design triangle to visual analytics of time-oriented data. Computers &
Graphics, Special Section on Visual Analytics, 38:286–290, 2014.

[MB] Luanne Misquitta and Michal Bachman. Graphaware neo4j
timetree. https://graphaware.com/neo4j/2014/08/20/
graphaware-neo4j-timetree.html. Accessed: 03 June 2017.

[Pla04] Catherine Plaisant. The challenge of information visualization evaluation. In
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI
’04, pages 109–116, New York, NY, USA, 2004. ACM.

[PW14] Adam Perer and Fei Wang. Frequence. Proceedings of the 19th international
conference on Intelligent User Interfaces - IUI ’14, pages 153–162, 2014.

[Shn96] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. Proceedings 1996 IEEE Symposium on Visual
Languages, pages 336–343, 1996.

62

https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html
https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html

Bibliography

[SMM12] Michael Sedlmair, Miriah Meyer, and Tamara Munzner. Design study method-
ology: Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012.

[SWS13] Rachel Shadoan, Chris Weaver, and Ieee Computer Society. Visual Analysis
of Higher-Order Conjunctive Relationships in Multidimensional Data Using
a Hypergraph Query System. 19(12):2070–2079, 2013.

[TAS04] Christian Tominski, James Abello, and Heidrun Schumann. Axes-based
visualizations with radial layouts. In Proceedings of the 2004 ACM Symposium
on Applied Computing, SAC ’04, pages 1242–1247, New York, NY, USA,
2004. ACM.

[TC06] James J. Thomas and Kristin A. Cook. A visual analytics agenda. IEEE
Computer Graphics and Applications, 26:10–13, 2006.

[VJC09] Katerina Vrotsou, Jimmy Johansson, and Matthew Cooper. ActiviTree:
interactive visual exploration of sequences in event-based data using graph
similarity. IEEE Transactions on Visualization and Computer Graphics,
15(6):945–52, 2009.

[WAM01] M. Weber, M. Alexa, and W. Muller. Visualizing time-series on spirals. IEEE
Symposium on Information Visualization, 2001. INFOVIS 2001., pages 7–13,
2001.

[WG12] Krist Wongsuphasawat and David Gotz. Exploring flow, factors, and out-
comes of temporal event sequences with the outflow visualization. IEEE
Transactions on Visualization and Computer Graphics, 18(12):2659–2668,
2012.

[wik] Category:sports by type. https://en.wikipedia.org/w/index.php?
title=Category:Sports_by_type. Accessed: 10 December 2016.

‘

63

https://en.wikipedia.org/w/index.php?title=Category:Sports_by_type
https://en.wikipedia.org/w/index.php?title=Category:Sports_by_type

APPENDIX A
Sports categories

� �
1 { "name": "root",
2 "subcategories": [
3 { "name": "Acrobatic Sport" },
4 { "name": "Ball Game",
5 "subcategories": [
6 { "name": "Ball and Bat Game" },
7 { "name": "Cue Sport" },
8 { "name": "Wall and Ball Game" }
9]

10 },
11 { "name": "Beach Sport" },
12 { "name": "Endurance Sport" },
13 { "name": "Hybrid Sport" },
14 { "name": "Fun Sport" },
15 { "name": "Individual Sport",
16 "subcategories": [
17 { "name": "Boardsport" },
18 { "name": "Combat Sport",
19 "subcategories": [
20 { "name": "Martial Art" },
21 { "name": "Unarmed" },
22 { "name": "Armed" }
23]
24 },
25 { "name": "Cue Sport" }
26]
27 },
28 { "name": "Indoor Sport",
29 "subcategories": [
30 { "name": "Cue Sport" },
31 { "name": "Dancesport" }
32]
33 },
34 { "name": "Outdoor Sport" },

65

A. Sports categories

35 { "name": "Racquet Sport" },
36 { "name": "Roller Sport" },
37 { "name": "Team Sport",
38 "subcategories": [
39 { "name": "Ball and Bat Game" },
40 { "name": "Equestrian Team Sport" }
41]
42 },
43 { "name": "Throwing Sport" },
44 { "name": "Water Sport",
45 "subcategories": [
46 { "name": "Towed Water Sport" },
47 { "name": "Underwater Sport" },
48 { "name": "Whitewater Sport" }
49]
50 },
51 { "name": "Winter Sport",
52 "subcategories": [
53 { "name": "Ice Sport" },
54 { "name": "Snow Sport" }
55]
56 },
57 { "name": "Animal Sport",
58 "subcategories": [
59 {
60 "name": "Equestrian Sport",
61 "subcategories": [
62 { "name": "Equestrian Team Sport" }
63]
64 }
65]
66 },
67 { "name": "Extreme Sport" },
68 { "name": "Motorsport" },
69 { "name": "Precision Sport",
70 "subcategories": [
71 { "name": "Cue Sport" }
72]
73 }
74]
75 }
76 � �

66

APPENDIX B
Client-side visual pattern

encoding structure

1 {
2 " nodes " : [
3 {
4 " id " : Integer ,
5 "name" : " Target Group " ,
6 " type " : " Person "
7 " f i l t e r s " : [FILTER0 , FILTER1 , . . . , FILTERn] ,
8 " cnt " : 0
9 } ,

10 NODE1 , NODE2 , . . .
11] ,
12
13 " l i n k s " : [LINK0 , LINK1 , . . . LINKn]
14 }

where
1 NODE = {
2 " id " : Integer ,
3 " name" : String [Booking | Category | City | Event | F a c i l i t y | Person | Sport |OR] ,
4 " type " : String [Booking | Category | City | Event | F a c i l i t y | Person | Sport |OR] ,
5 " f i l t e r s " : [FILTER0 , FILTER1 , . . . , FILTERn] ,
6 " cnt " : Integer ,
7 } ,
8
9 FILTER = {

10 " group " : [FILTERGROUP0 , FILTERGROUP1 , . . . , FILTERGROUPn]
11 " negated " : Boolean
12 } ,
13
14 FILTERGROUP = {
15 " property " : String ,
16 " o p e r a t o r " : String ,
17 " value " : [String , String , . . .]
18 } ,
19
20 LINK = {
21 " s ou r ce " : Integer ,
22 " t a r g e t " : Integer
23 }

67

APPENDIX C
Server-side visual pattern

encoding structure

1 paths = [PATH1 , PATH2 , . . . , PATHn]

where each PATH is of the form
1 PATH = {
2 " matches " : [MATCH1 , MATCH2 ,MATCHn] ,
3 " d i s j u n c t " : int
4 }

where disjunct is the ID of the OR node, if there is one, so we can correctly assign the
paths that need to be OR-connected.

Each MATCH has the form
1 MATCH = {
2 nodes : [NODE1 , NODE2 , . . . , NODEn] ,
3 where : [String , String , . . .] ,
4 negated : Boolean
5 }

and each NODE is
1 NODE = {
2 id : Integer ,
3 a l i a s : String ,
4 type : String
5 }

69

APPENDIX D
Use case scenarios: data

structures

D.1 People that live in Vienna and have attended events
for the Sport Yoga

Client-side structure
1 { " nodes " : [
2 { " id " : 1 , "name " : " City " , " f i l t e r s " : [] , " type " : " City " , " cnt " : 0 } ,
3 { " id " : 2 , "name " : " Event " , " f i l t e r s " : [] , " type " : " Event " , " cnt " : 0 } ,
4 { " id " : 5 ,
5 "name" : ’ Sport ’ ,
6 " f i l t e r s " : [
7 { " group " : [
8 { " property " : " name" ,
9 " o p e r a t o r " : "= ’ { va l } ’ " ,

10 " value " : [" Yoga "]
11 }] ,
12 " negated " : f a l s e
13 }] ,
14 " type " : ’ Sport ’ ,
15 " cnt " : 0
16 } ,
17 { " id " : 8 , "name " : " Target Group " , f i l t e r s : [] , " type " : " Person " , " cnt " : 0 }] ,
18
19 " l i n k s " :
20 [{ " s ou r ce " : 8 , " t a r g e t " : 1 } ,
21 { " s o ur c e " : 8 , " t a r g e t " : 2 } ,
22 { " s o ur c e " : 2 , " t a r g e t " : 5 }] }

Server-side structure
1 { " paths " : [
2 { " matches " : [
3 { " nodes " : [
4 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
5 { " id " : 1 , " a l i a s " : "C1 " , " type " : " City " }] ,
6 " where " : []
7 }]
8 } ,

71

D. Use case scenarios: data structures

9 { " matches " : [
10 { " nodes " : [
11 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
12 { " id " : 2 , " a l i a s " : "E2 " , " type " : " Event " } ,
13 { " id " : 5 , " a l i a s " : " S5 " , " type " : " Sport " }] ,
14 " where " : [" (S5 . name = ’ Yoga ’) "]
15 }]
16 }] ,
17 " orConnectedAl ias " : [] ,
18 " orConnectedIndex " : []
19 }

D.2 People that live in Vienna or Berlin and have
bookings or events for a Racquet Sport

Client side structure
1 { " nodes " : [
2 { " id " : 1 ,
3 "name" : " City " ,
4 " f i l t e r s " : [
5 { " group " : [
6 { " property " : "name" ,
7 " o p e r a t o r " : "= ’ { va l } ’ " ,
8 " va lue " : [" Wien , AT"]
9 }] ,

10 " negated " : f a l s e
11 } ,
12 { " group " : [
13 { " property " : "name" ,
14 " o p e r a t o r " : "= ’ { va l } ’ " ,
15 " value " : [" B e r l i n , DE"]
16 }] ,
17 " negated " : f a l s e
18 }] ,
19 " type " : " City " ,
20 " cnt " : 0 } ,
21 { " id " : 2 , "name" : " Event " , " f i l t e r s " : [] , " type " : ’ Event ’ , " cnt " : 0 } ,
22 { " id " : 3 , "name" : " Booking " , " f i l t e r s " : [] , " type " : " Booking " , " cnt " : 0 } ,
23 { " id " : 5 , "name" : " Sport " , " f i l t e r s " : [] , " type " : " Sport " , " cnt " : 0 } ,
24 { " id " : 6 ,
25 " name" : " Category " ,
26 " f i l t e r s " : [
27 { " group " : [
28 { " property " : "name" ,
29 " o p e r a t o r " : "= ’ { va l } ’ " ,
30 " value " : [" Racquet Sport "]
31 }] ,
32 " negated " : f a l s e
33 }] ,
34 " type " : " Category " ,
35 " cnt " : 0 } ,
36 { " id " : 7 , "name" : "OR" , " f i l t e r s " : [] , " type " : ’OR’ , " cnt " : 0 } ,
37 { " id " : 8 , "name" : " Target Group " , " f i l t e r s " : [] , " type " : " Person " , " cnt " : 0 }] ,
38 " l i n k s " :
39 [{ " s ou r ce " : 8 , " t a r g e t " : 7 } ,
40 { " s o ur c e " : 7 , " t a r g e t " : 3 } ,
41 { " s o ur c e " : 7 , " t a r g e t " : 2 } ,
42 { " s o ur c e " : 3 , " t a r g e t " : 5 } ,
43 { " s o ur c e " : 2 , " t a r g e t " : 5 } ,
44 { " s o ur c e " : 5 , " t a r g e t " : 6 } ,
45 { " s o ur c e " : 8 , " t a r g e t " : 1 }] }

Server-side data structure
1 { " paths " : [

72

D.2. People that live in Vienna or Berlin and have bookings or events for a Racquet Sport

2 { " matches " : [
3 { " nodes " : [
4 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
5 { " id " : 7 , " a l i a s " : "O7 " , " type " : "OR" }] ,
6 " where " : []
7 }]
8 } ,
9 { " matches " : [

10 { " nodes " : [
11 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
12 { " id " : 7 , " a l i a s " : "O7 " , " type " : "OR" } ,
13 { " id " : 3 , " a l i a s " : "B3 " , " type " : " Booking " } ,
14 { " id " : 5 , " a l i a s " : " S5x7_1 " , " type " : " Sport " } ,
15 { " id " : 6 , " a l i a s " : "C6x7_1 " , " type " : " Category " }] ,
16 " where " : [" (C6x7_1 . name = ’ Racquet Sport ’) "]
17 } ,
18 { " nodes " : [
19 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
20 { " id " : 7 , " a l i a s " : "O7 " , " type " : "OR" } ,
21 { " id " : 2 , " a l i a s " : "E2 " , " type " : " Event " } ,
22 { " id " : 5 , " a l i a s " : " S5x7_2 " , " type " : " Sport " } ,
23 { " id " : 6 , " a l i a s " : "C6x7_2 " , " type " : " Category " }] ,
24 " where " : [" (C6x7_2 . name = ’ Racquet Sport ’) "]
25 }] ,
26 " d i s j u n c t " : 7
27 } ,
28 { " matches " : [
29 { " nodes " : [
30 { " id " : 8 , " a l i a s " : "P8 " , " type " : " Person " } ,
31 { " id " : 1 , " a l i a s " : "C1 " , " type " : " City " }] ,
32 " where " : [" (C1 . name = ’ Wien , AT’) OR (C1 . name = ’ B e r l i n , DE’) "]
33 }]
34 }] ,
35 " orConnectedAl ias " : [
36 { " orId " : 7 ,
37 " nodeAl ias " : [
38 { " nodeId " : 5 , " a l i a s " : [" S5x7_1 " , " S5x7_2 "] , " type " : " Sport " } ,
39 { " nodeId " : 6 , " a l i a s " : ["C6x7_1 " , "C6x7_2 "] , " type " : " Category " }]
40 }] ,
41 " orConnectedIndex " : [7]
42 }

73

	Abstract
	Kurzfassung
	List of Figures
	Introduction
	Main Research Question
	Methodology

	Related Work
	Large data visualization
	Visual graph query languages
	Time and Temporal event sequence visualization

	Problem characterization
	Data
	Analysts
	Tasks

	Design
	Data Abstraction
	Visual Encoding and Interaction Design

	Prototype Architecture & Implementation
	Implementation
	Visual Query Language
	Use case scenarios
	Limitations

	Evaluation
	Expert evaluation

	Conclusion
	Bibliography
	Sports categories
	Client-side visual pattern encoding structure
	Server-side visual pattern encoding structure
	Use case scenarios: data structures
	People that live in Vienna and have attended events for the Sport Yoga
	People that live in Vienna or Berlin and have bookings or events for a Racquet Sport

