
Advanced Tools and Methods for
Treewidth-Based Problem Solving

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften (Dr.techn.)

an der Technischen Universität Wien, entsprechend dem akademischen Grad

Doktor der Naturwissenschaften (Dr.rer.nat.)

der Universität Potsdam (Cotutelle de Thèse); eingereicht von

DI Markus Hecher, BSc

an der Fakultät für Informatik der Technischen Universität Wien sowie

an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam (Cotutelle de Thèse)

Betreuung: Prof. Dr. Stefan Woltran
Zweitbetreuung: Prof. Dr. Torsten Schaub

Diese Dissertation haben begutachtet:

Mirosław Truszczyński Heribert Vollmer

Wien, 1. Juni 2021
Markus Hecher

Advanced Tools and Methods for
Treewidth-Based Problem Solving

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften (Dr.techn.)

at the TU Wien, which corresponds to the degree

Doktor der Naturwissenschaften (Dr.rer.nat.)

at the University of Potsdam (Cotutelle de Thèse); by

DI Markus Hecher, BSc

to the Faculty of Informatics at the TU Wien as well as

to the Faculty of Science at the University of Potsdam (Cotutelle de Thèse)

Advisor: Prof. Dr. Stefan Woltran
Second advisor: Prof. Dr. Torsten Schaub

The dissertation has been reviewed by:

Mirosław Truszczyński Heribert Vollmer

Vienna, 1st June, 2021
Markus Hecher

Erklärung zur Verfassung der
Arbeit

DI Markus Hecher, BSc

Hiermit erkläre ich eidesstattlich, dass ich diese Arbeit (“Advanced Tools and Methods for
Treewidth-Based Problem Solving”) selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe. Des Weiteren wurde diese Arbeit an
keiner anderen Hochschule als der TU Wien und der Universität Potsdam (Cotutelle de
Thèse) eingereicht.

Wien, 1. Juni 2021
Markus Hecher

v

Acknowledgements

First of all, I would like to express my gratitude to Stefan Woltran, who supported this
thesis, always lent me his ears, and gave me useful advice and motivation whenever I
needed it. During my research Stefan invariably took his time for my concerns, doubts,
questions, and suggestions, and he responded with nothing less than the truth. Further,
I am grateful for Torsten Schaub, who assisted me with both personal and professional
advice and helped me establishing the Cotutelle de Thèse program. During my stays at
the university of Potsdam, he took care that I felt safe, welcome, motivated, and taken
seriously.

I would also like to thank Johannes K. Fichte, to whom I often refer to by “JFK”, who
always believed in me and our common research. He probably unlocked many of my skills
and served as a main motivator for me pursuing research. Dear JFK, over the years, you
turned into one of my best friends and I am truly grateful for everything you have given
without even asking. This brings me to my friend Andreas Pfandler, whose motivation
and endless believe in science and research is extremely contagious. Indeed, he infected
me with new motivation many times and despite his busy calendar, he always had time
for me for a quick chat and some coffee ;). Thank you, Andreas, for your overwhelmingly
positive personality, which makes even the worst weather feel like a sunny day. I would
also like to thank Michael Morak and Michael Abseher for many productive chats and
their support whenever I asked for it. Then, I am also grateful for my beer brewing
buddies, Michael Tröstl and Leighton Hanson, who were responsible for us brewing more
than 15 different types of beer in the last couple of months (our four batches of the third
generation are already fermenting). Thank you, Michael, for always lending me eyes,
ears and hands and helping me with many things over the years. You cleared many of
my doubts over the years and gifted me with nothing less than the truth. Leighton, I
am really grateful for you believing in us brew masters and that you always support our
crazy next level brewing recipes, which seem to be not so bad after all.

Last but not least, I would like to thank all of my family and family in-law. However,
almost all of my available gratitude goes to Bettina, my wife. Without you, Bettina,
nothing would be possible and I can’t even imagine how life would be without you. Over
the years, we grew so close that I am not quite sure how to express it. Thank you,
Bettina for feeling loved and like home next to you, for always believing in me, and
for clearing many doubts and concerns that nobody else could have resolved but you.

vii

Without your irreplaceable skills, your enthusiasm and your indestructible positivity for
even the smallest things, I could not have finished this thesis. This brings me to my
parents, who permanently believed in me and my skills, even when I did not. Thank
you, mom and dad, for everything you have given me, be it an important advice or some
discussion about a math problem I had in mind. I always have felt safe, warm, welcome
and loved at home and I probably could not have hoped for better parents.

Finally, with this line I would like to thank everybody, who contributed to this thesis in
any way without being named explicitly. One of these people is for example our beloved
administrator Toni Pisjak, who had to go way too early. Toni kept all our clusters and
servers at the institute in good shape and took care that everything is smooth and easy
for us without a single question or doubt. Thank you very much, we deeply miss you.

Kurzfassung

In den letzten Jahrzehnten konnte ein beachtlicher Fortschritt im Bereich der Aussagen-
logik verzeichnet werden. Dieser äußerte sich dadurch, dass für das wichtigste Problem
in diesem Bereich, genannt „Sat“, welches sich mit der Fragestellung befasst, ob eine
gegebene aussagenlogische Formel erfüllbar ist oder nicht, überwältigend schnelle Com-
puterprogramme („Solver“) entwickelt werden konnten. Interessanterweise liefern diese
Solver eine beeindruckende Leistung, weil sie oft selbst Probleminstanzen mit mehreren
Millionen von Variablen spielend leicht lösen können. Auf der anderen Seite jedoch glaubt
man in der Wissenschaft weitgehend an die Exponentialzeithypothese (ETH), welche
besagt, dass man im schlimmsten Fall für das Lösen einer Instanz in diesem Bereich
exponentielle Laufzeit in der Anzahl der Variablen benötigt. Dieser vermeintliche Wi-
derspruch ist noch immer nicht vollständig geklärt, denn wahrscheinlich gibt es viele
ineinandergreifende Gründe für die Schnelligkeit aktueller Sat Solver. Einer dieser Grün-
de befasst sich weitgehend mit strukturellen Eigenschaften von Probleminstanzen, die
wohl indirekt und intern von diesen Solvern ausgenützt werden.

Diese Dissertation beschäftigt sich mit solchen strukturellen Eigenschaften, nämlich mit
der sogenannten Baumweite. Die Baumweite ist sehr gut erforscht und versucht zu messen,
wie groß der Abstand von Probleminstanzen zu Bäumen ist (Baumnähe). Allerdings
ist dieser Parameter sehr generisch und bei Weitem nicht auf Problemstellungen der
Aussagenlogik beschränkt. Tatsächlich gibt es viele weitere Probleme, die parametrisiert
mit Baumweite in polynomieller Zeit gelöst werden können. Interessanterweise gibt es
auch viele Probleme in der Wissensrepräsentation (KR), von denen man davon ausgeht,
dass sie härter sind als das Problem Sat, die bei beschränkter Baumweite in polynomieller
Zeit gelöst werden können. Ein prominentes Beispiel solcher Probleme ist das Problem
QSat, welches sich für die Gültigkeit einer gegebenen quantifizierten, aussagenlogischen
Formel (QBF), das sind aussagenlogische Formeln, wo gewisse Variablen existenziell bzw.
universell quantifiziert werden können, befasst. Bemerkenswerterweise wird allerdings
auch im Zusammenhang mit Baumweite, ähnlich zu Methoden der klassischen Komple-
xitätstheorie, die tatsächliche Komplexität (Härte) solcher Problemen quantifiziert, wo
man die exakte Laufzeitabhängigkeit beim Problemlösen in der Baumweite (Stufe der
Exponentialität) beschreibt.

Diese Arbeit befasst sich mit fortgeschrittenen, Baumweite-basierenden Methoden und
Werkzeugen für Probleme der Wissensrepräsentation und künstlichen Intelligenz (AI).

ix

Dabei präsentieren wir Methoden, um präzise Laufzeitresultate (obere Schranken) für
prominente Fragmente der Antwortmengenprogrammierung (ASP), welche ein kanonisches
Paradigma zum Lösen von Problemen der Wissensrepräsentation darstellt, zu erhalten.
Unsere Resultate basieren auf dem Konzept der dynamischen Programmierung, die
angeleitet durch eine sogenannte Baumzerlegung und ähnlich dem Prinzip „Teile-und-
herrsche“ funktioniert. Solch eine Baumzerlegung ist eine konkrete, strukturelle Zerlegung
einer Probleminstanz, die sich stark an der Baumweite orientiert.

Des Weiteren präsentieren wir einen neuen Typ von Problemreduktion, den wir als
„decomposition-guided (DG)“, also „zerlegungsangeleitet“, bezeichnen. Dieser Reduktions-
typ erlaubt es, Baumweiteerhöhungen und -verringerungen während einer Problemreduk-
tion von einem bestimmten Problem zu einem anderen Problem präzise zu untersuchen
und zu kontrollieren. Zusätzlich ist dieser neue Reduktionstyp die Basis, um ein lange
offen gebliebenes Resultat betreffend quantifizierter, aussagenlogischer Formeln zu zeigen.
Tatsächlich sind wir damit in der Lage, präzise untere Schranken, unter der Annahme
der Exponentialzeithypothese, für das Problem QSat bei beschränkter Baumweite zu
zeigen. Genauer gesagt können wir mit diesem Konzept der DG Reduktionen zeigen,
dass das Problem QSat, beschränkt auf Quantifizierungsrang und parametrisiert mit
Baumweite k, im Allgemeinen nicht besser als in einer Laufzeit, die -fach exponentiell in
der Baumweite und polynomiell in der Instanzgröße ist1, lösen. Dieses Resultat hebt auf
nicht-inkrementelle Weise ein bekanntes Ergebnis für Quantifizierungsrang 2 auf beliebige
Quantifizierungsränge, allerdings impliziert es auch sehr viele weitere Konsequenzen.

Das Resultat über die untere Schranke des Problems QSat erlaubt es, eine neue Me-
thodologie zum Zeigen unterer Schranken einer Vielzahl von Problemen der Wissensre-
präsentation und künstlichen Intelligenz, zu etablieren. In weiterer Konsequenz können
wir damit auch zeigen, dass die oberen Schranken sowie die DG Reduktionen dieser
Arbeit unter der Hypothese ETH „eng“ sind, d.h., sie können wahrscheinlich nicht mehr
signifikant verbessert werden. Die Ergebnisse betreffend der unteren Schranken für QSat
und die dazugehörige Methodologie konstituieren in gewisser Weise eine Hierarchie von
über Baumweite parametrisierte Laufzeitklassen. Diese Laufzeitklassen können verwendet
werden, um die Härte von Problemen für das Ausnützen von Baumweite zu quantifizieren
und diese entsprechend ihrer Laufzeitabhängigkeit bezüglich Baumweite zu kategorisieren.

Schlussendlich und trotz der genannten Resultate betreffend unterer Schranken sind wir
im Stande, eine effiziente Implementierung von Algorithmen basierend auf dynamischer
Programmierung, die entlang einer Baumzerlegung angeleitet wird, zur Verfügung zu
stellen. Dabei funktioniert unser Ansatz dahingehend, indem er probiert, passende Ab-
straktionen von Instanzen zu finden, die dann im Endeffekt sukzessive und auf rekursive
Art und Weise verfeinert und verbessert werden. Inspiriert durch die enorme Effizienz
und Effektivität der Sat Solver, ist unsere Implementierung ein hybrider Ansatz, weil

1„ -fache Exponentialität“ meint eine Laufzeitabhängigkeit in der Baumweite k, die einem Turm
der Zahlen 2 der Höhe mit k an der Spitze entspricht. Konkreter sind damit Laufzeiten der

Form 2. . .2O(k)

Höhe +1

· poly(n) gemeint, wobei n die Anzahl der Variablen beschreibt.

sie den starken Gebrauch von Sat Solvern zum Lösen diverser Subprobleme, die wäh-
rend der dynamischen Programmierung auftreten, pflegt. Dabei stellt sich heraus, dass
der resultierende Solver unserer Implementierung im Bezug auf Effizienz beim Lösen
von zwei kanonischen, Sat-verwandten Zählproblemen mit bestehenden Solvern locker
mithalten kann. Tatsächlich sind wir im Stande, Instanzen, wo die oberen Schranken
von Baumweite 260 übersteigen, zu lösen. Diese überraschende Beobachtung zeigt daher,
dass Baumweite ein wichtiger Parameter sein könnte, der wohl in modernen Designs von
Solvern berücksichtigt werden sollte.

Abstract

In the last decades, there was a notable progress in solving the well-known Boolean
satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers that are
also strikingly fast. On the one hand, these solvers can solve instances with millions of
variables, but on the other hand the exponential time hypothesis (ETH), which implies
that in the worst case solving time is exponential in the number of variables, is widely
believed among researchers. From a scientific point of view, it is still not completely clear
why in practice Sat solvers are dealing so well with a large amount of instances, but
there are probably many interleaving reasons for this observation. One of these reasons
are structural properties of instances that are indirectly utilized by the solver’s interna.

This thesis deals with such a structural property, which is referred to by treewidth.
The treewidth is well-studied and measures the closeness of an instance to being a tree
(tree-likeness), which is motivated by the fact that many hard problems become easy
for the special case of trees or tree-like structures. This parameter, however, is quite
generic and by far not limited to Boolean satisfiability. In fact, there are further problems
parameterized by treewidth that are solvable in polynomial time in the instance size when
parameterized by treewidth. Interestingly, also plenty of problems relevant to knowledge
representation and reasoning (KR), which are believed to be even harder than Sat, can
be turned tractable when utilizing treewidth. One prominent example of such a problem
is QSat, which asks for deciding the validity of a quantified Boolean formula (QBF), an
extension of a Boolean formula where certain variables are existentially or universally
quantified. Notably, similar to complexity classes in classical complexity, the actual
“hardness” of such problems when parameterized by treewidth is oftentimes quantified by
studying precise runtime dependence (levels of exponentiality) on treewidth.

In this work, we study advanced treewidth-based methods and tools for problems in KR
and artificial intelligence (AI). Thereby, we provide means to establish precise runtime
results (upper bounds) for prominent fragments of the answer set programming formalism,
which is a canonical paradigm for solving problems relevant to KR. Our results are
obtained by relying on the concept of dynamic programming that is guided along a
so-called tree decomposition in a divide-and-conquer fashion. Such a tree decomposition
is a concrete structural decomposition of an instance, thereby adhering to the treewidth.

Then, we present a new type of problem reduction, which we call a decomposition-guided
(DG) reduction that allows us to precisely study and monitor the treewidth increase (or

xiii

decrease) when reducing from a certain problem to another problem. This new reduction
type will be the basis for proving a long-open result concerning quantified Boolean
formulas. Indeed, with this reduction we are able to provide precise conditional lower
bounds (assuming the ETH) for the problem QSat when parameterized by treewidth.
More precisely, by relying on DG reductions, we prove that QSat when restricted to
formulas of quantifier rank and treewidth k cannot be decided in a runtime that is
better than -fold exponential in the treewidth and polynomial in the instance size.2
This non-incrementally lifts a known result for quantifier rank 2 to arbitrary quantifier
ranks, but yet implies many further consequences and results.

Even further, the lower bound result for QSat allows us to design a new methodology
for establishing lower bounds for a plethora of problems in the area of KR and AI.
In consequence, we prove that all our upper bounds and DG reductions presented
in this thesis are tight under the ETH. The lower bound result for QSat and the
resulting methodology also unlocks a hierarchy of dedicated runtime classes for problems
parameterized by treewidth. These classes can be used to quantify their hardness for
utilizing treewidth and categorize them according to their runtime dependence on the
treewidth.

Finally, despite the devastating news concerning lower bounds, we are able to provide an
efficient implementation of algorithms based on dynamic programming that is guided
along a tree decomposition. Our approach works by finding suitable abstractions of
instances, which is subsequently refined in a nested (recursive) fashion. Given the
tremendous power of Sat solvers, our implementation is hybrid in the sense that it
heavily uses such standard solvers for solving certain subproblems that appear during
dynamic programming. It turns out that our resulting solver is quite competitive for two
canonical counting problems related to Sat. In fact, we are able to solve instances with
treewidth upper bounds beyond 260, which shows that treewidth might be indeed an
important parameter that should be considered in modern solver designs.

2“ -fold exponentiality” refers to a runtime dependence on the treewidth k that is a tower of 2’s of

height with k on top. More precisely, this indicates runtimes of the form 2. . .2O(k)

height +1

· poly(n), where n

are the number of variables.

Contents

Kurzfassung ix

Abstract xiii

Contents xv

1 Introduction 1

2 Preliminaries 13
2.1 Graph Theory . 13
2.2 Computational Complexity . 15
2.3 (Quantified) Boolean Formulas . 17
2.4 Answer Set Programming . 19
2.5 Tree Decompositions and Treewidth 23
2.6 Labeled Tree Decompositions . 28

3 Upper Bounds for Utilizing Treewidth by Dynamic Programming 33
3.1 Basics on Dynamic Programming . 34
3.2 Dynamic Programming for ASP . 40
3.3 Outlook on Dynamic Programming For Other Formalisms 55

4 Decomposition-Guided Reductions for Treewidth 57
4.1 Basic Definitions . 59
4.2 Decomposition-Guided Reduction from Tight Asp to Sat 62
4.3 Decomposition-Guided Reduction from HCF Asp to Sat 65
4.4 Decomposition-Guided Reduction from Asp to Almost Tight Asp . . 74
4.5 Discussion: Different Ways of Treating Hard Cycles 83

5 Lower Bounds by Decomposition-Guided Reductions 85
5.1 Lower Bounds for QBFs and Treewidth via Decoupling Dependencies . 88
5.2 Lower Bounds for Asp and Treewidth 104

6 A Complexity Landscape for Treewidth 117
6.1 A Methodology for Lower Bounds . 119

xv

6.2 Complexity Characterization for Treewidth 122

7 Efficiently Implementing Treewidth-Aware Algorithms 127
7.1 Abstractions as a Key for Nested Dynamic Programming 129
7.2 Refining Nested DP – Towards Hybrid Dynamic Programming 135
7.3 Dynamic Programming with Database Management Systems 140
7.4 Implementing Abstractions and Hybrid Dynamic Programming 148

8 Discussion 159
8.1 Related Work . 160
8.2 Future Work . 162

List of Algorithms 166

Bibliography 167

CHAPTER 1
Introduction

Every brilliant experiment, like every great work of art, starts with an act of
imagination.

— Jonah Lehrer

In the last decades, there was a tremendous progress in many areas of computer science.
One of these noteworthy advancements concerns the development of efficient decision
procedures for problems in the area of Boolean satisfiability (Sat) [Biere et al., 2009;
Garey and Johnson, 1979]. The problem Sat asks to decide whether a given Boolean
formula can be satisfied, which is hard [Cook, 1971; Levin, 1973] for the well-studied
complexity class NP. Problems that are hard for this class NP are bound to bad
news, since such problems can probably not be solved efficiently. This excludes solving
procedures for an arbitrary instance of such problems that run in polynomial time in the
instance size, unless the class P of problems solvable in polynomial time coincides with
the class NP. Over the time, a stronger assumption than P not being equal to NP was
proposed, which is referred to by the Exponential Time Hypothesis (ETH) [Impagliazzo
et al., 2001]. The ETH implies that in the worst case the Sat problem cannot be
solved better than in single exponential time in the number of variables of a given
formula. Nowadays, this stronger assumption is widely believed among theoreticians,
which additionally rules out any decision procedure for Sat that runs in subexponential
time in the number of variables.

Nevertheless, despite these downsides, in the past decades there were major breakthroughs
in solving the satisfiability question. These breakthroughs originated from seminal
research of the 60s [Davis and Putnam, 1960; Davis et al., 1962] and finally resulted
in a technique that is referred to by conflict-driven clause learning (CDCL) [Silva and
Sakallah, 1996; Bayardo and Schrag, 1997]. This technique lead to the development of
efficient solvers for Sat (e.g., glucose [Audemard and Simon, 2009] and picosat [Biere,
2008]), capable of solving formulas with millions of variables. So, how is it possible that
there is a major gap between theoretical limitations on the one side and efficient solvers

1

1. Introduction

that are still tremendously powerful and fast on the other side? This question is still not
completely solved, since Sat solvers consist of additional heuristics and a sophisticated
interplay between different components. However, there are certainly connections to
the underlying proof system that is actually used in CDCL-based solving [Elffers et al.,
2018; Gocht et al., 2019; Kiesl et al., 2020], but also structural properties seem to play a
role, e.g., [Samer and Szeider, 2009; Ansótegui et al., 2019]. Recently, it was argued and
shown empirically that additionally the underlying hardware and optimization towards
this hardware is certainly a contributing factor as well [Fichte et al., 2020e].

Still, despite the major progress and although nowadays this efficient solving technology
is widely accessible, there was a notable shift towards studying, solving and applying even
harder problems [Kleine Büning and Lettman, 1999; Papadimitriou, 1994; Stockmeyer
and Meyer, 1973]. One way to witness this, is by a variety of works that rely on extensions
of Sat over a range of formalisms and problems like the following:

• Deciding the validity (QSat) of a quantified Boolean formula (QBF) [Biere et al.,
2009; Kleine Büning and Lettman, 1999], which is an extension of Sat that
additionally allows to existentially or universally quantify over Boolean variables.

• Deciding the consistency (Asp) of an answer set program [Gebser et al., 2012;
Brewka et al., 2011; Janhunen and Niemelä, 2016; Schaub and Woltran, 2018;
Alviano et al., 2019a], which asks not only for satisfiability, but also concerns about
a certain stability condition that requires a justification (proof) for every variable
that is claimed to be true. Interestingly, there are many practical applications
solvable with this paradigm, e.g., [Gebser et al., 2011; Abels et al., 2019].

• Counting the number of models of a Boolean formula (#Sat) [Gomes et al., 2009],
which recently fostered different applications and solving techniques [Lagniez and
Marquis, 2014; Chakraborty et al., 2016; Dueñas-Osorio et al., 2017; Lagniez et al.,
2018; Fichte et al., 2018c; Sharma et al., 2019].

Studying these formalisms then lead to applicability in the context of knowledge repre-
sentation and reasoning, as well as artificial intelligence in general (see, e.g., [Egly et al.,
2000; Truszczyński, 2007]), which resulted in further generalizations and extensions [Eiter
et al., 2007; Truszczyński, 2010; Aziz et al., 2015; Shen and Eiter, 2017; Amendola et al.,
2019; Cabalar et al., 2020].

However, it turned out that among a list of different problem formalisms, quantified
Boolean formulas seem to hold a key role. In particular, the problem QSat, which asks
for the validity of a given QBF, serves as a natural, canonical problem in descriptive
complexity theory [Grohe, 2017; Immerman, 1999]. Indeed, an encoding using a QBF
allows establishing membership for certain complexity classes by using Fagin’s results [Fa-
gin, 1974]. Additionally, also hardness of a problem for a certain complexity class can
be shown by reducing from QSat to the problem. This has for instance been applied

2

a b c

d e

a b

d

b c

e

b

d

Figure 1.1: A graph (left), whose vertices can be colored with 3 colors such that no two
neighboring vertices have the same color, and a corresponding 3-coloring of the graph.
This is followed by (right) three individual parts or subgraphs of the graph.

to characterize the hardness of several reasoning problems (e.g., [Eiter and Gottlob,
1995a,b]).

While complexity analysis provides a way to characterize hardness, a thorough, systematic
analysis of these hard problems might lead to a more precise picture of so-called “tractable”
fragments of problems (e.g., [Schaefer, 1978; Hemaspaandra, 2004; Truszczyński, 2011;
Bauland et al., 2011; Bulatov, 2017]). However, there are also other techniques to
deal with instances of hard problems. One method to tackle hard instances is by
parameterized algorithms, which originate from parameterized complexity [Cygan et al.,
2015; Niedermeier, 2006; Downey and Fellows, 2013; Flum and Grohe, 2006], where
certain (combinations of) parameters are taken into account. In parameterized complexity,
the “hardness” of a problem is classified according to the impact of a parameter for
solving the problem. Such studies, where the influence of different parameters for
solving is systematically analyzed, have been conducted for decision problems [Lonc and
Truszczyński, 2003; Lackner and Pfandler, 2012; Meier et al., 2015; Creignou and Vollmer,
2015; Fichte et al., 2019c], but also questions on counting and enumeration [Creignou
and Vollmer, 2015; Creignou et al., 2017, 2019] were considered.

As already mentioned above, structure plays an important role in Sat solving, but this
seems to hold also for other problems. A quite general, structural parameter is called
treewidth, which was introduced specifically for graph problems [Bertelè and Brioschi,
1969, 1973; Robertson and Seymour, 1983, 1984, 1985, 1986, 1991] and it is very popular
in the community of parameterized complexity. Intuitively, this parameter treewidth
measures how close a given graph is to being a tree. This is motivated by the observation
that problems that are typically rather hard on arbitrary graphs turn out to be simple on
trees. In fact, having bounded treewidth is a combinatorial invariant that renders a large
variety of NP-hard graph problems tractable [Bodlaender and Koster, 2008; Chimani
et al., 2012]. Treewidth then gives rise to the concept of tree decompositions, which allow
solving numerous NP-hard problems in parts in form of a divide-and-conquer approach,
and indicates the maximum number of variables one has to investigate in such parts
during evaluation. Among these problems are for example deciding whether a graph
has a Hamiltonian cycle, whether a graph is 3-colorable, or determining the number of
perfect matchings of a graph [Courcelle et al., 2001].

3

1. Introduction

Example 1.1. Consider the problem of deciding whether a graph is 3-colorable, i.e.,
whether it can be colored with 3 colors such that no two neighbor vertices obtain the same
color. This question can be solved in polynomial time on a tree by traversing the (rooted)
tree in post-order, which iterates from the leaves towards the root. Thereby, we compute
for the current vertex possible colorings while considering computed colorings for the child
vertices.

Now, consider the given graph of Figure 1.1 (left), consisting of vertices a, b, c, d and e
and observe that it is 3-colorable. A resulting 3-coloring is shown, using the colors red,
green, and blue. Even for such a graph, a 3-coloring can be computed by coloring only
parts (subgraphs) of the graph and combining 3-colorings for these parts accordingly.
These subgraphs are depicted in Figure 1.1 (right). For the given example graph, one
could color the subgraphs, which are surrounded by dashed and dotted lines, corresponding
to vertices a, b, d, vertices b, d, e and b, c independently. Then, we combine those obtained
colorings, which agree on the colors of b and d. Intuitively, one can create a tree over
these three subgraphs, where each subgraph corresponds to a fresh vertex that is part of
the tree, which is actually a tree decomposition of the graph. The treewidth of the given
graph corresponds to 2, which is the largest size of the subgraphs minus one (for technical
reasons), since the graph contains completely connected subgraphs over three vertices (e.g.,
vertices a, b, c). For treewidth, such completely connected subgraphs are required to be
considered as a whole [Kloks, 1994].

There is a well-known meta result on treewidth, namely Courcelle’s theorem [Courcelle,
1990] and its logspace version [Elberfeld et al., 2010], which states that whenever one can
encode a problem into a formula in monadic second order logic (MSO), then the problem
can be decided in time linear in the input size and some function in the treewidth.
While Courcelle’s theorem provides a full framework for showing the existence of a
tractable algorithm, the obtained results might not be optimal in terms of runtime
dependence on the treewidth. In any case, treewidth has been widely employed for
important applications beyond graph problems that are defined on more general input
structures such as Sat [Samer and Szeider, 2010] and constraint satisfaction [Dechter,
2006; Freuder, 1985], which relies on suitable graph representations of these structures.
There is also a well-known result on the correspondence of treewidth and an important
measure called resolution width that is applied in Sat solving [Atserias et al., 2011],
which stresses once more the essence of structure for problem solving. For treewidth there
were also dedicated competitions [Dell et al., 2017], which resulted in notable progresses
in utilizing treewidth for Sat [Fichte et al., 2018b, 2019b; Charwat and Woltran, 2019]
and other areas [Bannach and Berndt, 2019]. Thereby it turned out that as long as
the treewidth is not excessively large, in practice one can actually exploit treewidth
in order to solve instances reasonably fast. However, since the runtime dependence on
the treewidth is exponential in the worst case, for large treewidth it is expected that
this exponential factor outweighs any polynomial factor in the instance size. Still, even
problems that are located “beyond NP” such as probabilistic inference [Ordyniak and
Szeider, 2013], problems in knowledge representation and reasoning [Gottlob et al., 2010;

4

Pichler et al., 2010; Dvořák et al., 2012], as well as deciding the validity of QBFs can be
turned tractable using treewidth. Notably, to gain tractability of the problem QSat, we
also parameterize by the number of alternating quantifier blocks (quantifier rank) [Chen,
2004], since treewidth alone is insufficient [Atserias and Oliva, 2014].

In order to classify problems parameterized by treewidth according to their hardness,
one often distinguishes the runtime dependency of the parameter, e.g., levels of exponen-
tiality [Lokshtanov et al., 2011; Marx and Mitsou, 2016] in the treewidth, required for
solving the problem. The problem Sat for example can be solved in a runtime that is
single exponential in the structural parameter treewidth and polynomial in the number
of variables. In other words, for Sat we obtain an upper bound in the runtime that is
single exponential in the treewidth. This is in contrast to deciding QSat for QBFs of
quantifier rank two, which permits an upper bound that is double exponential1 in the
treewidth k. In the light of utilizing treewidth for solving, the runtime dependence on
the treewidth therefore makes a huge difference. For problems that are single exponential
in the worst case, we expect that we can solve instances of larger treewidth than for
problems that are double exponential. So, a challenging question is, whether a certain
runtime dependence on the treewidth can be improved. Interestingly, if we assume that
the ETH holds, it turns out that for treewidth neither the single exponential runtime for
Sat [Impagliazzo et al., 2001] nor the double exponential runtime for QSat on QBFs
of quantifier rank two [Lampis and Mitsou, 2017] can be significantly improved. Con-
sequently, these (conditional) lower bounds depending on the ETH match the available
upper bounds. For the canonical QSat problem when parameterized by treewidth, in
general one obtains runtimes that are -fold exponential in the treewidth [Chen, 2004],
where is the quantifier rank. However, while it was shown that evaluating QSat has to
causes some kind of hierarchy [Pan and Vardi, 2006; Atserias and Oliva, 2014] of these
runtimes for treewidth, precise runtime lower bound results were left open, causing an
open gap between upper and lower bounds for QSat.

Contributions and Overview
This thesis deals with treewidth and problems in the area of knowledge representation
and reasoning as well as artificial intelligence. We present advanced methods and tools
for problems parameterized by treewidth, where we show how to establish parameterized
algorithms for treewidth, which results in precise upper bounds. Our dedicated upper
bounds are obtained via dedicated algorithms that go beyond an initial study of tractability
using Courcelle’s theorem [Courcelle, 1990], which does not guarantee optimal runtime
dependence in the treewidth and therefore might not be suitable for practical applications.

Then, we develop the concept of a decomposition-guided reduction, which takes both
a problem instance and a tree decomposition and ensures certain guarantees in terms
of (tree)width increase or decrease. These decomposition-guided reductions play a

1Double exponential runtime refers to 22O(k) · poly(n) for treewidth k and number n of variables and
-fold exponentiality refers to a runtime dependence on k that is a tower of 2’s of height with k on top.

5

1. Introduction

crucial role in providing conditional lower bounds under the exponential time hypothesis
(ETH), which match with our obtained upper bounds that therefore can probably not be
significantly improved. More precisely, by relying on a decomposition-guided reduction
we solve the open question that asks for a precise lower bound for QSat and treewidth
that matches the known upper bound [Chen, 2004]. This long-open result relies on the
ETH and together with a suitable decomposition-guided reduction it provides a new
methodology for showing lower bounds for many problems relevant to this area.

Indeed, our methodology shows that quantified Boolean formulas seem to hold a key role
also in parameterized complexity and it therefore confirms that QSat could serve as
a canonical problem also for showing hardness results under the ETH. Both the upper
bounds together with the corresponding lower bounds form completeness results for novel
treewidth classes of problems parameterized by treewidth, which we introduce in the
course of this thesis.

Further, we also show the usage of graph abstractions and present an efficient implemen-
tation of a system nestHDB that uses abstractions of graphs for solving, which is guided
along a tree decomposition such that the abstraction is subsequently refined. It turns out
that nestHDB is competitive and able to beat state-of-the-art solvers, especially when
counting solutions as required for, e.g., model counting (#Sat) and projected model
counting (#∃Sat).

In more details, after we discuss preliminaries in Chapter 2, the contributions above are
subdivided into the following chapters.

Chap. 3 We establish concrete dynamic programming algorithms for important fragments
related to the problem Asp, whose runtimes provide upper bounds on the runtime
given in form of the dependence on treewidth. While Asp serves as a prototypical
problem for these algorithms, the obtained findings can be transferred and further
applied to problems related to Sat and QSat as well as extensions thereof. Indeed,
these algorithms oftentimes yield precise and tight upper bounds and might provide
first insights on the complexity of the corresponding problems for treewidth.

Chap. 4 We establish decomposition-guided reductions, which are reductions that are aware
of a certain increase or decrease of (tree)width. These decomposition-guided
reductions are then applied for different goals. On the one hand, this allows,
e.g., to apply established formalisms like Boolean satisfiability, for which already
efficient, treewidth-based solvers exist. On the other hand, our decomposition-
guided reductions form a crucial element in establishing a toolkit for showing
conditional lower bounds for problems parameterized by treewidth.

Chap. 5 Assuming the Exponential Time Hypothesis (ETH), we establish a meta-result for
Quantified Boolean Formulas (QBFs) and treewidth, which expresses that deciding
satisfiability (QSat) for a QBF of quantifier rank requires a runtime that is -fold
exponential in the treewidth. Consequently, this forms a lower bound for QSat

6

under the ETH that matches the known upper bound [Chen, 2004]. We also provide
concrete lower bounds under the ETH for Asp and treewidth that match with the
corresponding upper bounds. Interestingly, there are certain fragments of Asp that
do not admit a single exponential runtime lower bound. Therefore, for example the
prominent fragment of Normal Asp, i.e., Asp restricted to normal programs, can
be considered slightly harder than Sat under the ETH. This is contrast to classical
complexity, where both Sat and Normal Asp are NP-complete.

Chap. 6 The previous two contributions together complete a complexity landscape for a
series of problems and formalisms under bounded treewidth. Thereby, we apply
the toolkit for showing lower bounds under the ETH as follows: We present
decomposition-guided reductions from QSat to several core problems relevant to
knowledge representation and reasoning as well as artificial intelligence in general,
and apply the meta result above, which establishes hardness results under the ETH.
This gives rise to a novel hierarchy of treewidth classes of problems parameterized by
treewidth. Together with the upper bounds of the first contribution, the obtained
hardness results form completeness for certain treewidth classes of the hierarchy.

Chap. 7 Towards practical applications and systems for problems parameterized by treewidth,
we discuss a particular technique that relies on the concept of abstractions. This
concept aims at finding certain graph abstractions, which is then subject to decom-
position. During solving on the tree decomposition of the obtained abstraction, this
abstraction is subsequently refined resulting in nested dynamic programming. This
approach is combined with hybrid solving, which refers to the usage of existing,
standard solvers for subproblems. Finally, we provide an efficient implementation
of a system called nestHDB that relies on nested dynamic programming. The
implementation uses relational database systems to manage and maintain dynamic
programming, which is then combined with hybrid solving. In order to solve a
problem with nestHDB, one needs to specify a (nested) dynamic programming
algorithm by means of relational algebra (SQL). It turns out that common database
management systems like Postgres [PostgreSQL Global Development Group, 2021]
are sufficient for nestHDB to achieve competitive performance for variants of model
counting (#Sat).

Chap. 8 Finally, we discuss and summarize the findings of this thesis and put it into
perspective of related work. Before concluding, we present consequences of the
results and the outcomes of this thesis, which give rise to plenty of future work.

As a high-level overview of the contributions of Chapters 3–6, we briefly present Table 1.1,
which highlights runtime upper bounds and lower bounds for treewidth that are discussed
in the course of this thesis. This table will be extended, stated more precisely, and
completed in Chapter 6, which shows the full extent of the theoretical results and
consequences obtained due to the advances of this work (cf. Table 6.1). Later, Chapter 7
tackles efficient implementation techniques of concepts discussed in Chapters 3 and 4,
which are then applied, benchmarked and discussed.

7

1. Introduction

Problem Runtime dependence on treewidth k

Exponentiality Runtime* Upper Bound Lower Bound
Sat, #Sat single exponential 2Θ(k) [Samer and

Szeider, 2010]
[Impagliazzo

et al., 2001]
#∃Sat double exponential 22Θ(k) [Fichte et al.,

2018b]
[Fichte et al.,

2018b]
Tight Asp single exponential 2Θ(k) Thm. 3.8 Prop. 3.9
Supported Models single exponential 2Θ(k) Thm. 3.8 Prop. 3.9
Normal/HCF Asp single+ exponential 2Θ(k·log(k)) Thm. 3.16 Thm. 5.35
ι-Tight Asp single+ exponential 2Θ(k·log(ι)) Thm. 4.27 Corr. 4.28
Asp double exponential 22Θ(k) Thm. 3.21 Thm. 5.18
Disjunctive Asp double exponential 22Θ(k) [Jakl et al.,

2009]
Thm. 5.18

QSat, quantifier rank -fold exponential tower(, Θ(k)) [Chen, 2004] Thm. 5.7
#Σ Sat, quantifier rank (+1)-fold

exponential
tower(+1, Θ(k)) [Fichte and

Hecher, 2020]
Corr. 6.2

Table 1.1: Overview of runtime results (upper bounds) and hardness results (lower
bounds) for problems parameterized by the treewidth of the corresponding primal graph
representation, cf. Section 2.5. The column “Runtime*” does not give factors that are
polynomial in the instance size. The function tower(, k) is a tower of iterated exponentials
of 2 of height with k on top, cf. Chapter 2. Known upper bounds are indicated by “ ”,
whereas new runtime results established in the course of this thesis are marked with “ ”.
Runtime lower bounds are given under the assumption that the ETH holds, where “ ”
indicates new lower bounds and “ ” refers to a known result.

Overall, the following publications form the basis of this thesis2.

1. [Fichte et al., 2017a]: Fichte, J. K., Hecher, M., Morak, M., and Woltran,
S. (2017a). Answer Set Solving with Bounded Treewidth Revisited. In 14th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), volume 10377 of Lecture Notes in Computer Science, pages 132–145.
Springer

2. [Fichte and Hecher, 2018]: Fichte, J. K. and Hecher, M. (2018). Exploiting
Treewidth for Counting Projected Answer Sets. In 16th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages 639–640.
AAAI Press

3. [Fichte and Hecher, 2019]: Fichte, J. K. and Hecher, M. (2019). Treewidth
and Counting Projected Answer Sets. In 15th International Conference on Logic

2For the technical contributions concerning algorithms for (projected) counting [Fichte et al., 2017a;
Fichte and Hecher, 2018, 2019] as well as the lower bound results [Fichte et al., 2020c; Hecher, 2020;
Fandinno and Hecher, 2021] I draw myself responsible. Especially the implementations of those works
presenting systems [Fichte et al., 2017a, 2021b; Hecher et al., 2020b] are the result of a joint effort.

8

Programming and Nonmonotonic Reasoning (LPNMR), volume 11481 of Lecture
Notes in Computer Science, pages 105–119. Springer

4. [Fichte et al., 2020c]: Fichte, J. K., Hecher, M., and Pfandler, A. (2020c). Lower
Bounds for QBFs of Bounded Treewidth. In 35th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 410–424. ACM

5. [Hecher, 2020]: Hecher, M. (2020). Treewidth-aware Reductions of Normal
ASP to SAT - Is Normal ASP Harder than SAT after All? In 17th International
Conference on Principles of Knowledge Representation and Reasoning (KR), pages
485–495. Winner of the Marco Cadoli Best Student Paper Award

6. [Fandinno and Hecher, 2021]: Fandinno, J. and Hecher, M. (2021). Treewidth-
Aware Complexity in ASP: Not all Positive Cycles are Equally Hard. In 35th AAAI
Conference on Artificial Intelligence (AAAI). In Press.

7. [Fichte et al., 2021b]: Fichte, J. K., Hecher, M., Thier, P., and Woltran, S.
(2021b). Exploiting Database Management Systems and Treewidth for Counting.
Theory and Practice of Logic Programming. In Press.

8. [Hecher et al., 2020b]: Hecher, M., Thier, P., and Woltran, S. (2020b). Taming
High Treewidth with Abstraction, Nested Dynamic Programming, and Database
Technology. In 23rd International Conference on Theory and Applications of
Satisfiability Testing SAT, volume 12178 of Lecture Notes in Computer Science,
pages 343–360. Springer

Thereby, Chapter 3 comprises of earlier works [Fichte et al., 2017a; Fichte and Hecher,
2019]. Then, Chapter 4 is mainly based on recent studies [Hecher, 2020; Fandinno and
Hecher, 2021]. Our work on lower bounds in Chapter 5 also discusses recent findings [Fichte
et al., 2020c; Hecher, 2020]. This results then in Chapter 6, which establishes a new
methodology [Fichte et al., 2020c] for showing lower bounds for treewidth and novel
treewidth classes. Finally, in Chapter 7, we present results of works [Fichte et al., 2021b;
Hecher et al., 2020b].

In the following we also list selected works, which are related and were published in the
course of this research but do not form a substantial contribution to this thesis.

• [Fichte et al., 2017b]: Fichte, J. K., Hecher, M., Morak, M., and Woltran, S.
(2017b). DynASP2.5: Dynamic Programming on Tree Decompositions in Action. In
12th International Symposium on Parameterized and Exact Computation (IPEC),
volume 89 of Leibniz International Proceedings in Informatics, pages 17:1–17:13.
Dagstuhl Publishing

• [Fichte et al., 2018b]: Fichte, J. K., Hecher, M., Morak, M., and Woltran, S.
(2018b). Exploiting treewidth for projected model counting and its limits. In 21st

9

1. Introduction

International Conference on Theory and Applications of Satisfiability Testing (SAT),
volume 10929 of Lecture Notes in Computer Science, pages 165–184. Springer

• [Fichte et al., 2019b]: Fichte, J. K., Hecher, M., and Zisser, M. (2019b). An
Improved GPU-Based SAT Model Counter. In 25th International Conference on
Principles and Practice of Constraint Programming (CP), volume 11802 of Lecture
Notes in Computer Science, pages 491–509. Springer

• [Alviano et al., 2019b]: Alviano, M., Dodaro, C., Fichte, J. K., Hecher, M.,
Philipp, T., and Rath, J. (2019b). Inconsistency Proofs for ASP: The ASP -
DRUPE Format. Theory and Practice of Logic Programming, 19(5-6):891–907

• [Fichte et al., 2020d]: Fichte, J. K., Hecher, M., and Schindler, I. (2020d).
Default logic and bounded treewidth. Information and Computation. In Press

• [Hecher et al., 2020a]: Hecher, M., Morak, M., and Woltran, S. (2020a). Struc-
tural Decompositions of Epistemic Logic Programs. In 34th AAAI Conference on
Artificial Intelligence (AAAI), pages 2830–2837. AAAI Press

• [Fichte and Hecher, 2020]: Fichte, J. K. and Hecher, M. (2020). Counting
with Bounded Treewidth: Meta Algorithm and Runtime Guarantees. In 18th
International Workshop on Non-Monotonic Reasoning (NMR), pages 9–18

• [Fichte et al., 2020b]: Fichte, J. K., Hecher, M., and Kieler, M. F. I. (2020b).
Treewidth-Aware Quantifier Elimination and Expansion for QCSP. In 26th Inter-
national Conference on Principles and Practice of Constraint Programming (CP),
volume 12333 of Lecture Notes in Computer Science, pages 248–266. Springer

• [Fichte et al., 2021a]: Fichte, J. K., Hecher, M., and Meier, A. (2021a). Knowledge-
Base Degrees of Inconsistency: Complexity and Counting. In 35th AAAI Conference
on Artificial Intelligence (AAAI). In Press.

During the research, we participated in the organization of two competitions, which
resulted in the following competition reports.

• [Dzulfikar et al., 2019]: Dzulfikar, M. A., Fichte, J. K., and Hecher, M. (2019).
The PACE 2019 Parameterized Algorithms and Computational Experiments Chal-
lenge: The Fourth Iteration (Invited Paper). In 14th International Symposium on
Parameterized and Exact Computation (IPEC), volume 148 of Leibniz International
Proceedings in Informatics, pages 25:1–25:23. Dagstuhl Publishing

• [Fichte et al., 2020a]: Fichte, J. K., Hecher, M., and Hamiti, F. (2020a). The
Model Counting Competition 2020. CoRR, abs/2012.01323

10

Besides being involved in the program committee and senior program committee of one
of the top conferences of this area, we co-organized the following international workshops,
whose focus is related to the topic of this thesis.

• 2nd Workshop on Trends and Applications of Answer Set Programming (TAASP
2018): http://www.kr.tuwien.ac.at/events/taasp18/pc.html

• 13th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2020) [Dodaro et al., 2020]: https://sites.google.com/site/
aspocp2020/

• 14th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2021): https://sites.google.com/view/aspocp2021

• 1st Workshop on Model Counting (MCW 2020): https://mccompetition.
org/2020/mcw_program

• Workshop on Counting and Sampling (MCW 2021): https://mccompetition.
org/2021/mcw_description

Finally, in the course of this research, we participated as an assisting advisor in the
following theses.

• [Besin, 2020]: Besin, V. (2020). Advancing a System for Counting Problems based
on DBMS and Tree Decompositions. Bachelor’s Thesis, Faculty of Informatics, TU
Wien, Austria

• [Kieler, 2020]: Kieler, M. F. I. (2020). Trading Structural Dependency for Quantifier
Depth on QBFs. Bachelor’s Thesis, Faculty of Informatics, TU Dresden, Germany

• [Schidler, 2018]: Schidler, A. (2018). A solver for the Steiner tree problem with few
terminals. Master’s thesis, Faculty of Informatics, TU Wien, Austria

• [Zisser, 2018]: Zisser, M. (2018). Solving the #SAT problem on the GPU with
dynamic programming and OpenCL. Master’s thesis, Faculty of Informatics, TU
Wien, Austria

11

http://www.kr.tuwien.ac.at/events/taasp18/pc.html
https://sites.google.com/site/aspocp2020/
https://sites.google.com/site/aspocp2020/
https://sites.google.com/view/aspocp2021
https://mccompetition.org/2020/mcw_program
https://mccompetition.org/2020/mcw_program
https://mccompetition.org/2021/mcw_description
https://mccompetition.org/2021/mcw_description

CHAPTER 2
Preliminaries

“Obvious” is the most dangerous word in mathematics.
— Eric T. Bell

For a set X, let 2X be the power set of X. Further, we let N contain all non-negative
integers and N+ be the set of integers, i.e., N+ := N \ {0}. The function tower(, k)
is a tower of iterated exponentials of 2 of height with k on top. More precisely, we
inductively define for some non-negative integer k the function tower : N × N → N
by tower(0, k) = k and tower(+ 1, k) = 2tower(,k) for all ∈ N. The domain D of
a function f : D → A is given by dom(f). By f−1 : A → D we denote the inverse
function f−1 := {f(d) → d | d ∈ dom(f)} of a given function f , if it exists. To permit
operations such as f ∪ g for functions f and g, the functions may be viewed as relations.
We use the symbol “·” as placeholder for a value of an argument, which is clear from the
context and the actual value is negligible. Throughout this work, we refer by log(·) to
the binary logarithm.

2.1 Graph Theory
We recall some graph theoretical notations. For further basic terminology on graphs
and digraphs, we refer to standard texts [Diestel, 2012; Bondy and Murty, 2008]. An
undirected graph or simply a graph is a pair G = (V, E) where V = ∅ is a set of vertices
and E ⊆ {{u, v} ⊆ V | u = v} is a set of edges. For a vertex v ∈ V , we call any u ∈ V
such that there is an edge {u, v} ∈ E a neighbor of v. We define further for v the degree
(of v), which is the number of neighbors of v and corresponds to |{u | {u, v} ∈ E}|. A
graph G = (V , E) is a subgraph of G if V ⊆ V and E ⊆ E and an induced subgraph
if additionally for any u, v ∈ V and {u, v} ∈ E also {u, v} ∈ E . A path of length k is
a sequence of k + 1 pairwise distinct vertices v1, . . . , vk+1 such that there are k distinct
edges {vi, vi+1} ∈ E where 1 ≤ i ≤ k (possibly k = 0). A cycle of length k is a
path v1, v2, . . . , vk+1 of length k such that additionally {vk+1, v1} ∈ E. Let G = (V, E)

13

2. Preliminaries

be a graph and A ⊆ V be a set of vertices. We define the subgraph G − A, which is the
graph obtained by removing vertices A, by G−A := (V \A, {e | e ∈ E, e∩A = ∅}. Then,
G is bipartite if the set V of vertices can be divided into two disjoint sets U and W such
that there is no edge {u, v} ∈ E with u, v ∈ U or u, v ∈ W . Graph G is complete if for
any two vertices u, v ∈ V there is an edge uv ∈ E. G contains a clique on V ⊆ V if the
induced subgraph (V , E) of G is a complete graph. A (connected) component C ⊆ V of
G is a ⊆-largest set such that for any two vertices u, v ∈ C there is a path from u to v
in G. We say G is a tree if it is a connected component and G contains no cycles. We
usually call the vertices of a tree nodes.

A directed graph or simply a digraph is a pair G = (V, E) where V = ∅ is a set of vertices
and E ⊆ {(u, v) ∈ V × V | u = v} is a set of directed edges. A digraph G = (V , E)
is a subdigraph of G if V ⊆ V and E ⊆ E and an induced subdigraph if additionally
for any u, v ∈ V and (u, v) ∈ E also (u, v) ∈ E . For a vertex v ∈ V we call a
vertex v ∈ {w | (w, u) ∈ E} a predecessor of u and a vertex u ∈ {w | (v, w) ∈ E} a
successor of v. A (directed) path of length k is a sequence of k + 1 pairwise distinct
vertices v1, . . . , vk+1 such that there are k distinct edges (vi, vi+1) ∈ E where 1 ≤ i ≤ k
(possibly k = 0). A (directed) cycle of length k is a path v1, v2, . . . , vk+1 of length k such
that additionally (vk+1, v1) ∈ E. Then, a vertex u ∈ V is a descendant of a vertex v ∈ V
if there is a directed path u, . . . , v from u to v in G. For directed graph G = (V, E), a
set C ⊆ V of vertices is a (strongly-connected) component (SCC) of G if C is a ⊆-largest
set such that for every two distinct vertices u, v in C there is a directed path from u to v
in G. An SCC C is called non-trivial, if |C| > 1.

A rooted tree T = (V, E) consists of (i) a digraph (V, E) whose underlying graph is a tree
and (ii) a designated root vertex which has no predecessor. We call a vertex v ∈ V node
of T , a successor of a node child, the vertex root(T) the root of T , and a vertex v that
has no child a leaf of T . For every node t of T , we denote by children(t) the set of child
nodes of t in T . Further, for a given node t of T , we let T [t] be the subtree rooted at t,
which is a rooted tree with root(T [t]) := t, whose digraph is an induced subdigraph of T
obtained by restricting T to t and all descendants of t in T . In this work, we will traverse
trees bottom-up, therefore, we let post-order(T) be the sequence of nodes in post-order
(bottom-up-order) of the tree T , which is any fixed sequence of nodes in T such that for
every node t in T , nodes in children(t) precede t in the sequence. Then, for every node t
of T we denote by post-children(t) the ordered sequence of child nodes of t obtained by
ordering all nodes in children(t) according to their order in post-order(T).

Let G = (V, E) be a graph and k a positive integer. We call a function c : V → {1, . . . , k}
k-coloring of G if c(v) = c(w) for all {v, w} ∈ E. Then, the problem k·Col asks to decide
whether there exists a k-coloring for a given graph. As already discussed, Figure 1.1
visualizes a graph and a 3-coloring of the graph.

14

2.2. Computational Complexity

2.2 Computational Complexity
We assume familiarity with standard notions in computational complexity, especially,
algorithms, decision, counting, and search problems, the complexity classes P and
NP as well as the polynomial hierarchy. For more detailed information, we refer to
standard sources [Papadimitriou, 1994]. For counting complexity we follow notions by
Hemaspaandra and Vollmer [1995]. For parameterized (decision) problems we refer to
standard sources [Cygan et al., 2015; Downey and Fellows, 2013; Flum and Grohe, 2006;
Niedermeier, 2006].

We use the asymptotic notations O(·), o(·), and Ω(·) in the standard way. Let Σ and
Σ be some finite alphabets. We call I ∈ Σ∗ an instance and I denotes the size of I.
Let L ⊆ Σ∗ and L ⊆ Σ ∗ be decision problems. A (non-deterministic) polynomial-
time Turing reduction from L to L is an (non-deterministic) algorithm that decides in
time O(poly(I)) whether I ∈ L using L as an oracle. A polynomial-time (many-to-
one) reduction from L to L is a function r : Σ∗ → Σ ∗ such that for all I ∈ Σ∗ we have
I ∈ L if and only if r(I) ∈ L and r is computable in time O(poly(I)). In other words,
a polynomial-time reduction transforms instances of decision problem L into instances of
decision problem L in polynomial time.

A decision problem L is (non-deterministically) polynomial-time solvable if there exists a
constant c such that we can decide by an (non-deterministic) algorithm whether I ∈ L
in time O(I c) = O(poly(I)). P is the class of all polynomial-time solvable decision
problems. NP is the class of all non-deterministically polynomial-time solvable decision
problems. Let C be a decision complexity class, e.g., NP. Then co-C denotes the class
of all decision problems whose complement (the same problem with yes and no answers
swapped) is in C.

We say that a problem L is C-hard if there is a polynomial-time reduction for every
problem L ∈ C to L. If in addition L ∈ C, then L is C-complete. For instance, a
decision problem is NP-complete if it belongs to NP and all decision problems in NP
have polynomial-time reductions to it.

Polynomial Hierarchy and PSpace. We are also interested in the polynomial
hierarchy [Stockmeyer and Meyer, 1973; Stockmeyer, 1976; Wrathall, 1976; Papadimitriou,
1994]. The polynomial hierarchy consists of complexity classes ΣP

i for i ≥ 0 based
on the following definitions: ΣP

0 := P and ΣP
i+1 = NPΣP

i for all i ≥ 0 where NPC

denotes the class of all decision problems such that there is a polynomial-time Turing
reduction to any decision problem L ∈ C, i.e., a decision problem L ∈ NPC is non-
deterministically polynomial-time solvable using any problem L ∈ C as an oracle. A
decision problem L ∈ PC[log] is deterministically polynomial-time solvable doing O(log n)
calls to any problem L ∈ C as an oracle. Moreover, ΠP

i := co-ΣP
i for i ≥ 0. Note that

NP = ΣP
1 , coNP = ΠP

1 , ΣP
2 = NPNP, and ΠP

2 = coNPNP. Finally, we define the class
PSpace, which is the class of all decision problems L, where we can decide for every
instance I, whether I ∈ L by using polynomial space O(poly(I)). Observe that the

15

2. Preliminaries

whole polynomial hierarchy is contained in PSpace, i.e., we have that ΣP
i ⊆ PSpace as

well as ΠP
i ⊆ PSpace for i ≥ 0.

Counting Complexity. A witness function [Durand et al., 2005] is a function W : Σ∗ →
2Σ ∗ that maps an instance I ∈ Σ∗ to a finite subset of Σ ∗. We call the set W(I) the
witnesses. Let L : Σ∗ → N be a counting problem, more precisely, a function that maps
a given instance I ∈ Σ∗ to the cardinality of its witnesses |W(I)|. Let C be a decision
complexity class. Then, #· C denotes the class of all counting problems whose witness
function W satisfies (i) there is a function f : N → N such that for every instance I ∈ Σ∗

and every W ∈ W(I) we have |W | ≤ f(I) and f is computable in time O(poly(I))
and (ii) for every instance I ∈ Σ∗ the decision problem W(I) belongs to the complexity
class C. Then, #· P is the complexity class consisting of all counting problems associated
with decision problems in NP.

Let L and L be counting problems with witness functions W and W . A parsimonious
reduction from L to L is a polynomial-time reduction r : Σ∗ → Σ ∗ such that for
all I ∈ Σ∗, we have |W(I)| = |W (r(I))|. It is easy to see that the counting complexity
classes #· C defined above are closed under parsimonious reductions. It is clear for
counting problems L and L that if L ∈ #· C and there is a parsimonious reduction
from L to L, then L ∈ #· C.

Parameterized Complexity. An instance of a parameterized problem L is a pair (I, k) ∈
Σ∗ × N for some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N we call I the main
part and k the parameter. Then, I denotes the size of I. We say L is fixed-parameter
tractable if there exist a computable function f and a constant c such that we can decide
whether (I, k) ∈ L in time O(f(k) · poly(I)). Such a (deterministic) algorithm that
decides this is question called an fpt-algorithm. If L is a decision problem, then we
identify L with the set of all yes-instances (I, k). FPT is the class of all fixed-parameter
tractable decision problems.

Let L ⊆ Σ∗ × N and L ⊆ Σ ∗ × N be two parameterized decision problems for some
finite alphabets Σ and Σ . An fpt-reduction r (using g) from L to L is a many-to-one
reduction from Σ∗ × N to Σ ∗ × N such that for all I ∈ Σ∗ we have (I, k) ∈ L if and only
if r(I, k) = (I , k) ∈ L and k ≤ g(k) for fixed computable function g : N → N and there
is a computable function f such that r is computable in time O(f(k) · poly(I)). We
call r also an f -bounded fpt-reduction using g for given f and g. Thus, an fpt-reduction
is, in particular, an fpt-algorithm. It is easy to see that the class FPT is closed under
fpt-reductions. It is clear for parameterized problems L1, and L2 that if L1 ∈ FPT and
there is an fpt-reduction from L2 to L1, then L2 ∈ FPT.

The parameterized complexity class para-NP contains all parameterized decision prob-
lems L such that (I, k) ∈ L can be decided non-deterministically in time O(f(k)·poly I)
for some computable function f . A parameterized decision problem is para-NP-complete
if it is in NP and NP-complete when restricted to finitely many parameter values [Flum
and Grohe, 2006]. These classes can be further generalized. To this end, let C be a

16

2.3. (Quantified) Boolean Formulas

decision complexity class. Recall that ΣP
0 := P and ΣP

i+1 = NPΣP
i for all i ≥ 0 where

NPC denotes the class of all decision problems that are polynomial-time solvable using
any problem L ∈ C as an oracle. Then, the parameterized class para-NPC contains all pa-
rameterized decision problems L such that (I, k) ∈ L can be decided non-deterministically
in time O(f(k) · poly I) with access to a C oracle for some computable function f .
Similar to above, a parameterized decision problem is para-NPC-complete if it is in NPC

and NPC-complete when restricted to finitely many parameter values [Flum and Grohe,
2006].

Complexity Lower Bounds. In order to obtain conditional lower bounds, we employ
the exponential time hypothesis (ETH) [Impagliazzo et al., 2001]. Intuitively, the ETH
states a complexity theoretical lower bound on how fast satisfiability problems can be
solved. More precisely, it states the following.

Hypothesis 2.1 (Exponential Time Hypothesis (ETH)). One cannot solve 3-Sat in
time 2s·n · nO(1) for some s > 0 and an arbitrary instance with n variables.

In the course of this work, we establish that many of our runtime bounds are asymptotically
tight under the ETH.

2.3 (Quantified) Boolean Formulas
We define Boolean formulas and their evaluation called Boolean satisfiability (Sat) in
the usual way, cf. [Biere et al., 2009; Kleine Büning and Lettman, 1999]. In particular,
literals are variables or their negations and logical operators ∧, ∨, ¬, →, ↔ are used in the
usual meaning. A Boolean formula is an expression over Boolean variables and logical
operators. For such a Boolean formula F , we denote by var(F) the set of variables of F .
A term is a formula that is a conjunction of literals and a clause is a disjunction of literals.
For simplicity, both a clause and a term is oftentimes regarded as a set of literals. A
Boolean formula F is in conjunctive form (CF) or disjunctive form (DF) if the formula
itself is a conjunction or disjunction of formulas, respectively. In both cases, we might
identify F itself by a set of formulas. Then, F is in conjunctive normal form (CNF)
if F is a conjunction of clauses and F is in disjunctive normal form (DNF) if F is a
disjunction of terms. We assume, unless mentioned otherwise, that a Boolean formula is
either in CNF or DNF, which can therefore be regarded as a set of sets of literals. A
formula is in c-CNF or c-DNF if each set in F consists of at most c many literals.

Let ≥ 0 be integer. A quantified Boolean formula Q (in prenex normal form) is of
the form Q1V1.Q2V2. · · · Q V .F where Qi ∈ {∀, ∃} for 1 ≤ i ≤ and Qj = Qj+1 for
1 ≤ j ≤ − 1; and where Vi are disjoint, non-empty sets of Boolean variables with

i=1 Vi ⊆ var(F); and F is a Boolean formula. We call the quantifier rank of Q and let
matrix(Q) := F . Further, we denote the variables of Q by var(Q) := var(matrix(Q)) and
the set fvar(Q) of free variables of Q by fvar(Q) := var(Q) \ (i=1 Vi). If fvar(Q) = ∅,

17

2. Preliminaries

then Q is referred to as closed, otherwise we say Q is open. Unless stated otherwise, we
assume open QBFs.

The truth (evaluation) of QBFs is defined in the standard way. An assignment is a
mapping ι : X → {0, 1} defined for a set X of variables. An assignment ι extends ι
(by dom(ι) \ dom(ι)) if dom(ι) ⊇ dom(ι) and ι (y) = ι(y) for any y ∈ dom(ι). Given
a Boolean formula F and an assignment ι for var(F). Then, for F in CNF, F [ι] is a
Boolean formula obtained by removing every c ∈ F with x ∈ c and ¬x ∈ c if ι(x) = 1
and ι(x) = 0, respectively, and by removing from every remaining clause c ∈ F literals x
and ¬x with ι(x) = 0 and ι(x) = 1, respectively. Analogously, for F in DNF values 0
and 1 are swapped. For a given QBF Q and an assignment ι, Q[ι] is a QBF obtained
from Q, where variables x ∈ dom(ι) are removed from preceding quantifiers accordingly,
and matrix(Q[ι]) := (matrix(Q))[ι]. A Boolean formula F evaluates to true if there exists
an assignment ι for var(F) such that F [ι] = ∅ if F is in CNF or F [ι] = {∅} if F is in
DNF. In this case, we refer to ι by satisfying assignment and we refer to the problem
of deciding whether there exists a satisfying assignment for a Boolean formula F by
Boolean satisfiability (Sat). We define the evaluation of a closed QBF Q recursively and
depending on the first quantifier of Q. More precisely, Q = Q1V1.Q evaluates to true (or
is valid) depending on the following cases: If Q1 = ∃, then Q evaluates to true if and only
if there exists an assignment ι : V1 → {0, 1} such that Q[ι] evaluates to true. If Q1 = ∀,
then Q[ι] evaluates to true if for any assignment ι : V1 → {0, 1}, Q[ι] evaluates to true.
An (open or closed) QBF Q is satisfiable if there is a truth assignment ι : fvar(Q) → {0, 1}
such that resulting closed QBF Q[ι] evaluates to true. Otherwise Q is unsatisfiable.

Given a closed QBF Q, the evaluation problem QSat of QBFs asks whether Q evaluates
to true; -QSat refers to the problem QSat on QBFs of quantifier rank . The prob-
lem QSat is PSpace-complete and is therefore believed to be computationally harder
than Sat [Kleine Büning and Lettman, 1999; Papadimitriou, 1994; Stockmeyer and
Meyer, 1973]. We refer to the problem -QSat when restricted to QBFs, whose first
quantifier is existential (∃) and universal (∀), by Σ Sat and Π Sat, respectively. Then,
we have that Σ Sat is ΣP-complete and Π Sat is ΠP-complete. For more details on
QBFs and known results we refer to other sources [Biere et al., 2009; Kleine Büning and
Lettman, 1999].

Example 2.2. Consider the closed QBF Q = ∃w, x.∀y, z.D, where D := d1 ∨d2 ∨d3 ∨d4,
and d1 := w ∧ x ∧ ¬y, d2 := ¬w ∧ ¬x ∧ y, d3 := w ∧ y ∧ ¬z, and d4 := w ∧ y ∧ z.
Observe that Q[ι] is valid under assignment ι = {w → 1, x → 1}. In particular, Q[ι] can
be simplified to ∀y, z.(¬y) ∨ (y ∧ ¬z) ∨ (y ∧ z), which is valid, since for any assignment κ :
{y, z} → {0, 1} the formula Q[ι][κ] (and therefore Q) evaluates to true.

The projected model counting problem PQSat over QBFs [Durand et al., 2005] takes an
open QBF Q and asks to output the number of distinct assignments ι : fvar(Q) → {0, 1}
such that Q[ι] evaluates to true. There are well-studied fragments of the projected
model counting problem. The problem PQSat over QBFs of quantifier rank , whose
first quantifier is existential (∃) is referred to by #Σ Sat. Analogously, we address

18

2.4. Answer Set Programming

the problem PQSat when restricted to QBFs, whose the first quantifier is universal
(∀), with #Π Sat. Further, there are also special cases of projected model counting
over Boolean formulas, defined as follows. The problem PQSat over QBFs of quantifier
rank 0, is referred to by model counting #Sat [Gomes et al., 2009] and PQSat over
QBFs of quantifier rank 1 is called projected model counting #∃Sat.

In terms of computational complexity, #Sat is theoretically of high worst-case complexity,
since it is #· P-complete [Valiant, 1979a,b; Roth, 1996]. Notice that this is a very hard
problem, given that there is a well-known result by Toda [1991], which states that already
one call to a #Sat procedure suffices in order simulate any problem of the polynomial
hierarchy.

When we consider the computational complexity of #∃Sat it turns out that under
standard assumptions this problem is even harder than #Sat, more precisely, #∃Sat
is complete for the class #· NP [Durand et al., 2005]. Then, the full projected model
counting problems #Σ Sat and #Π Sat are complete for the classes #· ΣP and #· ΠP,
respectively [Durand et al., 2005].

2.4 Answer Set Programming
Answer Set Programming (ASP) is a declarative modeling and problem solving framework
that combines techniques of knowledge representation and database theory. Two of the
main advantages of ASP are its expressiveness [Brewka et al., 2011] and its advanced
declarative problem modeling capability. This modeling capability is witnessed by
the possibility of writing non-ground programs, where one uses first-order variables in
order to write programs in an even more compact form. However, prior to solving, these
compact (non-ground) programs are usually compiled into regular programs by a so-called
grounder [Gebser et al., 2012].

We follow standard definitions of Boolean (non-ground) ASP [Brewka et al., 2011; Jan-
hunen and Niemelä, 2016], i.e., we restrict ourselves to the case of plain ASP programs
without first-order variables. ASP solvers often read and solve SModels input format [Syr-
jänen, 2002], which we will use in the course of this work. In the following, we cover the
different rule types and fix notation of the SModels input format. To this end, let , m,
n be non-negative integers such that ≤ m ≤ n, and let a1, . . ., an be distinct Boolean
atoms. Moreover, we refer by literal to an atom or the negation thereof. A choice rule is
an expression of the form

{a1, . . . , a } ← a +1, . . . , am, ¬am+1, . . . , ¬an.

with ≥ 1. Rules of this type intuitively enforce evidence of any subset of {a1, . . . , a }, if
all atoms a +1, . . . , am are evident and there is no evidence for am+1, . . . , an. A disjunctive
rule is of the form

a1 ∨ · · · ∨ a ← a +1, . . . , am, ¬am+1, . . . , ¬an.

19

2. Preliminaries

and intuitively requires evidence for at least one atom of a1, . . . , a if all atoms a +1, . . . , am

are evident and there is no evidence for any atoms of am+1, . . . , an. A weight rule is of
the form

a ← w {a +1 = w +1, . . . , am = wm, ¬am+1 = wm+1, . . . , ¬an = wn}.

where ≤ 1. Roughly, if the sum of all weights assigned to evidences that are met is at least
w, then, in case of = 1, weight rules enforce evidence of a1, and in case of = 0, the rule
is not satisfied. A rule is either a disjunctive, a choice, or a weight rule, and a program Π
is a set of these rules. For a rule r, we let Hr := {a1, . . . , a }, B+

r := {a +1, . . . , am},
and B−

r := {am+1, . . . , an}. We denote the sets of atoms occurring in a rule r or in a
program Π by at(r) := Hr ∪ B+

r ∪ B−
r and at(Π) := r∈Π at(r). A disjunctive rule r

is normal if |Hr| ≤ 1 and r is unary if B+
r ≤ 1. Then, a program Π is disjunctive,

normal or unary if all its rules r ∈ Π are disjunctive, normal or unary, respectively. The
positive dependency digraph DΠ of Π is the directed graph defined on the set of atoms
from r∈Π Hr ∪ B+

r , where for every rule r ∈ Π two atoms a ∈ B+
r and b ∈ Hr are joined

by an edge (a, b). A head-cycle of DΠ is an {a, b}-cycle1 for two distinct atoms a, b ∈ Hr

for some rule r ∈ Π. A disjunctive program Π is head-cycle-free (HCF) if DΠ contains no
head-cycle [Ben-Eliyahu and Dechter, 1994] and we say Π is tight, if there is no directed
cycle in DΠ [Fages, 1994].

For definition of semantics, we require auxiliary definitions for some rule types. For a
weight rule r = a ← w {a +1 = w +1, . . . , am = wm, ¬am+1 = wm+1, . . . , ¬an = wn},
let wght(r, a) map atom a to its corresponding weight wi in rule r if a = ai for +1 ≤ i ≤ n
and to 0 otherwise. Moreover, let wght(r, A) := a∈A wght(r, a) extend the definition
for a set A of atoms, and let bnd(r) := w be its bound. An interpretation I is a set of
atoms. Intuitively a rule enforces that whenever the body is “satisfied”, the head has to
be “satisfied” as well. Formally, a set I ⊆ at(Π) satisfies a rule r if we have the following:

(i) If r is a choice rule, then I satisfies r.

(ii) If r is a disjunctive rule, then either

(a) the head is satisfied: Hr ∩ I = ∅, or
(b) the negative body is dissatisfied: B−

r ∩ I = ∅, or
(c) the positive body is dissatisfied: B+

r ⊆ I.

(ii) If r is a weight rule, then either

(a) the head is satisfied: Hr ∩ I = ∅ or
(b) the body is dissatisfied: wght(r, I ∩ B+

r) + wght(r, B−
r \ I) < bnd(r).

1Let G = (V, E) be a digraph and W ⊆ V . Then, a (directed) cycle in G is a W -cycle if it contains
all vertices from W .

20

2.4. Answer Set Programming

An interpretation I is a model of Π if it satisfies all rules of Π, in symbols I |= Π.
Then, we refer to the problem of deciding whether there exists a model of an answer set
program by Models. We let Mod(C, Π) := {C | C ∈ C, C |= Π} for a set C ⊆ 2at(Π) of
interpretations be the set of models of program Π.

Further, we say a rule r ∈ Π is supporting a ∈ I (with I) if (i) a ∈ Hr, (ii) the body of r
is satisfied by I, i.e., I |= r with r being identical to r, except that Hr = ∅, as well as
(iii) I ∩ (Hr \ {a}]) = ∅. Then, interpretation I is a supported model of Π if every a ∈ I
is supported, i.e., there is a rule r ∈ Π supporting a with I. We refer to the problem of
deciding whether a given program admits a supported model by Supported Models.

Towards the full semantics of answer set programs, we require to define the concept
of reducts. More precisely, the reduct of a rule with respect to I, denoted by rI , is a
program, whose rules do not contain negative bodies, and it is defined as follows:

(i) for a choice rule r, rI is given by {a ← B+
r | a ∈ Hr ∩ I, B−

r ∩ I = ∅},

(ii) for a disjunctive rule r, we let rI be {Hr ← B+
r | B−

r ∩ I = ∅}, and

(iii) for a weight rule r, rI is defined as {Hr ← w {a = wght(r, a) | a ∈ B+
r }} where

w = bnd(r) − Σa∈B−
r \I wght(r, a).

The Gelfond-Lifschitz (GL) reduct, cf. [Gelfond and Lifschitz, 1991], of Π under I is
the program ΠI := r∈Π rI obtained from Π by combining the reducts of each rule.
Interpretation I ⊆ at(Π) is an answer set of program Π if (i) I |= Π and (ii) there does
not exist a proper subset I I such that I |= ΠI , that is, I is a subset minimal model
of ΠI .

Example 2.3. Assume the following program

Π̇ := {
r1

{a; b} ← c;
r2

c ← 1 {b = 1, ¬a = 1};
r3

d ∨ a ← }.

Then, the set A = {a} is an answer set of Π̇, since A is a minimal model of the
reduct Π̇A = {a ← c, c ← 1 {b = 1}, d ∨ a ← }. Further, B = {c, d} is an answer set,
since B is a minimal model of Π̇B = {c ← 0 {b = 1}, d ∨ a ← }. By similar arguments
one can see that also C = {b, c, d} is an answer set of program Π̇.

The problem of deciding whether a program has an answer set is called consistency
(Asp), which is ΣP

2 -complete [Eiter and Gottlob, 1995a]. If the input is restricted to
normal programs, the complexity drops to NP-complete [Bidoít and Froidevaux, 1991;
Marek and Truszczyński, 1991]. A head-cycle-free program Π can be translated into
a normal program in polynomial time [Ben-Eliyahu and Dechter, 1994]. Further, the
answer sets of a tight program can be represented by means of the models of a Boolean
formula, obtainable in linear time via, e.g., Clark’s completion [Clark, 1977]. This thesis
deals with the problems Models, Supported Models as well as Asp and Asp when

21

2. Preliminaries

Decision Problem Question Fragment Complexity
Models Existence of a model (full) programs NP-co
Supported Models Existence of a supported model (full) programs NP-co

Tight Asp Existence of an answer set tight programs NP-co
Normal Asp Existence of an answer set normal programs NP-co
HCF Asp Existence of an answer set head-cycle-free programs NP-co
Disjunctive Asp Existence of an answer set disjunctive programs ΣP

2 -co
Asp Existence of an answer set (full) programs ΣP

2 -co

Table 2.1: Decision problems related to the answer set programming formalism that are
discussed in the course of this thesis, which are described under the column “Question”.
The column “Fragment” states the corresponding fragment of logic programs and we list
the respective (decision) complexity completeness result below the column “Complexity”.

e a

d bc

Figure 2.1: Dependency graph DΠ of Π (cf. Example 2.4).

restricted to several fragments of logic programs. As an overview, we list the resulting
problems in Table 2.1. Note that in Section 4.4 we will motivate and define a novel
fragment of programs, called “ι-tight” programs, which is therefore not listed in this
table.

The following characterization of answer sets is often invoked when considering normal
programs [Lin and Zhao, 2003]. Given a set A ⊆ at(Π) of atoms. Then, a function ϕ :
A → {0, . . . , |A| − 1} is a level mapping over A. Given a model I of a normal program Π,
and a level mapping ϕ over I. An atom a ∈ I is proven if there is a rule r ∈ Π proving a,
which is the case if r is supporting a with I and ϕ(b) < ϕ(a) for every b ∈ B+

r . Then, I is
an answer set of Π if (i) I is a model of Π, and (ii) I is proven, i.e., every a ∈ I is proven.
This characterization vacuously holds also for head-cycle-free programs [Ben-Eliyahu
and Dechter, 1994], since in HCF programs, vaguely speaking, all but one atom of the
head of any rule can be “shifted” to the negative body [Dix et al., 1996]. More precisely,
given an HCF program Π, one can create a normal program by constructing Rules (2.1)
for each rule r ∈ Π and x ∈ Hr. It is easy to see that the number of resulting rules is
in O(|at(Π)| · |Π|) in the worst case.

x ← B+
r , B−

r ∪ (Hr \ {x}) for every r ∈ Π and x ∈ Hr (2.1)

Even further, it is sufficient [Janhunen, 2006] to have individual level mappings per
strongly connected component (SCC) of the dependency graph DΠ when determining (ii)
provability of every atom.

22

2.5. Tree Decompositions and Treewidth

Example 2.4. Consider the program

Π := {
r1

a ∨ b ← ;
r2

c ∨ e ← d;
r3

d ← b, ¬e;
r4

e ← b, ¬d;
r5

b ← e, ¬d;
r6

d ← ¬b}.

Observe that Π is not tight, since the dependency graph DΠ of Figure 2.1 contains
cycle b, d, e. However, the program Π is head-cycle-free since there is neither an {a, b}-
cycle, nor a {c, e}-cycle in DΠ. Therefore, rule r1 allows shifting [Dix et al., 1996] and
actually corresponds to the two rules a ← ¬b and b ← ¬a. Analogously, rule r2 can be
seen as the rules c ← d, ¬e and e ← d, ¬c. Then, I := {b, c, d} is an answer set of Π,
since I |= Π, and we can prove with level mapping ϕ := {b → 0, d → 1, c → 2} atom b by
rule r1, atom d by rule r3, and atom c by rule r2. Further answer sets of Π are {b, e},
{a, c, d}, and {a, d, e}.

The characterization above already fails for simple programs that are not HCF. Consider
for example program Π := {a ∨ b ←; a ← b; b ← a}, which has only one answer
set I = {a, b}. However, I can not be proven. If the first rule a ∨ b ← shall prove a,
we require b /∈ I (and vice versa). Then, the remaining two rules of Π can only prove
either a or b, but fail to prove I , since both rules proving I (together) prohibits every
level mapping due to the cyclic dependency.

2.5 Tree Decompositions and Treewidth
Let G = (V, E) be a graph, T = (N, F) be a rooted tree, and χ : N → 2V be a function
that maps each node t ∈ N to a set of vertices. We call the sets χ(·) bags and N the set
of nodes. Then, the pair T = (T, χ) is a tree decomposition (TD) of G if the following
conditions hold [Robertson and Seymour, 1986]:

(i) all vertices are covered in some bag, that is, for every vertex v ∈ V there is a
node t ∈ N with v ∈ χ(t);

(ii) all edges are covered in some bag, that is, for every edge e ∈ E there is a node t ∈ N
with e ⊆ χ(t); and

(iii) the tree decomposition is connected, that is, for any three nodes t1, t2, t3 ∈ N , if t2
lies on the unique path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of the tree decomposition is defined as max{|χ(t)| − 1 | t ∈ N}. The
treewidth tw(G) of a graph G is the minimum width over all possible tree decompositions
of G. If for a tree decomposition T = (T, χ), we have that the tree T actually corresponds
to a path, i.e., every node in T is of degree less or equal than 2, we say that T is a path
decomposition. Then, the pathwidth pw(G) of a graph G is the minimum width over all
possible path decompositions of G.

23

2. Preliminaries

Example 2.5. Figure 2.2 illustrates a graph G and a TD T of G of width 2, which is
also the treewidth of G, since G contains [Kloks, 1994] a complete graph (clique) among
vertices e,b,d.

Note that each graph [Robertson and Seymour, 1986] has a trivial tree decomposi-
tion (T, χ) consisting of the tree ({n}, ∅) and the mapping χ : n → V . It is well known
that the treewidth of a tree is 1 and a graph containing a clique of size k has at least
treewidth k−1. For some arbitrary but fixed integer k and a graph of treewidth at most k,
we can compute a tree decomposition of width at most k in time 2O(k3) · |V | [Bodlaender
and Koster, 2008].

For a given tree decomposition T = (T, χ) with T = (N, F), and an element x ∈ t∈N χ(t),
we denote by T [x] the result of restricting T to nodes, whose bags contain x. Formally,
T [x] := (T , χ), where T := (N , F), N := {t | t ∈ N, x ∈ χ(t)}, F := F ∩ (N × N),
and for each t ∈ N , we let χ (t) := χ(t).

Given a tree decomposition (T, χ) with T = (N, ·, ·), for a node t ∈ N , we let type(t) be

leaf: if t has no children;

join: if t has children t and t with t = t and χ(t) = χ(t) = χ(t) = ∅;

intr: if t has a single child t , χ(t) ⊆ χ(t) and |χ(t)| = |χ(t)| − 1; and

rem: if t has a single child t , χ(t) ⊇ χ(t) and |χ(t)| = |χ(t)| + 1.

If every node t ∈ N has at most two children, we refer to the tree decomposition as join-
nice. If for a given constant c and every node t ∈ N we have χ(t) \ (t ∈children(t) χ(t)) ≤
c, then the decomposition is referred to as c-nice. A tree decomposition that is join-nice
such that for every node t ∈ N we have that type(t) ∈ {leaf, join, intr, rem}, as well as
empty bags for leaf nodes and the root node, is called nice [Bodlaender and Koster, 2008].
For every tree decomposition, we can compute a nice tree decomposition in linear time
without increasing the width [Bodlaender and Koster, 2008]. Note that a nice TD of a
graph G = (V, E) of width tw(G), having only O(|V |) many nodes [Kloks, 1994, Lemma
13.1.2] always exists. Such a nice TD can be obtained from a given TD T = (T, χ)
with T = (N, E) of width k in linear time, stated as follows.

Proposition 2.6 (nice TDs, cf. [Kloks, 1994, Lemma 13.1.3]). Given a graph G and
a TD T = (T, χ) of G with T = (N, E). Then, one can obtain a nice TD T = (T , χ)
of G in time O(k2 · 2k3 · |N |).
Proposition 2.7 (join-nice TDs). Given a graph G and a TD T = (T, χ) of G with T =
(N, E). Then, one can obtain a join-nice TD T = (T , χ) of G in time O(|N |).

Proof (Idea). We replace every node t of T with |children(t)| > 2 many child nodes by a
tree of fresh nodes as follows. We arbitrarily take two child nodes in children(t), which

24

2.5. Tree Decompositions and Treewidth

e a

d bc {c, d, e}t1 {a, b} t2

{b, d, e}t3

Figure 2.2: Graph G (left) and a tree decomposition T of G (right).

get a fresh parent node t with χ(t) := χ(t). Then, node t and an other child node
of t gets a fresh parent t with χ(t) := χ(t). In turn, we create a tree over auxiliary
nodes t , t , · · · such that when we considered all child nodes of t, the auxiliary node
created last serves as a “replacement” for t. Consequently, this node that is created
last is the new child node of the parent of t in T . Note that we can do this for all such
nodes t, where we apply this procedure in post-order of T (bottom-up) and we refer to the
resulting join-nice TD of G by T = (T , χ). Observe that every node t has at most one
parent node in T , and consequently this transformation can be done in time O(|N |).

Proposition 2.8 (c-nice TDs). Given a graph G, a TD T = (T, χ) of G of width k
with T = (N, E), and a constant c ≥ 1. Then, one can obtain a c-nice TD T = (T , χ)
of G in time O(k

c · |N |).

Proof (Idea). We manipulate T , where we create auxiliary nodes for every node t
with X = χ(t)\(t ∈children(t)) χ(t)) such that |X| > c. For every such node t we create at
most d

c many auxiliary nodes as follows. We chose the first d
c many elements of X, result-

ing in a set X and create a node t such that χ (t) := X ∪ (χ(t) ∩ (t ∈children(t) χ(t)))
with children(t) := children(t). Then, we create the next auxiliary node, taking into
account d

c many elements of X that are not already considered (not yet in X). We
create a node t where we set children(t) = {t } and χ (t) := χ (t) ∪ X . In turn, the
next node is a parent of t that adds d

c many elements of X neither in X nor in X to
its bag, and so on. The resulting TD is referred to by T = (T , χ). Since we have |N |
many nodes in T and d ≤ k, the procedure above runs in time O(k

c · |N |).

With the help of the parameter treewidth, one can show that the problem -QSat for
given ∈ N+ can be turned tractable.

Proposition 2.9 (Runtime of -QSat, cf. [Chen, 2004]). For an arbitrary QBF Q
with quantifier rank ≥ 1, the problem -QSat can be solved in time tower(, O(k)) ·
poly(|var(Q)|).

Interestingly, under the exponential time hypothesis (ETH), one cannot significantly
improve this runtime for Boolean satisfiability (Sat).

Proposition 2.10. Unless the ETH fails, one cannot decide Sat for any given Boolean
formula F in time 2o(tw(GF)) · poly(|var(F)|).

25

2. Preliminaries

Proof. Consider an arbitrary Boolean formula F . Assume towards a contradiction that
one can decide Sat for F in time 2o(tw(GF)) · poly(|var(F)|). Since o(tw(Gvar(F))) ⊆
o(|var(F)|), it follows that we can solve Sat on F in time 2o(|var(F)|) · poly(|var(F)|). This,
however, contradicts ETH (cf. Hypothesis 2.1).

This result was even lifted to the evaluation of the problem 2-QSat as follows.

Proposition 2.11 (cf. [Lampis and Mitsou, 2017]). Given any QBF instance Q =
Q1V1.Q2V2.F of problem 2-QSat Then, unless the ETH fails, the validity of Q cannot
be decided in time 22o(k) · poly(|var(F)|), where k is the treewidth of the primal graph GQ.

In fact, there are also further results on lower bounds that can be obtained by relying on
ETH and for problems when parameterized by treewidth, e.g., [Lokshtanov et al., 2011;
Marx and Mitsou, 2016; Lampis et al., 2018; Fichte et al., 2018b].

In order to use the concept of tree decompositions for solving problems, we require
dedicated graph representation of instances of these problems. Thereby we mainly
consider the so-called primal graph representation of an instance, whose definition heavily
depends on the problem. However, as a guide through this work and without having a
formal definition at hand yet, we refer by GI to the primal graph (representation) of a
given problem instance I. While the exact definition of the primal graph representation
depends on the problem, intuitively, given an instance I of a problem, primal graph
representation GI refers to a graph that has as vertices the elements of the instance I
that are subject to evaluation, i.e., those elements are basic “atoms” used in formulating
the instance. Then, there is an edge between two vertices of the graph of GI , whenever
the two corresponding elements of the problem are required to be evaluated “together”
during the evaluation of instance I. In order to apply a tree decomposition T = (T, χ) of
a graph representation, e.g., GI , for establishing certain results for instance I, we rely on
the concept of the canonical bag instance It, which is the instance obtained by restricting
instance I to node t of T , i.e., the instance restricted to contents of bag χ(t). Later, any
(smaller) instance It that is part of the canonical bag instance It will also be referred to
by bag instance.

Formal definitions of these concepts are provided below for both Boolean formulas as
well as answer set programs.

Tree Decompositions for (Quantified) Boolean Formulas
The primal graph GF of a Boolean formula F in conjunctive form (CF) or disjunctive
form (DF), regarded as a set of formulas, has the variables var(F) of F as vertices and
an edge {x, y} if there exists f ∈ F such that x, y ∈ var(f), respectively. For a QBF Q,
we identify its primal graph with the primal graph of its matrix, i.e., let GQ := Gmatrix(Q).

Example 2.12. Recall the closed QBF Q = ∃w, x.∀y, z.D from Example 2.2, where D :=
d1 ∨ d2 ∨ d3 ∨ d4, and d1 := w ∧ x ∧ ¬y, d2 := ¬w ∧ ¬x ∧ y, d3 := w ∧ y ∧ ¬z, and

26

2.5. Tree Decompositions and Treewidth

w z

x y {w, x, y} {w, y, z}

{w, y} d2: {w, x, y}
t2

d1: {w, x, y}t1

d4: {w, y, z}
t4

d3: {w, y, z} t3

{w, y}t5

Figure 2.3: Primal graph GQ of Q from Example 2.2 (left) with TDs T1, T2 of graph GQ

(right).

d4 := w ∧ y ∧ z. Observe that Figure 2.3 illustrates the primal graph GQ of Q, whose
matrix D is regarded as a set of sets of literals, and two tree decompositions of GQ of
width 2. The graph GQ has treewidth 2, since the vertices w,x,y are completely connected
and hence width 2 is optimal [Kloks, 1994].

Then, for (Quantified) Boolean formulas, a bag instance is defined as follows. To this end
let T = (T, χ) be a TD of primal graph GF of a Boolean formula, and let t be a node
of T . The canonical bag formula Ft contains formulas entirely covered by the bag χ(t).
Formally, Ft := {f | f ∈ F, var(f) ⊆ χ(t)}. This concept of bag formulas naturally
extends to QBFs, where we define Qt := matrix(Q)t. Any subset Ft ⊆ Ft or Qt ⊆ Qt of
the canonical bag formula Ft or Qt is also referred to by bag formula, respectively.

Example 2.13. Recall matrix D of QBF Q from Example 2.2. Observe that decom-
position T2 of Figure 2.3 (right) is a TD of the primal graph of Q. Further, we have
Qt1 = Dt1 = Qt2 = Dt2 = {d1, d2}, Qt3 = Dt3 = Qt4 = Dt4 = {d3, d4}, as well as
Qt5 = Dt5 = ∅. Note that in general a rule might appear in several canonical bag
formulas, which can be witnessed by the canonical bag formulas of decomposition T1 of
Figure 2.3 (right).

Tree Decompositions for Answer Set Programs

In order to use TDs for solving Asp, we need dedicated graph representations of pro-
grams [Jakl et al., 2009]. The primal graph GΠ of program Π has the atoms of Π as vertices
and an edge {a, b} if there exists a rule r ∈ Π and a, b ∈ at(r). Let T = (T, χ) be a TD of
primal graph GΠ of a program Π, and let t be a node of T . The canonical bag program Πt

contains rules entirely covered by the bag χ(t). Formally, Πt := {r | r ∈ Π, at(r) ⊆ χ(t)}.
Further, we refer to any subset Πt ⊆ Πt of the canonical bag program Πt by bag program
as well.

Example 2.14. Recall the program Π := {
r1

a ∨ b ← ;
r2

c ∨ e ← d;
r3

d ← b, ¬e;
r4

e ← b, ¬d;
r5

b ← e, ¬d;
r6

d ← ¬b} from Example 2.4. Observe that graph G of Figure 2.2 is the primal
graph of Π. Further, we have Πt1 = {r2}, Πt2 = {r1}, and Πt3 = {r3, r4, r5, r6}. Note
that in general a rule might appear in several canonical bag programs.

27

2. Preliminaries

2.6 Labeled Tree Decompositions
While plain tree decompositions as defined above form the basis of our studies in this
work, sometimes proofs can be simplified by further restricting these decompositions.
This brings us to the concept of labeled tree decompositions, which is also defined specific
for the corresponding problems. However, intuitively, a labeled tree decomposition of
an instance I is a triple T = (T, χ, δI), where (T, χ) is a tree decomposition of primal
graph GI . Note that actually LTDs can be defined for any graph representation of I, but
unless mentioned otherwise this thesis deals with the primal graph GI of an instance I.
Then, δI is a labeling function that assigns each node of T a label in the form of a bag
instance, which is a part of the canonical bag instance It. Thereby, these labeling tree
decompositions enable the precise control of which parts of the instance I are evaluated
in which node t such that indeed all relevant parts of I are evaluated.

Observation 2.15. Observe that any tree decomposition (T, χ) of GI can be turned into
the corresponding canonical labeled tree decomposition T = (T, χ, δI) of I, where δI is
such that for every node t of T , δI(t) := It.

For instances I, which are represented as sets, we define the following.

Definition 2.16 (Labeled TD of sets). Let P be a problem, where every instance I of P
is a set (of elements), including every bag instance It for any node t of any TD of GI .
Then, a labeled tree decomposition (LTD) of such a set I is a tuple T = (T, χ, δI)
with T = (N, E), where (T, χ) is a tree decomposition of GI , and δI : N → 2I is a
mapping from nodes of T to subsets of I such that (1) for every t ∈ N , δI(t) ⊆ It and
(2) t∈N δI(t) = I.

Then, non-redundant LTDs (of sets) ensure that δI is such that each part of I only
occurs once in δI , i.e., for every two distinct nodes t, t of T we have δI(t) ∩ δI(t) = ∅.
Further, an LTD of a set is atomic if |δI(t)| = 1 for every node t of T . For most problems
one can also turn a tree decomposition (T, χ) into a non-redundant, atomic labeled tree
decomposition by copying decomposition nodes and assigning δI accordingly.

The concrete definitions for Boolean formulas and answer set programs are given next.

Labeled Tree Decompositions for (Quantified) Boolean Formulas
The precise formal definition of labeled tree decompositions for Boolean formulas in
conjunctive form (CF) or disjunctive form (DF) is as follows.

Definition 2.17. A labeled tree decomposition (LTD) T of a Boolean formula F in CF
or DF, is a labeled tree decomposition of set F , as defined in Definition 2.16.

Example 2.18. Consider again the QBF Q from Example 2.2 as well as Figure 2.3
(right). Recall that matrix(Q) = D with D := d1 ∨ d2 ∨ d3 ∨ d4, where d1 := w ∧ x ∧ ¬y,
d2 := ¬w ∧ ¬x ∧ y, d3 := w ∧ y ∧ ¬z, and d4 := w ∧ y ∧ z. Observe that T2 is a 3-nice,

28

2.6. Labeled Tree Decompositions

non-redundant, and atomic labeled tree decomposition (T, χ, δD) of GD, where labeling
function δD sets δD(ti) := {di}, for 1 ≤ i ≤ 4.

Interestingly, a non-redundant and atomic labeled tree decomposition of a Boolean
formula F (in CF or DF) can be constructed easily, given a tree decomposition of GF .

Proposition 2.19. Given a Boolean formula F in CF or DF and a tree decompo-
sition (T, χ) of GF of width k, where T = (N, E). Then, one can construct (1) a
non-redundant LTD T = (T, χ∗, δF) of F in time O(k · (|N | + |F |)). Further, (2) a non-
redundant, atomic LTD T = (T , χ , δF) of F can be constructed in time O(k ·(|N |+ |F |)).

Proof. For showing (1), we define for each element v ∈ var(F) a unique node t of T , de-
fined by rem(v) := t, where t is such that v /∈ χ(t), but there is a child node t ∈ children(t)
with v ∈ χ(t). Observe that by definition of tree decompositions, this is well-defined,
since if there were two different nodes for v this would contradict connectedness of (T, χ).
Let ≺ be total ordering among elements of var(F) such that whenever for two disjoint
elements x, y ∈ var(F) we have that rem(x) is a node below node rem(y) in T , then x ≺ y.
Indeed, such an ordering can be computed by traversing T in post-order, which takes
time O(k · |N |). Then, we define the labeling δF for every node t of T as follows: δF (t) :=
{c | c ∈ F, v ∈ var(c) is the ≺-smallest element among all variables in var(c), t = rem(v)}
∪ {c | c ∈ Ft, t = root(T)}. Further, we define bag χ∗(t) for each node t of T
by χ∗(t) := χ(t) ∪ {v | t = rem(v)}. Observe that therefore |χ∗(t)| ≤ 2 · |χ(t)| for
every node t of T and that (T, χ∗) is still a tree decomposition of GF .

We can compute δF by traversing over Π. Thereby, for each rule r ∈ Π, we determine the
≺-smallest element v ∈ var(F) among all variables in var(F) and add it to δF (rem(v))
accordingly. This takes time O(k · |Π|). Overall, computing LTD T takes time O(k ·
(|N | + |Π|)).
For (2), we take LTD T as defined above and modify T , χ∗, and δF as follows, which
results in T , χ , and δF , respectively. Whenever there is a node t of T with |δF (t)| > 1,
where δF (t) = {c1, . . . , co}, we replace t by a path of o many copy nodes {t1, . . . , to} of t
with χ (ti) := χ∗(t) such that δF (ti) := {ci} for node ti ∈ {t1, . . . , to}. Observe that
thereby the number of nodes in T is increased by at most |F | and therefore the runtime
claim holds as well.

Note that the LTD of the proof of the proposition above can be slightly adapted such
that we avoid doubling the bag sizes in the worst case. However, thereby the labeling for
a node t as defined above needs to be “shifted” to a suitable representative child node
of t, which slightly complicates the algorithm sketched above.

Example 2.20. Consider once again the QBF Q and matrix D = matrix(Q) from
Example 2.2 as well as Figure 2.3 (right). Recall that T1 is a tree decomposition of GD.
Further, T2 is a 3-nice, non-redundant, and atomic labeled tree decomposition (T, χ, δD)

29

2. Preliminaries

of D that can be obtained with such a slightly adapted procedure as the one given in the
proof of Proposition 2.19.

Observe that labeled tree decompositions for Boolean formulas naturally extend to the
case of Quantified Boolean formulas by using the matrix of QBFs, as defined by the
primal graph of a QBF in Section 2.5.

Labeled Tree Decompositions for Answer Set Programs
Next, we precisely define labeled tree decompositions for answer set programs.

Definition 2.21. A labeled tree decomposition (LTD) T of an answer set program Π is
a labeled tree decomposition of set Π of rules, as defined in Definition 2.16.

Similar to above, we can establish the following results for LTDs.

Proposition 2.22. Given an answer set program Π and a tree decomposition (T, χ)
of GΠ of width k, where T = (N, E). Then, one can construct (1) a non-redundant
LTD T = (T, χ∗, δΠ) of Π in time O(k · (|N | + |Π|)). Further, (2) a non-redundant,
atomic LTD T = (T , χ , δΠ) of Π can be constructed in time O(k · (|N | + |Π|)).

Proof. The proof proceeds almost identical to the proof of Proposition 2.19, but formula F
is replaced by program Π and instead of clauses and variables we have rules and atoms,
respectively.

Further, we also show that such a non-redundant, atomic LTD can be constructed for
disjunctive programs that are head-cycle-free (HCF), where the labeling function of the
LTD only refers to normal rules. More precisely, we construct a non-redundant, atomic
LTD of a normal program, which is the result of reducing from a given head-cycle-free
program by using Rules (2.1).

Theorem 2.23. Given an HCF program Π and a tree decomposition (T, χ) of GΠ of
width k, where T = (N, E). Then, one can construct a non-redundant, atomic LTD T =
(T , χ , δΠ) of the program Π obtained by the reduction consisting of Rules (2.1), in
time O(k · (|N | + |Π|)). Further, the number of rules in Π is at most O(k · |Π|) and the
width of T is k.

Proof. For a rule r ∈ Π and atom x ∈ Hr, in the following we let R(r, x) refer to the
rule obtained by applying the reduction consisting of Rules (2.1) for r and x. The
proof takes a non-redundant, atomic LTD T = (T , χ , δΠ) of Π as constructed in
Proposition 2.22. Then, in the following we modify T , χ , and δΠ, which results in T ,
χ , and δΠ, respectively. Whenever there is a node t of T with |Hr| > 1 for r ∈ δΠ(t),
where Hr = {x1, . . . , xo}, we replace t by a path of o many copy nodes {t1, . . . , to}
of t with χ (ti) := χ (t) such that δΠ(ti) := {R(r, xi)} for node ti ∈ {t1, . . . , to}.

30

2.6. Labeled Tree Decompositions

Consequently, the number of rules and nodes in T is thereby increased by at most k · |Π|,
since LTD T is non-redundant, i.e., each rule r ∈ Π occurs in δΠ at most once, and due
to the observation that |Hr| ≤ k for rules r appearing in a bag program. Therefore the
runtime claim holds.

Note that this result also shows that the overhead of transforming a head-cycle-free
program of treewidth k into a normal program using Rules (2.1), can be regarded as
slightly better than the quadratic worst-case runtime overhead due to shifting [Dix et al.,
1996]. Indeed, if for a program Π the treewidth k = tw(GΠ) is reasonably small, i.e.,
k |at(Π)| and k |Π|, Proposition 2.23 reveals a subquadratic runtime.

31

CHAPTER 3
Upper Bounds for Utilizing

Treewidth by Dynamic
Programming

Everything should be made as simple as possible, but not simpler.

— Albert Einstein

One of the most prominent methods to utilize treewidth [Cygan et al., 2015; Downey and
Fellows, 2013] is by means of dynamic programming on tree decompositions. Thereby, the
method of dynamic programming [Bellman, 1954; Dreyfus and Law, 1977], which generally
refers to breaking down problems in a divide-and-conquer fashion, is guided along a tree
decomposition, where the decomposition is traversed in post-order (bottom-up traversal)
such that during the traversal a table is computed for each node of the decomposition.
While for a given graph the computation of a tree decomposition of minimal width
(treewidth) is NP-hard, it is possible to efficiently approximate treewidth [Bodlaender
et al., 2016; Bodlaender, 1996; Feige et al., 2008] and compute a tree decomposition, and
there are also numerous efficient heuristics as well as exact solvers available [Abseher
et al., 2017; Dell et al., 2017].

The literature distinguishes plenty of research on dynamic programming of tree decompo-
sitions for diverse problems and formalisms [Bertelè and Brioschi, 1972, 1973; Bodlaender
and Kloks, 1996; Flum and Grohe, 2006; Niedermeier, 2006]. There are even existing
implementations that take advantage of treewidth in the form of (a) specialized solvers
such as dynasp, dynQBF, gpuSAT, and fvs-pace [Fichte et al., 2017b; Charwat and
Woltran, 2017; Fichte et al., 2018b, 2019b; Kiljan and Pilipczuk, 2018] as well as (b) gen-
eral systems that exploit treewidth like D-FLAT [Bliem et al., 2016a], Jatatosk [Bannach
and Berndt, 2019], and sequoia [Langer et al., 2012]. Some of these systems explicitly
use dynamic programming to directly exploit treewidth by means of tree decompositions,

33

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

whereas others provide some kind of declarative layer to model the problem and compute
the decomposition and dynamic programming internally.

This chapter concerns the development of dynamic programming algorithms on tree
decompositions, whereby we particularly focus on diverse fragments of answer set pro-
gramming. While for answer set programming there is a wide range of more fine-grained
studies [Truszczyński, 2011], also in parameterized complexity [Fichte et al., 2019c; Lack-
ner and Pfandler, 2012], including treewidth [Jakl et al., 2009; Pichler et al., 2010; Gottlob
et al., 2010; Pichler et al., 2014] as well as related measures [Bliem et al., 2016b], deeper
studies on the complexity of the diverse fragments for treewidth have not been conducted
yet. To this end, Section 3.1 starts by discussing basics on dynamic programming on
tree decompositions, where this concept is exemplarily illustrated by means of Boolean
satisfiability (Sat). Then, Section 3.2 concerns about dynamic programming algorithms
for diverse fragments of answer set programming as follows. In Section 3.2.1, we start with
extending the algorithm for Boolean satisfiability of Section 3.1 in order to end up with
an algorithm for solving Asp restricted to the fragment of tight programs. Interestingly,
the algorithm of Section 3.2.1 is also capable of computing supported models and thereby
solves problem Supported Models for any Asp program. Then, in Section 3.2.2 we
discuss an algorithm for solving Normal Asp as well as HCF Asp, which was originally
published in the work [Fichte and Hecher, 2019]. This algorithm is inspired by related
works on Asp for treewidth [Pichler et al., 2014] and guides the characterization of answer
sets by Lin and Zhao [2003], but extended to head-cycle-free programs [Ben-Eliyahu and
Dechter, 1994], along a tree decomposition. Finally, Section 3.2.3 extends an existing
algorithm [Jakl et al., 2009] for Disjunctive Asp, thereby showing how to solve Asp
for any logic program by means of dynamic programming. This algorithm was first
discussed in the work [Fichte et al., 2017a] and we also published an improved implemen-
tation [Fichte et al., 2017b] of this algorithm later. Surprisingly, for the primal graph
representation of logic programs as introduced in Section 2.5, this algorithm works fine,
whereas for a different graph representation treewidth is insufficient [Pichler et al., 2014]
to achieve tractability in the form of such an algorithm.

3.1 Basics on Dynamic Programming

Algorithms that utilize treewidth for solving a problem in linear time typically proceed
by dynamic programming along the tree decomposition. Thereby the tree is traversed in
post-order and at each node t of the tree information is gathered [Bertelè and Brioschi,
1972, 1973; Bodlaender and Kloks, 1996] in a table τt. A table τ is a set of rows, where a
row u ∈ τ is a sequence or tuple of fixed length. These tables are derived by an algorithm,
which we therefore call table algorithm A. The actual length, content, and meaning of
the rows depend on the algorithm A that derives tables. Therefore, we often explicitly
state A-row if rows of this type are syntactically used for table algorithm A and similar
A-table for tables. For sake of comprehension and readability, we always specify the rows
before presenting the actual table algorithm for manipulating tables. Thereby, for a given

34

3.1. Basics on Dynamic Programming

1. Build
Graph G of I

Store results
in table τt

Apply A on δI(t)

2. Create LTD T =
(T, χ, δI) of I via G

done? no

yes

Visit next
node t of T

in post-order

4. Output Result 3. DP on LTD T via algorithm DPA

Figure 3.1: The DP approach, where table algorithm A modifies tables.

Listing 3.1: Algorithm DPA(I, T) for computing solutions of I via DP on LTD T .
In: Table algorithm A and a LTD T = (T, χ, δI) of I using a graph representation

suitable for A.
Out: Table mapping A-Tabs, which maps each TD node t of T to some computed table τt.

1 A-Tabs ← {} /* empty mapping */
2 for iterate t in post-order(T) do
3 Child-Tabs ← A-Tabs[t1], . . . , A-Tabs[t] where post-children(t) = t1, . . . , t
4 A-Tabs[t] ← At(χ(t), δI(t), Child-Tabs)
5 return A-Tabs

positive integer i and a row u of a table τ , we denote by u(i) the i-th element of row u
and further define τ(i) as τ(i) := {u(i) | u ∈ τ}.

The dynamic programming approach for solving an instance I of a problem P relies on a
table algorithm A and works as outlined in Figure 3.1, consisting of the following steps:

1. Graph: Construct a graph representation G of the instance such that table algorithm A
can solve I via G. In this work we mostly deal with the primal graph GI of an
instance I, i.e., we mainly assume G = GI , but in general the graph representation
can be any graph that is suited for table algorithm A in order to solve instance I.

2. LTD: Compute a (labeled) tree decomposition (T, χ, δI) of I by means of the constructed
graph representation G. The resulting decomposition can be obtained by using
efficient heuristics via, e.g., the tool htd [Abseher et al., 2017]. Further sources of
state-of-the-art decomposers can be found in the latest competition report of this
area [Dell et al., 2017]. Alternatively, one can compute a decomposition, whose
width is guaranteed to be in O(5·tw(G)), which can be obtained in single-exponential
time in the treewidth [Bodlaender et al., 2016]. From these decompositions one
can easily obtain some LTD like for example the canonical LTD as indicated by
Observation 2.15.

3. DP: Run algorithm DPA, which executes table algorithm A for every node t of T in
post-order, and returns A-Tabs mapping every node t to its table. Algorithm DP
works for given table algorithm A as presented in Listing 3.1 and takes as input
instance I and a labeled tree decomposition T . Table algorithm A is executed

35

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

for a specific node t of T and takes as input the corresponding bag χ(t) of t, the
assigned instance δI(t) for node t, as well as a sequence of child tables previously
computed during the post-order traversal for child nodes of t in T , and outputs a
table τt. For simplicity and the ease of presentation, the table algorithms presented
in this thesis are specified for nice (labeled) tree decompositions due to clear case
distinctions depending on type(t). However, recall that this is not a hard restriction,
cf. Proposition 2.6 and Observation 2.15. Further, it is easy to see that for arbitrary
LTDs the clear case distinctions of a table algorithm presented on nice LTDs are
still valid, but are in general just overlapping.

4. Result: Print the solution to I by interpreting the table for root n = root(T) of T . This
works for decision and counting problems. If solutions of I shall be enumerated,
one needs to retrace back the predecessors of rows in the table for the root node
towards leaf nodes of T . Since this thesis mainly concerns about decision and
counting problems, for details on dynamic programming on tree decompositions for
enumeration problems we refer to related work [Pichler et al., 2010].

So far, we did not discuss a table algorithm in details. Indeed, such table algorithms can
be designed for several problems P. Overall, the conceptual idea of these table algorithms
follows a similar pattern. Such a table algorithm A is executed for an instance I of P
and an LTD T = (T, χ, δI) by DPA(I, T) for each node t of the decomposition. Thereby,
for each node t, solutions to bag instance δI(t), which is a part of the canonical bag
instance It, are stored in table τt. However, by construction of the table algorithm,
these solutions can be extended to solutions of the instance I≤t below t, which intuitively
consists of all instances δI(t) for all nodes t below t in the tree of T . This concept of an
instance I≤t below t is formalized for Boolean formulas as follows. Given a formula F ,
a labeled tree decomposition T = (T, χ, δF) of F , and a node t of T . Then, we let the
formula F≤t below t be defined by F≤t := t in T [t] δF (t).

A Table Algorithm for Boolean Formulas
Next, we present as an example a table algorithm for model counting, i.e., for solving
problem #Sat, which therefore can be used also for deciding Boolean satisfiability (Sat).
The table algorithm #Sat we present uses the primal graph representation and is taken
from the original source [Samer and Szeider, 2010] and slightly adapted. The main idea of
algorithm #Sat is to store in table τt rows of the form I, c with I being an interpretation
restricted to bag χ(t) and c ∈ N+ being a positive counter, i.e., c > 0. Thereby, table
algorithm #Sat guarantees that for each row I, c in a table τt we have that I is also a
model of δF (t), where we have c many distinct assignments J over variables var(F≤t)\χ(t)
such that I ∪ J is a model of formula F≤t.

Table algorithm #Sat of Listing 3.2 transforms at node t certain row combinations of the
tables (Child-Tabs) of child nodes of t into rows of table τt. The transformation depends
on the cases of type(t), where either the decomposition node t is an empty leaf node

36

3.1. Basics on Dynamic Programming

Listing 3.2: Table algorithm #Satt(χt, Ft , τ1, . . . , τ) for solving #Sat [Samer and
Szeider, 2010].

In: Node t, bag χt, bag formula Ft , and sequence τ1, . . . τ of child #Sat-tables of t.
Out: #Sat-table τt.

1 if type(t) = leaf then τt ← { ∅, 1 } /* Abbreviations I+, I∼ given below.*/
2 else if type(t) = intr and a ∈ χt is the introduced variable then
3 τt ← { J, c | I, c ∈ τ1, J ∈ {I+

a→0, I+
a→1}, J |= Ft}

4 else if type(t) = rem and a ∈ χt is the removed variable then
/* C(I) is the set that contains the rows in τ1 for assignments

J that are equal to I after removing a */
5 C(I) ← {u | u ∈ τ1, u = J, c , J∼

{a→0,a→1} = I∼
{a→0,a→1}}

6 τt ← { I∼
{a→0,a→1}, J,c ∈C(I) c } | I, · ∈ τ1}

7 else if type(t) = join then
8 τt ← { I, c1 · c2 | I, c1 ∈ τ1, I, c2 ∈ τ2}
9 return τt

For sets S, S and an element e, we abbreviate S∼
S := S \ S , S+

s := S ∪ {s}.

(leaf), a variable a is added to an interpretation (intr), a variable a is removed from an
interpretation (rem), or where coinciding interpretations of the different child tables are
required to be merged (join). For a leaf node t, i.e., if type(t) = leaf, we construct only
the empty (one) assignment as specified in Line 1 of Listing 3.2. Intuitively, whenever
a variable a is introduced in a node t, we guess whether we assign a to true or to false
and check whether the resulting assignment satisfies bag formula Ft = δF (t), cf. Line 3.
Then, we ensure in Line 6 that whenever an atom a is removed in node t, the assignments
contained in table τt do not assign a. Note that this operation potentially “merges”
assignments that are equal in τt, but were different in the table of the child node of t
due to a. Consequently, one has to sum up in Line 6 corresponding counters accordingly,
which is done with the help of collecting these counters in Line 5 of Listing 3.2. For join
nodes, we need to multiply counters of rows with coinciding assignments accordingly,
as given by Line 8. In the end, table algorithm #Sat ensures that an interpretation I
from a row u = I, c of the table τn at the root n = root(T) proves that there are c
many different assignments J to variables var(F≤n) \ χ(n) such that I ∪ J is also a model
of F = F≤n, and hence all of these c many different models prove that the formula is
satisfiable.

Therefore, one can decide Boolean satisfiability with algorithm DP#Sat, even when table
algorithm #Sat is restricted to only storing interpretations, i.e., for simply deciding
satisfiability only the first element of each row is required. We refer by Sat to the resulting
table algorithm that is obtained from table algorithm #Sat as given in Listing 3.2 by
only considering the first row positions (only storing interpretations).

Example 3.1. Consider formula

F := {
c1

{¬a, b, c},

c2

{a, ¬b, ¬c},

c3

{a, d},

c4

{a, ¬d}}.

37

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

d a

b c {a, b, c}
t1

{a, d}
t2

{a}t3

Figure 3.2: Primal graph GF of F from Example 3.1 (left) with a TD T of GF (right).

∅ t1

{a} t2

{a, c} t3

{a, b, c} t4

{a, b} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T :

I4.i, c4.i

{a → 0, b → 0, c → 0}, 1
{a → 0, b → 1, c → 0}, 1
{a → 1, b → 1, c → 0}, 1
{a → 0, b → 0, c → 1}, 1
{a → 1, b → 0, c → 1}, 1
{a → 1, b → 1, c → 1}, 1

τ4

i

1
2
3
4
5
6

I5.i, c5.i

{a → 0, b → 0}, 2
{a → 1, b → 0}, 1
{a → 0, b → 1}, 1
{a → 1, b → 1}, 2

τ5

i

1
2
3
4

i

1
2

I9.i, c9.i

{a → 1, d → 0}, 1
{a → 1, d → 1}, 1

τ9

I11.i, c11.i

{a → 1}, 6

τ11

i

1

I12.i, c12.i

∅, 6
τ12

i

1

i

1
I1.i, c1.i

∅, 1

τ1

Figure 3.3: A nice TD T of GF (cf. formula F from Example 3.1) as well as selected
tables obtained by DP#Sat on F and the canonical LTD of T .

Satisfying assignments of formula F are, e.g., {a → 1, b → 1, c → 0, d → 0}, {a →
1, b → 0, c → 1, d → 0} or {a → 1, b → 1, c → 1, d → 1}. In total, there are 6 satisfying
assignments of F . Observe that Figure 3.2 depicts the primal graph GF of F . Intuitively,
the tree decomposition T of Figure 3.2 allows to evaluate formula F in parts. Figure 3.3
illustrates a nice TD T = (T, χ) of the primal graph GF . In this example we use the
canonical LTD (T, χ, δF) of TD T as given in Observation 2.15, where for every node t
of T , labeling δF is defined by δF (t) := Ft. Figure 3.3 further depicts tables τ1, . . ., τ12
that are obtained during the execution of DP#Sat on nodes t1, . . . , t12. We assume that
each row in a table τt is identified by a number, i.e., row i corresponds to ut.i = It.i, ct.i .

Table τ1 = { ∅, 1 } has type(t1) = leaf. Since type(t2) = intr, we construct table τ2
from τ1 by taking I1.i ∪ {a → 0} and I1.i ∪ {a → 1} for each I1.i, c1.i ∈ τ1. Then,
t3 introduces c and t4 introduces b. Ft1 = Ft2 = Ft3 = ∅, but since χ(t4) ⊆ var(c1)
and χ(t4) ⊆ var(c2), we have Ft4 = {c1, c2} for t4. In consequence, for each I4.i of
table τ4, we have {c1, c2}(I4.i) = ∅ since #Sat enforces satisfiability of Ft in node t.
Since type(t5) = rem, we remove variable c from all elements in τ4 and sum up counters
accordingly to construct τ5. Note that we have already seen all rules where c occurs
and hence c can no longer affect interpretations during the remaining traversal. We
similarly create τ6 = { {a → 0}, 3 , {a → 1}, 3 } and τ10 = { {a → 1}, 2 }. Since

38

3.1. Basics on Dynamic Programming

type(t11) = join, we build table τ11 by taking the intersection of τ6 and τ10. Intuitively,
this combines assignments agreeing on a, where counters are multiplied accordingly. By
definition (primal graph and TDs), for every c ∈ F , variables var(c) occur together in
at least one common bag. Hence, since τ12 = { ∅, 6 }, we can reconstruct for example
model {a → 1, b → 1, c → 0, d → 1} = I11.1 ∪I5.4 ∪I4.3 ∪I9.2 of F using rows in Figure 3.3
that are highlighted in yellow. On the other hand, if F was unsatisfiable, τ12 would
contain no values, i.e., τ12 = ∅. Rows that are marked grey in Figure 3.3 in the end do
not contribute to any model of F .

It is easy to see that the runtime of algorithm #Sat is single exponential in the treewidth.
For the analysis, we assume γ(n) to be the costs for multiplying two n-bit integers, which
can be achieved in time n · log(n) · log(log(n)) [Knuth, 1998; Harvey et al., 2016].

Proposition 3.2 (cf. [Samer and Szeider, 2010]). Given a Boolean formula F and a
nice LTD T = (T, χ, δF) of GF of width k with g nodes. Then, algorithm DP#Sat runs in
time O(2k · γ(|var(F)|) · g · F).

Proof (Sketch). Let d = k + 1 be the maximum bag size of the labeled tree decom-
position T . By construction of #Sat, the table τt has at most O(2d) rows. In total,
with the help of efficient data structures, e.g., for nodes t with type(t) = join, one can
establish a runtime bound of O(2d ·γ(|var(F)|) · F) due to the multiplication of numbers
for join nodes. Then, we apply this to every node t of T , which results in a running
time O(2d · γ(|var(F)|) · g · F).

Lower Bound via a Decomposition-Guided Reduction
Recall the exponential time hypothesis (ETH) of Hypothesis 2.1 and that under the ETH,
it is not expected that one can significantly improve this result, cf. Proposition 2.10. Even
further, it is easy to see that the same lower bound holds for answer set programming,
namely already for the related problem Models. Recall that this problem Models is
rather similar to Sat, but asks for the existence of a model of a logic program, instead of
satisfiability of a Boolean formula.

Proposition 3.3. Unless the ETH fails, one cannot decide Models for any given
program Π in time 2o(tw(GΠ)) · poly(|var(Π)|).

Proof (Sketch). Take any Boolean formula F of problem Sat. From this, we construct a
tight program Π as follows. Thereby, we use as atoms of Π the variables of var(F) and
for each variable v ∈ var(F) we require an additional atom of the form nv. For each
variable v ∈ var(F), we create the rules v ← ¬nv, nv ← ¬v, as well as ← v, nv. Further,
for each formula c = l1 ∨ · · · ∨ l of F , we create the rule ← l1, . . . , l , where li = ¬vi

if li = vi and li = vi if li = ¬vi for each 1 ≤ i ≤ . It is easy to see that for any satisfying
assignment of F there is exactly one model of Π and vice versa. More precisely, for each
satisfying assignment I of F , we construct a model M by letting v ∈ M (nv ∈ M) if

39

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

and only if I(v) = 1 (I(nv) = 0) for every v ∈ var(F), respectively. Conversely, for each
model M of Π, we construct a satisfying assignment I of F , where I(v) = 1 if and only
if v ∈ M for every v ∈ var(F).

Indeed, also the treewidth is linearly preserved. This can be witnessed by the follow-
ing construction, where we assume a given tree decomposition T = (T, χ) of GF of
width tw(GF) and transform it into a tree decomposition of GΠ. We refer to the resulting
tree decomposition of GΠ by T = (T, χ), and we let χ be defined as follows. For each
node t of T , we let χ (t) := χ(t) ∪ {nv | v ∈ var(F)}. It is easy to see that T is indeed a
tree decomposition of GΠ. Further, since |χ (t)| = 2 · |χ(t)| for every node t of T , we have
that tw(GΠ) ∈ O(tw(GF)).

Now, towards a contradiction assume the contrary of this proposition. However, with
the reduction above this would result in an algorithm for solving Sat that runs in
time 2o(tw(GΠ)) ·poly(|var(Π)|). This, however, contradicts the exponential time hypothesis,
as stated in Hypothesis 2.1.

Note that in this proof we first encountered conceptual ideas of what we will call later in
Chapter 4 “decomposition-guided reduction”. Such a reduction takes a problem instance,
but also a tree decomposition of the corresponding primal graph representation of the
instance, and the reduction is constructed in such a way that it also gives rise to a tree
decomposition of the primal graph of the resulting instance. Later, in Chapters 4 and 5
we will make heavy use of this important concept for different purposes.

3.2 Dynamic Programming for ASP
Next, we present algorithms and runtimes for answer set programming and treewidth
for the diverse fragments of programs. Thereby we intuitively proceed in the order of
hardness of the fragments, as the dynamic programming algorithms get more involved
for harder fragments. More concretely, Section 3.2.1 concerns about a table algorithm
for computing supported models, which coincides with answer sets when restricting to
tight programs. Then, Section 3.2.2 generalizes this algorithm to the case of normal and
head-cycle-free programs. Finally, Section 3.2.3 deals with an algorithm for arbitrary logic
programs, thus subsuming disjunctive programs. Each of the discussed table algorithms
leads to certain runtimes and therefore one obtains runtime upper bounds.

Before we discuss table algorithms for the diverse fragments of programs, we briefly define
the instance below a decomposition node for a program Π, a labeled TD T = (T, χ, δΠ)
of Π, and a node t of T as follows. Similar to a formula below a node, we let the
program Π≤t below t be defined by Π≤t := t in T [t] δΠ(t).

3.2.1 Utilizing Treewidth for Tight Asp and Supported Models

One of the easiest fragments of programs in the context of ASP are tight programs. Indeed,
the problem Tight Asp is complete for the complexity class NP and therefore considered

40

3.2. Dynamic Programming for ASP

Listing 3.3: Table algorithm SuppAspt(χt, Πt, τ1, . . . , τ).
In: Node t, bag χt, bag program Πt, and sequence τ1, . . . , τ of child SuppAsp-tables of t.
Out: SuppAsp-table τt.

1 if type(t) = leaf then τt ← { ∅, ∅ } /* Abbreviations are given below.*/
2 else if type(t) = intr and a ∈ χt is the introduced atom then
3 τt ← { J, P ∪ supported(J, Πt) | I, P ∈ τ1, J ∈ {I, I+

a }, J |= Πt}
4 else if type(t) = rem and a ∈ χt is the removed atom then
5 τt ← { I−

a , P−
a | I, P ∈ τ1, I ∩ {a} ⊆ P}

6 else if type(t) = join then
7 τt ← { I, P1 ∪ P2 | I, P1 ∈ τ1, I, P2 ∈ τ2}
8 return τt

For a set S and an element e, we abbreviate S+
e := S ∪ {e} and S−

e := S \ {e}.

to be of similar complexity than deciding Boolean satisfiability (Sat). Consequently, the
characterization of answer sets when restricted to tight programs is rather simple: An
answer set I of a tight program Π (i) is a model of the program, namely, I |= Π, i.e., it
satisfies all the rules and (ii) every atom a ∈ I has to be supported, which is the case if
there is a rule r ∈ Π supporting a with I. Instead of dealing with truth assignments, for
solving Asp we use interpretations, which are sets of those atoms that have the intended
meaning of being assigned to true. Note that it is easy to see that for tight programs no
level mapping for deciding provability is needed, i.e., we have provability for an atom if
it is supported. Indeed in order to obtain provability, it is sufficient [Janhunen, 2006]
to have level mappings per strongly connected component (SCC) of the dependency
graph DΠ and for tight program Π the dependency graph DΠ does not contain any
non-trivial SCC and therefore no cycle at all. The resulting characterization amounts to
ideas similar to Clark’s completion [Clark, 1977], which when applied to tight programs
guarantees already provability of atoms.

Our approach for solving tight programs works similar to Clark’s completion, but we need
to guide the ideas of Clark’s completion, or the determination of support to be precise,
along a tree decomposition in order to not cause runtime overhead for treewidth. Recall
that in Listing 3.2 above, the constructed rows consist of an assignment (plus a counter
for counting). Here, instead of an assignment, every row consists of an interpretation,
which reflects the semantics of ASP and is from a technical perspective also easier to
handle than truth assignments, as well as a set of atoms for remembering supported atoms
of the interpretation. More concretely, we design a table algorithm SuppAsp, whose rows
consist of an interpretation I ⊆ χ(t) and a set of atoms P ⊆ I marking supported atoms
of I. Let Π be a tight program, T = (T, χ, δΠ) be a labeled tree decomposition of Π,
and t be a node of T . Then, table algorithm SuppAsp ensures for each row u = I, P
of a SuppAsp-table τt the following: First, we have (1) I |= δΠ(t) and that there is an
interpretation J ⊆ at(Π≤t) \ χ(t) such that I can be extended to a model I = I ∪ J , i.e.,
I |= Π≤t, where every atom in J is supported. Further, the table algorithm ensures that
(2) for an atom a ∈ I we have a ∈ P if and only if a is supported by I using Π≤t.

This leads us to the following definition of SuppAsp-rows as well as SuppAsp-tables.

41

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

Definition 3.4. Given a program Π, an LTD (T, χ, δΠ) of GΠ, and a node t of T . Then,
a SuppAsp-row for t is a sequence of the form I, P with I ⊆ χ(t) and P ⊆ I that
ensures the following:

1. I |= δΠ(t) and

2. there exists I ⊆ at(Π≤t) \ χ(t) such that

• (I ∪ I) |= Π≤t,
• each atom in I is supported by a rule in Π≤t, and
• we have that a ∈ P if and only if a is supported by a rule in Π≤t

Finally, the SuppAsp-table for node t is the largest set of SuppAsp-rows for t.

Next, we discuss table algorithm SuppAsp as presented in Listing 3.3 in more de-
tails. To this end, we define for a given interpretation I and a program Π the func-
tion supported(I, Π) := {a | r ∈ Π , r supports a with I}. Then, for leaf nodes t
where type(t) = leaf we only set the empty interpretation and the empty set of supported
atoms as given in Line 1 of Listing 3.3. Intuitively, whenever an atom a is introduced in a
node t, i.e., type(t) = intr, we decide in Line 3 whether we include a in the interpretation,
ensure that the resulting interpretation is a model of bag program Πt = δΠ(t), and
determine bag atoms that are supported in consequence of this decision. When removing
an atom a in a node t of type rem, in Line 5 we only keep those rows where either a /∈ I
or a has been supported and is therefore contained in P, and then we remove from all
remaining rows a accordingly. In case the node is of type join, we combine two rows
in two different child tables, where, intuitively, in Line 7 we are enforced to agree on
interpretations I. However, concerning individual supported atoms P , it suffices that an
atom is supported in at least one of the rows.

Example 3.5. Recall the program Π := {
r1

a ∨ b ← ;
r2

c ∨ e ← d;
r3

d ← b, ¬e;
r4

e ← b, ¬d;
r5

b ← e, ¬d;
r6

d ← ¬b}. from Example 2.4. Figure 3.4 depicts a TD T = (T, χ) of the
primal graph GΠ of Π. Further, the figure illustrates a snippet of tables, which we
obtain when running DPSuppAsp on program Π and the canonical LTD (T, χ, δΠ) of T (cf.
Observation 2.15) according to Listing 3.3.

In the following, we briefly discuss some selected rows of some selected tables. Note that
for simplicity we write τj instead of τtj and identify rows by their node and identifier i
in the figure. For example, the row u13.2 = I13.2, P13.2 ∈ τ13 refers to the second row
of table τ13 for node t13. Node t1 is of type leaf and consequently table τ1 has only
one row, which consists of the empty interpretation and the empty set of proven atoms
(Line 1). Node t2 is of type intr and introduces atom a. Executing Line 3 results in
τ2 = { ∅, ∅ , {a}, ∅ }. Node t3 is of type intr and introduces b. Then, bag program

42

3.2. Dynamic Programming for ASP

∅ t1

{a}t2

{a, b} t3

{b} t4

∅t5

{c}t6

{c, e}t7

{c, d, e}t8

{d, e}t9

{b, d, e}t10

{b, d}t11

{b}t12

{b}t13

∅
t14

T :

I3.i, P3.i

{a}, {a}
{b}, {b}
{a, b}, ∅

τ3
i

1
2
3

I4.i, P4.i

∅, ∅
{b}, {b}

τ4

i

1
2

i

1
2
3
4
5

I9.i, P9.i

∅, ∅
{d}, ∅
{e}, ∅
{d, e}, {e}
{d, e}, ∅

τ9

I13.i, P13.i

∅, ∅
{b}, {b}

τ13

i

1
2

I1.i, P1.i

∅, ∅
τ1

i

1

I12.i, P12.i

∅, ∅
{b}, ∅
{b}, {b}

τ12

I11.i, P11.i

{d}, {d}
{b}, {b}
{b, d}, ∅
{b, d}, {d}

τ11

i

1
2
3
4

i

1
2
3

I10.i, P10.i

{d}, {d}
{b, d}, {d}
{b, e}, {b, e}
{d, e}, {d, e}
{d, e}, {d}
{b, d, e}, {e}

τ10
i

1
2
3
4
5
6

I8.i, P8.i

∅, ∅
{c}, ∅
{d}, ∅
{e}, ∅
{c, d}, {c}
{d, e}, {e}
{c, e}, ∅
{c, d, e}, ∅

τ8
i

1
2
3
4
5
6
7
8

Figure 3.4: A nice TD T of GΠ (cf. program Π from Example 2.4) as well as selected
tables obtained by DPSuppAsp on Π and the canonical LTD of T .

at node t3 is Πt3 = δΠ(t3) = {a ∨ b ← }. By construction (Line 3) we ensure that
interpretation I3.i is a model of Πt3 for every row I3.i, P3.i in τ3.

Node t4 is of type rem. Here, we restrict the rows such that they contain only atoms
occurring in bag χ(t4) = {b}. To this end, Line 5 takes only rows u3.i of table τ3 where
atoms in I3.i are also proven, i.e., contained in P3.i. In particular, every row in table τ4
originates from at least one row in τ3 where either a ∈ P3.i is supported or where a ∈ I3.i.
Basic conditions of a TD ensure that once an atom is removed, it will not occur in any
bag at an ancestor node. Hence, we also encountered all rules where atom a occurs.
Nodes t5, t6, t7 are symmetric to nodes t1, t2, t3. Then, node t8 introduces an atom, t9
removes an atom and node t10 again introduces an atom. Observe that P10.2 = {d} since
d is supported by rule r3, whereas b cannot be supported by any rule in δΠ(t10) = Πt10.
However, P10.3 = {b, e} since both atoms b and e are supported by rules r5 and r4,
respectively. In particular, in row u10.3 atom e is used to derive b and atom b is used to
derive e. Note that such a “cyclic support” is not permitted if one aims for computing
answer sets. We proceed similar for nodes t11 and t12. At node t13 we join tables τ4

43

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

and τ12 according to Line 7.

Finally, τ14 = ∅, i.e., Π has a supported model. One such model can be constructed
by joining interpretations I of yellow marked rows of Figure 3.4 represent supported
model {b, e}. Similar to previous examples, those rows that are highlighted gray do not
participate in any supported model of Π. Interestingly, after recalling that program Π is
not tight (cf. the positive dependency graph DΠ of Figure 2.1), one might observe that
for Π its supported models coincide with the answer sets of Π. The reason is that while
atom b of answer set {b, e} is supported by rule r5 as determined in this example, b can
also be proven by rule r1 and therefore {b, e} is indeed also an answer set of Π. There
are no further supported models of Π containing all atoms of a positive cycle and hence
we conclude that the supported models coincide with the answer sets of Π.

An example of a more general case of this algorithm, namely for computing answer
sets of normal and head-cycle-free programs will be discussed in the next section (cf.
Example 3.12).

The following theorem on correctness assumes nice, labeled tree decompositions. However,
this restriction is imposed due to the ease of presentation and it is not a hard restriction,
cf. Proposition 2.7.

Theorem 3.6. The algorithm DPSuppAsp is correct. In other words, given a tight pro-
gram Π and a nice LTD T = (T, χ, δΠ) of GΠ. Then, DPSuppAsp(Π, T) computes for each
node t of T its SuppAsp-table. Consequently, Π has an answer set if and only if ∅, ∅ is
a SuppAsp-row for root(T).

Proof (Idea). The actual proof is a special case that follows from a more general result
later, cf. Theorem 3.15. The idea is as follows. Correctness consists of both soundness
and completeness. For soundness, we show the invariant given by Definition 3.4 for
each table τt that is computed by table algorithm SuppAsp, thereby assuming a set of
SuppAsp-rows for each child node of t. More precisely for every node t of T , we have
that SuppAsp only computes SuppAsp-rows, given a set of SuppAsp-rows for each child
node of t. Further, completeness is shown in a top-down manner, where we assume that
SuppAsp computes a SuppAsp-table for the parent node of t and show then that also
the set of SuppAsp-rows obtained by table algorithm SuppAsp for node t is actually a
SuppAsp-table.

This algorithm SuppAsp allows us to compute supported models for more general pro-
grams Π.

Corollary 3.7. Let Π be a program and T = (T, χ, δΠ) be a nice LTD of Π. Then, Π
has a supported model if and only if ∅, ∅ is a SuppAsp-row for root(T).

Proof. The proof immediately follows by the proof of Theorem 3.6 and the definition of
supported models.

44

3.2. Dynamic Programming for ASP

Theorem 3.8. Given a program Π and an LTD T = (T, χ, δΠ) of GΠ of width k with g
nodes. Then, algorithm DPSuppAsp runs in time O(3k · g · Π) = 2O(k) · g · Π .

Proof (Sketch). The actual proof follows from a more general result later, cf. Theorem 3.16
and therefore we only provide a brief sketch here. Let d = k + 1 be the maximum bag
size of the labeled tree decomposition T . The table τt has at most O(3d) rows, since for a
SuppAsp-row I, P we have by construction of algorithm SuppAsp that an atom can be
either in I, both in I and P , or neither in I nor in P . In total, with the help of efficient
data structures, e.g., for nodes t with type(t) = join, one can establish a runtime bound
of O(3d · Π). Then, we apply this to every node t of T , which results in a running
time O(3d · g · Π) ⊆ 2O(k) · g · Π .

Proposition 3.9. Unless the ETH fails, neither problem Supported Models nor
problem Tight Asp can be solved in time 2o(k) · poly(|at(Π)|), where Π is a program
(instance) of the respective problem Supported Models or Tight Asp and k is the
treewidth of GΠ.

Proof. This corollary is a direct consequence of Proposition 3.3, since Sat can be solved
with the same program Π, as constructed in Proposition 3.3, via problem Supported
Models or Tight Asp.

3.2.2 Solving Normal Asp and HCF Asp for Treewidth
The idea of the previous subsection, namely table algorithm SuppAsp, can be generalized
in order to decide Asp for normal and even for head-cycle-free (HCF) programs. Recall
that compared to tight programs, a normal program can have cyclic dependencies in
the positive dependency graph, which makes it harder to analyze whether an atom is
indeed justified (proven). Our approach to resolve this challenge is to implicitly apply
along the TD the characterization of answer sets by Lin and Zhao [2003] relying on level
mappings, but extended to head-cycle-free programs [Ben-Eliyahu and Dechter, 1994].
To this end, let T = (T, χ, δΠ) be an LTD of Π and t be a node of T . Then, we store
in table τt at each node t rows of the form I, P , σ . The first position consists of an
interpretation I restricted to the bag χ(t). The second position consists of a set P ⊆ I
that represents atoms in I for which we know that they have already been proven. For
the third position σ, we need to define I-distinct level mappings as follows.

Definition 3.10. Let Π be a program, T = (T, χ) be a TD of GΠ, t be a node of T ,
and I ⊆ χ(t). Then, we refer to a level mapping σ : I → N over I such that σ(a) = σ(b)
for every a, b ∈ χ(t) with a = b, by I-distinct level mapping. The I-distinct level
mapping σ is compatible with a J-distinct level mapping σ if for every a, b ∈ I ∩ J
with a = b we have σ(a) < σ(b) whenever σ (a) < σ (b).

So, the third position σ is an I-distinct level mapping. Then, our table algorithm HCFAsp
ensures for a row I, P , σ in a node t, I |= δΠ(t) and that I can be extended to an

45

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

Listing 3.4: Table algorithm HCFAspt(χt, Πt, τ1, . . . , τ).
In: Node t, bag χt, bag program Πt, and sequence τ1, . . . , τ of child HCFAsp-tables of t.
Out: HCFAsp-table τt.

1 if type(t) = leaf then τt ← { ∅, ∅, ∅ } /* Abbreviations are given below.*/
2 else if type(t) = intr and a ∈ χt is the introduced atom then
3 τt ← { J, P ∪ proven(J, ϕ , Πt), ϕ

| I, P , ϕ ∈ τ1, J ∈ {I, I+
a }, J |= Πt, ϕ ∈ levelmaps(ϕ, J)}

4 else if type(t) = rem and a ∈ χt is the removed atom then
5 τt ← { I−

a , P−
a , ϕ−

a | I, P , ϕ ∈ τ1, I ∩ {a} ⊆ P}
6 else if type(t) = join then
7 τt ← { I, P1 ∪ P2, ϕ | I, P1, ϕ ∈ τ1, I, P2, ϕ ∈ τ2}
8 return τt

For a set S and an element e, we abbreviate S+
e := S ∪ {e} and S−

e := S \ {e}. For an S-distinct level
mapping ϕ, we let ϕ−

e be the S−
e -distinct level mapping compatible with σ.

interpretation J := I ∪ I , where I ⊆ at(Π≤t) \ χ(t) such that J |= Π≤t. Even further, it
guarantees that σ can be extended to a level mapping σ over at(Π≤t) such that every
atom in I ∪ P is proven by a rule in Π≤t with σ . In the end, an interpretation I of
a row u of the table τn at the root n proves that there is a superset I ⊇ I that is an
answer set of Π = Π≤n.

Definition 3.11. Given an HCF program Π, an LTD (T, χ, δΠ) of GΠ, and a node t
of T . Then, an HCFAsp-row (for t) is a sequence of the form I, P , σ with I ⊆ χ(t),
P ⊆ I, and σ being an I-distinct level mapping, such that the following holds:

1. I |= δΠ(t) and

2. there exists I ⊆ at(Π≤t) \ χ(t) and an (I ∪ I)-distinct level mapping σ such that

• (I ∪ I) |= Π≤t,
• σ is compatible with σ ,
• each atom in P ∪ I is proven by a rule in Π≤t with σ , and
• we have that a ∈ P if and only if a is proven by a rule in Π≤t with σ

We refer to I ∪ I , P ∪ I , σ by a (corresponding) HCFAsp-solution of I, P, σ .

Further, the HCFAsp-table (for t) is the largest set of HCFAsp-rows for t.

Listing 3.4 presents the algorithm HCFAsp. Intuitively, whenever an atom a is introduced
(intr), we decide whether we include a in the interpretation, determine bag atoms
that can be proven in consequence of this decision, and update the level mapping σ
accordingly. To this end, we define for a given interpretation I and an I-distinct level
mapping σ the set proven(I, σ, Πt) := ∪r∈Πt,a∈Hr {a | B+

r ⊆ I, I ∩ B−
r = ∅, I ∩ (Hr \

{a}) = ∅, B+
r ≺σ a} where B+

r ≺σ a holds if σ(b) < σ(a) is true for every b ∈ B+
r .

Moreover, given an I-distinct level mapping σ and a set I ⊇ I of atoms, we compute

46

3.2. Dynamic Programming for ASP

an I -distinct level mappings extending σ. Therefore, we let levelmaps(σ, I) := {σ |
σ is an I -distinct level mapping compatible with σ}. When removing (rem) an atom a,
we only keep those rows where a has been proven (contained in P) and then restrict
remaining rows to the bag (not containing a). In case the node is of type join, we
combine two rows in two different child tables, intuitively, we are enforced to agree on
interpretations I and level mappings σ. However, concerning individual proofs P, it
suffices that an atom is proven in one of the rows.

Example 3.12. Recall the program Π := {
r1

a ∨ b ← ;
r2

c ∨ e ← d;
r3

d ← b, ¬e;
r4

e ← b, ¬d;
r5

b ← e, ¬d;
r6

d ← ¬b}. from Example 2.4. Figure 3.5 depicts a TD T = (T, χ) of the primal
graph GΠ of Π. Further, the figure illustrates a snippet of tables, which we obtain when
running DPHCFAsp on program Π and the canonical LTD of TD T according to Listing 3.4.
For simplicity, for every row I, P , σ the I-distinct level mapping σ is depicted as a
sequence in Figure 3.5. In the following, we again briefly discuss some selected rows of
those tables. Note that for brevity, we write τj instead of τtj and identify rows by their
node and identifier i in the figure. For example, the row u13.3 = I13.3, P13.3, σ13.3 ∈ τ13
refers to the third row of table τ13 for node t13.

Node t1 is of type leaf. Table τ1 has only one row, which consists of the empty inter-
pretation, empty set of proven atoms, and the empty sequence (Line 1). Node t2 is of
type intr and introduces atom a. Executing Line 3 results in τ2 = { ∅, ∅, , {a}, ∅, a }.
Node t3 is of type intr and introduces b. Then, bag program at node t3 is Πt3 = {a∨b ← }.
By construction (Line 3) we ensure that interpretation I3.i is a model of Πt3 for every
row I3.i, P3.i, σ3.i in τ3. Node t4 is of type rem. Here, we restrict the rows such that they
contain only atoms occurring in bag χ(t4) = {b}. To this end, Line 5 takes only rows u3.i

of table τ3 where atoms in I3.i are also proven, i.e., contained in P3.i. In particular,
every row in table τ4 originates from at least one row in τ3 that either proves a ∈ P3.i or
where a ∈ I3.i. Basic conditions of a TD ensure that once an atom is removed, it will
not occur in any bag at an ancestor node. Hence, we also encountered all rules where
atom a occurs.

Nodes t5, t6, t7, and t8 are symmetric to nodes t1, t2, t3, and t4. Nodes t9 and t10 again
introduce atoms. Observe that P10.4 = {e} since σ10.4 does not allow to prove b using
atom e. However, P10.5 = {b, e} as the sequence σ10.5 allows to prove b. In particular,
in row u10.5 atom e is used to derive b. As a result, atom b can be proven, whereas
ordering σ10.4 = b, e does not serve in proving b. We proceed similar for nodes t11
and t12. At node t13 we join tables τ4 and τ12 according to Line 7. Finally, τ14 = ∅,
i.e., Π has an answer set and in fact joining interpretations I of yellow marked rows of
Figure 3.5 leads to {b, e}. Recall that similar to before, rows that are highlighted in grey
do not contribute to any answer set of Π.

We are now in the position to state the correctness of our algorithm DPHCFAsp, consisting
of both soundness (Lemma 3.13) as well as completeness (Lemma 3.14). However, note

47

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

∅ t1

{a}t2

{a, b} t3

{b} t4

∅t5

{c}t6

{c, e}t7

{c, d, e}t8

{d, e}t9

{b, d, e}t10

{b, d}t11

{b}t12

{b}t13

∅
t14

T :

I3.i, P3.i, σ3.i

{a}, {a}, a
{b}, {b}, b
{a, b}, ∅, a, b
{a, b}, ∅, b, a

τ3
i

1
2
3
4

I4.i, P4.i, σ4.i

∅, ∅,
{b}, {b}, b

τ4

i

1
2

i

1
2
3
4
5

I9.i, P9.i, σ9.i

∅, ∅,
{d}, ∅, d
{e}, ∅, e
{d, e}, {e}, d, e
{d, e}, ∅, e, d

τ9

I13.i, P13.i, σ13.i

∅, ∅,
{b}, {b}, b

τ13

i

1
2

I1.i, P1.i, σ1.i

∅, ∅,
τ1

i

1

I12.i, P12.i, σ12.i

∅, ∅,
{b}, ∅, b
{b}, {b}, b

τ12

I11.i, P11.i, σ11.i

{d}, {d}, d
{b}, ∅, b
{b}, {b}, b
{b, d}, ∅, d, b
{b, d}, ∅, b, d
{b, d}, {d}, b, d

τ11

i

1
2
3
4
5
6

i

1
2
3

I10.i, P10.i, σ10.i

{d}, {d}, d
{b, d}, ∅, d, b
{b, d}, {d}, b, d
{b, e}, {e}, b, e
{b, e}, {b, e}, e, b
{d, e}, {d, e}, d, e
{d, e}, {d}, e, d
{b, d, e}, {e}, b, d, e
{b, d, e}, ∅, b, e, d
{b, d, e}, {e}, d, b, e
{b, d, e}, ∅, e, b, d
{b, d, e}, {e}, d, e, b
{b, d, e}, ∅, e, d, b

τ10

i

1
2
3
4
5
6
7
8
9
10
11
12
13

I8.i, P8.i, σ8.i

∅, ∅,
{c}, ∅, c
{d}, ∅, d
{e}, ∅, e
{c, d}, ∅, c, d
{c, d}, {c}, d, c
{d, e}, ∅, e, d
{d, e}, {e}, d, e
{c, e}, ∅, c, e
{c, e}, ∅, e, c
{c, d, e}, ∅, c, d, e
{c, d, e}, ∅, c, e, d
{c, d, e}, ∅, d, c, e
{c, d, e}, ∅, e, c, d
{c, d, e}, ∅, d, e, c
{c, d, e}, ∅, e, d, c

τ8

i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 3.5: A nice TD T of GΠ (cf. program Π from Example 2.4) as well as selected
tables obtained by DPHCFAsp on Π and the canonical LTD of T .

that the proofs of these two lemmas are basically technical case distinctions and do not
provide further insights than the conditions as already given in Definition 3.11.

Lemma 3.13 (Soundness). Given an HCF program Π, a nice LTD (T, χ, δΠ) of Π, and
let t be a node of T with post-children(t) = t1, . . . , t . Further, let vi be an HCFAsp-row
at ti for 1 ≤ i ≤ . Then, each row u = I, P , σ obtained by HCFAspt, i.e., contained
in HCFAspt(χ(t), δΠ(t), {v1}, . . . , {v }) is also an HCFAsp-row at node t.

Proof (Sketch). We proceed by case distinctions.

48

3.2. Dynamic Programming for ASP

Assume Case (i): type(t) = leaf. Then, ∅, ∅, ∅ is an HCFAsp-row at t. This concludes
Case(i).

Assume Case (ii): type(t) = intr and χ(t) \ χ(t1) = {a}. Let v1 = I, P , σ be any
HCFAsp-row at child node t1, and v̂1 = Î , P̂ , σ̂ be any corresponding HCFAsp-solution
of v1, which exists by Definition 3.11. In the following, we show that the way HCFAsp
transforms HCFAsp-row v1 at t1 to an HCFAsp-row u = I , P , σ at t is sound. We
identify two sub-cases.

Case (a): Atom a ∈ I is set to false. Then, HCFAsp constructs u where I = I, σ = σ
and P = P ∪ proven(I , σ , δΠ(t)). Note that by construction I |= δΠ(t). Towards
showing soundness, we define how to transform v̂1 into û such that û is indeed a
corresponding HCFAsp-solution of u constructed by HCFAsp. To this end, we define û as
follows: û = Î , P̂ ∪ proven(I , σ , δΠ(t)), σ̂ . Observe that û is a corresponding HCFAsp-
solution of u according to Definition 3.11. This concludes Case (a).

Case (b): Atom a ∈ I is set to true. Conceptually, the case works analogously to Case
(a). This concludes Cases (b) and (ii).

Assume Case (iii): type(t) = rem and χ(t1) \ χ(t) = {a}. Let v1 = I, P , σ be any
HCFAsp-row at child node t1, and v̂1 = Î , P̂ , σ̂ be any corresponding HCFAsp-solution
of v1, which exists by Definition 3.11. Similar to above, we show that the way HCFAsp
transforms HCFAsp-row v1 at t1 to an HCFAsp-row u = I , P , σ at t is sound. Algorithm
HCFAsp constructs u where I = I \ {a}, σ is the I -distinct level mapping compatible
with σ and P = P \ {a}. Therefore, it is easy to see that v̂1 can be transformed into û
such that û is indeed a corresponding HCFAsp-solution of u constructed by HCFAsp.
Observe that already û := v̂1 is a corresponding HCFAsp-solution of u according to
Definition 3.11.

Assume Case (iv): type(t) = join. Observe that χ(t1) = χ(t2) = χ(t). Let v1 =
v2 = I, P , σ be any HCFAsp-row at child nodes t1, t2, and v̂1 = Î1, P̂1, σ̂1 , v̂2 =
Î2, P̂2, σ̂2 be any corresponding HCFAsp-solution of v1 and v2, respectively, which exist

by Definition 3.11. Similar to above, we show that there is a corresponding HCFAsp-
solution û of u. To this end, let û := Î1 ∪ Î2, P̂1 ∪ P̂2, σ , where σ is an (Î1 ∪ Î2)-distinct
level mapping that is compatible with both σ̂1 and σ̂2. Such a level mapping σ can
be easily obtained by viewing σ̂1 as a sequence of atoms, where atoms are ordered in
ascending order of their level. Then, we add to sequence σ̂1 those atoms of σ̂2 that are not
in χ(t), but in the exact same order as in sequence σ̂2 and in relation to atoms χ(t) of σ̂1.
Finally, the result is a sequence σ , which is clearly compatible with both σ̂1 and σ̂2.

Lemma 3.14 (Completeness). Let Π be an HCF program, (T, χ, δΠ) be a nice LTD of Π,
and t be node of T , where type(t) = leaf and post-children(t) = t1, . . . , t . Given an
HCFAsp-row u = I, P , σ at node t. Then, there exists s = {v1}, . . . , {v } where vi is
an HCFAsp-row at ti for 1 ≤ i ≤ such that u ∈ HCFAspt(χ(t), δΠ(t), s).

Proof (Sketch). Since u is an HCFAsp-row at t, there is by Definition 3.11 a correspond-
ing HCFAsp-solution û = Î , P̂, σ̂ of u. We proceed again by case distinction.

49

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

Assume that type(t) = intr. Then we define v̂1 := Î \ {a}, Ṗ, σ̇ , where σ̇ is the
(Î \ {a})-distinct level mapping compatible with σ̂ (similar to σ̂, but without mapping a)
and Ṗ := proven(Î \ {a}, σ̇, Π≤t1). From this, we define v1 := I \ {a}, Ṗ ∩ χ(t1), σ ,
where σ is the (I \ {a})-distinct level mapping compatible with σ̇. Observe that all the
conditions of Definition 3.11 are met, i.e., v1 is an HCFAsp-row at t1 and by construction,
v̂1 is a corresponding HCFAsp-solution of v1. By construction of v̂1 and by the definition
of “proven”, we conclude that u can be constructed with HCFAsp using v1, i.e., u ∈
HCFAspt(χ(t), δΠ(t), s).

Assume that type(t) = rem. We define v̂1 := û and from this, we let v1 := Î ∩χ(t1), P̂ ∩
χ(t1), σ , where σ is the (Î ∩ χ(t1))-distinct level mapping compatible with σ̂. Observe
that all the conditions of Definition 3.11 are met, i.e., v1 is an HCFAsp-row at t1 and by
construction, v̂1 is a corresponding HCFAsp-solution of v1. Similar to above, we conclude
that u can be constructed with HCFAsp using v1, i.e., u ∈ HCFAspt(χ(t), δΠ(t), s).

Assume that type(t) = join. Then, we define v̂1 := Î ∩ at(Π≤t1), P̂ ∩ at(Π≤t1), σ1 ,
where σ1 is the (Î ∩ at(Π≤t1))-distinct level mapping compatible with σ̂. Analogously,
we define v̂2 := Î ∩ at(Π≤t2), P̂ ∩ at(Π≤t2), σ2 , where σ2 is the (Î ∩ at(Π≤t2))-distinct
level mapping compatible with σ̂. With the help of these HCFAsp-solutions, we are able
to define corresponding HCFAsp-row at t1 by v1 := Î ∩ χ(t1), P̂ ∩ χ(t1), σ1 , where σ1 is
the (Î ∩χ(t1))-distinct level mapping compatible with σ1, and HCFAsp-row at t2 by v2 :=
Î ∩ χ(t2), P̂ ∩ χ(t2), σ2 , where σ2 is the (Î ∩ χ(t2))-distinct level mapping compatible

with σ2. Observe that all the conditions of Definition 3.11 are met, i.e., v1, v2 is an
HCFAsp-row at t1, t2, respectively, and by construction, v̂1, v̂2 is a corresponding HCFAsp-
solution of v1, v2, respectively. Again, we finally conclude that u can be constructed
with HCFAsp using v1 and v2, i.e., u ∈ HCFAspt(χ(t), δΠ(t), s).

Theorem 3.15 (Correctness). The algorithm DPHCFAsp is correct. In other words, given
a program Π and a nice LTD T = (T, χ, δΠ) of Π. Then, DPHCFAsp(Π, T) computes for
each node t of T its HCFAsp-table. Consequently, Π has an answer set if and only if
∅, ∅, ∅ ∈ τroot(T), where τroot(T) is the obtained HCFAsp-table for the root of T .

Proof (Sketch). The proof establishes both soundness and completeness.

For soundness, we inductively apply Lemma 3.13 for every node t of T in post-order,
starting with the empty leafs of T . By Lemma 3.13, HCFAsp is correct for the empty
leave nodes of T , i.e., HCFAsp only computes HCFAsp-rows at t for every leaf node t of T .
Then, we apply Lemma 3.13 subsequently for every node t of T , where soundness has
already been established for every child node in children(t). Consequently, every row that
is computed by table algorithm HCFAsp is correct, and therefore table algorithm HCFAsp
called with a certain node t only computes HCFAsp-rows at t.

For completeness, we need to make sure that indeed for every HCFAsp-row at a node t
there are suitable predecessor HCFAsp-rows at child nodes of t. We show this by induction
starting from the empty root node root(T) towards the leave nodes of T . More concretely,
by Lemma 3.14, for every row in the HCFAsp-table at root(T), there is a HCFAsp-row

50

3.2. Dynamic Programming for ASP

for every child node of root(T). We continue applying Lemma 3.14, until we reach the
leaves of T .

Consequently, the combination of soundness and completeness establishes that HCFAsp
computes for every node t of T the HCFAsp-table at t.

Finally, we establish the claim as follows.

“=⇒”: Assume that Π has an answer set. By definition 3.11, there is an HCFAsp-row
at root(T). As a result, by soundness and completeness with the help of Lemmas 3.13
and 3.14, respectively, we have that ∅, ∅, ∅ is an HCFAsp-row at root(T) obtained by
algorithm DPHCFAsp for root node root(T).

“⇐=”: Assume that ∅, ∅, ∅ is an HCFAsp-row at root(T) obtained by algorithm DPHCFAsp
for root node root(T). Then, by soundness and completeness as above, there is a
corresponding HCFAsp-solution M, P, σ such that indeed M is an answer set of Π.

The runtime behavior of the algorithm above is as follows.

Theorem 3.16. Given an HCF program Π and an LTD T = (T, χ, δΠ) of Π of width k
with g nodes. Then, algorithm DPHCFAsp runs in time O(3k ·k!·g· Π) = O(2k·log(k)·g· Π).

Proof (Sketch). Let d = k + 1 be the maximum bag size of the labeled tree decomposi-
tion T . The table τt has at most 3d · d! rows, since for a row I, P , σ we have at most d!
many I-distinct level mappings σ, and by construction of algorithm HCFAsp, an atom
can be either in I, both in I and P, or neither in I nor in P. In total, with the help of
efficient data structures, e.g., for nodes t with type(t) = join, one can establish a runtime
bound of O(3d · d! · Π). Then, we apply this to every node t of the tree decomposition,
which results in running time O(3d · d! · g · Π) ⊆ O(3k · k! · g · Π).

In fact, also this runtime can probably not be significantly improved, assuming the
ETH. Indeed, one can obtain runtime lower bounds under the ETH and show that the
level mappings are essential and cannot be avoided. However, the proof is a bit more
involved and therefore shifted to Section 5.2, which is dedicated to lower bounds (cf.
Theorem 5.35).

3.2.3 Solving (Disjunctive) Asp for Treewidth
Next, we are going to solve the full problem Asp, which refers to arbitrary logic programs.
Of course, we thereby also obtain an algorithm for solving Disjunctive Asp, which is
the problem Asp when restricted to disjunctive programs.

Recall the semantics of answer set programming. For an interpretation M to be an
answer set of a program Π, (i) the interpretation M has to be a model of the program
and (ii) there is no smaller model C M with C being a model of the reduct ΠM . In this
section, we present a table algorithm Asp, which is heavily based on the characterization

51

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

Listing 3.5: Table algorithm Aspt(χt, Πt, τ1, . . . , τ).
In: Node t, bag χt, bag program Πt, and sequence τ1, . . . , τ of child Asp-tables of t.
Out: Asp-table τt.

1 if type(t) = leaf then τt ← { ∅, ∅ } /* Abbreviations are given below.*/
2 else if type(t) = intr and a ∈ χt is the introduced atom then
3 τt ← { M+

a , Mod({M} ∪ [C {a}] ∪ C, Πt
M+

a) | M, C ∈ τ1, M+
a |= Πt} ∪

4 { M, Mod(C, Πt
M) | M, C ∈ τ1, M |= Πt}

5 else if type(t) = rem and a ∈ χt is the removed atom then
6 τt ← { M−

a , {C−
a | C ∈ C} | M, C ∈ τ1}

7 else if type(t) = join then
8 τt ← { M, (C1 ∩ C2) ∪ (C1 ∩ {M}) ∪ ({M} ∩ C2) | M, C1 ∈ τ1, M, C2 ∈ τ2}
9 return τt

For a set S, a set S of sets, and an element e, we abbreviate S {e} := {S ∪ {e} | S ∈ S}, S+
e := S ∪ {e},

and S−
e := S \ {e}.

∅ t1

{a} t2

{a, b} t3

{a, b, c} t4

{a, c} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T :

M4.i

{c}
{a}
{a, c}
{b, c}
{a, b, c}

τ4

i

1
2
3
4
5

i

1
2
3

M9.i

{a}
{d}
{a, d}

τ9

M11.i

∅
{a}

τ11

i

1
2

i

1
M1.i

∅

τ1

Figure 3.6: A nice TD T of the primal graph GΠ̇ of program Π̇ from Example 2.3 as well
as selected tables obtained by DPModAsp on Π̇ and the canonical LTD of T .

of semantics above. Our algorithm is given in Listing 3.5 and it will be discussed in two
parts: (i) finding models of Π and (ii) finding models which are subset minimal with
respect to ΠM . For the sake of clarity and towards a comprehensive example, we first
present only the first tuple positions (red text) of algorithm Asp to solve Task (i). The
resulting (reduced) table algorithm aims at computing models of the program Π. We
call this table algorithm ModAsp, which is quite similar to the table algorithm #Sat of
Listing 3.2 as already discussed above, but without the counting.

Example 3.17. Consider program Π̇ := {
r1

{a; b} ← c;
r2

c ← 1 {b = 1, ¬a = 1};
r3

d ∨ a ← }
from Example 2.3 and in Figure 3.6 tree decomposition T = (T, χ) of GΠ̇ and the tables τ1,
. . ., τ12, which illustrate computation results obtained during post-order traversal of the
canonical LTD of T by DPModAsp.

52

3.2. Dynamic Programming for ASP

Table τ1 = { ∅ } as type(t1) = leaf. Since type(t2) = intr, we construct table τ2
from τ1 by taking M1.i and M1.i ∪ {a} for each M1.i ∈ τ1 (corresponding to a guess
on a). Then, t3 introduces b and t4 introduces c. Π̇t1 = Π̇t2 = Π̇t3 = ∅, but since
χ(t4) ⊆ at(r1) ∪ at(r2) we have Π̇t4 = {r1, r2} for t4. In consequence, for each M4.i of
table τ4, we have M4.i |= {r1, r2} since ModAsp enforces satisfiability of Π̇t in node t.
We derive tables τ7 to τ9 similarly. Since type(t5) = rem, we remove atom b from all
elements in τ4 to construct τ5. Note that we have already seen all rules where b occurs
and hence b can no longer affect witnesses during the remaining traversal. We similarly
construct τt6 = τ10 = { ∅ , a }. Since type(t11) = join, we construct table τ11 by taking
the intersection τ6 ∩ τ10. Intuitively, this combines witnesses agreeing on a. Node t12 is
again of type rem. By definition (primal graph and tree decompositions) for every r ∈ Π̇,
atoms at(r) occur together in at least one common bag. Hence, Π̇ = Π̇t12 and since
τ12 = { ∅ }, and we can construct a model of Π̇ from the tables. For example, we obtain
the model {a, d} = M11.2 ∪ M4.2 ∪ M9.3, as highlighted in the figure (yellow). Again, rows
colored in grey are not part of any answer set of Π̇

The complete Asp algorithm is given in Listing 3.5. Tuples in τt are of the form M, C .
We refer by witness to M ⊆ χ(t), which represents a model of Πt witnessing the existence
of M ⊇ M with M |= Π≤t. The family C ⊆ 2M contains sets of models C ⊆ M of the
GL reduct (Πt)M . A set C witnesses the existence of a set C where C ⊆ C M and
C |= (Π≤t)M . Therefore, we refer to each element C ∈ C by counter-witness and C is
called counter-witness set.

Concretely, we define Asp-rows and Asp-tables as follows.

Definition 3.18. Given a program Π, an LTD (T, χ, δΠ) of Π, and a node t of T . Then,
an Asp-row (for t) is a sequence of the form M, C with M ⊆ χ(t) and C ⊆ 2M such that
the following holds:

1. M |= δΠ(t),

2. for every C ∈ C we have that C |= δΠ(t)M , and

3. there exists M ⊆ at(Π≤t) \ χ(t) such that

• (M ∪ M) |= Π≤t and

• C is the largest set with C ⊆ 2M such that for each C ∈ C there exists C ⊆
at(Π≤t) \ χ(t) with

– C ∪ C M ∪ M as well as
– (C ∪ C) |= Π(M∪M)

≤t

Further, we let the Asp-table (for t) be the largest set of Asp-rows for t.

53

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

∅ t1

{a} t2

{a, b} t3

{a, b, c} t4

{a, c} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T :

M4.i, C4.i

{c}, ∅
{a}, ∅
{a, c}, {{a}}
{b, c}, ∅
{a, b, c}, {{a}}

τ4

i

1
2
3
4
5

j

1

1

i

1
2

3

M9.i, C9.i

{a}, ∅
{d}, ∅
{a, d}, {{a},

{d}}
τ9

j

1
2

M11.i, C11.i

∅, ∅
{a}, ∅
{a}, {{a}}

τ11

i

1
2
3

j

1

i

1
M1.i, C1.i

∅, ∅

τ1

j

1

Figure 3.7: Selected tables obtained by DPAsp on Π̇ of Example 2.3 and the canonical
LTD of nice TD T of GΠ̇.

In consequence, the definition above ensures that there is an answer set of Π if table τroot(T)
for the root of the decomposition contains ∅, ∅ , i.e., if ∅, ∅ is an Asp-row for root(T).
In Example 3.17 we already explained the first tuple position and thus the witness part,
we only briefly describe the parts for counter-witnesses. In the introduce case, we want
to store only counter-witness sets for not being minimal with respect to the GL reduct
of the bag-program. Therefore, in Line 3 we construct for M+

a counter-witness sets
from either some witness M (M M+

a), or of any C ∈ C, or of any C ∈ C extended
by a (every C ∈ C was already a counter-witness before). Line 4 ensures that only
counter-witness sets that are models of the GL reduct ΠM

t are stored (via Mod(·, ·)).
Line 6 restricts counter-witness sets to its bag content, and Line 8 enforces that child
tuples agree on counter-witness sets.

Example 3.19. Consider Example 3.17, its tree decomposition T = (·, χ), Figure 3.7,
and the tables τ1, . . ., τ12 obtained by DPAsp. Since we have at(r1) ∪ at(r2) ⊆ χ(t4), we
require C4.i.j |= {r1, r2}M4.i for each counter-witness set C4.i.j ∈ C4.i in tuples of τ4. For
M4.5 = {a, b, c} observe that the only counter-witness set of {r1, r2}M4.5 = {a ← c, b ←
c, c ← 1 ≤ {b = 1}} is C4.5.1 = {a}. Note that witness M11.2 of table τ11 is the result
of joining M4.2 with M9.1 and witness M11.3 (counter-witness set C11.3.1) is the result
of joining M4.3 with M9.3 (C4.3.1 with C9.3.1), and M4.5 with M9.3 (C4.5.1 with C9.3.2).
C11.3.1 witnesses that neither M4.3 ∪ M9.3 nor M4.5 ∪ M9.3 forms an answer set of Π̇.
Since τ12 contains ∅, ∅ there is no counter-witness set for M11.2, and we can construct
an answer set of Π̇ from the tables, e.g., {a} can be constructed from M4.2 ∪ M9.1.

Theorem 3.20. The algorithm DPAsp is correct. In other words, given a program Π and
a nice LTD T = (T, χ, δΠ) of Π. Then, DPAsp(Π, T) computes for each node t of T its
Asp-table. Consequently, Π has an answer set if and only if ∅, ∅ is an Asp-row for
root(T).

54

3.3. Outlook on Dynamic Programming For Other Formalisms

Proof (Idea). The result is a slight generalization of an already established algorithm
for Disjunctive Asp [Jakl et al., 2009]. The proof establishes both soundness and
completeness, where we use Definition 3.18 similarly as in Lemma 3.13 and Lemma 3.14,
respectively For soundness, we show the invariant given by Definition 3.18 for each table
τt that is computed by table algorithm Asp, thereby assuming a set of Asp-rows for each
child node of t. More precisely for every node t of T , we have that Asp only computes
Asp-rows, given a set of Asp-rows for each child node of t. Further, completeness is shown
in a top-down manner, where we assume that Asp computes a Asp-table for the parent
node of t and show then that also the set of Asp-rows obtained by table algorithm Asp
for node t is actually a Asp-table.

Note that similar ideas were applied in an algorithm based on dynamic programming [Jakl
et al., 2009]. However, this algorithm is restricted to disjunctive programs [Jakl et al.,
2009]. Even further, it was shown that for a particular graph representation, treewidth
alone is insufficient in order to design an FPT algorithm capable of evaluating weight
rules [Pichler et al., 2014]. Still, the primal graph representation GΠ of any program Π,
as discussed, analyzed and presented in this work, allows for an FPT algorithm, also
when considering weight rules. More precisely, we obtain the following result.

Theorem 3.21. Given a program Π and an LTD T = (T, χ, δΠ) of Π of width k with g

nodes. Then, algorithm DPAsp runs in time O(22k+2 · g · Π) = 22O(k) · g · Π .

Proof (Sketch). Let d = k + 1 be the maximum bag size of the labeled tree decomposi-
tion T . The table τt has at most 2d · 22d = 22d+d many rows, since for a row M, C for
each of the 2d many witnesses we can have at most 22d many counter-witness sets. In
total, with the help of efficient data structures, e.g., for nodes t with type(t) = join, one
can establish a runtime bound of O(22d+1 · Π) since O(22d+d · Π) ⊆ O(22d+1 · Π).
Then, we apply this to every node t of the tree decomposition, which results in running
time O(22d+1 · g · Π) ⊆ O(22k+2 · g · Π).

However, also the runtime above cannot be significantly improved under the ETH (cf.
Hypothesis 2.1). To this end, we refer once more to Chapter 5, which is dedicated to
lower bounds, where, the lower bound for Asp is given in Theorem 5.18.

3.3 Outlook on Dynamic Programming For Other
Formalisms

The idea of dynamic programming can be extended to further problems and formalisms.
While it is beyond the focus of this thesis, table algorithms similar to those above can be
designed for many more formalisms and problems. Thereby, we can reuse similar ideas
and techniques as discussed in this chapter. In particular, the concept of witnesses and
counter-witnesses as discussed above reappears in further works on

55

3. Upper Bounds for Utilizing Treewidth by Dynamic Programming

• problems for default logic [Fichte et al., 2020d], where counter-witnesses are applied
several times, also to solve entailment (sub-)problems,

• problems relevant to abstract argumentation [Dvořák et al., 2012; Fichte et al.,
2019a], where subset-minimization is also achieved by means of counter-witnesses,

• description logics and non-ground logic programs over bounded arity and fixed
domain size [Fichte et al., 2021a],

• epistemic extensions of logic programs [Hecher et al., 2020a],

• and many more, e.g., [Bodlaender, 1988; Chen, 2004; Bodlaender and Koster, 2008].

Further, projected model counting for Boolean formulas (#∃Sat) served as a kind of
a canonical problem to show that when utilizing treewidth, projected solution count-
ing is oftentimes harder than plain counting. Indeed, this is the case for the problem
#∃Sat [Fichte et al., 2018b], but also for many other formalisms, e.g., abstract argumen-
tation [Fichte et al., 2019a], answer set programming [Fichte and Hecher, 2018, 2019],
and quantified Boolean formulas [Capelli and Mengel, 2019; Fichte and Hecher, 2020].
Recently, these ideas lead to a meta algorithm [Fichte and Hecher, 2020] for projected
solution counting for problems when parameterized by treewidth in general.

56

CHAPTER 4
Decomposition-Guided

Reductions for Treewidth
Structure is not just a means to a solution. It is also a principle and a
passion.

— Marcel Breuer

As already discussed in Chapter 3, there are many approaches to utilize treewidth. One
particular approach, namely dynamic programming on tree decompositions turned into a
rather prominent and flexible technique to utilize treewidth. Indeed, while this approach
was developed quite early, nowadays it is considered to be a vital tool for showing
tractability results for treewidth, see, e.g., [Bertelè and Brioschi, 1972, 1973; Bodlaender
and Kloks, 1996; Flum and Grohe, 2006; Niedermeier, 2006]. This is witnessed by several
specialized implementations that take advantage of treewidth [Charwat and Woltran,
2017; Fichte et al., 2018b, 2019b; Kiljan and Pilipczuk, 2018] as well as general systems
and frameworks [Bliem et al., 2016a; Bannach and Berndt, 2019; Langer et al., 2012]
based on tree decompositions.

Inspired by this direct usage of tree decompositions in order to solve problems, in this
chapter we introduce reductions from a source problem to a target problem that do
not only take an instance of the source problem, but also take into account a tree
decomposition of a graph representation of the instance. At first, such a reduction
might seem straightforward from a theoretical perspective since treewidth can be easily
approximated [Bodlaender et al., 2016; Bodlaender, 1996; Feige et al., 2008]. However,
there are still several advantages of these reductions. On the one hand, the way we use
and define these decomposition-guided reductions, they give rise to a decomposition of the
reduced instance of the target problem. This allows to easily visualize and derive relations
between the given tree decomposition and the resulting decomposition, assuming that
the bags of the resulting decomposition functionally depend on the given decomposition.
In turn, such reductions might almost serve as a proof for certain treewidth guarantees

57

4. Decomposition-Guided Reductions for Treewidth

when reducing problems, or they might even contribute to irreducibility results for
treewidth if used in the context of lower bounds (e.g., Propositions 2.11 or 3.3). On the
other hand, especially in the light of efficient techniques to approximate treewidth or
to obtain decompositions via decent heuristics, e.g., [Abseher et al., 2017; Dell et al.,
2017], results using such decomposition-guided reductions are not limited to treewidth
or to decompositions of smallest widths. Indeed, decomposition-guided reductions that
obey certain treewidth-guarantees might open a broad range of practical applications by
implementing certain problems via treewidth-aware translations to problem formalisms,
for which efficient implementations1 based on dynamic programming already exist.

After introducing the concept of decomposition-guided reductions in Section 4.1, in order
to demonstrate the applicability of decomposition-guided reductions, we focus in this
chapter on reductions for diverse fragments of answer set programming (ASP). So, once
again deciding the consistency of an answer set program (Asp) serves as a prototypical
problem, whose fragments seem have several interesting facets and different obstacles.
More concretely, in Section 4.2 we provide a decomposition-guided reduction from Tight
Asp to Boolean satisfiability (Sat) that linearly preserves the treewidth (cf. [Fandinno
and Hecher, 2021]), which together with an efficient implementation to solve Sat by
utilizing treewidth [Samer and Szeider, 2010], establishes the same runtime upper bound
for Tight Asp as for Sat. Then, Section 4.3 is also based on recent work [Hecher,
2020] and concerns about a decomposition-guided reduction from Asp for normal and
head-cycle free programs to Sat, which increases the treewidth slightly superlinearly.
This result complements and completes the runtime insights gained by Theorem 3.16.
However, unfortunately, we will see in the next chapter that it is not expected that this
decomposition-guided reduction can be significantly improved. Still, there is a chance to
improve this reduction, which is via an additional parameter dedicated to chaining or
confining the cyclicity of Asp.

More concretely, in Section 4.4, we focus on a decomposition-guided reduction from
Normal Asp to the novel class of almost tight programs, which stem from recent
work [Fandinno and Hecher, 2021]. This class of almost tight programs is motivated
by a novel measure called tightness width, which corresponds to the level of tightness
and is bounded both by the treewidth as well as the additional parameter for chaining
the “cyclicity” of programs. While there are measures related to this idea [Lin and
Zhao, 2004a; Gebser et al., 2007; Fassetti and Palopoli, 2010], also from parameterized
complexity [Gottlob et al., 2002b; Lonc and Truszczyński, 2003; Fichte and Szeider, 2015],
to the best of our knowledge this is the first approach that analyzes such a measure in
combination with treewidth. This reduction shows that even programs with large cycles
could be solved relatively fast, as long as the tightness width is small. Interestingly,
our decomposition-guided reduction can be used to decrease the tightness width, but
it also allows us to obtain even a completely tight program, i.e., the reduction can be
used in the context of reducing Normal Asp to Tight Asp. This shows the usage of
decomposition-guided reductions in order to prove upper bound results, which therefore

1 Such efficient implementation techniques will be discussed later in Chapter 7.

58

4.1. Basic Definitions

χ(t3)t3

χ(t1)t1 χ(t2) t2

χ(t4)
t4

χ(t5)t5T :

f(t3, χ(t3))

f(t1, χ(t1)) f(t2, χ(t2))

f(t4, χ(t4))

T : f(t5, χ(t5))

Figure 4.1: Illustration of a decomposition-guided reduction from problem P to problem P ,
where we assume a given instance I of a problem P and a tree decomposition T = (T, χ)
of GI . Then, since the decomposition-guided reduction is constructed for each node t
of T , it immediately gives rise to a tree decomposition T = (T, χ) of GI of the resulting
instance I of problem P. Further, each bag χ (t) of a node t of T functionally depends
on t and χ(t).

complements the usage of dynamic programming techniques of Chapters 3. We finally
conclude this chapter with a brief summary and discussion in Section 4.5.

While this chapter mainly introduces decomposition-guided reductions and deals with
exemplary reductions for Asp, later in Chapter 5 we use these decomposition-guided
reductions in order to establish conditional lower bounds for problems parameterized by
treewidth. Thereby, these reductions aid in solving a problem concerning the lower bound
for evaluating quantified Boolean formulas (QSat) when parameterized by treewidth,
which has been open [Chen, 2004] since 2004. Further, decomposition-guided reductions
also help in proving lower bounds for fragments of ASP and treewidth, and in Chapter 6,
they act as an important driver for establishing a novel tool that simplifies lower bound
proofs for problems parameterized by treewidth.

4.1 Basic Definitions
Before we discuss the different use cases on where to utilize decomposition-guided
reductions, we briefly introduce the concept of the former more precisely. Inspired by
an intuitive account of decomposition-guided reductions as already encountered in the
proof of Proposition 3.3, in this section we discuss a more formal notion of this concept.
A decomposition-guided (DG) reduction R is a function that takes both an instance I
of a problem P and a tree decomposition T = (T, χ) of a graph representation, e.g., the
primal graph GI , of I, and returns an instance I of a problem P . Then, the reduction
directly yields also a tree decomposition T = (T, χ) of the same graph representation
(GI) of I . Thereby, the reduction is focused to be constructed from a decomposition
node’s point of view, i.e., for each node t of T , the constructed bag χ (t) functionally

59

4. Decomposition-Guided Reductions for Treewidth

depends on the original bag χ(t). Figure 4.1 provides a simplified picture of this and
uses a function f taking a node t and its original bag χ(t), in order to construct each
bag χ (t) = f(t, χ(t)). Intuitively, decomposition-guided reductions are guided by a
TD T = (T, χ) and adhere to core ideas of dynamic programming along TD T to ensure
certain properties of the treewidth of the resulting instance I of P . More concretely,
since width(T) is bounded by O(maxt of T (|χ(t)|)), also the treewidth of the resulting
instance is at most O(maxt of T (|f(t, χ(t))|)).
However, this provides only a simplified and abstract picture of these reductions.
Decomposition-guided reductions have to guarantee that indeed T is a tree decom-
position of GI . In order to make decomposition-guided reductions more accessible
as well as more applicable in regard of this guarantee, such a reduction can be con-
structed either bottom-up or top-down. A bottom-up decomposition-guided reduction R↑
is a decomposition-guided reduction, where for each node t of T , the construction
of χ (t) functionally depends on the node t, the bag χ(t), but also on the the con-
structed bags χ (t1), . . . , χ (to) of its child nodes {t1, . . . , to} = children(t). This gives
rise to a function f↑ that takes a tree decomposition node t, its bag χ(t) and a
set χ (children(t) := {χ (ti) | ti ∈ children(t)} of constructed bags for the child nodes of t.
Then, R↑ constructs χ (t) = f↑(t, χ(t), χ (children(t))) for each node t in post-order or
in a bottom-up manner. Observe that this reduction works in post-order as dynamic
programming does (cf. Chapter 3). However, in contrast to dynamic programming,
bottom-up decomposition-guided reductions are not supposed to compute tables, but are
designed to translate from problem P to problem P . Figure 4.2 illustrates this concept,
which is then formalized in the following definition.

Definition 4.1 (Bottom-Up DG Reduction). A bottom-up DG reduction R↑ from a
problem P to a problem P takes an instance I of P and a TD T = (T, χ) of GI . Then,
R↑ constructs an instance I of P and guarantees the existence of a TD T = (T, χ)
of GI . Further, there exists a function f↑ that takes any node t of T , bag χ(t) and the
set χ (children(t)) such that χ (t) = f↑(t, χ(t), χ (children(t))).

Observe that while the tree of T and T is identical, their bag contents might differ.
Next, we briefly provide a simple example that clarifies bottom-up DG reductions.

Example 4.2. Consider a Boolean formula F and a tree decomposition T = (T, χ) of GF .
From this we define a bottom-up DG reduction R↑, which is then used to construct a fresh
instance F = R↑(F, T), where each variable of var(F) appears in at most 1+c many bags
of T , where c is the maximal number of child nodes per node of T . To this end, we require
auxiliary variables of the form xt for each node t of T and variable x ∈ var(χ(t)). Then,
the construction is for each node t of T as follows. We construct xt ←→ xt (4.1) for
every t ∈ children(t) and for each clause c ∈ Ft with c = l1 ∨l2 ∨ l2, we add lt1 ∨lt2 ∨ lt3 (4.2),
where function ·t takes a literal over some variable x and replaces the occurrence of x by xt.
Observe that the resulting formula F is satisfiable if and only if F is satisfiable and there
is even a bijective correspondence between models of F and models of F . Moreover, if T is
a nice tree decomposition, every variable occurs in at most three bags of T . Consequently,

60

4.1. Basic Definitions

χ(t3)t3

χ(t1)t1 χ(t2) t2

χ(t4)
t4

χ(t5)t5T :

f↑(t3, χ(t3), {χ (t1), χ (t2)})

f↑(t1, χ(t1), ∅) f↑(t2, χ(t2), ∅)

f↑(t4, χ(t4), ∅)

T : f↑(t5, χ(t5), {χ (t3), χ (t4)})

Figure 4.2: Illustration of a bottom-up decomposition-guided reduction from problem P
to problem P , where we assume a given instance I of a problem P and a tree decompo-
sition T = (T, χ) of GI . Then, the reduction is constructed for each node t of T and
it immediately gives rise to a tree decomposition T = (T, χ) of GI of the resulting
instance I of problem P. Each bag χ (t) of a node t of T functionally depends on t, χ(t),
as well as χ (t) of every child node t ∈ children(t).

in such a case of nice decompositions, the width of T is in O(3 ·width(T)) = O(width(T))
since χ (t) = χ(t)t ∪ χ (children(t)) by slightly abusing ·t for a set of variables. Observe
that therefore there exists a function f↑ as required by Definition 4.1 and reduction R↑
consisting of Formulas (4.1) and (4.2) is indeed a bottom-up DG reduction. This example
shows that for Boolean satisfiability one can safely assume for a variable to occur only
constantly many times in a tree decomposition of the primal graph of the given formula.

Similar to bottom-up DG reductions, we sometimes also use top-down DG reductions,
which can be defined analogously as follows.

Definition 4.3 (Top-Down DG Reduction). A top-down DG reduction R↓ from a
problem P to a problem P takes an instance I of P and a TD T = (T, χ) of GI . Then,
R↓ constructs an instance I of P and guarantees the existence of a TD T = (T, χ)
of GI . Further, there exists a function f↓ that takes any node t of T , bag χ(t) and the
set χ (parent(t)) such that χ (t) = f↓(t, χ(t), χ (parent(t))).

Intuitively, top-down DG reductions might be slightly preferable over bottom-up DG
reductions, since the width of the resulting decomposition T of GI only depends on the
width of the parent node of t and not also on the widths of all child nodes of t.

Example 4.4. Recall Example 4.2 from above. Observe that the DG reduction R↑
discussed there could be also given in form of a top-down DG reduction R↓, since Formu-
las (4.1) only require a relationship between a node and a parent node, but does not relate
sibling nodes. Consequently, one could slightly modify Formulas (4.1), thereby construct-
ing for every node t of T the formula xt ←→ xparent(t) (4.3) instead of Formulas (4.1).
Then, we obtain a top-down DG reduction R↓, which consists of Formulas (4.2) and (4.3).
This allows us to define χ (t) = f↓(t, χ(t), χ (parent(t))) = χ(t)t ∪ χ (parent(t)), where

61

4. Decomposition-Guided Reductions for Treewidth

function ·t is defined as in Example 4.2. Consequently, we have that width(T) is in
O(2 · width(T)) = O(width(T)).

In the remainder of this chapter, we use this concept of decomposition-guided reductions in
order to establish upper bound results for certain fragments of Asp as well as a reduction
for Asp that adheres to a novel measure in order to reduce “hardness” step-by-step when
evaluating programs.

4.2 Decomposition-Guided Reduction from Tight Asp to
Sat

Recall answer set programming (ASP) and its role as an active research area in knowl-
edge representation and reasoning, cf. Chapter 2. Next, we present a treewidth-aware
reduction from Tight Asp to Sat. While the step from Tight Asp to Sat might seem
straightforward, in general it is not guaranteed that existing reductions, e.g., [Fages, 1994;
Lin and Zhao, 2003; Janhunen, 2006], avoid a significant blowup in the treewidth. Indeed,
already large rules significantly increase the treewidth in the worst case. Therefore we
ensure that the treewidth only increases at most linearly by means of a decomposition-
guided reduction to Sat. Naturally, this reduction also works for solving the problem
Supported Models on any disjunctive program.
Let Π be any given tight program and T = (T, χ, δΠ) be a labeled tree decomposition
of Π. For our reduction, we use as variables besides the original atoms of Π also auxiliary
variables. In order to preserve treewidth, we still need to guide the evaluation of the
provability of an atom x ∈ at(Π) in a node t in T along the TD T , whereby we use
atoms px

t and px
≤t to indicate that x was proven in node t and below t, respectively.

However, we do not need any level mappings, since there is no positive cycle in Π, but
we still guide the idea of Clark’s completion [Clark, 1977] along TD T . Indeed, this is in
line with the characterization of answer sets of tight programs and supported models of
disjunctive programs, as defined in Section 2.4.
Consequently, we construct the following Boolean formula, where for each node t of T we
add Formulas (4.4)–(4.8). Intuitively, Formulas (4.4) ensure that all rules are satisfied.
Formulas (4.5) provide the definition for provability of an atom in a node, whereby an
atom is proven whenever we encounter a rule with the atom in the head that supports
this atom. Then, Formulas (4.6) guide this information from a node to its parent node.
Finally, Formulas (4.7) and (4.8) take care that ultimately an atom that is set to true
requires to be proven. In more details, Formulas (4.7) guarantee, for nodes t removing
bag atom x, i.e., x ∈ χ(t) \ χ(t), that x is proven if x is set to true. Similarly, this is
required for atoms x ∈ χ(n) that are in the root node n = root(T) and therefore never
forgotten, cf. Formulas (4.8).
Preserving answer sets: We obtain exactly one model of the resulting formula for each
answer set of Π. This can be weakened by turning equivalences (↔) into implications
(→).

62

4.2. Decomposition-Guided Reduction from Tight Asp to Sat

a∈B+
r

¬a ∨
a∈B−

r ∪Hr

a for each r ∈ δΠ(t) (4.4)

px
t ←→

r∈δΠ(t),x∈Hr

(
a∈B+

r

a ∧ x ∧
b∈B−

r ∪(Hr\{x})

¬b) for each x ∈ χ(t) (4.5)

px
≤t ←→ px

t ∨ (
t ∈children(t),x∈χ(t)

px
≤t) for each x ∈ χ(t) (4.6)

x −→ px
≤t for each t ∈ children(t), x ∈ χ(t)\χ(t) (4.7)

x −→ px
≤n for each x ∈ χ(n) with n = root(T) (4.8)

Correctness and Treewidth-Awareness
Next, we discuss the correctness of this reduction, which establishes that indeed there
is a bijective correspondence between answer sets of the given program and satisfying
assignments of the resulting Boolean formula.

Theorem 4.5 (Correctness). Let Π be a tight program, where the treewidth of GΠ is
at most k. Then, the Boolean formula F obtained by the reduction above on Π and an
LTD T = (T, χ, δΠ) of Π, consisting of Formulas (4.4)–(4.8), is correct. Formally, for
any answer set I of Π there is exactly one satisfying assignment of F and vice versa.

Proof. “⇒”: Given an answer set M of Π. Then, we construct a model I of F as follows.
For each x ∈ at(Π), we let (c1) x ∈ I if x ∈ M . For each node t of T , and x ∈ χ(t): (c2)
If there is a rule r ∈ δΠ(t) supporting x, we let both px

≤t, px
t ∈ I. Finally, (c3) we set

px
≤t ∈ I, if px

≤t ∈ I for t ∈ children(t).

It remains to show that I is indeed a model of F . By (c1), Formulas (4.4) are satisfied
by I. Further, by definition of LTDs, for each rule r ∈ Π there is a node t with r ∈ δΠ(t).
Consequently, M is proven with level mapping ϕ, for each x ∈ M there is a node t and
a rule r ∈ δΠ(t) proving x. Then, Formulas (4.5) are satisfied by I due to (c2), and
Formulas (4.6) are satisfied by I due to (c3). Finally, by connectedness of TDs, also
Formulas (4.7) and (4.8) are satisfied.

Now, in order to show that I is the only model of F with M ⊆ I, let us assume towards
a contradiction that there is a model I of I with M ⊆ I and I = I . Observe, however,
that Formulas (4.5) and (4.6) are equivalences and that indeed the variables of the
form px

≤t and px
t for every x ∈ at(Π) and t of T are therefore uniquely determined by M .

Consequently, we have that I = I, which contradicts I = I .

“⇐”: Given any model I of F . Then, we construct an answer set M of Π as follows. We
set a ∈ M if a ∈ I for any a ∈ at(Π). It remains to show that M is indeed an answer set
of Π. Obviously, by Formulas (4.4), M is a model of Π. Further, observe that either a is

63

4. Decomposition-Guided Reductions for Treewidth

in the bag χ(n) of the root node n = root(T) of T , or it is forgotten below n. In both
cases we require a node t such that pa

≤t ∈ I by Formulas (4.8) and (4.7), respectively.
Consequently, by connectedness of T and Formulas (4.6) there is a node t , where pa

t ∈ I.
But then, since Formulas (4.5) are satisfied by I, there is a rule r ∈ Πt supporting a.
Therefore, we have that M is an answer set of Π and it is easy to see that M is uniquely
determined for the given model I of F .

In the following, we show that the reduction consisting of Formulas (4.4)–(4.8) indeed
linearly preserves the treewidth and we also state runtime properties.

Theorem 4.6 (Treewidth-Awareness). Let Π be a tight program. Then, the treewidth of
Boolean formula F obtained by the reduction above, consisting of Formulas (4.4)–(4.8),
by using Π and a join-nice LTD T = (T, χ, δΠ) of Π of width k is in O(k).

Proof. We construct a TD T = (T, χ) of GF to show that the width of T increases only
slightly (compared to k). To this end, let t be a node of T with children(t) = t1, . . . , to

and let t̂ be the parent of t (if exists). We inductively define χ (t) := χ(t)∪{py
≤t , px

t , px
≤t |

t ∈ {t1, . . . , to}, x ∈ χ(t), y ∈ χ(t) ∩ χ(t)}. Observe that indeed T is a TD of GF .
Further, |χ (t)| ≤ k + k · (o + 2). Thus, the width of TD T is in O(k), since o = 2 in a
join-nice LTD like T .

Corollary 4.7 (Runtime). Let Π be a tight program, where the treewidth of GΠ is at
most k. Then, for a given tree decomposition T of primal graph GΠ, the reduction above
on Π and T = ((N, E), χ) runs in time O(k2 · (|N | + |Π|)).

Proof. First, we compute a non-redundant, join-nice LTD T = (T, χ , δΠ) of Π in
time O(k · (|N | + |Π|)), cf. Propositions 2.7 and 2.22. For each of the O(k · (|N | + |Π|))
many nodes of T , we construct Formulas (4.4)–(4.8), which runs in time O(k) for
Formulas (4.4) and (4.6)–(4.8) since T is join-nice. Then, since T is non-redundant,
every rule r ∈ Π appears in at most |Hr| ≤ k many instances of Formulas (4.5), increasing
for each of these appearances the formula size by O(k). Overall, we end up with
runtime O(k2 · (|N | + |Π|)), which is polynomial in |at(Π)|.

Recall Proposition 3.9, which states that both Tight Asp and Supported Models
cannot be solved in time better than single exponential in the treewidth. This also
implies, that under reasonable assumptions we cannot significantly improve the reduction
above. More precisely, assuming the exponential time hypothesis, there is no reduction
from Tight Asp to Sat that decreases the treewidth sub-linearly, while still having
polynomial runtime.

Corollary 4.8. Let Π be a tight program, where the treewidth of GΠ is k. Then, under
the ETH, the treewidth of the resulting Boolean formula of the reduction consisting of
Formulas (4.4)–(4.8) can not be significantly improved, i.e., under the ETH one cannot
reduce Π to Boolean formula F in time 2o(k) · poly(|at(Π)|) such that tw(GF) is in o(k).

64

4.3. Decomposition-Guided Reduction from HCF Asp to Sat

Proof. Towards a contradiction assume the contrary of this claim. Then, we can reduce Π
to a Boolean formula F , running in time 2o(k) · poly(|at(Π)|) with tw(GF) being in o(k).
Finally, we use an algorithm for Sat [Samer and Szeider, 2010] on F to solve F with n
variables in time 2o(k) · poly(|n|), which contradicts Proposition 3.9.

4.3 Decomposition-Guided Reduction from HCF Asp to
Sat

Next, we provide a decomposition-guided reduction for HCF Asp, which therefore also
works for Normal Asp. Naturally, there are numerous reductions from Asp [Clark,
1977; Ben-Eliyahu and Dechter, 1994; Lin and Zhao, 2003; Janhunen, 2006; Alviano and
Dodaro, 2016] and extensions thereof [Bomanson and Janhunen, 2013; Bomanson, 2017]
to Sat. Some of these existing reductions for the prominent fragment of normal programs
cause only a sub-quadratic blow-up in the number of variables (auxiliary variables), which
is unavoidable [Lifschitz and Razborov, 2006] if the answer sets should be preserved
(bijectively). There are also further studies on certain classes of programs and their
relationships in the form of whether there exist certain reductions between these classes,
thereby bijectively preserving the answer sets. These studies result in an expressive power
hierarchy among program classes [Janhunen, 2006]. However, structural dependency in
form of, e.g., treewidth, has not been considered yet. If one considers the structural
dependency in form of treewidth, existing reductions cause quadratic or even unbounded
overhead in the treewidth in general.

On the contrary, we present a novel reduction for normal (and even HCF) programs
that increases the treewidth k at most sub-quadratically (k · log(k)). This is indeed
interesting as there is a close connection [Atserias et al., 2011] between resolution-width
and treewidth, resulting in efficient Sat solver runs on instances of small treewidth. As
a result, our reduction could improve solving approaches by means of Sat solvers, e.g.,
ASSAT [Lin and Zhao, 2004b], lp2sat [Janhunen, 2006], or lp2acyc [Gebser et al., 2014;
Bomanson et al., 2016]. Later we show in Section 5.2 that under the ETH one can not
significantly improve the reduction, i.e., avoid the sub-quadratic increase of treewidth.

Having the basic concept of dynamic programming and decomposition-guided reductions
in mind, cf. Sections 3.2.2 and 4.1, we use these ideas to design a reduction from a
normal program Π to a Boolean formula F , which only slightly increases treewidth.
The reduction is inspired by the table algorithm for HCF Asp, cf. Section 3.2, and
the idea of ordering atoms [Janhunen, 2006] according to their level during evaluation
(level mapping). Intuitively, global level mappings, which refer to level mappings applied
for the whole program or on an SCC-by-SCC basis, can cause already huge blowup in
the treewidth. If for example all atoms are ordered at once, this can cause large rules
with more than treewidth many atoms. As a result, we apply these level mappings only
locally within the bags of a TD and end up with a decomposition-guided reduction.
Note that while this approach might look similar to existing techniques that are applied
on an SCC-by-SCC basis [Janhunen, 2006; Gebser et al., 2014; Bomanson et al., 2016],

65

4. Decomposition-Guided Reductions for Treewidth

the approach is slightly different, as different components of the positive dependency
graph DΠ might be spread among different bags of a TD and a bag might only contain
parts of components. If some components are required to be spread across any TD
of primal graph GΠ, whose width coincides with the treewidth, only parts of cycles of
dependency graph DΠ can be analyzed by a table algorithm in a bag. This is exactly the
underlying reason what makes the problem Asp for treewidth slightly harder than the
decision problem Sat (under the ETH, cf. Section 5.2).

Consequently, we still require level mappings, but instead of global level mappings or
level mappings per component, we use local level mappings, which only order within
bags. This is carried out in such a way that our reduction is decomposition-guided
and therefore guided by a TD T = (T, χ) of primal graph GΠ. It uses core ideas of
dynamic programming along T in order to ensure only a slight increase in treewidth of
the resulting Boolean formula. Intuitively, thereby the aforementioned reduction takes
care to keep the increase of width local, i.e., the increase of width happens within the
bags of T . Concretely, if width(T) is bounded by some value O(k), the treewidth of the
resulting formula F is at most O(k · log(k)).

For encoding level mappings along a TD, we need the following notation.

Definition 4.9 (cf. Definition 3.10). Let Π be a program, T = (T, χ, δΠ) be an LTD
of Π, and t be a node of T . Then, we refer to a level mapping over χ(t) by t-local
level mapping. Further, a T -local level mapping is a set containing one t-local level
mapping ϕt for every t of T such that there is an interpretation I with (1) satisfiability:
I |= δΠ(t) for every node t of T , (2) provability: for every a ∈ I, there is a node t of T
and a rule r ∈ δΠ(t) proving a, and (3) compatibility: for every nodes t, t of T and
every a, b ∈ χ(t) ∩ χ(t), whenever ϕt(a) < ϕt(b) then ϕt (a) < ϕt (b).

For a level mapping ϕ, we use the canonical t-local level mapping ϕ̂t for each t of T as
follows. Intuitively, atoms a ∈ χ(t) with smallest level ϕ(a) among all atoms in χ(t)
get ϕ̂t(a) = 0, second-smallest get value 1, and so on. Formally, we define ϕ̂t(a) :=
ordt(a, ϕ) − 1 for each a ∈ χ(t), where ordt(a, ϕ) is the ordinal number (rank) of a
according to smallest level ϕ(a) among χ(t).

Example 4.10. Consider program Π, answer set I = {b, c, d}, and level mapping
ϕ = {b → 0, d → 1, c → 2} of Example 2.4. Level mapping ϕ can easily be extended
to level mapping ϕ := {a → 0, e → 0, b → 0, d → 1, c → 2} over at(Π). Then, using
TD T of GΠ, we can construct T -local level mapping M := {ϕ̂t1 , ϕ̂t2 , ϕ̂t3} of ϕ , where
ϕ̂t1 = {e → 0, d → 1, c → 2}, ϕ̂t2 = {a → 0, b → 0}, and ϕ̂t3 = {e → 0, b → 0, d → 1}.
Consider a TD T of GΠ, which is similar to T , but t1 has a child node t , whose bag is
{c, e}. Then, M ∪ {ϕ̂t } with ϕ̂t = {e → 0, c → 1} is a T -local level mapping.

In our reduction, we use the following Boolean variables. For each atom x ∈ at(Π), we
use x also as Boolean variable. Further, similar to above, we use variables px

t and px
≤t to

indicate that x was proven in node t and below t, respectively. For each atom x ∈ χ(t)

66

4.3. Decomposition-Guided Reduction from HCF Asp to Sat

of each node t of T , we use log(|χ(t)|) many variables of the form bi
xt

forming the
i-th bit of the t-local level (in binary) of x. By the shortcut notation [[x]]t,j , we refer
to the conjunction of literals over bits bi

xt
for 1 ≤ i ≤ log(|χ(t)|) according to the

representation of the number j in binary. For atoms x, x ∈ χ(t) of node t of T , we use
the following notation to indicate that atom x is ordered before atom x :

x ≺t x :=
1≤i≤ log(|χ(t)|)

(bi
xt

∧ ¬bi
xt

∧
i<j≤ log(|χ(t)|)

(bj
xt

−→ bj
xt

)). (4.9)

Example 4.11. Consider Example 4.10 and the T -local level mapping M = {ϕt1 , ϕt2 , ϕt3}.
One could encode level ϕt1(e) = 0 using two bit variables b1

et1
, b2

et1
and forcing it to

false. This results in formula [[e]]t1,0 = ¬b1
et1

∧ ¬b0
et1

. Then, we formulate ϕt1(d) = 1
by [[d]]t1,1 = ¬b1

dt1
∧ b0

dt1
, and ϕt1(c) = 2 by [[c]]t1,2 = b1

ct1
∧ ¬b0

ct1
. For the whole resulting

formula, (e ≺t1 d), (d ≺t1 c) as well as (e ≺t1 c) hold.

4.3.1 Decomposition-Guided Reduction to Sat

For solving consistency, we require to construct the following Formulas (4.4), (4.6)–(4.8),
as well as (4.10)–(4.11) below for each TD node t of T having child nodes children(t) =
{t1, . . . , t }. Thereby, these formulas aim at constructing T -local level mappings along
the TD T , where Formulas (4.4) ensure satisfiability, Formulas (4.10) take care of
compatibility along the TD, and Formulas (4.11) enforce provability within a node, which
is then guided along the TD by Formulas (4.6) to (4.8).

b∈B+
r

¬b ∨
a∈B−

r ∪Hr

a for each r ∈ δΠ(t) (4.4)

(x ≺t y) ←→ (x ≺t y) for each t ∈ children(t) and x, y ∈ χ(t) ∩ χ(t)
with x = y (4.10)

px
t ←→

r∈δΠ(t),x∈Hr

(
b∈B+

r

b ∧ x∧ for each x ∈ χ(t)

(b ≺t x) ∧
a∈B−

r ∪(Hr\{x})

¬a) (4.11)

px
≤t ←→ px

t ∨ (
t ∈children(t),x∈χ(t)

px
≤t) for each x ∈ χ(t) (4.6)

x −→ px
≤t for each t ∈ children(t) and x ∈ χ(t) \ χ(t) (4.7)

x −→ px
≤n for each x ∈ χ(n) with n = root(T) (4.8)

Concretely, Formulas (4.4) ensure that the variables of the constructed Boolean formula F
are such that all (bag) rules are satisfied. Then, whenever in node t an atom x has a

67

4. Decomposition-Guided Reductions for Treewidth

smaller level than an atom y (using ≺t), this must hold also for the parent node of t and
vice versa, cf. Formulas (4.10). Formulas (4.11) take care that an atom x is freshly proven
in node t if and only if there is at least one rule r ∈ δΠ(t) proving x. At the same time we
ensure by Formulas (4.6) that an atom x is proven up to node t if and only if it is proven
up to some child node of t or freshly proven in node t. Finally, Formulas (4.7) guarantee,
for nodes t removing bag atom x, i.e., x ∈ χ(t) \ χ(t), that x is proven if x is set to true.
Similarly, this is required for atoms x ∈ χ(n) that are in the root node n = root(T) and
therefore never forgotten, cf. Formulas (4.8).

Example 4.12. Recall program Π from Example 2.4, and TD T of GΠ given in Figure 2.2.
We briefly show Formula F for node t3.

Formulas Formula F

(4.4) ¬b ∨ d ∨ e; ¬e ∨ d ∨ b; d ∨ b

(4.10) (d ≺t1 e) ↔ (d ≺t3 e); (e ≺t1 d) ↔ (e ≺t3 d)
(4.11) pb

t3 ↔ [e ∧ b ∧ (e ≺t3 b) ∧ ¬d]; pe
t3 ↔ [b ∧ e ∧ (b ≺t3 e) ∧ ¬d];

pd
t3 ↔ [(b ∧ d ∧ (b ≺t3 d) ∧ ¬e) ∨ (d ∧ ¬b)]

(4.6) pb
≤t3 ↔ (pb

t3 ∨ pb
≤t2); pd

≤t3 ↔ (pd
t3 ∨ pd

≤t1); pe
≤t3 ↔ (pe

t3 ∨ pe
≤t1)

(4.7) c → pc
≤t1 ; a → pa

≤t2

(4.8) b → pb
≤t3 ; d → pd

≤t3 ; e → pe
≤t3

Next, we show that the reduction is indeed aware of the treewidth and that the treewidth
is only slightly increased.

Theorem 4.13 (Treewidth-awareness). The reduction from an HCF program Π and a
join-nice LTD T = (T, χ, δΠ) of Π to Boolean formula F consisting of Formulas (4.4),
(4.6)–(4.8), as well as (4.10)–(4.11) only slightly increases treewidth. Concretely, if k is
the width of T , then the treewidth of GF is at most O(k · log(k)).

Proof. We construct a TD T = (T, χ) of GF to show that the width of T increases only
slightly (compared to k). To this end, let t be a node of T with children(t) = t1, . . . , to

and let t̂ be the parent of t (if exists). We define B(t, x) := {bj
xt

| x ∈ χ(t), 1 ≤ j ≤
log(|χ(t)|) }. Then, we inductively define χ (t) := χ(t) ∪ (x∈χ(t) B(t, x) ∪ B(t̂, x)) ∪

{py
≤t , px

t , px
≤t | t ∈ {t1, . . . , to}, x ∈ χ(t), y ∈ χ(t) ∩ χ(t)}. Observe that indeed T is a

TD of GF . Further, |χ (t)| ≤ k + k · log(k) · 2 + k · (o + 2). Thus, the width of TD T is
in O(k · log(k)), since o = 2 in a join-nice LTD like T .

Corollary 4.14. The reduction from an HCF program Π and a TD T = (T, χ) of GΠ
with T = (N, E) to Boolean formula F consisting of Formulas (4.4), (4.6)–(4.8), as well
as (4.10)–(4.11) uses at most O(k · log(k) · |N |) many variables.

Proof. The result follows immediately from the construction of Theorem 4.13.

68

4.3. Decomposition-Guided Reduction from HCF Asp to Sat

Later we will see the lower bound for Normal Asp, which indicates that one cannot
expect to significantly improve this increase of treewidth. Next, we present consequences
for the runtime required to create the Boolean formula.

Theorem 4.15 (Runtime). The reduction from an HCF program Π and a TD T = (T, χ)
of GΠ with T = (N, E) to Boolean formula F consisting of Formulas (4.4), (4.6)–(4.8),
as well as (4.10)–(4.11) runs in time O(k2 · log(k)2 · (|N | + |Π|)), where k forms the width
of T .

Proof. First, we compute a non-redundant, join-nice LTD T = (T, χ , δΠ) of Π in
time O(k · (|N | + |Π|)), cf. Propositions 2.7 and 2.22. Quadratic runtime log(k)2 is
due to Definition 4.9, which is used k2 many times in Formulas (4.10) for each node
of T . Further, each rule r ∈ Π, as given by δΠ of the non-redundant LTD, is involved
once in Formulas (4.11), as well as each atom x ∈ Hr. For each rule r ∈ Π and atom
in Hr these formulas are of size O(k · log(k)2) due to Definition 4.9, which results in
runtime O(|Π| ·k ·(k · log(k)2)). Overall, we end up with runtime O(k2 · log(k)2(|N |+ |Π|)),
which is polynomial in |at(Π)|.

Recall that a TD of GΠ of width tw(GΠ), having only O(|at(Π)|) many nodes [Kloks,
1994, Lemma 13.1.2] always exists. Further, since k2 · log(k)2 might be much smaller
than log(|at(Π)|), for some programs this reduction might pay off compared to global or
component-based level mappings used in tools like lp2sat [Janhunen, 2006] or lp2acyc [Geb-
ser et al., 2014; Bomanson et al., 2016].

4.3.2 Correctness of the Reduction
Now, we discuss the correctness of our reduction, which establishes that T -local level
mappings encoded by Formulas (4.4), (4.6)–(4.8), as well as (4.10)–(4.11) follow ideas of
the characterization of answer sets for HCF programs.

Theorem 4.16 (Correctness). The reduction from an HCF program Π and an LTD T =
(T, χ, δΠ) of Π to Boolean formula F consisting of Formulas (4.4), (4.6)–(4.8), as well
as (4.10)–(4.11) is correct. Concretely, for each answer set of Π there is a model of F .
Further, for each model of F there is exactly one answer set of Π restricted to at(Π).

Proof. “⇒”: Given an answer set M of Π. Then, there is a level mapping ϕ over at(Π),
where every atom of M is proven. Next, we construct a model I of F as follows. For
each x ∈ at(Π), we let (c1) x ∈ I if x ∈ M . For each node t of T , and x ∈ χ(t): (c2)
For every l ∈ [[x]]t,i with i = ϕ̂t(x), we set l ∈ I if l is a variable. (c3) If there is a
rule r ∈ δΠ(t) proving x, we let both px

≤t, px
t ∈ I. Finally, (c4) we set px

≤t ∈ I, if px
≤t ∈ I

for t ∈ children(t).

It remains to show that I is indeed a model of F . By (c1), Formulas (4.4) are satisfied
by I. Further, by (c2) of I, the order of ϕ is preserved among χ(t) for each node t
of T , therefore Formulas (4.10) are satisfied by I. Further, by definition of TDs, for

69

4. Decomposition-Guided Reductions for Treewidth

each rule r ∈ Π there is a node t with r ∈ δΠ(t). Consequently, M is proven with level
mapping ϕ, for each x ∈ M there is a node t and a rule r ∈ δΠ(t) proving x. Then,
Formulas (4.11) are satisfied by I due to (c3), and Formulas (4.6) are satisfied by I due
to (c4). Finally, by connectedness of TDs, also Formulas (4.7) and (4.8) are satisfied.
“⇐”: Given any model I of F . Then, we construct an answer set M of Π as follows.
We set a ∈ M if a ∈ I for any a ∈ at(Π). We define for each node t a t-local level
mapping ϕt, where we set ϕt(x) to j for each x ∈ χ(t) such that j is the decimal number
of the binary number for x in t given by I. Concretely, ϕt(x) := j, where j is such that
I |= [[x]]t,j . Then, we define a level mapping ϕ iteratively as follows. We set ϕ(a) := 0 for
each a ∈ at(Π), where there is no node t of T with ϕt(b) < ϕt(a). Then, we set ϕ(a) := 1
for each a ∈ at(Π), where there is no node t of T with ϕt(b) < ϕt(a) for some b ∈ χ(t) not
already assigned in the previous iteration, and so on. In turn, we construct ϕ iteratively by
assigning increasing values to ϕ. Observe that ϕ is well-defined, i.e., each atom a ∈ at(Π)
gets assigned exactly one value since it cannot be the case for two nodes t, t and atoms
x, x ∈ χ(t) ∩ χ(t) that ϕt(x) < ϕt(x), but ϕt (x) ≥ ϕt (x). Indeed, this is prohibited by
Formulas (4.10) and connectedness of T ensuring that T restricted to x is still connected.
It remains to show that ϕ is a level mapping for Π proving M . Assume towards a
contradiction that there is an atom a ∈ M that is not proven. Observe that either a is in
the bag χ(n) of the root node n of T , or it is forgotten below n. In both cases we require
a node t such that pa

≤t ∈ I by Formulas (4.8) and (4.7), respectively. Consequently, by
connectedness of T and Formulas (4.6) there is a node t , where pa

t ∈ I. But then, since
Formulas (4.11) are satisfied by I, there is a rule r ∈ δΠ(t) proving a with ϕt . Therefore,
since by construction of ϕ there cannot be a node t of T with x, x ∈ χ(t), ϕt(x) < ϕt(x),
but ϕ(x) ≥ ϕ(x), we have that r is proving a with ϕ.

The proof above allows to conclude the following corollary.

Corollary 4.17 (Preservation of Answer Sets). The reduction from an HCF program Π
and an LTD T = (T, χ, δΠ) of Π to Boolean formula F consisting of Formulas (4.4), (4.6)–
(4.8), as well as (4.10)–(4.11) preserves answer sets with respect to at(Π). Concretely,
for each answer set of Π there is exactly one model of F restricted to variables in at(Π).
Conversely, for each model of F there is exactly one answer set of Π.

However, in general we have that for an answer set of Π, there might be several models
of the Boolean formula obtained by the reduction above.
In general, we do not expect to get rid of all redundant T -local level mappings for an
answer set. The reason for this expectation lies in the fact that the different (chains of)
rules required for setting the position for an atom a that is part of cycles of DΠ might be
spread across the whole tree decomposition. Therefore, these local level mappings might
not provide the same information that we get from global level mappings [Janhunen, 2006],
where we have absolute values. Instead, these local level mappings are insufficient to
conclude absolute positions without further information. This is clarified in the following
example.

70

4.3. Decomposition-Guided Reduction from HCF Asp to Sat

d

acb

nb nd {b, c}t2

{b, nb}t1

{a, c}t3 {a, d} t5

{d, nd} t4

{a}t6

Figure 4.3: Graph GΠ (left) and a tree decomposition T of GΠ (right), where program Π
is given in Example 4.18.

Example 4.18. Consider the program Π := {b ∨ nb ←; c ← b; a ← c; d ∨ nd ←; a ← d}.
Observe that program Π has the three answer sets {a, b, c, nd}, {a, c, d, nb}, as well
as {a, b, c, d}. Assume the TD T = (T , χ) of Figure 4.3, whose width is 1 and equals the
treewidth of GΠ. This particular TD T is such that Πt3 = {a ← c} and Πt5 = {a ← d}
and in the following we consider the resulting canonical LTD of T . The issue is that
node t3 only considers atoms a, c and node t5 only considers atoms a, d. Now, assume
answer set M = {a, b, c, d}. Then, given only t3-local level mappings and t5-local level
mappings, we cannot conclude a unique, canonical global level mapping for {a, c, d} ⊆ M .
In particular, one could prove a with either a ← c or with a ← d (or both). From a
global perspective the latter rule would be preferred to prove a, since it allows a level
mapping with a smaller position for a. This is witnessed by the corresponding level
mapping ϕ := {b → 0, c → 1, d → 0, a → 1} for M . If instead we use the rule a ← c for
proving a, this would require level mapping ϕ := {b → 0, c → 1, a → 2, d → 0}, i.e., ϕ
is preferred since ϕ(a) < ϕ (a). However, this information is “lost” due to the usage of
local level mappings, which makes it hard to define canonical level mappings. Therefore
our constructed Boolean formula yields two satisfying assignments for M in this case,
corresponding to proving a either with a ← d or a ← c. In general, a TD similar to T
can not be avoided. In particular, one can construct programs, where similar situations
have to occur in every TD of smallest width.

One can even devise further corner cases, where without absolute orders it is hard to
verify whether it is indeed required that an atom precedes an other atom. This is
still the case, if for each answer set M of Π, and every a ∈ M , there can be only one
rule r ∈ Π supporting a with M . We refer to such HCF programs Π by uniquely provable.
Note that even for uniquely provable programs, there might be several cycles in its
positive dependency graph. In fact, the program that will be used for the hardness
result of Normal Asp and treewidth in Section 5.2 is uniquely provable. However,
even for uniquely provable programs and any TD of GΠ, there is in general no bijective
correspondence between answer sets of Π and models of Formulas (4.4), (4.6)–(4.8), as
well as (4.10)–(4.11). Consequently, one could compare different, absolute levels of level
mappings, cf. [Janhunen, 2006], instead of the levels relative to one TD node as presented
here, which requires to store for each atom in the worst case numbers up to |at(Π)| − 1.
Obviously, this number is then not bounded by the treewidth, and one cannot encode it

71

4. Decomposition-Guided Reductions for Treewidth

without increasing the treewidth in general. Observe that even if one uses level mappings
on a component-by-component basis, similar to related work [Janhunen, 2006], this issue
still persists in general since the whole program could be one large component.

4.3.3 Decomposition-Guided Reduction to Sat on CNFs

The reduction given by Formulas (4.4), (4.6)–(4.8), as well as (4.10)–(4.11) can be
turned into conjunctive normal form without significantly worsening the results given
by Theorem 4.13 or 4.15. To this end, let Π be an HCF program, T = (T, χ, δΠ) be an
atomic labeled tree decomposition of Π, and t be a node of T . Then, we use for given
elements x, x ∈ χ(t) and 1 ≤ i ≤ log(|χ(t)|) the following shortcut

x ≺i
t x := bi

xt
∧ ¬bi

xt
∧

i<j≤ log(|χ(t)|)
(bj

xt
−→ bj

xt
). (4.12)

Further, we require additional auxiliary atoms of the form (b ≺̇t x) and (b ≺̇i
t x) for

atoms b ∈ B+
r , x ∈ Hr with r ∈ δΠ and 1 ≤ i ≤ log(|χ(t)|) . The reduction above is

slightly modified such that Formulas (4.10) are replaced by both Formulas (4.13) and
Formulas (4.14). Indeed, Formulas (4.14) can be converted to CNFs by using rules of
DeMorgan and the distributive law for ∧ and ∨. However, this results in 22 log(χ(t)) many
clauses for each instance of Formulas (4.14) due to the left hand side of Formulas (4.14).
In order for Formulas (4.14) to be correct, we need to exclude duplicate levels, which
is guaranteed by Formulas (4.13) that result in 2 log(χ(t)) many clauses per instance.
Then, original Formulas (4.11) are replaced by Formulas (4.15)–(4.17). Intuitively, for
atomic LTDs, Formulas (4.17) work similar to Formulas (4.11), but uses auxiliary atoms
as discussed above, which are defined by Formulas (4.15) and (4.16). Formulas (4.15)
can be also converted to CNFs by using rules of DeMorgan and distributive law for ∧
and ∨, whereby in particular the direction from right to left (←−) results in 2 log(χ(t))

many clauses per instance.

b∈B+
r

¬b ∨
a∈B−

r ∪Hr

a for each r ∈ δΠ(t) (4.4)

b1
xt

= b1
yt

∨ . . . ∨ bl
xt

= bl
yt

for each x, y ∈ χ(t) with l= log(|χ(t)|) and x=y (4.13)
(x ≺i

t y) −→ ¬(y ≺j
t x) for each t ∈ children(t), x, y ∈ χ(t) ∩ χ(t) with x = y,

and 1 ≤ i ≤ log(|χ(t)|) , 1 ≤ j ≤ log(χ(t)) (4.14)
(b ≺̇i

t x) ←→ (b ≺i
t x) for each r ∈ δΠ(t), x ∈ Hr, b ∈ B+

r , and 1 ≤ i ≤ log(|χ(t)|)
(4.15)

(b ≺̇t x) ←→
1≤i≤ log(|χ(t)|)

(b ≺̇i
t x) for each r ∈ δΠ(t), x ∈ Hr, and b ∈ B+

r (4.16)

72

4.3. Decomposition-Guided Reduction from HCF Asp to Sat

px
t ←→

b∈B+
r

b ∧ x ∧ (b ≺̇t x)∧ for each r ∈ δΠ(t) and x ∈ Hr

a∈B−
r ∪(Hr\{x})

¬a (4.17)

px
≤t ←→ px

t ∨ (
t ∈children(t),x∈χ(t)

px
≤t) for each x ∈ χ(t) (4.6)

x −→ px
≤t for each t ∈ children(t) and x ∈ χ(t) \ χ(t) (4.7)

x −→ px
≤n for each x ∈ χ(n) with n = root(T) (4.8)

This allows us to obtain similar results as with the reduction above.

Theorem 4.19 (Treewidth-awareness). Given an HCF program Π and a TD T ∗ of GΠ,
as well as normal program Π obtained by applying Rules (2.1) on Π. Then, the reduction
from normal program Π and a slightly modified LTD T of TD T ∗ to Boolean formula F ,
consisting of Formulas (4.4), Formulas (4.6)–(4.8), as well as Formulas (4.13)–(4.17),
only slightly increases treewidth. Concretely, if k is the width of T ∗, then the treewidth
of GF is at most O(k · log(k)).

Proof. First, we transform Π and T ∗ into a normal program Π and transform T ∗ into a
non-redundant, atomic, join-nice LTD T = (T, χ, δΠ) of Π of width k by Theorem 2.23
and Proposition 2.7. From this we take program Π and T , and construct Boolean
formula F with the reduction consisting of Formulas (4.4), Formulas (4.6)–(4.8), as well
as Formulas (4.13)–(4.17). Then, we construct a TD T = (T, χ) of GF to show that the
width of T increases only slightly (compared to k). To this end, let t be a node of T
with children(t) = t1, . . . , to and let t̂ be the parent of t (if exists). We define B(t, x) :=
{bj

xt
| x ∈ χ(t), 1 ≤ j ≤ log(|χ(t)|) }, as well as C(t) := {(b ≺̇t x), (b ≺̇i

t x) | r ∈
δΠ, x ∈ Hr, b ∈ B+

r , 1 ≤ i ≤ log(|χ(t)|) }. Then, we inductively define χ (t) := χ(t) ∪
(x∈χ(t) B(t, x)∪B(t̂, x))∪{py

≤t , px
t , px

≤t | t ∈ {t1, . . . , to}, x ∈ χ(t), y ∈ χ(t)∩χ(t)}∪C(t).
Observe that indeed T is a TD of GF . Further, |χ (t)| ≤ k + k · log(k) · 2 + k · (o + 2) +
k · log(k) , since in particular |C(t)| being in O(k · log(k)) due to every rule in δΠ being
normal. Thus, the width of TD T is in O(k · log(k)), since o = 2 in a join-nice LTD
like T .

Observe that the detour in the theorem above from Π via the normal program Π that is
obtained by the standard reduction consisting of Rules (2.1) just ensures the following:
In addition, we also have the guarantee that for each node of the LTD the labeling not
only refers to just one rule r, but also that we consider at most one head atom x ∈ Hr of
this rule in an LTD node. In our case this holds since the obtained Π is normal. This
guarantees that we do not use too many auxiliary atoms of the forms (x ≺̇t y) or (x ≺̇i

t y)
per LTD node. Alternatively, one can also achieve this guarantee by designing a new
definition of LTDs for HCF programs (cf. Definition 2.21) such that δΠ not only assigns
rules to nodes, but such that the labeling assigns rules and head atoms of these rules to
nodes.

73

4. Decomposition-Guided Reductions for Treewidth

Corollary 4.20. The reduction from an HCF program Π and a TD T = (T, χ) of GΠ
with T = (N, E) to Boolean formula F consisting of Formulas (4.4), Formulas (4.6)–(4.8),
as well as Formulas (4.13)–(4.17) uses at most O(k2 · log(k) · |N |) many variables. If Π
is normal, the reduction uses at most O(k · log(k) · |N |) many variables.

Proof. The result follows immediately from the construction of Theorem 4.13 on T .

Theorem 4.21 (Runtime). Let Π be an HCF program, T ∗ = (T ∗, χ∗) with T ∗ = (N, E)
be a TD of GΠ, and let Π be a normal program obtained by applying Rules (2.1) on Π.
Then, the reduction from Π and a slightly modified LTD T of TD T ∗ to Boolean formula F
consisting of Formulas (4.4), Formulas (4.6)–(4.8), as well as Formulas (4.13)–(4.17)
runs in time O(k4 · log(k)3 · (|N | + |Π|)), where k forms the width of T ∗.

Proof. First, we transform Π and T ∗ into a normal program Π and transform T ∗ into a
non-redundant, atomic, join-nice LTD T = (T, χ, δΠ) of Π of width k by Theorem 2.23
and Proposition 2.7 in time O(k · (|N | + |Π|)). Observe that the number of nodes of T
is in O(k · (|N | + |Π|)). From this we take program Π and T , and construct Boolean
formula F with the reduction consisting of Formulas (4.4), Formulas (4.6)–(4.8), as well
as Formulas (4.13)–(4.17). For every of the O(k2) many instances of Formulas (4.13), we
obtain O(k) many clauses of size O(log(k)). Runtime O(k3 · log(k)2 · log(k)) is due to
the O(k2 · log(k)2) many Formulas (4.14), each instance resulting in O(k) many clauses
of size O(log(k)), but for each node of T . Further, each rule r ∈ Π , as given by the non-
redundant LTD (δΠ), is involved once in Formulas (4.17). For each rule r ∈ Π and atom
in Br these formulas are of size O(k·log(k)), which results in runtime O(k·|Π|·k·(k·log(k))).
Formulas (4.15) and (4.16) require runtime O(k2 · log(k) · |Π|). Overall, we end up with
runtime O(k3 · log(k)3 · k · (|N | + |Π|)), which is polynomial in |at(Π)|.

Similar to Theorem 4.16, one can establish correctness of the reduction consisting of
Formulas (4.4), Formulas (4.6)–(4.8), as well as Formulas (4.13)–(4.17) on atomic labeled
tree decompositions of HCF programs.

4.4 Decomposition-Guided Reduction from Asp to
Almost Tight Asp

It turns out that the reduction above from Normal Asp to Tight Asp can not avoid a
certain blowup in the treewidth. Indeed, we will see in Section 5.2, cf. Theorem 5.35,
that under reasonable assumptions, namely the exponential time hypothesis (ETH),
deciding the consistency of normal programs is slightly superexponential and one cannot
significantly improve in the worst case. For a given normal program Π, where k is
the treewidth of the primal graph of the program, this implies that one cannot decide
consistency in time significantly better than 2k· log(k) · poly(|at(Π)|). Consequently, one
can probably not avoid the increase of treewidth from k to O(k · log(k)) of the DG
reduction above.

74

4.4. Decomposition-Guided Reduction from Asp to Almost Tight Asp

While we cannot expect to significantly improve the runtime for normal programs in
the worst case, it still is worth to study the underlying reason that makes the worst
case bad. It is well-known that positive cycles of the dependency graph are responsible
for the hardness [Lifschitz and Razborov, 2006; Janhunen, 2006] of computing answer
sets of normal programs. The particular issue with programs Π in combination with
treewidth and large cycles is that in a TD of GΠ it might be the case that the cycle
spreads across the whole decomposition, i.e., TD bags only contain parts of such cycles,
which prohibits to view these cycles (and dependencies) as a whole. This is also the
reason of the hardness and explains why under bounded treewidth evaluating normal
programs is expected to be slightly harder than evaluating Boolean formulas. However,
if a given normal program only has positive cycles of length at most 3, and each atom
appears in at most one positive cycle, the properties of TDs ensure that the atoms of
each such positive cycle appear in at least one common bag. Indeed, a cycle of length
at most 3 forms a completely connected subgraph and therefore it is guaranteed [Kloks,
1994] that the atoms of the cycle are in one common bag of any TD of GΠ.

Example 4.22. Recall program Π of Example 2.4. Observe that in any TD of GΠ it
is required that there is a node t with χ(t) ⊆ {b, d, e}. Indeed, any cycle of length 3
in the positive dependency graph DΠ (cf. Figure 2.1) is completely connected in GΠ, cf.
Figure 2.2 (left).

In the following, we generalize this observation to cycles of length at most , where we
bound the size of these positive cycles in order to improve the lower bound for programs
of bounded positive cycle lengths. This provides a significant improvement in the running
time on programs, where the size of positive cycles is bounded, and also shows that
indeed the case of positive cycle lengths up to 3 can be generalized to lengths beyond 3.

In the remainder of this chapter, we assume an HCF program Π, whose treewidth is
given by k = tw(GΠ). Recall that scc(a) for each atom a refers to the SCC of a in DΠ.
We let := maxa∈at(Π) |scc(a)| be the largest SCC size among all SCCs of Π. This also
bounds the lengths of positive cycles. If each atom a appears in at most one positive
cycle, we have that |scc(a)| is the cycle length of a and then is the length of the largest
cycle in Π. We refer to the class of HCF programs, whose largest SCC size is bounded by
a parameter by SCC-bounded Asp. Observe that the largest SCC size is incomparable
(orthogonal) to treewidth.

Example 4.23. Consider program Π from Example 2.4. Then, |scc(a)| = |scc(c)| =1,
|scc(b)| = |scc(d)| = |scc(e)| =3, and =3. Assume a program Π , whose primal graph
equals the dependency graph, which is just one large (positive) cycle. This program Π
has treewidth 2 and one can define a TD of GΠ , whose bags are constructed along the
cycle. However, the largest SCC size = |at(Π)|. Conversely, there are programs of
large treewidth with no positive cycle.

There are also related measures from parameterized complexity [Lonc and Truszczyński,
2003], as for example the so-called feedback width [Gottlob et al., 2002b], which depends

75

4. Decomposition-Guided Reductions for Treewidth

on the atoms required to break large SCCs (positive cycles). An other such measure is
the smallest backdoor size, which is the smallest size of a set of atoms such that when
removed from the program, the resulting program is normal or acyclic [Fichte and Szeider,
2015]. Also programs, where the number of even and/or odd cycles is bounded, have been
analyzed [Lin and Zhao, 2004a], which is orthogonal to the size of the largest cycle or
largest SCC size . Indeed, in the worst case, each component might have an exponential
number of cycles in .

Still, bounding sizes of SCCs seems similar to the non-parameterized context, where the
consistency of normal programs is compiled to a Boolean formula (Sat) by a reduction
based on level mappings that is applied on an SCC-by-SCC basis [Janhunen, 2006].
However, such techniques do not preserve the treewidth. On the other hand, while our
approach also uses level mappings and proceeds on an SCC-by-SCC basis, the overall
evaluation is not SCC-based, since this completely destroys the treewidth in the worst
case. Indeed, already large rules with, e.g., O(log(n)) many atoms, where n is the number
of atoms of the given program, might destroy the treewidth. Instead, the evaluation is
guided along a TD by means of a DG reduction. The relaxed notions of Tight Asp
allow us to balance treewidth and tightness, where our reduction is designed to increase
“tightness” at the cost of an increased treewidth. Note that there are also further related
works that implicitly utilize SCCs for solving logic programs [Gebser et al., 2007; Fassetti
and Palopoli, 2010].

4.4.1 Towards Tightness Width and Almost Tightness
Now, we focus on the consistency problem for SCC-bounded programs. The largest SCC
size in combination with treewidth leads to the development of a novel tightness measure
given below. This will then result in a new class of programs that adheres to a certain
“level” of tightness, which is given in terms of the following tightness measure.

Definition 4.24 (Tightness Width). Let Π be an SCC-bounded program of largest SCC
size , T = (T, χ) with T = (N, E) be a TD of GΠ of width k, and t ∈ N be a node
of T . Then, we let scc(x)

t for each atom x of Π be the size of the SCC of x restricted
to χ(t) in DΠ, i.e., scc(x)

t := |χ(t) ∩ scc(x)|. Further, we define the local SCC size t

for a node t as follows t := max{ scc(x)
t | x ∈ χ(t)} and finally the tightness width ι is

defined by ι := max{ t | t ∈ N}.

Intuitively, the local SCC sizes are bounded by the bag sizes (k + 1) as well as the largest
SCC size , but can be even significantly smaller, especially if SCCs are spread across T
and if tree decomposition bags contain parts of many SCCs. This observation motivates
a new (relaxed) measure for almost tightness of Asp and treewidth, where even non-tight
programs with large cycles are considered almost tight on T , as long as ι is small. We
say program Π is ι-tight on T , i.e., “almost” tight on T , if ι ≥ 2.

We say a program Π is ι-tight if Π is ι-tight on a tree decomposition T of GΠ with width(T) =
tw(GΠ), and we refer to the problem Asp restricted to ι-tight programs by ι-Tight

76

4.4. Decomposition-Guided Reduction from Asp to Almost Tight Asp

Asp. Notably, if ι = 1, program Π is actually tight and vice versa, as established in the
proposition below. Consequently, the concept of almost tightness forms a generalization of
tight programs since any tight program is actually 1-tight and for any non-tight program
there has to exist some ι ≥ 2 with the program being ι-tight.

Proposition 4.25. A program Π is 1-tight on some tree decomposition T of GΠ if and
only if Π is tight.

Proof. “⇐=”: If Π is tight, every SCC of DΠ is of size 1 and therefore it is easy to see
that Π is 1-tight on every TD of GΠ.

“=⇒”: If Π is 1-tight on some TD T = (T, χ) of GΠ, then there is no node t of T
and x ∈ χ(t) with |χ(t) ∩ scc(x)| > 1. Assume towards a contradiction that |scc(x)| > 1.
Then, there has to exist an atom y ∈ scc(x) with y = x. Consequently, there is at least
one edge {x, y} of primal graph GΠ. Since T is a TD of GΠ, there has to exist a node t
of T with x, y ∈ χ(t). Then, we conclude that |χ(t) ∩ scc(x)| > 1, which contradicts our
assumption. Therefore, |scc(x)| = 1 for every x ∈ at(Π), i.e., Π is tight.

Observe that even for programs with very large cycles, the tightness width might be
actually small.

Example 4.26. Recall program Π from Example 2.4 and TD T = (T, χ) of GΠ of
Figure 2.2. Observe that Π is 3-tight on T . Consider program Π from Example 4.23.
While is large (= |at(Π)|), we have that ι = 3 for any TD of GΠ of width 2.

This is indeed interesting, since the consistency of program Π that is ι-tight on T for
small values of ι can be decided in a runtime that is similar to the runtime of Sat. This
significantly improves the upper bound (runtime) as presented in Corollary 4.15 and
leads to the following theorem, which we establish in the course of this and the next
section.

Theorem 4.27 (Runtime of ι-Tight Asp). Assume a program Π that is ι-tight on a
TD T of width k, whose number of nodes is linear in |at(Π)|. Then, there is an algorithm
for deciding the consistency of Π, running in time 2O(k·log(ι)) · poly(|at(Π)|).

Observe that for ι-tight programs Π over TDs of GΠ, whose widths coincide with tw(GΠ),
we immediately obtain the corresponding lower bound as follows.

Corollary 4.28. Unless the ETH fails, the problem Asp on an arbitrary program Π that
is ι-tight cannot be solved in time 2o(tw(GΠ)·log(ι)) · poly(|at(Π)|).

Proof. The proof is a direct consequence of Theorem 5.35, since ι ≤ k.

77

4. Decomposition-Guided Reductions for Treewidth

4.4.2 Increasing Almost Tightness via a DG Reduction

Below, we provide a reduction that reduces the tightness width of almost tight programs.
To this end, we assume a program Π being ι-tight on an LTD T = (T, χ, δΠ) of Π, whose
width k coincides with the treewidth of GΠ, and a node t of T . The reduction indirectly
relies on local level mappings ϕt : A → {0, . . . , t−1} for set of atoms A ⊆ at(Π), which
is a function mapping each atom x ∈ A to a level ϕ(x) such that the level does not
exceed scc(x)

t , i.e., ϕ(x) <
scc(x)
t . However, we require atoms bj

xt
, called local level bits,

for x ∈ at(Π) and 1 ≤ j ≤ log(scc(x)
t) , for representing the level ϕt(x) of x for node t in

a mapping ϕt in binary. Further, we use auxiliary atoms of the form (x ≺̇t y) to indicate
that ϕt(x) < ϕt(y) for x, y ∈ χ(t), and provability atoms px

t and px
≤t as before. We also

use the following auxiliary Definition 4.18 for atoms x, y ∈ χ(t) and 1 ≤ i ≤ log(scc(x)
t) ,

which is similar to Definition 4.12, but adapted for Asp and to almost tight programs.
Note that Definition 4.18 uses pseudo-Boolean expressions based on math operator ≤,
which can be easily compiled into a set of 2 log(|χ(t)|) many plain sets of atoms.

x ≺i
t x := {bi

xt
, ¬bi

xt
} ∪ {bj

xt
≤ bj

xt
| i < j ≤ log(|χ(t)|) }. (4.18)

We are ready to discuss the decomposition-guided reduction from program Π being ι-tight
on T to a program Π that is ι -tight on a TD T with ι ≤ ι, where T is the TD that is
anticipated by the reduction, cf. Section 4.1. To this end, let C be the union of those
non-trivial SCCs of DΠ that shall be eliminated. If C = ∅, we obtain the program Π as
result, and if C are all vertices of any non-trivial SCC of DΠ, we obtain a tight program,
whose treewidth is bounded by O(k · log(ι)). Consequently, if C are the vertices of those
non-trivial SCCs that are responsible for large local SCC sizes, one can increase the
level of tightness (decrease ι) at the cost of a slight increase of treewidth. The reduction
consists of Rules (4.19)–(4.30). First, truth values for each atom x ∈ χ(t) ∩ C are guessed
by Rules (4.19) and by Rules (4.20) it is ensured that δΠ(t) is satisfied and that those
atoms in the head Hr of a rule r ∈ δΠ(t) but not in C still appear in the head. The next
block of Rules (4.21)–(4.24) is used for guessing local level bits for atoms x ∈ χ(t) ∩ C,
cf. Rules (4.21) and defining auxiliary atom (x ≺̇t y) by Rules (4.22). Observe that the
way Rules (4.22) are denoted, pseudo-Boolean expressions based on math operator ≤
are used, which can be compiled into 2 log(scc(x)

t) many simpler rules per instance of
Rules (4.22). Rules (4.23) exclude that two atoms of the same component and in the
same node have the same level. While this is not required from a conceptual point of
view, it simplifies the definition of Rules (4.24), More concretely, it is not allowed that
two neighboring nodes of T order two atoms of the same SCC differently. As already
discussed above, if Definition 4.18 is viewed as a set of sets of atoms, every instance of
Rules (4.24) can be simplified into several plain constraints, where every set of atoms
of (x ≺i

t y) is combined with every set of atoms of (y ≺i
t x) accordingly.

Finally, Rules (4.25)–(4.30) derive and ensure provability similar to Formulas (4.11)–(4.8),
but only for atoms in C as well as rules, whose heads contain atoms of C.

78

4.4. Decomposition-Guided Reduction from Asp to Almost Tight Asp

{x} ← for each x ∈ χ(t) ∩ C (4.19)
Hr\C ← B+

r , B−
r ∪ (Hr ∩ C) for each r ∈ δΠ(t) (4.20)

{bj
xt

} ← for each x ∈ χ(t) ∩ C and 1 ≤ j ≤ log(scc(x)
t)

(4.21)
(y ≺̇t x) ← bj

xt
, ¬bj

yt
, for each r ∈ δΠ(t), x ∈ Hr ∩ C, y ∈ B+

r ∩ C with
bj+1

yt
≤ bj+1

xt
, · · · , bl

yt
≤ bl

xt
C = scc(x), l = log(C

t) , and 1 ≤ j ≤ l (4.22)
← b1

xt
= b1

yt
, . . . , bl

xt
= bl

yt
for each x, y ∈ χ(t) ∩ C with C = scc(x) = scc(y),
l = log(C

t) , and x = y (4.23)
← (x≺i

t y), (y≺j
t x) for each x, y ∈ χ(t) ∩ χ(t) ∩ C, t ∈ children(t),

1 ≤ i ≤ log(C
t) , and 1 ≤ j ≤ log(C

t) with
scc(x) = scc(y) and x = y (4.24)

px
t ← x, B+

r , B−
r ∪(Hr\{x}), for each r ∈ δΠ(t), x ∈ Hr ∩ C with C = scc(x)

([B+
r ∩C] ≺̇t x) and B+

r ∩ C = ∅ (4.25)

px
t ← x, B+

r , B−
r ∪(Hr\{x}) for each r ∈ δΠ(t), x ∈ Hr ∩ C with B+

r ∩ scc(x) = ∅
(4.26)

px
≤t ← px

t for each x ∈ χ(t) ∩ C (4.27)
px

≤t ← px
≤t for each x ∈ χ(t) ∩ χ(t) ∩ C with t ∈ children(t)

(4.28)
← x, ¬px

≤t for each x ∈ (χ(t) ∩ C) \ χ(t) with t ∈ children(t)
(4.29)

← x, ¬px
≤n for each x ∈ χ(n) ∩ C with n = root(T) (4.30)

4.4.3 Correctness and Treewidth-Awareness

Next, we show that the reduction above is correct, resulting in Lemma 4.29. Then, the DG
reduction above allows us to establish Lemma 4.30, which shows the treewidth-awareness
of the reduction. Further, in Theorem 4.33, we show that the reduction makes it possible
to remove cyclicity.

Lemma 4.29 (Correctness). Let Π be a program that is ι-tight on an LTD T = (T, χ, δΠ)
of Π such that T is of width k. Then, the program Π obtained by the reduction consisting
of Rules (4.19)–(4.30) on Π, the union C of some non-trivial SCCs of DΠ, and LTD T
is correct. Formally, for any answer set I of Π there is exactly one answer set of Π
restricted to at(Π). Further, for any answer set of Π , there is exactly one answer set
of Π.

79

4. Decomposition-Guided Reductions for Treewidth

Proof. “⇒”: Given an answer set M of Π. Then, there is a level mapping ϕ over M ,
where every atom of M is proven such that ϕ(x) = ϕ(y) with x, y ∈ M . Next, we
construct an answer set M of Π as follows. For each x ∈ at(Π), we let (c1) x ∈ M if
x ∈ M . For each node t of T , and x ∈ χ(t) ∩ C: (c2) For every l ∈ [[x]]t,i with i = ϕ̂t(x),
we set l ∈ M if l is a variable as well as (y ≺̇t x) ∈ M if ϕ̂t(y) < ϕ̂t(x) for x, y ∈ χ(t)
such that there exists a rule r ∈ δΠ with x ∈ Hr and y ∈ B+

r ∩ scc(x). (c3) If there
is a rule r ∈ δΠ(t) proving x, we let both px

≤t, px
t ∈ M . Finally, (c4) we set px

≤t ∈ M ,
if px

≤t ∈ I for t ∈ children(t).

We briefly show that M is indeed an answer set of Π . Observe that Rules (4.19) as well
as (4.21) are satisfied by any interpretation and are therefore also satisfied by M . By
(c1) and since M satisfies all rules of Π, Rules (4.20) are satisfied by M as well. By (c2),
Rules (4.22) are satisfied. Further, by (c2), the order of ϕ is preserved among χ(t) for
each node t of T , therefore Rules (4.23) as well as Rules (4.24) are satisfied by M . Then,
by definition of TDs, for each rule r ∈ Π there is a node t with r ∈ δΠ(t). Consequently,
M is proven with level mapping ϕ, for each x ∈ M there is a node t and a rule r ∈ δΠ(t)
proving x. Then, Rules (4.25) and (4.26) are satisfied by M due to (c3), and Rules (4.27)
and (4.28) are satisfied by M due to (c4). Finally, by connectedness of TDs, also
Rules (4.29) and (4.30) are satisfied.

It remains to show that indeed M is an answer set of Π . To this end, we define a
level mapping ϕ over M and argue that all rules of Π are proven by ϕ . Let therefore
(o1) ϕ (a) := ϕ(a) for each a ∈ M . Further, we define for each t of T , as well as
x, y ∈ χ(t) ∩ C and 1 ≤ j ≤ log(scc(x)

t) (o2) ϕ (bj
xt

) := 0 and (o3) ϕ (y ≺̇t x) := 1 if
there is a rule r ∈ δΠ(t) with y ∈ B+

r ∩ scc(x) and x ∈ Hr. Finally, for each t of T
and x ∈ χ(t) we let (o4) ϕ (px

t) := 1 + max{1, ϕ(y) | y ∈ {x} ∪ Br, r ∈ δΠ(t)} as well as
(o5) ϕ (px

≤t) := 1 + max{ϕ(y) | y ∈ {px
t , px

≤t | t ∈ children(t)}}. Then, atoms in M \ C
are proven by Rules (4.25) and ϕ , due to (o1). Further, atoms in M ∩ C are proven
by Rules (4.19) and ϕ , also due to (o1). Similarly, due to (o2) and (o3), Rules (4.21)
and (4.22) serve in proving corresponding head atoms in M by ϕ . Then, by (o4) we have
that head atoms of Rules (4.25) and (4.26) contained in M are proven by ϕ . Finally,
atoms of M contained in the head of Rules (4.27) and (4.28) can be proven by ϕ due to
(o5).

“⇐”: Given any answer set M of Π . Then, we construct an answer set M of Π as follows.
We set a ∈ M if a ∈ M ∩ at(Π). Observe that since M satisfies Rules (4.20), we have
that M satisfies all rules of Π. It remains to show that M is indeed an answer set of Π.
To this end, we define for each node t a t-local level mapping ϕt, where we set ϕt(x) to j
for each x ∈ χ(t) ∩ C such that j is the decimal number of the binary number for x in t
given by M . Concretely, ϕt(x) := j, where j is such that M |= [[x]]t,j . Then, we define
a level mapping ϕ iteratively as follows. We set ϕ(a) := 0 for each a ∈ M ∩ C, where
there is no node t of T and atom b ∈ scc(a) with ϕt(b) < ϕt(a). Then, we set ϕ(a) := 1
for each a ∈ at(Π) ∩ C, where there is no node t of T and atom b ∈ scc(a), which has
not been already assigned in the previous iteration, such that ϕt(b) < ϕt(a), and so
on. In turn, we construct ϕ for each a ∈ M ∩ C iteratively by assigning increasing

80

4.4. Decomposition-Guided Reduction from Asp to Almost Tight Asp

values to ϕ. Then, we complete ϕ by assigning values to those atoms not yet assigned,
i.e., atoms in (M ∩ at(Π)) \ C. We do this by observing that since M is an answer
set of Π , there is a level mapping ϕ proving M , and by assigning ϕ(a) := ϕ (a) for
each a ∈ χ(t) \ C. Observe that ϕ is well-defined. More precisely, each atom a ∈ M ∩ C
gets assigned exactly one value since it cannot be the case for two nodes t, t and atoms
x, x ∈ χ(t) ∩ χ(t) that ϕt(x) < ϕt(x), but ϕt (x) ≥ ϕt (x). Indeed, this is prohibited
by Rules (4.24) as well as due to connectedness of T ensuring that T restricted to x
(and x) is still connected. Observe that for each atom a ∈ (M ∩ at(Π)) \ C we have that
ϕ is well-defined as well.

It remains to show that ϕ is a level mapping for Π proving M . Assume towards a
contradiction that there is an atom a ∈ M that is not proven. We proceed by case
distinction.
Case a ∈ C: Observe that either a is in the bag χ(n) of the root node n = root(T)
of T , or it is forgotten below n. In both cases we require a node t such that pa

≤t ∈ M
by Rules (4.30) and (4.29), respectively. Consequently, by connectedness of T and
Rules (4.27) and (4.28) there is a node t , where pa

t ∈ M . But then, since pa
t ∈ M has

to be proven due to M being an answer set of Π , either one of Rules (4.25) or (4.26)
prove pa

t ∈ M . Consequently, there is a rule r ∈ δΠ(t) proving a with ϕt . Therefore,
since by construction of ϕ there cannot be a node t of T with x, x ∈ χ(t), ϕt(x) < ϕt(x),
but ϕ(x) > ϕ(x), we have that r is proving a with ϕ.
Case a /∈ C: Since a ∈ M can only be proven by one of Rules (4.20), there is a node t
of T and a rule r ∈ δΠ(t) proving a with ϕt. Consequently, by construction of ϕ, r is
proving a with ϕ.

Next, we show that the treewidth of the reduction is only slightly increased as follows.

Lemma 4.30 (Treewidth-Awareness). Let Π be a program that is ι-tight on a TD T ∗

of GΠ such that T ∗ is of width k, and let Π∗ be a normal program obtained by applying
Rules (2.1) on Π. Then, the treewidth of tight program Π obtained by the reduction
consisting of Rules (4.19)–(4.30) on Π∗, the union C of all non-trivial SCCs of DΠ, and
a slightly modified LTD T of TD T ∗, is in O(k · log(ι)).

Proof. First, we transform Π and T ∗ into a normal program Π∗ and transform T ∗ into a
non-redundant, atomic, join-nice LTD T = (T, χ, δΠ) of Π∗ of width k by Theorem 2.23
and Proposition 2.7. From this we take program Π∗, C, and T in order to construct tight
program Π with the reduction consisting of Rules (4.19)–(4.30). Then, we construct
a TD T = (T, χ) of GΠ in order to show that the width of T increases only slightly
(compared to k). To this end, let t be a node of T with children(t) = t1, . . . , to and
let t̂ be the parent of t (if exists). For every node t of T , whose parent node is t∗,
we let χ (t) := χ(t) ∪ {bj

xt
| x ∈ χ(t) ∩ C, 1 ≤ j ≤ log(scc(x)

t) } ∪ {px
t , px

≤t, p≤t∗ | x ∈
χ(t) ∩ C} ∪ {(b ≺̇t x) | r ∈ δΠ, x ∈ Hr ∩ C, b ∈ B+

r ∩ scc(x)}. It is easy to see that indeed
all atoms of every instance of Rules (4.19)–(4.30) appear in at least one common bag

81

4. Decomposition-Guided Reductions for Treewidth

of χ . Further, we have connectedness of T , i.e., T is indeed a TD of GΠ and |χ(t)| is
in O(k · log(ι)).

Finally, we provide brief arguments on the runtime limits imposed by the reduction
above.

Theorem 4.31 (Runtime). Let Π be a program that is ι-tight on a TD T ∗ = (T ∗, χ∗)
of GΠ with T ∗ = (N, E) such that T ∗ is of width k, and let Π∗ be a normal program
obtained by applying Rules (2.1) on Π. Then, the reduction consisting of Rules (4.19)–
(4.30) on Π∗, the union C of all non-trivial SCCs of DΠ, and a slightly modified LTD T
of TD T ∗, runs in time O(k · (k2 + ι3) · log(k)3 · (|N | + |Π|)).

Proof. First, we transform Π into a normal program Π∗ and transform T ∗ into a non-
redundant, atomic, join-nice LTD T = (T, χ, δΠ) of Π∗ of width k by Theorem 2.23 and
Proposition 2.7 in time O(k · (|N | + |Π|)). Observe that the number of nodes of T is
in O(k ·(|N |+|Π|)). From this we take program Π∗ and T , and construct tight program Π
with the reduction consisting of Rules (4.19)–(4.30). Runtime O(ι3 · log(ι)2 · log(ι)) is
due to the O(ι2 · log(ι)2) many Rules (4.24), each of size O(ι · log(ι)), but for each
node of T . Further, each rule r ∈ Π , as given by δΠ of the non-redundant LTD, is
involved once in Rules (4.25). For each rule r ∈ Π and atom in Br these formulas are of
size O(k · log(ι)), which results in runtime O(k · |Π| · k · (k · log(ι))). Overall, we end up
with runtime O((k2 + ι3) · log(k)3 · k · (|N | + |Π|)), which is polynomial in |at(Π)|.
Corollary 4.32. The reduction from an HCF program Π that is ι-tight on a TD T ∗ =
((N, E), χ∗) of GΠ of width k, to tight program Π consisting of Rules (4.19)–(4.30) uses
at most O(k2 · log(ι) · (|N | + |Π|)) many variables. If Π is normal, the reduction uses at
most O(k · log(ι) · |N |) many variables.

Proof. The result follows immediately from the construction of Theorem 4.31 on T ∗,
since we require O(k · log(ι)) many variables for each node of the decomposition T .

Theorem 4.33 (Removing Cyclicity of ι-Tight Asp). Let Π be a program being ι-tight
on a TD T of width k. Then, there is a tight program Π with treewidth in O(k · log(ι))
such that the answer sets of Π and Π projected to at(Π) coincide.

Proof. Observe that the reduction consisting of Rules (4.19)–(4.30) on Π and T with C
being the union of all non-trivial SCCs of DΠ runs in polynomial time by Theorem 4.31.
The claim follows by correctness (Lemma 4.29) and by treewidth-awareness as given by
Lemma 4.30.

Having established the results above, we are ready to show Theorem 4.27, which states
that the consistency of a program Π that is ι-tight on T can be decided in a runtime
that is similar to the runtime of Sat for small ι. This is achieved using the results of this
section and the findings of Section 4.2, which together allows us to reduce from ι-Tight
Asp to Sat.

82

4.5. Discussion: Different Ways of Treating Hard Cycles

Theorem 4.27 (Runtime of ι-Tight Asp). Assume a program Π that is ι-tight on a
TD T of width k, whose number of nodes is linear in |at(Π)|. Then, there is an algorithm
for deciding the consistency of Π, running in time 2O(k·log(ι)) · poly(|at(Π)|).

Proof. First, we apply the reduction of Section 4.4 on Π and T on the set C of all non-
trivial SCCs of DΠ. This results in a tight program, which is reduced by the reduction
of Section 4.3 to obtain a Boolean formula F . Both reductions run in polynomial
time, i.e., runtime bounded by O(poly(at(Π))). Finally, formula F , whose treewidth is
in O(k · log(ι)) by Lemmas 4.30 and 4.6, are solved by an algorithm [Samer and Szeider,
2010] for Sat in time 2O(k·log(ι)) · (|at(Π)| + |Π|).

Theorem 4.27 assumes a given TD, efficiently computable by means of heuristics [Abseher
et al., 2017]. Alternatively, one can compute [Bodlaender et al., 2016] a TD of GΠ of
width that is a 5-approximation of tw(GΠ) and has a number of nodes linear in |at(Π)|,
in time 2O(k) · |at(Π)|.

4.5 Discussion: Different Ways of Treating Hard Cycles
So far, we have seen several ways to utilize treewidth for normal and head-cycle-free
(HCF) programs. Recall that Section 3.2.2 contains a quite direct method of treating these
programs by means of dynamic programming, where the simple algorithm for computing
supported models is extended by level mappings. The runtime of this algorithm is slightly
superexponential, so the implementation of level mappings seems to cause a slight blowup
in the runtime depending on the treewidth. Indeed, the treewidth dependence on the
runtime increases from 2O(k) (for computing supported models) to 2O(k·log(k)), where k
refers to the treewidth of the primal graph of the given program, cf. also Table 1.1.

Compared to the direct implementation of the previous chapter, this chapter discusses a
different approach. With the help of decomposition-guided reductions, one can implement
the reduction of Section 4.3 in order to apply efficient algorithms for Boolean satisfiability
(Sat). However, also this reduction comes with some overhead, where the treewidth is
increased from k to O(k · log(k)). Given that there is a known correspondence between
resolution width, internally used in Sat solvers, and treewidth [Atserias et al., 2011], this
treewidth blowup might be bearable for some use cases.

Still, in Section 4.4 we finally deal with an orthogonal approach that tries to overcome
this blowup. To this end, we define a new measure, the so-called tightness width, which
combines treewidth of the primal graph of a program with the largest size of any SCC of
the dependency graph of the program. Interestingly, tight program always have tightness
width 1 and non-tight programs are linked to a larger tightness width, but there are
even programs with large cycles that still have a rather small tightness width. With this
additional measure, we are able to solve normal and HCF programs via Sat solving, with
a treewidth blowup from k to O(k · log(ι)), where k refers to the treewidth and ι indicates
the tightness width. Even further, the reduction of Section 4.4 allows us to just increase

83

4. Decomposition-Guided Reductions for Treewidth

“tightness”, where the tightness width is reduced at the cost of an increased treewidth.
So, instead of reducing to a fully tight program that then has tightness width 1, one can
also decide to just break the cycles of certain SCCs in order to find the golden mean,
where the resulting program is almost tight and the treewidth is still reasonably small.

In the next chapter we show how to use decomposition-guided reductions in order to
establish a methodology for proving lower bounds. This allows us to provide lower bound
results similar to, e.g., Proposition 2.10 and Corollary 3.9, but for further formalisms
and problems. There, we also see that it is quite unexpected that the reductions of
this chapter or the algorithms of Chapter 3 can be significantly improved, unless the
exponential time hypothesis fails.

84

CHAPTER 5
Lower Bounds by

Decomposition-Guided
Reductions

The only way to discover the limits of the possible is to go beyond them into
the impossible.

— Arthur C. Clarke

Having already shown upper bounds in Chapters 3 and 4, the natural question, whether
one can improve these results or establish certain lower bounds for problems parameterized
by treewidth, arises. While there exist several works in this direction for specific problems,
also for problems on higher levels of the polynomial hierarchy [Marx and Mitsou, 2016;
Lokshtanov et al., 2011], little work has been done to provide some meta tool for
establishing lower bounds. The need for this is even more evident for problems higher
on the polynomial hierarchy, which are more likely to have a large dependence on the
treewidth [Marx and Mitsou, 2016]. Recall that indeed, treewidth has been widely
employed for applications such as Boolean satisfiability (Sat) [Samer and Szeider, 2010]
and constraint satisfaction (CSP) [Dechter, 2006; Freuder, 1985], but also for problems
believed beyond NP such as probabilistic inference [Ordyniak and Szeider, 2013] as well
as problems in knowledge representation and reasoning [Gottlob et al., 2010; Pichler
et al., 2010; Dvořák et al., 2012]. Also for the prominent problem QSat, which asks for
deciding the validity of a quantified Boolean formula (QBF), there are tractability results
using an additional parameter [Chen, 2004] or some extension of treewidth [Eiben et al.,
2018, 2020].

The meta results on treewidth are the well-known Courcelle’s theorem [Courcelle, 1990]
and its logspace version [Elberfeld et al., 2010], which states that whenever one can
encode a problem into a formula in monadic second order logic (MSO), then the problem
can be decided in time linear in the input size and some function in the treewidth. While

85

5. Lower Bounds by Decomposition-Guided Reductions

Courcelle’s theorem provides a full framework for classifying problems concerning the
existence of a tractable algorithm, its practical application is limited due to potentially
huge constants, and the exponential runtime in the treewidth (upper bound) may result
in a tower of exponents that is far from optimal. In contrast, the available upper
bounds are more immediate for QSat. Recall that QSat can be turned tractable using
treewidth, if additionally we parameterize by the number of alternating quantifier blocks
(quantifier rank) [Chen, 2004], as stated in Proposition 2.9. Since QSat is a quite
natural and prominent, prototypical problem for descriptive complexity [Grohe, 2017;
Immerman, 1999] and also due to results by Fagin [1974], we aim for establishing QSat
as a prototypical problem for showing lower bounds for treewidth and in the context of
parameterized complexity in general.

While precise lower bounds for QSat and treewidth have been left open since the dynamic
programming algorithm serving as upper bound [Chen, 2004], several related work in
this direction exists. Indeed, it has been proven that QSat remains intractable when
parameterized by treewidth alone [Atserias and Oliva, 2014]. Recently, Lampis and
Mitsou [2017] established that 2-QSat (∃∀-Sat and ∀∃-Sat) cannot be solved by an
algorithm that runs in time single exponential in the treewidth of the primal graph
when assuming the Exponential Time Hypothesis (ETH) [Impagliazzo et al., 2001], cf.
Proposition 2.11. In an earlier work [Pan and Vardi, 2006], it was mentioned that
this extends to 3-QSat (∀∃∀-Sat and ∃∀∃-Sat), and -QSat, if is an odd number.
However, it does not extend constructively to the case, where is even. While Marx and
Mitsou [2016] considered certain graph problems that are located on the third level of the
polynomial hierarchy [Stockmeyer and Meyer, 1973], they emphasize that the classical
complexity results do not provide sufficient explanation why double- or triple-exponential
dependence on treewidth is needed and one requires quite involved proofs for each problem
separately. They state that intuitively the quantifier rank of the problem definitions are
the common underlying reason for being on higher levels of the polynomial hierarchy and
for requiring high dependence on treewidth. Lampis, Mitsou, and Mengel [2018] employed
the known runtime result [Chen, 2004] and proposed reductions from a collection of
reasoning problems in AI to QSat that yield quite precise upper bounds on the runtime.
In consequence, given the lower bound for 2-QSat these results highlight QBF encodings
as a very handy and an alternative to Courcelle’s theorem. We generalize this observation
and also confirm that the usage of -QSat as the target of reductions might be suited in
order to obtain precise runtime upper bounds.

Lower Bounds for QSat. More concretely, in Section 5.1, which is based on recent
work [Fichte et al., 2020c], we first establish results for QBFs of bounded treewidth and
of arbitrary, bounded quantifier rank, thereby providing a novel method to generalize the
result for 2-QSat in a non-incremental way.

Claim 5.1. Under the ETH, QSat for a closed formula Q in prenex normal form
with n variables, primal treewidth k, and quantifier rank ≥ 1 cannot be decided in
time tower(, o(k)) · poly(n).

86

We prove Claim 5.1, which complements Proposition 2.9 and strengthens the importance
of QBF encodings for problems parameterized by treewidth. Thereby, we establish the full
picture of runtime lower bounds for QSat parameterized by treewidth in connection to
the quantifier rank of the formula. This is possible due to our main idea of exponentially
decreasing the dependency on treewidth at the cost of a slight increase in the quantifier
rank, which shows the dependence on the treewidth for QSat and leads to concrete
lower bounds when assuming the ETH. Intuitively, we present a decomposition-guided
reduction, as introduced in Chapter 4, that significantly compresses treewidth and applies
to any instance of QSat without restricting the quantifier rank while only assuming
the ETH. Note that this “compression” is constructive and independent of the original
instance size, which is different from existing methods, e.g., [Lampis and Mitsou, 2017;
Marx and Mitsou, 2016; Pan and Vardi, 2006].

Later, Chapter 6 will catch up on the proof of Claim 5.1 in order to provide a description
of a general methodology for establishing lower bounds for problems parameterized by
treewidth. In more detail, equipped with our newly established lower bound results
for QSat, there we propose reductions from QSat as a general toolkit for proving lower
bounds assuming the ETH and discuss several showcases to illustrate this methodology.

Lower Bounds for Asp. Then, in Section 5.2 we apply the result of Claim 5.1 in
order to show lower bounds for various fragments of answer set programming (ASP),
which serves the purpose of a prototypical problem. Our thereby obtained results show
that the upper bounds as established in Chapter 3 and 4 probably cannot be significantly
improved, when assuming the ETH. In particular, we show that for Disjunctive Asp
we do not expect a runtime that is better than double exponential in the treewidth of the
primal graph representation. Even more interesting, however, is the fragment Normal
Asp. To this end, recall the runtime for solving Normal Asp, cf. Sections 3.2.2, being
slightly superexponential in the treewidth. Analogously, we presented in Section 4.3
a reduction from Normal Asp to Boolean satisfiability (Sat), where the treewidth
increase is sub-quadratic (slightly superlinear).

Based on recent work [Hecher, 2020], we show in Section 5.2.1 that for Normal Asp, we
certainly cannot avoid a slightly superexponential runtime, which also rules out reductions
to Sat with a treewidth increase that is asymptotically better than our sub-quadratic
increase. Concretely, we establish that under the ETH, one cannot decide Normal Asp
in time 2o(k·log(k)) · n, with treewidth k and program size n. This is in contrast to the
runtime for deciding Sat: 2O(k) ·n with treewidth k and size n of the formula. As a result,
this establishes that deciding the consistency of normal programs is already harder than
Sat using treewidth. Note that this is surprising as both problems are of similar hardness
according to classical complexity (NP-complete). While existing results [Lifschitz and
Razborov, 2006] and the expressive power hierarchy [Janhunen, 2006] weakly indicate
that Normal Asp might be slightly harder than Sat, these existing works mostly deal
with bijectively preserving all answer sets. However, compared to these existing works,
our result relies on the ETH, but is not restricted to, e.g., modular reductions [Janhunen,

87

5. Lower Bounds by Decomposition-Guided Reductions

Existing works Our approach Work for 2-QSat Our QSat approach
[Lampis and Mitsou, 2017]

(Sat, k) (Sat, k) (Sat, k) (Sat, k)
↓ ↓ ↓ ↓R

(P, f(n)) (P, g(k)) (2-QSat, log(n)) (2-QSat, log(k))

(Sat, k) (-QSat, k)
↓? ↓R

(3-QSat, log(log(n)) (+ 1-QSat, log(k))

Table 5.1: Comparing existing works of the literature, e.g., [Lokshtanov et al., 2011; Marx
and Mitsou, 2016; Lampis and Mitsou, 2017], (first column) to our approach (second
column) for showing lower bounds for a problem P. Table entries are of the form (P, k),
which refers to problem P when parameterized by treewidth k. Existing works depicted
in the first column mainly reduce from an arbitrary Sat instance F with n variables and
treewidth k of GF and construct an instance I of P with treewidth f(n) of GI . Note that
therefore treewidth f(n) does not directly relate to the original treewidth k, which is in
contrast to our approach (second column). However, our approach has advantages, which
becomes obvious when comparing it to the work [Lampis and Mitsou, 2017] for 2-QSat
(third column). Since there is no direct relation between k and f(n), it is rather hard
to reuse ideas from [Lampis and Mitsou, 2017] for constructing, e.g., a reduction from
Sat to 3-QSat, i.e., one basically requires new ideas from scratch. The fourth column,
which depicts our approach, is different in this regard and allows us to reuse the same
idea as in the reduction from Sat to 2-QSat for designing a reduction from -QSat to
(+ 1)-QSat.

2006], or involves the need of auxiliary variables [Lifschitz and Razborov, 2006], and
already holds for the consistency problem Normal Asp. Indeed, our result might have
theoretical consequences also for Asp solvers, as these solvers [Gebser et al., 2012; Alviano
et al., 2019a] are heavily based on Sat solvers and there is a close connection [Atserias
et al., 2011] between resolution-width and treewidth, resulting in efficient Sat solver runs
on instances of small treewidth.

5.1 Lower Bounds for QBFs and Treewidth via
Decoupling Dependencies

Next, we prepare a new approach in order to establish the lower bound of Claim 5.1.
Our approach relies on the idea of transforming a given input QBF of treewidth k into
an instance of exponentially smaller treewidth compared to k. Thereby, we trade the
exponential decrease of the parameter for the cost of additional computation power
required to solve the reduced instance. For the canonical QSat problem, this additional
computation power results in an increase of the quantifier rank. Thereby, we constructively

88

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

{ , }t3 a b

{ }t1 a { } t2b

{a, b}
t4

{ , }t5T : a b

{ }
·
· p3

{ }
·

a1, p1 { }b2, p2

·

{ }
··

a4, p4, b4

{ } T :p5·
·

Figure 5.1: Simplified illustration of a certain tree decomposition T = (T, χ) of GR(Q,T)
(yielded by reduction R), and its relation to tree decomposition T = (T, χ) of GQ. Each
bag χ (ti) of a node ti of T contains variable xi for any variable x introduced in χ(ti)
and log(width(T)) many (green) pointer variables pi selecting one variable in χ(ti)
of T . Squiggly red arrows indicate the propagation between pointers pi, pj and ensure
consistency. In particular, although truth values for variable a are “guessed” using a1
and a4 (and “propagated” via blue squiggly arrows to corresponding pointers p1 and p4,
respectively), these red arrows ensure via pointers p1, p3, p4, p5 that truth values for a1
and a4 coincide.

encode core ideas of a dynamic programming algorithm on a tree decomposition into a
QBF that expresses solving an instance of QSat by means of a QSat oracle of one level
higher in the hierarchy (self-reduction) while achieving a certain compression of treewidth.
More precisely, we provide a decomposition-guided reduction (cf. Chapter 4) that reduces
any instance Q of QSat of treewidth k and quantifier rank to an instance Q of QSat
of treewidth O(log k) and quantifier rank + 1, while the size of Q is linearly bounded
in the size of Q. Notice that the treewidth of Q only depends on the treewidth of Q,
but is independent of, e.g., the number of variables and quantifier rank of Q. Hence, we
say that the treewidth of Q is compressed compared to the original treewidth of Q.

This approach, as given in the second column of Table 5.1, is indeed different from existing
works (first column of the table). In existing works, we observed that when reducing from
Sat to a target problem, the treewidth of the source formula does not necessarily relate
to the treewidth of the constructed instance of the target problem. Instead, often the
treewidth of the reduced instance depends on number n of variables of the source Boolean
formula. The lower bound result for 2-QSat [Lampis and Mitsou, 2017], given in the third
column of Table 5.1, reduces from Sat to 2-QSat, where for any instance of Sat with n
variables, the resulting 2-QSat instance has treewidth O(log(n)). It is, however, rather
hard to generalize this reduction [Lampis and Mitsou, 2017] to reduce from Sat to 3-QSat
or even to -QSat, as the treewidth would have to be in O(log(log(n))) or even be -fold
logarithmic in n, respectively. Our approach of exponentially decreasing treewidth for
QSat, as depicted in the fourth column of Table 5.1, can be easily generalized. Thereby,

89

5. Lower Bounds by Decomposition-Guided Reductions

we instantly obtain a reduction R from -QSat to (+ 1)-QSat, where the target
QBF with quantifier rank + 1 has an exponentially smaller treewidth compared to the
source QBF of quantifier rank . This is achieved with the help of decomposition-guided
reductions, since actually R is such a reduction as introduced in Chapter 4.
Next, we introduce our decomposition-guided reduction R that takes both an instance Q
of -QSat and a corresponding tree decomposition T of the primal graph GQ. The
reduction returns a compressed instance Q = R(Q, T) of (+ 1)-QSat such that the
width of GR(Q,T) is in O(log(width(T))). The reduction R, which is guided by TD T ,
yields a new compressed tree decomposition T of GR(Q,T) of width O(log(width(T))).
For that it is crucial to balance introducing copies of variables (redundancy) and saving
treewidth (structural dependency), such that, intuitively, we can still evaluate R(Q, T)
given the limitation of treewidth O(log(width(T))). To keep this balance, we can only
analyze in a bag in T a constant number of elements of the corresponding original
bag of T . Still, considering log(width(T)) many elements in a bag at once allows us to
represent one “pointer” to address at most width(T) many elements of each bag of T and,
consequently, the restriction to O(log(width(T))) many elements in a bag at once enables
constantly many such pointers. To give a first glance at the idea of the reduction R,
Figure 5.1 provides an intuition and illustrates a tree decomposition T of GQ together
with a corresponding compressed tree decomposition T of GR(Q,T), whose bags contain
pointers to original bags of T . Actually, we can encode the propagation of information
from one bag of T to its parent bag with the help of these pointers. Thereby, we ensure
that information is consistent and this consistency can be preserved, even though we
guess in R truth values for copies of the same variable in Q independently. Note that
these “local” pointers for each bag are essential to achieve treewidth compression.
Below, we discuss the decomposition-guided reduction R in more detail, which enables
the use of QSat as the source of reductions for showing lower bounds under the ETH.

5.1.1 A Decomposition-Guided Reduction for Reducing Treewidth
Dependencies

The formula R(Q, T) constructed by R mainly consists of three interacting parts. In the
presentation, we refer to them as guess, check, and propagate part.

• "Guess" (RG): Contains clauses responsible for guessing truth values of variables
occurring in the original QBF Q.

• "Check" (RCK): These clauses ensure that there is at least one 3-DNF term in Q that
is satisfied, thereby maintaining 3 pointers for each node as discussed above.

• "Propagate" (RP): These clauses ensure consistency using a pointer for each node of
the tree decomposition.

We commence with the formal description of R. Given a QBF Q of the form Q :=
Q1V1.Q2V2. · · · ∀V .D, where D is in 3-DNF such that the quantifier blocks are alternat-

90

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

ing, i.e., quantifiers of quantifier blocks with even indices are equal, which are different
from those of blocks with odd indices. Further, assume an atomic, c-nice labeled tree
decomposition T = (T, χ, δQ), where T = (N, ·), of Q, which can be computed in polyno-
mial time from a given tree decomposition by Proposition 2.8 and Theorem 2.19. Notice
that by Definition 2.17 and the definition of atomic LTDs, for all terms d ∈ D, the inverse
function δ−1

Q (d) is well-defined. Further, actually R can deal with open QBFs, i.e., QBF
Q does not necessarily have to be closed. Open formulas are needed later to simplify the
correctness proof of Section 5.1.2.

We use the following definitions. Let NodeI (x):= {t | t ∈ N, x ∈ χ(t)\(ti∈children(t)χ(ti))}
be the set of nodes, where a given element x is introduced. For a set V ⊆ var(D) of
variables, we denote by VarI (V) := {xt | x ∈ V, t ∈ NodeI (x)} the set of fresh variables
generated for each original variable x and node t, where x is introduced. Later, we need
to distinguish whether the set Vi of variables is universally or existentially quantified.
Universal quantification requires to shift for each x ∈ Vi all but one representative
of {xt | t ∈ NodeI (x)} to the next existential quantifier block Qi+1. The representative
variable that is not shifted is denoted by rep(x). In particular, given a quantifier
block Q2, its variables V2 and the variables V1 of the preceding quantifier block, we
define: VarI (Q2, V2, V1) := {xt | x ∈ V2, t ∈ NodeI (x), Q2 = ∃} ∪ {xt | x ∈ V2, t ∈
NodeI (x), xt = rep(x), Q2 = ∀} ∪ {xt | x ∈ V1, t ∈ NodeI (x), xt = rep(x), Q2= ∃}. We
denote by VarSat := {satt, sat≤t | t ∈ N} the set of fresh decision variables responsible
for storing for each node t ∈ N whether any term at t or at any node below t is
satisfied, respectively. Finally, we denote by VarB := {b0

t , . . . , b
log(|χ(t)|) −1

t | t ∈ N},
and VarBV := {vt | t ∈ N} the set of fresh variables for each node t ∈ N that will be used
to address particular elements of the corresponding bags (pointer as depicted in Figure 5.1
in binary representation), and to assign truth values for these elements, respectively.
Overall, the variables in VarB allow us to guide the evaluation of formula D along the tree
decomposition T . For checking 3-DNF terms, we need the same functionality three more
times, resulting in the sets VarB3 := {b0

t,j , . . . , b
log(|χ(t)|+1) −1

t,j
| t ∈ N, 1 ≤ j ≤ 3} that

additionally may refer to a special fresh element nil (therefore the +1 in the exponent in
definition of VarB3), and VarBV3 := {vt,j | t ∈ N, 1 ≤ j ≤ 3} of fresh variables. Notice
that the construction is designed in such a way that the focus lies only on certain elements
of the bag (one at a time, and independent of other elements within the same bag). In
the end, this ensures that the treewidth of our reduced instance is only logarithmic in
the original treewidth of the primal graph of D. Reduction R(Q, T) creates Q :=

Q1 VarI (Q1, V1, ∅). Q2 VarI (Q2, V2, V1). · · · ∀ VarI (∀, V , V −1), VarB.

∃ VarI (∃, ∅, V), VarBV , VarBV3 , VarB3 , VarSat. C,

where C is a CNF formula consisting of guess, check and propagate parts, i.e., sets RG ,
RCK, and RP of clauses, respectively.

Example 5.2. Consider again the QBF Q = ∃w, x.∀y, z.D from Example 2.2, where D :=
d1 ∨ d2 ∨ d3 ∨ d4, and d1 := w ∧ x ∧ ¬y, d2 := ¬w ∧ ¬x ∧ y, d3 := w ∧ y ∧ ¬z, and
d4 := w ∧ y ∧ z. Further, recall the labeled tree decomposition T2 of Q of Figure 2.3

91

5. Lower Bounds by Decomposition-Guided Reductions

(right). The resulting instance R(Q, T2) looks as follows assuming that rep(y) = yt1,
where C consists of a guess, check and, propagate part.

∃ wt1 , wt3 , xt1 .

VarI (∃,{w,x},∅)

∀ yt1 , zt3 ,

VarI (∀,{y,z},{w,x})

b0
t1 , b1

t1 , b0
t2 , . . . , b1

t4 , b0
t5 .

VarB

∃ yt3 ,

VarI (∃,∅,{y,z})

vt1 , . . . , vt5

VarBV

, vt1,1, vt1,2, vt1,3, vt2,1, . . . , vt5,3,

VarBV3

b0
t1,1, b1

t1,1, b0
t1,2, . . . , b1

t5,3,

VarB3

satt1 , . . . , satt5 , sat≤t1 , . . . , sat≤t5 .

VarSat

C

In the following, we define sets RG , RCK, and RP of clauses. To this end, we require for the
pointers a bit-vector (binary) representation of the elements in a bag of T , and a mapping
that assigns bag elements to its corresponding binary representation. In particular, we
assume an arbitrary, but fixed total order ≺ of elements of a bag χ(t) of any given
node t ∈ N . With ≺, we can then assign each element x in χ(t) its unique (within the
bag) induced ordinal number o(t, x). This ordinal number o(t, x) is expressed in binary.
For that we need precisely log(|χ(t)|) many bit-variables B := {b0

t , . . . , b
log(|χ(t)|) −1

t }.
We denote by [[x]]t the (consistent) set of literals over variables in B that encode (in
binary) the ordinal number o(t, x) of x ∈ χ(t) in t, such that whenever a literal bi

t or ¬bi
t is

contained in the set [[x]]t, the i-th bit in the unique binary representation of o(t, x) is 1 or 0,
respectively. Analogously, for 1 ≤ j ≤ 3 we denote by [[x]]t,j the (consistent) set of literals
over variables in Bj := {b0

t,j , . . . , b
log(|χ(t)|+1) −1

t,j
} that either binary-encode the ordinal

number o(t, x) of x ∈ χ(t) in t, or these literals binary-encode number maxy∈χ(t)o(t, y)+1
for x = nil.

The guess part G. The clauses in RG , which we denote as implications, are defined as
follows.

xt ∧
b∈[[x]]t

b −→ vt for each xt ∈ VarI (var(D)) (5.1)

¬xt ∧
b∈[[x]]t

b −→ ¬vt for each xt ∈ VarI (var(D)) (5.2)

Intuitively, this establishes that whenever a certain variable xt for an introduced vari-
able x ∈ χ(t) is assigned to true (false) and all the corresponding literals in [[x]]t of the
binary representation of o(t, x) are satisfied (i.e., x is “selected”), then also vt ∈ VarBV
of node t has to be set to true (false).

Analogously, set RG further contains the following clauses:

xt ∧
b∈[[x]]t,j

b −→ vt,j for each xt ∈ VarI (var(D)), 1 ≤ j ≤ 3 (5.3)

¬xt ∧
b∈[[x]]t,j

b −→ ¬vt,j for each xt ∈ VarI (var(D)), 1 ≤ j ≤ 3 (5.4)

92

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

Example 5.3. Consider formula C from Example 5.2. Let 1 ≤ j ≤ 3. Further, assume
the following mapping of bag contents to bit-vector assignments. For any variable a ∈
var(D) with t ∈ NodeI (a) and for a = nil with t ∈ N , we arbitrarily fix the total
ordering ≺ and have [[a]]t and [[a]]t,j as follows.

a
t ∈ {t1, t2} t ∈ {t3, t4} t = t5

[[a]]t [[a]]t,j [[a]]t [[a]]t,j [[a]]t [[a]]t,j

w {¬b0
t , ¬b1

t } {¬b0
t,j , ¬b1

t,j} {¬b0
t , ¬b1

t } {¬b0
t,j , ¬b1

t,j} {¬b0
t } {¬b0

t,j , ¬b1
t,j}

x {¬b0
t , b1

t } {¬b0
t,j , b1

t,j} - -
y {b0

t , ¬b1
t } {b0

t,j , ¬b1
t,j} {¬b0

t , b1
t } {¬b0

t,j , b1
t,j} {b0

t } {¬b0
t,j , b1

t,j}
z - {b0

t , ¬b1
t } {b0

t,j , ¬b1
t,j} -

nil - {b0
t,j , b1

t,j} - {b0
t,j , b1

t,j} - {b0
t,j , ¬b1

t,j}

The guess part of C contains for example for variable w ∈ var(D) the following clauses.

wt1 ∧ ¬b0
t1 ∧ ¬b1

t1 −→ vt1 , ¬wt1 ∧ ¬b0
t1 ∧ ¬b1

t1 −→ ¬vt1 ,

wt3 ∧ ¬b0
t3 ∧ ¬b1

t3 −→ vt3 , ¬wt3 ∧ ¬b0
t3 ∧ ¬b1

t3 −→ ¬vt3 .

Thereby, whenever we guess a certain truth value for wt1 (wt3) it is ensured that there is
a certain bit-vector, namely [[w]]t1 ([[w]]t3) such that vt1 (vt3) has to be set to the same
truth value. Analogously, clauses of the form (5.3) and (5.4) are in RG.

The check part RCK. In the following, we assume an arbitrary, but fixed total order
of the (three) literals of each (3-DNF) term d ∈ D. We refer to the first, second,
and third literal of d by tlit(d, 1), tlit(d, 2), and tlit(d, 3), respectively. Analogously,
tvar(d, 1), tvar(d, 2), and tvar(d, 3) refers to the variable of the first, second, and third
literal, respectively. Further, for a given term d ∈ D and 1 ≤ j ≤ 3, let bv(d, t, j) denote
vt,j if tlit(d, j) is a variable, and ¬vt,j otherwise. Set RCK contains the following clauses:

sat≤t −→ sat≤t1 ∨ · · · ∨ sat≤ts ∨ satt for each t ∈ N,
children(t) = {t1, . . . , ts} (5.5)

Informally speaking, for any node t this ensures the propagation of whether we satisfied
at least one term directly in node t, or in any descendant of t.

In order to check whether a particular term is satisfied, we add for each term d ∈ D clauses

encoding the implication satδ−1
Q (d) −→ 1≤j≤3 b∈[[tvar(d,j)]]

δ−1
Q

(d),j
b ∧ bv(d, δ−1

Q (d), j) as

follows:

satδ−1
Q (d) −→ b for each d ∈ D, 1 ≤ j ≤ 3,

93

5. Lower Bounds by Decomposition-Guided Reductions

b ∈ [[tvar(d, j)]]δ−1
Q (d),j (5.6)

satδ−1
Q (d) −→ bv(d, δ−1

Q (d), j) for each d ∈ D, 1 ≤ j ≤ 3 (5.7)

Finally, we add sat≤r for root r = root(T), and ¬satt for each node t in N \ d∈D{δ−1
Q (d)}

since these nodes are not used for checking satisfiability of any term.

sat≤r (5.8)
¬satt for each t ∈ N \

d∈D

{δ−1
Q (d)} (5.9)

Example 5.4. Consider again formula C from Example 5.2. We discuss clauses of the
check part for node t2 = δ−1

Q (d2) and root node t5. Thereby, we encode satisfiability of
term d2 = ¬w ∧ ¬x ∧ y assuming tlit(d2, 1) = ¬w, tlit(d2, 2) = ¬x, and tlit(d2, 3) = y.

sat≤t2 −→ sat≤t1 ∨ satt2 ,

satt2 −→ ¬b0
t2,1, satt2 −→ ¬b1

t2,1, satt2 −→ ¬vt2,1,

satt2 −→ ¬b0
t2,2, satt2 −→ b1

t2,2, satt2 −→ ¬vt2,2,

satt2 −→ b0
t2,3, satt2 −→ ¬b1

t2,3, satt2 −→ vt2,3,

sat≤t5 −→ sat≤t2 ∨ sat≤t4 ∨ satt5 , sat≤t5 , ¬satt5

The propagate part RP . The sets RG and RCK contain clauses responsible for guessing
truth values and checking that at least one term of the original formula D is satisfied
accordingly. In particular, the guess of truth values for var(D) happens at different tree
decomposition nodes “independently”, whereas checking whether at least one term d ∈ D
is satisfied is achieved in exactly one tree decomposition node δ−1

Q (d). Intuitively, in
order to ensure that these independent guesses of truth values for var(D), are consistent,
clauses in RP make use of the connectedness condition of TDs in order to guide the
comparison of these independent guesses along the TD. More precisely, for each tree
decomposition node t ∈ N , every node ti ∈ children(t), and every variable x ∈ χ(t) ∩ χ(ti)
that both nodes t and ti have in common, the set RP contains clauses:

vt ∧
b∈[[x]]t

b ∧
b∈[[x]]ti

b −→ vti for each t ∈ N, ti ∈ children(t),
x ∈ χ(t) ∩ χ(ti) (5.10)

¬vt ∧
b∈[[x]]t

b ∧
b∈[[x]]ti

b −→ ¬vti for each t ∈ N, ti ∈ children(t),
x ∈ χ(t) ∩ χ(ti) (5.11)

Further, for each clause d ∈ D, every node ti in children(δ−1
Q (d)), and 1 ≤ j ≤ 3 such

that tvar(d, j) ∈ χ(ti), set P contains:

b ∈[[tvar(d,j)]]t,j

b −→ b for each d ∈ D with 1 ≤ j ≤ 3,

94

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

t = δ−1
Q (d), ti ∈ children(t), tvar(d, j) ∈ χ(ti),

b ∈ [[tvar(d, j)]]ti,j (5.12)
vt,j ←→ vti,j for each t ∈ N, ti ∈ children(t), 1 ≤ j ≤ 3 (5.13)

Vaguely speaking, this construction ensures that whenever a bag element (using VarB3)
or a truth value (using VarBV3) is “selected” in node t, we also have to select the same
(if exists) below in children of t.

Example 5.5. Consider once more C from Example 5.2. We illustrate the propagate
part for node t4 = δ−1

Q (d4) and variable w assuming that w = tvar(d4, 1). Observe
that d4 = w ∧ y ∧ z, and w ∈ χ(t4) ∩ χ(t3).

vt4 ∧ ¬b0
t4 ∧ ¬b1

t4

[[w]]t4

∧ ¬b0
t3 ∧ ¬b1

t3

[[w]]t3

−→ vt3 ,

¬vt4 ∧ ¬b0
t4 ∧ ¬b1

t4

[[w]]t4

∧ ¬b0
t3 ∧ ¬b1

t3

[[w]]t3

−→ ¬vt3 ,

¬b0
t3,1 ∧ ¬b1

t3,1 −→ ¬b0
t4,1, ¬b0

t3,1 ∧ ¬b1
t3,1 −→ ¬b1

t4,1,

vt4,1 ←→ vt3,1, vt4,2 ←→ vt3,2, vt4,3 ←→ vt3,3

Remark 5.6. Recalling Figure 5.1, we would like to highlight the relation between
elements of the figure and variables or clauses of reduction R introduced above. Blue
elements a1, b2, a4, b4 represent “introduce variables” VarI (var(D)) and the blue squiggly
arrows visualize the guess part RG. Green elements p1, p2, p3, p4, p5 represent “pointer
variables” VarB and VarB3 and the green squiggly arrows point to elements of tree
decomposition T . Finally, red squiggly arrows visualize the propagate part RP . (The
check part RCK is not explicitly visualized.)

Converting C to 3-CNF formula C . Observe that one can transform the CNF
formula C of the QBF R(Q, T) into 3-CNF. This results in an reduction R that takes
QBF R(Q, T) and transforms the CNF formula C of the QBF R(Q, T) into 3-CNF,
resulting in Q = R (R(Q, T)) such that tw(GQ) ≤ tw(GR(Q,T))+2. To this end, one has
to perform the following standard reduction (cf. [Lampis and Mitsou, 2017] and [Samer
and Szeider, 2010, Lemma 4]): As long as there exists a clause c ∈ C consisting of more
than 3 literals, we introduce a fresh existentially quantified variable v, remove c from C
and replace it with two new clauses. The first new clause contains v and two literals
of c, while the second clause contains ¬v and the remaining literals of c. Note that this
standard reduction R does not affect satisfiability, and it can be done such that it causes
only constant increase of the treewidth (cf. Lemma 5.11 and [Lampis and Mitsou, 2017]).
Observe that by construction, the same argument actually holds for pathwidth.

5.1.2 Correctness, Compression, and Runtime
The reduction discussed above allows us to confirm Claim 5.1 and establish our main
result, which is the following theorem that will be shown in the course of this section.

95

5. Lower Bounds by Decomposition-Guided Reductions

Theorem 5.7 (QBF lower bound). Given any QBF of the form Q = Q1V1.Q2V2.Q3V3
· · · Q V .F where ≥ 1, and F is a 3-CNF formula (if Q = ∃), or F is a 3-DNF formula
(if Q = ∀). Then, unless the ETH fails, Q cannot be solved in time tower(, o(k)) ·
poly(|var(F)|), where k is the treewidth of the primal graph GQ.

In the following, we show correctness and properties of our reduction presented in
Section 5.1. Therefore, we assume a given QBF Q := Q1V1.Q2V2. · · · ∀V .D, where D
is in 3-DNF. Further, let T = (T, χ, δQ) such that T = (N, ·) be an atomic, c-nice
labeled labeled tree decomposition of Q of width k. The reduced instance is addressed
by R(Q, T), where reduction R is defined as in Section 5.1. The resulting QBF of
quantifier rank + 1 is referred to by R (R(Q, T)) and its matrix in 3-CNF is given
by C = matrix(R (R(Q, T))).

To simplify presentation, we introduce the following definitions. Let d ∈ D be a term,
t ∈ N be a node of the tree decomposition, and 1 ≤ j ≤ 3, then bit-term(d, t) :=

1≤j≤3[[[tvar(d, j)]]t,j ∪ {bv(d, t, j)}]. Further, given an assignment α : var(D) → {0, 1},
we define a function local(·) that produces new assignments to copies of the variables,
therefore let local(α) := {xt → α(x) | x ∈ dom(α), t ∈ NodeI (x)} denote the matching
assignment of the corresponding guess variables. Further, for a set S of literals and an
assignment ι, we say assignment ι respects S, if (l∈S l)[ι] evaluates to true.

Correctness. Next, we establish correctness of reduction R.

Lemma 5.8. Let κ be any assignment of at least two variables xt, xt ∈ VarI (var(D))
such that κ(xt) = κ(xt) for nodes t, t ∈ NodeI (x) with x ∈ var(D). Then, R(Q, T)[κ] is
invalid.

Proof. We construct an assignment κ which extends κ and sets certain variables in VarB.
Then, we show that R(Q, T)[κ] is invalid, which suffices since VarB is universally
quantified. The construction of κ is as follows: for every b ∈ [[x]]t and every t ∈ N
where x ∈ χ(t), we set κ (b) := 1, if b is a variable; and κ (b) := 0, otherwise. Assume
towards contradiction that there is an assignment κ : VarI (var(D)) ∪ VarB ∪ VarBV →
{0, 1} that extends κ such that R(Q, T)[κ] is valid. In particular, the assignment κ
sets variables in VarBV such that every clause in the assigned variables of R(Q, T), in
particular, parts RG and RP , is valid under the assignment κ . By Condition (ii) of the
definition of a tree decomposition (connectedness), T [x] induces a connected tree as well.
In consequence, irrelevant of how κ assigns variable vr for the root node r of T [x], the
clauses in Formulas (5.10) and (5.11) enforce that exactly the same truth value v = κ (vn)
has to be set for any node n ∈ NodeI (x). Then, κ (vt) = v and κ (vt) = v holds. By
part RG of our reduction, more precisely, Formulas (5.1) and (5.2), we conclude that
both κ (xt) = v and κ (xt) = v, which contradicts that κ(xt) = κ(xt).

Lemma 5.9. Given an assignment ι : VarI (var(D)) ∪ VarB ∪ VarBV → {0, 1}. Then,
for any assignment κ : VarI (var(D)) ∪ VarB ∪ VarBV ∪ VarB3 ∪ VarBV3 → {0, 1}
that extends ι, R(Q, T)[κ] is invalid, if (a) there is no term di ∈ D with t = δ−1

Q (di)

96

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

such that κ respects bit-term(di, t). Now assume that there is di ∈ D with κ respect-
ing bit-term(di, δ−1

Q (di)), then R(Q, T)[κ] is also invalid, if (b) κ(vt,j) = κ(xt), where
x = tvar(di, j) for some 1 ≤ j ≤ 3 and t ∈ NodeI (x).

Proof. Assume towards a contradiction that (a) is not the case, i.e., there is no di ∈ D
such that κ respects bit-term(di, t) for t = δ−1

Q (di) and still R(Q, T)[κ] is valid. Observe
that by R(Q, T), in particular, by construction of the check part RCK of R, κ(sat≤r) = 1
by (5.8) and therefore κ(satt) = 1 by (5.5) for at least one node t ∈ N has to be set in κ.
This, however, implies by (5.9) that t = δ−1

Q (di) for some di ∈ D. In consequence, by
construction of (5.6) and (5.7), κ respects bit-term(di, t), where t= δ−1

Q (di), contradicting
the assumption.

Towards contradicting (b), assume that there is di ∈ D with t = δ−1
Q (di) and x = tvar(di, j)

as well as t ∈ NodeI (x) such that κ(vt,j) = κ(xt) and still R(Q, T)[κ] is valid. Observe
that for any two nodes t , t ∈ T [x], κ respects [[x]]t ,j and [[x]]t ,j by (5.12) and
connectedness of T [x]. Further, for any t , t ∈ T [x], κ(vt ,j) = κ(vt ,j) by (5.13).
Then, since (5.3) and (5.4) ensure that κ(xt) = κ(vt ,j), ultimately by connectedness
of T [x], κ(vt,j) = κ(xt) holds.

Theorem 5.10 (Correctness). Let Q be a QBF of the form Q = Q1V1.Q2V2. · · · ∀V .D
where D is in DNF. Then, for any assignment α : fvar(Q) → {0, 1}, we have Q[α] is
valid if and only if R(Q, T)[α] is valid, where assignment: fvar(R(Q, T)) → {0, 1} is
such that α = local(α).

Proof. Let T = (T, χ, δQ) be the labeled tree decomposition that is computed when
constructing R, where T = (N, A). We proceed by induction on the quantifier rank .

Base case. Assume = 1.

“=⇒”: Let α be an assignment to the free variables of Q for which Q[α] is valid. Further, let
α := local(α). We show that R(Q, T)[α] is valid as well. Let therefore ι be an arbitrarily
chosen assignment to the variables in V1. Since = 1, we have Q1 = ∀. We define an
assignment κ : VarI (∀, V1, ∅) → {0, 1} such that κ(xt) := ι(x) for every xt ∈ VarI (∀, V1, ∅)
with t ∈ N and x ∈ var(D). Next, we define an assignment κ : VarI (∀, V1, ∅) ∪ VarI (∃,
∅, V1) → {0, 1} that extends κ and sets κ (xt) := ι(x) for every xt ∈ VarI (∃, ∅, V1) with
t ∈ N . Assignment κ has by construction the same truth value for each of the copies xt

of x, which is needed for R(Q, T)[α ∪ κ] to be valid in order to not contradict Lemma 5.8.

Then, we construct an assignment κ , which extends κ by the variables in VarB3 ,
VarBV3 , and VarSat. By construction of ι and since Q[α] is valid, Q[α ∪ ι] is valid,
which is the same as D[α ∪ ι] is valid. In consequence, as D is in DNF, there is at least
one term d ∈ D such that d[α ∪ ι] is valid. Depending on the term d, we assign the
variables in VarB3 , VarBV3 , and VarSat with assignment κ . By Definition 2.17, there
is a unique node t = δ−1

Q (d) in the labeled tree decomposition for the term d. Then, we
set κ (sat≤t) := κ (satt) := 1. For every ancestor t of t ∈ N , we assign κ (sat≤t) := 1.

97

5. Lower Bounds by Decomposition-Guided Reductions

For every node s ∈ N that is not an ancestor of t, we set κ (sat≤s) := 0. Finally,
for every node u, where u = t, we set κ (satu) := 0. For every node t ∈ N and 1 ≤
j ≤ 3 with tvar(d, j) ∈ χ(t), we set κ such that it respects [[nil]]t,j ∪ {bv(d, t, j)}.
Finally, for every node t and 1 ≤ j ≤ 3 with tvar(d, j) ∈ χ(t), we set κ such that it
respects bit-term(d, t).

It remains to prove that for every assignment β : VarB → {0, 1}, there is an assignment ζ :
VarBV → {0, 1} for which R(Q, T)[α ∪κ ∪β∪ζ] is valid. For every variable x ∈ χ(t), if for
every node t ∈ N , assignment β respects [[x]]t, then we set ζ(vt) := (α ∪ ι)(x). Otherwise,
ζ(vt) := 0, since we can assign any truth value here. By construction of α and κ ,
clauses in Formulas (5.3) and (5.4) are satisfied of RG . Every clause of RCK of R(Q, T)
is satisfied by construction of κ \ κ (and also by κ) and ζ. Clauses in Formulas (5.12)
and (5.13) of RP are satisfied by κ \ κ . Further, clauses in Formulas (5.1) and (5.2)
of RG are satisfied because of β, κ , α , and ζ. Finally, the clauses in Formulas (5.10)
and (5.11) of RP are satisfied by construction of β, ζ, and κ .

“⇐=”: Let α be an assignment to the free variables of Q for which Q[α] is invalid.
We show that if QBF Q[α] is invalid, then R(Q, T)[α] is invalid as well. Since Q[α]
is invalid, Q[α ∪ ι] is invalid for any assignment ι : V1 → {0, 1}. Assume towards
a contradiction that R(Q, T)[α] is valid. We define an assignment κ := local(ι),
which is κ : VarI (∀, V1, ∅) ∪ VarI (∃, ∅, V1) → {0, 1} such that κ(xt) := ι(x) for ev-
ery xt ∈ VarI (∀, V1, ∅) ∪ VarI (∃, ∅, V1) with t ∈ N and x ∈ var(D). Observe that by
Lemma 5.8, κ is the only remaining option to obtain valid R(Q, T)[α]. As a result,
since R(Q, T)[α] is claimed valid, R(Q, T)[α ∪ κ] is valid as well. In consequence,
by Lemma 5.9 Statement (a), there has to exist an extension κ of α ∪ κ such that
for some d ∈ D, κ respects bit-term(d, t), where t = δ−1

Q (d). By Lemma 5.9 State-
ment (b), for 1 ≤ j ≤ 3 and every node t ∈ NodeI (y), where y := tvar(d, j), we have
κ (vt,j) = κ (yt). However, by construction of κ and connectedness of T [y], then (α ∪ ι)
respects d. In consequence, this contradicts our assumption that Q[α ∪ ι] is invalid.

Induction step (> 1): We assume that the theorem holds for a given −1 and it remains
to prove that it then holds for .

“=⇒”: We proceed by case distinction on the first quantifier, i.e., (Case 1) Q1 = ∃ and
(Case 2) Q1 = ∀. Thereby, we show that if Q[α] is valid and has quantifier rank ,
then R(Q, T)[α] is valid as well.

(Case 1) Q1 = ∃: Since Q[α] is valid, we can construct at least one assignment ι : V1 →
{0, 1} such that Q[α ∪ ι] is valid. By induction hypothesis, since the QBF Q[α ∪ ι]
has quantifier rank − 1, and is valid, there are α , ι such that R(Q, T)[α ∪ ι] is
valid as well. In particular, by induction hypothesis, α = local(α), ι = local(ι) and
therefore R(Q, T)[α] is valid as well.

(Case 2) Q1 = ∀: Since Q[α] is valid, for any assignment ι of V1, we obtain that Q[α∪ ι] is
valid. In the following, we denote by R (Q) the QBF that is obtained from R(Q, T), where
variables in VarI (∃, ∅, V1) do not appear in the scope of a quantifier, i.e., these variables,
while existentially quantified in R(Q, T), are free variables in R (Q). By induction

98

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

hypothesis, since the QBF Q[α ∪ ι] has quantifier rank − 1, and is valid, there are α , ι
with α = local(α), ι = local(ι), such that R (Q)[α ∪ ι] is valid as well. Then, since ι was
chosen arbitrarily, for every assignment κ of variables in dom(ι) ∩ VarI (Q1, V1, ∅), there
is (by Lemma 5.8, since R (Q)[α ∪ ι] is valid) an assignment κ of variables in dom(ι) ∩
VarI (∃, ∅, V1) such that R(Q, T)[α ∪ κ ∪ κ] is valid. In consequence, R(Q, T)[α] is valid
as well.

“⇐=”: Again, we proceed by case distinction in order to show that if Q[α] is invalid and
has quantifier rank , R(Q, T)[α] is invalid as well.

(Case 1) Q1 = ∃: Since Q[α] is invalid, for every assignment ι of variables V1 we have
that Q[α∪ι] is also invalid. By induction hypothesis, since the QBF Q[α∪ι] has quantifier
rank − 1, and is invalid, there are assignments α and ι such that R(Q, T)[α ∪ ι] is
invalid as well, where α = local(α), ι = local(ι). Therefore R(Q, T)[α] is invalid, since ι
was chosen arbitrarily and by Lemma 5.8 ι covers all relevant cases, where R(Q, T)[α]
could be valid.

(Case 2) Q1 = ∀: Since Q[α] is invalid, there is at least one assignment ι of variables V1,
such that Q[α ∪ ι] is invalid. By induction hypothesis, since QBF Q[α ∪ ι] has quantifier
rank − 1, and is invalid, there are assignments α and ι with α = local(α), ι = local(ι),
such that R (Q)[α ∪ ι] is invalid (R defined above), either. By Lemma 5.8, even for an
assignment ι that restricts ι to variables in dom(ι) ∩ VarI (Q1, V1, ∅), there cannot be
an assignment κ to variables in dom(ι) ∩ VarI (∃, ∅, V1) such that R(Q, T)[α ∪ ι ∪ κ] is
valid. In consequence, R(Q, T)[α] is invalid as well.

Compression and Runtime. After having established the correctness of reduction
R, we move on to showing that this reduction indeed compresses the treewidth of the
resulting QBF R(Q, T), as depicted in Figure 5.1. In particular, we prove this claim
by constructing a tree decomposition T of the primal graph of R(Q, T) and show its
relation to atomic, c-nice labeled tree decomposition T of Q, where width(T) = tw(GQ).
Then, we discuss runtime properties of the reduction.

Lemma 5.11 (Compression). The reduction R exponentially decreases treewidth. In
particular, R (R(Q, T)) constructs a QBF such that the treewidth of the primal graph
of R (R(Q, T)) is 12 · log(k + 1) + 7c + 6, where k is the treewidth of GQ and c ≤ k.

Proof. Assume an atomic, c-nice labeled tree decomposition T = (T, χ, r) of Q of width k,
where T = (N, E). From this we will construct a tree decomposition T = (T, χ , r) of
the primal graph of R(Q, T). For each tree decomposition node t ∈ N with children(t) =
{t1, . . . , ts}, we set its bag χ (t) := {b | x ∈ χ(t), b ∈ [[x]]t ∪ [[x]]t1 ∪ · · · ∪ [[x]]ts} ∪ {b |
x ∈ χ(t), 1 ≤ j ≤ 3, b ∈ [[x]]t,j ∪ [[x]]t1,j ∪ · · · ∪ [[x]]ts,j} ∪ {xt | xt ∈ VarI (V), t =
t} ∪ t ∈{t,t1,...,ts}{vt ,1, vt ,2, vt ,3, vt , satt , sat≤t }. Observe that all the properties of tree
decompositions are satisfied. In particular, connectedness is not destroyed since the only
elements that are shared among (at most two) different tree decompositions nodes are
in VarB, VarBV and in VarB3 , and VarBV3 .

99

5. Lower Bounds by Decomposition-Guided Reductions

Each bag χ (t) contains bit-vectors [[x]]t, [[x]]t1 , . . . , [[x]]ts for each x ∈ χ(t), resulting
in at most 3 · log(k) many elements, since each node can have at most s = 2 many
children. Further, each bag additionally consists of bit-vectors [[x]]t,j , [[x]]t1,j , . . . , [[x]]ts,j for
each x ∈ χ(t)∪{nil}, where 1 ≤ j ≤ 3, which are at most 3 ·3 · log(k+1) many elements.
In total everything sums up to at most 12 · log(k + 1) + 7c + 6 many elements per node,
since |{xt | xt ∈ VarI (V), t = t }| ≤ c, and moreover | t ∈{t,t1,...,ts}{vt ,1, vt ,2, vt ,3, vt ,
satt , sat≤t }| ≤ 6 · (c + 1) due to T being c-nice. Note that the treewidth of R (R(Q, T))
only marginally increases, since there are at most O(k · log(k)) many clauses in each
bag of χ (t) for any node t ∈ N , each of size at most O(log(k)). However, the
fresh variables, that were introduced during the 3-CNF reduction only turn up in at
most two new clauses (that is, they have degree two in the primal graph). Further,
the construction can be controlled in such a way, that each new clause consists of
at most two fresh variables. In consequence, one can easily modify T , by adding at
most O(k · log(k) 2) many intermediate nodes for each node t ∈ N , such that the width
of T is at most 12 · log(k + 1) + 7c + 6.

Theorem 5.12 (Runtime). Given a QBF Q, where D= matrix(Q), k is the treewidth
of the primal graph of Q. Then, constructing R (R(Q, T)) takes time O(2k4 · D · c),
where c ≤ k.

Proof. First, we construct [Bodlaender, 1996] a tree decomposition of the primal graph
of Q of width k in time 2O(k3) · |var(D)|, consisting of at most O(2k3 · |var(D)|) many nodes.
Then, we compute an atomic, c-nice labeled tree decomposition in time O(k2·2k3 ·(D), cf.
Proposition 2.8 and [Kloks, 1994, Lemma 13.1.3], without increasing the width k, resulting
in decomposition T = (T, χ), where T = (N, E) of the primal graph of Q. Note that
thereby the number of nodes is at most O(k ·2k3 · D). The reduction R(Q, T) then uses
at most O(k · 2k3 · D · c) many variables in VarI (V) since in c-nice tree decompositions
one node “introduces” at most c variables. The other sets of variables used in R are
bounded by O(log(k+1) ·k2 ·2k3 · D). Overall, there are O(log(k+1) ·k2 ·2k3 · D ·c)
many clauses constructed by R(Q, T). Hence, the claim follows, since R (R(Q, T)) runs
in time O(log(k + 1) 2 · k2 · 2k3 · D · c) ⊆ O(2k4 · D · c).

Proof of the main result. We are in position to prove the main result of this section.
To this end, we show that the lower bounds are closed under negation and restate
Theorem 5.7.

Lemma 5.13. Assume a given closed QBF of the form Q = Q1V1.Q2V2.Q3V3 · · · Q V .F ,
where ≥ 1 and F is in CNF if Q = ∃, and F is in DNF if Q = ∀. under the ETH,
one cannot solve Q in time tower(, o(k)) · poly(|var(F)|) if and only if one cannot solve
the negation ¬Q in the same time.

Proof. Assume towards a contradiction that ¬Q can be solved in time tower(, o(k)) ·
poly(|var(F)|) under the ETH. But then, since inverting the result can be achieved in

100

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

constant time, under the ETH we can solve Q in time tower(, o(k)) · poly(|var(F)|).
Hence, we arrive at a contradiction.

Theorem 5.7 (QBF lower bound). Given any QBF of the form Q = Q1V1.Q2V2.Q3V3
· · · Q V .F where ≥ 1, and F is a 3-CNF formula (if Q = ∃), or F is a 3-DNF formula
(if Q = ∀). Then, unless the ETH fails, Q cannot be solved in time tower(, o(k)) ·
poly(|var(F)|), where k is the treewidth of the primal graph GQ.

Proof. We assume that Q is closed, i.e., for Q we have fvar(Q) = ∅. We show the theorem
by induction on the quantifier rank . For the induction base, where = 1, the result
follows from the ETH in case of Q = ∃ since k ≤ |var(F)|. If Q = ∀, by Lemma 5.13, the
result follows. Note that for the case of = 2, the result has already been shown [Lampis
and Mitsou, 2017] as well.

For the induction step, we assume that the theorem holds for given Q of quantifier
rank ≥ 1, where Q = ∀, the treewidth of primal graph GQ is k, and F is in 3-
DNF. We show that then the theorem also holds for quantifier rank + 1. Towards a
contradiction, we assume that in general we can solve any QBF Q of quantifier rank +1,
in time tower(+ 1, o(tw(GQ))) · poly(|var(C)|), where C = matrix(Q). We compute an
atomic c-nice labeled TD T of Q of width k, where c is in O(log(k)). We proceed by
case distinction on the last quantifier Q +1 of Q .

(Case 1) Q +1 = ∃: Let Q = R (R(Q, T)), C = matrix(Q) be the matrix of Q , and k
be the treewidth of the primal graph of C . Observe that Q has quantifier rank + 1
and is of the required form. By Lemma 5.11, k = 12 · log(k + 1) + 7c + 6. As a result,
since R is an fpt-reduction (including time for computing T) according to Theorem 5.12,
one can solve Q in time tower(+ 1, o(12 · log(k + 1) + 7c + 6)) · poly(|var(C)|) =
tower(+ 1, o(log(k))) · poly(|var(C)|). Therefore, by Theorem 5.10 we can solve Q in
time tower(, o(k)) · poly(|var(F)|), which contradicts the induction hypothesis.

(Case 2) Q +1 = ∀: By Lemma 5.13 one can decide in time tower(+1, o(k))·poly(|var(C)|)
whether Q is valid if and only if we can decide in time tower(+ 1, o(k)) · poly(|var(C)|)
whether ¬Q is valid. Note that after bringing ¬Q into prenex normal form, the last
quantifier is ∃. Therefore, the remainder of this case is (Case 1). Hence, we have
established the second case and this concludes the proof.

Observe that therefore the result of Proposition 2.11 follows as a corollary from Theo-
rem 5.7.

Further Consequences. We can further generalize Theorem 5.7 to the so-called
incidence graph representation. The incidence graph of a formula F in CNF or DNF is
the bipartite graph, which has as vertices the variables and clauses (terms) of F and an
edge vc between every variable v and clause (term) c whenever v occurs in c in F [Samer
and Szeider, 2010]. With this definition at hand, our result yields the following.

101

5. Lower Bounds by Decomposition-Guided Reductions

Corollary 5.14. Given an arbitrary QBF Q of quantifier rank ≥ 1. Then, under the
ETH one cannot solve Q in time tower(, o(k)) · poly(|var(matrix(Q))|), where k is the
treewidth of the incidence graph of matrix(Q).

Proof. The claim follows from Theorem 5.7, since, in general, the treewidth k of the
incidence graph of Q is bounded [Samer and Szeider, 2010; Fichte and Szeider, 2015]
by treewidth k of GQ, i.e., k ≤ k + 1. As a result, if the weaker lower bound of this
corollary did not hold, Theorem 5.7 would be violated.

Corollary 5.15 (Pathwidth bound). Given an arbitrary QBF of the form Q = Q1V1.Q2V2.
Q3V3 · · · Q V .F , where ≥ 1 and F in 3-CNF (if Q = ∃) or 3-DNF (if Q = ∀). Then,
unless the ETH fails, Q cannot be solved in time tower(, o(k)) · poly(|var(F)|), where k
is the pathwidth of graph GQ.

Proof. First, we show the claim for pathwidth by induction, which can be easily established
for base case = 1. For the case of = 2, related work [Lampis and Mitsou, 2017] holds
only for treewidth. However, the cases for ≥ 2 follow from the proof of Theorem 5.7,
since every path decomposition is also a tree decomposition, and the proofs of lemmas and
theorems used intermediately only rely on an arbitrary tree decomposition. To be more
concrete, the proof of Theorem 5.7 relies on Lemma 5.11, whose proof shows compression
for any tree decomposition, which hence also works for any path decomposition (PD) as
well. Similarly, Theorem 5.12 also holds for pathwidth, since a PD of fixed pathwidth can
be computed [Bodlaender, 1996] even in time O(2k2 · |var(F)|), and since computation of
atomic, c-nice labeled decompositions works analogously for path decompositions. Further,
the remainder of the proof holds for the thereby obtained PD, since the construction
works for any TD. Finally, Lemma 5.13 holds independently of the parameter. As a
result, reductions R and R used by Theorem 5.7 indeed are sufficient for PDs.

Remark 5.16. We remark that reduction R can be generalized to finite, non-Boolean
domains (QCSP, e.g., [Ferguson and O’Sullivan, 2007]). For given variables V of a
QCSP formula Q, the variables in VarI (V), VarBV , and VarBV3 have to be made
non-Boolean, whereas the other variables used in R stay Boolean. Consequently, one
obtains similar results as in related work [Lampis and Mitsou, 2017], but for quantifier
rank ≥ 3. Indeed, under the ETH, the validity of QCSPs Q over domain D of quantifier
rank , where k = pw(GQ), cannot be decided in time tower(− 1, |D|o(k)) · poly(|var(Q)|),
see [Fichte et al., 2020b].

Finally, we establish a corollary that improves a result from the literature. To this end, we
denote for given positive number n by log∗(n) the smallest value i such that tower(i, 1) ≥
n. A known result [Atserias and Oliva, 2014, Corollary 1] states ΣP-hardness for
instances Q of (4 · log∗(|var(matrix(Q))|))-QSat, whereas here we establish para-ΣP-
hardness for instances Q of (log∗(| var(matrix(Q))|))-QSat. This is possible by applying
our established reduction R, which is rather fine-grained since it only increases quantifier
rank by one, and it works indeed for any QBF, and not just for a certain classes of QBFs

102

5.1. Lower Bounds for QBFs and Treewidth via Decoupling Dependencies

in contrast to the known result. As a consequence, whenever a new class of -QBFs with
a certain treewidth or pathwidth guarantee was discovered, which is still ΣP-hard, one
immediately obtains para-ΣP-hardness by using reduction R. Then, one could potentially
further improve quantifier alternations by applying reduction R, which is (asymptotically)
tight under the ETH.

Corollary 5.17. Given any integer ≥ 1. Then, deciding QSat is para-ΣP-hard when
parameterized by pathwidth of the primal graph GQ for input QBFs of the form Q =
Q1V1.Q2V2. Q3V3 · · · Q +log∗(|var(F)|)V +log∗(|var(F)|).F, where is F in 3-CNF (if Q = ∃)
or 3-DNF (if Q = ∀).

Proof. Given a closed QBF of the form Q = Q1V1 .Q2V2 .Q3V3 · · · Q V .F , where ≥ 1
and F is in 3-CNF if Q = ∃, and F is in 3-DNF if Q = ∀, and k is the pathwidth of GQ .
Then, we apply our reduction R followed by R on Q and iteratively apply R and R . We
repeat this step exactly log∗(k) many times and refer to the final result by Q . Note that
the solutions to problem QSat on Q and Q are equivalent by Theorem 5.10. Then, the
resulting pathwidth k of GQ is in O(1) by Lemma 5.11, i.e., parameter k is constant.
Hence, since Q is hard for ΣP, also Q is hard for ΣP, and Q is para-ΣP-hard since k
is a constant. Observe that k ≤ |var(F)| ≤ |var(matrix(Q))|. As a result, QSat for
QBFs of the form Q above is hard for para-ΣP.

5.1.3 Discussion and Outlook
In this section we presented a lower bound for deciding the validity (QSat) of quantified
Boolean formulas (QBFs). Thereby, we have significantly extended the current state-of-
the-art of this line of research: So far, lower bound results under the ETH for QSat
parameterized by treewidth were not available for all levels of the polynomial hierarchy.
The generalization of this result in Theorem 5.7 does not only cover QBFs, parameterized
by treewidth and an arbitrary quantifier rank, but solves a natural question for a well-
known problem in complexity theory. Interestingly, the result confirms the (asymptotic)
optimality of the algorithm by Chen [2004] for solving QSat and thereby answers a
longstanding open question. Indeed, one cannot expect to solve QSat of quantifier
rank significantly better than in time Ω∗(tower(, k)) in the treewidth k. The proof
of this result relies on a novel reduction approach that makes use of a fragile balance
between redundancy and structural dependency (captured by treewidth) and uses tree
decompositions as a “guide” in order to achieve exponential compression of the parameter
treewidth.We encode core ideas of dynamic programming on tree decompositions and
obtain a technique for compressing treewidth. Note that both our technique and the
results naturally carry over to path decompositions and pathwidth.

Given the nature of our reduction, we observe that the reduction might also serve in
reducing treewidth in practice. In particular, solvers based on tree decompositions such
as the QBF solver dynQBF [Charwat and Woltran, 2019] could benefit from significantly
reduced treewidth; at the cost of increased quantifier rank by one. Since dynQBF is

103

5. Lower Bounds by Decomposition-Guided Reductions

capable [Lonsing and Egly, 2018a] of solving instances up to treewidth 80 with quantifier
rank more than two, slightly increasing the quantifier rank might be in practice a good
trade-off for decreasing the treewidth significantly.

Another advantage of our reduction is that it gives rise to a versatile methodology for
showing lower bounds for arbitrary problems by reduction from -QSat, parameterized
by treewidth, which will be discussed in detail in Section 6.1. Thereby we avoid tedious
reductions from Sat (directly using ETH), which involves problem-tailored gadgets to
construct instances whose treewidth is -fold logarithmic in the number of variables
or clauses of the given Sat formula. Further, we will list in Section 6.2 a number of
showcases to illustrate the applicability of this approach to natural problems that are
beyond the second level of the polynomial hierarchy.

One direction for future work is to explore further problems parameterized by treewidth
and to establish tightness of the so far existing upper bounds. Another important direction
is to work out techniques and showcases for “non-canonical” lower bounds, where fptl-
reductions are not sufficient and using a customized function g is necessary. Hence, our
goal is to continue this line of research in order to use this toolkit for problems that do
not exhibit (e.g., [Lokshtanov et al., 2018]) canonical runtimes, where fptl-reductions
suffice. We hope this work will foster research and new insights on lower bounds.

5.2 Lower Bounds for Asp and Treewidth
This section concerns the hardness of Asp when considering treewidth. To this end, we
again assume that the exponential time hypothesis (cf. Hypothesis 2.1) holds. Recall,
that under this assumption, neither Models, nor problems Tight Asp, or Supported
Models can be solved in better than single exponential time in the treewidth, as stated
in Propositions 3.3 and 3.9. This also shows that the reduction of Section 4.2 consisting
of Formulas (4.4)–(4.8) cannot be significantly improved, cf. Corollary 4.8.

Now, we also present such a result for the richer fragment of disjunctive programs, i.e.,
we focus on the problem Disjunctive Asp. With the help of the main result of the
previous section as given in Theorem 5.7, we obtain the following lower bound, thereby
assuming that the exponential time hypothesis holds.

Theorem 5.18. Unless the ETH fails, Disjunctive Asp cannot be solved in time 22o(k) ·
poly(|at(Π)|) for an arbitrary program instance Π where k is the treewidth of the primal
graph GΠ.

Proof. Assume for proof by contradiction that there is such an algorithm. We show that
this contradicts a special case of Theorem 5.7, namely Proposition 2.11, which states that
one cannot decide the validity of a QBF ∀V1.∃V2.F in time 22o(k) · poly(|F |), where F is
in CNF. Let Q = ∀V1.∃V2.F be an instance of 2-QSat parameterized by the treewidth k
(of GQ). Then, we reduce to an instance Π of Asp when parameterized by treewidth
of GΠ such that Π is as follows. We employ a well-known reduction R [Eiter and Gottlob,

104

5.2. Lower Bounds for Asp and Treewidth

1995a, Theorem 3], which transforms ∃V1.∀V2.F , where F is in 3-DNF, into Π = R(Q)
and gives a yes instance Π of Asp if and only if ∃V1.∀V2.F is a yes instance of 2-QSat.
To this end, we use as atoms vi as well as nvi for each vi ∈ V1 ∪ V2 and an additional
atom w. More precisely, we construct for each vi ∈ V1 ∪ V2 the rule vi ∨ nvi ← and for
each vi ∈ V2 we additionally construct vi ← w as well as nvi ← w. Further, for each
vi ∈ V2, we add the rule w ← vi, nvi. For each term d ∈ F with d = l1 ∧ l2 ∧ l3 we
construct w ← l∗1, l∗2, l∗3, where for 1 ≤ j ≤ 3 we let l∗j := vi if lj = vi and otherwise
(if lj = ¬vi) we define l∗j := nvi. Finally, we construct the rule ← ¬w. The proof of
correctness follows exactly as in the original source of the reduction [Eiter and Gottlob,
1995a, Theorem 3].

However, it remains to show that the reduction R indeed increases the treewidth only
linearly and that this suffices to conclude the proof. Therefore, let T = (T, χ) be TD
of GF of width k. We transform T into a TD T = (T, χ) of GΠ as follows. For each
bag χ(t) of T , we define χ (t) := χ(t) ∪ {nvi | vi ∈ χ(t)} ∪ {w}. Observe that for the
width k of T , k ≤ 2 · k + 1 holds. By construction of R, T is a TD of GΠ.

Observe that R is an fptl-reduction, which we require, as results do not carry over
from plain fpt-reductions. We finally have to argue that the result holds if R is an
fptl-reduction. Assume towards a contradiction that there is an algorithm solving Asp in
time 22o(k) · poly(|at(Π)|). However, then we can use this algorithm in order to construct
an algorithm for solving any 2-QSat instance Q = ∃V1.∀V2.F via reduction R. Obviously,
the resulting algorithm runs in time 22o(2k+1) · poly(|var(F)|), where k is the treewidth
of GF . Under the ETH, the existence of such an algorithm contradicts Proposition 2.11,
which prohibits an algorithm running in time 22o(k) · poly(|var(F)|). This concludes the
proof and establishes the theorem.

From this, we automatically obtain the following result, since problem Asp is strictly
more general than problem Disjunctive Asp.

Proposition 5.19. Unless the ETH fails, Asp cannot be solved in time 22o(k) ·poly(|at(Π)|)
for an arbitrary program instance Π where k is the treewidth of the primal graph GΠ.

While this result can be obtained by just reducing from 2-QSat, the precise lower bound
for Normal Asp or HCF Asp requires more attention.

5.2.1 Towards a Lower Bound for Normal Asp and Treewidth
Next, we focus on establishing a lower bound that matches the runtime of our algorithm
as discussed in Section 3.2.2. To this end, recall that for deciding Asp for a normal
or head-cycle-free program we obtain runtime upper bounds of 2k·log(k) · (at(Π) + |Π|),
as presented in Theorem 3.16. Now, the high-level reason for Asp being harder than
Sat when assuming bounded treewidth, lies in the issue that a TD, while capturing
the structural dependencies of a program, might force an evaluation that is completely
different from the level mappings proving answer sets. Consequently, during dynamic

105

5. Lower Bounds by Decomposition-Guided Reductions

s1 s2 s3

d1 d2 d3

x y
z

{s1, x}t1 {s2, x, y}
t3

{d2, y}t2

{y, d3, z}
t5

{s3, z} t4

{x, y, d1}t6

Figure 5.2: An instance I = (G, P) (left) of the Disjoint Paths problem and a TD
of G (right).

programming for Asp, one needs to store in each table τt for each node t during post-order
traversal, in addition to an interpretation (candidate answer set), also a level mapping
among the atoms in those interpretations, cf. Chapter 3. We show that under reasonable
assumptions in complexity theory, this worst case cannot be avoided. Then, the resulting
runtime consequences cause Asp to be slightly harder than Sat, where in contrast to
Asp storing a table τt of only assignments for each node t suffices.

The Disjoint Paths Problem. We show our novel hardness result by reducing
from the (directed) Disjoint Paths problem, which is a graph problem defined as
follows. Given a directed graph G = (V, E), and a set P ⊆ V × V of disjoint pairs of
the form (si, di) consisting of source si and destination di, where si, di ∈ V such that
each vertex occurs at most once in P , i.e., (si,di)∈P {si, di} = 2 · |P |. Then, (G, P)
is an instance of the Disjoint Paths problem, asking whether there exist |P | many
(vertex-disjoint) paths from si to di for 1 ≤ i ≤ |P |. Concretely, each vertex of G is
allowed to appear in at most one of these paths. For the ease of presentation, we assume
without loss of generality [Lokshtanov et al., 2011] that sources si have no incoming edge
(x, si), and destinations di have no outgoing edge (di, x).

Example 5.20. Figure 5.2 (left) shows an instance I = (G, P) of the Disjoint Paths
problem, where P consists of pairs of the form (si, di). The only solution to I is both
emphasized and colored in red. Figure 5.2 (right) depicts a TD of G.

While under the ETH, Sat cannot be solved in time 2o(k) · poly(|var(F)|), where k is
the treewidth of the primal graph of a given Boolean formula F , the Disjoint Paths
problem is considered to be even harder. Concretely, the problem has been shown to be
slightly superexponential as stated in the following proposition.

Proposition 5.21 ([Lokshtanov et al., 2011]). Under the ETH, the Disjoint Paths
problem is slightly superexponential, i.e., any instance (G, P) with G = (V, E) cannot be
solved in time 2o(k·log(k)) · poly(|V |), where k = tw(G).

It turns out that the Disjoint Paths problem is a suitable problem candidate for
showing the hardness of Asp. Next, we require the following notation of open pairs,
whose result is then applied in our reduction. Given an instance (G, P) of the Disjoint

106

5.2. Lower Bounds for Asp and Treewidth

{s2, x, y}t2

{s2, d2, y}t1

{y, d3, z}
t4

{s3, d3, z} t3

{s1, d1, x, y}t5

{s3, d3, y, z} t1

{s3, d3, y} t2

{s1, d1, s2, d2, s3, d3, x, y}
t3

Figure 5.3: A pair-respecting TD (left), and a pair-connected TD T (right) of (G, P) of
Figure 5.2.

Paths problem, a TD T = (T, χ) of G, and a node t of T . Then, a pair (s, d) ∈ P is open
in node t, if either s ∈ χ≤t (“open due to source s’ ’) or d ∈ χ≤t (“open due to destination
d”), but not both.

Proposition 5.22 ([Scheffler, 1994]). An instance (G, P) of the Disjoint Paths problem
does not have a solution if there is a TD T = (T, χ) of G and a bag χ(t) with more
than |χ(t)| many pairs in P that are open in a node t of T .

Proof. The result, cf. [Scheffler, 1994], boils down to the fact that each bag χ(t), when
removed from G, results in a disconnected graph consisting of two components. Between
these components can be at most |χ(t)| different paths.

Preparing pair-connected TDs. Before we present the actual reduction, we need
to define a pair-respecting tree decomposition of an instance (G, P) of the Disjoint
Paths problem. Intuitively, such a TD of G additionally ensures that each pair in P is
encountered together in some TD bag.

Definition 5.23. A TD T = (T, χ) of G is a pair-respecting TD of (G, P) if for any
pair p = (s, d) with p ∈ P , (1) whenever p is open in a node t due to s, or due to d,
then s ∈ χ(t), or d ∈ χ(t), respectively. Further, (2) whenever p is open in a node t, but
not open in the parent t of t (“p is closed in t ”), both s, d ∈ χ(t).

We observe that such a pair-respecting TD can be computed with only a linear increase
in the (tree)width in the worst case. Concretely, we can turn any TD T = (T, χ) of G
into a pair-respecting TD T = (T, χ) of (G, P). Thereby, the tree T is traversed for
each t of T in post-order, and vertices of P are added to χ(t) accordingly, resulting
in χ (t), such that conditions (1) and (2) of pair-respecting TDs are met. Observe, that
this doubles the sizes of the bags in the worst case, since by Proposition 5.22 there can
be at most bag-size many open pairs.

Example 5.24. Figure 5.3 (left) shows a pair-respecting TD of (G, P) of Figure 5.2,
which can be obtained by transforming the TD of Figure 5.2 (right), followed by simplifi-
cations.

107

5. Lower Bounds by Decomposition-Guided Reductions

Given a sequence σ of pairs of P in the order of closure with respect to the post-order
of T . We refer to σ by the closure sequence of T . We denote by p ∈i σ that pair p is the
pair closed i-th in the order of σ. Intuitively, e.g., the first pair p ∈1 σ indicates that pair
p ∈ P is the first to be closed when traversing T in post-order.

Definition 5.25. A pair-connected TD T =(T, χ) of (G, P) is a pair-respecting TD of
(G, P), if, whenever a pair p ∈i σ with i>1 is closed in a node t of T , also for the pair
(s, d) ∈i−1 σ closed directly before p in σ, both s, d ∈ χ(t).

We can turn any pair-respecting, nice TD T =(T, χ) of width k into a pair-connected
TD T =(T, χ) with constant increase in the width. Let therefore pair p ∈i σ be closed
(i>1) in a node t, and pair (s, d) ∈i−1 be closed before p in node t . Intuitively, we need
to add s, d to all bags χ (t), . . . , χ (t) of nodes encountered after node t and before
node t of the post-order tree traversal, resulting in χ . However, the width of T is at
most k + 3 · |{s, d}| = k + 6, since in the tree traversal each node of T is passed at most
3 times, namely when traversing down, when going from the left branch to the right
branch, and then also when going upwards. Indeed, to ensure T is a TD (connectedness
condition), we add at most 6 additional atoms to every bag.

Example 5.26. Figure 5.3 (right) depicts a pair-connected TD of (G, P) of Figure 5.2,
obtainable by transforming the pair-respecting TD of Figure 5.3 (left), followed by simpli-
fications.

5.2.2 Reducing from Disjoint Paths to Asp

In this section, we show the main reduction R of this section, assuming any instance I =
(G, P) of the Disjoint Paths problem. Before we construct our program Π, we require
a nice, pair-connected TD T = (T, χ) of G, whose width is k and a corresponding closure
sequence σ. By Proposition 5.22, for each node t of T , there can be at most k many
open pairs of P , which we assume in the following. If this was indeed not the case, we
can immediately output, e.g., {a ← ¬a}.

Then, we use the following atoms in our reduction. Atoms eu,v, or neu,v indicate that
edge (u, v) ∈ E is used, or unused, respectively. Further, atom ru for any vertex u ∈ V
indicates that u is reached via used edges. Finally, we also need atom fu

t for a node t
of T , and vertex u ∈ χ(t), to indicate that vertex u is already finished in node t, i.e., u
has one used, outgoing edge. The presence of this atom fu

t in an answer set prohibits
to take additional edges of u in parent nodes of t, which is needed due to the need of
disjoint paths of the Disjoint Paths problem.

The instance Π = R(I, T) constructed by reduction R consists of three program parts,
namely reachability ΠR, linking ΠL of two pairs in P , as well as checking ΠC of disjointness
of constructed paths. Consequently, Π = ΠR ∪ ΠL ∪ ΠC . All three programs ΠR, ΠL,
and ΠC are guided along TD T , which ensures that the width of Π is only linearly
increased. Note that this has to be carried out carefully. In particular, since the number

108

5.2. Lower Bounds for Asp and Treewidth

of atoms of the form eu,v using only vertices u, v that appear in one bag, can be already
quadratic in the bag size. The goal of this reduction, however, admits only a linear
overhead in the bag size. Consequently, we are, e.g., not allowed to construct rules in Π
that require more than O(k) edges in one bag of a TD of GΠ.

To this end, let the ready edges Ere
t in node t be the set of edges (u, v) ∈ E not present in t

anymore, i.e., {u, v} ⊆ χ(t) \ χ(t) for any child node t ∈ children(t). Further, let Ere
n for

the root node n = root(T) additionally contain also all edges of n, i.e., E ∩ (χ(n) × χ(n)).
Intuitively, ready edges for t will be processed in node t. Note that each edge occurs in
exactly one set of ready edges. Further, for nice TDs T , we always have |Ere

t | ≤ k, i.e.,
ready edges are linear in k.

Example 5.27. Recall instance I=(G, P) with G=(V, E) of Figure 5.2, and pair-
connected TD T =(T, χ) of I of Figure 5.3 (right). Then, Ere

t1 =∅, Ere
t2 ={(y, z), (z,

y), (z, d3), (s3, z)}, since z /∈ χ(t2), and Ere
t3 =E \ Ere

t2 for root t3 of T .

Reachability ΠR. Program ΠR is constructed as follows.

eu,v ← ru, ¬neu,v for each (u, v) ∈ Ere
t (5.14)

neu,v ← ¬eu,v for each (u, v) ∈ Ere
t (5.15)

rv ← eu,v for each (u, v) ∈ Ere
t (5.16)

Rules (5.14) and (5.15) ensure that there is a partition of edges in used edges eu,v and
unused edges neu,v. Additionally, Rules (5.14) take care that only edges of adjacent,
reachable vertices are used. Naturally, this requires that initially at least one vertex is
reachable (constructed below). Rules (5.16) ensure reachability rv over used edges eu,v

for a vertex v.

Linking of pairs ΠL. Program ΠL is constructed as follows.

← ¬rd for each (s, d) ∈ P (5.17)
rs1 ← for (s1, d) ∈1 σ (5.18)
rsi ← rsi−1 , rdi−1 for each (si, d) ∈i σ, (s, di−1) ∈i−1 σ (5.19)

Rules (5.17) make sure that, ultimately, destination vertices of all pairs are reached. As
an initial, reachable vertex, Rule (5.18) sets the source vertex s reachable, whose pair is
closed first. Then, the linking of pairs is carried out along the TD in the order of closure,
as given by σ. Thereby, Rules (5.19) conceptually construct auxiliary links (similar to
edges) between different pairs, in the order of σ, which is guided along the TD to ensure
only a linear increase in treewidth of GΠ of the resulting program Π. Interestingly, these
additional dependencies, since guided along the TD, do not increase the treewidth by
much as we will see in the next subsection.

109

5. Lower Bounds by Decomposition-Guided Reductions

rs1 rs2 rs3 . . . rs|P |−1 rs|P |

rd1 rd2 rd3 . . . rd|P |−1 rd|P |

Figure 5.4: Positive dependency graph DRL (indicated by solid red edges) of Rules (5.19)
constructed for any closure sequence σ such that (si, di) ∈i σ. If a source si reaches a
destination dj of a preceding pair, i.e., j < i, (depicted via the dashed red edge), this
results in a cycle (consisting of all bold-faced edges) such that none of the atoms of the
cycle can be proven.

Then, it is crucial that we prevent a source vertex si of a pair (si, di) ∈i σ from reaching a
destination vertex dj of a pair (sj , dj) ∈j σ preceding (si, di) in σ, i.e., j < i. To this end,
we need to construct parts of cycles that prevent this. Concretely, if some source si reaches
to dj , i.e., dj is reachable via si, the goal is to have a cyclic reachability from dj to si, with
no provability for corresponding reachability atoms of the cycle. Actually, Rules (5.19)
also have the purpose of aiding in the construction of these potential positive cycles.
Thereby we achieve that if dj is reachable, this cannot be due to si, since reachability
of dj , sj+1, . . . , si (therefore si itself) is required for reachability of si. Consequently,
assuming that there is no further rule proving any of these reachability atoms, which we
will ensure in the construction of program ΠC below, we end up with cyclic reachability
if si is reaches dj , such that none of the atoms of the cycle are proven. Figure 5.4 shows
the positive dependency graph DRL of Rules (5.19), where pairs (si, di) ∈i σ, as discussed
in the following example.

Example 5.28. Consider the dependency graph DRL of Rules (5.19), as depicted in
Figure 5.4. Observe that whenever si reaches some dj with j < i, this causes a cy-
cle C=rsi , . . . , rdj , rsj+1 , . . . , rsi−1 , rsi over reachability atoms in DRL (cyclic dependency).

If each vertex u of G can have at most one outgoing edge, i.e., only one atom eu,v in
an answer set of Π = R(I, T), no atom of C can be proven (no further rule allows
provability). Note that C could also be constructed by causing in the positive dependency
graph O(|P |2) many edges from rdj to rsi for j < i. This could be achieved, e.g., by
constructing large rules, where reachability rdj of every preceding destination vertex is
required in the positive body in order to reach a certain source vertex si, i.e., in order to
obtain reachability rsi. However, this would cause an increase of structural dependency,
and in fact, the treewidth increase would be beyond linear.

Checking of disjointness ΠC. Finally, we create rules in Π that enforce at most
one outgoing, used edge per vertex. This is required to ensure that we do not use a
vertex twice, as required by the Disjoint Paths problem. We do this by guiding the

110

5.2. Lower Bounds for Asp and Treewidth

information, whether the corresponding outgoing edge was used, via atoms fu
t along

the TD to ensure that the treewidth is not increased significantly. Having at most one
outgoing, used edge per vertex of G further ensures that when a source of a pair p reaches
a destination of a pair preceding p in σ, then no atom of the resulting cycle as constructed
in ΠL will be provable. Consequently, in the end every source of p has to reach the
destination of p by the pigeon hole principle. Program ΠC is constructed for every node t
with t , t ∈ children(t), if t has child nodes, as follows.

fu
t ← eu,v for each (u, v) ∈ Ere

t , u ∈ χ(t) (5.20)
fu

t ← fu
t for each u ∈ χ(t) ∩ χ(t) (5.21)

← fu
t , fu

t for each u ∈ χ(t) ∩ χ(t), t = t (5.22)
← fu

t , eu,v for each (u, v) ∈ Ere
t , u ∈ χ(t) (5.23)

← eu,v, eu,w for each (u, v), (u, w) ∈ Ere
t , v=w (5.24)

Rules (5.20) ensure that the finished flag fu
t is set for used edges eu,v. Then, this

information of fu
t is guided along the TD from child node t to parent node t by Rules (5.21).

If for a vertex u ∈ V we have fu
t and fu

t for two different child nodes t , t ∈ children(t),
this indicates that two different edges were encountered both below t and below t .
Consequently, this situation is avoided by Rules (5.22). Rules (5.23) make sure to disallow
additional edges for vertex u in a TD node t, if the flag fu

t of child node t is set. Finally,
Rules (5.24) prohibit two different edges for the same vertex u within a TD node.

Example 5.29. Recall instance I = (G, P) with G = (V, E) of Figure 5.2, pair-connected
TD T = (T, χ) of I of Figure 5.3 (right), and Ere

t2 = {(y, z), (z, y), (z, d3), (s3, z)}. We
briefly present the construction of ΠC for node t2.

Rules ΠL

(5.20) fy
t2 ← ey,z; f s3

t2 ← es3,z

(5.21) f s3
t2 ← f s3

t1 ; fd3
t2 ← fd3

t1 ; fy
t2 ← fy

t1

(5.23) ← fy
t1 , ey,z; ← fz

t1 , ez,y; ← fz
t1 , ez,d3 ; ← f s3

t1 , es3,z

(5.24) ← ez,y, ez,d3

The resulting program of the reduction consisting of Rules (5.14)–(5.24) is not unary.
However, only Rules (5.19) as well as (5.22)–(5.24) are not unary. Still, Rules (5.23)
and (5.24) can be turned unary by replacing the occurrence of eu,v in these two rules
by ¬neu,v. Further, Rules (5.22) can be replaced by the following rules, which use an
additional auxiliary atom “bad”.

bad ← fu
t , fu

t for each u ∈ χ(t) ∩ χ(t), t = t (5.25)
← bad (5.26)

111

5. Lower Bounds by Decomposition-Guided Reductions

On the other hand, for Rules (5.19) the resulting (positive) cycles of the dependency graph
are required for the whole construction, cf. Figure 5.4. More precisely, it is indeed essential
for the whole construction that reachability of a source si requires both reachability of
the preceding source si−1 and destination di−1. Otherwise we cannot prevent a source
from reaching a preceding destination via cyclic reachability without provability and
still linearly preserve the treewidth. Consequently, Rules (5.19) are not unary and we
expect that this is crucial. Nevertheless, it was shown that non-unary programs are more
expressive than unary programs [Janhunen, 2006]. Still, we are convinced that exploiting
cyclic, unproven reachability such that the treewidth is not increased more than linearly,
actually requires the usage of non-unary rules.

Example 5.30. Consider again Figure 5.4, depicting the positive dependency graph
DRL of Rules (5.19), as well as Example 5.28. More concretely, consider the same
situation of Example 5.28, where a source si reaches some destination dj with j < i,
which causes a cycle C=rsi , . . . , rdj , rsj+1 , . . . , rsi over reachability atoms. Then, it is
crucial for the construction that Rules (5.19) are not unary. To be more concrete, for
the instantiated rule r with rsj+1 ∈ Hr, we require that both rsj , rdj ∈ B+

r . If instead of r
we constructed two rules rsj+1 ← rsj and rsj+1 ← rdj

, every atom of the cycle C could
be provable since rsj+1 can already be proven by the former rule. Further, also for the
instantiated rule r of Rules (5.19) with rso ∈ Hr for every j + 1 < o ≤ i, we require that
the body is not unary. If instead of such a rule r , we constructed two rules rdo ← rso−1

and rdo ← rdo−1 , every atom of the cycle C could be provable since rdo is already proven
by the latter rule. Since, in particular the result should hold for any such cycle C, we
rely on non-unary rules for our reduction to work.

5.2.3 Correctness, Runtime Analysis, and Consequences
First, we show that the reduction is indeed correct, followed by a result stating that the
treewidth of the reduction is at most linearly worsened, which is crucial for the runtime
lower bound to hold. Then, we present the runtime and the (combined) main result of
this section.

Lemma 5.31 (≤ 1 Outgoing Edge). Given any instance I = (G, P) of the Disjoint
Paths problem, and any answer set M of R(I, T) using any pair-connected TD T
of (G, P). Then, there cannot be two edges of the form eu,v, eu,w ∈ M .

Proof. Assume towards a contradiction that there are three different vertices u, v, w ∈ V
with eu,v, eu,w ∈ M . Then, by Rules (5.24) there cannot be a node t with (u, v), (u, w) ∈
Ere

t . However, by the definition of TDs, there are nodes t , t with (u, v) ∈ Ere
t and (u, w) ∈

Ere
t . By connectedness of TDs, u appears in each bag of any node of the path X between t

and t . Then, either t is an ancestor of t (or vice versa, symmetrical) or there is a
common ancestor t. In the former case, fu

t is justified by Rules (5.20) and so is fu
t̂

on each
node t̂ of X by Rules (5.21) and therefore ultimately Rules (5.23) fail due to fu

t , eu,w ∈ M .
In the latter case, fu

t , fu
t is justified by Rules (5.20) and so is fu

t̂
on each node t̂ of X by

Rules (5.21). Then, Rules (5.22) fail due to fu
t , fu

t ∈ M .

112

5.2. Lower Bounds for Asp and Treewidth

Theorem 5.32 (Correctness). Reduction R as proposed in this section is correct. More
concretely, given an instance I = (G, P) of the Disjoint Paths problem, and a pair-
connected TD T = (T, χ) of G. Then, I has a solution if and only if the program R(I, T)
admits an answer set.

Proof. “⇒”: Given any yes-instance I of Disjoint Paths problem. Then, there
are disjoint paths P1, . . . , Pi, . . . P|P | from s1 to d1, . . . , si to di, . . . , s|P | to d|P | for
each pair (si, di) ∈ P . Assuming further pair-connected TD T of I, we construct in
the following an answer set M of Π = R(I, T). To this end, we collect reachable
atoms A := {u | u appears in some Pi, 1 ≤ i ≤ |P |} and used edges U := {(u, v) |
v appears immediately after u in some Pi, 1 ≤ i ≤ |P |}. Then, we construct answer set
candidate M := {ru | u ∈ A} ∪ {eu,v | (u, v) ∈ U} ∪ {neu,v | (u, v) ∈ E \ U} ∪ {fu

t |
(u, v) ∈ U ∩ Ere

t } ∪ {fu
t | (u, v) ∈ U ∩ Ere

t , u ∈ χ(t), t is a descendant of t in T}. It
remains to show that M is an answer set of Π. Observe that M indeed satisfies all the
rules of ΠR. In particular, by construction, we have reachability rv for every vertex v of
every pair in P , and the partition in used edges eu,v and unused edges neu,v is ensured.
Further, ΠL is satisfied, as, again by construction, for each vertex v of every pair in P ,
we have rv ∈ M . Finally, ΠC is satisfied as by construction fu

t ∈ M iff eu,v ∈ M ∩ Ere
t or

eu,v ∈ M ∩ Ere
t for any descendant node t of t with u ∈ χ(t). It is easy to see that M is

indeed a ⊆-smallest model of the reduct ΠM , since, atoms for used and unused edges
form a partition of E.

“⇐”: Given any answer set M of Π. First, we observe that we can only build paths
from sources towards destinations, as sources have only outgoing edges and destinations
allow only incoming edges. Further, by construction, vertices can only have one used,
outgoing edge, cf. Lemma 5.31. Consequently, if a vertex had more than one used,
incoming edge, one cannot match at least one pair of P (by combinatorial pigeon hole
principle). Hence, in an answer set M of Π, there is at most one incoming edge per
vertex. By construction of Π, in order to reach each di with (si, di) ∈i σ, si cannot reach
some dj with j < i. Towards a contradiction assume otherwise, i.e., si reaches dj . But
then, by construction of the reduction, we also have a reachable path from dj to si,
consisting of dj , dj +1, . . . , di−1, si. Since every vertex has at most one incoming edge,
dj cannot have any other justification for being reachable, nor does any source on this
path. Hence, this forms a cycle such that no atom of the cycle is proven, which can not
be present in an answer set. Therefore, si only reaches di, since otherwise there would be
at least one vertex sj required to reach si with (si , di) ∈i σ, i < j. Consequently, we
construct a witnessing path Pi for each pair (s, d) ∈i σ as follows: Pi := s, p1, . . . , pm, d
where {es,p1 , ep1,p2 , . . . , epm−1,pm , epm,d} ⊆ M . Thus, Pi starts with s, follows used edges
in M and reaches d.

Lemma 5.33 (Treewidth-awareness). Given an instance I = (G, P) of the Disjoint
Paths problem, and a pair-connected, nice TD T of I of width k. Then, the treewidth
of GΠ, where Π = R(I, T) is obtained by R, is at most O(k).

113

5. Lower Bounds by Decomposition-Guided Reductions

Proof. Given any pair-connected, nice TD T = (T, χ) of I = (G, P). Since T is
nice, a node in T has at most = 2 many child nodes. From T we construct a
TD T = (T, χ) of GΠ. Thereby we set for every node t of T , χ (t) := {ru, fu

t |
u ∈ χ(t)} ∪ {eu,v, neu,v, ru, rv, fu

t | (u, v) ∈ Ere
t , t ∈ children(t), u ∈ χ(t)} ∪ {fu

t , fu
t |

t ∈ children(t), u ∈ χ(t) ∩ χ(t)}. Observe that T is a valid TD of GΠ. Further, by
construction we have |χ (t)| ≤ 2 · |χ(t)| + (4 +) · k + (+ 1) · |χ(t)|, since |Ere

t | ≤ k. The
claim sustains for nice TDs (= 2).

Corollary 5.34 (Runtime). Reduction R as proposed in this section runs for a given
instance I = (G, P) of the Disjoint Paths problem with G = (V, E), and a pair-
connected, nice TD T of I of width k and h many nodes, in time O(k · h).

Next, we are in the position of showing the main result, namely the Normal Asp lower
bound.

Theorem 5.35 (Lower bound). Given an arbitrary normal or HCF program Π, where k
is the treewidth of the primal graph of Π. Then, unless the ETH fails, the consistency
problem for Π cannot be solved in time 2o(k·log(k)) · poly(|at(Π)|).

Proof. Let (G, P) be an instance of the Disjoint Paths problem. First, we con-
struct [Bodlaender et al., 2016] a nice TD T of G = (V, E) of treewidth k in time ck · |V |
for some constant c such that the width of T is at most 5k + 4. Then, we turn the result
into a pair-connected TD T = (T , χ), thereby having width at most k = 2 · (5k + 4) + 6.
Then, we construct program Π = R(I, T). By Lemma 5.33, the treewidth of GΠ is
in O(k), which is in O(k). Assume towards a contradiction that consistency of Π can
be decided in time 2o(k·log(k)) · poly(|at(Π)|). By correctness of R (Theorem 5.32), this
solves (G, P), contradicting Proposition 5.21.

Our reduction works by construction for any pair-connected TD. Consequently, this
immediately yields a lower bound for pathwidth, which is similar to treewidth, but admits
only path decompositions (TDs whose tree is just a path).

Corollary 5.36 (Pathwidth lower bound). Given any normal or HCF program Π,
where k is the pathwidth of the primal graph of Π. Then, unless the ETH fails, the
consistency problem for Π cannot be solved in time 2o(k·log(k)) · poly(|at(Π)|).

From Theorem 5.35, we follow that a general reduction from normal or HCF programs
to Boolean formulas can probably not avoid the treewidth (pathwidth) overhead, which
renders our reduction from the previous section ETH-tight.

Corollary 5.37 (ETH-tightness of the Reduction to Sat). Under the ETH, the increase
of treewidth of the reduction using Formulas (4.4), (4.6)–(4.8), as well as (4.10)–(4.11)
cannot be significantly improved.

114

5.2. Lower Bounds for Asp and Treewidth

Proof. Assume towards a contradiction that one can reduce from an arbitrary normal
logic program Π, where k is the treewidth of GΠ to a Boolean formula, whose treewidth is
in o(k · log(k)). Then, this contradicts Theorem 5.35, as we can use an algorithm [Samer
and Szeider, 2010; Fichte et al., 2018b, 2019b] for Sat being single exponential in the
treewidth, thereby deciding consistency of Π in time 2o(k·log(k)) · poly(|at(Π)|).

Knowing that under the ETH, Tight Asp has roughly the same hardness for treewidth
as Sat, cf. Proposition 3.9, we can derive the following corollary, which completes
Theorem 5.35 and proves that under the ETH the reduction from a normal program
using Formulas (4.19)–(4.30) for constructing a tight program, cannot be significantly
improved.

Corollary 5.38 (ETH-tightness of the Reduction to Tight Asp). Let Π be any normal
program, where the treewidth of GΠ is k. Then, under the ETH, one cannot reduce Π to
a tight program Π in time 2o(k·log(k)) · poly(|at(Π)|) such that tw(GΠ) is in o(k · log(k)).

5.2.4 Discussion and Outlook
The curiosity of studying and determining the hardness of Asp and the underlying
reasons has attracted the attention of the KR community for a long time. The section
above discusses this question from a different angle, which hopefully will provide new
insights into the hardness of Asp and foster follow-up work. The results indicate that, at
least from a structural point of view, deciding Asp is already harder than Sat, since
programs might compactly represent structural dependencies within the formalism. More
concretely, compiling the hidden structural dependencies of a program to a Boolean
formula, measured in terms of the well-studied parameter treewidth, most certainly
causes a blow-up of the treewidth of the resulting formula. In the light of a known
result [Atserias et al., 2011] on the correspondence of treewidth and the resolution width
applied in Sat solving, this reveals that Asp might be indeed harder than solving Sat.
Recall that in Section 4.3 we present a reduction from Asp to Sat that is aware of the
treewidth in the sense that the reduction causes not more than this inevitable blow-up of
the treewidth in the worst case.

The results in this section gives rise to plenty of future work. On the one hand, we are
currently working on the comparison of different treewidth-aware reductions to Sat and
variants thereof, and how these variants perform in practice. Further, we are curious
about treewidth-aware reductions to Sat, which preserve answer sets bijectively or are
modular [Janhunen, 2006]. We hope this work might reopen the quest to study the
correspondence of treewidth and solving Asp similarly to [Atserias et al., 2011] for
Sat. Also investigating further structural parameters “between” treewidth and directed
variants of treewidth could lead to new insights, since for Asp directed measures [Bliem
et al., 2016b] often do not yield efficient algorithms. Given the fine-grained expressiveness
results for different (sub-)classes of normal programs and the resulting expressive power
hierarchy [Janhunen, 2006], we are curious to see also studies in this direction and to

115

5. Lower Bounds by Decomposition-Guided Reductions

which extent results might differ, when further restricting to treewidth-aware reductions.
Of particular interest might be the question, whether one can devise a different hardness
proof for Normal Asp and treewidth (cf. Section 5.2), such that only unary rules are
used.

116

CHAPTER 6
A Complexity Landscape for

Treewidth
Out of complexity, find simplicity!

— Albert Einstein

The complexity results of Section 5.1 establish a conditional lower bound for the canonical
problem QSat that matches and confirms existing upper bounds [Chen, 2004]. While the
known upper bound was shown a while ago, the efforts to provide some kind of insights
on hardness or lower bound results took more time, cf. [Pan and Vardi, 2006; Atserias
and Oliva, 2014; Lampis and Mitsou, 2017]. These efforts finally result in Theorem 5.7,
which is probably the most important result of the previous chapter. This theorem
itself is quite powerful and it actually is the result of solving a long-open question, but
the consequences and applications of this finding reach far beyond single statements.
Indeed, it turns out that this result is the basis of a new methodology that lifts the
status of QSat from being one canonical problem in classical complexity [Grohe, 2017;
Immerman, 1999] to being the key problem in order to prove conditional lower bounds
for problems parameterized by treewidth that are higher in the polynomial hierarchy.
Together with the concept of decomposition-guided reductions of Chapter 4, this result
is the last missing ingredient in order to unlock the full potential of quantified Boolean
formulas (QBFs) for treewidth, which we demonstrate in the form of lower bound results
for different problems and formalisms.

So far, the problem QSat already has an important role in descriptive complexity for
characterizing hardness of a problem for a certain level of the polynomial hierarchy, since
a polynomial-time reduction from QSat when restricted to quantifier rank suffices to
establish hardness for the complexity class ΣP or ΠP of the -th level of the polynomial
hierarchy. Our methodology keeps this workflow, but slightly adapts it towards a more
fine-grained version, where, e.g., decomposition-guided reductions can be used instead of
plain polynomial-time reductions. Then, one can use decomposition-guided reductions

117

6. A Complexity Landscape for Treewidth

to reduce from QSat to the desired problem, in order to show that under reasonable
assumptions it is not expected that the problem can be solved in a runtime that is
polynomial in the instance size and better than -fold exponential in the treewidth. Later,
we will say that this problem is then complete for the class TWk, which is a new runtime
class that is motivated by the applicability of our methodology.

Interestingly, for treewidth already certain restrictions of the problem QSat seem to
be a fairly prominent. This can be witnessed by further works in these directions that
were presented around the time of the availability of precise lower bound results [Lampis
and Mitsou, 2017] for QBFs of quantifier rank 2 under the exponential time hypothesis
(ETH). Indeed, restricted fragments of the problem QSat were used to characterize
further problems parameterized by treewidth in terms of both upper and lower bounds,
cf. [Fichte and Hecher, 2019; Fichte et al., 2018b; Lampis et al., 2018], where Lampis,
Mitsou, and Mengel [2018] even refer to the problem QSat as a potential “alternative” to
Courcelle’s theorem [Courcelle, 1990] due to its well-known, precise upper bounds [Chen,
2004]. Notably, Marx and Mitsou [2016] even refer to the intuitive meaning of implicit
“quantifier alternation” of problems higher on the polynomial hierarchy, when arguing
about treewidth lower bounds.

In this chapter of the thesis, we show that in general the problem QSat plays indeed
a crucial role in characterizing hardness for treewidth, i.e., for establishing tight lower
bounds under the exponential time hypothesis. First, we apply QSat and the findings
of Section 5.1 in order to develop in Section 6.1 a methodology for showing conditional
lower bounds for treewidth, which stems from a recent work [Fichte et al., 2020c].
Decomposition-guided reductions as introduced in Chapter 4 form a canonical tool for
applying this lower bound methodology. Then, in Section 6.2 we use this methodology for
lower bounds together with the techniques for upper bounds gained in Chapters 3 and 4
in order to classify problems according to the required runtime depending on treewidth
when solving these problems. Inspired by works on general FPT runtime classes [Weyer,
2004; Downey et al., 2007], we define runtime classes for treewidth that are expected
to form a strict hierarchy, unless Hypothesis 2.1, i.e., the exponential time hypothesis
(ETH), fails. Section 6.2 also discusses some hardness results for these classes that can
be obtained for a variety of problems relevant to knowledge representation and reasoning,
and artificial intelligence in general. These hardness results together with the results of
Chapters 3 and 4, allow us to present completeness results for these classes for problems
discussed in the course of this thesis. Thereby, we are able to finally complete Table 1.1
of Chapter 1 and state the intuitive meaning of this table more precisely.

118

6.1. A Methodology for Lower Bounds

6.1 A Methodology for Lower Bounds
Recall that Theorem 5.7 of the previous chapter showed the following lower bound for
evaluating QBFs, which we will use in order to establish a novel methodology for proving
lower bounds for problems located on higher levels of the polynomial hierarchy, when
parameterized by treewidth.

Theorem 5.7 (QBF lower bound). Given any QBF of the form Q = Q1V1.Q2V2.Q3V3
· · · Q V .F where ≥ 1, and F is a 3-CNF formula (if Q = ∃), or F is a 3-DNF formula
(if Q = ∀). Then, unless the ETH fails, Q cannot be solved in time tower(, o(k)) ·
poly(|var(F)|), where k is the treewidth of the primal graph PQ.

The result for = 2 (cf. [Lampis and Mitsou, 2017]) has already been applied as a strategy
to show lower bound results for problems in artificial intelligence, as for example abstract
argumentation, abduction, circumscription, and projected model counting, that are hard
for the second level of the polynomial hierarchy when parameterized by treewidth [Fichte
and Hecher, 2019; Fichte et al., 2018b; Lampis et al., 2018]. With the generalization to
an arbitrary quantifier rank in Theorem 5.7, one can obtain lower bounds for variants of
these problems and even more general problems on the third level or higher levels of the
polynomial hierarchy.

The Methodology
This motivates our methodology to show lower bounds for problems parameterized by
treewidth. To this end, we make use of a stricter notion of fpt-reductions as defined in
Section 2.2, where the fpt-reduction is guaranteed to linearly preserve the parameter.
Given functions f, g : N → N, where g is linear, and recall the concept of an f -bounded
fpt-reduction r using g. Recall that both functions f and g are in relation to the parameter
of the original, i.e., given instance. Further, function f refers to the part of the runtime
(bound) of r that is beyond polynomial in the instance size, and g refers to the parameter
of the resulting instance. Then, for simplicity, we call r an (f-bounded) fptl-reduction.
Recall decomposition-guided reductions of Chapter 4 and observe that these reductions
can serve as an effective tool in order to construct such an f -bounded fptl-reduction,
since it is often easy to see that g is indeed linear.

Next, we discuss the methodology for proving lower bounds of a problem P for treewidth
consisting of the following three steps.

1. Graph Representation: Pick a graph representation G(I) that can be constructed
for an arbitrary instance I of the considered problem P in polynomial time.

2. Establish Reduction: Fix a suitable quantifier rank and let Q be an arbitrary QBF
of this quantifier rank , where treewidth k = tw(GQ). Then, establish an f -bounded
fptl-reduction from the arbitrary QBF Q, to an instance I of P parameterized by the
treewidth of G(I), where function f : N → N is such that f(k) is in tower(, o(k)).

119

6. A Complexity Landscape for Treewidth

Intuitively, this fptl-reduction is required to be f -bounded, since otherwise one could
already solve QSat for Q within the reduction.

3. Conclude lower bound: Then, by applying Theorem 5.7 conclude that unless the
ETH fails, an arbitrary instance I of problem P cannot be solved in time tower(,
o(k)) · poly(I) where k = tw(G(I)).

We can generalize this to “non-canonical” lower bounds. To this end, one aims in Step 2 for
a lower bound of the form tower , Ω(g−1(k) ·poly(I) for some function g : N → N such
that g−1 is well-defined, and f(k) is in tower(, o(g−1(k))). Then, one needs to establish an
f -bounded fpt-reduction using g accordingly, in order to conclude in Step 3 that under the
ETH an arbitrary instance I of P cannot be solved in time tower(, o(g−1(k))) · poly(I),
where k = tw(G(I)).

With the help of this methodology one can show lower bounds f(k) for certain prob-
lems P, parameterized by treewidth, by reducing from the canonical -QSat problem
parameterized by treewidth k as well. Thus, one avoids directly using ETH via tedious
reductions from Sat, which involves problem-tailored constructions of instances of P
whose treewidth is -fold logarithmic in the number of variables or clauses of the given
Boolean formula.

Note that the methodology naturally extends to pathwidth, since the result of Theorem 5.7
easily extends to pathwidth by construction of our reduction R, which works for tree
decompositions including the special case of path decompositions. Formal details on
correctness have been already provided in Section 5.1.2 (cf. Corollary 5.15), which also
discusses further consequences of Theorem 5.7.

Applications and Showcases
The proof of Theorem 6.1 below serves as an example for applying the methodology,
showing that Theorem 5.7 also allows for quite general results on projection. Note that
these bounds are tight under the ETH.

Theorem 6.1. Given an open QBF of the form Q = Q1V1.Q2V2. Q3V3 · · · Q V .F
where ≥ 1, and F is a 3-CNF formula (if Q = ∃), or a 3-DNF formula (if Q = ∀).
Then, under the ETH, PQSat is indeed harder than deciding validity of Q[ι] for any
assignment ι : fvar(Q) → {0, 1}. In particular, assuming the ETH, PQSat cannot be
solved in time tower(+ 1, o(k)) · poly(|var(F)|), where k is the pathwidth of the primal
graph PQ.

Proof. Assume towards a contradiction that under the ETH one can solve projected model
counting of Q in time tower(+1, o(k)) ·poly(|var(F)|). In the following, we define an fptl-
reduction r from QSat to the decision variant PQSat-at-least-u of PQSat, where a given
open QBF Q is a yes-instance if and only if the solution (count) to PQSat of Q is at least u.
More precisely, we transform a closed QBF Q = Q0V0.Q1V1. Q2V2.Q3V3 · · · Q V .F ,

120

6.1. A Methodology for Lower Bounds

where k is the pathwidth of PQ to an instance Q = Q1.V1.Q2V2.Q3V3 · · · Q V .F of PQSat-
at-least-u, where fvar(Q) = V0, and we set u := 1 if Q0 = ∃ and u := 2|V0|, otherwise.
The reduction is indeed correct, since Q is a yes-instance of QSat if and only if Q =
r(Q) is a yes-instance of PQSat-at-least-u. Then, one can solve Q of quantifier
rank + 1 in time tower(+ 1, o(k)) · poly(|var(F)|), which contradicts Theorem 5.7 and
Corollary 5.15.

Corollary 6.2. Under the ETH, an instance Q of the problem #Σ Sat or #Π Sat
cannot be solved in time tower(+1, o(k)) ·poly(|var(matrix(Q))|), where k is the pathwidth
of GQ.

Next, we list further selected examples in order to demonstrate the applicability of our
methodology. These results and further are listed in an overview of complexity results
later, cf. Table 6.1. For corresponding problem definitions, we refer to the respective
original sources given below.

Proposition 6.3 (cf. [Fichte and Hecher, 2019]). Unless the ETH fails, PAsp for
given ASP program Π and a set P ⊆ var(Π) of projection variables cannot be solved in
time tower(3, o(k)) · poly(|Π|), where k is the pathwidth of the primal graph of Π.

Proof (Idea). Fptl-reduction from ∀∃∀-Sat to PAsp, both parameterized by the path-
width of its primal graph.

Proposition 6.4 (cf. [Fichte et al., 2019a]). Let S ∈ {pref, semi-st, stage} and F be an
argumentation framework. Unless the ETH fails, we cannot solve the problem #PCredS
in time tower(3, o(k)) · poly(F) where k is the pathwidth of F (underlying graph).

Proof (Idea). Fptl-reduction from ∀∃∀-Sat parameterized by pathwidth of primal graph,
to #PCredSEM (parameterized by pathwidth of the underlying graph).

Theorem 6.5 (cf. [Hecher et al., 2020a]). Given an epistemic program Π and a vari-
able a ∈ var(Π). Then, unless the ETH fails, deciding the problem Candidate World
View Check cannot be solved in time tower(3, o(k)) · poly(|Π|), and the problem World
View Check for a cannot be solved in time tower(4, o(k)) · poly(|Π|), where k is the
pathwidth of the primal graph of Π.

Proof (Idea). Fptl-reduction from ∃∀∃-Sat, or ∃∀∃∀-Sat (parameterized by pathwidth
of primal graph), respectively. Actually the reductions from the literature for showing ΣP

3 -
hardness and ΣP

4 -hardness [Shen and Eiter, 2017] form fptl-reductions.

121

6. A Complexity Landscape for Treewidth

6.2 Complexity Characterization for Treewidth
The methodology above for showing lower bounds, or that a problem is “at least as hard”,
gives rise to a natural classification of problems based on the runtime for treewidth,
where for simplicity we focus here on the treewidth of the primal graph representation GI
of a problem instance I. Note, however, that one could also consider the treewidth of
different (further) graph representations. In addition to hardness results and in order
to characterize problems accordingly, one also requires results providing that a problem
is “at most as hard” as a representative of some group or class of problems, thereby
establishing upper bounds or membership for this class. Recall that indeed techniques
for showing upper bounds involving treewidth were already provided in Chapters 3 and 4
and that decomposition-guided reductions therefore seem to form a suitable tool for
showing membership.

Next, we combine these findings with the methodology above. This is done by grouping
problems according to the required runtime for treewidth when solving them, which will
result in classes of problems, referred to by treewidth classes below. To this end, we
define the following class of problems for treewidth.

Class: TWk
1

Definition: Class TWk
1 is the set of all problems parameterized by

treewidth such that every instance I of these problems can
be solved in time 2O(k) · poly(I), where k = tw(GI)

This class can be further generalized in order to obtain the following classes below. The
definition of these classes is inspired by the work on general FPT runtime classes [Weyer,
2004; Downey et al., 2007] and these classes are therefore obviously contained in the
broader class FPT. We define a class for every non-negative integer i ∈ N as follows:

Class: TWk
i , for every i ∈ N

Definition: Class TWk
i is the set of all problems parameterized by

treewidth such that every instance I of these problems can be
solved in time tower(i, O(k)) · poly(I), where k = tw(GI)

Observe that indeed TWk
0 = P. It is also immediate by the definition of these classes that

for any i ∈ N we have TWk
i ⊆ TWk

i+1. Even further, under the exponential time hypothesis,
the inclusions between those classes TWk

i are strict. Consequently, we show next that
these TWk

i for i ∈ N form a strict hierarchy assuming the exponential time hypothesis
sustains.

Proposition 6.6. Let i ∈ N. Then, under the ETH we have that TWk
i TWk

i+1.

122

6.2. Complexity Characterization for Treewidth

Proof. Assume towards a contradiction that the ETH holds and at the same time we
have that TWk

i TWk
i+1. Consequently, due to TWk

i ⊆ TWk
i+1, we have that TWk

i = TWk
i+1.

However, this contradicts Theorem 5.7 for problem (i + 1)-QSat, which is in TWk
i+1 (cf.

Proposition 2.9), but under the ETH it is not in TWk
i since any function in tower(i, O(k))

is also in the set tower(i + 1, o(k)) of functions.

The concept of these classes can be further generalized to cover also “non-canonical”
running times, which results in the following definition.

Class: TWf
i , for every i ∈ N and function f : N → N

Definition: Class TWf
i is the set of all problems parameterized by

treewidth such that every instance I of these problems can be
solved in time tower(i, O(f(k)))·poly(I), where k = tw(GI)

This definition allows us to also cover classes like TWk·log(k)
1 , which is, assuming the ETH,

located between TWk
1 and TWk

2. Recall that problems of this class TWk·log(k)
1 are for example

the problem Disjoint Paths [Scheffler, 1994], which is also hard for this class under the
ETH, cf. Proposition 5.21. Therefore, it is quite unexpected that Disjoint Paths can be
a member of any class TWf

1 with f ∈ o(k · log(k)). Similar, as already shown, for answer
set programming the problem Asp restricted to normal or head-cycle-free programs is
in this class (cf. Theorem 3.16), but it is also hard for this class under the ETH as
established in Theorem 5.35. Observe that for two functions f, g and an integer i ∈ N,
if f ∈ Θ(g) the two problem classes TWf

i and TWg
i actually coincide, i.e., TWf

i = TWg
i .

Finally, in order to cover also problems that work with non-binary domains sizes d,
where d ∈ N+, we further generalize the classes above. This results in the final and most
general definition of our treewidth classes as follows.

Class: Treewidth class TWd,f
i , for every i ∈ N, d ∈ N+, and func-

tion f : N → N
Definition: Class TWd,f

i is the set of all problems parameterized by
treewidth such that every instance I of these problems can be
solved in time tower(i, dO(f(k))) ·poly(I), where k = tw(GI)

Observe that for i ∈ N and a function f , we have that TW2,f
i = TW1,f

i+1 = TWf
i+1.

Since the treewidth classes are now defined, we still need to formally state hardness and
completeness for these classes as motivated by the methodology above.

123

6. A Complexity Landscape for Treewidth

Definition 6.7 (Completeness for Treewidth Classes). Given integers i ∈ N, d ∈ N+, and
a function f : N → N. Then, a problem P is hard for the class TWd,f

i , if for an arbitrary
instance I of this problem P, the problem cannot be solved in time tower(i, do(f(tw(GI)))) ·
poly(I), unless the ETH fails. If a problem is both in the class TWd,f

i , i.e., a member
of TWd,f

i , and also hard for this class, we say that problem P is complete for TWd,f
i .

Indeed, having both membership and hardness for a problem and a treewidth class TWf
i

leads to quite precise runtime results for treewidth.

Observation 6.8. Let i ∈ N and d ∈ N+ be given integers, and let f : N → N be a
function. Then, we have that unless the ETH fails, an arbitrary instance I of a problem
being complete for the class TWd,f

i , requires runtime in tower(i, dΘ(f(tw(GI)))) · poly(I).

Proof. The claim follows by the definition of class TWf
i as well as Definition 6.7.

The definitions and results above can be easily lifted to cover pathwidth as well.

Class: Pathwidth class PWd,f
i , for every i ∈ N, d ∈ N+, and func-

tion f : N → N
Definition: Class PWd,f

i is the set of all problems parameterized by path-
width such that every instance I of these problems can be
solved in time tower(i, dO(f(k))) · poly(I), where k is the
pathwidth of tw(GI)

Observe that membership results for treewidth immediately carry over to the smaller
parameter pathwidth. Further, hardness results for pathwidth immediately carry over to
the larger parameter treewidth.

Observation 6.9. Given integers i ∈ N, d ∈ N+, and a function f : N → N. Then, a
problem that is a member of treewidth class TWd,f

i is also a member of pathwidth class PWd,f
i ,

i.e., PWd,f
i ⊆ TWd,f

i . Further, if a problem is hard for PWd,f
i it is hard for TWd,f

i as well.
Consequently, if a problem is in TWd,f

i and hard for PWd,f
i , this problem is complete for

both TWd,f
i and PWd,f

i .

Proof. The result follows immediately by the fact that for any graph G we have
that tw(G) ≤ pw(G) and that pw(G) is bounded by the pathwidth of G as well.

124

6.2. Complexity Characterization for Treewidth

Overview of Complexity Results for Treewidth
Table 6.1 gives a brief overview of selected problems and their respective runtime upper
bounds as well as runtime lower bounds under the ETH. All the results given in this
table form completeness results for respective treewidth and pathwidth classes, i.e., the
given bounds are asymptotically tight under ETH. Concrete references to table entries of
Table 6.1 are given in Footnotes1–19 below.

1See: [Cygan et al., 2015].
2Consequence of the ETH [Impagliazzo et al., 2001].
3See: [Scheffler, 1994].
4See: [Lokshtanov et al., 2018].
5See: [Samer and Szeider, 2010].
6See: [Lampis et al., 2018].
7See: [Fichte et al., 2020c].
8See: [Fichte et al., 2018b].
9See: [Jakl et al., 2009].

10See: [Fichte and Hecher, 2018, 2019].
11See: [Fichte et al., 2021a].
12See: [Hecher et al., 2020a].
13See: [Fellows et al., 2011].
14See: [Marx and Mitsou, 2016].
15See: [Dvořák et al., 2012].
16See: [Fichte et al., 2019a].
17See: [Chen, 2004].
18See: [Capelli and Mengel, 2019] or [Fichte and Hecher, 2020], which elaborates on combining an

established algorithm [Chen, 2004] with an approach for projected solution counting [Fichte et al., 2018b].
19See: [Fichte et al., 2020b].

125

6. A Complexity Landscape for Treewidth

Problem P Completeness for TWd,f
i and PWd,f

i

i d f Membership Hardness
Min Vertex Cover [Garey and Johnson, 1979] 1 1 k 1 2

Min Dominating Set [Garey and Johnson, 1979] 1 1 k 1 2

Max Independent Set [Garey and Johnson, 1979] 1 1 k 1 2

Hamiltonian Cycle [Garey and Johnson, 1979] 1 1 k 1 2

3-Colorability [Garey and Johnson, 1979] 1 1 k 1 2

Disjoint Paths [Scheffler, 1994] 1 1 k·log(k) 3 4

Sat, #Sat 1 1 k 5 2

Circumscription [McCarthy, 1980] 2 1 k 6 6
TW , 7

Mus [Lampis et al., 2018] 2 1 k 6 6
TW , 7

Pap [Eiter and Gottlob, 1995b] 2 1 k 6 6
TW , 7

#∃Sat 2 1 k 8 8
TW , 7

Models, #Models 1 1 k Thm. 3.8 Prop. 3.3
Tight Asp/#Asp 1 1 k Thm. 3.8 Prop. 3.9
Supported Models/#Models 1 1 k Thm. 3.8 Prop. 3.9
Normal/HCF Asp 1 1 k·log(k) Thm. 3.16 Thm. 5.35
ι-Tight Asp (cf., Definition 4.24) 1 1 k · log(ι) Thm. 4.27 Corr. 4.28
Disjunctive Asp/#Asp 2 1 k 9 Thm. 5.18
Asp, #Asp 2 1 k Thm. 3.21 Thm. 5.18
PAsp [Aziz, 2015; Fichte and Hecher, 2019] 3 1 k 10 10

Nonground Asp [Eiter et al., 2007], arity 3, domain
size d

3 d k 11 11

Cand. World View Check [Shen and Eiter, 2017] 3 1 k 12 12

World View Check [Shen and Eiter, 2017] 4 1 k 12 12

s-Choosability [Fellows et al., 2011], s ≥ 3 2 1 k 13 14

s-Choosability Deletion [Marx and Mitsou,
2016], s ≥ 4

3 1 k 14 14

Skeppref , Skepsemi-st, Credsemi-st [Dung, 1995] 2 1 k 15 16
TW , 7

#PCredS [Fichte et al., 2019a], S ∈ {pref, semi-st,
stage}

3 1 k 16 16
TW , 7

-QSat, -#QSat [Gomes et al., 2009], ≥ 1 1 k 17 Thm. 5.7
PQSat: #Σ −1Sat, #Π −1Sat, ≥ 2 1 k 18 Corr. 6.2
(−1)-QCSat [Dechter, 2006], ≥ 2, domain size d d k 17 19

Table 6.1: Completeness results of selected problems for treewidth classes TWd,f
i and

pathwidth classes PWd,f
i , where k refers to the treewidth and the pathwidth of the primal

graph, respectively. References of the results are provided in Footnotes1–19. Membership
upper bounds are mostly known by the literature, which is indicated by “ ”. New upper
bounds established in the course of this thesis, i.e., Chapters 3 and 4, are indicated by “ ”.
Runtime lower bounds (under the ETH) are given under column “hardness” and k refers
to the treewidth (“ TW”), pathwidth (“ ” or “ ”) of the corresponding (primal) graph
of I. Results known from the literature are marked by “ TW” and “ ”. By “ ”, we
indicate that the result holds due to lower bound advancements and the methodology
described in Chapter 5. We obtain results for “ ”, with known lower bound (“ TW”,
“ ”), by the existing lower bound proof together with our methodology for pathwidth.

126

CHAPTER 7
Efficiently Implementing

Treewidth-Aware Algorithms
Knowledge is not power; Implementation is power.

— Garrison Wynn

Recall dynamic programming on tree decompositions as one of the most prominent
methods to utilize treewidth [Cygan et al., 2015; Downey and Fellows, 2013]. Besides
theoretical work in this direction, which dates back to the early 70s [Bertelè and Brioschi,
1972, 1973; Bodlaender and Kloks, 1996; Flum and Grohe, 2006; Niedermeier, 2006], this
technique has also been the focus of several practical implementations and empirical
studies. Indeed, while for many problems parameterized by treewidth the best-known
upper bounds and especially corresponding lower bounds might seem devastating (cf. also
Chapters 3–6), there are several solvers exploiting treewidth. On the one hand, there are
specialized solvers such as dynasp [Fichte et al., 2017b], dynQBF [Charwat and Woltran,
2017], gpuSAT [Fichte et al., 2018b, 2019b], and fvs-pace [Kiljan and Pilipczuk, 2018]
that utilize treewidth supported by problem-specific implementations, techniques, and
fine-tunings. Some of these parameterized solvers are particularly efficient for certain
fragments [Lonsing and Egly, 2018a], and even successfully participated in problem-
specific competitions [Pulina and Seidl, 2019]. However, on the other hand, the literature
also distinguishes quite generic systems that exploit treewidth like D-FLAT [Bliem
et al., 2016a], Jatatosk [Bannach and Berndt, 2019], and sequoia [Langer et al., 2012].
Independent of how these systems work internally, a crucial key ingredient is oftentimes
the component or the software library that computes tree decompositions. Nowadays,
it is possible to efficiently approximate treewidth [Bodlaender et al., 2016; Bodlaender,
1996; Feige et al., 2008] and to benefit from several efficient heuristics, see, e.g., [Abseher
et al., 2017; Dell et al., 2017], which is also the result of dedicated competitions [Dell
et al., 2017] for treewidth. This is indeed quite surprising, as for a given graph the
computation of a tree decomposition of minimal width (treewidth) is NP-hard.

127

7. Efficiently Implementing Treewidth-Aware Algorithms

Despite these major practical progresses, systems that exploit treewidth naturally suffer
from rather similar issues: for efficiently computing treewidth and tree decompositions [Ab-
seher et al., 2017; Tamaki, 2019], these approaches based on dynamic programming reach
their limits when instances have higher treewidth; a situation which can even occur
in structured real-world instances [Maniu et al., 2019]. Nevertheless, in the area of
Boolean satisfiability, this approach proved to be successful for counting problems, such
as, e.g., (weighted) model counting [Fichte et al., 2019b; Samer and Szeider, 2010] and
projected model counting [Fichte et al., 2018b]. To further increase the applicability
of this paradigm, novel techniques are required which (1) rely on different levels of
abstraction of the instance at hand; (2) treat subproblems originating in the abstraction
by standard solvers whenever widths appear too high; and (3) use highly sophisticated
data management in order to store and process tables obtained by dynamic programming.

In this chapter, we turn our focus to practically applying tree decompositions for efficient
problem solving, where we treat the three above aspects as follows.

1. To tame the beast of high treewidth, based on recent work [Hecher et al., 2020b]
we propose in Section 7.1 the concept of nested dynamic programming, where only
parts of an abstraction of a graph are decomposed. Then, each tree decomposition
node also needs to solve a subproblem residing in the graph, but may involve vertices
outside the abstraction. In turn, for solving such subproblems, the idea of nested
DP is to subsequently repeat decomposing and solving more fine-grained graph
abstractions in a nested fashion. This results not only in elegant DP algorithms, but
also allows to deal with high treewidth. While candidates for obtaining abstractions
often originate naturally from the problem, nested DP may require non-obvious
sub-abstractions, for which we present a generic solution.

2. To further improve the capability of handling high treewidth, we show how to apply
nested dynamic programming in the context of hybrid solving, where established,
standard solvers (e.g., Sat solvers) and caching are incorporated in nested dynamic
programming such that the best of two worlds are combined. This leads to a
technique called hybrid dynamic programming [Hecher et al., 2020b], which will
be discussed in Section 7.2. Thereby, structured solving is applied to parts of the
problem instance subject to counting or enumeration, while depending on results
of subproblems. These subproblems (subject to search) reside in the abstraction
only, and are solved via standard solvers.

3. Finally, in Section 7.3 we discuss how to apply database management systems
(DBMS) for efficiently maintaining tables during dynamic programming. We
implement a system called nestHDB that uses databases during hybrid dynamic
programming, which follows recent ideas [Fichte et al., 2021b; Hecher et al., 2020b].
This system is presented in Section 7.4, thereby combining nested DP and standard
solvers, where DBMS are applied for efficiently implementing the handling of tables
needed by nested DP. Preliminary experiments of nestHDB indicate that nested
DP with hybrid solving can be indeed fruitful.

128

7.1. Abstractions as a Key for Nested Dynamic Programming

d a

b c

a

b

d

c

Figure 7.1: Primal graph GF of F from Example 3.1 (left), nested primal graph G{a,b}
F

(middle), as well as nested primal graph G{c,d}
F (right).

We exemplify and detail these ideas along the canonical #Sat problem and projected
model counting (#∃Sat), and we discuss adaptions required for solving other problems.

7.1 Abstractions as a Key for Nested Dynamic
Programming

In the following, we discuss certain abstractions of the primal graph in the context of the
Boolean satisfiability problem, namely for the problem #Sat. Afterwards we generalize
the usage of these abstraction to nested dynamic programming for further problems.

To this end, let F be a Boolean formula. Now, assume the situation that a set U
of variables of F , called nesting variables, appears uniquely in the bag of exactly one
TD node t of a tree decomposition of GF . Then, observe that one could do dynamic
programming on the tree decomposition as explained in Chapter 3, but no truth value for
any variable in U requires to be stored. Instead, clauses involving U could be evaluated
by nested DP within node t, since variables U appear uniquely in the node t. Indeed, for
dynamic programming on the non-nesting (abstraction) variables, only the result of this
evaluation is essential.

Before we can apply nested DP, we need abstractions with room for choosing nesting
variables between the empty set and the set of all the variables. Let F be a Boolean
formula and recall the primal graph GF = (var(F), E) of F , as defined in Section 2.5.
Inspired by related work [Dell et al., 2019; Eiben et al., 2019; Ganian et al., 2017; Hecher
et al., 2020a], we define the nested primal graph GA

F for a given formula F and a given
set A ⊆ var(F) of abstraction variables. To this end, we say a path P in primal graph GF

is a nesting path (between u and v) using A, if P = u, v1, . . . , v , v (≥ 0), and every
vertex vi is a nesting variable, i.e., vi /∈ A for 1 ≤ i ≤ . Note that any path in GF is
nesting using A if A = ∅. Then, the vertices of nested primal graph GA

F correspond to A
and there is an edge between two distinct vertices u, v ∈ A if there is a nesting path
between u and v. Observe that the nested primal graph only consists of abstraction
variables and, intuitively, “hides” nesting variables of nesting paths of primal graph GF .
Even further, the connected components of GF − A are hidden in the nested primal
graph GA

F by means of cliques among A.

Example 7.1. Recall formula F := {
c1

{¬a, b, c},

c2

{a, ¬b, ¬c},

c3

{a, d},

c4

{a, ¬d}} and primal
graph GF of Example 3.1, which is visualized in Figure 7.1 (left). Given abstraction
variables A={a, b}, nesting paths of GF are, e.g., P1=a, P2=a, d, P3=d, a, P4=a, b,

129

7. Efficiently Implementing Treewidth-Aware Algorithms

{a, b, c}
t1

{a, d}
t2

{a}t3

{a, b}
t1

{a}
t2

{a}t3

Figure 7.2: TD T (left) of the primal graph GF of Figure 7.1, and a TD T (right) of
nested primal graph G{a,b}

F .

P5=a, c, b. However, neither path P6=b, a, d, nor path P7=d, a, b, c is nesting using A.
Nested primal graph GA

F is shown in Figure 7.1 (middle) and it contains an edge {a, b}
over the vertices in A due to, e.g., paths P4, P5. Assume a different set A = {c, d}.
Observe that GA

F as depicted in Figure 7.1 (right) consists of the vertices A and there is
an edge between c and d due to, e.g., nesting path P = c, a, d using A .

The nested primal graph provides abstractions of needed flexibility for nested DP. Indeed,
if we set abstraction variables to A= var(F), we end up with full dynamic programming
and zero nesting, whereas setting A=∅ results in full nesting, i.e., nesting of all variables.
Intuitively, the nested primal graph ensures that clauses subject to nesting (containing
nesting variables) can be safely evaluated in exactly one node of a tree decomposition of
the nested primal graph.

To formalize this, we assume a tree decomposition T = (T, χ) of GA
F and say a set U ⊆

var(F) of variables is compatible with a node t of T , and vice versa, if

(I) U is a connected component of the graph GF − A, which is obtained from primal
graph GF by removing A and

(II) all neighbor vertices of U that are in A are contained in χ(t), i.e., {a | a ∈ A, u ∈
U, there is a nesting path from a to u using A} ⊆ χ(t).

If such a set U ⊆ var(F) of variables is compatible with a node of T , we say that U is a
compatible set. By construction of the nested primal graph, any nesting variable is in at
least one compatible set. However, a compatible set could be compatible with several
nodes of T . Hence, to enable nested evaluation in general, we need to ensure that each
nesting variable is evaluated only in one unique node t.

As a result, we formalize for every compatible set U , a unique node t of T that is compatible
with U , denoted by compF,A,T (U) := t. We denote the union of all compatible sets U

with compF,A,T (U) = t, by nested bag variables χA
t := U :compF,A,T (U)=t U . Then, the

nested bag formula F A
t for a node t of T equals F A

t := {c | c ∈ F, var(c) ⊆ χ(t) ∪ χA
t } \ Ft,

where the canonical bag formula Ft is defined as in Section 2.5 above. Observe that the
definition of nested bag formulas ensures that any connected component U of GF − A
“appears” among nested bag variables of some unique node of T . Consequently, each
variable a ∈ var(F) \ A appears only in one nested bag formula F A

t of a node t of T that
is unique for a.

130

7.1. Abstractions as a Key for Nested Dynamic Programming

Listing 7.1: Algorithm NestDPN(depth, I, A, T) for computing solutions of I via nested
DP on LTD T .

In: Nested table algorithm N, nesting depth ≥ 0, a set A of vertices of GI , and an
LTD T = (T, χ, δI) of the nested primal graph GA

I of I.
Out: Table mapping N-Tabs, which maps each TD node t of T to some computed

table τt.
1 N-Tabs ← {} /* empty mapping */
2 for iterate t in post-order(T) do
3 Child-Tabs ← N-Tabs[t1], . . . , N-Tabs[t] where post-children(t) = t1, . . . , t

4 N-Tabs[t] ← Nt(depth, χ(t), I, δI(t), IA
t , Child-Tabs)

5 return N-Tabs

Example 7.2. Recall formula F , the tree decomposition T = (T, χ) of GF , as depicted
in Figure 7.2 (left), and abstraction variables A = {a, b} of Example 7.1. Consider
TD T := (T, χ), where χ (t) := χ(t) ∩ {a, b} for each node t of T , which is given in
Figure 7.2 (right). Observe that T is T , but restricted to A and that T is a TD of GA

F

of width 1. There are two compatible sets, namely {c} and {d}. Observe that only for
compatible set U = {d} we have two nodes compatible with U , namely t2 and t3. We
assume that compF,A,T (U) = t2, i.e., we decide that t2 shall be the unique node for U .
Consequently, nested bag formulas are F A

t1 = {c1, c2}, F A
t2 = {c3, c4}, and F A

t3 =∅.

Nested Dynamic Programming
The notations above are by far not limited to problems related to Boolean satisfiability.
Assume a given problem P, an instance I of P, and the primal graph GI = (V, E) of I.
Indeed, given a set A ⊆ V of abstraction variables, it is straight forward to apply nesting
paths in order to define the nested primal graph GA

I for any instance I of any problem P.
Further, assuming a given tree decomposition T = (T, χ) of nested primal graph GA

I
and a node t of T , we require a suitable, problem-specific definition of the nested bag
instance IA

t , which lifts the concept of nested bag formulas from Boolean formulas to
instances of problem P.

Now, we have established required notation in order to discuss nested dynamic program-
ming (nested DP). Listing 7.1 presents algorithm NestDP for solving a given problem P
by means of nested dynamic programming. Observe that Listing 7.1 is almost iden-
tical to algorithm DP as presented in Listing 3.1. The reason for this is that nested
dynamic programming for P can be seen as a refinement of dynamic programming for P,
cf. algorithm DP of Listing 3.1. Indeed, the difference of NestDP compared to DP is
that NestDP uses labeled tree decompositions of the nested primal graph and that it
gets as additional parameter a set A of abstraction variables. Further, instead of a
table algorithm A, algorithm NestDP relies on a nested table algorithm N during dynamic
programming, which is similar to a table algorithm that gets as additional parameter
an integer depth ≥ 0 that will be used later and a nested bag instance that needs to be
evaluated. For simplicity and generality, also the instance I is passed as a parameter,
which is, however, used only for passing problem-specific information of the instance.

131

7. Efficiently Implementing Treewidth-Aware Algorithms

{a, b} t1 {a}t2

{a} t3T :
a, b, cnt
0, 0, 2
1, 0, 1
0, 1, 1
1, 1, 2 τ1

i

1
2
3
4

i

1
a, cnt
1, 6

τ3 i

1
a, cnt
1, 2

τ2

{a} tT :

a, cnt
1, 6

τt
i

1

Figure 7.3: Selected tables obtained by nested DP on any LTD of TD T of G{a,b}
F (left)

and on any LTD of TD T of G{a}
F (right) for F of Example 7.2 via NestDPN#Sat.

Indeed, most nested table algorithm do not require this parameter, which should not
be used for direct problem solving instead of utilizing the bag instance. Consequently,
nested dynamic programming still follows the basic concept of dynamic programming as
presented in Figure 3.1.

Similar to Chapter 3, for the ease of presentation our nested table algorithms use
nice labeled tree decompositions only. Recall that this is not a hard restriction, cf.
Proposition 2.6 and Observation 2.15. Indeed, it is easy to see that for arbitrary LTDs
the clear case distinctions of nice decompositions are still valid, but are in general just
overlapping. Further, without loss of generality we also assume that each compatible
set U gets assigned a unique node t = compI,A,T (U) that is an introduce node, i.e.,
type(t) = intr.

Nested Dynamic Programming for #Sat. In order to design a nested table
algorithm for #Sat, assume a Boolean formula F as well as a given labeled tree
decomposition T = (T, χ, δF) of GA

F using any set A of abstraction variables. Recall from
the discussions above, that each variable a ∈ var(F) \ A appears only in one nested bag
formula F A

t of a node t of T that is unique for a. These unique variable appearances allow
us to actually nest the evaluation of nested bag formula F A

t . This evaluation is performed
by a nested table algorithm N#Sat in the context of nested dynamic programming.
Listing 7.2 shows this simple nested table algorithm N#Sat for solving problem #Sat by
means of algorithm NestDPN#Sat. For comparison, recall table algorithm #Sat for solving
problem #Sat by means of dynamic programming, as given by Listing 3.2. Observe that
the main difference of N#Sat compared to #Sat is that the nested table algorithm N#Sat
gets called on a nested primal graph and that it gets besides other parameters the nested
bag formula as additional parameter. Then, the nested table algorithm evaluates this
nested bag formula in Line 3 via any procedure #Sat for solving problem #Sat(F A

t) on
the nested bag formula F A

t . Note that this subproblem #Sat(F A
t) itself can be solved

by again using nested dynamic programming with the help of algorithm NestDPN#Sat.

In the following, we briefly show the evaluation of nested dynamic programming for
#Sat on an example.

Example 7.3. Recall formula F , set A of abstraction variables, and TD T of nested
primal graph GA

F given in Example 7.2. Formula F has six satisfying assignments,

132

7.1. Abstractions as a Key for Nested Dynamic Programming

Listing 7.2: Nested table algorithm N#Satt(·, χt, ·, Ft , F A
t , τ1, . . . , τ) for solving #Sat.

In: Node t, bag χt, bag formula Ft , nested bag formula F A
t , and sequence τ1, . . . τ of

child tables of t.
Out: Table τt.

1 if type(t) = leaf then τt ← { ∅, 1 }
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← { J, c · c | I, c ∈ τ1, J ∈ {I+

a→0, I+
a→1}, J |= Ft , c >0, c =#Sat(F A

t [J])}
4 else if type(t) = rem, and a ∈ χ(t) is removed then

/* C(I) is the set that contains the rows in τ1 for assignments
J that are equal to I after removing a */

5 C(I) ← { J, c | J, c ∈ τ1, J \ {a → 0, a → 1} = I \ {a → 0, a → 1}}
6 τt ← { I \ {a → 0, a → 1}, J,c ∈C(I) c }| I, · ∈ τ1}
7 else if type(t) = join then
8 τt ← { I, c1 · c2 | I, c1 ∈ τ1, I, c2 ∈ τ2}
9 return τt

namely {a → 1, b → 0, c → 1, d → 0}, {a → 1, b → 0, c → 1, d → 1}, {a → 1, b →
1, c → 0, d → 0}, {a → 1, b → 1, c → 0, d → 1}, {a → 1, b → 1, c → 1, d → 0}, and
{a → 1, b → 1, c → 1, d → 1}.

Figure 7.3 (left) shows TD T of GA
F and tables obtained by NestDPN#Sat(0, F, A, T ∗) for

model counting (#Sat) on F , where T ∗ is any arbitrary LTD of TD T . Observe that the
canonical bag formula for every node of T is empty and therefore we can indeed use any
LTD T ∗ of TD T and end up with the same result. We briefly discuss executing #Sat
on T ∗, resulting in tables τ1, τ2, and τ3 as shown in Figure 7.3 (left). Intuitively, table τ1
is the result of introducing variables a and b. Recall from Example 7.2 that F A

t1 = {c1, c2}
with c1 = {¬a, b, c} and c2 = {a, ¬b, ¬c}. Then, in Line 3 of algorithm N#Sat, for each
assignment I to {a, b} of each row r of τ1, we compute #Sat(F A

t1 [I]). Consequently,
for assignment I1 = {a → 0, b → 0}, we have that there are two satisfying assignments
of F A

t1 [I1], namely {c → 0} and {c → 1}. Indeed, this count of 2 is obtained for the first
row of table τ1 by Line 3. Analogously, one can derive the remaining tables of τ1 and one
obtains table τ2 similarly, by using formula F A

t2 . Then, table τ3 is the result of removing b
in node t1 and combining agreeing assignments of rows accordingly. Consequently, we
obtain that there are six satisfying assignments of F , which are all required to set a to 1
due to formula F A

t2 that is evaluated in node t2.

Figure 7.3 (right) shows TD T of G{a}
F and tables obtained by NestDPN#Sat(0, F, {a}, T ∗∗)

using any LTD T ∗∗ of TD T . Since F
{a}
t = F and {a → 0} |= F , table τt does not

contain an entry corresponding to assignment {a → 0}, cf. Condition “c >0” in Line 3
of Listing 7.2. Thus, there are six satisfying assignments of F

{a}
t [{a → 1}] obtained by

computing #Sat(F {a}
t [{a → 1]}).

While the overall concept of nested dynamic programming as given by algorithm NestDP
of Listing 7.1 is quite general, sometimes in practice it is sufficient to further restrict the
set of choices for abstraction vertices A when constructing the nested primal graph.

133

7. Efficiently Implementing Treewidth-Aware Algorithms

Listing 7.3: Nested table algorithm N#∃Satt(·, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving prob-

lem #∃Sat.
In: Node t, bag χt, bag formula Ft , nested bag QBF QA

t = ∃V.F A
t , and sequence

τ1, . . . τ of child tables of t.
Out: Table τt.

1 if type(t) = leaf then τt ← { ∅, 1 }
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← { J, c · c

| I, c ∈ τ1, J ∈ {I+
a→0, I+

a→1}, J |= Ft , c >0, c =#∃Sat(QA
t [J])}

4 else if type(t) = rem, and a ∈ χ(t) is removed then
/* C(I) is the set that contains the rows in τ1 for assignments

J that are equal to I after removing a */
5 C(I) ← { J, c | J, c ∈ τ1, J \ {a → 0, a → 1} = I \ {a → 0, a → 1}}
6 τt ← { I \ {a → 0, a → 1}, J,c ∈C(I) c | I, · ∈ τ1}
7 else if type(t) = join then
8 τt ← { I, c1 · c2 | I, c1 ∈ τ1, I, c2 ∈ τ2}
9 return τt

Nested Table Algorithm for #∃Sat. To this end, we show the approach of nested
dynamic programming for the problem #∃Sat.

Example 7.4. Recall formula F as well as set A = {a, b} of abstraction variables from
Example 7.2. Then, we have that Q := ∃V.F with V := {c, d} is an instance of the
projected model counting problem #∃Sat. Sometimes we refer to A = fvar(Q) by a set
of projection variables or projection set. Restricted to projection set A, the Boolean
formula F has two satisfying assignments, namely {a → 1, b → 0} and {a → 1, b → 1}.
Consequently, the solution to #∃Sat on Q, i.e., #∃Sat(Q), is 2.

Indeed, for solving projected model counting we mainly focus on the case, where for a
given instance Q = ∃V.F with Boolean formula F of problem #∃Sat, the abstraction
variables A that are used for constructing the nested primal graph GA

Q := GA
F are among the

projection variables, i.e., A ⊆ fvar(Q). The approach of nested DP can then be applied for
solving projected model counting such that the nested table algorithm naturally extends
algorithm N#Sat of Listing 7.2. To this end, we let for Q with A ⊆ fvar(Q) the nested
bag QBF QA

t := ∃(V ∩ var(F A
t)).F A

t with nested bag formula F A
t being defined as above.

Note that if V ∩ var(F A
t) = ∅, we assume by slight abuse of notation that QA

t := F A
t .

Example 7.5. Consider again our instance Q = ∃V.F from above, where formula F ,
abstraction variables A, as well as TD T of nested primal graph GA

F are given in
Example 7.2. Then, we have that the nested bag QBF QA

t1 = ∃c.F A
t1 and QA

t2 = ∃d.F A
t2 .

Finally, observe that QA
t3 = F A

t3 = ∅.

Then, the nested table algorithm N#∃Sat for solving projected model counting via
nested dynamic programming is presented in Listing 7.3. Observe that nested table
algorithm N#∃Sat does not significantly differ from algorithm N#Sat due to A ⊆ fvar(Q).

134

7.2. Refining Nested DP – Towards Hybrid Dynamic Programming

Listing 7.4: Algorithm HybDPH#∃Sat(depth, Q) for hybrid DP of #∃Sat based on nested
DP.

In: Nesting depth ≥ 0 and a quantified Boolean formula Q = ∃V.F with F being Boolean.
Out: Number #∃Sat(Q) of assignments.

1 P ← fvar(Q) /*Original projection variables*/
2 Q = ∃V .F ← BCP_And_Preprocessing(Q)
3 P ← fvar(Q) /*Projection variables after preprocessing*/
4 A ← P
5 if F ∈ dom(cache) /*Cache Hit occurred*/ then return cache(F) · 2|P \P |
6 if P = ∅ then return Sat(F) · 2|P |
7 T = (T, χ, δQ) ← Decompose_via_Heuristics(GA

F) /* Decompose */
8 if width(T) ≥ thresholdhybrid or depth ≥ thresholddepth /* Standard Solver */ then
9 if var(F) = P then cache ← cache ∪{(F , #Sat(F))}

10 else cache ← cache ∪{(F , #∃Sat(Q))}
11 return cache(F) · 2|P \P |
12 if width(T) ≥ thresholdabstr /* Abstract via Heuristics & Decompose*/ then
13 A ← Choose_Subset_via_Heuristics(A, F)
14 T = (T, χ, δQ) ← Decompose_via_Heuristics(GA

F)
15 N-Tabs ← NestDPH#∃Sat(depth, Q , A, T) /* Nested Dynamic Programming */
16 cache ← cache ∪{(F , c) | ∅, c ∈ N-Tabs[root(T)]}
17 return cache(F) · 2|P \P |

Indeed, the main difference is only in Line 3 of Listing 7.2, where instead of a procedure
for model counting, a procedure #∃Sat for solving a projected model counting question
is called. Note that one can adapt nested table algorithm N#∃Sat of Listing 7.2 to the
case where A ⊆ fvar(Q). However, this requires to use an algorithm that is more involved
than algorithm NestDPN#∃Sat when computing precise projected model counts, which is
detailed in related work [Fichte et al., 2018b].

7.2 Refining Nested DP – Towards Hybrid Dynamic
Programming

Now, we have definitions at hand to further refine and discuss nested dynamic program-
ming in the context of hybrid dynamic programming (hybrid DP), which combines using
both standard solvers and parameterized solvers exploiting treewidth in the form of
nested dynamic programming. We first illustrate the ideas for the problem #∃Sat in
Section 7.2.1 and then we show how to apply hybrid dynamic programming to other
problems in Section 7.2.2. After discussing in Section 7.3 how to use database manage-
ment systems for these algorithms, we finally present a concrete implementation of this
approach in Section 7.4.

135

7. Efficiently Implementing Treewidth-Aware Algorithms

7.2.1 Hybrid Solving based on Nested DP

Listing 7.4 depicts our algorithm HybDPH#∃Sat for solving projected model counting, i.e.,
problem #∃Sat. This algorithm HybDPH#∃Sat takes a quantified Boolean formula Q =
∃V.F consisting of Boolean formula F and projection variables P = fvar(Q). The
algorithm maintains a global, but simple cache mapping a formula to an integer, and
consists of the following four subsequent blocks of code, which are separated by empty
lines: (1) Preprocessing & Cache Consolidation, (2) Standard Solving, (3) Abstraction
& Decomposition, and (4) Nested Dynamic Programming, which causes an indirect
recursion through nested table algorithm H#∃Sat, as discussed later.

Block (1) spans Lines 1-5 and performs simple preprocessing techniques like Boolean
conflict propagation (BCP), thereby obtaining a simplified instance Q = ∃V .F and
obtaining updated projection variables P ⊆ P . Then, in Line 4, we set the set A
of abstraction variables to P , and consolidate cache with the updated formula F .
Note that the operations in Line 2 are required to return a simplified instance that
preserves satisfying assignments of the original formula when restricted to P . If F is
not cached, in Block (2), we do standard solving if the width is out-of-reach for nested
DP, which spans over Lines 6-11. More precisely, if the updated formula F does not
contain projection variables, in Line 6 we employ a Sat solver returning integer 1 or
0. If F contains projection variables and either the width obtained by heuristically
decomposing GF is above thresholdhybrid, or the nesting depth exceeds thresholddepth,
we use a standard #Sat or #∃Sat solver depending on P .

Block (3) spans Lines 12-14 and is reached if no cache entry was found in Block (1) and
standard solving was skipped in Block (2). If the width of the computed decomposition
is above thresholdabstr, we need to use an abstraction in form of the nested primal
graph. This is achieved by choosing suitable subsets E ⊆ A of abstraction variables and
decomposing F E

t heuristically.

Finally, Block (4) concerns nested DP, cf. Lines 15-17. This block relies on nested table
algorithm H#∃Sat, which is given in Listing 7.5 that is almost identical to nested table
algorithm N#∃Sat as already discussed above and given in Listing 7.3. The only difference
of H#∃Sat compared to N#∃Sat is that in Line 3 the nested table algorithm H#∃Sat uses
the parameter depth and recursively executes algorithm HybDPH#∃Sat on the increased
nesting depth of depth +1, and the same formula as the one used in the generic #∃Sat
oracle call in Line 3 of Listing 7.3.

As a result, our approach deals with high treewidth by recursively finding and decom-
posing abstractions of the graph. If the treewidth is too high for some parts, tree
decompositions of abstractions are used to guide standard solvers. Towards defining
an actual implementation for practical solving, one still needs to find values for the
threshold constants thresholdhybrid, thresholddepth, and thresholdabstr. The actual values
of these constants will be made more precisely later in Section 7.4 when discussing our
implementation and experiments.

136

7.2. Refining Nested DP – Towards Hybrid Dynamic Programming

{a, b} t1 {a}t2

{a} t3T :
a, b, cnt
0, 0, 1
1, 0, 1
0, 1, 1
1, 1, 1 τ1

i

1
2
3
4

i

1
a, cnt
1, 2

τ3 i

1
a, cnt
1, 1

τ2

{a} tT :

a, cnt
1, 2

τt
i

1

Figure 7.4: Selected tables obtained by nested DP using NestDPH#∃Sat on any LTD of
TD T of G{a,b}

Q (left) and on any LTD of TD T of G{a}
Q (right) for instance Q = ∃c, d.F

of Example 7.4.

Listing 7.5: Nested table algorithm H#∃Satt(depth, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving

#∃Sat.
In: Node t, nesting depth ≥ 0, bag χt, bag formula Ft , nested bag QBF QA

t = ∃V.F A
t ,

and sequence τ1, . . . τ of child tables of t.
Out: Table τt.

1 if type(t) = leaf then τt ← { ∅, 1 }
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← { J, c ·c | I, c ∈ τ1, J ∈ {I+

a→0, I+
a→1}, J |= Ft , c > 0,

c =NestDPH#∃Sat(depth +1, QA
t [J])}

4 else if type(t) = rem, and a ∈ χ(t) is removed then
/* C(I) is the set that contains the rows in τ1 for assignments

J that are equal to I after removing a */
5 C(I) ← { J, c | J, c ∈ τ1, J \ {a → 0, a → 1} = I \ {a → 0, a → 1}}
6 τt ← { I \ {a → 0, a → 1}, J,c ∈C(I) c | I, · ∈ τ1}
7 else if type(t) = join then
8 τt ← { I, c1 · c2 | I, c1 ∈ τ1, I, c2 ∈ τ2}
9 return τt

Example 7.6. Recall QBF Q = ∃V.F of Example 7.4, and set A of abstraction variables
as well as TD T of nested primal graph GA

F as given in Example 7.2. Further, recall
that restricted to projection set A, F has two satisfying assignments. Figure 7.4 (left)
shows TD T of GA

Q = GA
F and tables obtained by NestDPH#∃Sat(0, Q, A, T ∗) for solving

projected model counting on Q, where T ∗ is any LTD of T .

Note that nested table algorithm H#∃Sat of Listing 7.5 works similar to the nested table
algorithm N#∃Sat of Listing 7.3, but it calls HybDPH#∃Sat recursively. We briefly discuss
executing H#∃Satt1 in the context of Line 15 of algorithm HybDPH#∃Sat on node t1, result-
ing in table τ1 as shown in Figure 7.4 (left). Recall that F A

t1 = {{¬a, b, c}, {a, ¬b, ¬c}}.
Then, in Line 3 of algorithm H#∃Sat, for each assignment J to {a, b} of each row
of τ1, we compute HybDPH#∃Sat(depth +1, ∃c.F A

t1 [J]). Each of these recursive calls, how-
ever, is already solved by Boolean conflict propagation (BCP) and preprocessing, e.g.,
F A

t1 [{a → 1, b → 0}] of Row 2 simplifies to {{c}}.

Figure 7.4 (right) shows TD T of GE
Q with E := {a}, and tables obtained by algorithm

NestDPH#∃Sat(0, Q, E, T ∗∗), where T ∗∗ is any LTD of T . Still, F E
t [J] for a given

137

7. Efficiently Implementing Treewidth-Aware Algorithms

Listing 7.6: Algorithm HybDPHQSat(depth, Q) for hybrid solving of QSat by nested DP.
In: Nesting depth ≥ 0 and quantified Boolean formula Q = ∃Q1V1.H with H being a

QBF.
Out: 1 if Q is a positive instance (yes instance) of QSat, 0 otherwise.

1 Q ← BCP_And_Preprocessing(Q)
2 A ← V1
3 if Q ∈ dom(cache) /*Cache Hit occurred*/ then return cache(Q)
4 T = (T, χ, δQ) ← Decompose_via_Heuristics(GA

Q) /* Decompose */

5 if width(T) ≥ thresholdhybrid or depth ≥ thresholddepth /* Standard Solver */ then
6 cache ← cache ∪{(Q , QSat(Q))}
7 return cache(Q)
8 if width(T) ≥ thresholdabstr /* Abstract via Heuristics & Decompose*/ then
9 A ← Choose_Subset_via_Heuristics(A, Q)

10 T = (T, χ, δQ) ← Decompose_via_Heuristics(GA
Q)

11 N-Tabs ← NestDPHQSat(depth, Q , A, T) /* Nested Dynamic Programming */
12 cache ← cache ∪{(Q , 1) | N-Tabs[root(T)] = ∅} ∪ {(Q , 0) | N-Tabs[root(T)] = ∅}
13 return cache(Q)

assignment J to {a} of any row r ∈ τt can be simplified. Concretely, F E
t [{a → 0}]

evaluates to ∅ and F E
t [{a → 1}] evaluates to clause {b, c}. Thus, there are 2 satisfying

assignments {b → 0}, {b → 1} of ∃c.F E
t [{a → 1}] restricted to A.

7.2.2 Applying Hybrid Dynamic Programming for Variants of Sat

Hybrid dynamic programming as proposed above is by far not restricted to (projected)
model counting, or counting problems in general. In fact, one can easily generalize this
approach further to other relevant problems, which is briefly sketched for deciding the
validity of quantified Boolean formulas (QBFs).

Quantified Boolean Formulas (QBFs). We assume QBFs of the form

Q = Q1V1.Q2V2. . . . Q V .F

using quantifiers ∃, ∀, where F is a CNF formula and var(Q) = var(F) = V1 ∪ V2 · · · ∪ V .
Hybrid solving by nested DP can be extended to problem QSat. To the end of using
this approach for QBFs, let A ⊆ var(Q) be a set of abstraction variables, and T = (T, χ)
be a TD of GA

Q and t be a node of T . Then, the nested bag QBF QA
t for a set A ⊆ var(Q)

amounts to QA
t := Q1V1 .Q2V2 Q V .F A

t with Vi for 1 ≤ i ≤ being Vi := Vi ∩var(Q).
For simplicity, we assume that every quantifier Qi of QA

t is removed in case of Vi = ∅.

The algorithm HybDPHQSat of Listing 7.6 is similar to HybDP#∃Sat of Listing 7.4, where
projection variables are not used and, initially, abstraction variables A coincide with the
variables of the outermost quantifier of Q after preprocessing, cf. Line 2 of Listing 7.6.
Further, this algorithm is adapted to QSat, where, in particular Line 6 calls a QSat

138

7.2. Refining Nested DP – Towards Hybrid Dynamic Programming

Listing 7.7: Nested table algorithm HQSatt(depth, χt, Q, Ft , QA
t , τ1, . . . , τ) for solving

QSat.
In: Node t, nesting depth ≥ 0, QBF Q = Q1V1.H, bag χt, bag formula Ft , nested bag

QBF QA
t , and sequence τ1, . . . τ of child tables of t.

Out: Table τt.
1 if type(t) = leaf then τt ← { ∅ }
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← { J | I ∈ τ1, J ∈ {I+

a→0, I+
a→1}, J |= Ft , NestDPHQSat(depth +1, QA

t [J])= 1}
4 if Q1 = ∀ and |τt| = 2|χt| then τt ← ∅
5 else if type(t) = rem, and a ∈ χ(t) is removed then
6 τt ← { I \ {a → 0, a → 1} | I ∈ τ1}
7 else if type(t) = join then
8 τt ← { I | I ∈ τ1, I ∈ τ2}
9 return τt

solver in Line 11 we rely on a fresh nested table algorithm HQSat as presented in
Listing 7.7.

This nested table algorithm HQSat is depicted in Listing 7.7 and it is of similar shape
as algorithm #∃Sat, cf. Listing 7.5, but does not maintain counters. Further, Line 4 of
algorithm HQSat intuitively filters τt fulfilling the outer-most quantifier, and keeps those
rows r of τt, where the recursive call to HybDPHQSat on nested bag formula simplified
by the assignment J of r succeeds. For ensuring that the outer-most quantifier Q1 is
fulfilled, we are either in the situation that Q1 = ∃, which immediately is fulfilled for
every row r in τt since r itself serves as a witness. If Q1 = ∀, we need to check that τt

contains 2|χ(t)| many rows, i.e., all rows of the current bag. Notably, if Q1 = ∀, we do
not need to check in Line 8 of Listing 7.7, whether all rows sustain in table τt since this
is already ensured for both child tables τ1, τ2 of t.

Finally, if in the end the computed table for the root node of T is not empty, it is
guaranteed that either the table contains some (if Q1 = ∃) or all (if Q1 = ∀) rows and
that Q is valid. Note that this has to be checked by algorithm HybDPHQSat, cf. Line 12
of Listing 7.6.

Hybrid Dynamic Programming Beyond QSat. Note that the algorithm HQSat
above can be extended to also consider more fine-grained quantifier dependency schemes.
Further, by combining ideas of this subsection and the previous subsection, one can
easily design an algorithm based on hybrid dynamic programming for projected solution
counting over QBFs, i.e., problem PQSat. Indeed, such a hybrid DP algorithm needs to
set abstraction variables as in Line 4 of Listing 7.4 in case of non-empty free variables, and
set those variables to the variables of the outermost quantifier, as in Line 2 of Listing 7.6,
otherwise. A corresponding nested table algorithm for solving PQSat requires to use
counters as in Listing 7.5, but also needs to consider the outer-most quantifier in case
the free variables of the QBF are empty, as in Line 4 of Listing 7.7.

Compared to other algorithms for QSat using treewidth [Charwat and Woltran, 2017;

139

7. Efficiently Implementing Treewidth-Aware Algorithms

Chen, 2004], nested DP and hybrid DP is quite compact without the need of nested
tables. Instead of rather involved data structures (nested tables), we use here plain tables
that can be handled by modern database systems efficiently. Indeed, this approach of
keeping plain tables seems to be rather promising and recently, it was also discussed for
problems related to answer set programming (ASP) [Hecher et al., 2020a]. Further, note
that one can also use reductions from certain fragments of Asp to Sat that preserve the
treewidth, as discussed, e.g., in Chapter 4. Then, this allows us to immediately apply
these reductions in order to use hybrid solving dynamic programming via nested DP for
Sat or QSat in general.

7.3 Dynamic Programming with Database Management
Systems

While algorithms that run dynamic programming on bounded treewidth can be quite
useful for efficient problem solving in practice, implementations turn out to be tedious
already for problems such as the propositional satisfiability problem. In the following, we
aim for rapid prototyping with dynamic programming by a declarative approach that
ideally uses existing systems, gets parallel execution for free, and remains fairly efficient.

In the previous section, we explained that the traversal of the tree decomposition and
the overall methodology of the procedure stays the same. But the core of dynamic
programming on tree decompositions for various problems is mostly the specification of
the table algorithm that modifies a table based on previously computed tables. Hence,
one can often focus on the table algorithms and their descriptions. When recalling basics
from databases [Elmasri and Navathe, 2016] and taking a closer look on table algorithms
of Chapter 3 like Listing 3.2, we can immediately spot that these algorithms are effectively
describing a query on existing data that produces a new table. This motivates our idea
to use a database management system to execute the query and specify the query in SQL.
Before we can proceed with our idea to use databases for executing DP algorithms, we
take a step back and recall that the theory of SQL queries is based on relational algebra.

Relational algebra is discussed in Section 7.3.1, which allows us to describe our algorithms
and later use SQL encodings for specifying table algorithms. The intermediate step
of stating the algorithm in a relation algebra description is twofold. First, we can
immediately see the connection between the algorithms given in the literature, which
allows us to use the existing algorithms without reproving all properties. Second, we
obtain a compact mathematical description, which is not just a lengthy and technical
SQL query that might be hard to understand to researchers from the community who
are usually not very familiar with practical databases and the usage of query languages.

Then, in Section 7.3.2 we discuss an architecture for dynamic programming based on
relational algebra (SQL) and show how to specify diverse (nested) table algorithms in
Section 7.3.3.

140

7.3. Dynamic Programming with Database Management Systems

7.3.1 Relational Algebra
Before we start with details on our approach, we briefly recall basics in relational
algebra. The classical relational algebra was introduced by Codd [1970] as a mathematical
framework for manipulating relations (tables). Since then, relational algebra serves as
the formal background and theoretical basis in relational databases and their standard
language SQL (Structured Query Language) for querying tables [Ullman, 1989]. In fact,
in the following, we need extended constructs, which have not been defined in the original
framework by Codd, but are standard notions in databases nowadays [Elmasri and
Navathe, 2016]. For the understanding later, we would like to mention that the SQL
table model and relational algebra model slightly differ. The SQL table model is a bag
(multiset) model, rather than a set [Garcia-Molina et al., 2009, Chapter 5]. Below we
also use extended projection and aggregation by grouping. Sometimes these are defined
on bags. We avoid this in the definitions in order to keep the algorithms close to the
formal set based notation. Finally, we would like to emphasize that we are not using
relation algebra here as developed by Alfred Tarski for the field of abstract algebra, but
really relational algebra as used in database applications and theory.

A column a is of a certain finite domain dom(a). Then, a row r over set cols(r) of
columns is a set of pairs of the form (a, v) with a ∈ cols(r), v ∈ dom(a) such that for
each a ∈ cols(r), there is exactly one v ∈ dom(a) with (a, v) ∈ r. In order to access the
value v of an attribute a in a row r, we sometimes write r.a, which returns the unique
value v with (a, v) ∈ r. A table τ is a finite set of rows r over set cols(τ) := cols(r) of
columns, using domain dom(τ) := a∈cols(τ) dom(a). We define renaming of τ, given a
set A of columns and a bijective mapping m : cols(τ) → A with dom(a) = dom(m(a))
for a ∈ cols(τ), by ρm(τ) := {(m(a), v) | (a, v) ∈ τ}. In SQL, renaming can be achieved
by means of the AS keyword.

In order to select certain rows of a table, we require Boolean formulas extended with
expressions using equality. Such a resulting equality formula is a Boolean formulas, where
variables are expressions using equality. In more detail: Let d be a fixed constant over
domain dom(v), where we call d term constant. Let v and v be variables over some
domain dom(v) and dom(v), where we call v and v term variables. Then, an equality
formula β is an expression of the form v=d or v=v . A term assignment J of equality
formula β over term variables of β assigns each domain variable v of β a value over
domain dom(v). The Boolean formula β(J) under term assignment J is obtained as
follows. First, we replace all expressions v=d in β by 1 if J(v) = d, all expressions v=v
by 1 if J(v) = J(v), and by 0 otherwise. Second, we remove from the resulting clauses
in β(J) each clause c that contains a literal set to 1. Finally, we remove from every
remaining clause in β(J) every literal that is set to 0. We say a term assignment J is
satisfying if β(J) = ∅.

Selection of rows in τ according to a given equality formula F over term variables cols(τ)
is defined1 by σF (τ) := {r | r ∈ τ, F (ass(r)) = ∅}, where function ass provides the

1We abbreviate for binary v ∈ cols(τ) with dom(v) = {0, 1}, v=1 by v and v=0 by ¬v.

141

7. Efficiently Implementing Treewidth-Aware Algorithms

corresponding term assignment of a given row r ∈ τ. Selection in SQL is specified using
keyword WHERE. Given a relation τ with cols(τ) ∩ cols(τ) = ∅. Then, we refer to the
cross-join by τ × τ := {r ∪ r | r ∈ τ, r ∈ τ }. Further, a θ-join (according to F)
corresponds to τ F τ := σF (τ × τ). Interestingly, in SQL a θ-join can be achieved by
specifying the two tables (cross-join) and adding the selection according to F by means
of WHERE.

Assume in the following a set A ⊆ cols(τ) of columns. Then, we let table τ projected
to A be given by ΠA(τ) := {rA | r ∈ τ}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This
concept of projection can be lifted to extended projection Π̇A,S , where we assume in
addition to A, a set S of expressions of the form a ← f , such that a ∈ cols(τ) \ A,
f is an arithmetic function that takes a row r ∈ τ, and there is at most one such
expression for each a ∈ cols(τ) \ A in S. Formally, we define Π̇A,S(τ) := {rA ∪ rS | r ∈ τ}
with rS := {(a, f(r)) | a ∈ cols(r), (a ← f) ∈ S}. SQL allows to specify (extended)
projection directly after initiating an SQL query with the keyword SELECT.

Later, we use aggregation by grouping AG(a←g), where we assume a ∈ cols(τ) \ A and
a so-called aggregate function g : 2τ → dom(a), which intuitively takes a table of
(grouped) rows. Therefore, we let AG(a←g)(τ) := {r ∪ {(a, g(τ[r]))} | r ∈ ΠA(τ)}, where
τ[r] := {r | r ∈ τ, r ⊆ r }. For this purpose, we use for a set S ⊆ N of integers, the
functions SUM for summing up values in S, MIN for providing the smallest integer in S,
as well as MAX for obtaining the largest integer in S, which are often used for aggregation
in this context. The SQL standard uses projection (SELECT) to specify A as well as
the aggregate function g, such that these two parts are distinguished by means of the
keyword GROUP BY.

Example 7.7. Assume a table τ1 := {r1, r2, r3} of 2 columns a, b over Boolean domain
dom(a) = dom(b) = {0, 1}, where r1 := {(a, 1), (b, 1)}, r2 := {(a, 0), (b, 0)}, r3 :=
{(a, 0), (b, 1)}.

τ1 a b

r1 1 1
r2 0 0
r3 0 1

τ2 b a

r1 1 1
r2 0 0
r3 1 0

Then, r3.a = 0 and r3.b = 1. Rows can be swapped by renaming and we let τ2 :=
ρ{a→b,b→a}τ1.

Observe that, e.g., ρ{a→b,b→a}({r3}) corresponds to {{(a, 1), (b, 0)}}, i.e., considering r3
and swapping a and b. We select rows by using the selection σ. For example, if we want
to select rows where b = 1 (colored in blue) we can use σb=1(τ1).

Hence, applying σb=1(τ1) results in {r1, r3}. Table τ1 can be θ-joined with τ2, but before,
we need to have disjoint columns, which we obtain by renaming each column c to a fresh
column c as below by ρa→a ,b→b τ2. Then, τ3 := τ1 a=a ∧b=b (ρa→a ,b→b τ2).

142

7.3. Dynamic Programming with Database Management Systems

τ1 a b

r1 1 1
r2 0 0
r3 0 1

τ1 a b

r1 1 1
r2 0 0
r3 0 1

ρa→a ,b→b (τ2) b’ a’

r1 1 1
r2 0 0
r3 1 0

τ3 a b b’ a’

r1 1 1 1 1
r2 0 0 0 0

Consequently, we have τ3 = {{(a, 0), (a , 0), (b, 0), (b , 0)}, {(a, 1), (a , 1), (b, 1), (b , 1)}}.
Extended projection allows not only to filter certain columns, but also to add additional
columns. As a result, if we only select column a of each row of τ1, but add a fresh
column c holding the sum of the values for a and b, then Π̇{a},{c←a+b}τ1 corresponds
to {{(a, 1), (c, 2)}, {(a, 0), (c, 0)}, {(a, 0), (c, 1)}}.

Π̇{a},{c←a+b}τ1 a c

r1 1 2
r2 0 0
r3 0 1

Grouping τ1 according to the value of column a, where we aggregate each group by summing
up the values of columns b in a fresh column d, results in {a}Gd ← τ→SUM({r.b|r∈τ})(τ1),
which simplifies to {{(a, 1), (d, 1)}, {(a, 0), {d, 1)}} as illustrated below.

τ1 a b

r1 1 1
r2 0 0
r3 0 1

{a}Gd← τ→SUM({r.b|r∈τ})(τ1) a d

r1 1 1
r3 0 1

Instead of using set theory to describe how tables are obtained during dynamic program-
ming, one could alternatively use relational algebra. There, tables τt for each TD node t
are pictured as relations, where τt distinguishes a unique column x for each x ∈ χ(t). Fur-
ther, there might be additional columns required depending on the problem at hand, e.g.,
we need a column cnt for counting in #Sat, or a column for modeling costs or weights in
case of optimization problems. Listing 7.8 presents a table algorithm for problem #Sat
that is equivalent to Listing 3.2, but relies on relational algebra only for computing
tables. This step from set notation to relational algebra is driven by the observation
that in these table algorithms one can identify recurring patterns and one mainly has
to adjust problem-specific parts of it. We highlighted it by colors in Listing 7.8. In
particular, one typically derives for nodes t with type(t) = leaf, a fresh initial table τt,

143

7. Efficiently Implementing Treewidth-Aware Algorithms

Listing 7.8: Table algorithm #Satt(χ(t), Ft, τ1, . . . , τ) for solving #Sat.
In: Node t, bag χ(t), bag formula Ft, sequence τ1, . . . τ of child tables of t.
Out: Table τt.

1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := τ1 Ft {{(a, 0)}, {(a, 1)}}
4 else if type(t) = rem, and a ∈ χ(t) is removed then
5 τt := χ(t)Gcnt ← τ→SUM({r.cnt|r∈τ})(Πcols(τ1)\{a}τ1)
6 else if type(t) = join then
7 τt := Π̇χ(t),{cnt←cnt·cnt }(τ1

u∈χ(t)
u=u ρ

u∈cols(τ2)

{u→u }τ2)
8 return τt

cf. Line 1 of Listing 7.8. Then, whenever a variable a is introduced, such algorithms
often use θ-joins with a fresh initial table for the introduced variable a. Hence, the new
column represents the potential values for variable a. In Line 3, the selection of the
θ-join is performed according to Ft, i.e., corresponding to the bag instance of #Sat.
Further, for nodes t with type(t) = rem, these table algorithms typically need projection.
In case of Listing 7.8, Line 5 also needs grouping in order to sum up the counters for
those rows of τ1 that concur in τt. Thereby, rows are grouped according to values of
columns χ(t) and we keep only one row per group in table τ, where the fresh counter cnt
is the sum among all counters in τ. Finally, in Line 7 for a node t with type(t) = join,
we use extended projection and θ-joins, where we join on the same truth assignments.
This allows us later to leverage database technology for a usually expensive operation.
Extended projection is needed for multiplying the counters of the two rows containing
the same assignment.

7.3.2 Dynamic Programming via Relational Algebra and Databases

In this section, we present a general architecture to model table algorithms by means
of database management systems. The architecture is influenced by the basic dynamic
programming approach of Chapter 3 (cf. Figure 3.1) and works as depicted in Figure 7.5,
where the steps highlighted in yellow and blue need to be specified depending on the
problem P. Steps outside Step 3 are mainly setup tasks, the yellow “E”s indicate events
that might be needed to solve more complex problems on the polynomial hierarchy. For
example, one could create and drop auxiliary sub-tables for each node during Step 3
within such events. Observe that after the generation of an LTD T = (T, χ, δI) that
is constructed for an instance I of problem P, Step 2b automatically creates tables τt

for each node t of T , where the corresponding table columns of τt are specified in the
blue part, i.e., within A. The default columns of such a table τt that are assumed in this
section foresee one column for each element of the bag χ(t), where additional columns
that are needed for solving the problem can be added. This includes additional auxiliary
columns, which can be also counters or costs for counting or optimization, respectively.

Actually, the core of this architecture is focused on the table algorithm A executed

144

7.3. Dynamic Programming with Database Management Systems

1. Build
graph G of I Store results

in table τt E
Apply A to δI(t)

E2. Create LTD T =
(T, χ, δI) of I via G

2b.Create
DB Tables

done? no

yes

Visit next
node t of T

in post-order

4. Specify Output

E
E
3.DP on LTD T via algorithm DPA

Figure 7.5: Architecture of Dynamic Programming with Databases. Steps highlighted in
red are provided by the system depending on the specification of the yellow and blue
steps, which are given by the user for specific problems P. The yellow “E”s represent
events that can be intercepted and handled by the user. The blue step concentrates on
table algorithm A, where the user specifies how SQL code is generated in a modular way.

Listing 7.9: Template table algorithm At(χ(t), It, τ1, . . . , τ) of Figure 7.5 for solving
an instance I of problem P.

In: Node t, bag χ(t), bag instance It, and a sequence τ1, . . . τ of child tables.
Out: Table τt.

1 if type(t) = leaf then τt ← #leafTab#
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← Π̇χ(t),#intrAddCols#(τ1 #intrFilter# #intrTab#)
4 else if type(t) = rem, and a ∈ χ(t) is removed then
5 τt ← χ(t)∪#remGroupCols#G#remAggr#(Πcols(τ1)\{a,#remCols#}σ#remFilter#τ1)
6 else if type(t) = join then
7 τt ← Π̇χ(t),#joinAddCols#(τ1

u∈χ(t)
u=u ∧#joinAddFilter# ρ

u∈cols(τ2)

{u→u }τ2)
8 return τt

for each node t of T of LTD T = (T, χ, δI). Besides the definition of table schemes,
the blue part concerns specification of the table algorithm by means of a procedural
generator template that describes how to obtain SQL code for each node t, thereby
depending on χ(t) and on the tables for child nodes of t. This generated SQL code is then
used internally for manipulation of tables τt during the tree decomposition traversal in
Step 3 of dynamic programming. Listing 7.9 presents a general template, where parts of
table algorithms for problems that are typically problem-specific are replaced by colored
placeholders of the form #placeHolder#, cf. Listing 7.8. We briefly discuss the intuition
behind these placeholders. For leaf nodes, the initial table (typically empty) can be
specified using #leafTab#. For introduce nodes, the potential cases for the introduced
vertex a are given with the help of #intrTab#. Then, according to the bag instance,
we only keep those rows that satisfy #intrFilter#. Placeholder #intrAddCols# allows
to add additional columns for solving problem, which are required e.g., for counting
or optimization. In other words, placeholder #intrAddCols# in Line 3 of Listing 7.9
uses extended projection, which is needed for problems requiring changes on vertex

145

7. Efficiently Implementing Treewidth-Aware Algorithms

Listing 7.10: Table algorithm Colt(χ(t), Gt, τ1, . . . , τ) for solving #3-Col.
In: Node t, bag χ(t), bag graph Gt = (Vt, Et), and a sequence τ1, . . . τ of child tables.
Out: Table τt.

1 if type(t) = leaf then τt ← {(cnt, 1)}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← τ1

{u,v}∈Et
u=v {{(a, 0)}, {(a, 1)}, {(a, 2)}}

4 else if type(t) = rem, and a ∈ χ(t) is removed then
5 τt ← χ(t)Gcnt ← τ→SUM({r.cnt|r∈τ})(Πcols(τ1)\{a}τ1)
6 else if type(t) = join then
7 τt ← Π̇χ(t),{cnt←cnt·cnt }(τ1

u∈χ(t)
u=u ρ

u∈cols(τ2)

{u→u }τ2)
8 return τt

introduction. Nodes, where an atom a is removed sometimes require to filter rows,
which do not lead to a solution using #remFilter#, and to remove columns concerning a
by #remCols#. Further, one oftentimes needs to aggregate rows according to the
values of the columns of the bag and additional columns (given by #remGroupCols#),
where the aggregation is specified by #remAggr#. Finally, for join nodes, one can
specify an additional filter #joinAddFilter# that goes beyond checking equivalence of row
values in the θ-join operation. Further, depending on the problem one might need to
add and update values of additional columns by using extended projection in form of
placeholder #joinAddCols#.

7.3.3 Specifying Table Algorithms with Relational Algebra
The general template of table algorithms above works for many problems, including
decision problems, counting problems as well as optimization problems. As a proof of
concept, we present the relevant parts of table algorithm specification according to the
template in Listing 7.9 for a selection of problems below. There, the placeholders of the
form #placeHolder# given in Listing 7.9 are instantiated with concrete values in order
to solve the corresponding problem. To this end, we assume a nice LTD T = (T, χ, δI)
of the corresponding primal graph representation GI of our given instance I.

If the given instance I is already a graph G, we refer to the primal graph of G by the
graph itself, i.e., GG := G. Further, the bag instance of G = (V, E), is referred to by bag
graph Gt and it is defined for a given node t of T by Gt := (V ∩ χ(t), E ∩ [χ(t) × χ(t)]).

Problem #3-Col: Counting 3-Colorings

Recall that for a given graph instance G = (V, E), a 3-coloring is a mapping ι : V →
{0, 1, 2} such that for each edge {u, v} ∈ E, we have ι(u) = ι(v). Then, the prob-
lem #3-Col asks to count the number of 3-colorings of G. The table algorithm for this
problem #3-Col is given in Listing 7.10. Similarly to Listing 7.8, for (empty) leaf nodes,
the counter cnt is set to 1 in Line 1. Whenever a vertex a is introduced, in Line 3, one of
the 3 many color values for a are guessed and θ-joined with the table τ1 for the child

146

7.3. Dynamic Programming with Database Management Systems

Listing 7.11: Table algorithm VCt(χ(t), Gt, τ1, . . . , τ) for solving MinVC.
In: Node t, bag χ(t), bag graph Gt = (Vt, Et), and a sequence τ1, . . . τ of child tables.
Out: Table τt.

1 if type(t) = leaf then τt ← {(card, 0)}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt ← τ1

{u,v}∈Et
u∨v {{(a, 0)}, {(a, 1)}}

4 else if type(t) = rem, and a ∈ χ(t) is removed then
5 τt ← χ(t)Gcard ← τ→MIN({r.card+r.a|r∈τ})(Πcols(τ1)\{a}τ1)
6 else if type(t) = join then
7 τt ← Π̇χ(t),{card←card+card }(τ1

u∈χ(t)
u=u ρ

u∈cols(τ2)

{u→u }τ2)
8 return τt

node of t such that only colorings with different values for two adjacent vertices are
kept. Similarly to Listing 7.8, whenever a vertex a is removed, Line 5 ensures that the
column for a is removed and that counters cnt are summed up for rows that concur due
to the removal of column a. Then, the case for join nodes in Line 7 is again analogous to
Listing 7.8, where only rows with the same colorings in both child tables are kept and
counters cnt are multiplied accordingly.

Problem MinVC: Computing Minimum Vertex Cover Size

Given a graph G = (V, E), a vertex cover is a set of vertices C ⊆ V of G such that
for each edge {u, v} ∈ E, we have {u, v} ∩ C = ∅. Then, MinVC asks to find the
minimum cardinality |C| among all vertex covers C, i.e., C is such that there is no vertex
cover C with |C | < |C|. We use an additional column card for storing cardinalities. The
table algorithm for solving MinVC is provided in Listing 7.11, where, for leaf nodes the
cardinality is 0, cf. Line 1. Then, when introducing vertex a, we guess in Line 3 whether a
shall be in the vertex cover or not, and enforce that for each edge of the bag instance
at least one of the two endpoint vertices has to be in the vertex cover. Note that the
additional cardinality column only takes removed vertices into account. More precisely,
when a vertex a is removed, we group in Line 5 according to the bag columns χ(t), where
the fresh cardinality value is the minimum cardinality (plus 1 for a if a shall be in the
vertex cover), among those rows that concur due to the removal of a. The join node is
similar to before, but in Line 7 we additionally need to sum up the cardinalities of two
adjoining child table rows.

7.3.4 Specifying Nested Table Algorithms with Relational Algebra
This idea of specifying table algorithms as depicted in the template table algorithm of
Listing 7.9 can be even used to specify nested table algorithms. To this end, recall nested
table algorithms of Section 7.1 as well as hybrid dynamic programming as discussed in
Section 7.2.

Then, the implementation of nested table algorithm H#∃Sat of Listing 7.5 by means

147

7. Efficiently Implementing Treewidth-Aware Algorithms

Listing 7.12: Nested table algorithm H#∃Satt(depth, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving

#∃Sat.
In: Node t, nesting depth ≥ 0, bag χt, bag formula Ft , nested bag QBF QA

t = ∃V.F A
t ,

and sequence τ1, . . . τ of child tables of t.
Out: Table τt.

1 if type(t) = leaf then τt ← {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 τt ← τ1 Ft

{{(a, 0)}, {(a, 1)}}
4 τt ← σcnt>0(Π̇χt,{cnt← cnt ·HybDPH#∃Sat(depth +1, QA

t [ass])}τt)
5 else if type(t) = rem, and a ∈ χt is removed then
6 τt ← χtGcnt←SUM(cnt)(Πcols(τ1)\{a}τ1)
7 else if type(t) = join then
8 τt ← Π̇χt,{cnt←cnt·cnt }(τ1

a∈χt
a=a ρ

a∈cols(τ2)

{a→a }τ2)

) Function ass refers to the respective truth assignment I: χt → {0, 1} of a given row r ∈ τt.

of relational algebra is sketched by algorithm H#∃Sat of Listing 7.12. Note that in
Line 4, for each row r ∈ τt, this algorithm recursively relies on HybDPH#∃Sat on nested
bag QBF QA

t simplified by the assignment ass(r) of the current row r. Of course, the
value of the recursion through HybDPH#∃Sat has to be computed first and in Line 4 and
by slight abuse of notation the recursive expression is therefore treated as if it was a
constant value. As a result, Line 4 uses extended projection, cf. Listing 7.8, where the
counter cnt of the respective row r is updated by multiplying it with the resulting value
of the recursion through HybDPH#∃Sat . Notably, as the recursive call to HybDPH#∃Sat
within extended projection of Line 4 implicitly takes a given current row r, the function
occurrences ass in Line 4 implicitly take this row r as an argument. Further, while
Lines 3 and 4 seem to be not in line with the template algorithm of Listing 7.9, one can
also merge those two lines at the cost of a more involved expression. Indeed, one can
reformulate and “shift” the condition “cnt>0” inside the expression of Line 3, which,
however, requires duplication of parts of the expression.

Similarly, the nested table algorithm HQSat of Listing 7.7 can be implemented by means
of relational algebra. The result is sketched by algorithm HQSat in Listing 7.13. Again,
similar to above, one can reformulate in order to obtain a nested table algorithm that is
in line with the template algorithm of Listing 7.9.

7.4 Implementing Abstractions and Hybrid Dynamic
Programming

We implemented a solver nestHDB2 based on hybrid dynamic programming in Python3
and using table manipulation techniques by means of SQL and the database management
system (DBMS) Postgres. We are certain that one can easily replace PostgreSQL by any
other state-of-the-art relational database that uses SQL. In the following, we discuss in

2Source code, instances, and detailed results are available at: tinyurl.com/nesthdb.

148

https://tinyurl.com/nesthdb

7.4. Implementing Abstractions and Hybrid Dynamic Programming

Listing 7.13: Nested table algorithm HQSatt(depth, χt, Q, Ft , QA
t , τ1, . . . , τ) for solv-

ing QSat.
In: Node t, nesting depth ≥ 0, bag χt, QBF Q = Q1V1.Q , bag formula Ft , nested bag

QBF QA
t , and child tables τ1, . . . τ of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {∅}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 τt ← σHybDPQSat(depth +1,QA

t [ass])=1(τ1 Ft
{{(a, 0)}, {(a, 1)}})

4 τt ← σQ1=∃ ∨ |τt|=2|χt|(τt)
5 else if type(t) = rem, and a ∈ χt is removed then
6 τt ← Πcols(τ1)\{a}τ1
7 else if type(t) = join then
8 τt ← Πχt(τ1

a∈χt
a=a ρ

a∈cols(τ2)

{a→a }τ2)

) The cardinality of a table τ can be obtained via relational algebra (sub-expression): |τ | := c,
where {{(card, c)}} = ∅Gcard←SUM(1)τ

Section 7.4.1 implementation specifics that are crucial for a performant system that is
still extendable and flexible. Indeed, nestHDB is quite flexible in terms of implemented
problems and formalisms. However, in the course of the whole section, we mainly focus
on an implementation of algorithm HybDPH#∃Sat of Listing 7.4, but instead of using
nested table algorithm H#∃Sat we rely on H#∃Sat as given in Listing 7.12. Then, this
algorithm will be used as the basis of comparison and experiments in Section 7.4.2, where
we consider the counting problems #Sat and #∃Sat.

7.4.1 Implementation Details of nestHDB
We present a list of implementation specifics that are crucial for nestHDB to reach a
performance level that is competitive with respect to state-of-the-art counting solvers.

Computing Tree Decompositions. In order to apply (hybrid) dynamic program-
ming, the solver nestHDB requires tree decompositions. These decompositions are
computed mainly with the library htd version 1.2 with default settings [Abseher et al.,
2017], which finds TDs extremely quick also for interesting instances [Fichte et al., 2019b]
due to heuristics. Note that nestHDB directly supports the format of tree decompositions
of recent competitions [Dell et al., 2017], i.e., one could easily replace the library for
computing decompositions. It is important not to enforce htd to compute nice TDs, as
this would cause a lot of overhead later in nestHDB for copying tables. However, in order
to benefit from the implementation of θ-joins, query optimization, and state-of-the-art
database technology in general, we observed that it is crucial to limit the number of
child nodes of every TD node. In result, when huge tables are involved, θ-joins among
child node tables cover at most a limited number of child node tables. Hence, the query
optimizer of the database system can still come up with meaningful execution plans
depending on the contents of the table. Nonetheless we prefer θ-joins with more than just
two tables, since binary θ-joins already fix in which order these tables shall be combined,

149

7. Efficiently Implementing Treewidth-Aware Algorithms

which already limits the query optimizer. Apart from this trade-off, we tried to outsource
the task of joining tables to the DBMS, since the performance of database systems highly
depends on query optimization. The actual limit, which is a restriction from experience
and practice only, highly depends on the DBMS that is used. For PostgreSQL, we set a
limit of at most 5 child nodes for each node of the TD, i.e., each θ-join covers at most 5
child tables.

Towards Non-Nice Tree Decompositions. Although this paper presents the algo-
rithms for nice TDs (mainly due to simplicity), the system nestHDB interleaves these
cases as presented in Listing 7.9. More precisely, the system executes one query per
table τt for each node t during the traversal of TD T . This query consists of several parts
and we briefly explain its parts from outside to inside in accordance with Listing 7.9.
First of all, the inner-most part concerns the row candidates for τt consisting of the θ-join
among all child tables of τt as in Line 7 of Listing 7.9. If there is no child node of t, table
#leafTab# of Line 1 is used instead. Next, the result is cross-joined with #intrTab#
for each introduced variable as in Line 3, but without using the filter #intrFilter# yet.
Then, the result is projected by using extended projection involving χ(t) as well as
both #joinAddCols# and #intrAddCols#. Actually, there are different configurations of
how nestHDB can deal with the resulting row candidates. For debugging (see below)
one could (1) actually materialize the result in a table, whereas for performance reasons,
one should use (2) common table expressions (CTEs or WITH-queries) or (3) sub-queries
(nested queries), which both result in one nested SQL query per table τt. On top of these
row candidates, selection according to #intrFilter#, cf. Line 3, is executed. Finally the
resulting table is plugged as table τ1 into Line 5, where in particular the result is grouped
by using both χ(t)3 and #remGroupCols# and each group is aggregated by #remAggr#
accordingly. It turns out that PostgreSQL can do better with sub-queries than CTEs,
since we observed that the query optimizer oftentimes pushes (parts of) outer selections
and projections into the sub-query if needed, which is not the case for CTEs, as discussed
in the PostgreSQL manual [PostgreSQL Global Development Group, 2021, Sec. 7.8.1].
On different DBMSs or other vendors, e.g., Oracle, it might be better to use CTEs
instead.

Example 7.8. Consider again formula F := {
c1

{¬a, b, c},

c2

{a, ¬b, ¬c},

c3

{a, d},

c4

{a, ¬d}}
from Example 7.1 and TD T of GF , as given in Figure 3.2. Now, let us use table
algorithm #Sat with nestHDB on formula F of TD T and Option (3): sub-queries, where
the row candidates are expressed via a sub-queries. Then, for each node ti of T , nestHDB
generates a view vi as well as a table τi containing in the end the content of vi. Observe
that each view only has one column a for each variable a of F since the truth assignments
of the other variables are not needed later. This keeps the tables compact, only τ1 has two
rows, τ2, and τ3 have only one row. We obtain the following views.

CREATE VIEW v1 AS SELECT a, sum(cnt) AS cnt FROM

3Actually, nestHDB keeps only columns relevant for the table of the parent node of t.

150

7.4. Implementing Abstractions and Hybrid Dynamic Programming

(WITH intrTab AS (SELECT 0 AS val UNION ALL SELECT 1)
SELECT i1.val AS a, i2.val AS b, i3.val AS c, 1 AS cnt

FROM intrTab i1, intrTab i2, intrTab i3)
WHERE (NOT a OR b OR c) AND (a OR NOT b OR NOT c) GROUP BY a

CREATE VIEW v2 AS SELECT a, sum(cnt) AS cnt FROM
(WITH intrTab AS (SELECT 0 AS val UNION ALL SELECT 1)

SELECT i1.val AS a, i2.val AS d, 1 AS cnt
FROM intrTab i1, intrTab i2)

WHERE (a OR d) AND (a OR NOT d) GROUP BY a

CREATE VIEW v3 AS SELECT a, sum(cnt) AS cnt FROM
(SELECT τ1.a, τ1.cnt * τ2.cnt AS cnt FROM τ1, τ2 WHERE τ1.a = τ2.a)

GROUP BY a

Parallelization. A further reason to not over-restrict the number of child nodes within
the TD, lies in parallelization. In nestHDB, we compute tables in parallel along the TD,
where multiple tables can be computed at the same time, as long as the child tables are
computed. Therefore, we tried to keep the number of child nodes in the TD as high
as possible. In our system nestHDB, we currently allow for at most 24 worker threads
for table computations and 24 database connections at the same time (both pooled and
configurable). On top of that we have 2 additional threads and database connections for
job assignments to workers, as well as one dedicated watcher thread for clean-up and
connection termination, respectively.

Logging, Debugging and Extensions. Currently, we have two versions of the
nestHDB system implemented. One version aims for performance and the other one tries
to achieve comprehensive logging and easy debugging of problem (instances), thereby
increasing explainability. The former does neither keep intermediate results nor create
database tables in advance (Step 2b), as depicted in Figure 7.5, but creates tables
according to an SQL SELECT statement. In the latter, we keep all intermediate results,
we record database timestamps before and after certain nodes, provide statistics as, e.g.,
width and number of rows. Further, since for each table τt, exactly one SQL statement
is executed for filling this table, we also have a dedicated view of the SQL SELECT
statement, whose result is then inserted in τt. Together with the power and flexibility
of SQL queries, we observed that this helps in finding errors in the table algorithm
specifications.

Besides convenient debugging, system nestHDB immediately contains an extension for
approximation. There, we restrict the table contents to a maximum number of rows. This
allows for certain approximations on counting problems or optimization problems, where
it is infeasible to compute the full tables. Further, nestHDB foresees a dedicated ran-
domization on these restricted number of rows such that we obtain different approximate
results on different random seeds.

151

7. Efficiently Implementing Treewidth-Aware Algorithms

Note that nestHDB can be easily extended. Each problem can overwrite existing default
behavior and nestHDB also supports problem-specific argument parsers for each problem
individually. Out-of-the-box, we support the formats DIMACS SAT and DIMACS
graph [Liu et al., 2006] as well as the common format for TDs [Dell et al., 2017].

Our solver nestHDB builds upon our recently published prototype dpdb [Fichte et al.,
2021b], which applied a DBMS for plain dynamic programming algorithms. However, we
used the most-recent version 12 of Postgres and we let it operate on a tmpfs-ramdisk.
In our solver, the DBMS serves the purpose of extremely efficient in-memory table
manipulations and query optimization required by nested DP, and therefore nestHDB
benefits from database technology.

Nested DP & Choice of Standard Solvers. We implemented dedicated nested DP
algorithms for solving #Sat and #∃Sat, where we do (nested) DP up to thresholddepth =
2. Further, we set thresholdhybrid = 1000 and therefore we do not “fall back” to standard
solvers based on the width (cf. Line 8 of Listing 3.1), but based on the nesting depth.

Also, the evaluation of the nested bag formula is “shifted” to the database if it uses at
most 40 abstraction variables, since Postgres efficiently handles these small-sized Boolean
formulas. Thereby, further nesting is saved by executing optimized SQL statements
within the TD nodes. A value of 40 seems to be a nice balance between the overhead
caused by standard solvers for small formulas and exponential growth counteracting
the advantages of the DBMS. For the standard solvers required for hybrid dynamic
programming, we use #Sat solver sharpSAT [Thurley, 2006] and for #∃Sat we employ
the recently published #∃Sat solver projMC [Lagniez and Marquis, 2019], solver sharpSAT
and Sat solver picosat [Biere, 2008]. Observe that our solver immediately benefits from
better standard solvers and further improvements of the solvers above.

Choosing Non-Nesting Variables & Compatible Nodes. TDs are computed by
means of heuristics via decomposition library htd [Abseher et al., 2017]. For finding
good abstractions (crucial), i.e., abstraction variables for the nested primal graph, we
use encodings for solver clingo [Gebser et al., 2019], which is based on logic programming
(ASP) and therefore perfectly suited for solving reachability via nesting paths. There,
among a reasonably sized subset of vertices of smallest degree, we aim for a preferably
large (maximal) set A of abstraction variables such that at the same time the resulting
graph NA

F for the given formula F is reasonably sparse, which is achieved by minimizing
the number of edges of NA

F . To this end, we use built-in (cost) optimization, where we
take the best results obtained by clingo after running at most 35 seconds. For the concrete
encodings used in nestHDB, we refer to the online repository as stated above. We expect
that this initial approach can be improved and that extending by problem-specific as well
as domain-specific information might help in choosing promising abstraction variables A.

As rows of tables during (nested) DP can be independently computed and paral-
lelized [Fichte et al., 2019b], hybrid DP solver nestHDB potentially calls standard solvers
for solving subproblems in parallel using a thread pool. Thereby, the uniquely compatible

152

7.4. Implementing Abstractions and Hybrid Dynamic Programming

700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

800

900

1.nestHDB

2.nestHDB(sc)

3.miniC2D

4.dpdb

5.gpusat2

6.d4

7.countAntom

8.c2d

9.ganak

10.sharpSAT

11.sdd

12.sts

13.dsharp

14.cnf2eadt

15.approxmc3

Figure 7.6: Cactus plot of instances for #Sat, where instances (x-axis) are ordered for
each solver individually by runtime[seconds] (y-axis). thresholdabstr = 38.

node for relevant compatible sets U , as denoted in this paper by compF,A,T (U), is decided
during runtime among compatible nodes on a first-come-first-serve basis.

7.4.2 Experimental Results - Hybrid Dynamic Programming in
Practice

In order to evaluate the concept of hybrid dynamic programming, we conducted a
series of experiments considering a variety of solvers and benchmarks, both for model
counting (#Sat) as well as projected model counting (#∃Sat). During the evaluation we
thereby compared the performance of algorithm HybDPH#∃Sat of Listing 7.4, which instead
of H#∃Sat implements the nested table algorithm H#∃Sat as depicted in Listing 7.12.
We benchmarked this algorithm both for the projected model counting problem, but also
for the special case of model counting.

Benchmarked Solvers & Instances. We benchmarked nestHDB and 16 other pub-
licly available #Sat solvers on 1,494 instances recently considered [Fichte et al., 2021b].
Among those solvers are the single-core solvers miniC2D [Oztok and Darwiche, 2015],
d4 [Lagniez and Marquis, 2017], c2d [Darwiche, 2004], ganak [Sharma et al., 2019], sharp-
SAT [Thurley, 2006], sdd [Darwiche, 2011], sts [Ermon et al., 2012], dsharp [Muise et al.,
2012], cnf2eadt [Koriche et al., 2013], cachet [Sang et al., 2004], sharpCDCL [Klebanov
et al., 2013], approxmc3 [Chakraborty et al., 2014], as well as bdd_minisat [Toda and Soh,
2015]. We also included multi-core solvers dpdb [Fichte et al., 2021b], gpusat2 [Fichte
et al., 2019b], as well as countAntom [Burchard et al., 2015]. Note that we excluded
distributed solvers such as dCountAntom [Burchard et al., 2016] and DMC [Lagniez
et al., 2018] from our experimental setup. Both solvers require a cluster with access

153

7. Efficiently Implementing Treewidth-Aware Algorithms

to the Open-MPI framework [Gabriel et al., 2004] and fast physical interconnections.
Unfortunately, we do not have access to OpenMPI on our cluster. Nonetheless, our
focus are shared-memory systems and since dpdb might well be used in a distributed
setting, it leaves an experimental comparison between distributed solvers that also
include dpdb as subsolver to future work. While nestHDB itself is a multi-core
solver, we additionally included in our comparison nestHDB(sc), which is nestHDB,
but restricted to a single core only. The instances [Fichte et al., 2021b] we took
are already preprocessed by pmc [Lagniez and Marquis, 2014] using recommended
options -vivification -eliminateLit -litImplied -iterate=10 -equiv
-orGate -affine, which guarantee that the model counts are preserved. However,
nestHDB still uses pmc with these options also in Line 2 of Listing 3.1.

Further, we considered the problem #∃Sat, where we compare solvers projMC [Lagniez
and Marquis, 2019], clingo [Gebser et al., 2019], ganak [Sharma et al., 2019], nestHDB

2, and nestHDB(sc) on 610 publicly available instances4 from projMC (consisting of
15 planning, 60 circuit, and 100 random instances) and Fremont, with 170 symbolic-
markov applications, and 265 misc instances. For preprocessing in Line 2 of Listing 3.1,
nestHDB uses pmc as before, but without options -equiv -orGate -affine to ensure
preservation of models (equivalence).

Benchmark Setup. Solvers ran on a cluster of 12 nodes. Each node of the cluster
is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical cores each at
2.2 GHz clock speed, 256 GB RAM. For dpdb and nestHDB, we used Postgres 12 on a
tmpfs-ramdisk (/tmp) that could grow up to at most 1 GB per run. Results were gathered
on Ubuntu 16.04.1 LTS machines with disabled hyperthreading on kernel 4.4.0-139. We
mainly compare total wall clock time and number of timeouts. For parallel solvers (dpdb,
countAntom, nestHDB) we allow 12 physical cores. Timeout is 900 seconds and RAM
is limited to 16 GB per instance and solver. Results for gpusat2 are taken from [Fichte
et al., 2021b], where a machine equipped with a consumer GPU is used: Intel Core
i3-3245 CPU operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon
RX 570 GPU running at 1.24 GHz with 32 compute units, 2048 shader units, and 4GB
VRAM using driver amdgpu-pro-18.30-641594 and OpenCL 1.2. The system operated on
Ubuntu 18.04.1 LTS with kernel 4.15.0-34.

Benchmark Results. The results for #Sat showing the best 14 solvers are summa-
rized in the cactus plot of Figure 7.6. Overall it shows nestHDB among the best solvers,
solving 1,273 instances. The reason for this is, compared to dpdb, that nestHDB can solve
instances using TDs of primal graphs of widths larger than 44, up to width 266. This
limit is even slightly larger than the width of 264 that sharpSAT on its own can handle.
We also tried using minic2d instead of sharpSAT as standard solver for solvers nestHDB
and nestHDB(sc), but we could only solve one instance more. Notably, nestHDB(sc)
has about the same performance as nestHDB, indicating that parallelism does not help

4Sources: tinyurl.com/projmc; tinyurl.com/pmc-fremont-01-2020.

154

https://tinyurl.com/projmc
https://tinyurl.com/pmc-fremont-01-2020

7.4. Implementing Abstractions and Hybrid Dynamic Programming

bench- solver tw upper bound time
mark set max 0-30 31-50 >50 [h]

planning nestHDB 30 7 0 0 7 2.88
nestHDB(sc) 30 7 0 0 7 3.31
projMC 26 6 0 0 6 3.01
ganak 19 5 0 0 5 3.36
clingo 4 1 0 0 1 4.00

circ nestHDB 99 34 10 16 60 2.10
nestHDB(sc) 99 34 4 14 52 4.60
projMC 91 28 10 11 49 6.23
ganak 99 34 10 16 60 1.21
clingo 99 31 10 16 57 4.44

random nestHDB 79 30 20 17 67 10.91
nestHDB(sc) 79 30 20 15 65 11.29
projMC 84 30 20 15 65 11.09
ganak 19 19 0 0 19 23.18
clingo 24 25 0 0 25 21.38

markov nestHDB 23 62 0 0 62 31.98
nestHDB(sc) 23 61 0 0 61 32.54
projMC 8 54 0 0 54 33.65
ganak 59 64 0 4 68 30.32
clingo 3 38 0 0 38 37.54

misc nestHDB 47 38 17 0 55 46.12
nestHDB(sc) 47 38 13 0 51 48.20
projMC 47 38 13 0 51 45.90
ganak 44 38 15 0 53 45.72
clingo 63 38 15 1 54 44.79

Σ nestHDB 99 171 47 33 251 93.99
nestHDB(sc) 99 170 37 29 236 99.95
projMC 91 156 43 26 225 99.88
ganak 99 160 25 20 205 103.78
clingo 99 133 25 17 175 112.15

Figure 7.7: Number of solved #∃Sat instances, grouped by upper bound intervals of
treewidth. time[h] is cumulated wall clock time, timeouts count as 900s. thresholdabstr=8.

much on the instances. Further, we observed that the employed simple cache as used in
Listing 3.1, provides only a marginal improvement.

Figure 7.7 depicts a table of results on #∃Sat, where we observe that nestHDB does
a good job on instances with low widths below thresholdabstr = 8 (containing ideas
of dpdb), but also on widths well above 8 (using nested DP). Notably, nestHDB is also
competitive on widths well above 50. Indeed, nestHDB and nestHDB(sc) perform well
on all benchmark sets, whereas on some sets the solvers projMC, clingo and ganak are
faster. Overall, parallelism provides a significant improvement here, but still nestHDB(sc)
shows competitive performance, which is also visualized in the cactus plot of Figure 7.8.
Figure 7.9 shows scatter plots comparing nestHDB to projMC (left) and to ganak (right).

155

7. Efficiently Implementing Treewidth-Aware Algorithms

50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1.nestHDB

2.nestHDB(sc)

3.projMC

4.ganak

5.clingo

Figure 7.8: Cactus plot showing the number of solved #∃Sat instances, where the
x-axis shows for each solver (configuration) individually, the number of instances ordered
by increasing runtime. time[h] is cumulated wall clock time, timeouts count as 900s.
thresholdabstr=8.

Overall, both plots show that nestHDB solves more instances, since in both cases the
y-axis shows more black dots at 900 seconds than the x-axis. Further, the bottom left of
both plots shows that there are plenty easy instances that can be solved by projMC and
ganak in well below 50 seconds, where nestHDB needs up to 200 seconds. Similarly, the
cactus plot given in Figure 7.8 shows that nestHDB can have some overhead compared to
the three standard solvers, which is not surprising. This indicates that there is still room
for improvement if, e.g., easy instances are easily detected, and if standard solvers are
used for those instances. Alternatively, one could also just run a standard solver for at
most 50 seconds and if not solved within 50 seconds, the heavier machinery of nested
dynamic programming is invoked. Apart from these instances, Figure 7.9 shows that
nestHDB solves harder instances faster, where standard solvers struggle.

156

7.4. Implementing Abstractions and Hybrid Dynamic Programming

0 100 200 300 400 500 600 700 800 900

nestHDB

0

50

100

200

300

400

500

600

700

800

900

p
ro
jM

C

0 100 200 300 400 500 600 700 800 900

nestHDB

0

50

100

200

300

400

500

600

700

800

900

g
a
n
a
k

Figure 7.9: Scatter plot of instances for #∃Sat, where the x-axis shows runtime in
seconds of nestHDB compared to the y-axis showing runtime of projMC (left) and of
ganak (right). thresholdabstr = 8.

157

CHAPTER 8
Discussion

The aim of argument, or of discussion, should not be victory, but progress.
— Joseph Joubert

This thesis deals with advanced tools and methods for problems that are parameterized
by treewidth. Thereby, we show in Chapter 3 how to utilize treewidth by means of
dynamic programming such that the running times of the resulting algorithms with
respect to treewidth are tight under reasonable assumptions in computational complexity,
cf. Chapter 5. To illustrate this technique [Bertelè and Brioschi, 1972, 1973; Bodlaender
and Kloks, 1996], we show how to apply it for fragments of answer set programming.
Then, we provide decomposition-guided reductions in Chapter 4, which are reductions
that are guided by a tree decomposition and allow us to easily show treewidth guarantees.
More precisely, with these reductions, we obtain translatability results from several
fragments of answer set programming to Boolean satisfiability, thereby taking care of the
treewidth.

However, later in Chapter 5, it is shown that for our discussed problems parameter-
ized by treewidth neither our dynamic programming algorithms of Chapter 3, nor the
decomposition-guided reductions of Chapter 4 can be significantly improved under reason-
able assumptions like the exponential time hypothesis (ETH) as stated in Hypothesis 2.1.
By providing these lower bounds for the canonical PSpace-complete problem of deciding
the validity (QSat) of a quantified Boolean formula, we solve the question of whether
one can improve an existing algorithm [Chen, 2004] that has been open for a long time.
Even further, it turns out that our lower bound result for QSat serves the purpose
of establishing in Chapter 6 a novel methodology for proving lower bounds for several
problems parameterized by treewidth. Indeed, in Chapter 6, we reveal a table of results
that completes our initial Table 1.1 and states it more precisely, which can be established
using our novel methodology and further techniques of this thesis.

Finally, Chapter 7 provides means to efficiently implement treewidth-based algorithms,
despite the devastating lower bound results of Chapter 6. Our approach relies on different

159

8. Discussion

levels of abstractions that are inspired by related work [Ganian et al., 2017; Dell et al.,
2019; Eiben et al., 2019; Hecher et al., 2020a], where we put these ideas into the context
of nested dynamic programming and hybrid solving. It turns out that our approach is
quite competitive compared to state-of-the-art solvers in the area of model counting and
extensions thereof. Surprisingly, it seems that in practice our approach even tames the
beast of high treewidth, which is witnessed by the observation that our implementation
allows us to solve instances using tree decompositions of widths beyond 260. This is quite
unexpected, since we also focus on problems that are double exponential [Fichte et al.,
2018b] in the treewidth (under the ETH), where we apply tree decompositions of widths
up to 99. While we did initial studies for prototypical counting problems, we expect
that this implementation might be also of use for answer set programming and even
further formalisms relevant to reasoning problems and artificial intelligence in general.
Indeed, the established decomposition-guided reductions of Chapter 4 might provide
a first approach into this direction. However, there are probably deeper studies and
problem-specific fine-tunings required in order to competitively apply this approach for a
variety of other formalisms. This can be witnessed by several works on algorithms that
are based on dynamic programming [Fichte et al., 2018c; Charwat and Woltran, 2019;
Tamaki, 2019; Fichte et al., 2019b; Bannach and Berndt, 2019]. There, it seems that many
problem-specific optimizations are essential in order to design a solver utilizing treewidth
that is competitive with the state-of-the-art. Indeed, compared to initial approaches that
naively implement dynamic programming in a way that is leaning towards the worst case,
it turns out that many fine-tunings are essential in order to obtain efficient solvers.

Next, we discuss a combined presentation of related work, which is then followed by
outlooks into future work.

8.1 Related Work
Tractability results for treewidth have been established for many problems and formalisms,
where some of them even involve dedicated dynamic programming algorithms. For answer
set programming, several works in this direction are known [Jakl et al., 2009; Pichler
et al., 2010], including hardness results for some graph representations [Pichler et al.,
2014] and studies on non-ground programs [Bliem et al., 2020]. Similar results have been
established for formalisms related to answer set programming and beyond [Fichte and
Hecher, 2018, 2019; Fichte et al., 2020d; Hecher et al., 2020a]. There are also results
involving these dynamic programming algorithms for further problems in knowledge
representation and reasoning, e.g., [Dvořák et al., 2012; Fichte et al., 2018b, 2019a; Fichte
and Hecher, 2020; Fichte et al., 2021a]. However, even parameterized results for answer
set programming and related formalisms beyond treewidth have been established in
a variety of works [Gottlob et al., 2002b; Lonc and Truszczyński, 2003; Lackner and
Pfandler, 2012; Meier et al., 2015; Creignou and Vollmer, 2015].

Especially for deciding the consistency of logic programs (problem Asp), there are
several parameters that have been considered in the past. Among those measures from

160

8.1. Related Work

parameterized complexity [Lonc and Truszczyński, 2003], is for example the so-called
feedback width [Gottlob et al., 2002b], which depends on the atoms required to break
large strongly connected components (positive cycles) of the dependency graph. Another
such measure is the smallest backdoor size, which is the smallest size of a set of atoms such
that when removed from the program, the resulting program is normal or acyclic [Fichte
and Szeider, 2015]. Note that also the special case of programs, where the number of
even and/or odd cycles is bounded, has been analyzed [Lin and Zhao, 2004a], which is
orthogonal to the size of the largest cycle or strongly connected component, as discussed
in Section 4.4. Recently, even combinations of parameters were considered in a systematic
way [Fichte et al., 2019c]. There are also studies on parameters that are strictly more
general than treewidth, where still approaches similar to dynamic programming as
discussed in Chapter 3 are applicable. Among these parameters are, e.g., directed
treewidth-based measures [Bliem et al., 2016b], hypertree width [Gottlob et al., 2002a],
and fractional hypertree width [Grohe and Marx, 2006, 2014; Fischl et al., 2018]. While
the (fractional) hypertree width subsumes treewidth, there are even dedicated tools for
computing such decompositions efficiently, cf. [Gottlob and Samer, 2009; Fichte et al.,
2018a; Korhonen et al., 2019; Fischl et al., 2019; Fichte et al., 2020f].

Conditional runtime lower bounds that depend on the ETH and are beyond super
exponentiality have been considered in a range of works, cf. [Marx and Mitsou, 2016;
Lokshtanov et al., 2011]. While precise lower bounds for deciding the validity of quan-
tified Boolean formulas (QSat) and treewidth have been left open since the dynamic
programming algorithm serving as upper bound [Chen, 2004], several related work in
this direction exists. Indeed, it has been proven that QSat remains intractable when
parameterized by treewidth alone [Atserias and Oliva, 2014]. Thereby, Atserias and
Oliva [Atserias and Oliva, 2014] cover a setting that is related to ours: showing that
there exists a compression of pathwidth for a fragment of path decompositions of QBFs,
thereby increasing the quantifier rank by two. However, we require a general, constructive
method to compress the width of arbitrary tree decompositions of any QBF, thereby
increasing quantifier rank by only one. Such a method is presented in Section 5.1, which
allows us to improve their result [Atserias and Oliva, 2014] (cf. Corollary 5.17). Lampis
and Mitsou [Lampis and Mitsou, 2017] established that QSat restricted to quantifier
depth 2 cannot be solved by an algorithm that runs below double exponential in the
treewidth of the primal graph when assuming the ETH. In an earlier work [Pan and
Vardi, 2006], it was mentioned that this behavior extends to quantifier rank 3 and even
to quantifier ranks that are an odd number. Lampis, Mitsou, and Mengel [Lampis et al.,
2018] employed the known runtime result [Chen, 2004] and proposed reductions from a
collection of reasoning problems in AI to QSat that yield quite precise upper bounds
on the runtime, especially in the light of the corresponding lower bound [Lampis and
Mitsou, 2017]. Indeed, also the establishment of the lower bound of Section 5.1 fostered
many results, as already discussed, cf. Table 6.1 of Chapter 6. Runtime classes for
parameterized problems have been considered before in the course of several works, e.g.,
[Weyer, 2004; Downey et al., 2007]. However, in this work and in particular in Chapter 6
we discuss runtime classes specific for treewidth and with respect to the ETH as given in

161

8. Discussion

Hypothesis 2.1. Further, the literature also distinguishes different hierarchies of classes
of parameterized problems beyond FPT. These classes are based on weighted variants
of QSat [de Haan, 2019], where certain assignments are restricted to weight k, which
means setting at most k variables to true. Compared to these hierarchies, the runtime
classes of Chapter 6 are strictly contained in FPT and these classes even provide more
fine-grained runtime guarantees.

The established lower bound for deciding the consistency of a normal program of bounded
treewidth, as presented in Section 5.2 is quite surprising. In the light of the lower bound
results for QSat of Section 5.1 and given that the consistency of a normal program
is of the same complexity as deciding the satisfiability (Sat) of a Boolean formula
(NP-complete), one might think that for treewidth the situation is similar. Instead, the
problem Asp restricted to normal programs is slightly superexponential, a runtime class
that has been studied before [Lokshtanov et al., 2018].

There are many implemented tools and systems that utilize treewidth supported by
problem-specific implementations, techniques, and fine-tunings or tree decompositions,
ranging from specialized solvers such as dynasp [Fichte et al., 2017b], dynQBF [Char-
wat and Woltran, 2017], and gpuSAT [Fichte et al., 2018b, 2019b] to fvs-pace [Kiljan
and Pilipczuk, 2018]. Some of these parameterized solvers are particularly efficient
for certain fragments [Lonsing and Egly, 2018a], and even successfully participated in
problem-specific competitions [Pulina and Seidl, 2019]. Further, the literature distin-
guishes also generic systems that exploit treewidth like D-FLAT [Bliem et al., 2016a],
Jatatosk [Bannach and Berndt, 2019], and sequoia [Langer et al., 2012]. Surprisingly, tree
decompositions have been also applied to improve state-of-the-art grounders for answer set
programming [Bichler et al., 2020]. The concept of abstractions as discussed in Chapter 7
was already used before [Ganian et al., 2017; Dell et al., 2019; Eiben et al., 2019], but
mainly in the context of tractability results. However, nested dynamic programming was
recently also discussed for an extension of answer set programming [Hecher et al., 2020a].

8.2 Future Work

This work gives rise to plenty of future work, which can be witnessed also by the increasing
interest of research that is leaning towards the parameter treewidth1.

In the last couple of years, there was a movement towards proving the correctness of
solvers or showing at least that certain solver runs are correct. This resulted in several
proof formats for solvers deciding satisfiability [Gelder, 2008; Goldberg and Novikov,
2003] and further problem formalisms [Heule et al., 2013; Wetzler et al., 2014; Heule
et al., 2014; Lonsing and Egly, 2018b]. In the light of these works, the resulting initiative
on explainability for artificial intelligence, and a recent proof logging format adapted
for answer set programming [Alviano et al., 2019b], it might be interesting to consider

1Treewidth is mentioned in over 20,400 results on Google Scholar (queried on February 15, 2021).

162

8.2. Future Work

applying and adapting such formats for the algorithms of Chapter 3 or further approaches
based based on dynamic programming.

Decomposition-guided reductions were proposed in Chapter 4 as a tool for reducing
problems to Boolean satisfiability, but also in order to establish lower bounds under the
ETH. This raises the question of the particular strengths, weaknesses and limits of this
type of reductions. To increase the flexibility of such reductions, one could allow to also
“generate” additional auxiliary tree decomposition nodes, thereby slightly weakening the
condition that the trees of the decompositions coincide, cf. Figures 4.1 and 4.2.

Chapter 5 of this work mainly focused on lower bounds under the exponential time
hypothesis as given in Hypothesis 2.1. However, there are also extensions and stronger
versions [Impagliazzo and Paturi, 2001] of the ETH that, while controversial, would result
in more precise lower bounds. It would be interesting to establish lower bounds under
this stronger assumption and then analyze how “good” existing upper bounds like those
of Chapter 3 are compared to the resulting lower bounds. Recall that in Sections 5.1.3
and 5.2.4, we already discussed quite detailed potentials of future work. In particular, to
further improve the methodology on showing lower bounds as discussed in Chapter 6,
it might be interesting to extend it towards “non-canonical” lower bounds. For answer
set programming, there is still an open question of whether the treewidth is in strong
correlation with the resolution width, as this is the case for Sat solvers [Atserias et al.,
2011] and Asp solvers are highly based on Sat solvers.

Finally, recall that dynamic programming can be applied to several other problems and
formalisms. According to our observations of Chapter 7, especially counting problems
seem to benefit from the structure that is guided by means of tree decompositions.
However, nested dynamic programming in combination with hybrid solving might be
also sufficiently applicable for decision problems, given that suitable abstractions are
used. As a result, we propose further works in this direction in order to get a better
picture of abstractions that might lead to efficient solver runs. These abstractions should
be probably analyzed in a domain-specific and problem-specific setting, which should
further improve the whole approach.

163

List of Algorithms

3.1 Algorithm DPA(I, T) for computing solutions of I via DP on LTD T . . 35

3.2 Table algorithm #Satt(χt, Ft , τ1, . . . , τ) for solving #Sat [Samer and
Szeider, 2010]. 37

3.3 Table algorithm SuppAspt(χt, Πt, τ1, . . . , τ). 41

3.4 Table algorithm HCFAspt(χt, Πt, τ1, . . . , τ). 46

3.5 Table algorithm Aspt(χt, Πt, τ1, . . . , τ). 52

7.1 Algorithm NestDPN(depth, I, A, T) for computing solutions of I via nested
DP on LTD T . 131

7.2 Nested table algorithm N#Satt(·, χt, ·, Ft , F A
t , τ1, . . . , τ) for solving #Sat. 133

7.3 Nested table algorithm N#∃Satt(·, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving prob-

lem #∃Sat. 134

7.4 Algorithm HybDPH#∃Sat(depth, Q) for hybrid DP of #∃Sat based on nested
DP. 135

7.5 Nested table algorithm H#∃Satt(depth, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving

#∃Sat. 137

7.6 Algorithm HybDPHQSat(depth, Q) for hybrid solving of QSat by nested DP.
. 138

7.7 Nested table algorithm HQSatt(depth, χt, Q, Ft , QA
t , τ1, . . . , τ) for solv-

ing QSat. 139

7.8 Table algorithm #Satt(χ(t), Ft, τ1, . . . , τ) for solving #Sat. 144

7.9 Template table algorithm At(χ(t), It, τ1, . . . , τ) of Figure 7.5 for solving
an instance I of problem P. 145

7.10 Table algorithm Colt(χ(t), Gt, τ1, . . . , τ) for solving #3-Col. 146

7.11 Table algorithm VCt(χ(t), Gt, τ1, . . . , τ) for solving MinVC. 147

165

8. Discussion

7.12 Nested table algorithm H#∃Satt(depth, χt, ·, Ft , QA
t , τ1, . . . , τ) for solving

#∃Sat. 148

7.13 Nested table algorithm HQSatt(depth, χt, Q, Ft , QA
t , τ1, . . . , τ) for solv-

ing QSat. 149

166

Bibliography

Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., and Wanko, P. (2019). Train
scheduling with hybrid ASP. In 15th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), volume 11481 of Lecture Notes in Computer
Science, pages 3–17. Springer.

Abseher, M., Musliu, N., and Woltran, S. (2017). htd - A Free, Open-Source Framework
for (Customized) Tree Decompositions and Beyond. In 14th International Conference
on the Integration of AI and OR Techniques in Constraint Programming (CPAIOR),
volume 10335 of Lecture Notes in Computer Science, pages 376–386. Springer.

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., and Ricca, F. (2019a).
Evaluation of Disjunctive Programs in WASP. In 15th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR), volume 11481 of Lecture
Notes in Computer Science, pages 241–255. Springer.

Alviano, M. and Dodaro, C. (2016). Completion of Disjunctive Logic Programs. In
25th International Joint Conference on Artificial Intelligence (IJCAI), pages 886–892.
IJCAI/AAAI Press.

Alviano, M., Dodaro, C., Fichte, J. K., Hecher, M., Philipp, T., and Rath, J. (2019b).
Inconsistency Proofs for ASP: The ASP - DRUPE Format. Theory and Practice of
Logic Programming, 19(5-6):891–907.

Amendola, G., Ricca, F., and Truszczyński, M. (2019). Beyond NP: Quantifying over
Answer Sets. Theory and Practice of Logic Programming, 19(5-6):705–721.

Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., Levy, J., and Simon, L. (2019). Community
Structure in Industrial SAT Instances. Journal of Artificial Intelligence Research,
66:443–472.

Atserias, A., Fichte, J. K., and Thurley, M. (2011). Clause-Learning Algorithms with
Many Restarts and Bounded-Width Resolution. Journal of Artificial Intelligence
Research, 40:353–373.

Atserias, A. and Oliva, S. (2014). Bounded-width QBF is PSPACE-complete. Journal of
Computer and System Sciences, 80(7):1415–1429.

167

Bibliography

Audemard, G. and Simon, L. (2009). Predicting Learnt Clauses Quality in Modern SAT
Solvers. In 21st International Joint Conference on Atrtificial Intelligence (IJCAI),
pages 399–404.

Aziz, R. A. (2015). Answer Set Programming: Founded Bounds and Model Counting.
PhD thesis, Department of Computing and Information Systems, The University of
Melbourne.

Aziz, R. A., Chu, G., Muise, C., and Stuckey, P. (2015). #(∃)SAT: Projected Model
Counting. In 18th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pages 121–137. Springer.

Bannach, M. and Berndt, S. (2019). Practical Access to Dynamic Programming on Tree
Decompositions. Algorithms, 12(8):172.

Bauland, M., Mundhenk, M., Schneider, T., Schnoor, H., Schnoor, I., and Vollmer, H.
(2011). The tractability of model checking for LTL: The good, the bad, and the ugly
fragments. ACM Transactions on Computational Logic, 12(2):13:1–13:28.

Bayardo, R. J. and Schrag, R. (1997). Using CSP Look-Back Techniques to Solve
Real-World SAT Instances. In 14th National Conference on Artificial Intelligence
and Ninth Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI),
pages 203–208. AAAI Press / The MIT Press.

Bellman, R. (1954). Some Applications of the Theory of Dynamic Programming - A
Review. Operations Research, 2(3):275–288.

Ben-Eliyahu, R. and Dechter, R. (1994). Propositional Semantics for Disjunctive Logic
Programs. Annals of Mathematics and Artificial Intelligence, 12(1):53–87.

Bertelè, U. and Brioschi, F. (1969). Contribution to nonserial dynamic programming.
Journal of Mathematical Analysis and Applications, 28(2):313–325.

Bertelè, U. and Brioschi, F. (1972). Nonserial Dynamic Programming. Academic Press,
Inc.

Bertelè, U. and Brioschi, F. (1973). On Non-serial Dynamic Programming. Journal of
Combinatorial Theory Series A, 14(2):137–148.

Besin, V. (2020). Advancing a System for Counting Problems based on DBMS and Tree
Decompositions. Bachelor’s Thesis, Faculty of Informatics, TU Wien, Austria.

Bichler, M., Morak, M., and Woltran, S. (2020). lpopt: A Rule Optimization Tool for
Answer Set Programming. Fundamenta Informaticae, 177(3-4):275–296.

Bidoít, N. and Froidevaux, C. (1991). Negation by default and unstratifiable logic
programs. Theoretical Computer Science, 78(1):85–112.

168

Bibliography

Biere, A. (2008). PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4):75–97.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors (2009). Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press.

Bliem, B., Charwat, G., Hecher, M., and Woltran, S. (2016a). D-FLAT2: Subset Mini-
mization in Dynamic Programming on Tree Decompositions Made Easy. Fundamenta
Informaticae, 147(1):27–61.

Bliem, B., Morak, M., Moldovan, M., and Woltran, S. (2020). The Impact of Treewidth
on Grounding and Solving of Answer Set Programs. Journal of Artificial Intelligence
Research, 67:35–80.

Bliem, B., Ordyniak, S., and Woltran, S. (2016b). Clique-Width and Directed Width
Measures for Answer-Set Programming. In 22nd European Conference on Artificial
Intelligence (ECAI), volume 285 of Frontiers in Artificial Intelligence and Applications,
pages 1105–1113. IOS Press.

Bodlaender, H. L. (1988). Dynamic Programming on Graphs with Bounded Treewidth.
In 15th International Colloquium on Automata, Languages and Programming (ICALP),
volume 317 of Lecture Notes in Computer Science, pages 105–118. Springer.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin, F. V., Lokshtanov, D., and
Pilipczuk, M. (2016). A ck n 5-Approximation Algorithm for Treewidth. SIAM Journal
on Computing, 45(2):317–378.

Bodlaender, H. L. and Kloks, T. (1996). Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402.

Bodlaender, H. L. and Koster, A. M. (2008). Combinatorial Optimization on Graphs of
Bounded Treewidth. Computer Journal, 51(3):255–269.

Bomanson, J. (2017). lp2normal - A Normalization Tool for Extended Logic Programs.
In 14th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR), volume 10377 of Lecture Notes in Computer Science, pages 222–228.
Springer.

Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., and Schaub, T. (2016). Answer
Set Programming Modulo Acyclicity. Fundamenta Informaticae, 147(1):63–91.

Bomanson, J. and Janhunen, T. (2013). Normalizing Cardinality Rules Using Merging
and Sorting Constructions. In 12th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), volume 8148 of Lecture Notes in Computer
Science, pages 187–199. Springer.

169

Bibliography

Bondy, J. A. and Murty, U. S. R. (2008). Graph theory, volume 244 of Graduate Texts in
Mathematics. Springer.

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set programming at a glance.
Communications of the ACM, 54(12):92–103.

Bulatov, A. A. (2017). A Dichotomy Theorem for Nonuniform CSPs. In 58th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330. IEEE
Computer Society.

Burchard, J., Schubert, T., and Becker, B. (2015). Laissez-Faire Caching for Parallel
#SAT Solving. In 18th International Conference on Theory and Applications of
Satisfiability Testing (SAT), volume 9340 of Lecture Notes in Computer Science, pages
46–61. Springer.

Burchard, J., Schubert, T., and Becker, B. (2016). Distributed Parallel #SAT Solving.
In 18th IEEE International Conference on Cluster Computing (CLUSTER), pages
326–335. IEEE Computer Society.

Cabalar, P., Fandinno, J., Garea, J., Romero, J., and Schaub, T. (2020). eclingo : A
Solver for Epistemic Logic Programs. Theory and Practice of Logic Programming,
20(6):834–847.

Capelli, F. and Mengel, S. (2019). Tractable QBF by Knowledge Compilation. In 36th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume
126 of Leibniz International Proceedings in Informatics, pages 18:1–18:16. Dagstuhl
Publishing.

Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia, S. A., and Vardi, M. Y. (2014).
Distribution-Aware Sampling and Weighted Model Counting for SAT. In 28th AAAI
Conference on Artificial Intelligence (AAAI), pages 1722–1730. AAAI Press.

Chakraborty, S., Meel, K. S., and Vardi, M. Y. (2016). Algorithmic Improvements in
Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT
Solver Calls. In 25th International Joint Conference on Artificial Intelligence (IJCAI),
pages 3569–3576. AAAI Press.

Charwat, G. and Woltran, S. (2017). Expansion-based QBF Solving on Tree Decompo-
sitions. In 24th International Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA), volume 2011 of CEUR
Workshop Proceedings, pages 16–26. CEUR-WS.org.

Charwat, G. and Woltran, S. (2019). Expansion-based QBF Solving on Tree Decomposi-
tions. Fundamenta Informaticae, 167(1-2):59–92.

Chen, H. (2004). Quantified Constraint Satisfaction and Bounded Treewidth. In 16th
European Conference on Artificial Intelligence (ECAI), pages 161–165. IOS Press.

170

Bibliography

Chimani, M., Mutzel, P., and Zey, B. (2012). Improved Steiner tree algorithms for
bounded treewidth. Journal of Discrete Algorithms, 16:67–78.

Clark, K. L. (1977). Negation as Failure. In Logic and Data Bases, Advances in Data
Base Theory, pages 293–322. Plemum Press.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Journal
of the ACM, 13(6):377–387.

Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. In 3rd Annual
ACM Symposium on Theory of Computing (STOC), pages 151–158. ACM.

Courcelle, B. (1990). Graph Rewriting: An Algebraic and Logic Approach. In Handbook
of Theoretical Computer Science, Vol. B, pages 193–242. Elsevier.

Courcelle, B., Makowsky, J. A., and Rotics, U. (2001). On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics, 108(1-2):23–52.

Creignou, N., Ktari, R., Meier, A., Müller, J., Olive, F., and Vollmer, H. (2019).
Parameterised Enumeration for Modification Problems. Algorithms, 12(9):189.

Creignou, N., Meier, A., Müller, J.-S., Schmidt, J., and Vollmer, H. (2017). Paradigms
for Parameterized Enumeration. Theoretical Computer Science, 60(4):737–758.

Creignou, N. and Vollmer, H. (2015). Parameterized Complexity of Weighted Satisfiability
Problems: Decision, Enumeration, Counting. Fundamenta Informaticae, 136(4):297–
316.

Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., and Saurabh, S. (2015). Parameterized Algorithms. Springer.

Darwiche, A. (2004). New Advances in Compiling CNF to Decomposable Negation
Normal Form. In 16th Eureopean Conference on Artificial Intelligence (ECAI), pages
318–322. IOS Press.

Darwiche, A. (2011). SDD: A New Canonical Representation of Propositional Knowledge
Bases. In 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages
819–826. AAAI Press/IJCAI.

Davis, M., Logemann, G., and Loveland, D. W. (1962). A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397.

Davis, M. and Putnam, H. (1960). A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(3):201–215.

de Haan, R. (2019). Parameterized Complexity in the Polynomial Hierarchy - Extending
Parameterized Complexity Theory to Higher Levels of the Hierarchy, volume 11880 of
Lecture Notes in Computer Science. Springer.

171

Bibliography

Dechter, R. (2006). Tractable Structures for Constraint Satisfaction Problems. In
Handbook of Constraint Programming, volume I, chapter 7, pages 209–244. Elsevier.

Dell, H., Komusiewicz, C., Talmon, N., and Weller, M. (2017). The PACE 2017 Pa-
rameterized Algorithms and Computational Experiments Challenge: The Second
Iteration. In 12th International Symposium on Parameterized and Exact Computation
(IPEC), Leibniz International Proceedings in Informatics, pages 30:1—30:13. Dagstuhl
Publishing.

Dell, H., Roth, M., and Wellnitz, P. (2019). Counting Answers to Existential Questions.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 132 of LIPIcs, pages 113:1–113:15. Dagstuhl Publishing.

Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathe-
matics. Springer.

Dix, J., Gottlob, G., and Marek, V. W. (1996). Reducing Disjunctive to Non-Disjunctive
Semantics by Shift-Operations. Fundamenta Informaticae, 28(1-2):87–100.

Dodaro, C., Elder, G. A., Faber, W., Fandinno, J., Gebser, M., Hecher, M., LeBlanc,
E., Morak, M., and Zangari, J., editors (2020). International Conference on Logic
Programming 2020 Workshop Proceedings co-located with 36th International Conference
on Logic Programming (ICLP), volume 2678 of CEUR Workshop Proceedings. CEUR-
WS.org.

Downey, R., Flum, J., Grohe, M., and Weyer, M. (2007). Bounded fixed-parameter
tractability and reducibility. Annals of Pure And Applied Logic, 148(1-3):1–19.

Downey, R. G. and Fellows, M. R. (2013). Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer.

Dreyfus, S. E. and Law, A. M. (1977). Art and Theory of Dynamic Programming.
Academic Press, Inc.

Dueñas-Osorio, L., Meel, K. S., Paredes, R., and Vardi, M. Y. (2017). Counting-Based
Reliability Estimation for Power-Transmission Grids. In 31th AAAI Conference on
Artificial Intelligence (AAAI), pages 4488–4494. AAAI Press.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–357.

Durand, A., Hermann, M., and Kolaitis, P. G. (2005). Subtractive reductions and
complete problems for counting complexity classes. Theoretical Computer Science,
340(3):496–513.

Dvořák, W., Pichler, R., and Woltran, S. (2012). Towards fixed-parameter tractable
algorithms for abstract argumentation. Artificial Intelligence, 186:1–37.

172

Bibliography

Dzulfikar, M. A., Fichte, J. K., and Hecher, M. (2019). The PACE 2019 Parameterized
Algorithms and Computational Experiments Challenge: The Fourth Iteration (Invited
Paper). In 14th International Symposium on Parameterized and Exact Computation
(IPEC), volume 148 of Leibniz International Proceedings in Informatics, pages 25:1–
25:23. Dagstuhl Publishing.

Egly, U., Eiter, T., Tompits, H., and Woltran, S. (2000). Solving Advanced Reasoning
Tasks Using Quantified Boolean Formulas. In 17th National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI 2000), pages 417–422. AAAI Press / The MIT Press.

Eiben, E., Ganian, R., Hamm, T., and Kwon, O. (2019). Measuring what Matters: A
Hybrid Approach to Dynamic Programming with Treewidth. In 44th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 138
of lipics, pages 42:1–42:15. Dagstuhl Publishing.

Eiben, E., Ganian, R., and Ordyniak, S. (2018). Small Resolution Proofs for QBF
using Dependency Treewidth. In 35th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 96 of Leibniz International Proceedings in Informatics, pages
28:1–28:15. Dagstuhl Publishing.

Eiben, E., Ganian, R., and Ordyniak, S. (2020). Using decomposition-parameters for
QBF: Mind the prefix! Journal of Computer and System Sciences, 110:1–21.

Eiter, T., Faber, W., Fink, M., and Woltran, S. (2007). Complexity results for answer set
programming with bounded predicate arities and implications. Annals of Mathematics
and Artificial Intelligence, 51(2-4):123–165.

Eiter, T. and Gottlob, G. (1995a). On the computational cost of disjunctive logic
programming: Propositional case. Annals of Mathematics and Artificial Intelligence,
15(3–4):289–323.

Eiter, T. and Gottlob, G. (1995b). The Complexity of Logic-Based Abduction. Journal
of the ACM, 42(1):3–42.

Elberfeld, M., Jakoby, A., and Tantau, T. (2010). Logspace versions of the theorems
of Bodlaender and Courcelle. In 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 143–152. IEEE Computer Society.

Elffers, J., Giráldez-Cru, J., Gocht, S., Nordström, J., and Simon, L. (2018). Seeking
Practical CDCL Insights from Theoretical SAT Benchmarks. In 27th International
Joint Conference on Artificial Intelligence (IJCAI), pages 1300–1308. ijcai.org.

Elmasri, R. and Navathe, S. B. (2016). Fundamentals of Database Systems. Prentice
Hall, 7th edition.

173

Bibliography

Ermon, S., Gomes, C. P., and Selman, B. (2012). Uniform Solution Sampling Using
a Constraint Solver As an Oracle. In 28th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 255–264. AUAI Press.

Fages, F. (1994). Consistency of Clark’s completion and existence of stable models.
Logical Methods in Computer Science, 1(1):51–60.

Fagin, R. (1974). Generalized First-Order Spectra and Polynomial-Time Recognizable
Sets. In 7th Symposia in Applied Mathematics (SIAM). AMS.

Fandinno, J. and Hecher, M. (2021). Treewidth-Aware Complexity in ASP: Not all
Positive Cycles are Equally Hard. In 35th AAAI Conference on Artificial Intelligence
(AAAI). In Press.

Fassetti, F. and Palopoli, L. (2010). On the complexity of identifying head-elementary-
set-free programs. Theory and Practice of Logic Programming, 10(1):113–123.

Feige, U., Hajiaghayi, M., and Lee, J. R. (2008). Improved Approximation Algorithms
for Minimum Weight Vertex Separators. SIAM Journal on Computing, 38(2):629–657.

Fellows, M. R., Fomin, F. V., Lokshtanov, D., Rosamond, F. A., Saurabh, S., Szeider, S.,
and Thomassen, C. (2011). On the complexity of some colorful problems parameterized
by treewidth. Information and Computation, 209(2):143–153.

Ferguson, A. and O’Sullivan, B. (2007). Quantified Constraint Satisfaction Problems:
From Relaxations to Explanations. In 26th International Joint Conference on Artificial
Intelligence (IJCAI), pages 74–79. AAAI Press.

Fichte, J. K. and Hecher, M. (2018). Exploiting Treewidth for Counting Projected Answer
Sets. In 16th International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 639–640. AAAI Press.

Fichte, J. K. and Hecher, M. (2019). Treewidth and Counting Projected Answer Sets.
In 15th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR), volume 11481 of Lecture Notes in Computer Science, pages 105–119.
Springer.

Fichte, J. K. and Hecher, M. (2020). Counting with Bounded Treewidth: Meta Algorithm
and Runtime Guarantees. In 18th International Workshop on Non-Monotonic Reasoning
(NMR), pages 9–18.

Fichte, J. K., Hecher, M., and Hamiti, F. (2020a). The Model Counting Competition
2020. CoRR, abs/2012.01323.

Fichte, J. K., Hecher, M., and Kieler, M. F. I. (2020b). Treewidth-Aware Quantifier
Elimination and Expansion for QCSP. In 26th International Conference on Principles
and Practice of Constraint Programming (CP), volume 12333 of Lecture Notes in
Computer Science, pages 248–266. Springer.

174

Bibliography

Fichte, J. K., Hecher, M., Lodha, N., and Szeider, S. (2018a). An SMT Approach to
Fractional Hypertree Width. In 24th International Conference on Principles and
Practice of Constraint Programming (CP), volume 11008 of Lecture Notes in Computer
Science, pages 109–127. Springer.

Fichte, J. K., Hecher, M., and Meier, A. (2019a). Counting Complexity for Reasoning in
Abstract Argumentation. In 33rd AAAI Conference on Artificial Intelligence (AAAI),
pages 2827–2834. AAAI Press.

Fichte, J. K., Hecher, M., and Meier, A. (2021a). Knowledge-Base Degrees of Inconsis-
tency: Complexity and Counting. In 35th AAAI Conference on Artificial Intelligence
(AAAI). In Press.

Fichte, J. K., Hecher, M., Morak, M., and Woltran, S. (2017a). Answer Set Solving with
Bounded Treewidth Revisited. In 14th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), volume 10377 of Lecture Notes in Computer
Science, pages 132–145. Springer.

Fichte, J. K., Hecher, M., Morak, M., and Woltran, S. (2017b). DynASP2.5: Dynamic
Programming on Tree Decompositions in Action. In 12th International Symposium
on Parameterized and Exact Computation (IPEC), volume 89 of Leibniz International
Proceedings in Informatics, pages 17:1–17:13. Dagstuhl Publishing.

Fichte, J. K., Hecher, M., Morak, M., and Woltran, S. (2018b). Exploiting treewidth for
projected model counting and its limits. In 21st International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 10929 of Lecture Notes in
Computer Science, pages 165–184. Springer.

Fichte, J. K., Hecher, M., and Pfandler, A. (2020c). Lower Bounds for QBFs of Bounded
Treewidth. In 35th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 410–424. ACM.

Fichte, J. K., Hecher, M., and Schindler, I. (2020d). Default logic and bounded treewidth.
Information and Computation. In Press.

Fichte, J. K., Hecher, M., and Szeider, S. (2020e). A Time Leap Challenge for SAT-
Solving. In 26th International Conference on Principles and Practice of Constraint
Programming (CP), volume 12333 of Lecture Notes in Computer Science, pages 267–285.
Springer.

Fichte, J. K., Hecher, M., and Szeider, S. (2020f). Breaking Symmetries with RootClique
and LexTopSort. In 26th International Conference on Principles and Practice of
Constraint Programming (CP), volume 12333 of Lecture Notes in Computer Science,
pages 286–303. Springer.

Fichte, J. K., Hecher, M., Thier, P., and Woltran, S. (2021b). Exploiting Database
Management Systems and Treewidth for Counting. Theory and Practice of Logic
Programming. In Press.

175

Bibliography

Fichte, J. K., Hecher, M., Woltran, S., and Zisser, M. (2018c). Weighted Model Counting
on the GPU by Exploiting Small Treewidth. In 26th Annual European Symposium
on Algorithms (ESA), volume 112 of Leibniz International Proceedings in Informatics,
pages 28:1–28:16. Dagstuhl Publishing.

Fichte, J. K., Hecher, M., and Zisser, M. (2019b). An Improved GPU-Based SAT Model
Counter. In 25th International Conference on Principles and Practice of Constraint
Programming (CP), volume 11802 of Lecture Notes in Computer Science, pages 491–509.
Springer.

Fichte, J. K., Kronegger, M., and Woltran, S. (2019c). A multiparametric view on answer
set programming. Annals of Mathematics and Artificial Intelligence, 86(1-3):121–147.

Fichte, J. K. and Szeider, S. (2015). Backdoors to Tractable Answer-Set Programming.
Artificial Intelligence, 220(C):64–103.

Fischl, W., Gottlob, G., Longo, D. M., and Pichler, R. (2019). HyperBench: A Benchmark
and Tool for Hypergraphs and Empirical Findings. In 38th ACM Symposium on
Principles of Database Systems (PODS), pages 464–480. ACM.

Fischl, W., Gottlob, G., and Pichler, R. (2018). General and Fractional Hypertree
Decompositions: Hard and Easy Cases. In 37th ACM Symposium on Principles of
Database Systems (PODS), pages 17–32. ACM.

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer.

Freuder, E. C. (1985). A sufficient condition for backtrack-bounded search. Journal of
the ACM, 32(4):755–761.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay,
V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham,
R. L., and Woodall, T. S. (2004). Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In 11th European PVM/MPI Users’ Group Meeting,
Lecture Notes in Computer Science, pages 97–104.

Ganian, R., Ramanujan, M. S., and Szeider, S. (2017). Combining Treewidth and
Backdoors for CSP. In 34th Symposium on Theoretical Aspects of Computer Science
(STACS), Leibniz International Proceedings in Informatics, pages 36:1–36:17. Dagstuhl
Publishing.

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2009). Database systems: the complete
book. Pearson Education.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

176

Bibliography

Gebser, M., Janhunen, T., and Rintanen, J. (2014). Answer Set Programming as SAT
modulo Acyclicity. In 21st European Conference on Artificial Intelligence (ECAI),
volume 263 of Frontiers in Artificial Intelligence and Applications, pages 351–356. IOS
Press.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012). Answer Set Solving in
Practice. Morgan & Claypool.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2019). Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming, 19(1):27–82.

Gebser, M., Lee, J., and Lierler, Y. (2007). Head-Elementary-Set-Free Logic Programs.
In 9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), volume 4483 of Lecture Notes in Computer Science, pages 149–161. Springer.

Gebser, M., Schaub, T., Thiele, S., and Veber, P. (2011). Detecting Inconsistencies in
Large Biological Networks with Answer Set Programming. Theory and Practice of
Logic Programming, 11(2-3):323–360.

Gelder, A. V. (2008). Verifying RUP Proofs of Propositional Unsatisfiability. In Interna-
tional Symposium on Artificial Intelligence and Mathematics (ISAIM).

Gelfond, M. and Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9(3/4):365–386.

Gocht, S., Nordström, J., and Yehudayoff, A. (2019). On Division Versus Saturation
in Pseudo-Boolean Solving. In 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1711–1718. ijcai.org.

Goldberg, E. I. and Novikov, Y. (2003). Verification of Proofs of Unsatisfiability for CNF
Formulas. In DATE, pages 10886–10891. IEEE Computer Society.

Gomes, C. P., Sabharwal, A., and Selman, B. (2009). Chapter 20: Model Counting.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 633–654. IOS Press.

Gottlob, G., Leone, N., and Scarcello, F. (2002a). Hypertree Decompositions and
Tractable Queries. Journal of Computer and System Sciences, 64(3):579–627.

Gottlob, G., Pichler, R., and Wei, F. (2010). Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artificial Intelligence, 174(1):105–132.

Gottlob, G. and Samer, M. (2009). A Backtracking-based Algorithm for Hypertree
Decomposition. ACM Journal of Experimental Algorithmics, 13:1:1.1–1:1.19.

Gottlob, G., Scarcello, F., and Sideri, M. (2002b). Fixed-parameter complexity in AI
and nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86.

177

Bibliography

Grohe, M. (2017). Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory, volume 47. Cambridge University Press.

Grohe, M. and Marx, D. (2006). Constraint Solving via Fractional Edge Covers. In 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 289–298. ACM
Press.

Grohe, M. and Marx, D. (2014). Constraint solving via fractional edge covers. ACM
Transactions on Algorithms, 11(1):Art. 4, 20.

Harvey, D., van der Hoeven, J., and Lecerf, G. (2016). Even faster integer multiplication.
Journal of Complexity, 36:1–30.

Hecher, M. (2020). Treewidth-aware Reductions of Normal ASP to SAT - Is Normal
ASP Harder than SAT after All? In 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 485–495. Winner of the Marco
Cadoli Best Student Paper Award.

Hecher, M., Morak, M., and Woltran, S. (2020a). Structural Decompositions of Epistemic
Logic Programs. In 34th AAAI Conference on Artificial Intelligence (AAAI), pages
2830–2837. AAAI Press.

Hecher, M., Thier, P., and Woltran, S. (2020b). Taming High Treewidth with Abstraction,
Nested Dynamic Programming, and Database Technology. In 23rd International
Conference on Theory and Applications of Satisfiability Testing SAT, volume 12178 of
Lecture Notes in Computer Science, pages 343–360. Springer.

Hemaspaandra, E. (2004). Dichotomy Theorems for Alternation-Bounded Quantified
Boolean Formulas. CoRR, cs.CC/0406006.

Hemaspaandra, L. A. and Vollmer, H. (1995). The Satanic Notations: Counting Classes
Beyond #P and Other Definitional Adventures. SIGACT News, 26(1):2–13.

Heule, M., Hunt Jr., W. A., and Wetzler, N. (2013). Verifying Refutations with Extended
Resolution. In 24th International Conference on Automated Deduction (CADE), volume
7898 of Lecture Notes in Computer Science, pages 345–359. Springer.

Heule, M., Seidl, M., and Biere, A. (2014). A Unified Proof System for QBF Preprocessing.
In 7th International Joint Conference (IJCAR), volume 8562 of Lecture Notes in
Computer Science, pages 91–106. Springer.

Immerman, N. (1999). Descriptive complexity. Springer.

Impagliazzo, R. and Paturi, R. (2001). On the Complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375.

Impagliazzo, R., Paturi, R., and Zane, F. (2001). Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530.

178

Bibliography

Jakl, M., Pichler, R., and Woltran, S. (2009). Answer-Set Programming with Bounded
Treewidth. In 21st International Joint Conference on Artificial Intelligence (IJCAI),
volume 2, pages 816–822.

Janhunen, T. (2006). Some (in)translatability results for normal logic programs and
propositional theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86.

Janhunen, T. and Niemelä, I. (2016). The Answer Set Programming Paradigm. AI
Magazine, 37(3):13–24.

Kieler, M. F. I. (2020). Trading Structural Dependency for Quantifier Depth on QBFs.
Bachelor’s Thesis, Faculty of Informatics, TU Dresden, Germany.

Kiesl, B., Rebola-Pardo, A., Heule, M. J. H., and Biere, A. (2020). Simulating Strong
Practical Proof Systems with Extended Resolution. Journal of Automated Reasoning,
64(7):1247–1267.

Kiljan, K. and Pilipczuk, M. (2018). Experimental Evaluation of Parameterized Al-
gorithms for Feedback Vertex Set. In SEA, volume 103 of Leibniz International
Proceedings in Informatics, pages 12:1–12:12. Dagstuhl Publishing.

Klebanov, V., Manthey, N., and Muise, C. J. (2013). SAT-Based Analysis and Quantifica-
tion of Information Flow in Programs. In 10th International Conference on Quantitative
Evaluation of Systems (QEST), volume 8054 of Lecture Notes in Computer Science,
pages 177–192. Springer.

Kleine Büning, H. and Lettman, T. (1999). Propositional Logic: Deduction and Algorithms,
volume 48 of Cambridge tracts in theoretical computer science. Cambridge University
Press.

Kloks, T. (1994). Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer.

Knuth, D. E. (1998). How fast can we multiply? In The Art of Computer Programming,
volume 2 of Seminumerical Algorithms, chapter 4.3.3, pages 294–318. Addison-Wesley,
3 edition.

Korhonen, T., Berg, J., and Järvisalo, M. (2019). Solving Graph Problems via Potential
Maximal Cliques: An Experimental Evaluation of the Bouchitté-Todinca Algorithm.
ACM Journal of Experimental Algorithmics, 24(1):1.9:1–1.9:19.

Koriche, F., Lagniez, J.-M., Marquis, P., and Thomas, S. (2013). Knowledge Compilation
for Model Counting: Affine Decision Trees. In 23rd International Joint Conference on
Artificial Intelligence (IJCAI). IJCAI/AAAI.

Lackner, M. and Pfandler, A. (2012). Fixed-Parameter Algorithms for Finding Minimal
Models. In 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 85–95. AAAI Press.

179

Bibliography

Lagniez, J. and Marquis, P. (2014). Preprocessing for Propositional Model Counting.
In 28th AAAI Conference on Artificial Intelligence (AAAI), pages 2688–2694. AAAI
Press.

Lagniez, J. and Marquis, P. (2019). A Recursive Algorithm for Projected Model Counting.
In 33rd Conference on Artificial Intelligence, pages 1536–1543. AAAI Press.

Lagniez, J.-M. and Marquis, P. (2017). An improved decision-DNNF compiler. In
26th International Joint Conference on Artificial Intelligence (IJCAI), pages 667–673.
ijcai.org.

Lagniez, J.-M., Marquis, P., and Szczepanski, N. (2018). DMC: A Distributed Model
Counter. In 27th International Joint Conference on Artificial Intelligence (IJCAI),
pages 1331–1338. AAAI Press.

Lampis, M., Mengel, S., and Mitsou, V. (2018). QBF as an Alternative to Courcelle’s
Theorem. In 21st International Conference on Theory and Applications of Satisfiability
Testing (SAT), pages 235–252. Springer.

Lampis, M. and Mitsou, V. (2017). Treewidth with a Quantifier Alternation Revisited. In
12th International Symposium on Parameterized and Exact Computation (IPEC), vol-
ume 89 of Leibniz International Proceedings in Informatics, pages 26:1–26:12. Dagstuhl
Publishing.

Langer, A., Reidl, F., Rossmanith, P., and Sikdar, S. (2012). Evaluation of an MSO-Solver.
In 14th Meeting on Algorithm Engineering & Experiments (ALENEX), pages 55–63.
SIAM / Omnipress.

Levin, L. A. (1973). Universal Sequential Search Problems. Problems of Information
Transmission, 9(3).

Lifschitz, V. and Razborov, A. A. (2006). Why are there so many loop formulas? ACM
Transactions on Computational Logic, 7(2):261–268.

Lin, F. and Zhao, J. (2003). On tight logic programs and yet another translation from nor-
mal logic programs to propositional logic. In Proceedings of the 18th International Joint
Conference on Artificial intelligence (IJCAI’03), pages 853–858. Morgan Kaufmann.

Lin, F. and Zhao, X. (2004a). On Odd and Even Cycles in Normal Logic Programs. In
McGuinness, D. L. and Ferguson, G., editors, 19th National Conference on Artificial
Intelligence (AAAI), pages 80–85. AAAI Press / The MIT Press.

Lin, F. and Zhao, Y. (2004b). ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137.

Liu, J., Zhong, W., and Jiao, L. (2006). Comments on "The 1993 DIMACS graph
coloring Challenge" and "Energy function-based approaches to graph Coloring". IEEE
Transactional on Neural Networks and Learning Systems, 17(2):533.

180

Bibliography

Lokshtanov, D., Marx, D., and Saurabh, S. (2011). Slightly Superexponential Param-
eterized Problems. In 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 760–776. SIAM.

Lokshtanov, D., Marx, D., and Saurabh, S. (2018). Slightly Superexponential Parameter-
ized Problems. SIAM Journal on Computing, 47(3):675–702.

Lonc, Z. and Truszczyński, M. (2003). Fixed-parameter complexity of semantics for logic
programs. ACM Transactions on Computational Logic, 4(1):91–119.

Lonsing, F. and Egly, U. (2018a). Evaluating QBF Solvers: Quantifier Alternations
Matter. In 24th International Conference on Principles and Practice of Constraint
Programming (CP 2018), volume 11008 of Lecture Notes in Computer Science, pages
276–294. Springer.

Lonsing, F. and Egly, U. (2018b). QRAT+: Generalizing QRAT by a More Powerful
QBF Redundancy Property. In 9th International Joint Conference (IJCAR), volume
10900 of Lecture Notes in Computer Science, pages 161–177. Springer.

Maniu, S., Senellart, P., and Jog, S. (2019). An Experimental Study of the Treewidth of
Real-World Graph Data (Extended Version). CoRR, abs/1901.06862.

Marek, W. and Truszczyński, M. (1991). Autoepistemic logic. Journal of the ACM,
38(3):588–619.

Marx, D. and Mitsou, V. (2016). Double-Exponential and Triple-Exponential Bounds for
Choosability Problems Parameterized by Treewidth. In 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz
International Proceedings in Informatics, pages 28:1–28:15. Dagstuhl Publishing.

McCarthy, J. (1980). Circumscription - A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13(1-2):27–39.

Meier, A., Schindler, I., Schmidt, J., Thomas, M., and Vollmer, H. (2015). On the
parameterized complexity of non-monotonic logics. Archive for Mathematical Logic,
54(5-6):685–710.

Muise, Christian J .and McIlraith, S. A., Beck, J. C., and Hsu, E. I. (2012). Dsharp:
Fast d-DNNF Compilation with sharpSAT. In 25th Canadian Conference on Artificial
Intelligence (AI), volume 7310 of Lecture Notes in Computer Science, pages 356–361.
Springer.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press.

Ordyniak, S. and Szeider, S. (2013). Parameterized Complexity Results for Exact Bayesian
Network Structure Learning. Journal of Artificial Intelligence Research, 46:263–302.

181

Bibliography

Oztok, U. and Darwiche, A. (2015). A Top-Down Compiler for Sentential Decision
Diagrams. In 24th International Joint Conference on Artificial Intelligence (IJCAI),
pages 3141–3148. AAAI Press.

Pan, G. and Vardi, M. Y. (2006). Fixed-Parameter Hierarchies inside PSPACE. In 21th
IEEE Symposium on Logic in Computer Science (LICS), pages 27–36. IEEE Computer
Society.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Pichler, R., Rümmele, S., Szeider, S., and Woltran, S. (2014). Tractable answer-set
programming with weight constraints: bounded treewidth is not enough. Theory and
Practice of Logic Programming, 14(2).

Pichler, R., Rümmele, S., and Woltran, S. (2010). Counting and Enumeration Problems
with Bounded Treewidth. In 16th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), volume 6355 of Lecture Notes in
Computer Science, pages 387–404. Springer.

PostgreSQL Global Development Group (2021). Postgresql documentation 12. Available
at: https://www.postgresql.org/docs/12/queries-with.html.

Pulina, L. and Seidl, M. (2019). The 2016 and 2017 QBF solvers evaluations (QBFE-
VAL’16 and QBFEVAL’17). Artificial Intelligence, 274:224–248.

Robertson, N. and Seymour, P. D. (1983). Graph Minors. I. Excluding a Forest. Journal
of Combinatorial Theory, Series B, 35(1):39–61.

Robertson, N. and Seymour, P. D. (1984). Graph Minors. III. Planar Tree-Width. Journal
of Combinatorial Theory, Series B, 36(1):49–64.

Robertson, N. and Seymour, P. D. (1985). Graph Minors – a Survey. In Surveys in Com-
binatorics 1985: Invited Papers for the 10th British Combinatorial Conference, London
Mathematical Society Lecture Note Series, pages 153–171. Cambridge University Press.

Robertson, N. and Seymour, P. D. (1986). Graph Minors. II. Algorithmic Aspects of
Tree-Width. Journal of Algorithms, 7(3):309–322.

Robertson, N. and Seymour, P. D. (1991). Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190.

Roth, D. (1996). On the Hardness of Approximate Reasoning. Artificial Intelligence,
82(1–2).

Samer, M. and Szeider, S. (2009). Fixed-Parameter Tractability. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
425–454. IOS Press.

182

https://www.postgresql.org/docs/12/queries-with.html

Bibliography

Samer, M. and Szeider, S. (2010). Algorithms for propositional model counting. Journal
of Discrete Algorithms, 8(1):50–64.

Sang, T., Bacchus, F., Beame, P., Kautz, H., and Pitassi, T. (2004). Combining
Component Caching and Clause Learning for Effective Model Counting. In 7th
International Conference on Theory and Applications of Satisfiability Testing (SAT).

Schaefer, T. J. (1978). The Complexity of Satisfiability Problems. In 10th Annual ACM
Symposium on Theory of Computing (STOC), pages 216–226. ACM.

Schaub, T. and Woltran, S. (2018). Special Issue on Answer Set Programming. KI -
Kuenstliche Intelligenz, 32(2-3):101–103.

Scheffler, P. (1994). A Practical Linear Time Algorithm for Disjoint Paths in Graphs
with Bounded Tree-width. Technical Report Report-396-1994, TU Berlin. Available at:
http://www.redaktion.tu-berlin.de/fileadmin/i26/download/AG_
DiskAlg/FG_KombOptGraphAlg/preprints/1994/Report-396-1994.ps.
gz.

Schidler, A. (2018). A solver for the Steiner tree problem with few terminals. Master’s
thesis, Faculty of Informatics, TU Wien, Austria.

Sharma, S., Roy, S., Soos, M., and Meel, K. S. (2019). GANAK: A Scalable Probabilistic
Exact Model Counter. In 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1169–1176. ijcai.org.

Shen, Y. and Eiter, T. (2017). Evaluating Epistemic Negation in Answer Set Programming
(Extended Abstract). In 26th International Joint Conference on Artificial Intelligence
(IJCAI), pages 5060–5064. ijcai.org.

Silva, J. P. M. and Sakallah, K. A. (1996). GRASP - a new search algorithm for
satisfiability. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 220–227. IEEE Computer Society / ACM.

Stockmeyer, L. J. (1976). The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22.

Stockmeyer, L. J. and Meyer, A. R. (1973). Word problems requiring exponential time.
In 5th Annual ACM Symposium on Theory of Computing (STOC), pages 1–9. ACM.

Syrjänen, T. (2002). Lparse 1.0 User’s Manual. tcs.hut.fi/Software/smodels/
lparse.ps.

Tamaki, H. (2019). Positive-instance driven dynamic programming for treewidth. Journal
of Combinatorial Optimization, 37(4):1283–1311.

Thurley, M. (2006). sharpSAT – Counting Models with Advanced Component Caching
and Implicit BCP. In 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 424–429. Springer.

183

http://www.redaktion.tu-berlin.de/fileadmin/i26/download/AG_DiskAlg/FG_KombOptGraphAlg/preprints/1994/Report-396-1994.ps.gz
http://www.redaktion.tu-berlin.de/fileadmin/i26/download/AG_DiskAlg/FG_KombOptGraphAlg/preprints/1994/Report-396-1994.ps.gz
http://www.redaktion.tu-berlin.de/fileadmin/i26/download/AG_DiskAlg/FG_KombOptGraphAlg/preprints/1994/Report-396-1994.ps.gz
tcs.hut.fi/Software/smodels/lparse.ps
tcs.hut.fi/Software/smodels/lparse.ps

Bibliography

Toda, S. (1991). PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on
Computing, 20(5):865–877.

Toda, T. and Soh, T. (2015). Implementing Efficient All Solutions SAT Solvers. ACM
Journal of Experimental Algorithmics, 21:1.12. Special Issue SEA 2014.

Truszczyński, M. (2007). Logic Programming for Knowledge Representation. In Dahl, V.
and Niemelä, I., editors, 23rd International Conference on Logic Programming (ICLP),
volume 4670 of Lecture Notes in Computer Science, pages 76–88. Springer.

Truszczyński, M. (2010). Reducts of propositional theories, satisfiability relations, and
generalizations of semantics of logic programs. Artificial Intelligence, 174(16-17):1285–
1306.

Truszczyński, M. (2011). Trichotomy and dichotomy results on the complexity of
reasoning with disjunctive logic programs. Theory and Practice of Logic Programming,
11(6):881–904.

Ullman, J. D. (1989). Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press.

Valiant, L. (1979a). The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421.

Valiant, L. G. (1979b). The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201.

Wetzler, N., Heule, M., and Hunt Jr., W. A. (2014). DRAT-trim: Efficient Checking
and Trimming Using Expressive Clausal Proofs. In 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT), volume 8561 of Lecture Notes
in Computer Science, pages 422–429. Springer.

Weyer, M. (2004). Bounded fixed-parameter tractability: The case 2poly(k). In Parame-
terized and Exact Computation, First International Workshop (IWPEC), volume 3162
of Lecture Notes in Computer Science, pages 49–60. Springer.

Wrathall, C. (1976). Complete Sets and the Polynomial-Time Hierarchy. Theoretical
Computer Science, 3(1):23–33.

Zisser, M. (2018). Solving the #SAT problem on the GPU with dynamic programming
and OpenCL. Master’s thesis, Faculty of Informatics, TU Wien, Austria.

184

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Graph Theory
	Computational Complexity
	(Quantified) Boolean Formulas
	Answer Set Programming
	Tree Decompositions and Treewidth
	Labeled Tree Decompositions

	Upper Bounds for Utilizing Treewidth by Dynamic Programming
	Basics on Dynamic Programming
	Dynamic Programming for ASP
	Outlook on Dynamic Programming For Other Formalisms

	Decomposition-Guided Reductions for Treewidth
	Basic Definitions
	Decomposition-Guided Reduction from Tight Asp to Sat
	Decomposition-Guided Reduction from HCF Asp to Sat
	Decomposition-Guided Reduction from Asp to Almost Tight Asp
	Discussion: Different Ways of Treating Hard Cycles

	Lower Bounds by Decomposition-Guided Reductions
	Lower Bounds for QBFs and Treewidth via Decoupling Dependencies
	Lower Bounds for Asp and Treewidth

	A Complexity Landscape for Treewidth
	A Methodology for Lower Bounds
	Complexity Characterization for Treewidth

	Efficiently Implementing Treewidth-Aware Algorithms
	Abstractions as a Key for Nested Dynamic Programming
	Refining Nested DP – Towards Hybrid Dynamic Programming
	Dynamic Programming with Database Management Systems
	Implementing Abstractions and Hybrid Dynamic Programming

	Discussion
	Related Work
	Future Work

	List of Algorithms
	Bibliography

