
Quality of Service aware
Resource Management for Edge

Systems

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

M.Sc. Cosmin Florin Avasalcai
Registration Number 11743103

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar

External reviewers:
Frank Leymann. University of Stuttgart, Germany.
George Pallis. University of Cyprus, Cyprus.

Vienna, 20th July, 2021
Cosmin Florin Avasalcai Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

M.Sc. Cosmin Florin Avasalcai

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 20th July, 2021
Cosmin Florin Avasalcai

iii

Acknowledgements

Many persons have helped me along the way to be the person that I am today. First, I
would like to thank my supervisor Univ. Prof. Dr. Schahram Dustdar for having me
in the Distributed Systems Group and offering me continuous support and guidance
throughout my PhD. Furthermore, I would like to thank Dr. Christos Tsigkanos for all
the countless meetings and discussions. Many thanks go to the DSG group for the nice
working environment and great chats.

I would also like to thank Prof. Paul Pop, from DTU Compute, for guiding me during
my Master studies and giving me the possibility to have my first contact with research.
Finally, my greatest thanks go to my wife and my family for their unconditional love and
support.

The research leading to these results has received funding from the European Union's
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 764785, FORA–Fog Computing for Robotics and Industrial Automation.

v

Kurzfassung

Anspruchsvolle latenzempfindliche Anwendungen stellen hohe Anforderungen wie hohe
Verfügbarkeit und niedrige Latenz. Die aktuellen Cloud-zentrierten Systeme stehen vor der
Herausforderung, die strengen Anforderungen der Anwendung zu erfüllen. Infolgedessen
haben Forscher zwei neue Paradigmen vorgeschlagen, i.e., Edge und Fog Computing, als
Alternative zur Bereitstellung anspruchsvoller IoT-Anwendungen, die näher am Rand des
Netzwerks liegen. Durch die Erweiterung des Cloud Systems um diese beiden Paradigmen
erhalten wir ein Kantensystem. Edgesysteme wurden als Lösung identifiziert, um mehr
Ressourcen näher am Endbenutzer zu verteilen, da die Erfüllung der Anwendungsanfor-
derungen zur Laufzeit, mit Unsicherheiten und auf dezentrale Weise erfolgen muss. Die
verteilte Natur der Edge-Systeme macht die Anwendungsentwicklung jedoch schwieriger,
da der Entwickler die Funktionalität der Anwendung in mehrere Microservices aufteilen
muss. Darüber hinaus definiert eine hohe Volatilität das Kantensystem, da Kantenkno-
ten durch (i) Heterogenität und (ii) Mobilität gekennzeichnet sind, was einen Knoten
unzuverlässig macht - ein Knoten kann ausfallen oder das Netzwerk unerwartet verlassen.
Infolgedessen ist die Bereitstellung und Verwaltung von Anwendungen unter Volatilität
schwieriger. Dies erfordert neuartige Methoden zur Anwendungsentwicklung und Ressour-
cenverwaltungstechniken, die den Anforderungen der Anwendung entsprechen und dem
Entwickler helfen, eine Anwendung im Zielkantensystem zu entwickeln, bereitzustellen
und zu verwalten. Die Entwicklung dieser Techniken ist jedoch keine triviale Aufgabe.

In dieser Arbeit stellen wir neuartige Methoden und Ressourcenmanagement Frameworks
zur Verfügung, um die effiziente Nutzung der verfügbaren Ressourcen des Randkno-
tens zu ermöglichen und die korrekte Anwendungsfunktionalität während der gesamten
Ausführung aufrechtzuerhalten. Unser Ziel ist es, (i) den Entwickler während des Anwen-
dungsentwicklungsprozesses zu unterstützen, (ii) die latenzempfindlichen Anwendungen
im Zielkantensystem bereitzustellen und (iii) sicherzustellen, dass bereitgestellte An-
wendungen während ihrer Lebensdauer betriebsbereit bleiben. Wir schlagen zunächst
EdgeFlow vor, eine neue Methode für die Entwicklung und Bereitstellung latenzempfind-
licher IoT-Anwendungen auf dem Edge-System. Der Zweck von EdgeFlow besteht darin,
den Entwickler während des Anwendungsentwicklungsprozesses zu unterstützen, indem
dem Entwickler ermöglicht wird, die Anwendungsanforderungen zu definieren und diese
zur Entwurfszeit zu validieren. Drei verschiedene Phasen charakterisieren unser vorgeschla-
genes Framework, i.e., (i) Entwicklung, (ii) Validierung und (iii) Bereitstellung. Zu diesem
Zweck schlagen wir eine Erweiterung des Flow-Based-Programming-Paradigmas um neue

vii

Timing- und Ressourcenanforderungen vor. Darüber hinaus bieten wir eine Ressourcen-
verwaltungstechnik an, die Sie bei der Bereitstellung und Validierung unterstützt. Im
nächsten Teil unserer Arbeit konzentrieren wir uns auf die Bereitstellung einer neuartigen
dezentralen Ressourcenverwaltungstechnik und des dazugehörigen technischen Rahmens
für die Bereitstellung von Anwendungen auf Geräten mit eingeschränkten Ressourcen.
Das vorgeschlagene Framework ermöglicht die effiziente Nutzung verfügbarer Ressourcen,
die auf ressourcenbeschränkte Randknoten verteilt sind. Das Ressourcenverwaltungsframe-
work verwendet die Erfüllbarkeit, um zur Laufzeit eine Bereitstellung für eine Anwendung
zu finden. Das erzeugte Mapping entspricht den Ressourcenanforderungen von Microser-
vices und den konstruktionsbedingten Einschränkungen der Anwendungslatenz. Unser
Ansatz gewährleistet eine nahtlose Bereitstellung zur Laufzeit, sofern keine Kenntnisse
der Geräteressourcen zur Entwurfszeit vorliegen. Wir schlagen ferner ein neues robustes
IoT-Anwendungsmodell vor, das einer hierarchischen Architektur folgt. Wir modellieren
eine Anwendungskomponente mit mehreren Konfigurationen - jede Konfiguration hat
ein anderes Funktionsniveau und unterschiedliche Ressourcenanforderungen. Darüber
hinaus erweitern wir das dezentrale Ressourcen-Framework, um das neue Anwendungs-
modell bereitstellen zu können. Schließlich schlagen wir ein adaptives Framework vor, mit
dem eine Microservice-Anwendung auf einem Edge-System effizient bereitgestellt und
gewartet werden kann. Unser Framework befasst sich mit zwei miteinander verflochtenen
Problemen: (i) finden einer Microservice-Platzierung zwischen Geräten und (ii) erstellen
eines Aufrufpfads, der der bereitgestellten Anwendung dient. Für dieses Framework ist
es unser Ziel, die korrekte Funktionalität der Anwendung aufrechtzuerhalten, indem die
vorgegebenen Anforderungen hinsichtlich End-to-End-Latenz und Verfügbarkeit erfüllt
werden.

Abstract

Demanding latency-sensitive applications have stringent requirements such as high
availability and low latency. The current cloud-centric systems face challenges in satisfying
the application’s stringent requirements. As a result, researchers have proposed two
new paradigms, i.e., edge and fog computing, as an alternative to deploying demanding
IoT applications closer to the edge of the network. By extending the cloud system with
these two paradigms, we obtain an edge system. Edge systems have been identified as
a solution to distribute more resources closer to the end-user since meeting application
demands must occur at runtime, facing uncertainty, and in a decentralized manner.
However, the edge systems’ distributed nature makes the application development more
challenging since the developer must divide the application’s functionality into multiple
microservices. Furthermore, high volatility defines the edge system due to edge nodes
being characterized by (i) heterogeneity and (ii) mobility, making a node unreliable – a
node may fail or leave the network unexpectedly. As a result, the application deployment
and management under volatility is more challenging. This calls for novel application
development methodologies and resource management techniques that comply with the
application’s requirements and aids the developer to develop, deploy, and manage an
application in the target edge system. However, developing these techniques is not a
trivial task.

In this thesis, we provide novel methodologies and resource management frameworks
to enable the efficient utilization of the edge node available resources and maintain
the correct application functionality throughout its entire execution. Our objective is
to (i) aid the developer during the application development process, (ii) deploy the
latency-sensitive applications in the target edge system, and (iii) ensure that deployed
applications remain operational during their lifespan. We start by proposing EdgeFlow,
a new methodology for latency-sensitive IoT applications development and deployment
on the edge system. The purpose of EdgeFlow is to assist the developer during the
application development process by allowing the developer to define the application
requirements and validate them at design time. Three different stages characterize our
proposed framework, i.e., the (i) development, (ii) validation, and (iii) deployment. To this
end, we propose an extension of the Flow-Based Programming paradigm with new timing
and resource requirements. Moreover, we provide a resource management technique to
assist with the deployment and validation stages. In the next part of our thesis, we focus
on providing a novel decentralized resource management technique and accompanying

ix

technical framework to deploy applications on resource-constrained devices. The proposed
framework enables the efficient utilization of available resources distributed between
resource-constrained edge nodes. The resource management framework uses satisfiability
to find at runtime a deployment for an application; the mapping produced is compliant
with microservices resource requirements and the application latency constraints by
construction. Our approach ensures seamless deployment at runtime, assuming no design-
time knowledge of device resources. We further propose a new robust IoT application
model that follows a hierarchical architecture. We model an application component
using multiple configurations – each configuration has a different functionality level and
resource requirements. Additionally, we extend the decentralized resource framework to
be able to deploy the new application model. Finally, we propose an adaptive framework
capable of efficiently deploying and maintaining a microservice application on an edge
system. Our framework tackles two intertwined problems – (i) finding a microservice
placement across devices and (ii) building an invocation path that serves the deployed
application. For this framework, our objective is to maintain the correct application’s
functionality by satisfying its given requirements in terms of end-to-end latency and
availability.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 3
1.1 Problem Statement . 4
1.2 Research Questions . 6
1.3 Scientific Contributions . 7
1.4 Organization of the Thesis . 9

2 Background 11
2.1 Cloud Computing . 11
2.2 Fog Computing . 12
2.3 Edge Computing . 13
2.4 Microservice-based architecture . 14
2.5 Resource management . 15

3 Related Work 17
3.1 Application development . 17
3.2 Resource management . 18

4 EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications 25
4.1 EdgeFlow: application development and deployment framework 26
4.2 Application development and deployment stages 32
4.3 Application Development methodology 35
4.4 Evaluation . 39
4.5 Conclusion . 45

5 Resource Management for Edge Computing Services 47
5.1 Decentralized Resource Allocation . 48
5.2 Problem formulation . 50

xi

5.3 Resource management Technical Framework 53
5.4 Evaluation . 58
5.5 Conclusion . 67

6 Efficient Hosting of Robust IoT Applications on Edge Systems 69
6.1 Technical Framework Overview . 71
6.2 Problem Formulation . 73
6.3 Application deployment framework . 76
6.4 Evaluation . 81
6.5 Conclusion . 87

7 Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability 89
7.1 Framework for Adaptive Management of Volatile Edge Systems 92
7.2 Application and System Models . 96
7.3 Monitoring and Execution activities 98
7.4 Placement cycle . 100
7.5 Invocation path cycle . 104
7.6 Evaluation . 107
7.7 Conclusion . 116

8 Conclusion and Future Work 117
8.1 Summary of Contributions . 117
8.2 Revisiting Research Questions . 120
8.3 Future Work . 122

List of Figures 125

List of Tables 127

Bibliography 129

List of publications

The contents of this thesis is based on the research work published in the following
conferences, journals, and book chapters. For a full list of publications please visit the
following website 1

[1] C. Avasalcai, C. Tsigkanos, and S. Dustdar. Resource management for latency-sensitive
iot applications with satisfiability. IEEE Transactions on Services Computing, 2021.

[2] Cosmin Avasalcai and Schahram Dustdar. Latency-aware distributed resource provi-
sioning for deploying iot applications at the edge of the network. In Kohei Arai and
Rahul Bhatia, editors, Advances in Information and Communication, pages 377–391,
Cham, 2019. Springer International Publishing.

[3] Cosmin Avasalcai and Schahram Dustdar. Edge computing: Use cases and research
challenges (to appear). In Handbook Industrie 4.0 Vol. 5, 2021.

[4] Cosmin Avasalcai, Ilir Murturi, and Schahram Dustdar. Edge and Fog: A Survey,
Use Cases, and Future Challenges, chapter 2, pages 43–65. John Wiley & Sons, Ltd,
2020.

[5] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Decentralized resource
auctioning for latency-sensitive edge computing. In IEEE International Conference
on Edge Computing (EDGE), 2019.

[6] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Adaptive volatile edge
systems management at runtime with satisfiability. ACM Transactions on Internet
Technology (accepted), 2021.

[7] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Edgeflow - developing
and deploying latency-sensitive iot edge applications. IEEE Internet of Things Journal
(accepted), 2021.

[8] Cosmin Avasalcai, Bahram Zarrin, Paul Pop, and Schahram Dustdar. Efficient hosting
of robust iot applications on edge computing platform. In 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC), pages 1–10, 2020.

1https://dsg.tuwien.ac.at/team/cavasalcai/

1

CHAPTER 1
Introduction

The adoption rate of Internet of Things (IoT) devices has lead to a solid global infrastruc-
ture of internet-connected devices, capable of monitoring and controlling the surrounding
environment via sensors and actuators as well as sending data to other devices over the
Internet [KKSF10]. Since IoT devices are resource-constrained devices not capable of
processing the generated data, researchers have proposed cloud computing as a paradigm
to deliver and consume digital resources [AFG+10]. Combining the cloud paradigm with
the IoT has converged to a cloud-centric geographically distributed system capable of
executing different IoT applications. However, with the recent increase in connected
IoT devices, new emergent latency-sensitive IoT applications have been developed. A
latency-sensitive IoT application1 has stringent requirements, e.g., low latency, high avail-
ability, better privacy and security, and application resource requirements that current
cloud-centric solutions fail to satisfy since high volumes of data must be transferred to
the cloud [WZZ+17].

To address the shortcoming of cloud computing, researchers have proposed two new
paradigms, i.e., edge computing [Sat17] and fog computing [BMNZ14]. Fog computing
enables the utilization of available computational resources found at the edge of the
network [BMNZ14] – a paradigm consisting of multiple geo-distributed fog devices
capable of hosting deployed IoT applications. The purpose of fog computing is to extend
the cloud-centric system such that it may satisfy the stringent requirements of IoT
applications. Similarly, the edge computing underlying purpose is to assist the cloud
in executing IoT applications. However, in contrast to fog computing, edge computing
enables computational resources at or near the location of data, pushing even closer to
the user the execution of IoT applications [AAY+17, SCZ+16]. As a result, by combining

1In this thesis, the term IoT applications is used to refer to latency-sensitive IoT applications, unless
otherwise stated.

3

1. Introduction

the three paradigms, we obtain a new system2 consisting of four layers, i.e., cloud, fog,
edge, and IoT devices (see Figure 1.1) – an edge system that retains the advantages
of all involved paradigms. Nevertheless, deploying and maintaining an IoT application
on an edge system is challenging since heterogeneity, uncertainty, and limited resource
capabilities define an edge and fog node.

Cloud Cloud Layer

Edge node Edge node Edge node

IoT devices

Fog node Fog node Fog node

Fog/Edge
 Layer

Figure 1.1: Cloud, Fog, and Edge Computing architecture overview.

Consider an IoT application that is particularly data-intensive and requires low latency
communication to function properly. To satisfy its requirements, a deployment strategy
should as much as possible take advantage of the available resources distributed between
the edge and fog layers and avoid utilization of the cloud layer, as latency would be
prohibitive and uplink bandwidth may be saturated. Besides the initial deployment, an
adaptive strategy should manage the application and ensure correct functionality during
its execution. However, benefiting from distributed computational resources is not trivial
and requires novel resource management techniques. We discuss the IoT application’s
deployment and management challenges in detail in section 1.1.

1.1 Problem Statement

The emerging edge systems facilitate the deployment of IoT applications closer to the end-
user. However, these systems make the deployment and management of IoT applications
more challenging, creating new research problems that must be addressed. In this section,
we define the scope of this thesis by presenting a detailed description of the addressed
challenges.

2In this thesis, we refer to this new system as edge system since it aims to migrate computation closer
to the edge of the network.

4

1.1. Problem Statement

The purpose of this thesis is to enable the migration of IoT applications from cloud-centric
systems to distributed edge systems. More precisely, we enable the efficient utilization of
the distributed available computational resources found in an edge system and maintain
the correct application functionality throughout its entire life cycle. We envision an
ecosystem providing methodologies and frameworks to (i) aid the developer to develop
emergent IoT applications, (ii) deploy these applications in the target edge system, and
(iii) manage the application at runtime to ensure correct functionality during its execution.
The proposed system reduces the complexity of deploying an application in a distributed
edge system and provides additional guidance to the developer during the application
development process. Furthermore, we provide a seamless application deployment and
management process that requires no technical knowledge from the user – an approach
that enables both companies and private developers to rapidly develop, deploy, and
manage IoT applications in an edge system.

The distributed nature and the location of fog and edge nodes bring many advantages in an
edge system, enabling the deployment of IoT applications closer to the end user [AMD20].
At the same time, the edge and fog computing paradigms introduce new challenges during
the IoT application development process, like dividing the application functionality into
different microservices. Previously, in cloud-centric systems, the IoT application was
always deployed at the same location, i.e., in the cloud, where enough resources are
available to execute the entire application. In an edge system, the nodes share the total
computational resources available in the system, where often a single node cannot host
the IoT application alone. Therefore, a new IoT application model is proposed in the
research literature [MB18] that breaks the IoT application functionality into different
computational entities. This is in line with typical microservice-based applications,
i.e., ones defined as a microservice composition, where interconnected microservices
create a workflow to achieve a certain goal [WIH16]. An IoT application is divided into
small, modular, and easily deployable microservices; a microservice can be a stateful or
serverless function. The overall IoT application functionality is then defined in terms of
a communication flow among those microservices. Individual microservices may have
resource requirements – for instance, storage, memory, and some dependency on local data
or dedicated hardware, to support, e.g., machine learning functionalities. Considering
the new IoT application model, the development process has become more complex
and challenging. Currently, the developer lacks the proper methodology to develop
such IoT applications and define the microservices’ resource requirements as well as the
applications’ objectives.

Once the developer models the IoT application and provides all the information required,
the deployment process can start. Deploying an IoT application on an edge system is
not a trivial task and requires novel resource management techniques to achieve the
proper execution of an IoT application. Resource management, in this context [TN18a],
aims at enabling collaboration between edge and fog nodes by sharing their available
computational resources. In such a setting, IoT applications are deployed on possi-
bly resource-constrained devices and in dynamic networks where high uncertainty is

5

1. Introduction

introduced by (i) node mobility, (ii) node heterogeneity (i.e., a node can be a resource-
constrained device as well as a powerful server), and (iii) lack of knowledge at design
time of network topology and edge nodes’ available resources. Previously, deployment
of applications in an edge system has been generally tackled from two perspectives: (i)
task offloading from resource-constrained devices to improve objectives such as energy
consumption [MB18] or (ii) relying on the cloud to perform resource allocation [RGXZ17].
Still, such approaches do not sufficiently take into account latency application require-
ments, do not consider the node’s preferences, and assume knowledge of participant
nodes’ internals.

The successful deployment of an IoT application in an edge system is not enough to ensure
correct functionality since edge computing is characterized by a high degree of distribution
that introduces volatility – computational nodes that participate on edge systems are
spatially distributed [TGBG20] and may fail or leave the system often [TND19]. As a
result, we need to ensure that during the execution of an IoT application, we can adapt
to any changes in the system. To achieve this, we must combine resource allocation with
resource migration techniques to deploy and manage an application in an edge system.

1.2 Research Questions
The aforementioned challenges represent the motivation behind the research conducted
during the course of this thesis. In this section, we present the key research questions
that we investigate and answer in this thesis:

Q1: What is a suitable programming model and methodology to develop novel microservice-
based applications efficiently, providing sufficient information to enable its deploy-
ment?
The recent adoption of edge and fog computing has created an environment where
available computational resources are distributed among different nodes. As a result,
to successfully deploy an IoT application in an edge system we must efficiently
use these resources. The application development process plays an instrumental
role in finding a deployment strategy since it acts as the means to collect as much
information as possible regarding the deployed application. The challenge for
the application’s developer stays in: (i) defining and validating the microservices’
resource requirements, (ii) defining constraints for the application’s communication
flow, and (iii) set the application’s overall objectives; information that impacts the
application deployment process. Therefore, helping the developer to understand,
during the development process, if the defined constraints and requirements are
suitable for the target edge system is crucial for designing and deploying IoT
applications on different systems.

Q2: How to efficiently deploy an application on resource-constrained edge nodes, partic-
ularly in the absence of cloud resources?

6

1.3. Scientific Contributions

To deploy an IoT application in an edge system, where computational resources
are distributed among multiple edge and fog nodes, has several challenges. The
main challenge is to efficiently utilize the available resources present in the edge
layer (see Figure 1.1), since at this layer nodes often have limited computational
resources. Due to its proximity to end-devices, the edge layer provides the fastest
response times for applications deployed on it. As a result, we can find edge nodes
placed in remote locations as well, where connection to the cloud is not stable,
e.g., on an offshore platform. Furthermore, since the edge layer is characterized by
uncertainty, we must employ our deployment technique at runtime to consider the
current internal status of edge nodes (i.e., available computational resources at the
deployment time). Therefore, it is important to build novel resource management
techniques capable of deploying an application on resource-constrained edge nodes
at runtime.

Q3: How to deploy and manage an application in a volatile edge system?
As mentioned in Section 1.1, edge computing is characterized by a high degree
of distribution that introduces volatility and uncertainty. Under these conditions,
finding a deployment strategy is not enough, we require adaptive techniques to
ensure the correct functionality of the deployed application. This volatility of edge
systems represents the challenge when preserving the application’s functionality
throughout the entire life span. Therefore, the deployment framework must adapt
to node failure, maintaining the application stable at the edge of the network.

1.3 Scientific Contributions
In this section, we present the contributions that this thesis makes to the state of the art
by addressing the aforementioned research questions. These contributions are:

C1: Programming models, techniques, and methodologies for developing and deploying
IoT applications in an edge system.
With the new IoT application model, the application developer must correctly
define the application resource requirements, communication flow, and objectives.
We propose an IoT application development and deployment methodology to
address the challenges associated with the application development process. The
methodology consists of two stages, i.e., the development stage and the validation
and deployment stage – both taking place at design time. For the former, we
propose an extension to the Flow-Based Programming (FBP) paradigm with timing
and resource requirements, providing the means to collect all critical information
associated with an application. For the latter, we propose a resource management
technique to validate and find a deployment strategy that satisfies all application’s
requirements, considering the target edge system. The contribution is presented in
detail in Chapter 4 and was originally presented in [AZD20].

7

1. Introduction

C2: A resource management technical framework for application deployment on resource-
constrained devices.

We tackle the issue of application deployment on resource-constrained nodes found
in an edge system. In this contribution, we present a decentralized resource
management technical framework, aiming to deploy IoT application on the edge
layer, guaranteeing adherence to (i) defined application requirements and objectives
and (ii) resource preferences of participating nodes. With our framework, we are
able to find a satisfiable deployment strategy at runtime, considering the current
status of participant nodes. We present the contribution originally in [ATD20b]
and [ATD19a] and provide a detail description in Chapter 5.

C3: A novel IoT application model and resource management technical framework for
application deployment on resource-constrained devices.

Taking advantage of the available resources found in the edge layer is highly
dependent on the resource requirements of the application’s microservices. If
a microservice has demanding requirements that cannot be fulfilled by a single
resource-constrained device, then it is impossible to find a deployment strategy
exclusively on the edge layer. As a result, to improve the successful deployment of
stringent IoT applications on the edge layer, we propose a robust IoT application
model where the application’s functionality is divided into composite computational
entities. A composite entity offers more granularity, enabling the deployment of
the application fully at the edge of the network. Furthermore, we extend the
decentralized resource management technical framework with a new technique to
enable the participant nodes to better express their preferences. We present the
contribution originally in [AZPD20] and provide a detail description in Chapter 6.

C4: An adaptive technical framework for deployment and management of IoT applica-
tions in edge systems.

In this contribution, we provide an adaptive technical framework enabling the
edge system to manage the deployed IoT application throughout its execution
phase. We tackle the issue of satisfying application constraints like availability
and latency in an edge system characterized by uncertainty and volatility. Our
technical framework considers two different problems, i.e., application deployment
and runtime management, employed at different times during the application’s
life cycle. For the application deployment, we propose a resource placement
technique to ensure the correct placement of microservices according to their
resource requirements. In contrast, for the runtime application management, we
employ a technique to recover the application’s functionality after the appearance of
disruptions in the edge system. This contribution is presented in detail in Chapter 7
and was originally presented in [ATD20a].

8

1.4. Organization of the Thesis

1.4 Organization of the Thesis
This thesis is based on the contributions presented in the original research papers
published during the author’s doctoral studies. If have re-worked and extended each
contribution to fit the overall context of the thesis.

The remainder of the thesis is organized as follows: Chapter 2 describes the background
information and introduces the concepts and terminology used throughout the entire thesis.
Chapter 3 summarizes the related work categorized based on the main contributions
of this thesis, i.e., application development and resource management techniques. The
main contributions of the thesis, outlined in Section 1.3, are presented in the next
four chapters. In Chapter 4, we present our first contribution, i.e., a latency-sensitive
application development and deployment methodology. For the next two chapters, we
describe contributions to successfully deploying an application on the target edge system.
Chapter 5 presents a distributed resource management framework to deploy latency-
sensitive applications specifically on resource-constrained devices. Chapter 6 presents a
robust application model to enable the efficient utilization of available resources found
at the edge of the network and an extension of the decentralized resource management
framework to help the participant nodes to better express their preferences. Chapter 7
describes an adaptive framework capable of efficiently deploy and maintain an application
on the target edge system. Finally, in Chapter 8 we conclude the thesis with a reflection
of our contributions and an outlook of the future work.

9

CHAPTER 2
Background

In this chapter, we introduce the core concepts and technologies, which represent the
basis for our work presented in this thesis. We start by presenting the target architecture
consisting of three computing paradigms, i.e., cloud, fog, and edge computing. Finally,
we present an overview of the resource management used for application deployment and
management as well as the microservice-based architectures and containerization used to
model an IoT application.

2.1 Cloud Computing
In the last couple of years, cloud computing has become one of the most important
paradigms for hosting internet applications [AFG+10], mainly because of the cloud
capabilities to deliver applications as services as well as the hardware and systems that
provide the services. According to the National Institute of Standard and Technology
(NIST) [MG+11], cloud computing is defined as follow: "Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction."

Cloud computing is a centralized paradigm with many advantages like high availability
and resource scalability, offering virtually unlimited resources to the user [Ley09]. More
concretely, cloud computing provides the following advantages: (i) manages the deployed
application seamlessly without the involvement of the user, (ii) provides computational
resources on-demand, and (iii) requires payment on actual resource usage [AFG+10].
Cloud computing makes use of technologies and concepts like virtualization and elasticity
to bring these benefits. The former provides service isolation that allows the cloud server
to be used more efficiently by different users and applications with different requirements.
In contrast, the latter ensures service scalability and high-availability by providing the

11

2. Background

required resources for a service, i.e., the utilized resources grow or shrink with the service
requirements at a certain time.

Due to its wide adoption, many cloud providers appeared, like Amazon, Google, and
Microsoft, offering three different service models, i.e., Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Service as a Service (SaaS). However, as explained
in Section 1.1, the cloud’s centralized nature has become a disadvantage. All the data
generated by the IoT devices results in huge amounts of data sent to the cloud, increasing
the application’s communication latency. In this thesis, we consider that the cloud
is in charge of hosting all high computational microservices part of an application;
microservices that cannot be deployed on edge or fog nodes.

2.2 Fog Computing
Fog computing is a paradigm introduced by Cisco [BMNZ14] with the purpose of ex-
tending the cloud capabilities closer to the edge of the network. Multiple definitions
of fog computing are found in the literature, however the most relevant is presented
in [YHQL15]. According to them, fog computing is a geographically distributed comput-
ing architecture connected to multiple heterogeneous devices at the edge of the network,
but at the same time not exclusively seamlessly backed by cloud services. Hence, fog is
an additional computational layer placed between cloud and the edge of the network (see
Figure 1.1), consisting of heterogeneous fog devices distributed at different geographical
locations [OCY+17]; a fog device is a highly virtualized IoT node that provides computing,
storage, and network services.

By migrating computational resources closer to the end devices, fog enables the deployment
of new latency-sensitive applications directly on devices like routers, switches, small data
centers, and access points. Depending on the application, this can impose stringent
requirements like fast response time and predictable latency (e.g., smart connected
vehicles, augmented reality), location awareness (e.g., sensor networks to monitor the
environment), and large-scale distributed systems (smart traffic light, smart grids).

To fill the technological gap in the current state of the art where cloud computing
paradigm is at the center, fog collaborates with the cloud to form a more scalable and
stable system across all devices. From this union, the developer benefits the most since
an application can be deployed either on fog or cloud. For example, taking advantage
of the fog node capabilities, we can process and filter streams of collected data coming
from heterogeneous devices, located in different areas, taking real-time decisions and
lowering the communication network to the cloud. As a consequence, fog computing
introduces effective ways of overcoming many limitations that cloud is facing, e.g., latency
constraints, network bandwidth constraints, and better security and privacy [CZ16].

Multiple high-level fog architectures have been proposed in the literature [DB16], [SCM18],
[SDW+15] which describe a three-layer architecture containing (i) the smart devices and
sensor layer which collect data and forward it to the fog layer for further processing, (ii)

12

2.3. Edge Computing

the fog layer applies computational resources to analyze the received data and prepares
it for the cloud, and (iii) the cloud layer which performs high intensive analysis tasks. In
this thesis, we consider that there is a fourth layer in the target architecture, i.e., the
edge computing layer.

2.3 Edge Computing
Edge computing represents a new paradigm that aims at facilitating the operation of
computing, storage, and networking services closer to the edge of the network [GD18].
As a result, the underlying premise of edge computing is to create a bridge, by adding
an additional layer of nodes, between IoT devices (i.e., sensors and actuators) and
cloud [SD16]; an edge layer consists of multiple interconnected and distributed edge
nodes capable of assisting the cloud when trying to satisfy the stringent requirements of
new emerging IoT applications. An edge node is characterized by (i) heterogeneity and
(ii) mobility, representing any resource-constrained node found on the communication
path between IoT devices and cloud, e.g., a smartphone, a gateway, a micro data server,
or a car.

Multiple definitions of edge computing are found in the research literature, however, in our
opinion, the most relevant is presented in [SCZ+16]. The authors define edge computing
as an enabler for technologies to process data near end-users, i.e., on downstream data
for cloud services and upstream data for IoT services. The edge computing paradigm
brings many advantages like:

1. Proximity – since computational resources are available in the proximity of end-users,
both cloud and IoT devices can benefit from allocating parts of the IoT application
to the edge nodes. Components can be mapped to the edge layer to pre-process
the collected data before being sent to the cloud for storage and data analysis; a
strategy that helps lowering data congestion and bandwidth waste inherent from
cloud centralization [WZZ+17]. In contrast, it can help resource-constrained devices
by offering the possibility of offloading high computational tasks to edge devices
found in the proximity of the user.

2. Context-Awareness – edge nodes may enter or leave the network at any time
without prior notice, changing the environment where the application resides – an
environment that is incapable of satisfying the application’s requirements. Therefore,
to recover from this unstable state, we can use context data to understand the
application’s environment. Context data consists of knowledge of device location,
environmental characteristics (e.g., temperature sensor, video, and images), and
network information.

3. Low latency – edge computing enables applications to respond in real-time by
execution them near the end-user; a characteristic that aids the cloud in meeting
the stringent requirements of latency-sensitive IoT applications.

13

2. Background

4. Increase availability – even in the absence of a stable connection with the cloud,
edge computing ensures that deployed IoT applications work properly.

Edge computing capabilities shine when converging with IoT and cloud creating novel
techniques for IoT systems. By enabling more computational resources in the proximity
of IoT devices, edge allows customers to develop and deploy new IoT applications on edge
nodes, taking advantage of lower latency and increased privacy and security, processing
data at the edge without the need of transferring it to a remote location like a cloud. As
a result, we consider edge computing as an extension of cloud, helping cloud to meet the
stringent requirements of IoT applications, e.g., smart connected vehicles or augmented
reality which requires low latency and fast response times, sensors networks that requires
location awareness, and smart grids which require large-scale distributed systems.

Edge computing fills the technological gap found in cloud-centric IoT systems by collabo-
rating with the cloud to create a more scalable and reliable system where IoT applications
may be deployed. From this collaboration, new possibilities to deploy the application
appears, letting the developer to choose if a component should be placed in the cloud or
on an edge device, depending on that component requirements. An action that can be
done manually by the developer or automatic using resource management techniques.

Since many devices can fill the role of an edge device, similar paradigms such as mobile
edge computing (MEC) [BWFS14] and fog computing are introduced in the research
literature, to move more computational resources closer to the edge of the network. MEC
considers that an edge device is a micro data server placed at a telecommunication relay
station which aids resource-constrained devices (i.e., a smartphone) to compute high
computational tasks. In contrast, fog computing focuses more on the infrastructure side
by providing more powerful fog nodes (i.e., a fog node may be a high computation device,
access points, or cloudlet). We observe that in both cases, the underlying principle is the
same, i.e., to extend the cloud and allow the deployment of IoT applications closer to
the end-user. The key difference between edge computing and fog computing is where
the computation resides. While fog computing pushes processing into the lowest level
of the network, edge computing pushes computation into devices such as smartphones
or devices with limited computation capabilities. In this thesis, we consider that our
target architecture is a four-layer architecture as presented in Chapter 1. We call this
architecture an edge system since both fog and edge computing have the same underlying
premise of moving computational resources closer to the edge of the network. Throughout
the thesis, we will specify if we target a specific layer or the entire edge system.

2.4 Microservice-based architecture
As seen in the previous sections, the target computing architecture changed from a cloud-
centric architecture to a decentralized architecture where computational resources are
distributed among different nodes – a change that influenced the application development
process. Traditionally, an application was developed as a monolithic entity containing

14

2.5. Resource management

the entire functionality into a single component. However, this approach does not take
advantage of the distributed nature of the new computing architecture. Therefore,
the application’s software architecture must change to take advantage of the available
distributed computational resources.

The microservice architecture envisions an application as a collection of weakly coupled,
lightweight, small contained services that work together to achieve a specific goal [New15].
According to Lewis and Fowler [LF], the microservice architectural style is "an approach
to developing a monolithic application as a suite of small services, each running its own
process and communicating with lightweight mechanisms, often an HTTP resource API".
An approach that fits rather well with the distributed nature of the target computing
architecture obtained from the integration of cloud, fog, and edge computing – allowing
an application to use all the available resources shared between nodes. As a result, with
the adoption of IoT as well as the other computing paradigms, the microservice-based
architecture has been widely adopted as an alternative to the monolithic architectures [LF].

Three key concepts stay at the core of every microservice-based architecture, i.e., con-
tainerization, heterogeneity, and decentralization. Containerization places a microservice
together with all required dependencies in a lightweight container. Placing each mi-
croservice in a container guarantees that it will run uniformly and consistently on any
infrastructure. Containerization enable multiple key benefits like (i) scalability, allowing
the developer to scale microservices individually depending on the requirements, (ii) ease
of deployment, the developer can make a change to a single container independently, (iii)
replaceability, i.e., developers can easily replace microservices with better implementa-
tions, and (iv) composability, meaning that the developer can reuse a microservice in
different applications – giving opportunities to developers to reuse functionality [New15].
Heterogeneity refers to the possibility of using different technologies, platforms, and pro-
gramming languages. Finally, decentralization allows the use of the distributed available
resources in a more efficient manner. However, to deploy and manage these microservice-
based applications is not a trivial task. We require new resource management techniques
to be able to deploy and manage an application on the new computing architecture.

2.5 Resource management
As previously stated in Chapter 1, to deploy and manage an IoT application in an edge
system, we require novel resource management techniques. Since IoT devices are resource-
constrained devices, applying resource management techniques at the edge will allow edge
nodes to optimize their resource utilization (e.g., energy-aware smart devices that increase
their battery levels by offloading computation to nearby nodes), improve data privacy,
and enable devices to collaborate and share resources to execute IoT applications. Based
on this, resource management is divided into five different categories, each performing a
specific task [TN18b].

Resource estimation. To deploy successfully an IoT application in an edge system, one
of the fundamental requirements in resource management is the ability to estimate the

15

2. Background

application’s component resource requirements, i.e., how many computational resources
a certain component requires. This is important for handling the uncertainties found
in an IoT network and providing at the same time a satisfactory Quality of Service for
deployed IoT applications.

Resource discovery. Since an edge system is very volatile – nodes are mobile and may join
or leave the system at any point in time, it is important to know what are the current
computational available resources of all nodes found in the system. For this reason, we
require resource discovery techniques to discover the currently available resources before
starting the IoT application development process. Resource discovery together with
resource estimation provides the core knowledge required to deploy an IoT application in
an edge system.

Resource sharing. In an edge system, the total available computational resources are
divided between fog and edge nodes. As a result, to deploy an application, participant
nodes must collaborate and share their resources to achieve a common goal, i.e., the
execution of an IoT application. Therefore, resource sharing aims at enabling collaboration
between nodes and maybe offer incentives to make the nodes more willing to share their
resources.

Resource placement. With the previous three categories, we manage to (i) learn valuable
information regarding the target edge system, (ii) define application’s resource require-
ments, and (iii) ensure that participant fog and edge nodes will share their resources.
Based on this knowledge, we can start devising an IoT application deployment strategy
using a resource placement technique. A resource placement technique utilizes the knowl-
edge of node’s available resources to deciding where to place the application’s components
such that its objectives are satisfied.

Resource migration. This category provides techniques to decide, at runtime, how to
change the initial application deployment to continue to ensure that the deployment still
satisfies the application’s objectives. The migration process reacts to sudden changes
in the edge system and tries to find a migration strategy that moves the application’s
components on different nodes. To migrate an IoT application, we can either use (i) specific
resource migration techniques that are capable of adapting based on context information
or (ii) the same resource allocation techniques used to find an initial deployment.

By combining the aforementioned resource management approaches we manage to
optimize the usage of available computational resources found in an edge system according
to the IoT application objectives. In this thesis, we focus on combining resource placement
with resource migration, in order to deploy an IoT application on an edge system satisfying
its objectives.

16

CHAPTER 3
Related Work

In this chapter, we discuss existing techniques found in the research literature to develop,
deploy, and manage IoT applications in an edge system. We divide the related work into
two different sections, i.e., application development and resource management. In the
first section, we present existing solutions to assist with the IoT application development
process. In the second section, we focus on multiple aspects of resource management,
i.e., (i) service placement, (ii) service offloading, and (iii) service migration, discussing
techniques found in the research literature that target the placement of applications
closer to the edge of the network and the migration of resources when nodes have failed.

3.1 Application development
The adoption of fog and edge computing paradigms as well as the demanding require-
ments of emergent IoT applications have introduced new challenges in the application’s
development process. Due to the distributed nature of edge systems, as presented in
previous chapters, the IoT application model has shifted from a monolithic architecture
to a microservice-based architecture – the consensus among researchers depicts an IoT ap-
plication model as a collection of microservices [MB18, BKA+20, GVGB17, YHZ+17]. In
the research literature, researchers focused on proposing resource management techniques
to efficiently use the distributed available resources found in an edge system – considering
as given the application model and its associated timing and resource requirements.
However, developing an IoT application model and defining all requirements is not a
trivial task.

Only recently, researchers have proposed techniques to aid with the IoT application
development process. Giang et al. [GBLL15] present a distributed dataflow programming
model for fog computing that aids the developer during the application development
process. In this paper, the authors propose a two stage application development process,
i.e., developing individual application microservices and defining the communication

17

3. Related Work

path between them. Wang et al. [WZH+20] propose a stream processing approach, i.e.,
Edge-Stream, for building new applications for edge computing systems. Edge-Stream
represents data flows between the application’s microservices as streams to make the
approach more user-friendly. Frasad [NTBG15] is another framework that helps with
the IoT application development and makes use of a model-driven design approach to
enhance the reusability, flexibility, and maintainability of sensor software. Rafique et
al. [RZY+20] develop an IoT application development framework using model-driven
development and attribute-driven design. The framework transforms the application’s
requirements into a solution architecture using the attribute-driven design and then uses
model-driven development to generate models to transform the application’s components
into software artifacts. Other papers make use of the Flow-Based Programming (FBP)
paradigm to develop new IoT applications. Szydlo et al. [SBS+17] introduce a heuristic
data flow transformation technique to successfully distribute flows on the target network.
The technique receives as input an application model, i.e., a data flow graph, and decides
where to place a process – either cloud or edge devices. Furthermore, the authors
develop uFlow, a flow-based processing framework that enables the developer to define
data flows for different IoT applications. Belsa et al. [BSPE18] present a solution to
enable the interoperability between applications deployed on different IoT platforms.
The authors introduce a methodology, based on FBP, to create the communication
flow between the available IoT services. The methodology is an extension to Node-
RED and allows the application developers to create nodes that enable access to IoT
services and create a communication flow between multiple such nodes. Jain et al.
[JT17] propose a mapping technique composed of two stages: (i) the IoT application is
modeled into multiple different tasks annotated with target location information and
(ii) each task is deployed on an edge node based on its location. The authors extend
Node-RED to allow the development of IoT applications and deployment of defined
microservices to their predefined location, i.e., cloud or edge. Compared to the related IoT
development approaches, we focus on aiding the developer in defining IoT applications’
timing and resource requirements during the development process. Furthermore, we
provide validation of defined requirements considering the target edge system – we
enable the means to capture valuable application model information required by resource
management techniques to find satisfiable deployment strategies.

3.2 Resource management
Multiple papers found in the research literature tackle the resource placement problem
in an edge and fog computing setting. According to the definition of edge computing
presented in Chapter 2, in an edge system, an application can be migrated from the
cloud closer to the origin of data or offloaded from resource-constrained devices. Besides
the two cases, in volatile edge systems, there is the need for adaptive frameworks that
make use of service migration techniques. Therefore, we divide this section into three
parts, i.e., service placement, service offloading, and service migration. In the first
part, we focus on presenting resource management techniques that aim at assisting the

18

3.2. Resource management

cloud in satisfying IoT applications’ demanding requirements by placing microservices
on resource-constrained devices. In contrast, in the second part, we present resource
management techniques to move high computational services from resource-constrained
devices to nearby edge nodes – enabling the execution of applications on end-user devices.
Finally, in the third and last part, we present resource management techniques to provide
an edge system with adaptive capabilities.

3.2.1 Service placement

Brogi et al. [BF17] propose FogTorch, a service placement technique capable of providing
deployment strategies for IoT applications on a target fog computing infrastructure.
The main goal of the paper is to provide a general and extensible model to capture
valuable characteristics of both IoT applications and fog infrastructure. The proposed
approach deploys an IoT application such that its Quality of Service (QoS) requirements,
i.e., latency and bandwidth, are satisfied. For a similar problem formulation, Salaht
et al. [ASDL+19b] propose a constraint programming model, extendable in terms of
deployment constraints and objectives, which can obtain a competitive result in relation
to heuristics and meta-heuristic algorithms. Scoca et al. [SAB+18] propose a latency,
bandwidth, and resource-aware scheduling algorithm aiming at mapping services to edge
nodes – the main objective of the technique is to guarantee optimal service quality. The
approach uses a score-based technique to compute a scoring mapping for each service
by evaluating the target edge nodes as well as the communication links. Redowan et
al. [MRB18a] introduce a latency-aware technique aiming to deploy the application’s
modules on fog computing such that it satisfies all objectives. In the target fog system,
the authors consider two types of applications to be deployed, i.e., latency-sensitive and
latency-tolerant applications. The proposed decentralized placement algorithm aims to
place the applications between fog node clusters and cloud considering the applications’
latency requirements. Furthermore, to optimize the fog node’s resource utilization, an
optimization technique using linear programming is proposed that minimizes the number
of computational active fog nodes found in a cluster. Skarlat et al. [SNS+17] propose an
optimization service placement algorithm to place services on fog nodes. The authors first
organize its computational node into a hierarchical logic, where fog nodes are grouped
into colonies. The main idea is to distribute any application submitted to a fog colony to
the controlled fog nodes found closer to the end-user. In case that there are no available
resources in the current fog colony, the technique always tries to map the application
to its neighbor colony. Ultimately, the application is sent to the cloud, if there are
insufficient available resources on the fog layer. Wobker et al. [WSMB18] introduce a
fog computing platform to deploy and manage fog applications. The service placement
technique is based on Kubernetes and is using a labeling system that enables the mapping
of application’s components on fog nodes based on application’s requirements like memory,
computational power, and storage and node’s available resources.

Petri et al. [PRZR19] propose an edge orchestration technique focusing on providing
task deployment based on resource proximity. The orchestrator is deployed on a router

19

3. Related Work

and dynamically find a task allocation based on the application requirements forwarding
the tasks to either cloud or edge devices. Breitbach et al. [BSEB19] describe a three-
level resource allocation technique for edge computing. The first level optimizes the
distribution of data replicas on multiple devices to minimize the execution of a task
at the cost of increased data management. A context-aware replication technique is
used to devise the number of replicas and the data allocation considering multiple
characteristics, i.e., data size, current fluctuation of the system, the available storage,
and application requirements. The second level distributes the application’s tasks based
on different scheduling strategies, while the third level provides data adaptive capabilities
by monitoring the task deployment. Dzhang et al. [ZMZ+18] describes a competitive-
cooperative game-theoretic resource allocation framework to deploy latency-sensitive
applications at the edge of the network. In this work, the authors ensure cooperation
between nodes by offering incentives based on their work. In this case, edge devices
are considered to be rational actors that have no desire of sharing their resources and
collaborate with other nodes if proper payoff is not offered. Other works undertake the
problem of service placement in different scenarios [LBDP19, HLW+20, EPR20]. As can
be observed, the main objective of all technical papers targeting service placement is
to ensure latency fulfillment upon placement of services. However, there is one more
objective that is equally important and must be considered in a fog and edge setting, i.e.,
applications availability.

Zhu et al. [ZH18] present EdgePlace, a heuristic technique capable of finding a place-
ment strategy that can minimize the resource unit cost and increases the application’s
availability. Depending on the application’s demands the approach makes a trade-off
between resource utilization, bandwidth utilization, and application availability. The
technique receives as input a service graph consisting of multiple service chains that
must be deployed on MEC servers; a service is a VM. In this case, to achieve service
availability during the service placement phase, the authors make use of constraints like
affinity and anti-affinity when deploying a service graph. However, in the case of host
failure, the application’s functionality is recovered by migrating the service chain to
another host. Sangolli et al. [SRP+19] propose an edge platform aiming to guarantee
high service availability and minimize latency. For this purpose, the authors describe
a real-time service migration technique to migrate services among nearby edge nodes
when an edge node becomes unresponsive or has a high resource utilization. Daneshfar
et al. [DPPA18] proposed a service allocation technique with a central controller capable
of mapping users’ requests to fog nodes where services reside. In this case, service
availability is inherited from nodes’ availability. Furthermore, the authors do not consider
the possible dependencies between services, each service representing a standalone entity.
Lera et al. [LGJ19] present an availability-aware service placement to ensure objectives
as application e2e latency and availability. The technique consists of two different stages:
(i) break the fog network into smaller and better-connected communities and choose a
community where the entire application is placed and (ii) map the application’s services
between the nodes found in the chosen community. Availability is achieved by deploying
an entire application in one fog community since the fog nodes have high connectivity.

20

3.2. Resource management

Furthermore, the authors consider that in a fog system only the communication link may
fail. As a result, the application can continue to operate, by reaching the fog node using
a different communication path. However, if a node fails and becomes unreachable, the
system cannot ensure the correct application functionality.

Multiple resource auctioning techniques were proposed in the literature to distribute
applications between devices. In [BBG18], an auction-based technique is proposed that
enables users to bid for the available computational resources of an edge server. Once a
bid arrives, the server computes the price for the requested resources taking into account
its location, i.e., cloud or edge. Similarly, in [SLYZ18] an auction-based solution is
presented to map the requests of bidders (i.e., mobile devices) to the available resources
of an edge server. Khan et al. [KVRF16] propose a distributed auctioneer for resource
allocations on distributed systems, aiming to combat device trust and their operators’
true intentions. A set of distributed protocols are shared between multiple participants
with the intent to simulate a centralized auctioneer. By doing a decentralized auctioneer
the problem of trust disappears since all operators have a say in how the resources are
distributed; eliminating the need of different participant nodes to get an unfair advantage.
The solution considers both theoretical and practical implications of a decentralized
auctioneer, by using game theoretical perspective as well as limiting the communication
overhead.

3.2.2 Service offloading
All service placement techniques discussed in Section 3.2.1 focused on migrating an
application from the cloud closer to the edge of the network. However, such techniques
may be used for service offloading as well. Recent novel directions in distributed systems
have demonstrated advanced service placement techniques aiming to offload parts of
an IoT application from resource-constrained devices like smartphones to nearby edge
servers (e.g., mobile edge computing (MEC) nodes). By offloading high computational
demanding microservices, applications can run on end-user devices.

Avgeris et al. [ADAP19] propose a service offloading technique focusing on the efficient
utilization of edge servers. For this purpose, the authors introduce a two-level resource
allocation mechanism that allows users found in the area of an edge server to offload
computational tasks. However, the mechanism considers a cluster of edge servers without
taking into account other edge clusters or the mobility of users. Brandic et al. [MB18]
tackles the same problem of service offloading from mobile devices considering parameters
like application runtime, battery lifetime, and user cost as its objectives. In this case, the
authors propose a heuristic task offloading aiming to migrate computational tasks from
mobile devices to a heterogeneous architecture composed of both cloud and edge devices.
Another multi-objective task offloading technique is presented in [DMB19] aiming at
finding a balance between users’ satisfaction and providers’ profit. Chen et al. [CCW+19]
propose an intelligent resource allocation technique based on deep reinforcement learning
to offload tasks from resource-constrained devices to MEC servers. The objective is to find
an optimal resource allocation strategy that considers latency, energy consumption, and

21

3. Related Work

radio transmission bandwidth. Cicconetti et al. [CCP19] propose a low-latency distributed
computation offloading technique that aims at distributing tasks in a pervasive system.
By combining serverless and edge computing, a fully distributed domain is created
consisting of three different entities: (i) clients who wish to offload tasks, (ii) dispatchers
who are in charge of distributing the incoming tasks from clients to a group of computers,
and (iii) computers which provides the computational resources. The system is divided
into two main categories: an online phase where the dispatcher decided the distribution
of all incoming tasks and an offline phase where important functions, like the setup of
containers or dispatcher configuration, are performed. Liu et al. [LYWG20] propose a
task offloading technique that aims to minimize the system cost, i.e., energy and latency.
The technique groups the users into clusters based on their priorities and decided if a
cluster should run all its tasks locally or should be offloaded to an edge server.

With regards to resource auctioning techniques, in scientific literature, we can find
several proposals that focus on offloading tasks to edge devices. Grosu et al. [BBG18]
introduce an auction-based mechanism to perform resource allocation to MECs and
compute the related price for each resource. The premise is that mobile users compete for
computational resources available at the edge servers to execute IoT applications. Once
a user submits a request to the nearest edge server, the pricing mechanism computes
the price for that particular resource both in the cloud and edge. Based on the cost, the
user decides the deployment location of their application, i.e., edge server or cloud. Sun
et al. [SLYZ18] describes an auction-based solution where users bid for resources sold
by edge servers. For this purpose, the authors develop a two-sided approach to model
the interaction between a MEC server, i.e., the seller, and the bidders, i.e., the end-user
devices. To this end, a double auction scheme is used to efficiently map computational
resources of a MEC server to the needs of a mobile device by determining the matchmaking
between the bidders and sellers. Cao et al. [CZP18] present another resource auctioning
mechanism aiming to determine the optimal content placement on mobile edge devices,
based on user’s bids. Since the auctioneer determines the content allocation based on
user input (which may be untruthful), the authors propose a mechanism that can find
true valuations from the users and promote participation. Duan et al. [DLC17] propose
a reverse auction that considers partial fulfillment of tasks, as well as attribute and price
diversity. A distributed auction framework where each task owner is in charge of hosting
his/her auction without the need of collecting global information. The authors offer two
different auction schemes, i.e., the cost-preferred auction that schedules tasks according
to users’ asking price and time scheduled-preferred auction that considers their arrival
time.

3.2.3 Service Migration

Generally, resource placement techniques do not account for the volatility of edge
systems, where nodes have a high failure probability. As a solution to this challenge,
researchers propose a new adaptive mechanism, based on migrating services between
nodes. Govindaraj et al. [GJAK19] present an approach to perform smart resource

22

3.2. Resource management

allocation allowing them to achieve live migrations on demand. Since performing a
migration is an expensive task, the solution tries to minimize the migrations required
while maintaining the round trip time for each device under a certain threshold.

Gonçalves et al. [GVC+18] introduce a VM migration and placement technique for fog
environments. The technique consists of two parts, a proactive VM migration approach
that uses user mobility predictions and a VM placement approach based on Integer Linear
Programming. The latter aims at improving the VM placement on selected fog nodes.
Kassir et al. [KdVW+20] propose an adaptive distributed service placement technique
based on Least Ration Routing capable of migrating VMs to other locations when there
are changes in the network, i.e., a change in node location, a change in network size,
or network congestion appears. Mseddi et al. [MJEA19] describe an online intelligent
resource allocation solution capable of determining the optimal service mapping on fog
nodes and find a migration strategy considering the node’s available resources. The main
objective of this work is to maximize the number of satisfied user requests considering
latency as a QoS requirement. Rossi et al. [RCP20] introduce a self-adaptive technique
for deploying microservice-based applications in the cloud. The solution is a two-layered
hierarchical approach, based on MAPE cycles, capable of self-adapting based on a learned
microservices scaling threshold. In this case, the authors choose a decentralized approach,
where the first layer provides application-level feedback to the second layer which takes
decisions at the microservice level.

From the above resource management related works, we can observe that different
approaches are applicable for different problem settings. Heuristic approaches are
applicable in situations where the target edge system does not exhibit high uncertainty,
allowing for the necessary execution time to find near-optimal solutions. Typically,
heuristic approaches are used when high scalability and maximization/minimization of
available resources or application requirements are required. In contrast, in situations
where specific types of application and systems training data can be obtained, learning
approaches appear promising. Such learning approaches are also suitable for finding
optimal resource offloading in a distributed manner or adapting to changes found in the
application or the target system. Finally, in situations where constraints and objectives
can be expressed as constraints and the objective is to find an optimal solution, resource
management techniques based on ILP seems like a good fit. In this thesis, for our
adaptive and resource management frameworks, we make use of Satisfiability Modulo
Theories (SMT) and Constraint Programming (CP) – in our problem setting, we desire
qualities like fast reaction and providing guarantees that a found solution satisfies the
application’s requirements. In conclusion, in this thesis, we distinguish ourselves from the
resource management works previously mentioned by proposing a decentralized resource
management framework and an adaptive framework. The former differs from other
service placement solutions from three perspectives, i.e., (i) we guarantee that if there
is a solution possible, it is always found, (ii) we maintain device resource preferences
by enabling local decisions related to shared resources, and (iii) we perform resource
management in a decentralized manner, on resource-constrained devices without requiring

23

3. Related Work

any knowledge about available resources of participant nodes. The latter is capable
of (i) ensuring applications’ availability on target edge systems, (ii) avoiding container
migration and instead changing invocation paths, and (iii) when an application is placed
on edge nodes, the required number of replicas is adjusted considering nodes failure
probabilities and the application’s availability requirement.

24

CHAPTER 4
EdgeFlow - Developing and

Deploying Latency-Sensitive IoT
Edge Applications

The rise of the IoT paradigm has made the current cloud-centric systems face challenges
in satisfying the demanding requirements of latency-sensitive IoT applications, i.e., low
latency, privacy, and availability. To solve this challenge, researchers introduced two new
paradigms to extend cloud capabilities closer to the edge of the network, forming an edge
system where available computational resources are distributed among interconnected
heterogeneous and resource-constrained devices. This shift in architectural structure, from
a centralized architecture to a distributed one, has changed the IoT applications model
– an IoT application consists of multiple interconnected components1. A component is
capable of executing one part of the application’s functionality. However, developing
and deploying such an application model is not a trivial task since the developer must
(i) define and validate the application’s requirements at design time and (ii) find a
deployment strategy such that it satisfies all application requirements.

As described in Chapter 1, edge systems bring many advantages but introduce new
challenges as well. One of these challenges is related to the application development
process since the developer must divide the application’s functionality and define different
requirements for each component. This application model is in line with the flow-based
programming (FBP) paradigm [Mor10] concepts; an application consists of multiple
components that communicate via a communication flow to achieve its overall functionality.

1In this chapter, to be consistent with the FBP notation, we will refer to an application microservice
as a component.

25

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

Several FBP tools like noFlo 2, node-RED 3, and drawFBP 4 exist to aid the developer
in creating new IoT application models and define their communication flow. However, it
is still challenging to define and validate the application’s resource requirements during
the development stage.

In this chapter, we propose EdgeFlow, a new IoT framework for latency-sensitive IoT
applications deployment and development. Our main contribution is a methodology for
aiding the developer to build new IoT applications, at design time, by (i) defining new
timing and resource requirements, (ii) validating all requirements, and (iii) finding a
deployment strategy. More concretely, the contributions of this chapter are as follows:

• EdgeFlow. A methodology for latency-sensitive IoT applications development
and deployment. Our proposed methodology aids the developer in defining and
validating timing and resource requirements as well as finding optimal and feasible
deployment strategies.

• Development stage. We propose an extension of the FBP programming paradigm
with new concepts like timing and resource requirements. By introducing new
timing requirements, we support the definition of multiple e2e delays for different
communication flows for the developed application.

• Deployment stage. We introduce a novel resource allocation technique capable of
finding optimal or feasible deployment strategies. Our main objective is to find a
deployment strategy that satisfies all timing and resource requirements defined in
the development stage. At the same time, with the deployment stage we provide
validation for all application requirements introduced during the development stage.
Therefore, the developer can redefine the application’s requirements considering
the target edge system capabilities.

The remainder of the chapter is structured as follows. Section 4.1 provides an overview of
EdgeFlow and defines the application model, the target edge system, and the application’s
communication flows constraints, given as input files to the deployment stage. In
Section 4.2, we describe the implementation details of our proposed framework. Section 4.3
presents the application development methodology, while Section 4.4 shows the results of
our deployment stage evaluation. Finally, Section 4.5 concludes this chapter.

4.1 EdgeFlow: application development and deployment
framework

EdgeFlow provides a methodology for developing IoT applications and validates the
requirements by finding a deployment strategy on the target edge system – the proposed

2https://noflojs.org/
3https://nodered.org/
4https://github.com/jpaulm/drawfbp

26

https://noflojs.org/
https://nodered.org/
https://github.com/jpaulm/drawfbp

4.1. EdgeFlow: application development and deployment framework

methodology takes place at design time. As a result, depending on the type of the
target edge system, i.e., static or volatile, the deployment strategy devised during the
deployment stage can be more or less efficient. A static edge system represents a system
deployed in a controlled environment, e.g., in a smart manufacturing scenario, where
edge nodes have limited mobility and the edge system characteristics are know at design
time. In this setting, following the feasible and optimal deployment strategies devised by
our resource allocation technique, the developer can successfully deploy an application
on the edge nodes. However, if we target volatile edge systems, where nodes may fail or
leave the network, then the deployment stage may only provide application requirements
validation; a volatile system may change during the deployment stage while we search
for an optimal deployment strategy, rendering the deployment strategy unreliable. As a
result, we require a resource allocation technique capable of finding deployment strategies
at runtime. We introduce a decentralized resource management framework in Chapter 5
capable of deploying applications, at runtime, on resource-constrained devices. Figure 4.1
presents an overview of our EdgeFlow methodology consisting of three distinct stages,
i.e., (i) the development stage, (ii) the deployment stage, and (iii) the validation stage.

Va
lid

at
io

n
De

pl
oy

m
en

t
De

ve
lo

pm
en

t Model the application’s
components functionality

Connect components to
achieve desired

application functionality

For each component
provide timing and

resource requirements

Define flow constraints
Generate JSON files:

1. Application model file
2. Flow constraints file

Prepare the edge system
JSON file

Provide the three JSON
files as input to the
deployment stage

Find a deployment
strategy

Is the
deployment

strategy
optimal or
feasible?

Analyze the results and
make the necessary

adjustments

Start preparing to deploy
the application according
to deployment strategy

NoYes

Application
Developer

Figure 4.1: EdgeFlow methodology overview.

4.1.1 Development stage
During the development stage, we ensure that the developer can provide as much informa-
tion as possible regarding the currently developed application – information that improves
the chances to successfully deploy an application on the target edge system. We employ
FBP to develop new latency-sensitive IoT application and extend it to capture new

27

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

timing and resource requirements. Furthermore, we provide a higher granularity when
defining the application’s timing requirements, i.e., the developer can add a maximum
end-to-end (e2e) delay constraint to different communication flows. An IoT applica-
tion has multiple communication flows, ranging from a communication flow defined by
the communication link between two components to a flow containing all application’s
components (if possible).

The FBP paradigm views an application as a network of processes, i.e., components,
interconnected via predefined communication links. Each component runs asynchronously
and communicates via streams of data chunks, i.e., Information Packets (IPs) [Mor10].
FBP is component-oriented, allowing the developer to develop different applications
using the same network of components by connecting them differently – a practice
that improves the application development process and enhances the reusability of
components. However, FBP is not a coding language, making this paradigm ideal
to build applications by choosing predefined components from a library. Therefore,
providing this separation between components and application development, facilitating
an application development environment where it is not required for an application
developer to have technical background – the developer can build the application using
the existent components.

Flow WCCD WCET

TimingConstraint

NetworkElement
ComponentElement

OutChannel

Channel

InChannel

Port
name: String
type: String

ParameterDef
name: String

Component
name: String

Process
name: String

Parameter
name: String
value: Data

Connection

Network

OutPort InPort

1..n

0..1 0..1 0..1

0..n 1 0..n1

10..1

0..n

1

source 1..10..1

target
1..10..1

Figure 4.2: The FBP paradigm extension metamodel.

Currently, the FBP paradigm does not provide the possibility to define Quality of
Service (QoS) requirements, i.e., timing requirements, data locality, affinity and anti-
affinity constraints between components, privacy [TAD19, RB19], and security [XJL+19],
during the application’s modeling stage. In this chapter, we target the development and
deployment of latency-sensitive IoT applications – one of the fundamental concerns of
these applications is latency. To this end, we propose an extension of the current FBP

28

4.1. EdgeFlow: application development and deployment framework

paradigm with new timing requirements5. Three essential timing requirements define a
latency-sensitive IoT application, i.e., worst-case execution time (WCET), worst-case
communication delay (WCCD), and the ability to define a maximum e2e delay for
different communication flows. In the application model, a communication flow consists
of two or more components and their communication links. Therefore, to compute the
e2e delay of a communication flow, we must know the component’s WCET and the
communication’s WCCD. The WCET represents the time required by a component to
produce a result, while the WCCD is the time an IP needs to travel from its source to
its destination. In [ZBS18], authors formalized the syntax and semantics of Flow-Based
languages, proposing a metamodel for FBP. Figure 4.2 presents our extended metamodel
based on their formalism.

Besides the ability to define the application’s timing and resource requirements, the
development stage allows the developer to generate two input files used by the deployment
stage, i.e., the application model file and the flow constraints file. As the name suggests, in
the former, we store the application’s resource requirements as well as the communication
links used by the components into a JSON file. In contrast, in the latter, we save each
communication flow defined by the developer during the application development process.

Application model file

An application model defined with FBP consists of a set of components C={c1, c2, ...
} that collaborates to perform a certain goal. An application may have one or more
source components (i.e., the component that provides the required data) and at least
one sink (i.e., a component that acts upon the environment according to the received
information). In Figure 4.3, we present an example of an application model having one
source and two sinks, where we can observe an example of a communication flow starting
with the source component, i.e., c0, and finishes with two sink components, i.e., c4. There
are other possible communication flows, e.g., starting with c0 and ending with c6.

c0 c2

c3

c1 c4

c5 c6

Figure 4.3: Latency-sensitive IoT application model.

5We identify all other QoS requirements as an interesting path for future work. Furthermore,
researchers can contribute to the IoT application modeling paradigm by providing extensions for new
requirements.

29

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

A component ci performs a certain functionality and represents a containerized microser-
vice. Each component is characterized by a set of timing and resource requirements,
Creq={r1, r2, ... } as well as a set of input and output ports, Cin={in1, in2, ... } and
Cout={out1, out2, ... } – the developer defines these requirements according to the
application’s goals. A resource requirement represents the generic memory (i.e., RAM),
computational power (i.e., CPU), and storage (i.e., HDD) requirements, while the WCET
of a component is an example of a timing requirement. To fit better the application’s
needs, in Chapter 5, we extend the components’ resource requirements with specific
requirements, e.g., hardware requirements like GPUs for high computational components
or specific data that must be present on the host node.

Flow constraints file

We offer the developer the possibility to define e2e delay constraints for multiple commu-
nication flows found in the application model. Recall that to compute the e2e delay of a
communication flow, we must consider both the WCET of each participant component
as well as the communication latency associated with the links used by components
to exchange IPs. Therefore, a communication flow will always consist of at least two
components and one communication link. For example, for the application model shown
in Figure 4.3, the developer can create multiple flow constraints. There are three big
flows consisting of the following components: (i) c0 − c2 − c5 − c6, (ii) c0 − c3 − c5 − c6,
and (iii) c0 − c1 − c4 respectively. However, the developer can add a constraint even
for a smaller flow consisting of a minimum of two components, e.g., c0 − c1. In this
chapter, we assume that the developer provides constraints for the minimum number of
communication flows required to involve all components found in the application model.
If any component remains outside of a defined flow constraint, then our deployment stage
will consider it as a single component with no dependencies.

Grammar 4.1: Flow Constraint Language
<Delay> :: <Number> ms | <Number> ns
<BooleanOp> :: < | > | >= | <= | =
<FlowSource> :: <InPortID> | <DataPacketID>
<FlowSink> :: <OutPortID> | <ComponentFlow>
<ComponentFlow> :: <InPortID> <ComponentID> <OutPortID>
<FlowPath> :: <FlowPath> -> <ComponentFlow> | <ComponentFlow>
<Flow> :: <FlowSource> -> <FlowPath> -> <FlowSink> | <FlowSource> -> <FlowSink>
<FlowConstraint> :: <FlowID> : <Flow> <BooleanOp> <Delay>
<FlowConstraints> :: <FlowConstraints> ; <FlowConstraint> | <FlowConstraint>
<FlowConstraintsDef> :: flow constraints <AppID> <FlowConstraints> end

EdgeFlow utilizes a mini-language to specify the flow constraints, see Grammar 4.1. The
developer can specify the flow constraints, i.e., the communication flow’s path and the
maximum e2e delay, using the proposed mini-language. In Formula 4.1, we present an
example of a flow containing two components c1 and c2. In the flow declaration, the IN
and OUT represent the name of the input and output ports used by each component.
As we can observe, the colon separates the flow’s path declaration from its id, while ≤
shows the relation between the path and the e2e delay and → represents the direction of

30

4.1. EdgeFlow: application development and deployment framework

the communication. Furthermore, the last component does not need an output port, this
highlighting that the path is ending.

path1 : IN c1 OUT → IN c2 ≤ e2eDelay (4.1)

4.1.2 Deployment and validation stages

The deployment stage provides validation for defined application constraints by determin-
ing eligible deployments (if any) of the designed application to the target edge system.
We cast our deployment technique within CP paradigm [RVBW06], where we define the
deployment constraints as a constraint satisfaction problem. Consequently, the deploy-
ment stage can discover feasible or optimal deployment strategies. A deployment strategy
that (i) satisfies each component resource requirements while not exceeding the device’s
available resources and (ii) meets the communication flow constraints, i.e., ensuring that
the e2e delay of each communication flow does not exceed the allocated one. Notice that
CP fits rather well with our deployment stage since our primary focus is to validate the
application’s requirements – CP provides guarantees that if a deployment strategy is
possible, then it satisfies all requirements. To deploy an application, the deployment
stage requires information regarding the application model and the target edge system.
The developer provides all required information as three input files, i.e., application model
file, flow constraints file, and edge system file; the developer can generate the first two
input files using the development stage, while the third file can be created manually or
obtained from the system administrator.

Edge system file

Let EN={E1, E2, ... } be a set of edge nodes found in the target system. Each node is
characterized by a set of available resources, Eres={r1, r2, ... }, like RAM, CPU, and HDD,
and a list of communication links Linkcom={link1, link2, ... } – each linki having associated
a bandwidth. Depending on the characteristics of the target edge system, we identify two
different types of systems, i.e., a volatile edge system and a static edge system. The former
consists of edge nodes characterized by mobility and heterogeneity, introducing a high
uncertainty level that makes the deployment of an application at design time impractical.
Such an edge system can be found in a typical smart city scenario. In contrast, the
latter is characterized by a low uncertainty since nodes’ behavior is predictable and their
characteristics are known at design time – a system seen in a smart city scenario. Since
the edge system is not modeled with the FBP paradigm, we assume that the developer
obtains the edge system file from the system administrator, i.e., considering the static
platform scenario. In the case of a volatile edge system, the developer can create the file
using techniques that can estimate the current edge system’s available resources from
the historic data stored in the cloud.

31

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

4.2 Application development and deployment stages
EdgeFlow consists of two core stages, i.e., the development stage and the deployment stage.
For the former, we develop a prototype to prove the proposed application development
concept, while for the latter, we propose a resource allocation technique capable of
providing deployment strategies such that it satisfies all application requirements and
constraints. In this section, we discuss in detail the two stages and their implementation.

4.2.1 Development stage prototype

To prove the benefits of creating a new latency-sensitive application using EdgeFlow, we
develop an application development prototype based on drawFBP. DrawFBP uses FBP at
its core and allows developers to create diagrams using blocks, i.e., components [Mor10].
An advantage of drawFBP is represented by component reusability – developers can share
their components with other developers to create different applications. A component
can be created using multiple programming languages like Java, C#, or even JSON. As
a result, the developer can use existing components from the drawFBP library during
the application development process. In this scenario, the development process resumes
combining the selected components with communication links such that the applications
perform the desired functionality. However, defining the application’s communication
flow and choosing the components is not enough; the developer must define specific
requirements for both the communication flows and for each component.

We extend drawFBP with new options, like set component requirements, set flow con-
straints, application model: generate JSON file, and flow constraints: generate JSON file,
offering developers the possibility of adding timing and resource requirements. Using the
set component requirements, the developer can describe for each component the following
characteristics, i.e., WCET, period, IP size, and resource requirements (RAM, CPU,
HDD). Furthermore, the developer can define different e2e delay constraints for custom
communication flows using the set flow constraints option. Finally, the developer can
generate the two input files using the application model: generate JSON file and flow
constraints: generate JSON file respectively.

4.2.2 Deployment stage technique

Our deployment technique helps the developer to validate the application’s requirements
considering the target edge system. Using the output of the deployment stage, the
developer gets more clarity in defining the component’s resource requirements and the
application’s constraints. Two possible cases can lead to deployment failure, i.e., (i) the
deployed application has very stringent requirements or (ii) the target edge system lacks
the required available resources to host the application. Under these conditions, if either
of the two cases is true, the developer can make the required adjustments accordingly
to enable the deployment on that target system. Therefore, the developer can use the
deployment stage to understand if the application requirements can be satisfied by the

32

4.2. Application development and deployment stages

edge system’s available resources. Using EdgeFlow, the developers can create better
application models suitable for deployment on a large variety of systems.

As mentioned in the previous section, we implement the resource allocation technique
using CP. Depending on the strategy found, CP can return one of the four different
status values, i.e., (i) optimal, (ii) feasible, (iii) unknown, and (iv) infeasible. If the CP
solver returns one of the first two, i.e., status (i) and (ii), then a deployment strategy
that satisfies the application’s requirements is found. In contrast, if the returned status
is (iv), then the CP solver cannot find a deployment strategy that meets all requirements
– a deployment strategy does not exist. Finally, since the CP solver allows the developer
to set a predefined time to search for a solution, there is another state, i.e., (iii), returned
when the solver cannot find a deployment strategy in the allocated time. However,
compared to state (iv), the CP solver is unable to guarantee that with more time a
deployment strategy will not be found. Therefore, in this case, the developer should
increase the time or try to find the optimal solution. To find a deployment strategy we
need to provide a CP model of the problem to the CP solver. Therefore, we model the
problem using decision variables, constraints, and a global objective.

Decision variables

Based on the information received as input, we can create a set of decisions variables used
in the CP model. A decision variable represents a variable for which the CP solver tries
to assign a value chosen from a predefined domain such that it satisfies the application’s
requirements. In our case, we identify four different decision variables, i.e., component
variables, latency variables, WCET variables, and resource variables.

In the component variables, we define for each component a variable domain containing a
list of edge nodes that are suitable hosts for the current component. For example, let us
consider that component c1 can be mapped only on three edge nodes, i.e., E1, E2, and
E3; hence, a valid domain for the decision variable of c1 is D={E1, E2, E3}. Under these
conditions, the solver can only map c1 on one of the nodes available in D. To decide
what node to choose from D, the CP solver uses the other variables as support. Using
the resource variables we can filter out the nodes that lack the available resources to
host a component by keeping track of the edge node’s available resources. Every node
starts with a predefined set of available resources; resources that are diminished with
the resource requirements of already mapped components. An approach that ensures
the correct distribution of components on nodes, without exceeding the node’s available
resources. However, using only the available resource of nodes does not guarantee that a
deployment strategy fulfills the application’s requirements defined in the flow constraints
file. As a result, we introduce two new decision variables to successfully validate the flow
constraints, i.e., the latency variables and the WCET variables.

The latency variables are in charge of saving the communication latency between two
components considering their mapping. Let us consider that two components c1 and c2
communicate with each other – c1 is mapped on E1 and c2 is mapped on E2. To compute

33

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

the latency required to transfer an IP between the two components, we can use the IP
size and the communication link bandwidth. To build the variable’s domain, we use the
dependencies between components described in the flow constraints input file and all
possible locations from their respective domains devised in the component variables. As
a result, to compute the communication latency between two dependent components,
ci and cj, we take all possible distinct edge node combinations from their associated
domains.
The WCET variables serves a similar purpose as the latency variables but has a different
effect, i.e., to store the WCET given to each component. Since the WCET of a component
is strictly dependent on the host’s internal status, obtaining the exact WCET of a
component is challenging; the edge system consists of multiple heterogeneous devices,
requiring a complete analysis of the WCET of a component on every edge node. We
consider such analysis as out of scope for the current approach. Therefore, to lower the
challenge in finding a suitable WCET, we assume the developer can provide a lower and
an upper bound for the WCET of each component.
We can continue with the introduction of our constraints since we have added all the
decision variables to our CP model. With these constraints, we enforce a set of rules to
which the CP solver must abide – these rules guide the solver towards a feasible deployment
strategy that satisfies the application’s objectives. For this purpose, considering the
EdgeFlow’s objectives, we define two different constraints, i.e., components constraints
and flows constraints.

Constraints

We start by introducing a set of constraints for each component, i.e., components
constraints, to ensure that the distribution of components on edge nodes does not exceed
the node’s available resources. To achieve such purpose, the components constraints make
use of the following decision variables, i.e., component variables and resource variables.
Formula 4.2, Formula 4.3, and Formula 4.4 guarantee that a deployment strategy does
not exceed nodes’ available resource, where nc represents the total number of components
mapped on the current node.

usedCPU =
nc

i=1
tCPU ≤ availalbeCPU (4.2)

usedRAM =
nc

i=1
tRAM ≤ availableRAM (4.3)

usedHDD =
nc

i=1
tHDD ≤ availableHDD (4.4)

By validating the components constraints, we can successfully deploy the application on
the target edge system. However, for the moment, we deploy an application considering

34

4.3. Application Development methodology

only its resource requirements – we do not make use of the other decision variables to help
us compute the e2e delay of a communication flow. Therefore, we introduce a new set
of constraints, i.e., flows constraints, to reinforce the constraints introduced in the flow
constraints file. We enforce the flow constraints on the deployment strategy by combining
three decision variables, i.e., the components variables, the WCET variables, and the
latency variables. In conclusion, by adding these constraints to the CP model, we consider
both the flow’s constraints and the component’s resource requirements. Equation 4.5
guarantees that the flow’s e2e delay does not exceed the maximum e2e delay associated
with it; remember that the e2e delay of a flow is the sum of all participant components’
WCET and their communication latency. These constraints are captured in Formula 4.5,
where lf represents the total number of communication links found in a flow f, cf is the
total number of components part of a flow f, and maxE2Edelayf represents the maximum
e2e delay allowed for flow f.

e2eDelay =
lf

link
linklatency +

cf

c
cwcet ≤ maxE2Edelayf (4.5)

Global objective

The purpose of this objective is to minimize the e2e delay of each flow. In doing so, we
obtain a solution that offers an optimal deployment strategy if no time limit is imposed.
We capture the global objective in Formula 4.6, where nf represents the total number of
flow constraints defined in the flow constraints file and flowE2Ei is the current e2e delay
of flow i.

Min(
nf

i=1
flowE2Ei) (4.6)

4.3 Application Development methodology
In this section, we evaluate EdgeFlow applicability in a real scenario by presenting the
application development experience. We present the entire process required to build and
deploy a latency-sensitive application (see Figure 4.1), i.e., we present the (i) application
development stage, (ii) deployment stage, and (iii) validation stage. We start by describing
the development process where we build the application’s model and define its timing
and resource requirements. Furthermore, we conclude this stage by generating the two
input files required by the deployment stage, i.e., the application model file and the
flow constraints. With the two files ready, we can proceed with the deployment stage.
However, remember that this stage requires information regarding the target edge system
– therefore, the developer must prepare and provide this file. Once the edge system
file is ready, we can start finding a deployment strategy for our application. Based on
the results, we can validate the defined application’s requirements. The application

35

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

development prototype and the deployment stage technique are available in our online
appendix 6 and our git repository7.

As a running exemplar, we model a public safety IoT application deployed in a smart city
scenario. The application aims at preventing any possible disaster scenario by analyzing
all the images and videos from an area. The application consists of components capable
of analyzing both the environment as well as people. For example, the application sends
an emergency signal to the police department if a suspicious package is found in the
monitored area. Considering the safety implications, the application must adhere to some
strict timing requirements such as low e2e delay to be able to provide alerts without
delay. Thus, the application must execute at the edge of the network. As a consequence,
a prerequisite for the developer is to validate the timing and performance requirements
on the target edge system before deploying the application. As we will show, EdgeFlow
is capable of performing such validation. Since our focus is to show the extensions and
improvements we bring with our proposed IoT framework, we assume that the public
safety application’s components are available in the drawFBP library. In this setting, the
developer must connect the components and add the timing and resource requirements.

Development stage

Using the application development prototype, the developer can create all components
required for the application, add their functionality by choosing it from the drawFBP
library, and connect them via ports to create the desired application’s goal. In our
case, the public safety application consists of four components, each enacting a specific
functionality (see Figure 4.4) – for example, MotionDetection.class represents a java class
where the functionality of c1 resides. By following the described steps, the developer
creates the application model without defining the timing and resource requirements.

The developer can specify the application’s timing and resource requirements using
our FBP extension options presented in Section 4.2.1 – the developer can add these
requirements at any time, either after the application’s model is complete or when
components are added. To assign the component’s requirements, the developer can use
the option set component requirements available in the component menu; right-click
on the target component to access this menu. The process of setting the component’s
requirements goes through each requirement and asks the developer to provide a value or
a range (in the case of WCET). To create new flow constraints, the developer can select
the set flow constraints option from the file menu and define a new flow constraint using
the mini-language presented in Section 4.1.1. We have added multiple support options
as well, e.g., with display flow constraints the developer can see what flow constraints
are currently defined and with delete flow constraints the developer can delete any flow
constraint that is no longer desired. Similarly, we provide a display option for the
components as well to see the current requirements. Finally, the developer can store the

6https://dsg.tuwien.ac.at/team/cavasalcai/projects/EdgeFlow
7https://github.com/cavasalcai/EdgeFlow

36

https://dsg.tuwien.ac.at/team/cavasalcai/projects/EdgeFlow
https://github.com/cavasalcai/EdgeFlow

4.3. Application Development methodology

Figure 4.4: Public Safety Application DrawFBP model.

information into the two required input files by using the following options available in
the file menu, i.e., Application Model: generate JSON file and Flow Constraints: generate
JSON file.

Deployment stage

In Table 4.1, Table 4.2, and Figure 4.5 we present the contents of the three input files,
i.e., the two generated from the development stage and the edge system file given by the
developer. Table 4.1 shows the target edge system, where we can see the node’s available
resources, connections with other nodes, and the bandwidth of each communication
link. For example, E0 can reach E1 and E2 – the communication link between E0 and E1
has a bandwidth of 10 units/sec, while the communication link between E0 and E2 has
associated a bandwidth of 15 units/sec. We choose for each available resource, i.e., RAM,
CPU, HDD, a value between 15 and 30 units – the deployment stage can operate with
different units, e.g., MB or GB, as long as there is consistency between the available and
required resources.

Nodes Available Resources Connections
RAM CPU HDD destination bandwidth

E0 20 22 15 E1 10
E2 15

E1 17 30 18 E0 10
E2 15

E2 15 25 16 E0 15
E1 15

Table 4.1: Edge Computing platform characteristics.

37

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

In Table 4.2, we present the application’s timing and resource requirements. For our
public safety application, we choose for each component the following: all resource
requirements have a value between 1 to 15 units, we randomly select a data size value
between 30 and 115 units, and add a custom range for the WCET considering each
component functionality.

Components Resource Requirements WCET Data
sizeRAM CPU HDD

c1 6 7 5 [5, 9] 60
c2 13 15 7 [20, 35] 90
c3 10 13 10 [15, 25] 75
c4 3 2 3 [2, 4] 30

Table 4.2: Public Safety Application resource and timing requirements.

Finally, in Figure 4.5, we present the two flow constraints, i.e., f1 and f2, added for the
public safety application. As we can observe, to define a flow constraint we must provide
an id, the communication flow path, and the maximum e2e delay. For f1, we choose the
following communication path c1 − c2 − c4 and an e2e delay equal to 40 ms, while f2 is
having the following path c1 − c3 − c4 and a maximum e2e delay equal to 33 ms. To
choose the maximum e2e delay, we consider the sum of the lower bound of the WCET
of all components found on the communication flow, to which we add 10 more ms; this
reflects the impact of the communication latency between components.

Figure 4.5: Communication Flow constraints for public safety application.

With the three files ready, the developer can start the process of finding a satisfiable
deployment strategy. Considering the target edge system, the deployment technique
tries to find an optimal or feasible deployment strategy. Depending on what status the
CP solver returns, the developer must decide if the application’s requirements must be
changed to accommodate the target edge system capabilities or try to find a more suitable
edge system for the deployed application. In Figure 4.6, we present the deployment
strategy returned by the deployment stage. We highlight the host node of each component
by placing the node’s id on the top left corner. For example, component c1 is mapped

38

4.4. Evaluation

on E0 and component c2 is mapped on E1. In this case, the deployment stage finds the
optimal deployment strategy in 10 ms.

raw
data

c1: motion
detection

c2: face
recognition

c3: env.
analysis

c4: send
alarm

E0
E0

E2
E2

Figure 4.6: Deployment strategy for public safety application.

The deployment stage returns a detail report showing the communication latency be-
tween components and their WCET concerning each communication flow constraint. In
Table 4.3, we show the report in which we present the actual e2e delay of each flow, the
communication latency for dependent components, and the components’ WCET. For
example, for f1 the communication latency between components c2 and c4 is equal to 6
ms. To conclude, we can observe that for the optimal solution, our deployment technique
manages to minimize the flows’ e2e delay – the actual e2e delay of flow f1 is 33 ms, while
for f2 is 26 ms.

Flows Components Communication Latency e2e
delayID WCET destination latency

f1

c1 5 c2 0

33c2 20 c4 6
c4 2 - -

f2

c1 5 c3 4

26c3 15 c4 0
c4 2 - -

Table 4.3: Flows actual e2e delay and communication latency.

Validation stage

In the validation stage, the developer makes a decision regarding the defined application’s
requirements based on the information presented in the deployment report. In our
case, the deployment stage has found an optimal deployment strategy that fulfills all
application requirements – therefore, there is no need to redefine the timing requirements.
However, if the deployment stage cannot find a solution, then the developer can change
the requirements and employ the deployment stage again.

4.4 Evaluation
To quantitatively evaluate our deployment stage, we consider as a performance metric the
execution time required to obtain an optimal mapping of components to the target edge

39

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

system. We are interested in finding how certain markers like (i) the application size,
(ii) the total number of edge nodes, and (iii) the number of flow constraints impact the
deployment stage performance. Considering our evaluation objective, we propose three
distinct scenarios, each having a different application model and flow constraints input
files. Furthermore, in every scenario, we increase the number of available edge nodes
present in the target edge system; each system has a different number of available edge
nodes. We can obtain these files using the application development stage, as proven in
Section 4.3. However, considering our evaluation objective, it is not feasible nor required
to develop the applications and add each timing and resource requirements manually –
for each scenario, we randomly generate all input files using different procedures.

Application model file: generation

All considered applications follow the same model, i.e., each has one source component
and one sink component. A decision that does not alter the evaluation objective since
an application with multiple sources and sinks only implies a higher initial number of
flows. We choose a different number of components for each scenario – the application
in the first scenario has 10 components, while the other two scenarios have 20 and 30
components respectively. We model the component’s resource requirements as a tuple,
i.e., (RAM, CPU, HDD), choosing for each resource a random value between [5, 15]
units. Similarly, for the component’s WCET range, i.e., [l, u], we choose a value for l and
u from [4, 10] ms and [10, 12] ms respectively. We set the other component requirements
as follows: the period has a value between [10, 30] ms, the IP’s data size is between [30,
120] bytes, and we define a total of two input and two output ports.

Edge system file: generation

For our evaluation, we create multiple target edge systems, each having a size between 10
and 500 nodes. For each application size, we gradually increase the size by 10, generate
the edge system file, and employ the deployment stage to find an application deployment
strategy – this approach yields a total of 50 deployments for each scenario. Similar to
the components’ resource requirements, we model the available resources of an edge node
as a tuple and choose for each resources a value between [15, 30] units. Furthermore, we
choose for each communication link an available bandwidth between [30, 90] bytes/ms.

Flow constraints file: generation

Our intent is to define randomly different flow constraints for each scenario – flows that
have different communication paths and sizes. For every scenario, we have defined three
flow constraints files, i.e., a file containing (i) one flow, (ii) three flows, and (iii) five
flows. Remember that the developer must define flow constraints such that it involves
all communication links and components at least once. As a result, in our procedure,
the first flow will always traverse the application from the source component to the sink
component; involving all other components in between.

40

4.4. Evaluation

We have developed a procedure to help us build the flow constraints file. The procedure
takes as input the total number of flow constraints and the maximum e2e delay. We set
the maximum e2e delay to a high value, i.e., 500 ms, for all flows. Choosing a smaller
e2e delay does not impact the deployment stage’s performance; however, it may influence
its ability to find a deployment strategy if we set the e2e delay to a very stringent value.
Moreover, in Section 4.3, we have demonstrated the capability to generate deployment
strategies under demanding e2e delay requirements.

To create a communication path between the participating components, the procedure
creates a pair of two components, i.e., (src, dest), starting from the source component
and selects the next destination components. Next, we create a new pair using as src the
dest component from the previous pair and choosing as the new dest a new component.
The procedure continues until the destination becomes the sink component. For example,
let us consider that we want to build flow f1 from Section 4.3. In this case, we have four
components involved in f1, i.e., C={c0, c1, c2, c4 }. To build the flow constraint, the
procedure starts from c0 and chooses the destination c1 forming the first pair (c0, c1).
Next pair is formed by making c1 as the source and choosing c2 as the new destination,
resulting in the new pair (c1, c2). Finally, the procedure stops with the pair (c2, c4),
since c4 is the sink component. To build the other flows, we randomly select the number
of participating components, i.e., C, and restart the procedure.

To evaluate the performance of our deployment stage, we find an optimal deployment
strategy for each scenario, gradually increasing the system size and defining only one flow
constraint. In Figure 4.7, we present the execution time required by the deployment stage
to find an optimal deployment strategy for all three scenarios. The x-axis represents the
total number of nodes found in the target system, while y-axis represents the execution
time in seconds.

In Figure 4.7, we show the total execution time required by the deployment stage to
yield an optimal deployment strategy. However, the deployment technique consists of
two different parts, i.e., (i) building the CP model and (ii) solving the model using a CP
solver. As a result, we are interested in finding how much time the deployment stage
requires for each part (see Figure 4.8). In Figure 4.8b, we present the execution time
required to generate the CP model, while Figure 4.8a presents the time required by the
CP solver to find an optimal deployment strategy.

In all experiments presented above, we have kept the number of flow constraints equal to
1. However, we are interested in observing the impact of multiple flow constraints on
the execution time of both the CP solver and the CP model. Therefore, we remake the
evaluation increasing the number of flow constraints as well – we perform 50 deployments
using a total of 3 and 5 flow constraints respectively. In Figure 4.9, we show the execution
time required to solve a model for each scenario, while in Figure 4.10 we show the time
required to build the CP model.

41

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

0 100 200 300 400 500

of nodes

0

100

200

300

400

500

600
ti

m
e
 [

s
]

scenario_1

scenario_2

scenario_3

Figure 4.7: Execution time of the deployment stage for different scenarios over different
edge systems sizes, considering only one flow constraint.

0 100 200 300 400 500

of nodes

0

50

100

150

200

250

300

350

ti
m

e
 [

s
]

scenario_1

scenario_2

scenario_3

(a) CP solver.

0 100 200 300 400 500

of nodes

0

50

100

150

200

ti
m

e
 [

s
]

scenario_1

scenario_2

scenario_3

(b) CP model.

Figure 4.8: Execution time of (a) finding a deployment strategy and (b) building the CP
model over different edge system sizes, considering one flow constraint.

42

4.4. Evaluation

0 100 200 300 400 500

of nodes

0

50

100

150

200

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(a) Scenario 1.

0 100 200 300 400 500

of nodes

0

50

100

150

200

250

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(b) Scenario 2.

0 100 200 300 400 500

of nodes

0

200

400

600

800

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(c) Scenario 3.

Figure 4.9: Impact of the number of flow constraints on solver execution time considering
all three scenarios.

0 100 200 300 400 500

of nodes

0

20

40

60

80

100

120

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(a) Scenario 1.

0 100 200 300 400 500

of nodes

0

50

100

150

200

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(b) Scenario 2.

0 100 200 300 400 500

of nodes

0

50

100

150

200

250

ti
m

e
 [

s
]

flow_1

flow_3

flow_5

(c) Scenario 3.

Figure 4.10: Impact of the number of flow constraints on model execution time considering
all three scenarios.

4.4.1 Discussion

We have demonstrated that with the proposed deployment technique, we can successfully
find an optimal deployment strategy. Contrary to how we chose the flows’ maximum e2e
delay in Section 4.3, we have decided to choose a less stringent maximum e2e delay since
this does not impact our evaluation results; we use the same e2e delay for all scenarios.
Results of Figure 4.7 show that (i) the number of nodes found in the target system
and (ii) the application’s size impacts the execution time required to find an optimal
deployment strategy. Breaking down the execution time, see Figure 4.8b and Figure 4.8a,
we can conclude that the time required to build the CP model represents around 42 %
from the total execution time while solving the model requires the remaining 58 %. In
both cases, we can see an increase with the number of nodes and components.

In Figure 4.9, we have demonstrated that the number of added flow constraints impacts
the execution time required to solve a CP model. In contrast, we can see from Figure 4.10
that an increase in flows will marginally increase the time required to generate the CP
model. It is normal to have an increase in execution time for the CP solver; with the
addition of new constraints, the problem becomes harder to solve, hence requiring more
time. However, this is not the case when building the CP model since we only create

43

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

more variables for the added constraints.

In our evaluation tests, we can observe that the execution time for building the CP model
gradually increases with an increase in the (i) number of nodes, (ii) number of components,
and (iii) number of flow constraints. An expected behavior, since the number of model
variables and constraints increases in the CP model. As a result, we can conclude that
the constraints themselves do not impact the execution time for building the CP model.
In contrast, the execution time required by the CP solver has the same trend, but it
fluctuates between different deployments when the application size grows. A trend that
is the result of all the optimizations the CP solver has. The CP solver’s execution time
depends more on how complex the problem is; the complexity depends on the node’s
available resources, the application size, the component’s resource requirements, and the
defined flow constraints. For example, in Figure 4.9c, we can observe that the solver
manages to find a deployment strategy faster when there are 5 flows than when we have
3 flow constraints. However, since we built the scenarios randomly and the CP solver has
its own optimizations, we cannot say with certainty why this behavior appears or the
fluctuations in execution time.

Finally, one advantage of using CP for our deployment technique is the ability to allow
the developer to set a maximum execution time for the CP solver. Consequently, if the
developer is not interested in finding the most optimal application deployment, then the
developer can limit the CP solver’s execution time. For example, we can find a feasible
deployment strategy for scenario 3, having one flow constraint and an edge system size
of 500 nodes (see Figure 4.8a), in 120 ms. An approach that can further lower the
total execution time required to find a deployment strategy, in return lowering the time
required by the developer to validate all defined requirements. It is important to mention
that if we do not give enough time to the CP solver to arrive at a conclusion, then the
solver returns the ’UNKNOWN’ status – the solver does not have enough knowledge to
determine if the solution is infeasible or feasible. As a consequence, the developer should
pick a reasonable time for complex problems.

We acknowledge the high computational demands of our deployment stage when finding
optimal deployment strategies for scenarios where the problem becomes too complex. We
can see in Figure 4.7 that the deployment stage requires around 600 seconds to find the
optimal deployment strategy for scenario 3. However, we argue that the execution time is
not an issue since the deployment stage takes place at design time when the application
is not operational – thus, it does not impact the application performance. Furthermore,
EdgeFlow’s primary objective is to assist the developer to develop new IoT applications
at design time. Later in this thesis, we will present resource management techniques
capable of deploying and managing applications at runtime.

4.4.2 Challenges and Limitations
We identify two types of latency-sensitive applications that would benefit from edge
computing, i.e., the hard real-time IoT applications and soft real-time IoT applications.

44

4.5. Conclusion

Both applications are similar since their correct functionality relies on having a low e2e
delay and meeting their deadlines. However, there is an important distinction between
the two, i.e., violating the deadline of a soft real-time IoT application may be acceptable
since it only impacts the application’s performance; in contrast, missing the deadline
of hard real-time applications can have catastrophic events. Hence, in this chapter, we
focus on the development of soft real-time IoT applications offering the possibility to
validate only the e2e delay set for each flow, i.e., it does not violate its maximum allowed
e2e delay deadline for a certain flow. We do not provide time analysis strategies for
validating the component’s WCET on the host node.

There are two main challenges for the developer during the application modeling stage,
i.e., assigning the WCET and the resource requirements for each component. The
former plays an important role in the overall e2e delay while the latter is critical for the
deployment technique – without knowing the component’s resource requirements, the
deployment technique cannot devise a deployment strategy. Finding the WCET is not
a trivial task. The WCET of a component is directly dependent on the host node, i.e.,
the developer must know the internal status of the node (i.e., the current load and the
available resources) and the location of the component. An approach to determine the
component’s WCET is to compute it at deployment time. We can integrate the WCET
analysis into the deployment stage similar to how we do for the latency communication
computation. An approach that automates the process of finding of WCET and simplifies
the application developer tasks. In this chapter, we assume that the developer provides
the WCET using an external tool; the implementation of an automatic approach is our
target for future work. Similar to the WCET computation, finding the component’s
resource requirements is a challenging task. One option to find and estimate these
resources (i.e., RAM, CPU, HDD) is to benchmark the application on multiple edge
systems and take the maximum usage as an estimate.

Finally, besides finding a mapping of components to nodes, we must map the input
and output virtual ports as well. There are two approaches that we can follow to
achieve port mapping, i.e., manual and automatic. The former requires that the engineer
performs manually the mapping of virtual ports to the host node real ports following
the deployment strategy suggestion; a scenario that is possible only if the target edge
system is known and has a relatively small size. In comparison, in the latter approach,
the resource allocation technique is in charge of mapping the ports and the components
without requiring the help of an engineer.

4.5 Conclusion
To enable any resource management framework to find deployment strategies that satisfy
the application’s requirements, it is important to have as much information as possible
regarding the received application like (i) the application’s communication flow, (ii)
the application’s components descriptions, including the resource requirements, and
(iii) the application’s objectives. As a result, the application developer requires an

45

4. EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge
Applications

approach to build an application and to provide all this information. EdgeFlow fulfills the
same purpose and assists the developer throughout the entire application development
and deployment process. For this framework, we propose a methodology for latency-
sensitive IoT applications consisting of three important stages, i.e., the development
stage, validation stage, and deployment stage. For the development stage, we propose an
extension of the FBP paradigm with timing and resource requirements; requirements
that are crucial to the successful deployment of the application on the target edge system.
Further, we consider multiple communication flow constraints, ensuring that the e2e delay
of a certain communication flow does not exceed a certain e2e delay. For the deployment
and validation stages, we introduce a new resource allocation technique capable of finding
feasible or optimal deployment strategies. It is important to mention that the deployment
stage can find feasible and optimal deployment strategies at design time. Therefore,
it cannot account for any changes that take place while the technique searches for a
deployment strategy. Furthermore, it cannot ensure the correct application’s functionality
during its life cycle, if the target edge system has changed after the application deployment
stage – we will target these two issues in the following chapters.

46

CHAPTER 5
Resource Management for Edge

Computing Services

Satisfying the software requirements of emerging microservice-based IoT applications
has become challenging for cloud-centric architectures, as applications demand fast
response times and availability of computational resources closer to end-users. Those
shortcomings can be tackled by taking advantage of distributed computational resources
in the spirit of edge computing, where data processing occurs locally by functionality
deployed on edge nodes, with advantages including data locality and fast response
times [Sat17]. Edge systems consist of multiple heterogeneous computing nodes often
running containerized microservices. Utilizing distributed computing resources within
an edge system is challenging, as applications often have stringent performance and
deployment requirements. As such, meeting application demands must occur at runtime,
facing uncertainty and in a decentralized manner, something that must be reflected in
system deployment.

Resource management in this context [TN18a] aims at enabling collaboration between
edge nodes by sharing their available computational resources. In such a setting, IoT
applications are deployed on possibly resource-constrained devices and in dynamic net-
works where high uncertainty is introduced by (i) node mobility, (ii) node heterogeneity
(i.e., an edge node can be a resource-constrained device as well as a powerful server),
and (iii) lack of knowledge at design time of network topology and edge nodes’ available
resources. We propose a novel resource management technique focusing particularly on
resource sharing and allocation for application deployment. Previously, deployment of
applications at the edge of the network has been generally tackled from two perspectives:
(i) task offloading from resource-constrained devices to improve objectives such as energy
consumption [MB18] or (ii) relying on the cloud to perform resource allocation [RGXZ17].
Still, such approaches do not sufficiently take into account latency application require-

47

5. Resource Management for Edge Computing Services

ments, do not consider node’s preferences, and assume knowledge of participant nodes’
internals.

In this chapter, we propose a decentralized resource allocation technical framework aiming
to deploy applications at the edge of the network, guaranteeing adherence to (i) defined
latency Service Level Agreements (SLAs) and (ii) resource preferences of participating
nodes. We focus solely on microservice placement performed by a resource-constrained
device, by providing optimized procedures, and by fully utilizing the available resource
found at the edge of the network. Specifically, our contributions are:

• A decentralized resource allocation technique for sharing IoT resources with nearby
nodes based on application requirements;

• A scheme where participating nodes on the network may utilize multiple decision
strategies, making their own choices regarding their contribution of their local
resources, including data;

• We advocate decentralization, as the system can operate without an assumed
connection to the cloud, if there are enough available resources at the edge of the
network.

Our framework encodes the resource allocation problem within Satisfiability Modulo
Theories (SMT [BT18]), where the placement of microservices on edge nodes generates
constraints in first-order logic while latency SLAs are encoded with integer linear arith-
metic. Thus, we provide guarantees – if a mapping exists, it is always found at runtime by
a solver situated in some edge node deploying the application, and is always correct, i.e.,
it satisfies latency SLAs, preferences of participating nodes, and other constraints. We
evaluate the applicability and performance of our technique, especially compared to the
absence of cloud resources. Our obtained results demonstrate its efficiency for relevant
problems, particularly on resource-constrained edge devices. Our experiments show that
our framework is capable of deploying IoT applications entirely on resource-constrained
devices, the SMT solver providing the mapping being deployed on a resource-constrained
device as well.

The remainder of the chapter is structured as follows. In Section 5.1 we present an
overview of our solution and introduce a motivational example. Section 5.2 defines
the IoT application and architecture considered in this chapter. In Section 5.3, we
describe implementation details of our proposed technique, while Section 5.4 presents
the methodology and results of our evaluation regarding applicability and performance.
Finally, Section 5.5 concludes this chapter.

5.1 Decentralized Resource Allocation
In our framework, an IoT application to be deployed consists of interdependent con-
tainerized microservices which need to be executed in some specific way to provide the

48

5.1. Decentralized Resource Allocation

application’s functionality [WIH16, MB18]. Compared to the application’s considered
in Chapter 4, the considered IoT applications have a single point of entry (the initial
microservice) and some sink (or final) microservice, signifying the result of the compu-
tation. The overall application has certain (strict) latency requirements, while other
concerns may impose further constraints over where a microservice may be deployed as
well. In this chapter, latency is understood as an adherence to certain defined Service
Level Agreements (SLAs) and represents the time required for a message to traverse the
application’s communication flow (i.e., from the input data microservice to a sink mi-
croservice). Within the edge setting, the application’s microservices may be deployed on
different networked physical nodes. Nodes participating in the system individually select
microservices they may host – perhaps based on some incentive scheme [WD19, STD15].
Our framework provides seamless deployment of applications with latency requirements;
as illustrated in Figure 5.1, the application designer defines the building blocks of an
application (as microservices) as well as their dependencies in an application model, at
design time – essentially the microservice composition. When the system is operational,
microservices are deployed to appropriate edge nodes so that application requirements
are satisfied, without requiring any knowledge of the runtime network topology or node’s
internal status.

System
Developer

Microservices
Requirements

R

Latency SLAs

S

IoT Application

Design Time

Co
or

di
na

to
r

Latency
Monitoring

Deployment
Policy

Local
Resources

Coordination

Co
lla

bo
ra

to
r

Latency
Monitoring

Decision
Policy

…

Co
lla

bo
ra

to
r

Decision
Policy……

Co
lla

bo
ra

to
r

Decision
Policy

Runtime

Figure 5.1: Decentralized Resource Allocation: Overview.

The functionality of the framework we advocate revolves around two key concepts;
decentralization and node participation. To encourage edge nodes to participate and
share resources with applications on the network, we assume that an incentive mechanism
exists that offers rewards based on the involvement of a participant node. As such, the
framework establishes collaboration between nodes to achieve the deployment goal. Two
key components can be found in our solution: the coordinator node, which seeks to
deploy some application and the collaborator nodes, which are the system participants –
any edge node can in principle take any of those roles. Once a request for deployment of
an application arrives, a list of participants is created. We consider some limited number

49

5. Resource Management for Edge Computing Services

of participants, chosen based on proximity to the coordinator node. The coordinator
serves as the local decision making authority, by advertising the IoT application to the
nearby participant nodes and eventually deciding a microservice distribution that satisfies
latency, preferences of participants and other application requirements. Collaborator
nodes offer resources for parts of the application, at their own preference and based on
their current state of available computational resources.

Running example

Consider a public safety application that aids police officers to identify wanted persons in
a crowd by performing video analysis utilizing available resources found in their proximity;
this is performed by processing video captured from the police officer’s body camera,
or video and images stored in nearby edge nodes (i.e., other smartphones, tablets, dash
board cameras, etc.). Such video analysis is computation-intensive and may require
specialized hardware running machine learning workloads. The officer’s smartphone (or
dash cam) represents the application coordinator which is connected to his/her body
camera. The application consists of multiple distinct microservices including (i) motion
detection, (ii) object detection, (iii) object tracking, and (iv) result generation; arrows
indicate the invocation of microservices within the application workflow.

Deploying such an application to a centralized location is not desirable due to its stringent
requirements as well as inherent privacy concerns – video data should not be stored in a
remote centralized location. First, we can observe that the decentralized nature of our
technique fits rather well with the application requirements since it handles video without
sending it to a central facility for processing. Furthermore, the application is particularly
data-intensive, as vast amounts of generated data are analyzed. The centralization
imposed by a cloud design has implications for both network congestion as well as latency.
Moreover, some microservices may require specialized device resources (e.g., the object
detection microservice may require machine learning supporting hardware), making
deployment on a single edge node which does not possess such capabilities infeasible.
Considering this, deployment nearby the system’s end-devices is required – in this manner,
computation and data management can be performed closer to the targeted area and
distributed among participating nodes.

5.2 Problem formulation
In this section, we outline our system model and the assumptions behind it, as well as
the objectives that we consider. Similar to the previous chapter, we aim to deploy an
IoT application on a target edge system – the model of the two remains unchanged.
Therefore, we briefly mention the IoT application and edge system model, focusing
more on new characteristics and objectives that are relevant to the current resource
management framework, i.e., the definition of communication latency and some edge
node characteristics.

50

5.2. Problem formulation

5.2.1 Application and System Model

As previously stated in Chapter 4, the target edge system is a distributed system consisting
of multiple, possibly heterogeneous and mobile edge nodes, i.e., EN={E1, E2, ... }. Nodes
with software stacks capable of executing microservices and communicating with other
edge nodes. Each edge node has a certain set of available resources Eres={r1, r2, ... } that
can be shared within the system to facilitate the deployment of IoT application. From
the entire edge system, the application coordinator selects a group of edge nodes, i.e.,
participant nodes, EP={Ep1, Ep2, ... }, found in its vicinity. Each node may represent a
mobile device such as a smartphone or static devices such as a server hardware. Finally,
we assume that nodes share resources and collaborate without the need for incentives.
However, we acknowledge the need and importance of suitable incentive mechanisms to
reward nodes that share resources and behave cooperatively instead of competitively –
we identify the development of such incentive mechanisms as future work.

To fully utilize the nearby available computational resources, an application may be
deployed on different edge nodes. Partitioning the application functionality into mi-
croservices is typical within distributed edge systems, where the execution of an entire
application may not fit on a single edge node [DTF16]. An application model is defined
by the developer at design time and consists of a set of microservices M={m1, m2, ... },
and communication links. We assume that the application has only one communication
flow that starts with a source which provides source data e.g., from an IoT sensor, and
ends with a sink, i.e., an actuator microservice, to take actions on the obtained results.
More concretely, we assume that an application model is described by a direct acyclic
graph (DAG), Gapp = (V, E), where vertices represent microservices and edges show the
links between them. Considering this, we can model our motivational example as shown
in Figure 5.2. It is important to mention that we abstain from application particulars
such as how coordination occurs at the business logic level; our approach is concerned
with finding a suitable deployment strategy across the edge system. Given the application
model, our technique is agnostic about the inner workings of the deployed application.

m0:
Camera

m2: Obj.
Detector

m1: Motion
Detection

m3: Obj.
Tracker

m4: Result
generation

Figure 5.2: Public Safety application model.

A microservice mi implements a set of instructions that performs a specific function of an
application. Besides the set of computational resource requirements, i.e., Mreq={r1, r2, ...
}, a microservice may require specific requirements like data, domain-specific hardware,
sensors, or actuators. For example, a particular requirement, for the motion detection

51

5. Resource Management for Edge Computing Services

microservice of our example, is represented by the collected data from a specific area
during a time frame.

We define the latency between two dependent microservices as the time required to send
a message from the source to the destination microservice. In an edge system, edge
nodes communicate via communication links – each communication link between two
nodes, Ep1 and Ep2, has an associated latency lEp1,Ep2 . Therefore, microservices inherit
the communication latency from their host node. For example, if m1 is mapped on Ep1
and m2 on Ep2, the communication latency of lm1,m2 is equal to lEp1,Ep2 . Furthermore,
we compute the application’s latency as the sum of all communication delays between
dependent microservices along the application’s communication flow. Acknowledging the
important role of latency in our technical framework, a latency monitoring module is
imperative to the overall functionality. We present an example of a simple monitoring
module in Chapter 7. However, proposing a more complex monitoring module is out of
our scope; we assume that latency is adequately measured and provided.

5.2.2 Objectives
In an edge system, we deploy applications across multiple connected edge nodes, which
makes latency induced due to network and distribution a prime concern. A secondary
concern highly pertinent to distributed systems, is edge node resource preferences;
participant nodes should be able to take decision on managing their available resources,
according to internal strategies defined by the administrative entity and incentives received.
We treat those two concerns as key drivers of our resource management approach, which
must be satisfied upon deployment.

Our first objective targets one of the fundamental concerns of contemporary applications,
i.e., latency – one of the main arguments for edge computing. We focus on a particular
manifestation of latency, which is the e2e delay of an application when operational. In
contrast to the e2e delay presented in the previous chapter, we define the e2e delay as the
duration of time required by an application to produce a result from received source data
– it does not include the microservices’ WCET. For example, the e2e delay of our example
application (Figure 5.2) captures the duration of time for m4 to generate a result once
m1 collects data from its sensors. We assume that the desired e2e delay (as an SLA) for
an application is defined by the developer.

Our second objective is to respect resource preferences of participating nodes. Each
node has authority on how its resources (including hardware or sensing capabilities) are
shared with others – data that may reside locally are similarly treated. We achieve this
behavior by enabling edge nodes to take decisions locally, which guarantees the mapping
of microservices where data or resources required reside.

We want to mention that a centralized solution where the coordinator resides in the cloud
is generally possible. However, in this chapter, we target decentralized edge-intensive
systems, where (i) a connection to the cloud (for all participating nodes) cannot be
assumed, and (ii) we seek to avoid the single point of failure that such an arrangement

52

5.3. Resource management Technical Framework

would introduce – in fact, any participating edge node (with or without a cloud connection)
can serve the role of an application coordinator.

5.3 Resource management Technical Framework
In Figure 5.3, we present an overview of the coordinator’s internal communication and
the communication exchange with the selected collaborators. Our resource management
technical framework consists of two major modules, i.e., (i) the deployment policy module
and (ii) the decision policy module. The former implements a novel decentralized resource
allocation technique that aims to deploy an application without prior knowledge of edge
nodes’ available resources. In contrast, the latter uses multiple decision strategies to take
local decisions considering their current available resources.

Application Coordinator Collaborator

Deployment
PolicyDecision

Policy

Latency
Monitoring Decision

Policy

Deployment
Policy

Latency
Monitoring

preferences

advertised app

advertised app

preferences

get latency

distribute tasks

Figure 5.3: Decentralized resource management: technique overview.

5.3.1 Deployment policy module
The deployment policy module purpose is to distribute microservices on a set of edge
nodes collaborators such that the overall application requirements are satisfied. Therefore,
the functionality of this module represents the coordinator’s capabilities and consists of
two different stages:

1. Advertising stage. Once the application coordinator receives an inquiry for applica-
tion deployment, a message containing a description of the application model, i.e.,
a list of microservices and their characteristics, is advertised to each participant
node. The coordinator allocates a bounded time frame for receiving the node’s
preferences; if during this period a node does not send its preferences, then the
coordinator does not consider the node during the deployment stage.

2. Deployment stage. After the advertisement time frame in which the coordinator
collects all node preferences, the deployment stage starts. The coordinator finds
a satisfiable allocation of microservices to participating nodes by considering the
application requirements and participant preferences; a node preference can be
partial or fully fulfilled.

We note that, for complex resource allocation problems, researchers have proposed
solutions based on metaheuristic optimization algorithms. Such solutions typically yield a

53

5. Resource Management for Edge Computing Services

near-optimal deployment strategy over a longer period of time, are applicable in situations
where the target edge system is not defined by high uncertainty, and require a host with
powerful capabilities. As a result, a centralized solution where the coordinator is deployed
in the cloud or on nodes with powerful computational resources is followed [SA17, AH15].
We differentiate ourselves from these approaches as follows. Firstly, our target domain
is edge computing where (i) edge nodes may have limited computational resources,
and (ii) latency and nodes preferences are first-class concerns. Secondly, we aim for
guarantees, i.e., we provide a satisfiable solution that does not represent the near-optimal
microservice allocation, but it is more valuable when deploying an application in a
volatile edge system where the topology can change multiple times during the execution
of an application – rendering an optimal solution not valid anymore. Furthermore, in
metaheuristic approaches, there are no guarantees that the generated solution satisfies
the application’s objectives, especially if simulation time is limited. Consequently, we
choose to cast our problem within SMT – we provide guarantees that if a solution exists,
it is found and correctly satisfies the application requirements.

Notice that SMT fits our resource allocation problem particularly well; (i) the placement
of microservices on nodes are essentially constraints over the space of deployment options,
which can be encoded in first-order logic, and (ii) numerical latency SLAs can be encoded
by integer linear arithmetic. Consequently, to solve our resource allocation problem, we
divide our SMT formula into four different encodings, i.e., the microservice facts, the
domain facts, preferences constraints, and constraint formulation. These capture different
constraints over the desired solution, and are illustrated in the following.

Microservice Facts

In the microservice facts encoding, we define a set of rules for the correct logical placement
of microservices on the target edge system. As a rule, only one instance of a microservice
mi can exists on the edge system at a time, e.g., we cannot deploy the same microservice
mi twice. Furthermore, we can allocate a microservice mi on an edge node Epn only if it is
part of the set of microservice sent as preferences by that particular node. For example,
consider that we desire to deploy the motivational example application presented in
Section 5.1, composed of five microservices m0, m1, m2, m3, and m4, on two participant
nodes, i.e., Ep1 and Ep2. Now, let us assume that the coordinator receives, during the
advertising stage, the following node preferences: node Ep1 sent P1 = {[m3, m4]} and Ep2
choose to host P2 = {[m1, m2, m3]}. Based on the rules enforced by this encoding, each
participant node can receive the microservices that are not common between P1 and P2,
i.e., m1, m2, and m4. However, the common microservices, i.e., m3, can be deployed only
on one node, independent of how many nodes prefer to receive it. The general encoding
is shown in Formula 5.1, where nM represents the total number of microservices. The
semantics of map() is to provide a microservice allocation between mi and one participant
node, where participants represents the set of nodes that preferred to share resources for

54

5.3. Resource management Technical Framework

that particular microservice.

microserviceFacts :
nM

i=1
(∃! E : map(mi = E)), ∀ E ∈ participants. (5.1)

Domain Facts

This encoding captures the latency between two dependent microservices which are
mapped on different nodes. As described in Section 5.2.1, the latency is found by giving
an analogy between the microservice mapping derived from the microservice facts and
their associated host node latency. As a result, if a microservice m1 is deployed on
Ep2 and m2 is deployed on Ep1, then the communication latency between m1 and m2
is equal to the communication latency of the two edge nodes, i.e., Ep1 and Ep2. The
general formula is shown in Formula 5.2, where lmi,mj represents the latency between two
microservices, while lEpi,Epj represents the latency between two nodes, and nEP

represents
the total number of participant nodes.

domainFacts :
D

k=1
(mi = Epi, mj = Epj) ⇒ (lmi,mj = lEpi,Epj)

for D = {i, j} where i ∈ [0, nM] and j ∈ [0, nEP].
(5.2)

Preferences Constraints

The node’s preferences, P = {p1, p2, ...}, consists of multiple groups of microservices
that a particular node can host. Each decision strategy introduced in the decision
policy module generates a group of microservices – for example, one strategy derives
p1, while another strategy generates p2. Furthermore, our decision strategies guarantee
that choosing microservices from the same group does not exceed the node’s available
resources. Recall that the application coordinator finds a deployment strategy using only
the node’s preferences. Therefore, the coordinator cannot ensure that when combining
microservices from different lists, e.g., from p1 and p2, the node can still host them. We
must create an encoding that will guide the coordinator to choose microservices from the
same group. Creating such an encoding is not trivial since each participant computes its
preferences locally and the coordinator does not know the node’s available resources. As
a result, the coordinator must decide based on the node preferences received during the
advertising stage.

In the preferences constraints, we define a set of rules to aid the application coordinator
in finding a valid deployment strategy, considering only the node’s preferences. More
concretely, the mapping rules limit the coordinator to choose microservices to the boundary
of an individual group. Therefore, the coordinator can choose microservices from only
one group from the preferences sent by a participant node. Recalling our motivating
example, a participant Ep1 receives in the advertisement message the motivation example
application model and based on its own decision strategies creates the following set of

55

5. Resource Management for Edge Computing Services

preferences P = {p1, p2, p3, p4}, where pi contains a group of preferred microservices, e.g.,
p1 = [m3, m4], p2 = [m1, m2], p3 = [m1, m4], and p4 = [m2, m3]. As a consequence, the
coordinator can choose microservices from a single group to be mapped on a participant
node. Let us consider that the coordinator chooses p2 as the best group sent within P.
In this case, choosing p2 means that every microservice that is not part of this group is
not considered in the deployment strategy, since it may exceed the available resources of
that node. However, there may be common microservices between groups, e.g., there are
common microservices, i.e., m2, between p2 and p4. In this scenario, we must guarantee
that if m2 is mapped first on Ep1, we do not block the microservices from p2 and p4 since,
with the current information, the coordinator can choose both groups. Let us consider
that the next microservice mapped on Ep1 is m1 – only then the remaining microservices
part of p4 cannot be chosen anymore. In contrast, if m3 is selected, then the coordinator
cannot choose microservices from p2. The encoding is shown in Formula 5.3, where n
represents the total number of node’s preferences received.

prefConstaint :
n

i=1
((p1 ∨ p2 ∨ p3 ∨ p4) ∧ (p1 =⇒ ! (p2 ∨ p3 ∨ p4)....)). (5.3)

Constraint formulation

The last encoding of our SMT formula ensures that the deployment meets the latency
SLA of the application; constraint formulation captures rules that account for the latency
in the e2e delay. To instrument a complete application, the developer should additionally
account for its execution overhead as well. As a result, the encoding presented in
Formula 5.4 guarantees that the sum of the communication latency lm1,m2 does not exceed
the total required SLA, where ne represents the number of edges.

e2eConstraint :
ne

i=1
li ≤ SLA. (5.4)

By combining the aforementioned constraints, we obtain the complete formula F used
by the coordinator to find a satisfiable allocation according to application requirements:

F : microserviceFacts ∧ domainFacts ∧ prefConstraints ∧ e2eConstraint. (5.5)

Solving F incurs an energy cost, something which has to be accounted for since we target
possibly resource constrained edge settings. The energy cost amounts to the execution of
an SMT solver against the formula – later, we demonstrate that it is quite feasible to do
so on single-board computers for relevant problems. The energy draw depends on the
CPU power draw to solve F – full CPU usage for certain amount of time, depending
on the problem size. Furthermore, executing the deployment policy also introduces
a communication cost, for which we can calculate bounds for the exchanges required
for each stage. In the advertising stage, the coordinator node sends a message to all

56

5.3. Resource management Technical Framework

participants and waits for their preferences. This stage requires a total of 2*m messages,
where m is the number of nodes. In the deployment stage, the coordinator informs only
the nodes that will receive microservices, with a maximum of m.

5.3.2 Decision policy module

The decision policy module concerns strategies that a participant uses to create a set of
preferences, i.e., P, for an advertised application. As mentioned before, these strategies
enable a collaborator node to create groups of preferred microservices based on their
preferences and current internal state. As such, node preferences are enforced since
every decision is made locally without sharing information with other nodes in the
system. Besides the property of considering the collaborators’ microservice preferences,
the strategies play a more fundamental role in the overall functionality of our framework –
to ensure coverage of microservices. Generally, to ensure that the application coordinator
receives at least one preference for every advertised microservice, a consensus model
is preferred where participant nodes communicate with each other to decide for what
microservices to share their resources. However, in this scenario, there is an increased
communication overhead and a node does not make decisions by itself; forcing a participant
node to compromise according to the preferences of other nodes. Therefore, in the
following, we outline some indicative strategies that participants may use to create P.

We especially note that the coordinator has no control over the participants’ microservice
preferences; in our conception, they are free to contribute (any) resources by sending mi-
croservices preferences of the advertised application. The rationale of giving participants
free rein about their resource contribution to the system is as follows. Every participant
may decide to adopt four default, indicative tactics to increase the number of groups sent
in P. By choosing four tactics, we intend to aim for greater coverage without requiring
any information from other nodes. Each tactic has a different role in creating a group of
preferred microservices. Hence, we conceptually group them based on their role in two
different strategies.

Maximization Strategy

This strategy aims to maximize the number of microservices, placed in a group (i.e.,
pi), by maximizing the utilization of all available resources of a node. In this strategy,
we present two independent tactics. The first tactic is based on the well-known , i.e.,
0-1 knapsack dynamic programming algorithm. We note that this fits well since it
yields the near-optimal solution. However, although near-optimal, this tactic has high
computational demands – as we focus on microservice allocation, we consider efficient
tactic development as an interesting avenue of future work. An alternative can use
heuristics to approximate knapsack-like solutions. The second tactic adopted is based on
a random selection of microservices. Notice that even though the overall strategy offers
great coverage, the changes that the application coordinator will distribute an entire
group are small, since these tactics do not consider dependencies between microservices.

57

5. Resource Management for Edge Computing Services

Dependencies Strategy

Compared to the previous strategy, with the dependencies strategies we create more
microservice groups that considers the dependencies between microservices. To achieve
this purpose, we employ two graph-theoretical algorithms as tactics, i.e., strongly connected
components and fan-out. The former finds the largest strongly connected component
into the application model and builds a group by selecting the microservices from the
component until it reaches the node’s maximum available resources. In contrast, the
latter selects microservices from the biggest edge fan-out found in the application model.

It is important to stress that these strategies are indicative to participant nodes and
are built to offer suitable node preferences for a wide range of applications. The above
indicative strategies aim to bootstrap choices for a collaborator, which then can amend
based on its internal resource sharing rules. Each collaborator utilizes the strategies
above to generate its preferences within an advertised application. As we observed, the
coordinator then proceeds to calculate a satisfiable mapping based on the technique
presented in Sec. 5.3.1. Note that the preferences of a participant for certain microservice
might be fully or partially satisfied, based on the application-wide objectives.

Energy costs for collaborators can be adjusted by selecting different strategies to capture
the node’s preferences. We especially note that different collaborators’ strategies would
be interesting to develop in tandem with incentive mechanisms; in essence, to encourage
participants to consider more microservices, something we identify as future work. Finally,
the actual microservices have to be deployed in nodes. In practice, this entails downloading
containers from a container repository. Costs arising from this are application dependent;
size of containers comprising the application microservices and downlink bandwidth are
key such factors.

5.4 Evaluation

To evaluate our technique and accompanying technical framework capabilities to devise
deployment strategies that efficiently use the edge node’s available resources, we consider
two evaluation goals; applicability and performance. For the former, we present and
deploy four different application models obtained from literature at the edge – we are
interested in demonstrating the resource management technical framework’s ability to
deploy realistic applications. For the latter, we follow a quantitative approach to evaluate
the performance of our technique on resource-constrained devices. To concretely support
evaluation, we realized a prototypical tool based on the CVC4 SMT solver [BCD+11],
which we deploy on a resource-constrained device acting as the coordinator. Furthermore,
we present the performance of our framework when a more powerful device is hosting the
application coordinator. After the applicability aspects, we describe the experimental
setup and finally discuss the obtained results.

58

5.4. Evaluation

5.4.1 Applicability: IoT Applications at the Edge

We consider that a deployment technique may be intended for three different scenarios, i.e.,
offloading, mapping, and job assignment. Offloading refers to the possibility of deploying
computational microservices of an application to nearby edge nodes to ensure better
functionality and optimize the energy consumption of resource-constrained devices. Such a
practice is usually employed for smartphone applications. The second scenario represents
a mapping of microservices permanently deployed on an edge system. A scenario most
useful in cases where the target edge system does not have a high uncertainty – however,
if we target a volatile edge system, then a self-adaptive technique must assist the resource
management framework to ensure correct application functionality even after changes
in the system occurs. Finally, the third scenario is suitable for applications that are
instance-based, meaning that a deployment occurs only when the coordinator receives
a request to do so. In this scenario, we capture the utilization of available resources
of nearby edge nodes only for a limited time. Our technique is capable of deploying
an application for all three scenarios, however, we consider that, due to its nature, it
provides the most benefits in the context of microservice offloading; we can enable a
resource-constrained device to make decisions locally on what microservices to offload and
where, without the need of a central entity. To evaluate the applicability of our framework,
we model four realistic applications, usually deployed on resource-constrained devices
incapable of executing an entire application locally. Considering this classification, we
select two mobile applications, i.e., (1) an antivirus application and (2) a face recognition
application, one application that fit the second scenario, i.e., (3) the public safety
motivational example of Section 5.1, and (4) a team building application representing an
example of an instance-based application, to be deployed on an edge system composed of
five edge nodes.

A set of computational resource requirements, i.e., a tuple (RAM, CPU, HDD, {OTHER}),
characterize each microservice and node, where OTHER represents a set of special re-
quirements of a microservice or special resources available on a node, capturing their
functionality and capabilities. We can map the microservices which require no other
specific resources (i.e., shown with ∅) on any node if there are available computational re-
sources. Furthermore, for every individual application model, we distribute on participant
nodes a set of available computational resources of random values between 5 to 10 units
(for the first three applications) and between 10 to 20 units (for the last application). For
the team building application, we increase the nodes’ available resources since there is
an increase in size. In addition, we deploy other resources required by the application
on different nodes. For illustration purposes, we adopt a generalized ’unit’ for resource
quantification – in practice, this would be refined per application (e.g., in MB/GB for
RAM or GHz for CPU). Finally, we randomly assign a communication latency between 1
and 10 ms. For all application deployments, we deploy the coordinator on an ARMv8
R-Pi3 device featuring a 1.2GHz CPU and 1GB RAM – a device serving as the edge
node. In contrast, we simulate the participant nodes on a machine with a dual-core Intel
i5 2.3GHz processor. We make available the application models, further details, and

59

5. Resource Management for Edge Computing Services

evaluation results in our online appendix 1. Moreover, we provide the implementation
and technical details in our git repository2.

Antivirus Application (A1)

This mobile application behaves like a software antivirus and is modeled using a DAG
graph composed of 5 microservices and 5 edges [MB18]. We can observe from Figure 5.4
that two microservices require special resources to ensure correct application functionality,
i.e., microservice m0 which requires a set of files that must be scanned and m5 that
requires a node with a display to present the results to the user. Besides the computational
resource requirements of each microservice, we assign as the application objective an SLA
= 30. The application is deployed on an edge system composed of 5 collaborators. In
Figure 5.4, one can see the deployment strategy found, as well as the available resources
of each edge node and the resource requirements of each allocated microservice. The
successful mapping (indicated on Figure 5.4 with the dotted edge nodes) is found in 434
ms and has an SLA = 23.

m0: GUI m2:
Compare

m1:
Load_Library

m3:
Scan_File

m4: Output
(1, 1, 1, files)

Ep4 (9, 8, 8, files)

(1, 1, 1, ∅)

Ep1 (6, 7, 6, ∅)

(1, 1, 1, ∅)

Ep5 (6, 5, 7, ∅)

(1, 1, 1, display)

(2, 2, 1, ∅)

Ep2 (6, 8, 9, ∅)

Ep3 (7, 5, 9, display)

microservice (requirements)
edge node (resources)

Figure 5.4: Antivirus application and deployment (in overlay).

Facerecognizer Application (A2)

The second mobile application we deploy represents a facerecognizer that models an
image processing application able to identify a face in an image. Similar to the antivirus
application, the model contains 5 microservices and 5 edges [MB18]. In the same manner,
two microservices require special resources to be in place: m0 requires a set of images as
input and m5 needs a display. We choose for this application an SLA = 30 and we deploy
it on an edge system, having the same size as the previous application, but with a different
distribution of available resources. In Figure 5.5 we show the microservices’ resource
requirements, the nodes’ available resource, and the satisfiable deployment strategy found.
We require 422 ms to find a solution to deploy the facerecognizer application at the edge
in the absence of cloud resources – the application has an SLA = 19.

1https://dsg.tuwien.ac.at/team/cavasalcai/projects/ResourceManagement
2https://github.com/cavasalcai/Decentralized-Resource-Management

60

https://dsg.tuwien.ac.at/team/cavasalcai/projects/ResourceManagement
https://github.com/cavasalcai/Decentralized-Resource-Management

5.4. Evaluation

m0: GUI m2: Initm1:
Find_Match

m3:
Detect_Face

m4: Output
(1, 1, 1, images) (1, 4, 1, ∅)

Ep2 (5, 5, 7, ∅)

(1, 4, 1, ∅)

Ep5 (5, 8, 5, ∅)

(1, 1, 1, display)

(1, 4, 1, ∅)

Ep4 (8, 8, 8, ∅)

Ep1 (9, 7, 5, images) Ep3 (8, 5, 7, display)

microservice (requirements)
edge node (resources)

Figure 5.5: Facerecognizer application and deployment (in overlay).

Public Safety Application (A3)

The public safety application model is defined by a set of 5 microservices and 5 edges and
requires an SLA = 30. The application is deployed on an edge system composed of 5
edge nodes. In Figure 5.6, we present the microservices’ resource requirements and nodes’
available resources. Furthermore, we can observe from Figure 5.6, that m1 represents the
only microservice that requires some special resource, i.e., raw video data – microservice
m0 represents the input sensing microservice and provides m1 with input video data. A
satisfiable allocation is found in 407 ms and has an SLA = 24.

Ep2 (8, 9, 5, video) Ep3 (6, 9, 6, ∅) Ep5 (5, 7, 5, ∅)

m0: Camera m2: Obj.
Detector

m1: Motion
Detection

m3: Obj.
Tracker

m4: Result
generation

(7, 4, 3, ∅)

Ep4 (8, 8, 7, ∅)

(Input data) (3, 8, 5, video) (5, 6 ,2, ∅) (1, 1, 1, ∅)

microservice (requirements)
edge node (resources)

Figure 5.6: Public safety application and deployment (in overlay).

Team Building Application (A4)

We propose an application to help companies finding the perfect team building location
based on an analysis of user personal data. The application has an SLA = 50, contains 8
microservices, each with a different role, and 11 edges. Similar to the other applications, we
present the microservices’ resource requirements and the collaborators’ available resources
in Figure 5.7; microservice m0 represents the source microservice and symbolizes the need
for different types of data required by the 4 dependent microservices. The dependent
microservices that analyze the input data are: m1, which performs analysis of the
employee’s stored health information, m2 analyzes the stored video files by performing
motion detection, m3 performs object detection on all stored images, and m4 analyzes
the environment where the employee works. Based on this information received from
previous microservices, m5 generates a list of possible locations on which m6 computes

61

5. Resource Management for Edge Computing Services

the budget required. Finally, m7 represents the end microservice and creates a report
suggesting possible destinations as well as an estimation of travel cost. Considering the
defined experimental setup, a solution is found in 510 ms with SLA = 31.

m7: Output
(1, 2, 3, ∅)

Ep1 (14, 17, 15, env)

m0: Input

m2: Motion
Detection

m1: Health
Analysis

m3: Obj.
Detection

m4: Env.
Analysis

m5: Data
Analysis

m6: Cost
Estimation

(5, 6, 2, images)

(1, 4, 3, env)

(3, 5, 1, health)

Ep5 (19, 11, 15, video)

(6, 6, 4, video)

Ep4 (17, 14, 13, ∅)

(3, 4, 1, ∅)

Ep1 (14, 17, 15, env)

(7, 7, 2, ∅)

Ep2 (15, 19, 12, {env, images, video, health})

Ep3 (17, 12, 18, images)

microservice (requirements)
edge node (resources)

Figure 5.7: Team building application and deployment (in overlay).

5.4.2 Performance: Experiments Setup and Results
To quantitatively evaluate our resource allocation framework, we consider as a performance
metric the execution time required to obtain a distribution of microservices to the
participant edge nodes. We demonstrate the coordinator’s ability to find a satisfiable
deployment strategy at the edge, considering the technique’s highly computationally-
demanding solving component. Furthermore, to understand the impact of each encoding
on the overall framework performance, we perform an analysis of the SMT formula
by examining the number of symbols of each encoding presented in Formula 5.5, i.e.,
domainFacts, microserviceFacts, and prefConstraints. For this purpose, we design an
experimental setup of an application and a target edge system.

For the application model, we adopt montage [BSM10], a real-world DAG workflow. The
application consists of 24 microservices, each having resource requirements between 1 to
10 units and 50 edges. To accurately evaluate performance and avoid discarding satisfiable
deployment strategies due to randomness in the distribution of specific resources on nodes
and other limitations introduced by factors like SLA, we set the SLA to a large value
and set each microservice to require no specific resources. Regarding the edge system,
we randomly assign to each edge node a set of available resources chosen in the range of
10 to 20 units.

The overall objective of our experiment setup is to map the application to an edge system
in which we gradually increase the available resources (i.e., by increasing the total number
of collaborators). We adopt the same test environment used in the applicability scenario
from Section 5.4.1. We perform 500 tests for each newly created edge system, on which

62

5.4. Evaluation

5 10 15 20

0

50

100

4

21

51

80
89

96 93
98 98

0 0 0 0 3
13 14 18

33

Nodes

Su
cc

es
sf

ul
M

ap
pi

ng
(%

)

Successful Mapping Exclusively Edge Mapping

Figure 5.8: Successful mapping over number of participant nodes.

2 4 6 8 10 12 14 16 18 20

0

5

10

15

·1,000

5k
14k 26k

43k

63k 87k
116k

148k

184k

224k

Nodes

T
im

e
(m

s)

Figure 5.9: Mapping time over number of participant nodes and formula size.

we measure: (i) the percent of successful mapping and exclusively at the edge mapping
for different numbers of participating nodes, (ii) the time required by the coordinator to
find a successful mapping of microservices to different size groups of participants, and
(iii) the number of symbols each encoding of the SMT formula requires. Our results are
presented in Figures 5.8, 5.9, and 5.10. In Figure 5.8, we observe that as the number of
nodes increases, the successful mapping rate improves. We can observe a similar behavior
in Figure 5.9, where both the execution time and the number of symbols required by
F increase with the number of participant nodes. Finally, in Figure 5.10, the relation
between the total number of symbols of F and each encoding is presented.

Recall that, in all experiments, the application coordinator resides on a resource-
constrained device, i.e., an ARMv8 R-Pi3 device featuring a 1.2GHz CPU and 1GB

63

5. Resource Management for Edge Computing Services

5 10 15 20

10

20

30

20.19

22.8
24.5

25.73
26.7227.4528.2528.6429.2829.85

13.93
15.82

17.11
18.0418.8119.42 20 20.3820.8621.27

8.42
9.42 10.110.5810.9711.3111.5911.8412.0612.26

Nodes

ln
(#

of
SM

T
Sy

m
bo

ls
)

Domain Facts Microservice Facts Preferences Constraints

Figure 5.10: Contribution in symbols of different problem components to the overall
formulae, over increasing node count.

2 4 6 8 10 12 14 16 18 20

0

1

2

·1,000

5k
15k

29k
48k

71k 99k
131k

168k

210k

256k

Nodes

T
im

e
(m

s)

Figure 5.11: Mapping time over number of nodes and SMT formula size when coordinator
resides on a powerful device.

RAM. However, we are interested in observing how the performance will change if a
more powerful device, i.e., a machine with a dual-core Intel i5 2.3GHz processor, hosts
the application coordinator. Therefore, similar to Figure 5.9, we present in Figure 5.11
the total time required by the coordinator to find a satisfiable deployment strategy.

5.4.3 Discussion

We have demonstrated that by using our resource management framework, we can suc-
cessfully deploy applications in a decentralized manner. We note that for all applications
considered (Section 5.4.1), a successful microservice allocation at the edge (without
resorting to cloud resources) is achieved in under 510 ms, i.e., A1 is determined in 434 ms,

64

5.4. Evaluation

A2 in 422 ms, while A3 is found in 407 ms, and A4 in 510 ms. Therefore, we successfully
demonstrate that our proposed technical framework is efficient in deploying different
types of realistic applications in under a second, a duration suitable for all three scenarios
involving offloading, mapping, and job assignment. Note that the deployment time of an
application is negligible for the overall application’s lifecycle – during the deployment
stage, the application is not operational yet. Moreover, a deployment time of 500 ms is
small compared to the overhead of moving the containers to their assigned location.

In Figure 5.8, we have recorded the successful rate of our framework to find an allocation
of microservices at the edge with or without the need for computational resources found
in the cloud. For each group of nodes, we illustrate (i) the total number of satisfiable
solutions found and (ii) the number of solutions found using only edge resources. As
one can observe, the latter is influenced by the available resources shared between the
participants. However, the decision strategies used by the participants have a bigger
impact on the number of solutions fully mapped at the edge. As a result, to fully utilize
the available resources found in an edge architecture, we must optimize the strategies
to ensure greater microservice coverage. We propose a solution to this issue in the next
chapter.

Figure 5.9 illustrates the impact that an increase in the number of participant nodes has
on the execution time required by the coordinator to yield a microservice allocation. In
this case, we can observe that the growth of the number of nodes influences the SMT
formula size, which ultimately impacts the time required to find a solution. We note
that with respect to previous preliminary work [ATD19b] (see Figure 5.11), the memory
requirements of the SMT formulae produced are significantly reduced – for instance,
consider the reduction of a problem size of 20 nodes concerning the SMT formula size,
where we observe a decrease of 12.5% in the formula size. This increase in efficiency
grows with the number of participating nodes (e.g., for an edge system of 4 nodes,
we see a decrease of 6.67%, while for 12 nodes, a decrease of 12.12%). Memory is a
significant factor in an edge system because resource-constrained devices typically have
limited amounts. Thus, the encoding used in this chapter presents obvious scalability
improvements over previous work [ATD19b]. Furthermore, comparing Figure 5.9 with
Figure 5.11, we can observe that the time required to find a satisfiable deployment
strategy is dependent on the coordinator’s host node. Even without the SMT formula
optimization, the time is significantly lower than when the coordinator resides on a
resource-constraint device. We highlight that if faster deployment times are desired, then
more powerful nodes should host the application coordinator. Nevertheless, as proven
with our evaluation, our resource management framework works with all types of nodes.

To better understand which encoding has the biggest impact on the overall SMT formula
size, we performed an analysis on the three encodings, i.e., domain facts, microservice
facts, and preferences constraints. In Figure 5.10, we illustrate the total number of
symbols required for each encoding, on which we apply the base e logarithmic function
for presentation purposes – we can observe that their size increases with the number of
nodes in the system. For example, to deploy the considered montage graph application

65

5. Resource Management for Edge Computing Services

of 24 microservices on an edge system consisting of 20 edge nodes, we have an SMT
formula size of 224K symbols divided between the three encodings as follows; the domain
facts has a total number of 211K, the microservice facts has 8K symbols, and the
preferences constraints has a total of 5K symbols. We can conclude that encoding the
latency objective in the SMT formula is highly expensive (i.e., 90% of the total number
of symbols) since the generated encoding is additive for every microservice latency. To
properly capture the application’s e2e delay, the formula requires all possible microservice
mappings to nodes and their associated communication latency.

The framework can support any microservice-based IoT application that can be decom-
posed as a DAG. The first part of the evaluation (Section 5.4.1) demonstrates applicability
on a diverse set of applications, intended to represent different scenarios obtained from the
literature like offloading, mapping, and microservice assignment. These applications have
different characteristics such as variable number of microservices and communication links.
Furthermore, to quantitatively assess the effect of the major computational-demanding
factors – the application’s size, node’s available resources, and number of nodes – we
considered a real-world workflow, intended to stress the framework (Section 5.4.2). We
believe this shows that results are generalizable, even in large applications – the extent
of which is demonstrated on the time it takes to find deployment strategies. As such, we
believe that the framework performance is acceptable for relevant problems – considering
that for the experiments performed the coordinator resides on a single-board computer
having an ARMv8 1.2GHz CPU.

We acknowledge the high computational demands of our proposed technique, but we note
that it offers guarantees – something demonstrated in the realistic scenarios A1-A4. Our
evaluation results show that the framework can successfully deploy, in absence of cloud
resources, realistic applications with distributed resources at the edge of the network. We
note that scaling up to higher numbers of participants is hindered by the sizable encoding
of the e2e delay objective (Figure 5.10). If the focus is on other objectives that scale
linearly with the fan-out degree of a service (such as bottleneck avoidance), the overall
performance improves significantly. As a result, we conclude that our proposed technique
performs best in scenarios where only a slice of the entire system is considered for an
application deployment (e.g., a disaster scenario or microservice offloading) or an extra
module is introduces that is capable of creating a group of participants, selecting them
from the proximity of the coordinator node. Finally, we note that the technique does not
guarantee the best latency, only one that is less than the required latency. For example,
let us consider mobile application (A1). In this case, it is possible to improve the SLA
by mapping dependent microservices on the same node if there are available resources.
In this case, some microservices like m3 and m4 can be mapped on the same node Ep3,
yielding a lower overall SLA. However, the deployment solution is guaranteed to be
correct (by virtue of SMT), and is obtained quite fast (typical applications obtained from
the literature – Section 5.4.1 – are mapped at times of under a second). Other solutions
tackling similar problems in literature have different goals; here a further guarantee is
that if there is a solution possible, it is always found.

66

5.5. Conclusion

5.5 Conclusion
Taking advantage of available resources closer to end-devices calls for novel resource
management techniques that comply with latency, node preferences, and decentralization
demands of IoT applications. In this chapter, we propose a decentralized resource
allocation technique and accompanying technical framework for the deployment of
latency-sensitive applications on an edge system – our application coordinator can reside
on any node as long as there are enough computational resources. We specifically focus
on deploying applications in the absence of cloud resources, where the coordinator is
deployed on a resource-constrained device. We have demonstrated that our technique can
efficiently utilize available resources at the edge and provide guarantees – if a solution
that satisfies application latency objectives and task requirements exists at the edge, it
will be found. Finally, in this chapter, we provide an improvement upon the resource
allocation technique presented in Chapter 4, by being able to find a deployment strategy
in a decentralized manner and at runtime; thus, considering all changes that may occur
during the deployment stage.

67

CHAPTER 6
Efficient Hosting of Robust IoT

Applications on Edge Systems

In the previous chapter, i.e., Chapter 5, we have proposed a decentralized resource man-
agement technique and technical framework that enables the deployment of a microservice-
based IoT application to an edge system. With the previous approach, we manage to fully
deploy an application on an edge system, i.e., without the help of the cloud. To efficiently
use the distributed available resources found at the edge of the network, we must divide
the IoT application functionality into multiple smaller components 1 – we can model such
IoT application as a DAG, where vertices represent an atomic component, while edges
represent the dependencies between them [MB18]. An atomic component represents a
small part of the application’s functionality, with a fixed set of resource requirements,
that cannot be further divided into smaller components. As a result, combining the DAG
application model with resource management techniques [HV18] enables the successful
deployment of an IoT application at the edge of the network. However, the successful
deployment of an application entirely on resource-constrained devices is highly dependent
on the atomic components’ resource requirements. We can deploy an application at the
edge only if we have, for each atomic component, at least one edge node capable to host
it – a limitation given by the inability to further decompose atomic components. As
a result, finding a deployment strategy for an IoT application is highly dependent on
the nodes’ available resources and the components’ resource requirements – forcing the
mapping of some components to the cloud while leaving available resources unused at
the edge.

To address the aforementioned issues, we propose a robust application model and
extend the resource management technique to lower the impact of available resources on
deployment success. We say an IoT application is a robust application if its functionality

1Similar to Chapter 4, we consider that the IoT application is composed of components.

69

6. Efficient Hosting of Robust IoT Applications on Edge Systems

can be adapted based on the edge system’s available resources. Such an application can
still be functional, with a different functionality level, if it faces a resource shortage on
edge devices. Therefore, to achieve deployment flexibility, we extend the DAG application
model such that it can include composite components and contains information that
enables the deployment strategy to choose the best functionality level of the application
considering the target edge system’s capabilities. Such a modeling approach is inspired
by the aspect-oriented flow-based programming [ZB15]. In this case, the developer can
define multiple aspects for each composite component to ensure different functionality
levels. Combining the proposed application model with our novel decentralized resource
management is imperative to achieve efficient deployments. Furthermore, we develop
a new decision policy module to enable participants to efficiently utilize their available
resources and increase coverage of components between participant edge nodes.

In this chapter, we propose a decentralized resource auctioning technical framework
to deploy IoT applications on an edge system. Our objective is to find a satisfiable
deployment strategy that meets the application requirements, i.e., the e2e delay latency,
and efficiently utilizing all computational available resources found on resource-constrained
devices. Our contributions are:

• An improved IoT application model that allows for better resource utilization
and enables configurable application functionality based on the node’s available
resources.

• An extended decentralized resource auctioning that considers the proposed robust
application model, to seamlessly deploy IoT applications at runtime, assuming
no design-time knowledge of network topology or devices’ available resources.
Furthermore, it enables the developer to push component updates in the form of
new aspects, without any downtime required.

• A new decision policy that empowers a device to take local decisions regarding its
available resources. Our strategy is capable of providing both feasible and optimized
solutions, having the following objectives: (i) maximizing component coverage, (ii)
maximizing the available resource utilization, and (iii) maximizing the application
functionality.

The remainder of the chapter is structured as follows. In Section 6.1, we present the
overview of our proposed solution and introduce a motivational example. Section 6.2
defines the application and architecture considered. In Section 6.3, we describe the
implementation details of our proposed technique. Section 6.4 presents the methodology
and results of our evaluation regarding both deployment and decision strategy. Finally,
Section 6.5 concludes the chapter.

70

6.1. Technical Framework Overview

6.1 Technical Framework Overview
Our technical framework provides decentralized resource management at runtime, focusing
on seamlessly deploying latency-sensitive IoT applications on the edge system such that
we efficiently utilize all available resources found at the edge of the network. Our main
objective is to enable developers to deploy their applications on any target system
without needing any knowledge of the current network topology and nodes’ available
resources. In Figure 6.1, we present an overview of our technical framework. The
application developer defines the robust application model, at design time, by providing
the data-flow between composite components as a DAG, the components’ aspects, and
the application requirements. During the development process, the developer can use the
EdgeFlow framework to model the composite components and provide the application
communication flow. Furthermore, the developer can define for each composite component
a set of aspects – aspects that give a different component functionality. Similar to the
application model proposed in the research literature, we define an aspect as a DAG
where vertices represent atomic components connected by edges. Once the application
model is ready, the developer chooses an edge node from the target edge system to host
the application.

System
developer

Robust IoT App Model

Comps. req.

R
aspect 1

Comps. req.

R

…

Comps. req.

R
aspect N

Aspects

R

Application
requirements

Design Time Runtime

Coordinator

Decision
Policy

Deployment
Policy

Coordination

…

Decision
Policy

Deployment
Policy

Local
Resources

Node 1

Decision
Policy

Deployment
Policy

Local
Resources

Composite
Component

Legend

Atomic
Component

Node N

Collaborators

Figure 6.1: Decentralized Resource Auctioning: Overview.

We identify two roles that an edge node can have during application deployment, i.e.,
coordinator and collaborator. An edge node becomes a coordinator when an application
deployment request arrives. The coordinator’s objective is to ensure that the application
deployment satisfies the application’s resource requirements. To achieve this objective,
the coordinator has three different phases: (i) find collaborators, (ii) find deployment
strategy, and (iii) perform application updates. In the first phase, the coordinator
advertises the application model to all reachable nodes to find the required computational

71

6. Efficient Hosting of Robust IoT Applications on Edge Systems

resources needed to deploy the application. The second phase finds a satisfiable component
allocation based on the received nodes’ preferences – the coordinator considers its available
resources when finding a deployment strategy. Finally, in the third phase, the coordinator
considers the new updates received from the developer – updates provided as new aspects
for the composite components.
A collaborator is an edge node that shares its available resources with the coordinator
based on the information received in the advertisement message. A collaborator has total
control over its available resources, being able to create a specific set of preferences based
on its current internal state – the objective of each preference sent is to maximize the use
of available resources and provide high component coverage. The former objective aims
at maximizing the allocated available resource for the advertised application; since we
empower nodes to take local decisions, the strategies used to decide how many resources to
share are defined by its administrative entity and can be different from the total available
resources of a node. The latter objective represents the ability of a node preference to
cover all advertised components, i.e., there is at least one collaborator that can and wants
to host each component. Both equally important in aiding the application coordinator
to devise a satisfiable deployment. As a result, we manage to solve the limitations seen
in the previous chapter. To implement the collaborator decision module, we change the
two strategies presented in Section 5.3.2 with a new strategy based on CP. In the case
when a collaborator receives multiple concurrent advertisement messages from different
coordinators, a first-in-first-out synchronization strategy can be used; if the collaborator
sent a preference for the first message received, then the resources used are locked until a
decision is made by the coordinator node.
Finally, we want to mention that a collaborator becomes a coordinator for each composite
component received. In this case, the node can use the deployment policy module to
deploy the composite components instead of the entire application. By becoming a
coordinator, the collaborator can improve the composite component’s functionality based
on the available resources found locally or in its proximity. This is an important feature
that ensures the best application functionality possible at the current time considering
the host’s available resources. Furthermore, it shows that there is no need to obtain
the optimal deployment strategy during the application deployment stage since (i) the
application can achieve maximum functionality when more resources become available
on each collaborator and (ii) the application is deployed in a volatile system where
uncertainty is introduced by device heterogeneity and mobility.
Motivational Example. Serving as our running example, we consider a public safety
application, deployed in a smart city scenario, with the purpose of monitoring public
areas. Although the main objective of the application is, for example, finding wanted
criminals and discovering stolen cars, it is also desirable to aid the authorities with finding
missing persons, if enough resources are available in the edge system. For this purpose,
the application is composed of distinct composite components, including people analysis
and environment analysis components.
Privacy and low e2e delay latency define our public safety application, requirements

72

6.2. Problem Formulation

that may introduce significant challenges when deploying to the cloud. First, to ensure
privacy requirements and low latency, data must be processed near its origin, making
a cloud deployment less desirable. Furthermore, the application should ensure correct
functionality even when a stable connection to the cloud is missing. Consequently, a
full deployment close to the origin of data is desirable; where the IoT application is
distributed among multiple edge nodes. In our scenario, an edge node may be a static
device such as a CCTV camera or a mobile device that may leave the system, at any
time, e.g., a dash camera found in a car or images saved in a smartphone.

6.2 Problem Formulation
The current IoT application model presented in the research literature [MRB18b], i.e.,
an application is modeled as a DAG, still faces some deployment challenges since it is
dependent on the available resources of an edge node; a component cannot be further
divided to accommodate the target edge system’s lack of available resources to host the
entire application on edge nodes. In our conception, an application model is composed
of interconnected composite components, where each component has defined a set of
different configurations. Each configuration has a set of resource requirements that must
be fulfilled upon deployment. Since we extend our decentralized resource management
technical framework, essentially the system model is the same. Therefore, in this section,
we focus on describing the robust application model, the considered objectives, and our
assumptions.

6.2.1 Application and System Models
We target application deployment in volatile edge systems, where uncertainty is introduced
by mobile and heterogeneous nodes – each edge node has limited available resources,
i.e., Eres. Besides the available resources, a node has sensors to collect data from its
surroundings and actuators to perform different actions. Let EN represents the total
number of nodes available in the target edge system and EP = {Ep1, Ep2, ...} be the
number of chosen participant nodes. In Figure 6.2, we present an overview of a group of
nodes considered for deployment, where each device can be a coordinator or collaborator.

Decision
Policy

Deployment
Policy

Edge Node

Edge Node

Edge Node

Edge Node

Figure 6.2: Edge System Architecture: Overview.

73

6. Efficient Hosting of Robust IoT Applications on Edge Systems

Robust Iot application model

In our conception, a robust IoT application model consists of multiple interconnected
composite components – a model defined as a hierarchical graph. Our application model is
inspired by the aspect-oriented flow-based modeling paradigm [ZB15], where cross-cutting
concerns of an application, e.g., security, persistence, synchronization, fault detection,
can be modularized as an aspect. In this chapter, we see the functionality level of an IoT
application as a cross-cutting concern which is impacted by the resource availability of
edge nodes; therefore, it can be modeled as an aspect to adopt the application’s behavior
and functionality according to the available resources. The application developer specifies
these aspects for different levels of functionalities, e.g., from a very critical operating
mode to the fully functional operating mode, along with their priorities. Our resource
management technique takes these aspects into account and tries to host the application
according to available resources and the given functionality aspects of each composite
component.

To be concrete, we assume that an application model consists of a set of composite
components C = {c1, c2, c3, ...}, where each component has defined a set of aspects
(i.e., a configuration), e.g., c1 = {a1, a2, a3, ...}. The model uses a DAG, Gapp = (V, E),
to model the data flow between composite components. The application model for our
motivational example is presented in Figure 6.3.

c0: input c1: motion
detection

c2: face
recognition

c3: env.
analysys

c4: output

Figure 6.3: Smart Building Application model.

A composite component ci performs a specific application feature that is integral to the
overall application performance. To this end, we define each composite component as a
set of aspects from which it inherits their resource requirements; resource requirements
and functionality are dependent on the chosen aspect. Let us consider that the people
analysis component, from our motivational example, has a set of 2 predefined aspects, c2
= {a1, a2}; aspect a1 represents the desired functionality, having the highest resource
requirements, while a2 represents the minimum functionality level with the lowest resource
requirements (see Figure 6.4 and 6.5).
As we can observe, an aspect ai defines the configuration and functionality of a composite
component. Each aspect is developed at design-time and specifies, at least, the minimum
functionality required by that particular composite component. Moreover, an aspect can
enable a range of different functionalities that a composite component should perform.
As a result, we have established that aspects have different priorities based on their
functionality and resource requirements. For example, the base configuration for a
component is considered a1, which always has the largest resource requirements and
provides the maximum functionality. As such, we assign to this aspect the highest

74

6.2. Problem Formulation

c0: pre-
processing

c1: face
detection

c2: feature
extract

c3: feature
mapping

c4: criminal
identification

c5: missing
persons

identification

Figure 6.4: Aspect 1 (a1): Face recognition for missing persons.

c0: pre-
processing

c1: face
detection

c2: feature
extract

c3: feature
mapping

c4: criminal
identification

Figure 6.5: Aspect 2 (a2): Face Recognition for wanted persons. [ASDL+19b].

priority. At the end of this spectrum, the last aspect, i.e., a2 in the aforementioned
example, has the lowest priority; since it has the smallest resource requirements and
minimum functionality. In conclusion, an aspect is defined by a set of resources, Ra =
{r1, r2, r3, ...}, and a DAG modeling the workflow between its atomic components. With
such a modular approach, a composite component can have different aspects depending
on the host node’s available resources. As a result, the deployment technique can find
deployment strategies that efficiently use the edge nodes’ available resources.

Finding the application’s e2e delay is critical to the overall deployment strategy, hence
we define the two important components required for its computation, i.e., (i) the
communication latency and (ii) the component’s WCET. The former, as defined in
Section 5.2.1, is dependent on the component location since the latency between ci and cj,
i.e., lci,cj , is equal to the latency of their host nodes, i.e., lEpi,Epj . The latter is dependent
on the host’s internal status and must be computed locally when the collaborator node
prepares the preferences list. We discussed in Chapter 4 that finding the component’s
WCET deployed in a volatile edge system, at design time, is challenging since we do
not have any knowledge about the network topology or the current status of each node.
However, with our decentralized solution, where nodes are empowered to make their own
decisions, these challenges are overcome. In conclusion, we can find the component’s
WCET by computing its value based on the current CPU load when the preferences list
is computed. However, since our focus is to efficiently use the node’s available resources,
we assume that the latency and WCET are provided by a latency monitoring module as
well as a WCET module.

75

6. Efficient Hosting of Robust IoT Applications on Edge Systems

6.2.2 Objectives
There are two objectives in our technical framework by which a node abides depending on
the role it plays, i.e., a coordinator or a collaborator. A coordinator node objective did not
change, i.e., we try to satisfy the application’s e2e delay requirement upon deployment on
the edge system. However, in this chapter, the e2e delay consists of multiple parameters,
i.e., the communication latency between components and an overhead latency introduced
by the component allocation on edge nodes. The overhead latency is composed of the
component’s WCET plus the e2e delay of that composite component if the node becomes
its coordinator when it cannot host that particular composite component anymore.
For example, consider the authentication component c2 = {a1, a2}, where after the
deployment strategy is mapped on node Ep1, having as its configuration a2; which has
the lowest resource requirements and minimal functionality. In this case, to improve the
performance of the application the component can be upgraded to a higher functionality
level if Ep1 becomes its coordinator and finds the required resources in its neighborhood.
As a result, the overhead latency for c1 can be equal to the WCET of the component
if the further deployment has failed, or WCET + e2e delay of the further deployment
result. In contrast, when the node is a collaborator, the objective is to provide a list of
preferences for the advertised application model such that it maximizes (i) the utilization
of available resources, (ii) the component coverage, and (iii) the application functionality.
All are based on the local status of the collaborator (i.e., available resources and CPU
load) and may differ at different points in time.

6.3 Application deployment framework
We identify two major components for our extended decentralized resource management
technique, i.e., the deployment policy module and the decision policy module. The former
implements an extension of the decentralized resource allocation technique, presented
in Chapter 5, which aims at deploying an application entirely on edge devices. The
latter empowers each participant node to take local decisions concerning their available
resources and improves upon the previous decision strategies by offering better component
coverage and optimized preferences.

6.3.1 Deployment policy module
The deployment policy module retains its functionality proposed in previous chapter, i.e.,
to find a component allocation on edge nodes that satisfies the application requirements.
However, we extend it with more functionality to support our robust application module
and update the application functionality at runtime. Therefore, besides the two stages
already presented in Section 5.3.1, we enable a third stage that allows the application
developer to provide application updates, at runtime. This is possible once the application
is deployed and operation on the edge system. In this case, the deployment policy module
still keeps track of the edge nodes that hosts application components throughout the
application lifespan. As a result, a developer can send new aspects for each composite

76

6.3. Application deployment framework

component to expand the application functionality. When a new aspect is received, the
coordinator sends it to the location of its target composite component. Consequently,
we can perform on the fly updates of the application without any downtime. Finally,
we still use SMT to allow the application coordinator to device satisfiable deployment
strategies. Therefore, we translate our component allocation objectives into an SMT
formula, using the following encodings: component facts, domain facts, latency facts,
preferences constraints, aspect facts, aspect constraints, and constraint formulation.

We briefly introduce the first four encodings since these represent the base that is defined
in the previous chapter. The component facts encoding ensures that the SMT solver
maps a component on a single participant node. To be considered as a valid choice,
the component must be found in the preference list sent by the target edge node – the
coordinator cannot map a component on a node that did not show its desire to host that
particular component. Since there is no consensus between participant nodes, multiple
nodes may desire to share their resources and host a certain component. Therefore, we
must guarantee that only one node is chosen as the host of each composite component.
In contrast, the latency facts and domain facts help to determine the latency between
two dependent components – latency that is dependent on the components’ host nodes.
Be aware that in this encoding we must contain all communication latency between
dependent components since the SMT formula aims at providing the solver with complete
information about the search space – information that guides the SMT solver to devise a
satisfiable deployment strategy that fulfills the application’s objectives. Finally, with the
preferences constraints encoding, we ensure that only one group of components is chosen
from the preferences list sent by a collaborator node. As a result, we know that a solution
does not exceed the available resources of a collaborator. We continue to present the
remaining encodings that represent our contribution to the deployment policy module.

Aspect Facts

The aspect facts encoding provides the possible aspects a composite component can have;
information important for the e2e delay computation, since each aspect has associated
a WCET. Hence, knowing the aspects of each component provides a knowledge base
used by the SMT solver to enforce the next two encodings, i.e., aspect constraints and
constraint formulation. We present the encoding in Formula 6.1, where latency() returns
the overhead latency of aspect a from component c.

aspectFacts = OR(ca = latency(a))) ∀ c ∈ C. (6.1)

Aspect Constraints

With the aspect constraints encoding, we help the SMT solver to associate the correct
WCET to a component based on its mapping. Similar to the latency facts, this constraint
helps the solver to create a relation between the mapping of a component and its WCET.
As we know, the WCET is closely related to the current node status. Hence, we need to

77

6. Efficient Hosting of Robust IoT Applications on Edge Systems

know where the component is mapped to consider its WCET in the constraint formulation.
Furthermore, since a preference list contains multiple groups of components, we must
ensure that we get the correct WCET for a component according to the rules presented
in preferences constraints. For example, node Ep1 sent its preferences P = {p1, p2}, where
p1 = {c1, c2} and p2 = {c1}. Each component has associated an aspect and its WCET
– therefore, if c1 is mapped on Ep1, then we have two possible WCET associated with
it (one for p1 and one for p2). If c1 has the same aspect in both p1 and p2, then the
component’s WCET has the value of the aspect. However, if the two have different
aspects for c1, then the solver chooses the aspect for the component that satisfies the
preferences constraints rules.

Constraint Formulation

Finally, the constraint formulation ensures that the found deployment strategy satisfies
our objectives. Such encoding accounts for both the communication latency and WCET
of a component; the result must be smaller or equal to the application requirements.
A rule that helps the solver to verify the satisfiability of a solution found using the
aforementioned encodings. We show the encoding in Formula 6.2, where d represents the
total number of dependencies between two components.

e2eDelay =
d

i=1
li +

c

Cca ≤ app requirements (6.2)

By combining the aforementioned constraints, we obtain the complete formula F used
by the coordinator to find a satisfiable allocation according to application requirements:

F : componentFacts ∧ domainFacts ∧ prefConstraints ∧ e2eConstraint
∧aspectFacts ∧ aspectConstraints ∧ e2eDelay.

(6.3)

6.3.2 Decision policy module
The decision policy module has the purpose of aiding the collaborators in creating their
preferences based on the information received from the advertised message. The procedure
starts once a node receives the advertised message from the coordinator. Based on its
current status, the node can become a collaborator if it has the required resources to host
at least one component. To aid in its decision, we have developed a strategy to create
a list of preferences, i.e., P, for each advertised message .P may contain one or more
groups of components and has the following three objectives: (i) maximize the utilization
of available resources for each group, (ii) maximize the coverage of components per P,
and (iii) maximize the overall application functionality. Finally, once the collaborator
creates P, the required resources allocated for P are reserved until the coordinator finds
a deployment strategy to avoid any conflicts when multiple applications are deployed
at the same time. Furthermore, for each component sent in P, it computes and sends

78

6.3. Application deployment framework

the components’ WCET. In the end, the freshly created preferences list is sent to the
coordinator.

To obtain a node’s preference list that satisfies all objectives aforementioned above, we
have developed a new decision strategy capable of finding a feasible or optimal P in the
given amount of time. The strategy yields an optimal preference list only if the solution
can be found in the available computational time given by the coordinator. If the time
has expired, then the strategy produces a feasible solution that guarantees the fulfillment
of the constraints. To achieve this behavior, we have decided to use CP [RVBW06] to find
our list of preferences for each node. With CP, we can describe a model using decision
variables, constraints, and global objectives.

Decision variables

We create our decision variables based on the information received in the advertisement
message. A decision variable aims at defining for each component a domain representing
all the possible aspects the component can have. For example, if c1 has a set of two
different aspects, i.e., c1 = {a1, a2}, then the domain is composed of the two aspects.
Under these conditions, the CP solver can assign only one aspect, chosen from the domain,
for the decision variable of c1. Besides the component variables, to be able to maximize
the usage of the node’s available resources when creating a group of preferred components,
we must define three new decision variables to keep track of the resource requirements of
a chosen aspect – the domain of a resource decision variable, i.e., RAM, CPU, and HDD,
has the same length as the domain of the component. For example, the domain for the
RAM resource variable of c1 is {a1RAM , a2RAM}. Finally, remember that we are interested
in considering the aspects with the highest functionality in our deployment strategies. As
a result, we define a penalty variable to aid the solver in considering the highest priority
aspects. We have assigned a penalty of 0 for the aspects with the highest priority – we
increase the penalty by 2 for every other aspect assigned to a component. In the end,
if a component is not placed in P, then a penalty of 20 is given. The construction of
the decision variables has a time complexity of O(ncna), where nc is the total number of
components sent in a group and na is the total number of aspects a component has. It is
important to mention that the decision variables are created for each pi found in P.

Constraints

We added all required decision variables to the CP model, so we can start defining
constraints to guide the CP solver in its quest to find a feasible solution. For this purpose,
we have created two major constraints, i.e., (i) group constraints and (ii) max coverage
constraints. With group constraints, we ensure that any group of components, i.e., p1, sent
in P, does not exceed the available resources of its node. We divide the group constraints
into two important parts, i.e., set resource decision variables and check available resources.
The former creates a logical relation between an aspect of a component and its resource
requirements (see Formula 6.4). The latter ensures that the sum of all resources required
for p1 does not exceed the available resources of that node (see Formula 6.5). The time

79

6. Efficient Hosting of Robust IoT Applications on Edge Systems

complexity required to create the group constraints is O(nc), while for finding the max
coverage constraints is O(ncncp) where ncp represents the number of times a component
appears in P. For example, if we have P = {p1, p2} and c1 is part of both p1 and p2,
then ncp for c1 is 2.

setResource : (c = a) ⇒ (cCPU = aCPU ∧ cRAM = aRAM ∧ cHDD = aHDD)
∀ c ∈ C and ∀ a ∈ ca.

(6.4)

maxCPU =
nc

i=1
cCPU ≤ availabeCPU

maxRAM =
nc

i=1
cRAM ≤ availabeRAM

maxHDD =
nc

i=1
cHDD ≤ availabeHDD

(6.5)

With the max coverage constraint, we want to maximize the component coverage in P.
Remember that component coverage is one of the main issues that we must solve when
giving nodes the possibility to decide how to share their resources. In Chapter 5, we
use four different tactics to account for this problem. In contrast, in this chapter, we
solve this issue by defining the max coverage constraint. To achieve this, we verify that
across all groups of components sent in P at least once each component appears (we
call this a strict preference). A strict preference achieves 100 % component coverage;
however, the CP solver will consider all other preference lists, with a lower component
coverage, as infeasible. Enforcing this constraint has different side effects, i.e., we might
lower the components’ functionality to satisfy this constraint. However, we can make the
constraint soft if we change the > 0 to ≥ 0 in Formula 6.6 and obtain what we call a
permissive preference. In this case, a permissive preference considers feasible all solutions
independent of the component coverage. We present the constraint in Formula 6.6, where
np is the total number of groups of components sent in P and priority() returns the
priority of the aspect assigned to component c.

maxCoverage =
np

i=1
priority(c) > 0 ∀ c ∈ C. (6.6)

Global objective

Finally, we define a global objective to enable our decision policy module to yield the best
solution under the given time. The purpose of this objective is to minimize the penalty
at the node’s preference list level. As a result, we obtain a preference list that prioritizes
the higher priority aspects for each component while maximizing the utilization of all
available resources. We present the global objective in Formula 6.7.

80

6.4. Evaluation

Min(
np

i=1
penalty) (6.7)

6.4 Evaluation
A major goal of the extended decentralized resource management framework is to efficiently
utilize the available computational resources found on resource-constrained devices when
deploying a latency-sensitive IoT application on an edge system. To this end, we evaluate
our proposed application model in terms of obtained successful mappings at the edge of
the network. We first evaluate the decision policy module to understand the effects of
various applications and nodes available resources on (i) the total number of component
groups sent in a preference list and (ii) computational time required to find a feasible
solution. Finally, we proceed to deploy three different IoT applications, (i) montage, a
real-world DAG workflow [BSM10], (ii) a cognitive application [ASDL19a], and (iii) a
mockup application defined by us – each application has a different size to better assess
the framework’s capabilities.

6.4.1 Decision policy module: Experiment and Results
We first evaluate the decision policy module to demonstrate the collaborator’s ability to
provide feasible and optimal preferences. The purpose of this evaluation is to understand
how the following impact component coverage: (i) edge node available resources, (ii)
application size (i.e., the total number of composite components), (iii) available search
time (i.e., the maximum time allowed to find the node’s preferences), and (iv) number
of groups sent in P. Furthermore, we evaluate both strict and permissive preferences
by making the max coverage constraint a hard or a soft constraint. Depending on the
type of the max coverage constraint, the maximum number of groups sent in P plays an
important role in the overall performance of the deployment technique – the number of
groups may increase or decrease the framework performance in finding feasible deployment
strategies. On the one hand, a strict constraint requires a minimum number of groups
to find a feasible P; the minimum number of groups is dependent on the node available
resources and application size. On the other hand, a permissive constraint requires more
computational time and available resources to yield a P with a component coverage
close to 100%. To evaluate the decision module, we have implemented the bid strategy
using CP-SAT solver provided by Google OR-Tools 2. We perform our measurements by
deploying the collaborator on a machine with a dual-core Intel i5 2.3GHz processor.

In our experiments, we choose to find the node’s preferences when the application
coordinator advertises the montage application – an application with the highest number
of components from the three we consider, making it harder for the decision strategy
to build a preference list. During our experiments, we send an advertising message

2https://developers.google.com/optimization

81

https://developers.google.com/optimization

6. Efficient Hosting of Robust IoT Applications on Edge Systems

containing the application model to the collaborator node and record its preferences.
We repeat the experiment multiple times, every time changing a set of different metrics,
i.e., available search time (i.e., 1, 5, 15, 30, 45, and 60 seconds), number of groups sent
in a preference list (i.e., 2, 4, 6, and 8), node available resources (12, 36, and 60 units
for each considered resource), and max coverage constraint type (permissive or strict).
We proceed with our evaluation as follows: we set the available resources of a node
and record the component coverage changing the search time and the number of groups
sent in P. For example, for every node’s available resources set, we record a total of 48
preference lists, i.e., for each number of groups sent in P, we change the available search
time resulting in 6 total preferences list per group size. Furthermore, we perform this
approach twice, once when we use the strict preference constraint and the second one
when we opt for a more permissive constraint. We present our results in Table 6.1 to
Table 6.3 where we show the component coverage considering the number of groups sent
in P and the available search time. For example, in Table 6.1, the decision policy module
can find a preference list with component coverage of 25 % when we set the constraint
type to permissive, we allow for a maximum of two groups in P, and we limit the search
time to 1 second.

Constraint
Type # groups search time (seconds)

1 5 15 30 45 60

Permissive

2 25 25 25 30 29 29
4 46 36 46 50 50 50
6 55 58 50 50 42 42
8 63 67 63 63 58 58

Strict 2–4 0 0 0 0 0 0
6–8 100 100 100 100 100 100

Table 6.1: Component coverage percentage of permissive and strict constraints with 12
units available resources

In Table 6.1, we can observe that the node’s available resources and the number of groups
prevent the decision strategy to find a feasible P – it is impossible to find the node
preferences when the number of groups is 2 and 4. A consequence of making the max
coverage constraint strict – a constraint that considers that P is feasible only when its
component coverage is 100 %. In comparison, we can see that by setting this constraint
to permissive, the decision strategy finds a preference list for every group size – having a
component coverage between 0 % and 100 %. In this case, the only chance to not find a
feasible P is when the collaborator lacks the available resources required to host at least
one component from the application.

In Table 6.2 and 6.3, we can observe the impact of the node’s available resources on
the decision strategy’s capability to find feasible solutions. We can conclude that by
increasing the node’s available resources, it is possible to find feasible solutions for all
groups if we have a strict max coverage constraint. Similarly, for permissive constraints,

82

6.4. Evaluation

Constraint
Type # groups search time (seconds)

1 5 15 30 45 60

Permissive

2 58 63 50 50 58 58
4 63 58 71 71 71 66
6 66 66 83 79 79 79
8 86 88 100 100 100 83

Strict 2–4–6–8 100 100 100 100 100 100

Table 6.2: Component coverage percentage of permissive and strict constraints with 36
units available resources

we can observe an improvement in the overall component coverage across all solutions.
Furthermore, by increasing the search time, we can achieve 100 % component coverage
for permissive constraints as well.

Constraint
Type # groups search time (seconds)

1 5 15 30 45 60

Permissive

2 71 71 75 71 71 71
4 75 88 92 92 92 92
6 92 92 100 92 92 96
8 83 83 83 83 96 100

Strict 2–4–6–8 100 100 100 100 100 100

Table 6.3: Component coverage percentage of permissive and strict constraints with 60
units available resources

6.4.2 Deployment policy module: Experiments and Results

To evaluate the deployment policy module, we consider as a performance metric the
deployment strategy’s ability to find a satisfiable mapping by using only the edge nodes’
available resources – without using the available resources found in the cloud. To do
so, we compare our robust application model and the DAG model by looking at their
impact on the deployment strategy – we compare the deployment efficiency of both cases,
i.e., when we set the max coverage constraint to strict or permissive. It is important
to understand the impact of a strict constraint on the deployment strategy, considering
that some nodes may not be able to send their preferences because there are not enough
resources to offer maximum component coverage or the number of groups is too small.
We simulate the deployment of the three aforementioned IoT applications on an edge
system, evaluating both the applicability and performance. The implementation of our
coordinator is based on Z3 SMT solver [DMB08] and is deployed on the same device
as described in Section 6.4.1 – we simulate all collaborators used for the performance
evaluation on the same device.

83

6. Efficient Hosting of Robust IoT Applications on Edge Systems

Applicability: Cognitive Application Deployment

To prove the applicability of our decentralized resource management framework, we
deploy a realistic cognitive application consisting of 8 components. Based on the results
presented in Section 6.4.1, for our applicability evaluation, we have decided to set the
decision policy module configuration as follows: (i) the available resources on each
collaborator node is randomly set between 12 and 24 units, (ii) a total number of two
groups of components can be sent in the node’s preference list, (iii) the search time is 1
sec, (iv) we use strict constraints, aiming to have maximum component coverage in each
P, and (v) the e2e delay is set to 50.

We model the cognitive application [ASDL19a] using our proposed robust model, assigning
each composite component a set of four different aspects. Each aspect has a set of resource
requirements chosen in the range of 1 to 9 units; the lowest priority aspect has resource
requirements closer to 1, while the highest priority aspect has resources close to 9. For
evaluation purposes, we choose the WCET of an aspect randomly between 1 and 10.
Our target edge system consists of two resource-constrained devices, that can be both
coordinators and collaborators for the deployed applications – Ep1 has the following
available resource, Eres = {RAM = 19, CPU = 21, HDD = 18}, while Ep2 has Eres =
{RAM = 21, CPU = 22, HDD = 15}. In Figure 6.6, we present the cognitive application
robust model and the application mapping, where in the left corner we see the host node
and on the right corner we see the chosen aspect for that composite component. For
example, edge node Ep1 hosts the composite component, i.e., vision capture, with the
aspect a4.

vision
capture

face
recognition

coarse feature
extraction

object
recognition

optical
character

recognition

learning-based
activity inference rendering

display

Ep1

Ep2

Ep2 Ep2 Ep2 Ep2

Ep2

a4 a4

a4

a4 a4 a4

a4

a2Ep1

Figure 6.6: Cognitive Application model [ASDL19a]

The coordinator manages to find a satisfiable mapping in 40 ms, which includes the time
required to find a mapping after the node’s preferences were received. To this time we add
the time required to find the node’s preference list, i.e., 1 sec. The overall application’s
e2e delay is equal to 49 ms, from which 12 ms represents the communication latency and
the remaining 37 ms comes from the components’ WCET. To have a better picture of
the current component’s functionality, we present in Table 6.4 the current component’s
resource requirements based on their chosen aspect and related WCET.

84

6.4. Evaluation

Composite
Components

Resource Requirements WCETRAM CPU HDD
c1 3 1 1 1
c2 3 2 4 7
c3 4 5 5 1
c4 3 1 2 7
c5 3 1 3 3
c6 3 1 1 9
c7 3 1 3 6
c8 3 1 1 3

Table 6.4: Cognitive Application resource requirements and WCET.
Performance evaluation

To quantitatively evaluate the impact of the proposed robust IoT application model and
the new decision policy module, based on the results presented in Section 6.4.1, we choose
the following configuration for our decision policy module: (i) we randomly select the
nodes’ available resources between 26 and 50 units, (ii) we set the maximum number of
groups sent in the preference list to 6, (iii) we keep the search time equal to 1 sec, and
(iv) we set the application’s e2e delay to a high value to avoid losing any deployment due
to a demanding e2e delay. Furthermore, we deploy two different applications, i.e., the
montage graph with a total number of 24 components and the mockup application having
16 components. Deploying different application models allows us to evaluate the impact
of total available resources found in the target edge system and the application size on
the deployment efficiency. Similar to the cognitive application model, we assign to each
composite component a set of four distinct aspects. However, for our edge system, we
consider five different sizes, i.e., 2, 4, 6, 8 and 10 collaborators.

We present our evaluation results in Table 6.5 where we compare three different deploy-
ments based on the total number of successful application mappings on edge devices –
without resorting to cloud resources. In the first deployment, we aim to achieve 100%
component coverage in each node’s preference list sent to the coordinator – we set the
max coverage constraint to strict. In the second deployment, we change to constraint
type to permissive. It is important to mention that, for the first two deployments, we
use the proposed robust IoT application model to define the applications. Finally, to
show the improvements over the normal DAG application model used in Chapter 5, we
add the deployment results presented in Section 5.4.2 for comparison purposes – in this
case, the DAG application model does not have aspects.

6.4.3 Discussion
In Section 6.4.1, we have demonstrated that our decision policy module enables a
collaborator to provide feasible preferences under strict and permissive constraints. In
the former case, finding the node’s preferences is dependent on the number of groups sent

85

6. Efficient Hosting of Robust IoT Applications on Edge Systems

Application Type Number of nodes
2 4 6 8 10

Montage
strict 0 81 100 100 92

permissive 0 0 8 92 97
DAG model 0 0 0 0 0

Mockup
strict 44 100 100 100 98

permissive 0 6 100 100 99
DAG model 0 0 0 0 0

Table 6.5: Successful mapping on edge.

in P as well as the node’s local available resources. We can observe this in Tables 6.1, 6.2,
and 6.3, where with an incremental increase in both metrics we achieve 100% component
coverage. Considering these findings, we can conclude that a node with 36 units of
available resources represents the optimal node available resources suitable to deploy the
montage application. In contrast, a permissive bid is more flexible, allowing collaborators
to submit their preferences even when the component coverage is not close to maximum
coverage – it finds a feasible preference list for all configurations. We can conclude, from
the three tables, that the component coverage increases with the available resources of a
node. Furthermore, compared to a strict constraint, where the objective is to maximize
coverage, a permissive bid aims at providing better application functionality, i.e., chooses
the highest priority aspect for each component. As a result, we see a fluctuation in
component coverage given by the available search time.

In Section 6.4.2, we show the coordinator’s ability to successfully deploy an application
to resource-constrained devices. With the aid of our experiments, we prove that the
deployment policy module can find a satisfiable deployment strategy for a realistic
IoT application, even when there are not enough available resources to host the entire
application at maximum functionality. The coordinator manages to find a satisfiable
deployment strategy for our cognitive application by keeping its functionality close to the
minimum. By choosing the strict constraints, which achieves 100% component coverage,
the decision module does not maximize the application’s functionality. Additionally,
we set the number of groups to 2, which further limits the possibility of increasing
the application functionality. However, the host node can improve the application
functionality when more resources become available. In conclusion, we demonstrate that
our proposed robust application model in combination with an efficient decision policy
module can achieve better results compared to the decentralized resource management
framework presented in Chapter 5.

From Table 6.5, we can observe that even for a large application size, we can provide full
edge deployments for more than 80% of total tests if the target edge system has at least
the available resources required to host the application with the lowest functionality. In
this case, each component uses the lowest priority aspect. Considering this, we do not
find a satisfiable deployment on the system composed of two collaborators because it lacks

86

6.5. Conclusion

the application’s minimum required resources. In contrast, by increasing the number of
collaborators, we considerably increase the chances of finding feasible solutions. From
the deployment of the two applications, i.e., mockup and montage, we can conclude that
deploying an application with a smaller number of components on the same edge system
will result in the deployment strategy performing better. For example, on an edge system
with 10 nodes, our framework can find deployment strategies for both permissive and
strict types. Moreover, the deployment using bids with 100% component coverage yields
much better results for a lower number of nodes, compared to the other two deployments.
In conclusion, we can observe that by deploying an application using our robust model
we can achieve far better results compared with the DAG application model. When we
use the DAG model, our framework cannot find one successful mapping exclusively at
the edge. As proven in Chapter 5, we can deploy an application using the DAG model in
edge systems with more nodes.

By comparing the different deployments, i.e., permissive, strict, and DAG model, we notice
that deployments using strict constraint outperform the others on smaller system sizes
while the deployment using a DAG model cannot find one satisfiable solution. Furthermore,
when deploying our mockup application model, we can see that our framework can find
feasible deployment strategies on a small edge system size – we can see that by lowering the
size of the application, we lower the required available resources, enabling the coordinator
to find a mapping on a system with a smaller size. In conclusion, making each node
provide full component coverage enables the coordinator to fully utilize the available
resource found on edge nodes.

As a final note, we acknowledge that the current evaluations were performed on a
laptop and not on a resource-constrained device (e.g., a Raspberry Pi). Even though
the computation times for creating a node preference list may increase, the evaluation
performed is still valid. One limitation of our deployment technical framework is the
inability to automatically decide at runtime, based on the application size and the
available resources, what is the optimal number of groups sent in P by a node. In this
case, we had to perform multiple evaluations for all deployed applications, having the
number of groups hardcoded into the decision policy module. To solve this problem, we
intend, in future work, to develop such a method that decides at runtime the optimal
performance list size considering the deployed application.

6.5 Conclusion
In this chapter, we substantially extend our previous work with a new decision policy
module and provide a novel robust IoT application model. The former consists of
developing a decision strategy that empowers collaborator nodes to make better decisions
regarding their available resources – a policy that aims at providing feasible and optimized
node’s preferences. The latter enables the developer to define different application
functionality levels. An approach that (i) enables the resource management technique
to efficiently use the available resources found on edge devices, (ii) allows updating

87

6. Efficient Hosting of Robust IoT Applications on Edge Systems

the application functionality at runtime, and (iii) empowers each collaborator to adapt
the component’s functionality based on the available resources found locally or in the
proximity of its host node. To conclude, we proved that significant improvements are
seen when deploying an IoT application defined using our proposed model. Moreover, we
demonstrate that finding preferences that achieve 100% component coverage yields better
results compared to permissive preferences, when the target edge system has limited
available resources.

88

CHAPTER 7
Adaptive Management of Volatile

Edge Systems at Runtime With
Satisfiability

Recent developments in DevOps and software design advocate dividing applications’ func-
tionality into small, modular, and easily deployable microservices. We define the overall
application’s functionality in terms of an invocation sequence among those microservices.
An IoT application, as a composition of those microservices, may need to adhere to
specific requirements. Fundamental ones, the importance of which is exacerbated on
edge computing settings, are exhibiting a certain availability and enjoying low latency.
During the application’s lifespan, deployment should take such requirements into account,
something that is nontrivial and requires novel resource management techniques to deploy
the application and maintain its correct functionality at runtime.

Resource management in edge computing has considered various aspects, resource place-
ment, migration, and discovery among others [TN18b]. In previous chapters, we have
proposed techniques (i) to develop the IoT application and find deployment strategies at
design time (Chapter 4), (ii) to seamlessly deploy applications, at runtime, on the target
edge system such that the application’s requirements are satisfied – we focus on efficiently
using all the distributed nodes’ available resources (Chapter 5), and (iii) to improve
the utilization of resources found at the edge of the network, we propose a new IoT
application model and further improve our decentralized resource management technique
(Chapter 6). However, in all situations, we only perform resource placement, i.e., we find
an allocation of microservices on the target edge nodes before the application becomes
operational – a practice that does not ensure the correct application’s functionality during
its lifespan. Therefore, in this chapter, we focus on combining resource placement with
resource migration, in order to deploy and host an IoT application on an edge system
satisfying its latency and availability requirements. Existing approaches to tackling

89

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

availability have been based on scaling up resources in pools/clusters of nodes hosting
microservices, such as OpenFaas 1, Kubernetes 2, Docker Swarm 3, etc. In our case, we
are not concerned with scalability or elasticity – but with systems where edge nodes
hosting microservices may fail or leave the network. Thus, the systems we target for
deployment are highly volatile, raising challenges on the dependable execution of IoT
applications spanning multiple hosting nodes. To this end, we tackle the problems of
volatility and distribution of resources in edge systems, where typically microservices
located on various hosting nodes need to be executed in some specific sequence. Nodes
may fail, and the application’s invocation path may need to change but still satisfy the
latency and availability requirements. We interpret the above problem as two separate
goals in the systems we target; (i) placing appropriately necessary resources by deploying
microservices to nodes, (ii) and reacting to instabilities caused by node failure.

During the microservice placement stage, we place microservices on edge nodes such
that the applications’ resource requirements are met. This stage considers the desired
availability of the application along with known failure probabilities of individual hosting
nodes. We pursue availability by replicating microservices accordingly throughout the
system. This is a costly step, as it involves migrating and moving around microservices – as
such it should be performed as infrequently as possible. During the invocation path stage,
we ensure the correct application’s functionality by finding an invocation path among
nodes hosting microservices such that it satisfies the application’s requirements. We deploy
the application in a volatile edge system, where nodes may fail or leave the system at any
point in time – a change in the system may disrupt the current application’s invocation
path among microservices. Therefore, we must find a new invocation path between
the remaining available microservices to adhere again to the application’s availability
requirements and the e2e latency. Observe that, during the placement stage, we do
not have as objective the application latency – a practice that solves the computational
issues faced by the decentralized resource management framework when deploying an
application. Considering the application’s latency as an objective in the invocation path
stage lowers the high computational demands of modeling the communication latency
between dependent microservices. During this stage, we consider only a small part of the
edge system, i.e., only the edge nodes where the application’s microservices and their
replicas reside.

Our framework builds on the premise that an application model consists of microservices
that should be invoked in some specific sequence to fulfill the desired functionality. A set
of requirements define the application model, i.e., the microservices’ resource requirements,
the maximum e2e latency that an invocation path should exhibit across the system,
and the desired application and microservices availability. Based on these, the proposed
framework deploys and maintains the application on the edge system. We consider that
the target edge system consists of geo-distributed edge devices. However, we are not in a

1https://docs.openfaas.com/
2https://kubernetes.io/docs/home/
3https://docs.docker.com/engine/swarm/

90

https://docs.openfaas.com/
https://kubernetes.io/docs/home/
https://docs.docker.com/engine/swarm/

static setting similar to Mobile Edge Computing, where edge servers reside at certain
locations. Instead, we consider volatile edge systems where service operators have no
control over nodes joining/leaving the system, which end-users operate. In Figure 7.1,
we illustrate the problem setting treated in this chapter. We define the edge system as
(i) microservices hosted on nodes (ranging from single-board computers to server-class
data center hosts) forming a network, (ii) every node is network-reachable from any other
node, (iii) microservice instances are replicated to ensure availability, (iv) nodes have
high failure probability, and (v) several invocation paths among microservices hosted are
possible, each characterized by an e2e latency.

Microservices

communication
latency

Microservices

Microservices Microservices

Microservices

Microservices

Microservices

node node node

Microservices

node

node

node

node

node

Microservice
1

Microservice
…

Microservice
n API

Failure
Likelihood

node

Invocation
Path

e2e latency

Invocation Path
Invocation

Path

Figure 7.1: Overview of a volatile edge system illustrating (i) interconnected edge nodes
featuring different communication latencies, (ii) microservices being replicated across
nodes, (iii) multiple invocation paths characterized by different e2e latencies.

Similar to our previous resource management framework, we encode the two problems
encountered – application deployment and runtime management – within SMT [BT18].
Thus, we provide guarantees – if a mapping exists, it is always found at runtime
by an SMT solver situated in some edge node and is always correct as it satisfies
application availability and latency requirements. Those two problems correspond to two
Monitoring-Analysis-Planning-Execution (MAPE) loops [KC03]. Finally, we evaluate
our framework’s performance by measuring the execution time required to deploy and
maintain an application on an edge system as well as investigate its recovery from
emergence of volatility.

The remainder of the chapter is structured as follows. In Section 7.1 we present the
overview of our proposed solution and introduce a motivational example. Section 7.2
defines the application and network considered in this chapter. In Section 7.4 we describe
the implementation details of our resource provisioning technique, while in Section 7.5 we
describe our stabilization technique. Section 7.6 presents the methodology and results of

91

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

our evaluation regarding both provision and stabilization. Finally, Section 7.7 concludes
the chapter.

7.1 Framework for Adaptive Management of Volatile
Edge Systems

Edge-intensive systems typically heavily take into account runtime aspects, as unforeseen
as well as emergent system behaviors might hinder system stability; computational nodes
hosting microservices may fail or leave the system at any point – as such, deployment
decisions previously made may be rendered obsolete. Therefore, we cast our proposal
within self-adaptive systems – we monitor the runtime state, construct a precise repre-
sentation amenable to analysis, and devise potential counteractions in a self-adaptive
manner. In essence, we tackle the problems of volatility and distribution of resources in
edge systems – microservices need to be executed in some way depending on resources
that are located in nodes that may fail. Microservices require specific resources, and
“some way” refers to an invocation path among them that needs to satisfy some desired
application property. Within our approach, we use two MAPE [AZ10] cycles to address
the system goal, i.e., the placement stage and the invocation path stage, where both take
place at system runtime.

Design time

M

Microservices

R

Requirements

E

Execution
Sequence

F

Failure
Probabilities

Placement
Encoding Monitoring

Invocation
Path

Analysis

Placement
Planning

Invocation
Path

Planning
Execution

Edge Computing
Architecture

Placement Cycle Invocation Path Cycle

Network
Topology

Pl
ac

em
en

t
SM

T
M

od
el

Deployment
Strategy

Network
State

Invocation
SM

T M
odel

New Inv.
Chain

Runtime

Figure 7.2: Adaptive framework overview featuring two adaptive cycles at runtime in
charge of placing the application and managing the invocation path across microservices
respectively.

The placement cycle finds a mapping of microservices on the participating edge nodes and
ensures the fulfillment of applications resource requirements and objectives. To achieve
this, this cycle monitors the state of the system, namely which nodes are reachable,

92

7.1. Framework for Adaptive Management of Volatile Edge Systems

available, and what resources they currently have, through the Monitoring activity.
Subsequently, the Placement Encoding activity considers some desired availability factor
of the application and known failure probabilities of nodes and models the problem in a
representation amenable to analysis. In this chapter, we assume that the system engineer
knows the node’s failure probability at design time – nodes failure probabilities may be
also learned, at runtime, something which we identify as an interesting avenue of future
work. Based on the developed model, the Placement Planning activity produces a plan
by replicating microservices accordingly throughout the system, ensuring that the overall
application availability is satisfied. Finally, the plan is executed upon the edge system by
actual allocation of microservices upon nodes. Note that the adaptive framework uses the
placement cycle in two different situations, i.e., initially and sporadically. In the former,
the cycle maps the required microservices on the edge system before the application is
operational on the system. In the latter, the framework triggers the placement cycle
when radical changes in the system appear – there are not enough available microservices
left in the system to ensure application recovery by using the invocation path cycle alone.

The invocation path cycle ensures the correct application’s functionality by finding a
sequence of nodes where its microservices reside, within the system, that satisfies all
objectives, i.e., e2e latency and availability requirements. As the system is assumed to
be unstable, the cycle uses the Monitoring Activity to identify any system changes that
may disrupt an existing invocation path. If the system changes disrupt the application’s
invocation path, then the Invocation Path Planning activity must find a new invocation
path and keep the application operational. Recall that nodes host replicas of various
microservices, but nodes themselves have communication links of various qualities between
them, which the Monitoring activity monitors. In contrast to the placement cycle, the
invocation cycle produces a requirements-satisfiable invocation path among available
microservices with every change in the system state, targeting non-radical system state
changes, when it merely needs to be stabilized. The difference among the two adaptive
behaviors – targeting infrequent and radical change versus minor instability in invocation
paths – is exploited in the design of the framework’s runtime behavior, as described in
the following sections.

Running Example

Consider a public-safety application deployed in a smart city scenario and within the
circumstances of a special event, such as a festival taking place within the city. Usually,
large crowds of people attend these events, leading to an increase in different types
of applications deployed in the area. Since this is a special event, the sudden request
for hosting multiple applications on the current infrastructure renders it inadequate to
meet each application’s requirements. Furthermore, building the required computing
infrastructure is not efficient since the event is only for a limited amount of time –
rendering the extra infrastructure idle outside of the event window, leading to resource
waste. However, there are many unused resources at the event owned by the participants,
e.g., within smartphones and cars among others. Hence, since these are connected to the

93

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

same system, they can be used for the benefit of deployed applications. Note how an
application operator does not control the users’ devices – devices may leave the system
at any time.

In our example, the public-safety application must be operational, in the system, for the
duration of the entire event. The application provides a safe environment by analyzing
the surroundings to find suspicious cases such as an unattended package or a dangerous
activity in the crowd. Thus, once the data is analyzed, the application helps the authorities
to prevent dangerous scenarios. As we can imagine, response time is critical in such
situations. As a result, the application cannot reside entirely in the centralized cloud due
to requirements as low latency and high availability – requirements that we can fulfill by
deploying the application closer to the event location.

Our adaptive framework fits particularly well in this decentralized scenario. Using our
proposed framework, we can maintain the edge system in a stable state throughout the
entire event – we can adapt to changes found in the system and network. With the
placement cycle we can distribute the application’s microservices throughout the edge
system, while with the invocation path cycle, we can establish an initial application’s
invocation path and provide the possibility to recover from node failure. To have a better
understanding of our framework, we present a step-by-step process of managing the
public-safety application on the target edge system. The application consists of different
microservices like (i) face recognition, (ii) environment analysis, and (iii) data analysis
and has a given microservice execution sequence (see Figure 7.3). The application has
two overall requirements, i.e., a maximum e2e latency and desired availability. The target
system consists of multiple nodes ranging from powerful server nodes (e.g., in the event
premises) to mobile nodes of users. Each node has an associated failure probability and
communication link – each communication link has a latency associated, assumed to be
known beforehand. Our purpose is to satisfy all application’s requirements during its
lifespan at runtime.

m0: input m1: face
recognition

m3: env.
analysis

m2: data
analysis

m4: results
generation

Figure 7.3: Public-safety application model and its execution sequence.

We distinguish three characteristic stages that an edge system may be found in during
the lifespan of an application. Those represent the initial placement and start of the
application’s execution, the emergence of some disruption due to node failure and then
the stable system state after the corrective action employed by our approach. Those are
illustrated in Figure 7.4; specifically:

94

7.1. Framework for Adaptive Management of Volatile Edge Systems

m0

node1

m1, m3
node2

m3
node5

m2, m4
node3

m1, m2
node4

Initial placement

p1 p1

m4
node6

f = 0.5 f = 0.75

f = 0.3

f = 0.6

f = 0.75

f = 0.4

l = 5 l = 3

l = 1l = 2

l = 9

l =
 4

l =
 5

l = 10

l =3

m0

node1

m1, m3
node2

m3
node5

m2, m4
node3

m1, m2
node4

p1 p1

m4
node6

f = 0.5 f = 0.75

f = 0.3

f = 0.6

f = 0.75

f = 0.4

l = 5 l = 3

l = 1l = 2

l = 9

l =
 4

l =
 5

l = 10

l =3

FA
ILE

D m0

node1

m1, m3
node2

m3
node5

m2, m4
node3

m1, m2
node4

p1 p1

m4
node6

f = 0.5 f = 0.75

f = 0.3

f = 0.6

f = 0.75

f = 0.4

l = 5 l = 3

l = 1l = 2

l = 9

l =
 4

l =
 5

l = 10

l =3

FA
ILE

D

p1 p1

p1

p1

Disruption Stabilization

Figure 7.4: Three distinct stages in which the edge system may be found: (i) initial
placement – the application becomes operational, (ii) disruption – a node failure disrupts
correct functionality, and (iii) stabilization – the system adapts to changes by finding a
new invocation path.

Initial placement

During the initial placement, the framework triggers the placement cycle to find an
allocation of the application’s microservices on edge nodes accordingly (Figure 7.4). This
includes replication of certain microservices across nodes, to account for possible future
node failures. Notice that the application is not operational after the invocation of
the placement cycle. Therefore, the framework uses the invocation path cycle to find a
satisfiable invocation path for the application, among the already allocated microservices,
such that it satisfies the application’s requirements. The invocation path cycle chooses
one invocation path from many possible paths, formed between all available microservices.
Using both cycles in a sequence, we ensure that the application function as intended
– therefore, we can observe that we achieved a stable edge system where all nodes and
placed microservices are operational and an invocation path is derived. In Figure 7.4 the
dashed line represents the communication path between two nodes, while f shows the
node’s failure probability, while l is the latency associated with a certain communication
path. Finally, p1 represents the invocation path chosen by the invocation path cycle.

Disruption

During the application’s lifespan, a disruption occurs due to the failure of one or more
nodes (Figure 7.4) resulting in an unresponsive application – all microservices that were
hosted by the failed nodes cannot be reached. For example, let us assume that during
the execution of our public-safety application edge node 2 has failed – the participant
owning the device has left the event. Note that on this node, two microservices m1 and
m3 reside – microservices that were part of the application’s invocation path, i.e., p1.
Under these conditions, the previous invocation path is no longer viable and a new one
must be devised. The new invocation path makes use of the replicated microservices
across the system, guaranteeing that the latency and availability desired are maintained.

95

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

Stabilization

After the new path is calculated, the application’s operation is restored (Figure 7.4).
Note how this new stable state may be fragile; if more nodes fail, the invocation path
planning activity may fail. If an invocation path cannot be calculated (e.g., because
multiple nodes hosting critical microservices disappeared), the system is unable to return
to a stable state and a placement must be triggered again. With the placement cycle, we
populated the system with new microservices to enable the application to be operational
again.

7.2 Application and System Models

In this section, we outline the application and system models for which we created our
framework. We start by defining the target edge system model and its components,
i.e., the edge node. Next, we present the application model along with its defining
components, such as microservices and execution sequence. Finally, we introduce the
framework objectives, i.e., the application’s latency and availability.

Edge System Model

In our target edge system, we consider that there is a central node (i.e., a coordinator
node) that governs over all other nodes. Let EN ={E1, E2, ... } represent the total
number of devices found under the supervision of a coordinator node. Be aware that in
contrast to edge nodes that may have limited computational resources, the coordinator
node is a powerful device, like an edge server, and represents the location where our
adaptive framework resides. Furthermore, the coordinator does not host microservices,
its purpose being only to manage the application on the supervised nodes. An edge
node may have different capabilities ranging from resource-constrained devices like a
smartphone or Raspberry Pi to single-board computers and server-class data center hosts.
Each edge node has a failure probability representing the probability of a node to leave
the network or fail. The failure probability can be estimated at runtime with the help of
a failure probability monitoring module – a module that can use historic failure data
of each type of edge device to predict the failure probability of a new node [YZW21].
Furthermore, a set of available resources, Eres={r1, r2, ... } denotes the node’s current
capabilities. In addition to the computational resources like RAM, CPU, and HDD,
a node may have locally stored different running microservices; microservices that a
deployed application may require and must be discovered with the help of a resource
discovery technique [MATD19]. For this chapter, however, we assume that there are
no microservices already deployed in the system, helping us to consider the worst-case
scenario, i.e., deploying all microservices required to fulfill the application’s requirements.

96

7.2. Application and System Models

Application model

In this chapter, we follow the IoT application model presented in Chapter 1, i.e., an
application model follows a microservice-based architecture where its functionality is
divided into multiple linked microservices, each being characterized by a set of require-
ments. We define an application model by a set of three different characteristics: (i)
a set of microservices MN = {m1, m2, ...}, (ii) an execution sequence, and (iii) a set
of functional and resource requirements. The functional requirements represent the
overall requirements of the application, e.g., latency and availability. In contrast, the
resource requirements represent the computational resources each microservice needs to
achieve its purpose on an edge node. Similar to the definition of a microservice presented
in Chapter 5, mi is defined, at design-time, by a set of resource requirements, Mres =
{res1, res2, res3}. The set of requirements associated with a microservice consists of
CPU, RAM, and HDD and ensures proper execution on an edge node. Specific to the
adaptive framework, each microservice mi can have multiple replicas, i.e., Rp = {rp1,
rp2, ...}, that guarantee the fulfilment of the availability requirements. The number of
replicas required for a microservice is found during the placement cycle and is dependent
on the application’s availability requirements and the node’s failure probability. By
replicating microservices on the edge system, we increase the application’s resilience to
disruptions, enabling the coordinator to stabilize the application in the event of node
failure. In the end, the application’s functionality is defined by its associated execution
sequence – a sequence that represents the order in which each microservice is invoked.
Keeping the same format of the application model as presented in Chapters 5 and 6, the
application model has one execution sequence – a sequence that starts with a source (i.e.,
the starting microservice was chosen by the developer) and ends with a sink (i.e., an
actuator microservice that consumes all processed data). The invocation path cycle uses
the execution sequence to find a new application’s invocation path at runtime.

Objectives

Since we focus on latency-sensitive applications, the communication latency between
two dependent microservices plays an important role as the total e2e latency of the
application’s invocation path is a key requirement. This is the same e2e latency we
used as objective in Chapter 5, i.e., a communication link between two edge nodes, Ei
and Ej, has an associated communication latency lEi,Ej . We measure the e2e latency
as the duration of time required to execute the application’s invocation path; starting
from the source microservice and ending with the sink microservice. Note that we do
not consider the WCET of microservices. We assume that the communication latency
is monitored at runtime (i.e., through the Monitoring activities of the MAPE loop of
Figure 7.2). The communication latency of a node with another is inherited by all their
hosted microservices, mi and mj.

A second objective that was not considered in the decentralized resource management
framework, but it is very important when managing applications in an edge system,
is availability. Similar to the communication latency, the microservice’s availability

97

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

represents a characteristic that is inherited from its location. In this case, each microservice
has an availability that is a reflection of the failure probability of its host node. Let
us consider that mi is placed on Ei. We know that Ei has a failure probability of 0.6%,
resulting in an availability of 1 - 0.6% = 0.4% for component ci. All components residing
on Ei will have the same availability.

7.3 Monitoring and Execution activities
The monitoring and execution activities guarantee that any devised strategy given by
our adaptive framework considers the up to date information retrieved from the current
target edge system and is capable of enforcing the required changes into the system.
Consequently, both the placement cycle and the invocation path cycle share the two
activities. In this section, we present the characteristics of the monitoring and execution
activities concerning the two cycles.

7.3.1 Monitoring activity
Considering the uncertainty found in our target edge system, where nodes can fail or
leave the system freely, the monitoring activity represents a crucial activity for the two
MAPE cycles. The overall objective is to provide a global view of the monitored system,
by giving information about three key groups with respect to (i) overall system changes,
(ii) edge nodes, and (iii) communication links.

Overall system changes

The monitoring activity provides valuable information to the coordinator node regarding
changes in the system. To be effective in determining when a change occurs, the
monitoring activity finds a system change by keeping as a reference the last known
stable state – the state when the application was successfully operating at the desired
parameters. A change in the status of the system appears when a microservice used in
the current invocation path is no longer reachable due to node failure or a new node has
joined the edge system. The former has a disruptive effect on the system’s stability which
triggers the invocation path cycle or in the worst case, the placement cycle as well. In the
latter scenario, there are no changes in the application’s functionality; the addition of a
new node provides advantages to the system by increasing the total available resources.

Edge nodes monitoring

The monitoring view has transitioned from the system level to the node level. At the
node level, there is crucial information that the coordinator requires when deploying
and maintaining an application in the system. First, it requires knowing the current
node’s available resources every time it makes use of the placement cycle. By available
resources, we mean both resources (such as RAM, CPU, or specialized hardware) as well
as existing microservices. As a result, by monitoring each node, the location of already

98

7.3. Monitoring and Execution activities

placed microservices may be discovered. To achieve a level of freshness in the system,
the desire is to always use the currently available resources of a node at the application’s
deployment time.

Communication links monitoring

Since one objective is to satisfy latency, monitoring the communication links between
nodes is crucial. Not only do these links provide the communication latency between
dependent microservices, but they are part of the application’s invocation path alongside
nodes. However, communication links may fail. As such, whenever a link fails, the
coordinator must start the invocation path cycle to find a new satisfiable invocation path.
In this chapter, we assume that a communication link fails if either the source or the
destination node has failed.

To be more concrete, let us consider our running example, where the monitoring activity
monitors the system. First, the monitoring activity recognizes the appearance of new
nodes when a new participant arrives at the event – nodes used for further application
deployments or system stabilization. Furthermore, when a node joins the system, the
monitoring activity starts monitoring the node’s internal status as well as its communica-
tion links. Thus, knowing what resources each node has and what is the communication
latency when sending a message to other nodes. After the public-safety application
is operational, the activity starts to monitor closely the nodes that participate in the
application’s invocation path, generating event triggers for the invocation path cycle when
one or more of these nodes become unresponsive.

7.3.2 Execution activity

The last step in any MAPE cycle is the execution activity. Once either of the two
cycles finds a successful plan, the execution activity may start. During this activity, the
framework enacts the plan received upon the edge system. After the execution activity
finishes, the application becomes operational.

Placing microservices

Based on the placement plans conceived during the placement planning activity, the
execution activity can start distributing the microservices on nodes. In our case, the
execution activity works above the node level by sending microservices to the nodes
according to the placement strategy without providing techniques to ensure correct
execution on the host node. In this chapter, we assume that each node guarantees the
correct execution of the received microservice on the node, scaling up and down the
microservice depending on the node’s available resources and the number of microservice
requests by using some container framework. A container has a small footprint, providing
all the required dependencies a microservice needs to function as intended. Furthermore,
notice that using a container fits rather well in a distributed edge system, where nodes

99

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

are heterogeneous and mobile, the only requirement being that each node in the system
runs locally a container engine.

Building invocation paths

Once all microservices are available in the system, the execution activity enacts the newly
generated invocation path by informing each participating node on how to reach their
destination node, i.e., the node where a dependent microservice resides. As a result,
when building a new invocation path, there is no need for performing a microservice
migration – an expensive action. Instead, the execution activity locates the new nodes
that participate in the invocation path and informs the nodes about addresses used for
communication. For an example of this, consider executing an invocation path found
for the public-safety application (see Figure 7.4). First, during the initial placement the
invocation path cycle finds p1 as the satisfying invocation path. In this case, to execute
the plan, the execution activity finds the addresses of participating nodes, i.e., E1, E2,
and E3. Next, it informs E1 that m0 communicates with its dependent microservice, i.e.,
m1, using the address of E2. Notice that if two dependent microservices share the same
node, as in the case of m1 and m3, then the communication is internal and no address
is required. Next, the activity informs E2 about the address of E3, since there are the
last two microservices required. In conclusion, during system stabilization, the execution
activity can enact the new path by simply informing the participant nodes what address
to use.

7.4 Placement cycle
The placement cycle ensures that the edge system where applications must execute
satisfies all requirements in terms of availability constraints and microservices’ resource
requirements. To provide correct deployment, the edge nodes’ available resources must be
considered; this is the information that the monitoring activity provides for all available
nodes found in the system. Since we are in a centralized environment, we assume that
the coordinator node can monitor any changes regarding the node’s internal status –
information regarding current available resources. The placement cycle is bootstrapped
with a given application-wide availability requirement, an application model, and the
target edge system – those are specified per use case. Note how this cycle is not concerned
with invocation path calculation and its associated e2e latency; the placement cycle merely
aims to derive the needed number of replicas to satisfy availability, and subsequently
map them on the edge system. Specifically, we distill the following placement cycle’s
objectives:

• Which is the minimum number of microservice replicas required to satisfy the
application’s availability requirement?

• Given the application model and the number of replicas, what placement strategy
satisfies the microservices’ resource requirements?

100

7.4. Placement cycle

7.4.1 Placement Encoding activity

The placement encoding activity uses the knowledge received from the monitoring activity,
i.e., node’s available resources, communication latency, and node’s failure probability, to
find a satisfiable mapping of microservices in a volatile edge system full of uncertainty.
Remember that in such a system, where some nodes have high failure probabilities, com-
puting an optimal microservice placement is not necessary (due to increased computation
required) – the network configuration may change frequently, sometimes even before the
optimal solution is found. As a result, we seek to find a microservice placement that satis-
fies the given requirements, i.e., the application’s availability and microservices’ resource
requirements, with respect to the target edge system. To this end, we adopt SMT [BT18],
since deciding if a first-order formula satisfies a set of constraints fits rather well the
placement encoding objectives. As such, we model the placement rules as a first-order
formula consisting of a set of constraints and an objective. Moreover, computational
demands are kept low – we will discuss more on this in Section. 7.6. Specifically, we
model the problem with the linear integer arithmetic and boolean theories, having three
distinct targets; (i) placing a microservice on a node, (ii) placing a microservice replica
on a node, and (iii) keeping track of the microservice’s availability considering its host
node.

Microservice Placement

A constraint that introduces an important rule to ensure the correct placement of a
microservice on the edge system, i.e., a microservice can only be placed on a single edge
node. Upon application deployment, a microservice mi can be placed on a node Ei if
the following conditions are true: (i) Ei has the available resources to host mi and (ii)
mi does not exists in the system yet. Considering the two conditions, it is clear that
the microservice placement constraint does not consider replicas of mi; the placement
of the microservice replicas being handled by another constraint. In conclusion, with
this constraint, we place all application microservices in the target edge system – if the
system does not have the available resources to host at least all application microservices,
then we cannot deploy the application on the system. For example, we have an edge
system consisting of two edge nodes, i.e., E1 and E2, on which we want to map the
face recognition microservice, i.e., m1, from our public-safety application. Under these
conditions, there are two possible mappings of m1 – in this constraint, mapping m1 on
both nodes is incorrect and must be avoided. This is captured with Formula 7.1, where
nm represents the total number of microservices found in the application model, while
the map() function provides a mapping between mi and one node E. For number of nodes
n and microservices m, the formula construction exhibits complexity O(nm).

mrcFacts :
nm

i=1
(∃! E : map(mi = E)), ∀ E ∈ EN. (7.1)

101

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

Microservice Replication

A constraint that provides rules for replica placement on the target system. In this case,
the constraint considers for placement only the replica rpi of a microservice mi, since mi
is already placed with the previous constraint. During placement, there is a set of rules
that the placement cycle must abide to successfully place rpi in the system. First, an edge
node Ei can host only one replica rpi – placing replicas on different nodes ensures higher
application availability, offering the possibility to recover from node failure. Second, as
in the case of microservice placement constraint, Ei must be capable to execute rpi. For
example, consider we need one more replica of m1 to fulfill the application’s availability
requirement. In this case, we must deploy one m1 replica, i.e., rp1 on an edge system
consisting of three nodes E1, E2, and E3. Following Formula 7.1, m1 is mapped on E2.
As a result, to satisfy the first rule, we cannot map rp1 on the same node as m1. As a
result, only two nodes can possibly host rp1 – E1 and E3. More concretely, Formula 7.2
ensures that if a replica exists on a certain node, then all other remaining replicas cannot
be placed on that node, where nr represents the total number of replicas for a certain
microservice and nrl the total number of replicas without considering the current rpi.
Construction of Formula 7.2 exhibits complexity of O(nnr), where n is the total number
of possible locations where replicas of mi can reside.

replDomain :
nr

i=1
((map(rpi = E)) =⇒

nrl

j=i
(!map(rpj = E)), ∀ E ∈ EN. (7.2)

Microservice Availability

A constraint aiming to provide for each microservice the associated availability factor.
As we have defined in Section 7.2, a microservice mi inherits its availability factor from
the host node, i.e., the node where the microservice resides after the placement cycle.
Knowing the availability of each microservice helps the placement cycle to determine
the maximum number of replicas required for each microservice and decide if a certain
placement configuration fulfills the requirements. For example, if microservice m1 is
mapped to node E1, where E1 has a failure probability of 40%, then the availability factor
of m1 is mavaili = 1 − Efailure. Formula 7.3 encodes the availability factor of a microservice
considering its deployment location; its construction complexity is analogous to the
previous replication formula.

availDomain :
nm

i=1
(map(mi = E) =⇒ mavaili = 1 − Efailure), ∀ E ∈ EN. (7.3)

Placement Cycle Objective

The placement cycle aims to deploy the application’s microservices on the target edge
system considering the application’s availability requirement and microservices’ resource

102

7.4. Placement cycle

requirements. Finding the total number of replicas is dependent on the application’s
availability requirement. As a result, we define an objective constraint to ensure that the
placement strategy satisfies the application’s availability constraint. The microservice’s
availability is dependent on the number of replicas and their inherited availability factor,
ensuring that each microservice has the required availability factor – the microservice’s
availability requirement is inherited from the application. Using the application’s avail-
ability requirement for microservices ensures that we deploy enough resources on the
target edge system to make the application more resilient to failures; the availability of
a microservice helps to distribute multiple replicas of a microservice on different edge
nodes. In Formula 7.4 we capture the placement cycle objective, where mmaxAvail is the
desired microservice availability; its construction amounts to complexity of O(nr).

objConstraint : 1 −
nr

i=1
mavaili ≥ mmaxAvail. (7.4)

7.4.2 Placement Planning Activity
The placement planning activity aims at using the problem encoding of the previous step
to find the minimum number of microservice replicas required to satisfy the application’s
availability and generate a deployment plan. By virtue of the design choice of employing
SMT, we guarantee that the generated placement plan provably satisfies all the defined
constraints and fulfills the placement objective. At the core of this activity stays an
SMT solver capable of solving an SMT formula F and deciding if a placement strategy
satisfies the cycle’s objectives or not. F is a conjunction of Formulae (7.1 to 7.4) (see
Formula 7.5).

F : mrcFacts ∧ replDomain ∧ availDomain∧ objConstraint. (7.5)

To compute the number of replicas required and find a placement strategy, the placement
planning activity uses F to place one microservice mi on the system at a time. An
iterative process, where at each step, the activity maps a new mi replica in the system
until the current deployment of mi and its replicas satisfy the mi availability requirement.
Finally, when mi is placed successfully in the system, the process continues with the
next microservice mj. For example, consider the process of placing the face recognition
microservice, i.e., m1. At this stage, the activity already found a suitable placement for
m0 – resulting in fewer overall available resources when placing m1. The process starts
by placing a m1 replica in the system. At this point, an evaluation occurs: if the current
placement of m1 is enough to satisfy Formula 7.4, then we continue to map the next
microservice, i.e., m2. However, if placing only one replica of m1 is not enough, then the
number of replicas for m1 is increased by one and the activity attempts to solve F again.
The process continues to increase the number of replicas until either a solution is found
that satisfies Formula 7.4 or there are not enough available resources to accommodate
all replicas. Finally, if we manage to find and place the minimum number of replicas

103

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

for m1, the planning process continues with m2. However, if no solution is found for
a placement strategy for m1, then the process stops without producing any placement
strategy. The process terminates upon two conditions: (i) a successful deployment plan of
all microservices is found or (ii) one or more microservices cannot be placed in the system.
In the former case, since there are enough resources in the system to accommodate all
application’s microservices, the cycle can find a satisfiable placement strategy. In the
latter case, since the target system lacks the required resources to host all microservices,
the cycle cannot find a placement strategy to deploy the application on the current edge
system because it does not exist. Figure 7.5 shows a placement strategy found for the
public-safety application.

m0

node1

m1, m3
node2

m3
node5

m2, m4
node3

m1, m2
node4

m4
node6

f = 0.5 f = 0.75 f = 0.3

f = 0.6

f = 0.75f = 0.4

l = 5 l = 3

l = 1
l = 2

l = 9

l =
 4

l =
 5

l = 10
l =3

Figure 7.5: Overview of the placement strategy for the initial placement of our public-
safety application example. The placement planning activity provides only the location
of microservices and their replicas on the system.

7.5 Invocation path cycle
With the previous cycle, the framework deploys the application’s microservices across
available nodes comprising the system. After the application’s microservices become
available in the system, the framework can use the invocation path cycle to invoke the mi-
croservices according to the application’s execution sequence. However, multiple replicas
of a microservice may reside in the edge system – resulting in multiple possible invocation
paths. The invocation path cycle is responsible for establishing (and maintaining) the
call sequence across those replicated microservices such that it fulfills the application’s
latency requirements. Disruptions such as network changes or node failures may render
an invocation path no longer usable; thereupon, the framework triggers the cycle again.

7.5.1 Invocation path encoding activity
As in the case of the placement cycle, SMT fits particularly well with the invocation
path cycle; it provides guarantees that if an invocation path is found, then it satisfies the
application requirements, i.e., e2e latency and availability. The invocation path encoding
is responsible for transforming the information received from the monitoring activity into

104

7.5. Invocation path cycle

SMT Formulae. Hence, this activity is an integral part of the cycle, providing the means
to fulfill its objectives. Considering the cycle’s objectives and information received from
the monitoring activity, we can construct three different formulae – two formulae that
reflect the cycle’s constraints and one formula that considers the cycle’s objectives. The
invocation path encoding activity builds the formulae by using information gathered from
the edge system; (i) the location of microservices on nodes and (ii) the communication
latency between nodes. Next, we present the formulae building blocks as well as the cycle
objectives.

Microservice Location

The microservice location represents one important knowledge, an asset to the invocation
path cycle when finding a satisfiable invocation path for an application. A knowledge
that is shared by sharing the domain for each microservice needs – a domain consists of
a set of edge nodes where a microservice resides. First, by knowing the location of each
mi, we lower the search space by considering a subgroup of nodes from the edge system –
a group formed with nodes where the application’s microservices reside. As we explained
at the beginning of this chapter, knowing the microservice location lowers the execution
time required to find a new invocation path. For example, there are three nodes E1, E2,
and E3, where the face recognition microservice m1 exists. Under these conditions, the
invocation path cycle considers one of the three nodes when building the application’s
invocation path. We illustrate the constraint in Formula 7.6, where nM represents the
total number of microservices and nE is the total number of nodes where mi is available;
its construction exhibits complexity of O(nEnM).

microDomain :
nM

i=1
(

nE

j=1
(mi = Ej)). (7.6)

Microservice Latency

In the previous constraint, the invocation path cycle becomes aware of the microservices
location. However, to satisfy the cycle objectives, i.e. e2e latency, we require a constraint
to capture the communication latency between dependent microservices as well. Therefore,
we create the microservice latency constraint. Similar to the previous constraint, the
communication latency is dependent on the location of microservices. In our edge system,
microservices are placed on nodes that have the actual latency, so the communication
latency between two mi and mj microservices is inherited from the communication latency
between their host nodes. Thus, a pair mi, mj may have a different communication latency
on different combinations of nodes. Given Formula 7.6, one can observe the latency
between two microservices lmi,mj , considering their possible locations. For example, from
the public-safety application (see Figure 7.3), we can observe that m1 has a communication
dependency with m2; m1 and its replicas are mapped on E1, E2, and E3, while m2 is on
E2. Under these conditions, the encoding consists of all possible combinations between

105

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

the two microservices’ domains. In the end, the constraint yields a connection between
the location of a microservice and its associated node latency, i.e., lmi,mj = lEi,Ej – as
illustrated in Formula 7.7. Its construction exhibits a complexity of O(nMDnESnED),
where nMD is the total number of dependent groups consisting of two microservices (a
source and a destination), while nES and nED represent the total number of nodes where
microservices part of a dependent group exist.

latencyDomain :
nm

D
(mi = Ei, mj = Ej) ⇒ (lmi,mj = lEi,Ej)

for D = {i, j} where i ∈ [0, nm] and j ∈ [0, nEN].
(7.7)

Invocation Path Cycle Objectives

The invocation path cycle has two objectives that each new invocation path must abide, i.e.,
e2e latency and availability. On the one hand, we can obtain the latter using Formula 7.3
described in the placement cycle, where nr represents all available microservices and
their replicas found in the edge system. On the other hand, we obtain the former
with the help of Formula 7.7 – the e2e delay of an application represents the sum of
all communication latencies between every two dependent microservices found in the
application’s execution sequence. Recall that we assume that the maximum e2e latency
and the desired availability are given by the developer at design time. The invocation path
cycle must perform three important steps to capture the e2e latency of an invocation path:
(i) choose an invocation path, (ii) get the communication latency between dependent
microservices, and (iii) verify that the total e2e latency fulfills the objective. To perform
the first two steps, the invocation path cycle can use the microservice location and latency
constraints. For the third step, the cycle can use Formula 7.8 to validate the chosen
invocation path. The formula ensures that the current invocation path’s e2e latency
is smaller or equal to the maximum e2e latency allowed (i.e., e2emax). Construction of
Formula 7.8 exhibits complexity O(mnmd), where m represents the number of available
microservices and nmd the number of dependencies a microservice has.

objConstraint :
m

i=1
li ≤ e2emax. (7.8)

7.5.2 Invocation path Planning Activity
Similar to placement planning, the invocation path planning activity creates a plan for
defining a new invocation path that fulfills the application requirements. In Formula 7.9,
we present the complete SMT formula FI , which builds upon the formulae received
from the previous activity. By using an SMT solver to solve FI , we guarantee that
every invocation path found fulfills the cycle’s objectives. Recall that the placement
planning activity uses an iterative process to devise a plan. In contrast, this activity
considers all microservices and finds an invocation path in one single step. After obtaining

106

7.6. Evaluation

FI , the invocation path planning activity takes the application’s execution sequence
and attempts to find a set of edge nodes (nodes that host microservices invoked in the
execution sequence) such that it fulfills all cycle’s objectives. As a result, with a single
invocation of the solver, the activity can devise a plan for building an invocation path.

FI : microDomain ∧ latencyDomain ∧ objConstraint. (7.9)

Recall that the framework uses this cycle to provide system stabilization after a node
failure. Therefore, we must ensure that the invocation path cycle is capable of providing
a plan in a short time. In comparison to the formula employed by the placement cycle,
observe that FI has (i) a smaller formula size since it considers only a subgroup of
nodes, (ii) awareness of microservice location, and (iii) information about microservices
communication latency. As a result, FI is expected to scale well with an increase in
network or application size – more on this topic will be discussed in Sec. 7.6. To this
end, FI must find a combination of nodes that fulfill Formula 7.8.

In Figure 7.6, we can observe the conceived plan to build an invocation path for the
public-safety application. As we can see, the invocation path planning activity devises an
invocation path using as a blueprint the placement found by the placement cycle. With
this knowledge, the activity tries to find a set of nodes where microservices reside to build
an invocation path that follows the application’s execution sequence. As expected, there
may be multiple invocation paths in the system, but not all of them satisfy Formula 7.8.
In our case, the activity returns a path, i.e., p1, that meets all requirements.

m0

node1

m1, m3
node2

m3
node5

m2, m4
node3

m1, m2
node4

m4
node6

f = 0.5 f = 0.75 f = 0.3

f = 0.6

f = 0.75f = 0.4

l = 5 l = 3

l = 1
l = 2

l = 9

l =
 4

l =
 5

l = 10
l =3

p1 p1

Figure 7.6: The invocation path found for the public-safety application example, consid-
ering the application’s requirements as well as the microservices’ location.

7.6 Evaluation
In this section, we evaluate the performance of our proposed solution considering different
synthesized scenarios. For each, we first assess the performance of the placement cycle
which yields a microservice placement strategy. Then, given placement, we employ the
invocation path cycle to find valid invocation paths. To concretely support evaluation

107

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

and investigate the feasibility of the proposed framework, we realized a proof-of-concept
implementation which is available as open-source software reflecting the placement
and invocation path cycles of Sections 7.4 and 7.5, along with auxiliary functionalities
supporting monitoring and execution. Thereupon, we assess the performance and
scalability of the critical placement and invocation path cycles. We additionally investigate
the framework’s capability to reach stabilization when nodes fail and conclude with a
discussion.

7.6.1 Framework realization
To investigate feasibility, we have realized the proposed framework as a prototype
implementation; its main architectural components are illustrated in Figure 7.7. In
our edge system, the coordinator node resides on a machine with an Intel i5 2.3GHz
processor and 16 GB of RAM and hosts the placement and invocation cycles – the
two cycles construct the required formulae and through interaction with a solver build
the corresponding plans. In contrast, the participant nodes are resource-constrained
devices, i.e., a Raspberry Pi with 1GB of RAM and 32 GB of storage, where the deployed
application resides. Furthermore, to host microservices, each participant edge node
runs a common operating system, i.e., Raspberry Pi OS Lite 4, and Docker CE 5 (or
alternatively Kubernetes/OpenFaaS). Note that in our framework all interactions are
performed through REST APIs. Therefore, on each participant node, there is an API
that facilitates the communication with the coordinator node as well as the other edge
nodes found in the system. To easily set up all participating edge nodes, we use Ansible 6

to provide our infrastructure as code. As a result, all nodes can have the same setup,
enabling the user to easily build our framework and test it on their infrastructure.

Our prototype has monitoring functionality responsible for (i) detecting if a node is
available in the system, (ii) finding nodes’ available resources, and (iii) obtaining the
communication latencies between participating nodes. First, to provide overall monitoring
of the system, the coordinator starts monitoring the participant node status as soon
as it joins the system. To achieve this, we continuously check if a node is available
every 100 ms and we trigger the invocation path cycle if one of the nodes participating
in the application’s current invocation path has failed. Second, the coordinator can
request the currently available resources of each node using the API at any time – usually,
this happens during the placement cycle when we need to know the available resources
to correctly define a microservice placement strategy. Finally, for the invocation path
cycle, the coordinator must know the current communication latency between nodes.
Finding the communication latency between all nodes is not a trivial task, since the
coordinator can only measure the communication latency between it and all supervised
nodes. Therefore, we distribute the latency monitoring between all participant nodes.
As a result, when a node receives, from the coordinator, a request for its communication

4https://www.raspberrypi.org/
5https://www.docker.com/
6https://www.ansible.com/

108

https://www.raspberrypi.org/
https://www.docker.com/
https://www.ansible.com/

7.6. Evaluation

Coordinator Node Edge Node 1

REST
API

APIInvocation
Path Cycle

Placement
Cycle

Resource
Availability
Monitoring

Nodes’
Availability
Monitoring

Latency
monitoring

Reachable
Nodes IPs

MicroserviceMicroserviceMicroserviceMicroservices

Edge Node N

API Latency
monitoring

Reachable
Nodes IPs

MicroserviceMicroserviceMicroserviceMicroservices

Figure 7.7: Combined deployment and dataflow diagram for a framework realization.

latency, the node reports its communication latency measured to all reachable nodes. To
measure the latency between two nodes, we use the ping command to measure latency
between two nodes. Each node sends a set amount of pings to a list of reachable nodes’ IPs
and takes the average response time as the latency. Finally, execution entails deployment
of containerized microservices on nodes and setting up communication between them.
The prototype, built in Python using Z3 [DMB08] as the underlying SMT solver and an
example microservice application are available as open source software7.

7.6.2 Experiments Setup

We create a total of five scenarios, each having different characteristics such as the number
of microservices, application requirements, number of edge nodes, and node’s failure
probabilities. We create these scenarios to evaluate the performance in terms of the time
required to find a valid solution. Therefore, in every scenario, we gradually increase the
number of nodes found in the target system – Table 7.1 shows the five scenarios along
with their specifications.

Each scenario in Table 7.1 has a different number of microservices allowing us to examine
the impact of the system size as the total number of nodes on execution time. Throughout
our performance evaluation, we do not change the e2e latency and availability because we
want to understand the impact of the number of nodes on the placement execution time.
Choosing more stringent constraints, i.e., having a lower e2e latency or a higher availability
impacts the execution time; however, this does not alter how the execution time rises
with an increase in system or application size. We model the resource requirements of

7github.com/cavasalcai/Adaptive-Volatile-Edge-Systems.

109

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

scenario micro–
services

e2e
latency availability failure

probability nodes

1 10

350 0.75 [0.1, 0.5] 10 - 500
2 20
3 30
4 40
5 50

Table 7.1: Specifications of the synthesized scenarios adopted for performance evaluation.

each microservice as a set of computational resources, i.e., a tuple (RAM, CPU, HDD);
for each we randomly choose a value between [5, 18] units. Recall that the edge system
is characterized by (i) the number of nodes, (ii) the failure probabilities of each node, and
(iii) the communication latency associated with each communication link. We set the
failure probability of each node and the communication latency by choosing a random
value between [0.1, 0.5] and [1, 10] ms respectively. Regarding the node’s available
resources, we assign a random value chosen between [15, 30] units. Finally, for each
scenario, we increase the number of nodes by 10, up to a maximum of 500 nodes. Further,
when we increase the system size, we extend the last system with the addition of new
nodes. As a consequence, a larger system size always contain the previous nodes; this
intends to simulate a real setting where new nodes connect to the edge system.

There is only one constraint left to adopt, i.e., the execution sequence. For each application
size, we choose an execution sequence that starts with a source and ends with a sink.
To have a diverse selection of application models, we propose a procedure to create a
sequence that involves all application microservices and leads to a different execution
sequence for each application size. For example, let us build the execution sequence for
an application with 10 microservices, MN = {m1, m2, m3, ... , m10}. The procedure
starts by choosing m1 as the initial source – therefore, we remove m1 from MN and
randomly choose a destination microservice from the remaining elements found in MN.
Let us assume that we choose m3 as the destination microservice of m1 – we now have a
dependency between m1 and m3. Notice that we do not remove m3 from MN; we remove
m3 only when it becomes the source microservice. Now that we found a destination
for m1, we can restart the procedure by taking the next microservice from MN, i.e., m2.
Finally, the procedure stops when there are no more elements in MN.

7.6.3 Placement and Invocation Path Performance
In our framework, the placement cycle consists of two phases, i.e., (i) finding a placement
strategy and (ii) starting the microservices on the host nodes. We evaluate the placement
cycle’s performance by measuring the execution time required to find a satisfiable
placement strategy according to the application’s objectives. We perform a total of
50 placements per scenario, one placement for each new system size – once we find a
placement strategy for the current edge system, we increase the number of available

110

7.6. Evaluation

nodes by 10 and trigger the placement cycle again. We mention that when the placement
cycle is triggered, the target edge system does not contain any microservices.

Figure 7.8 presents the execution time required to find a placement strategy for all
scenarios, where x-axis shows the number of nodes and y-axis presents the execution
time in seconds. Subsequently, the invocation path cycle uses as a basis the edge system
populated with microservices and their replicas by the placement cycle. Similar to
the placement cycle, we measure the invocation path cycle’s performance as the time
required to derive a feasible path considering the application’s latency and availability
requirements. We evaluate the cycle’s performance on obtaining satisfiable invocation
paths on 250 different edge systems of different sizes – 50 for each scenario. Figure 7.9
illustrates the time required to find a satisfiable invocation path among all replicas.

0 100 200 300 400 500

of nodes

0

10000

20000

30000

40000

ti
m

e
 [

m
s
]

scenario_1

scenario_2

scenario_3

scenario_4

scenario_5

Figure 7.8: Execution time of the place-
ment cycle for different scenarios across
different network sizes.

scenario_1 scenario_2 scenario_3 scenario_4 scenario_5

20

40

60

80

100

120

140

160

180

ti
m

e
 [

m
s
]

Figure 7.9: Average execution time re-
quired by the invocation path cycle across
the five scenarios.

7.6.4 Stabilization Performance
This section outlines the adaptive framework’s capabilities to reach a system stabilization
when one or more nodes have failed. More concretely, we focus on evaluating the
performance of the invocation path cycle in providing satisfiable invocation paths after
the system has lost some nodes. For this purpose, we present a realistic scenario, where
after the application is operational on the edge system, some nodes fail and disrupt the
application’s functionality. This occurs when the system recovers from node failure, by
employing the invocation path cycle.

We consider an application with a realistic number of microservices that we must deploy
on an edge system with a total number of 50 edge nodes. The application model is a
modified version of the complex application model presented in [RCP20] and illustrated in
Figure 7.10. In our case, the microservice-based application consists of 7 microservices, but
we alter the execution sequence by adding a new dependency between m4 and m5. As such

111

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

Micro–
services Nodes Initial

path
m0 E6, E16, E49, E50, E1, E43 E6
m1 E6, E16, E49, E50, E1, E43 E6
m2 E6, E16, E49, E50, E1, E43 E6
m3 E39, E17, E33, E48, E32, E4 E33
m4 E4, E32, E44, E6, E2, E39 E4
m5 E25, E45, E2, E4, E33, E50 E25
m6 E17, E2, E4, E32, E33, E43 E17

Table 7.2: Initial placement and invocation path.

the application has one source (i.e., m0) and one sink (i.e., m6). We choose a maximum
e2e latency of 100 units and required availability of 0.96. All other characteristics, like
microservices’ resource requirements and node’s communication latency, remain the same
as described for the other scenarios. However, to evaluate stabilization, we adopt a
different set of characteristics for edge nodes, aiming for a higher number of replicas
in the system: we randomly select node failure probabilities between [0.1, 0.5] and set
available resources in the range of [50, 80] units respectively.

m0 m4m2

m3 m6

m1

m5

Figure 7.10: Overview of a microservice-based application model and its execution
sequence.

Initially, the application’s microservices and its invocation path are missing from the
target system. Therefore, we must trigger the placement and invocation path cycles
once, in sequence, to make the application operational in the edge system. In Table 7.2,
we can observe the placement configuration and the chosen invocation path. Each row
shows all nodes where a microservice resides and the node that participates in the derived
invocation path. During the application’s lifespan, some nodes may fail, disrupting
the application’s invocation path – a disruption that triggers the stabilization process.
However, not all failed nodes from the system disrupt the application’s functionality: only
ones that are part of the invocation path. To produce a disruption, we incrementally fail a
node from the current path and use the invocation path cycle to recover. In Table 7.3, we

112

7.6. Evaluation

present each path found during stabilization as well as its associated e2e latency. We can
observe, in the first row, that the current invocation path (i.e., the path from Table 7.2)
has a total e2e latency of 32 units. Let us consider that after the initial deployment
the edge node E4 has failed, disrupting the initial invocation path. As a consequence,
the application does not function properly, requiring the stabilization process to start
and find a new stable path – we present the new invocation path on the next row. The
process continues until there is no possibility to achieve system stabilization with the
remaining available microservices, resulting in the need of employing the placement cycle
again to re-populate the system. In Figure 7.11 we present the performance results.

2 4 6 8 10

of system stabilizations

30

35

40

45

50

55

60

65

ti
m

e
 [

m
s
]

Figure 7.11: Execution time required by the invocation path cycle to reach stabilization
after node failures.

7.6.5 Discussion

We have demonstrated that by using our adaptive framework and its two cycles, we can
perform application placement and its recovery from an unstable state resulting from edge
system volatility promptly. We can observe from the results presented in Figure 7.8 that
the placement cycle performance increases with (i) the total number of available nodes
found in the system and (ii) the application size. Among the two, the application size has
a greater impact on the execution time, since we deploy one microservice and its replicas
at a time; a step that requires employing the SMT solver for each microservice at a time.
Other factors influence the execution time required to find a placement strategy, i.e.,
applications’ requirements (i.e., e2e latency, microservice’s resource requirements, and
availability) and network characteristics (i.e., failure probabilities and available resources).
However, these factors only impact the time required to find a solution for specific
scenarios; it can increase or decrease the execution time depending on how stringent the
requirements are. We can observe the impact of these factors by looking at the spikes

113

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

Microservice
invocation path

e2e
latency

Node
failure

1 E17, E4, E25, E33, E6 32 E4
2 E32, E17, E25, E33, E6 41 E25
3 E32, E17, E45, E33, E6 39 E6
4 E32, E17, E45, E16, E33 31 E32
5 E17, E44, E45, E16, E33 42 E44
6 E45, E17, E2, E16, E33 42 E17
7 E2, E45, E39, E16, E33 46 E33
8 E45, E39, E16, E2 45 E45
9 E49, E39, E16, E2 46 E16
10 E49, E39, E2, E50 41 E50
11 E49, E2, E48 30 E2

Table 7.3: Invocation paths and their e2e latency found when incrementally failing nodes.

found at lower system sizes. In these particular cases, the edge system, the node’s failure
probabilities, and the node’s available resources play an important role. The reasons for
the spikes in execution time are the following: (i) there is no feasible solution due to
the lack of available resources found in the target system or (ii) the system’s available
resources are equal to the application’s requirements. In both situations, the SMT solver
must traverse the entire search space to try and find a placement strategy. We can
observe that with the increase in the available nodes, there are more available resources,
offering the underlying SMT solver more possibilities to find a satisfiable placement
strategy, also lowering the execution time.

Figure 7.9 shows the execution time required to find an invocation path for different use
cases. We can see that compared to the placement cycle, the invocation path cycle can
find an invocation path in a short time. Furthermore, the invocation path cycle does
not have any big spikes in execution times throughout a single scenario since the SMT
solver has more knowledge about the microservices and their replicas location on the edge
system. Hence, independent of the number of available nodes, the solver only attempts
to find an invocation path between the nodes where the application’s microservices reside.
To conclude, only the (i) application’s size, (ii) number of microservice replicas, and (iii)
their location influence the invocation path cycle performance.

Finally, in Figure 7.11, we can observe the invocation path cycle capabilities to restore
the application’s functionality after node failures. In this scenario, we make use of
specific requirements – like the application’s availability and node’s failure probability –
to increase the number of microservice replicas found in the target edge system. With this
purpose, we choose the failure probabilities of all nodes under 0.5 and high availability
of 0.96. Furthermore, we increase the nodes’ available resources and limit the number
of available nodes to 50. In a system with many available nodes (e.g., 500) there are
more chances to find nodes with available resources and low failure probability to satisfy

114

7.6. Evaluation

the microservices resource requirements and availability. However, when the number
of available nodes in the system is limited and very stringent requirements are set, we
force the placement cycle to find placement strategies that distribute more replicas in
the system. As a result of this scenario, the placement cycle requires more time to find a
placement solution. In contrast, we can observe that the invocation path cycle is capable
of recovering an application from an unstable state under 70 ms. Furthermore, recall that
the invocation path cycle only considers the edge nodes where microservices are placed
(see Table 7.3). Therefore, with every failed node, the required time to find a satisfiable
path decreases – the formula size decreases with the number of available microservices
found in the system.

Regarding the overall process, observe that we perform adaptation by changing the
invocation path between replicated microservices, instead of changing the microservice
location using migration techniques. We make this decision because a migration typically
requires higher communication overhead as a microservice must be moved from one node
to another. For example, a 25 MB container would take 25 seconds to migrate from one
location to another, assuming a 1 MB link. In comparison, our approach achieves the
same result, i.e., to recover an application, with small communication overhead, since no
migrations are involved in the process. Of course, we have to make a trade-off between
communication overhead and the increased redundancy due to replication. Depending on
the situation, the advocated technique may require significantly more available resources
to host replicas. However, we can mitigate this by considering microservice boot/cold
starts. On the one hand, if we desire very fast stabilization, then the replicas can be
kept warm – a practice that requires more available resources. On the other hand, if
we desire to keep more resources available, then we can keep the replicas cold and the
latency introduced by cold starts can be considered in the e2e latency computation by
the invocation path cycle.

Multiple factors influence the framework’s capability to perform stabilization using only
the invocation path cycle. The distribution of available microservices on nodes plays
the most crucial role since it is not possible to recover an application from an unstable
state if there are not enough available microservices in the edge system. A second
factor that influences the stabilization process is the application’s requirements, i.e., e2e
latency and availability. Consider that in the edge system there are still some available
microservices required by the application, but the invocation path cycle is unable to find
a new satisfiable path due to stringent application requirements and their placement on
nodes. For example, the remaining microservices can be placed on nodes that have a very
high failure probability making it impossible to satisfy the application’s availability or the
communication latency between two microservices is too high. As a result, we can observe
that with every application disruption we lower the number of possible stabilizations;
losing more nodes will eventually lead to one of the two factors previously discussed. In
conclusion, if there is at least one available replica for each microservice and both the e2e
latency and availability are fulfilled, system stabilization is guaranteed. Finally, we note
that the proposed framework is not bound to a specific edge system topology or density

115

7. Adaptive Management of Volatile Edge Systems at Runtime With
Satisfiability

and assumes that all nodes are reachable. However, density may hinder the invocation
path cycle’s ability to find invocation paths if edge nodes are scattered in a large area,
increasing their communication latency.

We acknowledge the high computational demands of the placement cycle in some scenarios
(see the spike of Figure 7.8). However, since placement is performed only at the beginning
of the application’s lifespan and sporadically during its execution, it does not introduce
any extra delays during the application’s execution. Of course, this depends if we consider
the initial placement as part of the application execution. Moreover, as mentioned above,
the placement cycle performance depends on the target edge system and how stringent
the application requirements are. The placement cycle is not used for recovery from an
unstable state, since for such cases the invocation path cycle is used for adapting to
volatility, which can be employed at runtime and is capable of recovering an application
timely (under 100 ms for sizes considered in Sec. 7.6).

7.7 Conclusion
In this chapter, we consider that applications execute on distributed hosts where node
failure is a prime concern; devices may leave the system or fail without prior notice. As
such, the application’s stable state needs to be maintained throughout its execution.
We proposed an adaptive framework consisting of two MAPE cycles – the placement
and invocation path cycles. The former aims at devising a placement to provide the
required resources for a microservice-based application. Furthermore, the placement cycle
facilitates availability by replicating microservices throughout the system. The latter
cycle provides fast recovery from an unstable state by building a satisfying invocation
path across deployed microservices and their replicas. The proposed adaptive framework
builds upon and improves the resource management techniques presented in Chapter 4
and Chapter 5. The adaptive framework improves the scalability problems that the
decentralized resource management technique had, being capable of considering edge
systems with hundreds of nodes. Furthermore, it introduces monitoring capabilities,
ensuring that the current node’s available resources are considered when deploying an
application. Finally, as described above, in this chapter, we consider a new application
requirement, i.e., availability – a requirement very important in edge computing settings.

116

CHAPTER 8
Conclusion and Future Work

In this chapter, we present the contributions of this thesis. In Section 8.1, we summarize
the main contributions made to the research literature during the course of this thesis.
Section 8.2 provides an overview of the research questions introduced in Chapter 1, while
Section 8.3 provides an outlook to future work.

8.1 Summary of Contributions
In this thesis, we have tackled the issues related to the migrations of applications from a
central location, i.e., cloud, to a decentralized system where resources are shared between
multiple nodes. More concretely, we develop novel techniques and methodologies to
advance the current state of the art from the perspective of three areas, i.e., (i) application
development, (ii) application deployment, and (iii) application management. These three
areas play an important role in successfully deploying and managing applications in an
edge computing system.

First, we focus on aiding the developer in developing emergent IoT applications to be
deployed on the target edge system. For this purpose, we introduce a new methodology
to develop and deploy IoT applications at design time. Using our framework, the
developer can correctly define and validate application requirements as well as creating
its communication flow. To facilitate an application development environment, that
allows the developer to create IoT applications without requiring a technical background
in computer science, we have extended the FBP paradigm with new timing and resource
requirements. The FBP paradigm fits rather well with our purpose since it allows us
to combine existing components to achieve the goal of the developed application. As a
result, FBP provides a separation between components and application development –
some developers may only create components that are shared in the FBP library and
used by the other developers in their application. To prove our methodology and present
the application development experience, we develop a prototype based on drawFBP. The

117

8. Conclusion and Future Work

purpose of our methodology is not only to develop an application, but it fulfills a much
more important role in the overall application deployment, i.e., with our framework we
collect and store as much information as possible regarding the application – information
that enables the successful deployment and management of IoT applications in an edge
system. In Chapter 6, we further improve on the application model, by providing a new
robust IoT application model enabling the efficient utilization of available resources found
at the edge of the network. In the research literature, a typical IoT application model
is represented with a DAG and consists of atomic components that cannot be further
broken during the deployment stage – a model that limits the deployment stage to fully
utilize the available resources of edge nodes. In contrast, with our new IoT application
model, we offer more component granularity by modeling applications as a collection
of composite components. In this case, a composite component can have one or more
microservices – we call such a group an aspect. Based on the two IoT application models
and the information collected during the application development process, in this thesis,
we provide novel resource management techniques and adaptive techniques to deploy and
manage an application in an edge system.

Second, we propose novel resource management techniques to deploy IoT applications
on the target edge system according to their requirements. In this thesis, we introduce
two different resource management techniques, i.e., (i) a resource management technique
capable to find feasible or optimal deployment strategies at design time and (ii) a
decentralized resource management technique performing application deployment at
runtime. With the former technique, we provide the means to validate the defined
application’s timing and resource requirements according to the target edge system. This
provides the developer with valuable information that helps him/her to decide if (i) the
application requirements are too stringent or (ii) the target edge system is not suitable
for the developed application. Moreover, in this technique, we consider applications
with multiple communication flows – flows that the developer can define and assign
to them a maximum e2e delay. During the deployment stage, we find a deployment
strategy that satisfies all the defined communication flows constraints. With the latter
technique, we solve the limitation that the previous resource management technique faced
at design time, i.e., it cannot provide deployment strategies for volatile edge systems
since the target edge system may change during the deployment process. To overcome
this issue, we have proposed a decentralized resource management technique capable to
deploy applications at the edge of the network, guaranteeing adherence to (i) defined
application’s e2e latency and (ii) resource preferences of participating nodes. We focus
solely on microservice placement performed by a resource-constrained device, aiming
to fully utilizing the available resource found at the edge of the network. In this case,
we consider that an application has only one communication flow and the e2e latency
considers only the communication latency measured between dependent microservices. By
performing the application deployment at runtime, we manage to consider the currently
available resources of a node, helping us to cope with changes found in the system. One
important contribution is that we account for the node preferences and we thrive to satisfy
them. As a result, to capture the node preferences we propose a set of four indicative

118

8.1. Summary of Contributions

tactics divided into two decision strategies. However, in our evaluation, we observed that
(i) the successful deployment of applications exclusively on resource-constrained devices
is still highly dependent on the resource requirements of the smallest entity found in
the application model, which in this case is a microservice (or an atomic component if
we follow the FBP notation) and (ii) the provided tactics face challenges in ensuring
coverage of microservices between individual participant nodes. As a result, we have
extended the decentralized resource management technique to be able to deploy our
robust IoT application. Furthermore, we propose a new and improved decision strategy
that is capable to provide 100% component coverage. As our evaluation shows, with the
extended version we manage to deploy applications exclusively on resource-constrained
devices, without resorting to the cloud.

Finally, we provide an adaptive technique capable to manage IoT applications in volatile
edge systems. We consider that the application’s microservices reside on nodes that may
fail or leave the system without prior notice. As a result, we require a novel technique to
deploy and manage the application, in an edge system, throughout its entire lifespan. A
task that we cannot achieve with the previous resource management techniques. Further-
more, with this technique, we manage to ensure the desired application’s availability. We
proposed an adaptive framework consisting of two MAPE cycles – the placement and
invocation path cycles. The former aims at devising a placement to provide the required
resources for a microservice-based application. Upon microservice deployment, the place-
ment cycle considers only one application objective, i.e., the availability. Furthermore, the
placement cycle finds the minimum number of microservices replicas required to provide
application availability considering the current target edge system. With the latter cycle,
i.e., the invocation path cycle, we provide fast recovery from an unstable state by finding
a satisfying invocation path across deployed microservices and their replicas. This cycle
uses as its objectives both the application’s e2e latency and availability. Note that by not
considering latency as an objective in the placement cycle, we manage to tremendously
increase the scalability of our deployment stage – compared to the decentralized resource
management where above 20 edge nodes the deployment requires a high execution time
to find a deployment strategy, in the placement cycle we can consider more than 500
nodes during the deployment stage. Finally, to prove the feasibility of our adaptive
framework, we have built a prototype containing additional important components, such
as monitoring of node’s status, available resources, and their communication latency.

Notice that, in this thesis, we do not propose solutions for one very important aspect that
must be considered when adopting edge computing systems, i.e., security and privacy.
By migrating applications closer to the edge of the network, can have a very positive
impact on people day to day lives. However, with such benefits arise a set of privacy
and security issues that must be solved before we start adopting edge systems. If these
issues are not solved, we may end up providing new possibilities to harm the users. One
example of a security issue can be seen in smart homes, where one can easily study the
behavior of a family by accessing the sensor data. Typically, to evaluate the security and
privacy of an edge system we can employ the confidentiality, integrity, and availability

119

8. Conclusion and Future Work

(CIA) trial model [FWKM15] – while a confidentiality and integrity breach represents a
data privacy issue, the most important security issues are authentication, access control,
and intrusion attacks [YLL15]. Therefore, we can adapt the current security solutions
proposed for cloud computing to account for threats that do not exist in its controlled
environment [OCY+17]. One solution to securely authenticate edge devices is presented
in [PON+18]. A comprehensive study of security threats for edge systems was presented
in [RLM18], where the authors motivate the importance of security by looking at the
overall system and each component. Regarding privacy, one open challenge that must be
solved is to raise privacy awareness among users – currently, almost 80% of WiFi users
still use their default passwords for their routers [SCZ+16]. As you can see, this topic
alone can be the basis for one PhD thesis. As a result, we consider them as out of scope,
but see them as an interesting avenue for future work that must exist in our proposed
resource management techniques.

8.2 Revisiting Research Questions
Three main research questions (see Section 1.2) have guided the work presented in this
thesis. As a result, to conclude our thesis, we revisit these questions and summarize how
these have been answered. Furthermore, we present the possible limitations of our work.

Q1: What is a suitable programming model and methodology to develop novel microservice-
based applications efficiently, providing sufficient information to enable its deploy-
ment?

We have addressed this question in Chapter 4 by introducing EdgeFlow – a method-
ology for IoT application development and deployment. During the emergent IoT
application development process, it is important to collect as much information as
possible – information that assists the deployment techniques in finding satisfiable
solutions. With EdgeFLow, we extend the FBP paradigm with new timing and
resource requirements and offer the possibility to extract all application character-
istics into JSON files. Furthermore, we provide a resource management technique
capable to validate the application requirements considering the target edge system
capabilities. In this chapter, we have highlighted a set of limitations that the
current version of EdgeFlow has. First, during the application development stage,
we assume that the developer provides the component’s resource requirements and
their WCET. If the components’ resources can be provided by the component
developer, finding the WCET is not a trivial task. To find the component’s WCET
at design time, we must know the current edge node’s internal status, i.e., the
currently hosted components and the CPU load – information that may be known
when the target edge system is in a controlled environment, but we cannot know this
information in volatile edge systems. As a result, we can overcome this limitation by
developing a decision strategy for our decentralized resource management technique
to find the WCET at runtime. Because we do not compute the WCET, a second

120

8.2. Revisiting Research Questions

limitation is that we cannot deploy and develop hard real-time IoT applications, i.e.,
applications that have strict deadlines that must be satisfied. A third limitation is
that we do not have the means to map the component’s input and output virtual
ports on its host ports. Finally, we perform the application deployment at design
time, which may make the technique unsuitable for volatile edge systems.

Q2: How to efficiently deploy an application on resource-constrained edge nodes, partic-
ularly in the absence of cloud resources?

To address this question, we have proposed a decentralized resource management
technical framework in Chapter 5 and Chapter 6. With the proposed framework,
we solve the limitation of the previous deployment technique presented above – we
perform the deployment stage at runtime to account for possible changes in the
edge system. Efficiently using the available resources distributed among multiple
resource-constrained nodes, asks for a technique capable to take into account the
preferences of each node. Therefore, to capture their preferences, we need to
deploy the application at runtime using decentralization. With our technique,
we empower nodes to provide their preferences concerning what microservices to
host. In Chapter 5, we have observed that our technique has several limitations,
i.e., (i) the proposed indicative decision strategies do not provide a high enough
microservice coverage and (ii) the DAG application model may impose limitations
when deploying the application entirely at the edge of the network – limitations
that were overcome in the extension presented in Chapter 6. In the extension, we
provide an optimal decision strategy capable of finding nodes’ preferences that
have the maximum coverage and propose a new robust IoT application model.
Finally, there is still a limitation that the SMT and the e2e delay objective impose
on the technique. Currently, our decentralized resource management technical
framework is suitable for the deployment of applications in edge systems with
a limited number of available nodes. From our evaluation, we can observe that
after 20 nodes the technique performance suffers, becoming very computational
demanding for a resource-constraint node.

Q3: How to deploy and manage an application in a volatile edge system?

We have addressed this question by providing the adaptive framework presented
in Chapter 7. All the previous resource management techniques cannot provide
management of the deployed application throughout its entire execution. Therefore,
we propose an adaptive technique, that consists of two MAPE cycles, capable of
deploying and managing IoT applications in edge systems with high uncertainty.
In this case, our framework consists of a coordinator node that is in charge of the
entire system – therefore, we do not perform deployment in a decentralized manner
and do not consider the node’s preferences. Furthermore, we solve the performance
issues faced by our decentralized resource management framework – we have proved
in our evaluation that the adaptive framework is capable to consider systems with
500 available nodes. The framework requires novel monitoring components to find

121

8. Conclusion and Future Work

the communication latency, the node’s status, and the node’s available resources
among others – latency monitoring is common among all our resource management
techniques. We have provided these monitoring components as an example in
our prototype, however, we only used basic techniques to implement them since
these techniques are out of scope. These areas require future research and more
efficient techniques to provide an advantage in our frameworks. To conclude, we
will mention one last challenge that must be overcome with future research, i.e., to
provide a context-aware technique to be deployed on each participant node in the
system. To conclude, to manage the application with no downtime, we will need to
be able to react before the actual node has failed. Different context factors could
make a node fail or leave the system – monitoring and understanding the context
in which nodes operate will allow us to adapt to changes in a predictive manner. In
our current framework, we adapt after a node has failed, i.e., we perform a reactive
adaptation.

8.3 Future Work
In this thesis, we present a methodology and several frameworks to develop, deploy, and
manage IoT applications in a volatile edge system. We address several crucial challenges
associated with migrating applications from the cloud closer to the edge of the network.
Despite this, there are still several open challenges that were out of the scope of this
thesis – we intend to address them in future work. Therefore, in this section, we outline
the identified challenges and discuss possibilities for future research.

Context-aware techniques

One promising research direction is to develop a context-aware decision technique that
decides when to migrate an application from its current host edge nodes to preserve
its functionality. Such a technique will extend the adaptive framework by providing
valuable information to the coordinator node regarding the node’s internal status and
context. The context-aware module will reside on each participant edge node – a module
that computes the node’s probability to become unsuitable based on the contextual
information gathered from its environment. As described in Section 8.2, our adaptive
framework is capable of recovering an application from an unstable state in a reactive
manner – the framework starts the stabilization process only after one or more nodes
failed. An approach that may introduce downtime in the application if the invocation
path cycle does not have the required resources to recover the application. In contrast,
with our new context-aware module, we can predict when the current microservice host
becomes unavailable. At this point, the coordinator finds a new invocation path cycle
for the application – preventing any application downtime. Note that an edge node
does not have to fail or leave the system to become unsuitable for its local microservices
– the context may change, making the host node lose access to some of the resources
required by a microservice. For example, consider a machine learning microservice that

122

8.3. Future Work

requires special hardware to run properly. During the deployment stage, we find a
location for our microservice that has the microservice required resources. However,
during the microservice’s lifespan, the node becomes unsuitable to host the machine
learning microservice. Under these conditions, the context-aware module informs the
coordinator node, which migrates the microservice to another node.

Incentive mechanisms

Recall that an edge system consists of interconnected edge nodes – nodes that must
collaborate and share resources to host an application closer to the edge of the network.
In a smart city scenario, most of these nodes may be owned by different administrative
entities that will not allow the nodes to share resources without being properly rewarded.
Furthermore, defining an incentive mechanism capable to reward edge node users that
share data and resources will have tremendous effects on the adoption of IoT devices
and edge nodes between common users. An effort in this direction is made by the
I3: the intelligent IoT integrator, developed by USC 1, having the purpose of creating
a marketplace where users can share their private data with application developers
and receive incentives for it. We intend to incorporate an incentive system to reward
participant nodes for sharing their resources, perhaps by enticing them to use particularly
efficient system strategies. In the research literature, we can see some examples of
frameworks that consider the collaborations between nodes when deploying an IoT
application [ZMZ+18, KKV+17]. However, providing incentives according to edge node
participation remains an open challenge – a challenge that may play an important role
in the frameworks presented in this thesis.

Extension of our work

In the last part of our future work section, we present the extensions that we intend to
do for each presented framework. First, for our EdgeFlow, we intend to provide further
extensions to the FBP paradigm, i.e., add the possibility to (i) define QoS requirements
and (ii) add privacy and security requirements for each component. Security and privacy
play an important role in any edge system. As a result, in our resource management
frameworks, we want to enforce security and privacy mechanisms similar to the notion of
considering resource preferences of edge nodes. Regarding the decision strategy presented
in Chapter 6, we plan to investigate the possibility of finding the required optimal number
of groups sent by a node in its preferences list based on the (i) node’s available resources,
(ii) aspect resource requirements, and (iii) application size. Furthermore, we intend to
develop a component ranking, at the node level, to help a collaborator choose what
component functionality should be upgraded first in the case when multiple components
are mapped on the same node and the available resources have increased. For our adaptive
framework, we aim to develop a new module capable of finding nodes’ failure probability
at runtime; the failure probability of devices evolves in time. Finally, integration with

1https://i3.usc.edu/

123

https://i3.usc.edu/

8. Conclusion and Future Work

microservice management frameworks such as OpenFaas or Kubernetes is another aspect
that should be further tackled.

124

List of Figures

1.1 Cloud, Fog, and Edge Computing architecture overview. 4

4.1 EdgeFlow methodology overview. 27
4.2 The FBP paradigm extension metamodel. 28
4.3 Latency-sensitive IoT application model. 29
4.4 Public Safety Application DrawFBP model. 37
4.5 Communication Flow constraints for public safety application. 38
4.6 Deployment strategy for public safety application. 39
4.7 Execution time of the deployment stage for different scenarios over different

edge systems sizes, considering only one flow constraint. 42
4.8 Execution time of (a) finding a deployment strategy and (b) building the CP

model over different edge system sizes, considering one flow constraint. . . 42
4.9 Impact of the number of flow constraints on solver execution time considering

all three scenarios. 43
4.10 Impact of the number of flow constraints on model execution time considering

all three scenarios. 43

5.1 Decentralized Resource Allocation: Overview. 49
5.2 Public Safety application model. 51
5.3 Decentralized resource management: technique overview. 53
5.4 Antivirus application and deployment (in overlay). 60
5.5 Facerecognizer application and deployment (in overlay). 61
5.6 Public safety application and deployment (in overlay). 61
5.7 Team building application and deployment (in overlay). 62
5.8 Successful mapping over number of participant nodes. 63
5.9 Mapping time over number of participant nodes and formula size. 63
5.10 Contribution in symbols of different problem components to the overall for-

mulae, over increasing node count. 64
5.11 Mapping time over number of nodes and SMT formula size when coordinator

resides on a powerful device. 64

6.1 Decentralized Resource Auctioning: Overview. 71
6.2 Edge System Architecture: Overview. 73
6.3 Smart Building Application model. 74

125

6.4 Aspect 1 (a1): Face recognition for missing persons. 75
6.5 Aspect 2 (a2): Face Recognition for wanted persons. [ASDL+19b]. 75
6.6 Cognitive Application model [ASDL19a] 84

7.1 Overview of a volatile edge system illustrating (i) interconnected edge nodes
featuring different communication latencies, (ii) microservices being replicated
across nodes, (iii) multiple invocation paths characterized by different e2e
latencies. 91

7.2 Adaptive framework overview featuring two adaptive cycles at runtime in
charge of placing the application and managing the invocation path across
microservices respectively. 92

7.3 Public-safety application model and its execution sequence. 94
7.4 Three distinct stages in which the edge system may be found: (i) initial

placement – the application becomes operational, (ii) disruption – a node
failure disrupts correct functionality, and (iii) stabilization – the system adapts
to changes by finding a new invocation path. 95

7.5 Overview of the placement strategy for the initial placement of our public-
safety application example. The placement planning activity provides only
the location of microservices and their replicas on the system. 104

7.6 The invocation path found for the public-safety application example, con-
sidering the application’s requirements as well as the microservices’ location.
. 107

7.7 Combined deployment and dataflow diagram for a framework realization. 109
7.8 Execution time of the placement cycle for different scenarios across different

network sizes. 111
7.9 Average execution time required by the invocation path cycle across the five

scenarios. 111
7.10 Overview of a microservice-based application model and its execution sequence. 112
7.11 Execution time required by the invocation path cycle to reach stabilization

after node failures. 113

126

List of Tables

4.1 Edge Computing platform characteristics. 37
4.2 Public Safety Application resource and timing requirements. 38
4.3 Flows actual e2e delay and communication latency. 39

6.1 Component coverage percentage of permissive and strict constraints with 12
units available resources . 82

6.2 Component coverage percentage of permissive and strict constraints with 36
units available resources . 83

6.3 Component coverage percentage of permissive and strict constraints with 60
units available resources . 83

6.4 Cognitive Application resource requirements and WCET. 85
6.5 Successful mapping on edge. 86

7.1 Specifications of the synthesized scenarios adopted for performance evaluation. 110
7.2 Initial placement and invocation path. 112
7.3 Invocation paths and their e2e latency found when incrementally failing nodes. 114

127

Bibliography

[AAY+17] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib. Bringing computation closer toward the user network: Is edge
computing the solution? IEEE Communications Magazine, 55(11):138–144,
2017.

[ADAP19] Marios Avgeris, Dimitrios Dechouniotis, Nikolaos Athanasopoulos, and
Symeon Papavassiliou. Adaptive resource allocation for computation of-
floading: A control-theoretic approach. ACM Trans. Internet Technol.,
19(2), April 2019.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, et al. A view of cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[AH15] M. Aazam and E. N. Huh. Dynamic resource provisioning through fog
micro datacenter. In IEEE Intl. Conf. on Pervasive Computing and Com-
munication Workshops, pages 105–110, March 2015.

[AMD20] Cosmin Avasalcai, Ilir Murturi, and Schahram Dustdar. Edge and Fog: A
Survey, Use Cases, and Future Challenges, chapter 2, pages 43–65. John
Wiley & Sons, Ltd, 2020.

[ASDL19a] Farah AIT SALAHT, Frédéric Desprez, and Adrien Lebre. An overview of
service placement problem in Fog and Edge Computing. Research Report
RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France,
October 2019.

[ASDL+19b] Farah AIT SALAHT, Frédéric Desprez, Adrien Lebre, Charles Prud’Homme,
and Mohamed Abderrahim. Service Placement in Fog Computing Using
Constraint Programming. In SCC 2019 - IEEE International Conference
on Services Computing, pages 19–27, Milan, Italy, July 2019. IEEE.

[ATD19a] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Decentral-
ized resource auctioning for latency-sensitive edge computing. In IEEE
International Conference on Edge Computing (EDGE), 2019.

129

[ATD19b] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Decentral-
ized resource auctioning for latency-sensitive edge computing. In IEEE
International Conference on Edge Computing (EDGE), 2019.

[ATD20a] C. Avasalcai, C. Tsigkanos, and S. Dustdar. Adaptive volatile edge systems
management at runtime with satisfiability. ACM Transactions on Internet
Technology (under review), 2020.

[ATD20b] C. Avasalcai, C. Tsigkanos, and S. Dustdar. Resource management for edge
computing services. IEEE Transactions on Services Computing (under
review), 2020.

[AZ10] Danilo Ardagna and Li Zhang. Run-time Models for Self-managing Systems
and Applications. Springer Science & Business Media, 2010.

[AZD20] C. Avasalcai, B. Zarrin, and S. Dustdar. Edgeflow - developing and deploying
latency-sensitive iot edge applications. IEEE Internet of Things Journal
(under review), 2020.

[AZPD20] C. Avasalcai, B. Zarrin, P. Pop, and S. Dustdar. Efficient hosting of
robust iot applications on edge computing platform. In 2020 IEEE 4th
International Conference on Fog and Edge Computing (ICFEC), pages
1–10, 2020.

[BBG18] T. Bahreini, H. Badri, and D. Grosu. An envy-free auction mechanism for
resource allocation in edge computing systems. In IEEE/ACM Symposium
on Edge Computing, pages 313–322, Oct 2018.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In
Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verifi-
cation, pages 171–177, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[BF17] A. Brogi and S. Forti. Qos-aware deployment of iot applications through
the fog. IEEE Internet of Things Journal, 4(5):1185–1192, 2017.

[BKA+20] M. Barzegaran, V. Karagiannis, C. Avasalcai, P. Pop, S. Schulte, and
S. Dustdar. Towards extensibility-aware scheduling of industrial applications
on fog nodes. In 2020 IEEE International Conference on Edge Computing
(EDGE), 2020.

[BMNZ14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog
Computing: A Platform for Internet of Things and Analytics, pages 169–186.
Springer International Publishing, Cham, 2014.

[BSEB19] Martin Breitbach, Dominik Schäfer, Janick Edinger, and Christian Becker.
Context-aware data and task placement in edge computing environments.

130

In Proceedings of the International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 2019.

[BSM10] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira. Dag scheduling
using a lookahead variant of the heterogeneous earliest finish time algo-
rithm. In 18th Euromicro Conf. on Parallel, Distributed and Network-based
Processing, pages 27–34, Feb 2010.

[BSPE18] A. Belsa, D. Sarabia-Jacome, C. E. Palau, and M. Esteve. Flow-based
programming interoperability solution for iot platform applications. In
2018 IEEE International Conference on Cloud Engineering (IC2E), pages
304–309, 2018.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages
305–343. Springer International Publishing, Cham, 2018.

[BWFS14] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile
edge computing: A taxonomy. In Proc. of the Sixth International Conference
on Advances in Future Internet, pages 48–55. Citeseer, 2014.

[CCP19] Claudio Cicconetti, Marco Conti, and Andrea Passarella. Low-latency
distributed computation offloading for pervasive environments. In Perva-
sive Computing and Communications (PerCom), 2019 IEEE International
Conference on. IEEE, 2019.

[CCW+19] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu. iraf: A deep
reinforcement learning approach for collaborative mobile edge computing
iot networks. IEEE Internet of Things Journal, 6(4):7011–7024, 2019.

[CZ16] M. Chiang and T. Zhang. Fog and iot: An overview of research opportunities.
IEEE Internet of Things Journal, 3(6):854–864, Dec 2016.

[CZP18] X. Cao, J. Zhang, and H. V. Poor. An optimal auction mechanism for
mobile edge caching. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 388–399, July 2018.

[DB16] A. V. Dastjerdi and R. Buyya. Fog computing: Helping the internet of
things realize its potential. Computer, 49(8):112–116, Aug 2016.

[DLC17] Z. Duan, W. Li, and Z. Cai. Distributed auctions for task assignment and
scheduling in mobile crowdsensing systems. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 635–644,
June 2017.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Intl. conf. on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

131

[DMB19] Vincenzo De Maio and Ivona Brandic. Multi-objective mobile edge pro-
visioning in small cell clouds. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE ’19, page
127–138, New York, NY, USA, 2019. Association for Computing Machinery.

[DPPA18] Nader Daneshfar, Nikolaos Pappas, Valentin Polishchuk, and Vangelis
Angelakis. Service allocation in a mobile fog infrastructure under availability
and qos constraints. In 2018 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, 2018.

[DTF16] Maofei Deng, Hui Tian, and Bo Fan. Fine-granularity based application
offloading policy in cloud-enhanced small cell networks. In IEEE Intl. Conf.
on Communications Workshops, pages 638–643, May 2016.

[EPR20] Raphael Eidenbenz, Yvonne-Anne Pignolet, and Alain Ryser. Latency-
aware industrial fog application orchestration with kubernetes. In 2020 Fifth
International Conference on Fog and Mobile Edge Computing (FMEC),
pages 164–171, 2020.

[FWKM15] Muhammad Umar Farooq, Muhammad Waseem, Anjum Khairi, and Sadia
Mazhar. A critical analysis on the security concerns of internet of things
(iot). International Journal of Computer Applications, 111(7), 2015.

[GBLL15] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung. Developing
iot applications in the fog: A distributed dataflow approach. In 2015 5th
International Conference on the Internet of Things (IOT), pages 155–162,
2015.

[GD18] Marjan Gusev and Schahram Dustdar. Going back to the roots—the
evolution of edge computing, an iot perspective. IEEE Internet Computing,
22(2):5–15, 2018.

[GJAK19] Keerthana Govindaraj, Jibin P. John, Alexander Artemenko, and Andreas
Kirstaedter. Smart resource planning for live migration in edge computing
for industrial scenario. In 2019 7th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (MobileCloud), pages
30–37, 2019.

[GVC+18] Diogo Gonçalves, Karima Velasquez, Marilia Curado, Luiz Bittencourt, and
Edmundo Madeira. Proactive virtual machine migration in fog environments.
In 2018 IEEE Symposium on Computers and Communications (ISCC),
pages 00742–00745, 2018.

[GVGB17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296, 2017.

132

[HLW+20] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang. A cloud–mec collabo-
rative task offloading scheme with service orchestration. IEEE Internet of
Things Journal, 7(7):5792–5805, 2020.

[HV18] Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge
computing: A survey, 2018.

[JT17] R. Jain and S. Tata. Cloud to edge: Distributed deployment of process-aware
iot applications. In IEEE International Conference on Edge Computing,
pages 182–189, June 2017.

[KC03] Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[KdVW+20] Saadallah Kassir, Gustavo de Veciana, Nannan Wang, Xi Wang, and
Paparao Palacharla. Service placement for real-time applications: Rate-
adaptation and load-balancing at the network edge. In 2020 7th
IEEE International Conference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), pages 207–215, 2020.

[KKSF10] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton. Smart objects
as building blocks for the internet of things. IEEE Internet Computing,
14(1):44–51, 2010.

[KKV+17] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis.
A cooperative fog approach for effective workload balancing. IEEE Cloud
Computing, 4(2):36–45, March 2017.

[KVRF16] A. M. Khan, X. Vilaça, L. Rodrigues, and F. Freitag. A distributed
auctioneer for resource allocation in decentralized systems. In 2016 IEEE
36th International Conference on Distributed Computing Systems (ICDCS),
pages 201–210, June 2016.

[LBDP19] C. Liu, M. Bennis, M. Debbah, and H. V. Poor. Dynamic task offloading
and resource allocation for ultra-reliable low-latency edge computing. IEEE
Transactions on Communications, 67(6):4132–4150, 2019.

[Ley09] Frank Leymann. Cloud computing: The next revolution in it. In Pho-
togrammetric Week ‘09, page 3–12. Wichmann Verlag, 2009.

[LF] J. Lewis and M. Fowler. Microservices. https://martinfowler.com/
articles/microservices.html. Accessed: 2021-01-26.

[LGJ19] Isaac Lera, Carlos Guerrero, and Carlos Juiz. Availability-aware service
placement policy in fog computing based on graph partitions. IEEE Internet
of Things Journal, 6(2):3641–3651, 2019.

133

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

[LYWG20] X. Liu, J. Yu, J. Wang, and Y. Gao. Resource allocation with edge
computing in iot networks via machine learning. IEEE Internet of Things
Journal, 7(4):3415–3426, 2020.

[MATD19] Ilir Murturi, Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar.
Edge-to-edge resource discovery using metadata replication. In 2019 IEEE
3rd International Conference on Fog and Edge Computing (ICFEC), pages
1–6, May 2019.

[MB18] V. De Maio and I. Brandic. First hop mobile offloading of dag computations.
In 18th IEEE/ACM Intl. Symposium on Cluster, Cloud and Grid Computing,
pages 83–92, May 2018.

[MG+11] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. Com-
puter Security Division, Information Technology Laboratory, National . . . ,
2011.

[MJEA19] Amina Mseddi, Wael Jaafar, Halima Elbiaze, and Wessam Ajib. Intelligent
resource allocation in dynamic fog computing environments. In 2019 IEEE
8th International Conference on Cloud Networking (CloudNet), pages 1–7,
2019.

[Mor10] J Paul Morrison. Flow-Based Programming: A new approach to application
development. CreateSpace, 2010.

[MRB18a] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya.
Latency-aware application module management for fog computing environ-
ments. ACM Trans. Internet Technol., 19(1), November 2018.

[MRB18b] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya.
Latency-aware application module management for fog computing environ-
ments. ACM Trans. Internet Technol., 19(1):9:1–9:21, November 2018.

[New15] Sam Newman. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.", 2015.

[NTBG15] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs. Frasad: A framework
for model-driven iot application development. In 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), pages 387–392, 2015.

[OCY+17] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. R. Choo, and M. Dlodlo. From
cloud to fog computing: A review and a conceptual live vm migration
framework. IEEE Access, 5:8284–8300, 2017.

[PON+18] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya. Secure and sustainable load balancing of edge data centers in fog
computing. IEEE Communications Magazine, 56(5):60–65, May 2018.

134

[PRZR19] I. Petri, O. Rana, A. R. Zamani, and Y. Rezgui. Edge-cloud orchestration:
Strategies for service placement and enactment. In 2019 IEEE International
Conference on Cloud Engineering (IC2E), pages 67–75, June 2019.

[RB19] F. Rao and E. Bertino. Privacy techniques for edge computing systems.
Proceedings of the IEEE, 107(8):1632–1654, 2019.

[RCP20] Fabiana Rossi, Valeria Cardellini, and Francesco Lo Presti. Self-adaptive
threshold-based policy for microservices elasticity. In 2020 IEEE Interna-
tional Symposium on the Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS)(to appear), 2020.

[RGXZ17] J. Ren, H. Guo, C. Xu, and Y. Zhang. Serving at the edge: A scalable iot
architecture based on transparent computing. IEEE Network, 31(5):96–105,
2017.

[RLM18] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge com-
puting, fog et al.: A survey and analysis of security threats and challenges.
Future Generation Computer Systems, 78:680 – 698, 2018.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

[RZY+20] W. Rafique, X. Zhao, S. Yu, I. Yaqoob, M. Imran, and W. Dou. An appli-
cation development framework for internet-of-things service orchestration.
IEEE Internet of Things Journal, 7(5):4543–4556, 2020.

[SA17] M. M. Shurman and M. K. Aljarah. Collaborative execution of distributed
mobile and iot applications running at the edge. In Intl. Conf. on Electrical
and Computing Technologies and Applications, pages 1–5, Nov 2017.

[SAB+18] Vincenzo Scoca, Atakan Aral, Ivona Brandic, Rocco De Nicola, and
Rafael Brundo Uriarte. Scheduling latency-sensitive applications in edge
computing. In Closer, pages 158–168, 2018.

[Sat17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(June):30–39, Jan 2017.

[SBS+17] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady.
Flow-based programming for iot leveraging fog computing. In 2017 IEEE
26th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 74–79, 2017.

[SCM18] S. Sarkar, S. Chatterjee, and S. Misra. Assessment of the suitability of
fog computing in the context of internet of things. IEEE Transactions on
Cloud Computing, 6(1):46–59, Jan 2018.

135

[SCZ+16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[SD16] W. Shi and S. Dustdar. The promise of edge computing. Computer,
49(5):78–81, May 2016.

[SDW+15] Y. Shi, G. Ding, H. Wang, H. E. Roman, and S. Lu. The fog computing
service for healthcare. In 2015 2nd International Symposium on Future
Information and Communication Technologies for Ubiquitous HealthCare
(Ubi-HealthTech), pages 1–5, May 2015.

[SLYZ18] W. Sun, J. Liu, Y. Yue, and H. Zhang. Double auction-based resource
allocation for mobile edge computing in industrial internet of things. IEEE
Transactions on Industrial Informatics, 14(10):4692–4701, Oct 2018.

[SNS+17] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. Optimized iot service placement in the fog. Service Oriented
Computing and Applications, 11(4):427–443, Dec 2017.

[SRP+19] Deepa R. Sangolli, Nagthej M. Ravindrarao, Priyanka C. Patil, Thrishna
Palissery, and Kaikai Liu. Enabling high availability edge computing
platform. In 2019 7th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), pages 85–92, 2019.

[STD15] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Pringl – a
domain-specific language for incentive management in crowdsourcing. Com-
puter Networks, 90:14 – 33, 2015. Crowdsourcing.

[TAD19] Christos. Tsigkanos, Cosmin. Avasalcai, and Schahram. Dustdar. Architec-
tural considerations for privacy on the edge. IEEE Internet Computing,
23(4):76–83, 2019.

[TGBG20] Christos Tsigkanos, Martin Garriga, Luciano Baresi, and Carlo Ghezzi.
Cloud deployment tradeoffs for the analysis of spatially distributed internet
of things systems. ACM Trans. Internet Techn., 20(2):17:1–17:23, 2020.

[TN18a] Klervie Toczé and Simin Nadjm-Tehrani. A taxonomy for manage-
ment and optimization of multiple resources in edge computing. CoRR,
abs/1801.05610, 2018.

[TN18b] Klervie Toczé and Simin Nadjm-Tehrani. A taxonomy for manage-
ment and optimization of multiple resources in edge computing. CoRR,
abs/1801.05610, 2018.

[TND19] Christos Tsigkanos, Stefan Nastic, and Schahram Dustdar. Towards resilient
internet of things: Vision, challenges, and research roadmap. In 39th IEEE
International Conference on Distributed Computing Systems, ICDCS 2019,
Dallas, Texas, July 7-10, 2019, 2019.

136

[WD19] P. Wang and X. Du. Qos-aware service selection using an incentive mecha-
nism. IEEE Transactions on Services Computing, 12(2):262–275, 2019.

[WIH16] F. Wagner, F. Ishikawa, and S. Honiden. Robust service compositions
with functional and location diversity. IEEE Transactions on Services
Computing, 9(2):277–290, 2016.

[WSMB18] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. Foger-
netes: Deployment and management of fog computing applications. In
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, pages 1–7, 2018.

[WZH+20] X. Wang, Z. Zhou, P. Han, T. Meng, G. Sun, and J. Zhai. Edge-stream:
a stream processing approach for distributed applications on a hierarchi-
cal edge-computing system. In 2020 IEEE/ACM Symposium on Edge
Computing (SEC), 2020.

[WZZ+17] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. A
survey on mobile edge networks: Convergence of computing, caching and
communications. IEEE Access, 5:6757–6779, 2017.

[XJL+19] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv. Edge comput-
ing security: State of the art and challenges. Proceedings of the IEEE,
107(8):1608–1631, 2019.

[YHQL15] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing: Platform and applica-
tions. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb)(HOTWEB), volume 00, pages 73–78, Nov. 2015.

[YHZ+17] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and
Qun Li. Lavea: Latency-aware video analytics on edge computing platform.
In Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
SEC ’17, New York, NY, USA, 2017. Association for Computing Machinery.

[YLL15] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts,
applications and issues. In Proceedings of the 2015 workshop on mobile big
data, pages 37–42. ACM, 2015.

[YZW21] Kuang Yuejuan, Luo Zhuojun, and Ouyang Weihao. Task scheduling
algorithm based on reliability perception in cloud computing. Recent
Advances in Electrical & Electronic Engineering (Formerly Recent Patents
on Electrical & Electronic Engineering), 14(1):52–58, 2021.

[ZB15] Bahram Zarrin and Hubert Baumeister. Towards separation of concerns in
flow-based programming. In Companion Proceedings of the 14th Interna-
tional Conference on Modularity, MODULARITY Companion 2015, pages
58–63, New York, NY, USA, 2015. ACM.

137

[ZBS18] Bahram Zarrin, Hubert Baumeister, and Hessam Sarjoughian. An integrated
framework to develop domain-specific languages: Extended case study.
In International Conference on Model-Driven Engineering and Software
Development, pages 159–184. Springer, 2018.

[ZH18] He Zhu and Changcheng Huang. Edgeplace: Availability-aware place-
ment for chained mobile edge applications. Transactions on Emerging
Telecommunications Technologies, 29(11):e3504, 2018. e3504 ett.3504.

[ZMZ+18] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang. Cooperative-
competitive task allocation in edge computing for delay-sensitive social
sensing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages
243–259, Oct 2018.

138

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Organization of the Thesis

	Background
	Cloud Computing
	Fog Computing
	Edge Computing
	Microservice-based architecture
	Resource management

	Related Work
	Application development
	Resource management

	EdgeFlow - Developing and Deploying Latency-Sensitive IoT Edge Applications
	EdgeFlow: application development and deployment framework
	Application development and deployment stages
	Application Development methodology
	Evaluation
	Conclusion

	Resource Management for Edge Computing Services
	Decentralized Resource Allocation
	Problem formulation
	Resource management Technical Framework
	Evaluation
	Conclusion

	Efficient Hosting of Robust IoT Applications on Edge Systems
	Technical Framework Overview
	Problem Formulation
	Application deployment framework
	Evaluation
	Conclusion

	Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability
	Framework for Adaptive Management of Volatile Edge Systems
	Application and System Models
	Monitoring and Execution activities
	Placement cycle
	Invocation path cycle
	Evaluation
	Conclusion

	Conclusion and Future Work
	Summary of Contributions
	Revisiting Research Questions
	Future Work

	List of Figures
	List of Tables
	Bibliography

