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Non-Gaussian superradiant transition via three-body ultrastrong coupling
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We introduce a class of quantum optical Hamiltonians characterized by three-body couplings and propose
a circuit-QED scheme based on state-of-the-art technology that implements the considered model. Unlike
two-body light-matter interactions, this three-body coupling Hamiltonian is exclusively composed of terms
which do not conserve the particle number. We explore the three-body ultrastrong-coupling regime, showing
the emergence of a superradiant phase transition which is of first order, is characterized by the breaking of
Z2 × Z2 symmetry, and has a strongly non-Gaussian nature. Indeed, in contrast to what is observed in any
two-body-coupling model, in proximity of the transition the ground state exhibits a divergent coskewness, i.e.,
quantum correlations that cannot be captured within semiclassical and Gaussian approximations. Furthermore,
we demonstrate the robustness of our findings by including dissipative processes in the model, showing that the
steady state of the system inherits from the ground states the most prominent features of the transition.
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I. INTRODUCTION

Controlling the interaction between light and matter is one
of the main research axes of modern quantum science. It
has far-reaching implications for fundamental research and
practical applications in quantum optics [1], condensed matter
[2,3], and polaritonic chemistry [4,5]. The achievement of
the strong-coupling regime, where the interaction strength
overcomes losses, led to the observation of quantum-coherent
energy exchanges and paved the way to a plethora of appli-
cations in quantum technologies. When the coupling strength
is further increased, becoming comparable to the bare-system
frequencies, the ultrastrong-coupling (USC) regime is reached
[6–8], leading to deep modifications of optical, material, and
chemical properties.

One of the most debated theoretical predictions regarding
the USC regime is the emergence of a superradiant phase tran-
sition driven by quantum light-matter interaction [9]. When
increasing the coupling strength, the ground-state transitions
from the vacuum to a superradiant phase populated by a
macroscopic number of photonic excitations. Despite these
theoretical predictions, the presence of renormalizing terms in
realistic physical settings arguably prevents the emergence of
the superradiant phase at equilibrium [10–17]. However, this
issue can be circumvented using optical pumping schemes and
analog quantum simulation techniques [18], where the light-
matter coupling is effectively enhanced and pushed into the
USC regime. In the past few years, this approach has been suc-
cessfully implemented in circuit QED [19–21], trapped ions

*alexandre.leboite@univ-paris-diderot.fr

[22], opto- and electromechanical devices [23], and atomic
systems [24,25]. As a relevant example, analog quantum
simulation schemes applied on driven ultracold atoms in an
optical cavity led to the observation of superradiant transitions
[26–28], where the strength of the light-matter interaction
becomes dominant and results in a large number of atomic
and photonic excitations in the system steady state.

These effective implementations of USC can reach extreme
regimes of parameters, and phase transitions can emerge in
systems with a finite number of components [29–32], where
the thermodynamic limit is substituted with a rescaling of
the parameters. These finite-component phase transitions are
easier to control [33] than their many-body counterparts and
offer an interesting framework for the study of critical phe-
nomena [34–40]. For instance, it was recently shown [41]
that the features of a superradiant phase are universally de-
termined by key spectral properties of the model and thus
by the underlying symmetry of the USC interaction. Beyond
their fundamental interest, finite-component phase transi-
tions open perspectives for quantum technologies. Notably,
finite-component critical phenomena in atomic and solid-state
devices are promising candidates for the development of crit-
ical quantum sensors [42–53].

Here we introduce a kind of superradiant phase transi-
tion, induced by three-body coupling in the USC regime, and
propose a scheme to implement this phenomenology based
on recent experimental developments [54]. Our model con-
sists of three nonlinear quantum resonators, whose coupling
Hamiltonian has Z2 × Z2 symmetry. We use both analytical
and numerical tools to characterize the unconventional prop-
erties of its finite-component phase transition. With respect
to standard superradiant transitions induced by two-body
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FIG. 1. (a) Schematic representation of a system characterized
by three-body USC realized, e.g., by the superconducting circuit in
(b). (c) Rescaled photon number 〈â†â〉/η in the ground state [cf.
Eq. (2)] vs the three-body coupling strength g0. We go towards the
thermodynamic limit by increasing η. At the transition, the popu-
lation shows a discontinuity indicating a first-order transition. Also
shown is the energy of (d) the first excited state E1 and (e) the
fourth excited state E4. Note that the first three excited states are
degenerate, E1 = E2 = E3. At the transition, these energies go to
zero and we obtain a fourfold-degenerate ground state, signaling
spontaneous symmetry breaking. The next excited state E4 shows
the first-order discontinuity. The first-order transition point predicted
by the semiclassical theory is indicated by a vertical dashed line in
(c)–(e). We set U0/ω = 1.

interactions, the most prominent features of our model are (i)
the multiple degeneracy of the ground state in the superradiant
phase and (ii) the non-Gaussian nature of the ground state
at the transition, as certified by the coskewness of the pho-
ton statistics. We then present a microwave-pumping scheme
that implements the considered model in a circuit-QED de-
vice, feasible with current technology. Finally, we provide
analytical and numerical evidence that the key features of
the phase transition are preserved in the presence of drive
and dissipation, showing that this phenomenology is of direct
experimental relevance.

II. MODEL

We consider a trimer of nonlinear resonators coupled
via a three-body coupling term. Among the different possi-
ble designs offered by quantum simulation techniques [see
Figs. 1(a) and 1(b)], we focus in this work on the Hamiltonian

Ĥ = ωâ†â + ωb̂†b̂ + ωĉ†ĉ + Uâ†â†ââ + Ub̂†b̂†b̂b̂

+ Uĉ†ĉ†ĉĉ + g(â† + â)(b̂† + b̂)(ĉ† + ĉ), (1)

which is a three-body generalization of standard dipolar cou-
plings. We denote by â, b̂, and ĉ the annihilation operators of
three bosonic modes with bare frequencies ω, while U is the
on-site nonlinearity and g is the interaction strength. Notice
that, if the three resonators have the same frequency, none
of the coupling terms in Eq. (1) induces resonant transitions,
i.e., all terms are fast oscillating in the interaction picture.
However, we find that for three-body interactions the onset
of the USC regime, where counterrotating terms become rel-
evant, takes place for very low values of g. We denote by |�i〉
and Ei the eigenstates and eigenenergies of the Hamiltonian,
respectively, with Ej � Ei for j > i. Here i = 0 corresponds
to the ground state. We show in what follows how the su-
perradiant states emerging in the USC regime are strongly
constrained by symmetry properties imposed by the specific
form of the interaction terms. For the considered model, the
Hamiltonian commutes with the operators Ŝ1 = eiπ (â†â+b̂†b̂),
Ŝ2 = eiπ (â†â+ĉ† ĉ), and Ŝ3 = eiπ (b̂†b̂+ĉ† ĉ). Since Ŝ3 = Ŝ1Ŝ2 and
[Ŝ1, Ŝ2] = 0, the eigenstates |�i〉 are characterized by Z2 ×
Z2 symmetry, i.e., two quantum numbers (s1, s2) = (±1,±1)
such that Ŝ1,2|�i〉 = s1,2|�i〉.

III. SUPERRADIANT PHASE TRANSITION

Generally speaking, when the interaction strength g is
increased up to values where the coupling term is domi-
nant (g � ω,U ), a superradiant state always emerges after
a crossover [41]. To convert the crossover into a phase tran-
sition, an effective thermodynamic limit must be introduced
[30,35]. We identify here a parameter-scaling limit that in-
duces a critical transition from the vacuum to a superradiant
phase in the considered finite-component setup. This limit
consists in letting the nonlinear parameters U and g go to zero
while keeping the ratio U/g2 constant. Formally, this can be
done by introducing an effective parameter η and the scaling
laws

g = g0√
η
, U = U0

η
, (2)

with the thermodynamic limit η → ∞. This choice ensures
that all terms in the Hamiltonian scale similarly with η in the
superradiant phase, where we expect 〈â〉, 〈b̂〉, 〈ĉ〉 ∼ √

η. Let
us first investigate the transition at the semiclassical level. We
substitute the operators â, b̂, and ĉ in Eq. (1) with semiclas-
sical fields α, β, γ ∈ C and we look for the energy minima
of the resulting potential H (α, β, γ ). Under this approxima-
tion the normal-to-superradiant phase transition is driven by
the η-independent parameter λ = g

√
2/ωU . We identify three

regimes. (i) For λ < 1, the system is in the normal phase (vac-
uum). There is no superradiant extremum in H (α, β, γ ). (ii)
For 1 < λ < 3/(2

√
2), H (α, β, γ ) has four superradiant local

minima. These states are directly related to the Z2 × Z2 sym-
metry. They are obtained by applying the symmetry operators
Ŝ1, Ŝ2, and Ŝ3 on a coherent state of the form |X̄ , X̄ , X̄ 〉, where

X̄ = −
√

ωη

2U0
(λ + √

λ2 − 1). However, the global minimum

is still the vacuum. (iii) For λ > 3/(2
√

2), the superradi-
ant minima become energetically favorable with respect to
the vacuum state and a first-order transition to a superradi-
ant fourfold-degenerate ground state occurs. At this level of
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analysis we already see that both the order of the transition
and the degeneracy of the ground state are modified with
respect to the Z2 Dicke-like superradiant transitions. Note
that the expected scaling 〈â〉, 〈b̂〉, 〈ĉ〉 ∝ √

η is recovered in the
superradiant phase.

We now extend the analytical description including quan-
tum fluctuations via a standard Bogoliubov approach [55].
Namely, we expand the Hamiltonian around the mean-field
solutions according to â → X̄ + μ̂, b̂ → X̄ + ν̂, and ĉ →
X̄ + ζ̂ . Keeping only second-order terms in μ̂, ν̂, and ζ̂ leads
to a quadratic Hamiltonian which can be readily diagonalized
(see Appendix C). We find that there is a region λ ∈]1, 1 + l],
where l = ( U0

ηω
)4/5, in which fluctuations of the superradi-

ant states are relevant. Thus, the semiclassical picture can
be completed as follows. (i) When 1 < λ < 1 + l , quantum
fluctuations make the superradiant states unstable. (ii) For
1 + l < λ < 3/(2

√
2), superradiant local minima are not yet

the ground state, but are stable. [Note that in the thermody-
namic limit, l → 0, thus we always have 1 + l < 3/(2

√
2).]

(iii) For λ > 3/(2
√

2), the superradiant states become global
minima and the phase transition takes place. This treatment
predicts that the fluctuations in both the normal and super-
radiant states are bounded at the phase transition. This is an
important difference with respect to Dicke-like phase tran-
sitions, where similar Gaussian treatments predict that the
transition is accompanied by large quantum fluctuations.

As presented in Fig. 1, the semiclassical theory correctly
predicts some features of the phase transition, as confirmed
by exact numerical simulations (see Appendix B). In Fig. 1(c)
we show the mean photon number in the ground state as
a function of the coupling strength g for different values
of η. Even for relatively small η, the results show a dis-
continuity, a clear signature of a first-order phase transition
occurring at λ = 3/(2

√
2) (i.e., g0/ω = 0.75 in Fig. 1). The

first-order discontinuity is also revealed by the behavior of the
energy of the fourth excited state (Ĥ |�4〉 = E4|�4〉) plotted
in Fig. 1(e). The state |�4〉 has the same symmetry properties
as |�GS〉 because Ŝ1,2|�4〉 = |�4〉 and therefore the avoided
level crossing shown in Fig. 1(e) is the precursor of the true
criticality [56] emerging in the thermodynamic limit η → ∞.
The breaking of the Z2 × Z2 symmetry is evidenced by the
change in the energy spectrum at the transition of |�1,2,3〉,
i.e., the eigenvectors belonging to different symmetry sectors
with respect to the ground state. As shown in Fig. 1(d), the
energy gap between the ground state and the first three excited
states closes and the ground state becomes almost fourfold
degenerate for λ � 3/(2

√
2).

The exact numerical results also reveal a key feature of
the transition that is not captured by the semiclassical analy-
sis, namely, its non-Gaussian character. By non-Gaussian we
mean that the ground state in the vicinity of the transition
cannot be described by any superposition of Gaussian states,
as predicted by a mean-field approach, even when quantum
corrections are included through Bogoliubov theory. As a
witness of non-Gaussianity, we consider the coskewness of
modes â, b̂, and ĉ, defined as

Cabc = 〈x̂ax̂bx̂c〉√〈
x̂2

a

〉〈
x̂2

b

〉〈
x̂2

c

〉 , (3)

FIG. 2. (a) Rescaled equal-time second-order correlation func-
tion g(2)(0) and (b) coskewness of the ground state vs the three-body
coupling strength g0. The inset shows a close-up of the coskewness
for η = 10. The first-order transition point predicted by the semi-
classical theory is indicated by a vertical dashed line. The legend and
parameters are the same as in Fig. 1.

where the x̂i are field quadratures of the form x̂a = â + â†.
Note that by symmetry, we have 〈x̂a〉 = 〈x̂b〉 = 〈x̂c〉 = 0 in
|�0〉. Mean-field theory predicts that in the superradiant phase
limη→∞ Cabc = −1, while Cabc = 0 in the normal phase (see
Appendix C). Within this approximation, the nonzero value
of the coskewness comes from the superposition of coherent
states. When quantum fluctuations are included, this quantity
remains bounded and we always find Cabc � −1. This stands
in sharp contrast to the exact numerical results presented in
Fig. 2(b), which exhibit values of the coskewness well below
−1 and hint at a divergence at the critical point. To com-
plement the characterization of the ground state, we show in
Fig. 2(a) the single-mode second-order correlation function
g(2)(0) = 〈â†â†ââ〉

〈â†â〉2 , as a function of the coupling strength. In
terms of photon statistics the ground state undergoes a super-
Poissonian-to-Poissonian transition, which does not reveal
any non-Gaussian behavior such as photon antibunching. It is
thus only when considering three-mode correlation functions,
such as the coskewness, that the non-Gaussian nature of this
superradiant transition becomes apparent.

IV. IMPLEMENTATION WITH SUPERCONDUCTING
CIRCUItS

Let us now present a scheme to observe this rich phe-
nomenology with current circuit-QED devices [57,58]. We
generalize the scheme proposed in [59] and experimentally
implemented in [21], which makes use of a spontaneous
parametric down-conversion (SPDC) to induce an effec-
tive USC coupling between two microwave resonators. Here
we consider instead a three-photon SPDC process where
a single (pump) photon is down-converted in a photon
triplet. This quantum process has been recently implemented
[54] using a superconducting transmission-line resonator
grounded through an asymmetric fluxed-pumped supercon-
ducting quantum interference device (SQUID). Non-Gaussian
state generation has also been demonstrated [60,61]. The
model of Eq. (1) can be implemented using the three-resonator
scheme sketched in Fig. 1(b). Note that even if similar results
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might be obtained with a single multimode resonator, a mul-
tiresonator scheme allows for an independent control of the
local Kerr nonlinearities. The circuit scheme here presented is
meant to show that it is physically possible to implement the
considered model, but a detailed engineering would still be
required to design an optimal experimental implementation.
The relevant terms in the SQUID Hamiltonian that generate
the required nonlinear processes can be written as [54]

ĤSQ = βd (t )
∑

χk (â† + â + b̂† + b̂ + ĉ† + ĉ)k, (4)

where â, b̂, and ĉ are high-quality-factor microwave modes.
The cubic terms (k = 3) responsible for the three-photon
parametric processes are nonvanishing for an asymmetric
flux-driven SQUID. Most importantly, they can be selectively
and simultaneously activated by carefully choosing the drive
frequencies (see Appendix A). In our scheme, we take the
pump to be composed of four harmonic components βd (t ) =
βd

∑
i cos(ωit ), each of them inducing a third-order paramet-

ric interaction. The corresponding Hamiltonian terms can be
written as

ω1 = |ωa + ωb + ωc + 
1| → Ĥ1 = â†b̂†ĉ† + H.c.,

ω2 = |ωa + ωb − ωc + 
2| → Ĥ2 = â†b̂†ĉ + H.c.,

ω3 = |ωa − ωb + ωc + 
3| → Ĥ3 = â†b̂ĉ† + H.c.,

ω4 = |ωa − ωb − ωc + 
4| → Ĥ4 = â†b̂ĉ + H.c., (5)

where ωa, ωb, and ωc are the characteristic frequencies of the
resonators, while 
i are small detunings. The sum of the four
contributions Ĥi reproduces the three-body-interaction term

ĤSQ ≈ g
∑

i

Ĥi = g(â† + â)(b̂† + b̂)(ĉ† + ĉ), (6)

where the pump-induced coupling is given by g = βdχ3/2.
The small detunings 
i � ωi will establish the frequencies
of the bare modes in the effective Hamiltonian, which are res-
onant for 
1 = 3ω and 
2 = 
3 = 
4 = ω. The full target
model of Eq. (1) is then reproduced in the interaction picture
with respect to the Hamiltonian H0 = (ωa − ω)â†â + (ωb −
ω)b̂†b̂ + (ωc − ω)ĉ†ĉ. Intrinsic Kerr and cross-Kerr terms are
present due to the nonlinearity of the SQUID. However, en-
gineering a local nonlinear element, such as weakly coupled
qubits [57,58], allows one to make individual Kerr terms dom-
inant and to tune the size of the nonlinearity. Note that the
unavoidable presence of cross-Kerr terms is not an intrinsic
limitation and it might even result in a richer phase diagram.
Given that the present work represents a proof-of-concept
study of ultrastrong three-body couplings, we have decided
to consider a minimal Hamiltonian in order to identify the
specific properties of this class of interaction. However, for
an actual experimental realization, it might be favorable to
consider generalizations of the model of Eq. (1) which have a
similar phenomenology but are less challenging to implement.
On the other hand, real-time tuning of the nonlinearity is of
high relevance, as it makes it possible to explore the finite-
frequency scaling with a single sample, although the mode
frequencies must be carefully chosen in order to prevent the
activation of spurious interaction terms (see Appendix A). Un-
wanted couplings can become relevant when one of the pump
frequencies is close to two-body resonances ωi ≈ ωa ± ωb or

if parametric processes involving nonfundamental modes of
the resonators are activated (for instance, ωi ≈ ωa ± ωb ± ωd ,
with ωd the frequency of any higher-order resonator mode).

V. DRIVEN-DISSIPATIVE PHASE TRANSITION

Like any quantum optical setup, the proposed implemen-
tation is subject to unavoidable dissipative processes [62].
In this dissipative context, a phase transition occurs in the
steady state, which is reached in the long-time limit under the
competition between the unitary dynamics and the loss mech-
anisms [63,64]. We model the driven-dissipative dynamics by
the Lindblad master equation

d

dt
ρ̂(t ) = Lρ̂(t ) = −i[Ĥ, ρ̂(t )] + κD[â]ρ̂(t )

+ κD[b̂]ρ̂(t ) + κD[ĉ]ρ̂(t ), (7)

where ρ̂(t ) denotes the density matrix of the system. The
dissipators describing single-photon losses are defined as
D[Ô]ρ̂(t ) = Ôρ̂(t )Ô† − [Ô†Ôρ̂(t ) + ρ̂(t )Ô†Ô]/2 and occur
at a rate κ . Note that in this effective implementation of
the USC regime, single-photon losses do not trivially drive
the system towards the ground state of the Hamiltonian Ĥ .
Besides unavoidable single-photon losses, the drive can me-
diate higher-order [65] three-photon dissipative processes.
These processes, however, are subdominant in the parameter
regime we consider and can be safely neglected [54]. Within
the density-matrix formalism, the symmetry operators Ŝi are
extended to the superoperator level by Siρ̂ = Ŝiρ̂ Ŝ†

i [66–68].
In the present case, the Liouvillian L has the same symmetry
as Ĥ , namely,

[Si,L] = 0. (8)

Hence the results of the symmetry analysis extend from the
ground state to the steady state.

We simulate the dynamics in Eq. (8) using a quantum
trajectory approach, where the resulting density matrix is
obtained by averaging over a large number of realizations
of a stochastic Schrödinger equation (see Appendix B). The
steady-state values are then obtained by evolving the results
for sufficiently long times. The number of realizations is cho-
sen large enough to ensure that the uncertainty on the value
of the observables is smaller than 5%. Three factors make the
simulation demanding for large-η values: (i) Growing photon
numbers require a large cutoff, (ii) the non-Gaussian nature of
the state implies long tails in the photon-number distribution,
and (iii) the state is extremely entropic at the phase transi-
tion, requiring a large trajectory sample to obtain non-noisy
data. In Fig. 3(a) we show the average photon number as a
function of the coupling g, for a dissipation rate equal to the
bare frequency κ = ω. Similarly to the nondissipative case,
we observe a sharper change in the photon number as the
parameter η increases. Notice also that the transition point
is slightly shifted with respect to the nondissipative case.
Finally, in Fig. 3(b) we show that also in the dissipative case
the coskewness drops below −1, signaling the non-Gaussian
nature of the transition, even for a rather high dissipation rate.
We thus confirm that the proposed implementation allows
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FIG. 3. (a) Rescaled photon number and (b) coskewness of the
steady state vs the three-body coupling strength g0. The parameters
are the same as in Fig. 1 and κ = ω. The number of trajectories
at each point ensures that observables reached convergence within
an error of 5%. Even for these values of noise, we still achieve a
coskewness below −1.

witnessing the unconventional properties of superradiant
phase transitions induced by ultrastrong three-body coupling.

VI. CONCLUSION

We have demonstrated that a trimer of nonlinear oscillators
coupled via a three-body terms exhibits a superradiant phase
transition in the USC regime. In contrast with the usual two-
body dipolar coupling, the three-body Hamiltonian leads to
large non-Gaussian quantum fluctuations, as witnessed by a
diverging coskewness in the vicinity of the transition. Exact
numerical simulations show that these features, which are cap-
tured neither by semiclassical analysis nor by the Bogoliubov
approach, are robust to dissipation and could be observed with
the proposed circuit-QED scheme. Our results demonstrate
the theoretical and experimental relevance of three-body cou-
plings in open quantum-optical systems. This work introduces
the study of ultrastrong three-body couplings and it is focused
on static properties, in both the Hamiltonian and the dissi-
pative settings. Further analyses of this class of models can
lead to the observation of a richer quantum phenomenology
related to the ultrastrong-coupling regime [6–8]. For example,
investigations of dynamical properties across the transition
in closed or open settings offer interesting perspectives [69].
Beyond the intrinsic interest in an unconventional quantum
phenomenology, three-body interactions can be used in the
generation of quantum non-Gaussian states [70–73], in quan-
tum sensing [47] applications, and in quantum-information
processing [74].
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APPENDIX A: EFFECTIVE IMPLEMENTATION

Let us now provide more details on the proposed effec-
tive implementation that can reproduce the desired model. In

particular, we will discuss the requirements that the driving
fields and the resonator mode structure must fulfill in or-
der to avoid the activation of unwanted coupling terms. The
full quantum model for the three-resonator setup sketched in
Fig. 1(b) can be written as

Ĥ =
∑

n

{
ω(n)

a â†
nân + ω

(n)
b b̂†

nb̂n + ω(n)
c ĉ†

nĉn
}

+ ĤKerr + ĤSQ, (A1)

where

ĤKerr =
∑

n

U (n)
(
â†2

n â2
n + b̂†2

n b̂2
n + ĉ†2

n ĉ2
n

)
. (A2)

We defined the modes ân of the resonator a, with resonant
frequency ω(n)

a and Kerr strength U (n), and similarly for the
resonators b and c. Note that n = 0 corresponds to the fun-
damental mode considered in the main text â0 ≡ â, where we
dropped the suffix for the sake of simplicity. The full SQUID
Hamiltonian then reads

ĤSQ = �d

∑
k

χk

[∑
n

(
â†

n + ân + b̂†
n + b̂n + ĉ†

n + ĉn
)]k

,

(A3)
where �d = βd [

∑
i cos(ωit )]. In the interaction picture de-

fined by the harmonic part of the free Hamiltonian, the annihi-
lation and creation operators each rotate at the corresponding
resonant frequency ân(t ) = âneiω(n)

a t and fast oscillating terms
can be neglected by rotating-wave approximation given that
βdχk is much smaller than all mode frequencies. As a first
condition, we take the three resonators to have different fun-
damental frequencies ω(0)

a �= ω
(0)
b �= ω(0)

c in such a way that
intrinsic coupling terms are off-resonant and so photon trans-
fer is possible only when mediated by the drivings. We then
have to select the frequencies ωi of the harmonic components
of the driving field in such a way that the desired processes are
resonant and no spurious terms are activated. In order to repro-
duce the three-photon coupling we need four components

ω1 = ∣∣ω(0)
a + ω

(0)
b + ω(0)

c + 
1

∣∣,
ω2 = ∣∣ω(0)

a + ω
(0)
b − ω(0)

c + 
2

∣∣,
ω3 = ∣∣ω(0)

a − ω
(0)
b + ω(0)

c + 
3

∣∣,
ω4 = ∣∣ω(0)

a − ω
(0)
b − ω(0)

c + 
4

∣∣. (A4)

Each of these driving tones will selectively activate an inter-
action term

Ĥ1 = βdχ3

2
(â†

0b̂†
0ĉ†

0 + H.c.),

Ĥ2 = βdχ3

2
(â†

0b̂†
0ĉ0 + H.c.),

Ĥ3 = βdχ3

2
(â†

0b̂0ĉ†
0 + H.c.),

Ĥ4 = βdχ3

2
(â0b̂†

0ĉ†
0 + H.c.). (A5)

As explained in the main text, the small detunings 
i �
ωi will establish the frequency ω of the bare modes in
the effective Hamiltonian 
1 = 3ω and 
2 = 
3 = 
4 = ω.
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Furthermore, the driving frequencies must be significantly
detuned from all resonances that induce energy transfer or
parametric couplings between fundamental and higher modes.
In particular, two kinds of unwanted terms might be activated:
two-photon processes such as â0b̂†

1, non-negligible for some
ωi ∼ ω

(1)
b − ω(0)

a , and three-photon processes such as â†
0ĉ†

1ĉ†
1,

which can be activated when ωi ∼ 2ω(1)
c + ω(0)

a . In order for
these processes to be negligible, all driving frequencies ωi

must be detuned by an amount δ which is large with respect
to the effective coupling strength.

For a given choice of mode frequencies, we can numeri-
cally check the detuning with respect to all undesired reso-
nances. Let us provide an example of a suitable set of param-
eters which is in line with the experimental implementation
presented in [54]: (ω(0)

a , ω
(0)
b , ω(0)

c ) = 2π (7.6, 6.2, 4.2) GHz
and (ω(1)

a , ω
(1)
b , ω(1)

c ) = 2π (11.4, 9.3, 6.3) GHz. For this set
of frequencies and choosing the drive tones as in Eq. (A4), we
find that the closest unwanted resonance is given by δ = ω1 −
ω(0)

a − ω(0)
c − ω(1)

c = 2π 0.1 GHz and other three-photon pro-
cesses with the same detuning δ. We have to compare this
detuning with the strength g = βd χ3

2 of the process which, in
order to observe the transition described in the main text,
must reach a value such that λ = √

2/ωUg = 3/(2
√

2) and
so g = 3

√
ωU/4. If we set now the frequency of the effec-

tive model ω = 2π 10 MHz and U = ω/10 (corresponding
to η = 10), we have that g ∼ 2π 2.4. Accordingly, the ratio
g/δ ∼ 2.4−2 is much smaller than 1 and these processes are
safely negligible with standard physical parameters [21,54].

APPENDIX B: NUMERICAL SIMULATIONS

1. Hamiltonian numerical simulations

To resolve the spectral features of the Hamiltonian model,
we resort to exact diagonalization. This means that we set a
cutoff C such that, for any m > C or n > C, 〈mj |Ĥ |n j〉 = 0,
where |mj〉 and |n j〉 represent Fock states with m or n photons
in the jth cavity. To verify the convergence of our results,
we compare the results obtained for a cutoff C and those
obtained for a cutoff C′ = C + η + 2. In particular, we verify
that the eigenvectors |� j (C)〉 associated with the ten lowest
eigenenergies Ej and obtained with a cutoff C are less than
0.5% different with respect to those obtained with a cutoff C′,
i.e.,

|〈� j (C)|� j (C
′)〉| < 0.005. (B1)

In the exact diagonalization algorithm, we exploit both
the Z2 × Z2 symmetry of Ĥ and the translational invariance
of the Hamiltonian, to transform Ĥ into its block-diagonal
form. We then diagonalize each one of the blocks, obtaining
the eigenvalues and eigenvectors associated with each one
of these symmetry sectors. Note that this procedure allows
us to determine the correct form of the ground and excited
states even in regimes where numerical errors would make it
impossible to distinguish between them. Indeed, from analyt-
ical considerations, we know that, for any finite-size system,
phase transitions cannot occur without a thermodynamical or
parameter rescaling limit. Therefore, the eigenvalues of the
Hamiltonian can never become truly degenerate.

2. Dissipative numerical simulations

To investigate the dissipative model, we resort to quantum
trajectories. A quantum trajectory (also known as wave-
function Monte Carlo) is a mapping of the Lindblad master
equation onto a stochastic differential equation for the wave
function |ψ (t )〉. The wave function |ψ (t )〉 has a piecewise
deterministic evolution under the action of a non-Hermitian
Hamiltonian Ĥeff , which in our case reads

Ĥeff = Ĥ − i
γ

2
(â†â + b̂†b̂ + ĉ†ĉ), (B2)

randomly interrupted by the occurrence of quantum jumps Ĵ
(one of the three operators â, b̂, or ĉ). In an infinitesimal time
step dt , each quantum jump occurs with a probability pJ =
γ dt〈Ĵ†Ĵ〉, where Ĵ ∈ {â, b̂, ĉ}.

A numerical simulation of a quantum trajectory is thus
equivalent to extract the probability that a quantum jump
occurred at each time step dt . If no quantum jump occurs,
then

|ψ (t + dt )〉 = |ψ (t )〉 − idtĤeff |ψ (t )〉. (B3)

Otherwise, according to the quantum jump extracted, the evo-
lution is given by

|ψ (t + dt )〉 = Ĵ|ψ (t )〉
〈ψ (t )|Ĵ†Ĵ|ψ (t )〉 . (B4)

The results of the Lindblad master equation can then be re-
trieved by averaging over a large number Ntraj of quantum
trajectories, because

ρ̂(t ) = lim
Ntraj→∞

Ntraj∑
j=1

|�(t )〉〈�(t )|
Ntraj

. (B5)

The advantage of quantum trajectories is thus to reduce the
numerical cost of a single simulation (from that of a density
matrix to one of a wave function), but the price to pay is the
need to perform the simulation several times. To obtain the
results shown in the main text, we exploited the parallelizable
nature of quantum trajectories. Note that for the largest η con-
sidered here, i.e., η = 3, we were able to obtain reliable results
only when considering a cutoff C = 25 (C′ = 30) and thus
a Hilbert space of dimension 15 625 (27 000). This demon-
strates the very non-Gaussian photon-number distribution of
the states across the transition. Furthermore, at the transition,
phenomena such as hysteresis require (i) long simulations
and (ii) increased mixed nature of the steady state, making
it necessary to increase the number of quantum trajectories to
reduce the statistical noise.

APPENDIX C: SEMICLASSICAL TREATMENT

1. Mean-field approximation

We will first study the trimer Hamiltonian of Eq. (1) with
a mean-field approach, i.e., we assume that each field can
be put in a coherent state: â → α, b̂ → β, and ĉ → γ ; the
consistency of this hypothesis will be studied at the end
of this section. The Hamiltonian then reduces to a classical
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potential

H (α, β, γ ) = ω(|α|2 + |β|2 + |γ |2)

+ g0√
η

(α + α∗)(β + β∗)(γ + γ ∗)

+ U0

η
(|α|4 + |β|4 + |γ |4). (C1)

The goal then is to find the minima and maxima of this
function, which satisfy ∂H/∂α = ∂H/∂β = ∂H/∂γ = 0. We
find nine solutions α = β = γ = 0, α = β = −γ = X±, α =
−β = γ = X±, −α = β = γ = X±, and α = β = γ = −X±,
with

X± =
√

ωη

2U0
(λ ±

√
λ2 − 1) =

√
ωη

2U0
f±(λ), (C2)

where we have defined

λ =
√

2

ωU0
g0 =

√
2

ωU
g. (C3)

Note that these solutions exist only for λ > 1. The eight
solutions can be grouped into two sets of four degenerate
solutions, with a (semiclassical) energy

E±(λ) = 3ω2η

4U0

(
2 f±(λ)2 − 8

3
λ f±(λ)3 + f±(λ)4

)
. (C4)

Importantly, we have E− � 0 and E− � E+. To summarize,
for λ < 1, we have a semiclassical potential with a single
minimum which corresponds to the vacuum. For λ > 1, the
potential has five asymmetric minima and four maxima. The
five minima correspond to the vacuum and the four solutions
X+ and have energy E = 0 and E = E+, respectively. The
maxima correspond to the four solutions X−, with an energy
E = E−. With this analysis, we can already predict that the
solutions X+ will always be unstable.

To better visualize the structure of the potential, let us see
what happens if we move along the line α = β = γ . Starting
from α = 0, the potential increases until we reach α = X−; it
then decreases until α = X+ and then goes up again. We ob-
tain the same picture if we follow the line α = β = −γ and so
on. At first, for λ above 1, the four superradiant states can then
exist as metastable states, existing in wells of typical width
X+ − X− and with a potential barrier of height |E+ − E−|.
As λ increases, the depth of the four wells increases. It is
straightforward to show that, at λ = 3

2
√

2
, E+ becomes smaller

than the vacuum energy 0. At this point, the four superradiant
solutions become the new (degenerate) ground state and a
first-order phase transition takes place. In the following, to
simplify notation, we will rewrite the position of the local
minima as X̄ = −X−; this is the notation we used in the main
text.

2. Quantum fluctuations

The treatment above predicts that superradiant states be-
come energetically favored above a certain threshold for the
coupling. However, quantum fluctuations can also induce tun-
neling between different states and change their stability. We
will now estimate the importance of these fluctuations by a
quadratic expansion around the semiclassical solution.

a. Quadratic expansion and Bogoliubov transformation

Let us consider the phase corresponding to α = β = γ =
X̄ (the other three phases will have the same stability, by
symmetry). We can then decompose the bosonic field into its
mean-field value plus quantum fluctuations:

â → X̄ + μ̂, b̂ → X̄ + ν̂, ĉ → X̄ + ζ̂ .

We can then develop the Hamiltonian in various orders of
perturbation. The zeroth-order term is a constant and corre-
sponds to the semiclassical energy E+. The first-order term
is zero, since we are developing around an energy extremum.
The second-order term is

Ĥ (2) = ω

4
[1 + f+(λ)2]

(
p̂2

μ + p̂2
ν + p̂2

ζ

)
+ ω

4
[1 + 3 f+(λ)2]

(
x̂2
μ + x̂2

ν + x̂2
ζ

)
− ωλ f+(λ)(x̂μx̂ν + x̂ν x̂ζ + x̂ζ x̂μ), (C5)

where we have defined the quadratures x̂μ = μ̂ + μ̂† and so
on. This Hamiltonian can be diagonalized with a Bogoliubov
transformation. We define new fields û, ŷ, and ẑ as⎡
⎣x̂μ

x̂ν

x̂ζ

⎤
⎦ = 1√

3

(
1 + f 2

+
1 + 3 f 2+

)1/4
⎡
⎢⎣

1 1 1

− 1+√
3

2 1
√

3−1
2√

3−1
2 1 − 1+√

3
2

⎤
⎥⎦

⎡
⎣û

ŷ
ẑ

⎤
⎦.

(C6)
The conjugate variables p̂u, p̂y, and p̂z are instead defined by⎡
⎣p̂μ

p̂ν

p̂ζ

⎤
⎦ = 1√

3

(
1 + 3 f 2

+
1 + f 2+

)1/4
⎡
⎢⎣

1 1 1

− 1+√
3

2 1
√

3−1
2√

3−1
2 1 − 1+√

3
2

⎤
⎥⎦

⎡
⎣p̂u

p̂y

p̂z

⎤
⎦.

(C7)
These operators define collective excitations of the three
resonators. In terms of these new degrees of freedom, the
Hamiltonian above reads

Ĥ (2) = ω̃

4

(
p̂2

u + p̂2
y + p̂2

z

)
+ ω̃

4

[
û2

(
1 + λ̃

2

)
+ ẑ2

(
1 + λ̃

2

)
+ ŷ2(1 − λ̃)

]
,

(C8)

where the renormalized coupling λ̃ and frequency ω̃ are de-
fined as

1 − λ̃ =
√

λ2 − 1

(
λ + √

λ2 − 1

3λ
√

λ2 − 1 + 3λ2 − 1

)
,

ω̃ = ω

√
(1 + f 2+)(1 + 3 f 2+). (C9)

One can readily check that, for λ > 1, all collective modes are
stable and have bounded fluctuations. At λ = λ̃ = 1, however,
the y polariton becomes unstable. This is compatible with the
mean-field treatment, which predicted that superradiant states
exist only for λ > 1 in the first place.

b. Analysis of fluctuations

Let us study in detail the quadrature fluctuations predicted
by the previous analysis. In the normal phase, we have the
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usual vacuum fluctuations 〈x̂2
i 〉 = 〈p̂2

i 〉 = 1 and 〈x̂ix̂ j〉 = 0 for
i = μ, ν, ζ . In the superradiant phase, combining Eqs. (C6)
and (C8), we find the values 〈p̂2

y〉 =
√

1 − λ̃ and 〈ûŷ〉 =
〈ẑŷ〉 = 〈ûẑ〉 = 〈p̂u p̂y〉 = 〈p̂z p̂y〉 = 〈p̂u p̂z〉 = 0. With this, we
find the expressions for the fluctuations of the u, y, and z
quadratures

〈û2〉 = 〈ẑ2〉 = 1√
1 + λ̃/2

, (C10)

〈ŷ2〉 = 1√
1 − λ̃

, (C11)

〈ûŷ〉 = 〈ẑŷ〉 = 〈ûẑ〉 = 0, (C12)

〈x̂2
μ〉 = 〈x̂2

ν〉 = 〈x̂2
ζ 〉 = 1

3

(
1 + f 2

+
1 + 3 f 2+

)1/2

(2〈ẑ2〉 + 〈ŷ2〉),

(C13)

〈x̂μx̂ν〉 = 〈x̂ν x̂ζ 〉 = 〈x̂ζ x̂μ〉 = 1

3

(
1 + f 2

+
1 + 3 f 2+

)1/2

(〈ŷ2〉 − 〈ẑ2〉),

(C14)

〈x̂μx̂ν x̂ζ 〉 = 0, (C15)

and for the p quadratures

〈p̂2
u〉 = 〈p̂2

z〉 =
√

1 + λ̃/2, (C16)

〈p̂2
y〉 =

√
1 − λ̃, (C17)

〈p̂z p̂y〉 = 〈p̂u p̂z〉 = 〈p̂u p̂y〉 = 0, (C18)

〈p̂2
μ〉 = 〈p̂2

ν〉 = 〈p̂2
ζ 〉 = 1

3

(
1 + 3 f 2

+
1 + f 2+

)1/2(
2
〈
p̂2

z

〉 + 〈
p̂2

y

〉)
,

(C19)

〈p̂μ p̂ν〉 = 〈p̂ν p̂ζ 〉 = 〈p̂ζ p̂μ〉

= 1

3

(
1 + 3 f 2

+
1 + f 2+

)1/2(〈
p̂2

y

〉 − 〈
p̂2

z

〉)
, (C20)

〈p̂μ p̂ν p̂ζ 〉 = 0. (C21)

The fluctuations, which diverge near λ̃ = 1 (which means
λ = 1), are reminiscent of what we obtain in models such as
the Dicke model [9] or the Bose-Hubbard dimer [41]. There
is however a key difference: In Dicke-like models, the ap-
pearance of the superradiant phase (which is associated with
diverging fluctuations) coincides with the phase transition.
Here, at λ = 1, the superradiant phases are still high-energy
phases and the ground state is still centered around α = β =
γ = 0. The phase transition occurs only for λ = 3/(2

√
2);

at this point, the semiclassical treatment we have presented
predicts that the superradiant phases are already stabilized.
Indeed, according to the formulas above, both the on-site
fluctuations 〈x̂2

i 〉 and the cross-site correlations 〈x̂ix̂ j〉 are finite
for λ = 3/(2

√
2).

Note that these expressions have been obtained by a devel-
opment around the solution α = γ = β = X̄ . If we develop
the solution around, say, α = β = −γ = −X̄ , then we will
obtain the Hamiltonian (C5), up to transformations â → −â

and b̂ → −b̂. The on-site fluctuations 〈x̂2
i 〉 will remain the

same, but the cross-site correlations 〈x̂ix̂ j〉 will change. We
will observe noise reduction for the quadratures x̂μ − x̂ν ,
x̂ν + x̂ζ , and x̂μ + x̂ζ . Similarly, for the other two solutions, we
will find the same squeezing amount, but different squeezing
directions. In the following, we will refer to the four superra-
diant states as |G+++〉, |G+−−〉, |G−+−〉, and |G−−+〉.

3. Stability of the superradiant state

The analysis above allows us to make a further comment on
the stability of the superradiant states. Just above λ = 1, the
superradiant state can in principle exist, but quantum fluctua-
tions can still destabilize the phase. Near the point λ = 1, we
have 〈ŷ2〉 ∼ (λ̃ − 1)−1/2 ∼ (λ − 1)−1/4, while 〈û2〉 and 〈ẑ2〉
remain bounded and of order 1, because the average values
〈û〉, 〈ŷ〉, and 〈ẑ〉 are zero everywhere. The quantum state will
therefore be dominated by the fluctuations of the ŷ polariton
and we have 〈x̂2

μ〉 ∼ 〈x̂2
ν〉 ∼ 〈x̂2

ζ 〉 ∼ 〈ŷ2〉. We can now compare
these fluctuations to the width of the well:〈

x̂2
μ

〉
(X+ − X−)2

∼
〈
x̂2
ν

〉
(X+ − X−)2

∼
〈
x̂2
ζ

〉
(X+ − X−)2

∼ U0

ωη(λ − 1)5/4
.

(C22)
For λ � 1 + l = 1 + ( U0

ηω
)4/5, where l = ( U0

ηω
)4/5, the field

fluctuations are of the same order of magnitude as the width
of the potential well. Therefore, the quantum fluctuations
can kick the system out of the local minima. Only for λ �
1 + ( U0

ηω
)4/5 are the superradiant states truly well defined and

(meta)stable. Alternatively, we may also compare the excita-
tion energy with the potential barrier. The excitation energy
will scale like ω(1 − λ1/4), while the potential barrier gives
E+ − E− ∼ ω2η

U0
(1 − λ)3/2. Again, we find that the excitation

energy becomes smaller than the barrier for λ � 1 + ( U0
ηω

)4/5,
meaning that only above this point can we suppress tunneling
to the vacuum state and stabilize the superradiant state.

As of the normal phase, it will remain stable for most
values of g. However, for very large values of λ, we have
E− → 0; as a consequence, the potential barrier isolating the
vacuum from the superradiant phase vanishes and quantum
fluctuations drive the system out of the vacuum. We expect
this will occur when the excitation energy in the normal
phase becomes comparable to the barrier, i.e., for ω ∼ E−,
which gives λ ∼ √

ωη/U0 or equivalently g0 ∼ ω
√

η. A sim-
ilar order of magnitude can be obtained with the following
reasoning: If we keep only the quadratic term in the Hamil-
tonian (1), we predict fluctuations 〈x̂2

a〉 = O(1). Hence, the
quadratic potential ω(â†â + · · · ) will be of order ω and the
trimer interaction term will be of order g0√

η
x̂3 ∼ g0√

η
. Hence,

for g0 � √
η, the interaction term will be negligible; when

g0 ∼ √
η, the interaction becomes comparable to the quadratic

potential and can destabilize the normal phase. This means
that this mean-field treatment predicts that the normal phase
becomes unstable well after the ground state becomes super-
radiant.

We summarize as follows. For λ < 1, the potential has a
single minimum which corresponds to the vacuum. For 1 <

λ � 1 + (U0/ηω)4/5, four degenerate minima appear; how-
ever, the local fluctuations are still strong enough to drive the

013715-8



NON-GAUSSIAN SUPERRADIANT TRANSITION VIA … PHYSICAL REVIEW A 107, 013715 (2023)

system out of these minima. For 1 + (U0/ηω)4/5 � λ < 3
2
√

2
,

the superradiant state becomes metastable. However, its en-
ergy is still larger than the vacuum state energy. For λ = 3

2
√

2
,

the superradiant and vacuum states become degenerate and
a phase transition takes place. Note that at this point there
is a large potential barrier between the two states, and tun-
neling between the vacuum and superradiant states is still
suppressed: The transition is first order. For λ > 3

2
√

2
, the

ground state is now superradiant; however, the vacuum re-
mains a minimum of potential for all values of λ. For most
values of λ, this minimum of potential remains deep enough
to confine the field: The vacuum is still metastable. Only for
λ ∼ √

ωη/U0 do the fluctuations induced by the interaction
become strong enough to destabilize the vacuum. This semi-
classical analysis seems to capture correctly the location of
the critical point, as well as the mean number of excitations in
the superradiant phase (see Fig. 1 in the main text). However,
as we will shortly show, it fails to capture the divergence of
the coskewness at the critical point.

4. Coskewness

a. Normal phase

We will now study the third-order moments, starting with
the normal phase. As long as we remain in the vicinity of the
vacuum state, the three-body coupling will only act as a per-
turbation. Using standard perturbation theory at first order, we
find that the ground state will be given by |000〉 − g0

3ω
√

η
|111〉.

We can immediately infer the skewness of each quadrature
fluctuation: 〈

x̂3
a

〉 = 0, (C23)〈
x̂2

a x̂b
〉 = 0, (C24)

〈(x̂ax̂bx̂c)〉 = −g0

3ω
√

η
. (C25)

(C26)

Equivalent expressions are obtained by permuting a, b, and c.
Hence, only the three-mode phase-space distribution will be
skewed. This gives

Cabc = 〈x̂ax̂bx̂c〉√〈
x̂2

a

〉〈
x̂2

b

〉〈
x̂2

c

〉 ∝ − g0

ω
√

η
. (C27)

Hence, the coskewness in the normal phase is negative and
tends to zero when η tends to infinity. This is indeed what we
observe in Fig. 2 of the main text. Additionally, we can also
derive the expression〈(

x̂a + x̂b + x̂c√
3

)3
〉

=
〈(

x̂a − x̂b − x̂c√
3

)3
〉

=
〈(−x̂a − x̂b + x̂c√

3

)3
〉

=
〈(−x̂a + x̂b − x̂c√

3

)3
〉

= −g0

3ω
√

η
.

(C28)

This means that the distribution of the four quadratures above
is biased towards negative values. The directions towards
which the distribution is biased correspond precisely to the
four possible directions of displacement in the superradi-
ant phase. This is very similar to Dicke-like transitions, in
which the distribution in phase space prior to the transition
is distorted along the axis of displacement in the superradiant
phase. Here, however, the transition is first order, which means
that we expect an abrupt transition from a skewed distribution
centered around the vacuum to a fourfold-displaced distribu-
tion.

b. Superradiant phase

Let us now look at the coskewness in the superradi-
ant phase. In the thermodynamic limit, semiclassical and
Gaussian theories lead to a fourfold-degenerate ground state
composed of any superposition of four displaced squeezed
states. However, numerical simulations show that for physical
(finite) values of η the gap decreases in the proximity of the
expected critical point but is never exactly vanishing. The
ground state is then well approximated by the superposition
of the four superradiant states, which is in the same parity
subspace of the ground state in the normal phase (the vac-
uum). We show in the following that this leads to accurate
predictions for the value of the coskewness deep in the super-
radiant phase but, as expected, it cannot explain the divergence
in proximity of the critical point. If we neglect quantum fluc-
tuations and consider coherent states, the ground state would
then be given by

|G〉 = 1
2 (|X̄ , X̄ , X̄ 〉 + | − X̄ ,−X̄ , X̄ 〉
+ | − X̄ , X̄ ,−X̄ 〉 + |X̄ ,−X̄ ,−X̄ 〉). (C29)

The three-body correlations are given by

〈G|x̂ax̂bx̂c|G〉 = 8X̄ 3.

The result is given by the sum of four equivalent con-
tributions of the diagonal terms. The nondiagonal terms
of the form 〈X̄ , X̄ , X̄ |x̂ax̂bx̂c| − X̄ ,−X̄ , X̄ 〉 all cancel (in-
deed, 〈X̄ , X̄ , X̄ |x̂ax̂bx̂c| − X̄ ,−X̄ , X̄ 〉 = 〈X̄ |x̂a| − X̄ 〉〈X̄ |x̂b| −
X̄ 〉〈X̄ |x̂c|X̄ 〉 and 〈X̄ |x̂a| − X̄ 〉 = 〈X̄ |â| − X̄ 〉 + 〈X̄ |â†| − X̄ 〉 =
0).

The square of each quadrature x̂ will give

〈G|x̂2
a |G〉 = 1

4 [2(〈X̄ |x̂2
a |X̄ 〉 + 〈−X̄ |x̂2

a | − X̄ 〉)(1 + 〈X̄ | − X̄ 〉2)

+ 8〈X̄ |x̂2
a | − X̄ 〉〈X̄ | − X̄ 〉]

= 1
4 [4(4X̄ 2 + 1) + 4(4X̄ 2 + 3)〈X̄ | − X̄ 〉2], (C30)

where the first and second terms are given by the sum of all
diagonal and off-diagonal contributions, respectively. Finally,
we find that all the linear terms 〈G|x̂i|G〉 cancel. This finally
yields the expression of the coskewness

Cabc = 8X̄ 3

[4X̄ 2 + 1 + (4X̄ 2 + 3) e−4X̄ 2 ]3/2
. (C31)

Deep into the symmetry-broken phase, we recover
limη→∞ Cabc = −1 as found numerically. However, this
treatment also predicts that we always have Cabc > −1.
Therefore, even by taking into account the superposition of
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four coherent states, the semiclassical analysis cannot account
for the divergence of the coskewness at the critical point.

So far we have focused on the semiclassical theory. Let us
now show that including Gaussian fluctuations cannot affect
significantly the value of Cabc. For instance, let us consider the
term 〈G+++|x̂ax̂bx̂c|G+++〉, which appears in the expression
of Cabc. We can decompose it as

〈G+++|x̂ax̂bx̂c|G+++〉
= 8X̄ 3 + 12X̄ 2〈x̂μ〉 + 6X̂ 〈x̂μx̂ν〉 + 〈x̂μx̂ν x̂ζ 〉

= 8X̄ 3 + 2X̄

(
1 + f 2

+
1 + 3 f 2+

)1/2

(〈ŷ2〉 − 〈ẑ2〉).

For λ � 3
2
√

2
, the second term is bounded and of order 1,

including at the critical point. Therefore, since X̄ � 1, we

can write 〈G+++|x̂ax̂bx̂c|G+++〉 = 8X̄ 3 + O(X̄ ); the dominant
term in the expression will be the same as in the absence of
quantum fluctuations. The same is true for all of the terms ap-
pearing in Cabc; the correction due to the quantum fluctuation
will always be subdominant. In the end, we will get

Cabc = 8X̄ 3 + O(X̄ )

8|X̄ |3 + O(X̄ 2)
∼ −1.

Therefore, the superposition of four displaced squeezed states
cannot account for the divergence of the coskewness at the
critical point, as the quantum fluctuations predicted by the
Gaussian analysis are bounded. This shows that in proximity
to the critical point the system develops genuine non-Gaussian
features.
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[21] D. Marković, S. Jezouin, Q. Ficheux, S. Fedortchenko, S.
Felicetti, T. Coudreau, P. Milman, Z. Leghtas, and B. Huard,
Phys. Rev. Lett. 121, 040505 (2018).

[22] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata,
E. Solano, and K. Kim, Phys. Rev. X 8, 021027 (2018).

[23] G. A. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Y. Jin, R. W.
Simmonds, J. Aumentado, and J. D. Teufel, Phys. Rev. Lett.
123, 247701 (2019).

[24] A. Dareau, Y. Meng, P. Schneeweiss, and A. Rauschenbeutel,
Phys. Rev. Lett. 121, 253603 (2018).

[25] F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch, Adv. Phys.
70, 1 (2021).

[26] A. T. Black, H. W. Chan, and V. Vuletić, Phys. Rev. Lett. 91,
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