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Abstract We exemplify the rigorous treatment of capillarity-driven free-surface
flows by considering the “teapot effect” as an appealing daily-life phenomenon . To
this end, we formulate the problem in full, elucidate its structure for small viscous
influence in a first step and then refine the results by scrutinising the underly-
ing potential flow in due detail. Finally, we address the subtleties arising when
it comes to the rational inclusion of viscous effects so as to sort the real flow out
of a one-parametric class of inviscid-flow solutions (so-called selection problem).
This approach shall demonstrate the successful, systematic treatment of complex
flow problems, involving a variety of disparate length scales. Amongst others, it
is demonstrated how the correctly performed abstraction process can unveil unex-
pected mechanisms and deepen the understanding of known physical phenomena.
Many intriguing questions associated with the effect in focus are found as not settled
conclusively yet. This calls for further analytical and numerical progress.

1 Basic Remarks

These lecture units shall provide an outlook on asymptotic methods and the associated
analytical/numerical techniques commonly used to solve the arising reduced problems.
These are made explicit by scrutinising indue depth the so-called teapot effect. Specific
emphasis is laid on the different spatial scales emerging in the course of its analysis.
Definite references for further reading are the classical textbooks by Van Dyke (1975)
(matched asymptotic expansions, local solutions, potential flow around a wegde) and
Vanden-Broeck (2010) (potential free-surface flows, vanishingly small surface tension,
provoking selection problems).

Systematic modelling the teapot effect is archetypical for the application of the KISS
principle in science, where KISS is an acronym for “Keep it simple, stupid!”. This is also
often referred to as the law of parsimony or Ockham’s razor. That is, any empiricism
that has formed an input in previous theories but proves superfluous in the end should
be avoided. As a general rule, first the essential key groups and their (relative) order of
magnitude have to be established by dimensional analysis. Very small/large parameters
then lay the basis for the application of perturbation methods as the means of choice
when it comes to the rigorous treatment of the phenomenon in question for gaining a
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systematic, deep insight into the physics at play. Specifically, the intricate results ob-
tained by the (very scarce) full computational investigations of the teapot effect (Kistler
& Scriven, 1994) suggest this approach all the more, for this but also related problems.

These lecture notes aim at providing a flavour of the individual topics and the breadth
and variety of the recent and ongoing research.

2 Motivation: The Teapot Effect (and its Prevention)

The teapot effect commonly refers to the tendency of the flow of a liquid layer, essentially
driven by inertia and capillary effects, to stay attached to a convex wall (which is obvi-
ously undesired when it comes to pouring tea from a spout). Its first phenomenological
description of the teapot effect must be attributed to Reiner (1956) (see also Walker,
1984). It becomes evident from his observations that gravity is not crucially at play, but
inertial and capillary effects.

Gravity being the typical body force is excluded at the outset: in accordance with
the aforementioned empirical findings, its effect appears to be sufficiently weak under
usual circumstances, and its inclusion would not alter the main physical consequences
but apparently prevent the formation of a developed free jet and thus overcomplicate
our analysis. Also, it is known from the asymptotic analysis of thin layers passing sharp
to curved (thus nose-type) trailing edges of a horizontal plate that the emerging hydro-
static pressure gradient upstream of the edge provokes complex short-scale breakdowns
(viscous–inviscid interaction, see Gajjar, 1987; Higuera, 1994; Scheichl, Bowles & Pasias,
2018, 2021) of the conventional hierarchical asymptotic structure of the flow, as described
by matched asymptotic expansions and targeted here throughout.

Assuming a slender layer of liquid passing the lip-type edge of an otherwise flat
rigid wall (lip of a spout) models the teapot effect. A crucial ingredient is the strong
convex contour of the upside of the lip, possibly followed by concave downside. The
three main states of the flow are as follows (see figures 1a–c): a nominally stationary,
fully contiguous liquid film detaching from the wall; the limiting situation where the
hydrodynamic retention force just impedes its detachment; the break-up of the film
due to the pinch-off of droplets, associated with local unsteadiness, as capillary effects
overcome the retention force to prevent the flow from following the wall any longer.
For the realisation of these phenomena we refer to Duez et al. (2010), here specifically
to figure 1(d), and the movie illustrating a series of recent experiments at and made
accessible by the TU Wien (2021). We anticipate the consequences inferred from the
analytical/numerical findings available: increasing the wall curvature, decreasing the
surface tension and decreasing the wettability by decreasing the contact angle between
the liquid and the solid wall shifts detachment further upstream and thus weakens the
teapot effect.

3 Stating the Problem in Full

For what follows, we tacitly refer to the flow configuration in figure 2 throughout. The
abstraction of the problem relies on the following prerequisites. Dimensional quantities
shall be indicated by tildes. We consider the

• planar, steady, laminar film of a Newtonian liquid (volumetric flow rate Q̃ per
lateral unit depth)
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film flow

solid wall

(lip)

(a) (b) (c) (d)

Figure 1: (a)–(c) Sketches of three main manifestations of flow, (d) experimental visu-
alisation of case (a): (a) detachment of film flow from curved wall, (b) flow fully aligned
to wall (limiting situation), (c) film rupture and droplet formation; (d) cut of liquid
interfaces in experiment, described in and reprinted with permission from Duez et al.
(2010) (©American Physical Society).

• over and detaching from a rigid impermeable wall representing the end of the spout
and its lip, being perfectly smooth (roughness neglected), possibly apart from an
isolated kink (wedge-shaped lip),

• experiencing no mass exchange with the surrounding passive gas at rest

• and having uniform fluid and contact properties (density ρ̃, kinematic viscosity ν̃,
surface tension τ̃ , static contact angle θc).

• On the length scales considered, any impact of the freely pouring jet is disregarded.

• The wall geometry is described by a maximum of two reference lengths with suf-
ficient accuracy: if exiting, R̃, typical of the contour of the end portion of the
spout or lip around which the flow is considered, e.g. a characteristic radius of its
curvature; a horizontal distance L̃≫ R̃ along which the flow, poured out from the
spout, adjusts before it approaches the spout’s lip.

3.1 Basic Estimates and Separation of Scales

We first introduce a typical vertical height H̃ of the adjusting, incident fluid film, yet
to be specified and also characteristic of the wall-normal thickness of the film bending
around the nose. For this regime we focus on, S̃ = max (H̃, R̃) serves as a suitable
basic length scale. This selection becomes crucial if a nose-like lip assumes the form of
an (acute-angled) wedge such that R̃≪ H̃ and the characteristic length R̃ is eventually
absent. In turn, we make the local flow velocity, u, non-dimensional with ŨS = Q̃/S̃, the
streamfunction, ψ, with Q̃, the local fluid pressure, p, relative to that in the environment
with ρ̃ Ũ2

S and all lengths with S̃ if not stated otherwise below. The key groups (found
by dimensional analysis) controlling the problem are a reciprocal Weber number, τ , and
a reciprocal Reynolds number, ϵ, where

τ = τ̃ /(ρ̃ Ũ2
SS̃) ≥ 0 as ϵ = ν̃/Q̃→ 0 . (1)

The last assumption expresses the fact that the incident slender flow evolving over the
much bigger adjustment length L̃ might already appear as developed due to viscous
action. Then the flow we scrutinise represents the localised and essentially inviscid
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θ0(s)

Figure 2: Sketch of flow around lip, not to scale, cf. figure 1.

response due the rather abrupt increase of the wall curvature, expressed by the least-
degenerate limit

1 ≥ H = H̃/S̃ = O(1) as L = L̃/S̃ → ∞ . (2)

We now introduce the effective reference speed ŨH = Q̃/H̃ = ŨS/H. Let ñν be the
distance from the wall where viscosity is dominantly at play. Since ρ̃ Ũ2

H/S̃ measures the
streamwise fluid acceleration and ρ̃ ν̃ŨH/ñ

2
ν the transversal shear stress, the dominant

momentum balance in that region yields the basic estimate

Ũ2
H/S̃ ∼ ν̃ ŨH/ñ

2
ν = ϵ (Ũ2

H/H̃)(H̃/ñν)
2 or ñν/H̃ ∼

√
ϵ/H . (3)

Therefore, we are principally concerned with two options:

(i) H = O(ϵ) : slender developed flow around the lip;

(ii) H ≫ ϵ : essentially inviscid core flow, driving a boundary layer (BL) of relative
thickness

√
ϵ/H adjacent to the wall of the lip.

Here we discard the simplifications the slender-layer approximation in the less feasible
scenario (i) implies, in favour of the richer physics and more intriguing results deduced
from the situation (ii), which is entailed by (1) and (2). A distance of about L̃ upstream
of the lip, the momentum balance for the streamwise direction Ũ2

H/L̃ ∼ ν̃ ŨH/H̃
2 =

ϵ Ũ2
H/H̃ gives

L = H/ϵ≫ 1/
√
ϵ . (4)

With ν̃, Q̃, S̃ ≥ H̃ and L̃ prescribed, this completes the scaling of the flow. The benefit of
the uniform uniform scaling in all directions as S̃ rather than H̃ measures the thickness
of the bending film outperforms the disadvantage of an by a factor H effectively much
smaller thickness if 1 ≫ H ≫

√
ϵ. The factor H enters the leading-order matching of
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the slender incident and strongly turning flow (§ 3.4.1), where it accordingly compresses
the layer height and flow component in the n-direction but increases the streamwise one.
Accordingly, taking ŨH as the reference speed for the latter and rescaling the cross-
stream by the factorH replaces τ and ϵ by τ̃ H̃/(ρ̃ Ũ2

H S̃
2) = τH3 and ν̃S̃/(ŨHH̃

2) = ϵ/H.
Scenario (i) eventually supersedes the present one (ii) and the associated scale separation
if H becomes as small as ϵ and, see (4), L̃ indistinguishable from S̃.

The impact of gravity on the flow is now estimated correctly on the basis of this
rescaled inverse Weber number and the corresponding reciprocal squared Froude number
g = g̃H̃/Ũ2

H where g̃ ≈ 9.81m/s is the gravitational acceleration. Then the Bond number
given by their ratio

Bo = g/(H3τ) = ρ̃g̃S̃2/τ̃ (5)

(independent of H̃) serves to measure the influence of gravity relative to that of surface
tension. Considering an aqueous liquid at standard conditions and a typical lip of a
spout of teapot, we find ρ ≈ 103 kg/m3, τ ≈ 0.007N/m and take S̃ and H̃ as of about
1mm. As a result, Bo ≈ 0.140, which is sufficiently small to neglect gravity given other
simplifications made. However, the relatively high sensitivity of Bo against the curvature
or sharpness of the lip is noticeable.

It proves instructive to first address the viscous free-surface flow problem in its most
general form subject to (2) before the reduced inviscid one (§ 5). To this end, we first
take ϵ as finite.

3.2 Governing Equations

We conveniently introduce curvilinear coordinates s and n respectively along and perpen-
dicular from the lowermost streamline towards the flow and the associated unit vectors
s(s) in the s- and n0(s) in the n-direction. The origin (s, n) = (0, 0) shall designate the
onset of the marked wall curvature, κw(s), for s > 0 and thus the the spout lip. It is
noted that κw > 0 for a convex wall and thus typical of the upside of the lip. Let h(s)
denote the normal distance of the uppermost, entirely free streamline (ψ = 1) from the
lowermost one (wall and lower free surface, ψ = n = 0). Moreover, θ(s, n) is the flow
angle measured in clockwise direction from the horizontal axis, θ0(s) = θ(s, 0) then the
inclination angle of the lowermost streamline, κ0(s) = θ′0 its curvature and κ1(s) that
of the upper free one. Likewise, θ0(s) equals some θw(s) with κ = θ′w along the wall.
Furthermore, ∂s(s,n0) = (−n0, s)κ0 and, in turn, ∇ = s l−1∂s + n0 ∂n where

l(s, n) = 1 + κ0(s)n (6)

is the Lamé coefficient of that natural metric. The curvature κ1 is given by ∇ · n1(s)
on ψ = 1 where n1 is the outer unit normal on this. With s+ (n0 h)

′ = s l(s, h) + n0 h
′

being the corresponding tangent, we obtain

n1 =
n0 l1 − sh′

(l21 + h′2)1/2
, κ1(s) =

κ0(l
2
1 + 2h′2) + κ′0h

′h− h′′l1

(l21 + h′2)3/2
, l1(s) = l

(
s, h(s)

)
. (7)

We take [u, ψ, p] = [u, ψ, p](s, n) and decompose u = su(s, n)+n0 v(s, n) to introduce
the orthogonal flow components u and v. Then the continuity equation ∇ · u = us +
(lv)n = 0 is satisfied identically provided (u, v) = (ψn,−ψs/l). The convective operator
and the Laplacian then read explicitly

u · ∇ = l−1(ψn ∂s − ψs ∂n) , ∆ = ∇2 = l−1
[
∂s(l

−1∂s) + ∂n(l ∂n)
]
. (8)
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We also introduce the dimensionless tensor Σ = ∇u + (∇u)T of the viscous Cauchy
stresses. Hence, ∇ · Σ = ∆u and ∆u = ∆∇⊥ψ = ∇⊥∆ψ as ∇⊥ = s ∂n − n0 l

−1∂s is
the conjugate gradient. We thereby arrive at the projections of the Navier–Stokes (NS)
equations u · ∇u = −∇p+ ϵ∆u onto the s- and the n-direction respectively

l2 u · ∇ψn − κ0 ψnψs = −l ps + ϵ l2 ∂n∆ψ , (9)

lu · ∇(−l−1ψs)− κ0 ψ
2
n = −l pn − ϵ ∂s∆ψ . (10)

The terms proportional to κ0 herein express respectively the Coriolis and the centripetal
accelerations of a fluid particle when viewed in a frame of reference moving with su
along the lowermost streamline. As seen from (10), a positive curvature generates a
positive pressure gradient normal from the wall and thus a tendency of the flow to cling
to a convex wall contour. This essential, inertial ingredient to the teapot effect is some-
times also referred to as the “Coandă effect” (see e.g. Guyon et al., 2012, chap. 5.3.3).
Eliminating p in (9) and (10) with the aid of (8) recovers, after some rearrangements,
the vorticity transport equation

u · ∇ω = ϵ∆ω , ω = −∆ψ (11)

is the scalar vorticity.
Boundary conditions (BCs) have to be met on the lower- and the uppermost stream-

line. The kinematic BCs consist of the aforementioned ones and the usual no-slip con-
dition on the wall,

ψ
(
s, h(s)

)
= 1 , ψ(s, 0) = 0 , s ≤ sd : ψn(s, 0) = 0 , θ0(s) = θw(s) . (12)

Here we have introduced the position s = sd of dewetting or flow detachment from the
wall (if it exists, i.e. the flow detaches at all). In continuum mechanics, the wetting angle
θc satisfies the well-known Young–Dupré equation over an arbitrarily small length scale.
Since this three-phases equilibrium is unaffected by the flow, the following complemen-
tary jump condition fixes the detachment angle θd formed between the wetted wall and
the just generated lower free streamline and finally sd:

θw(sd−)− θ0(sd+) = π− θd , θc ≤ θd ≤ θc + θw(sd+)− θw(sd−) . (13)

The inequalities herein express the Gibbs inequality in their correct form (see Dyson,
1988; Kistler & Scriven, 1994) and hold if the wall contour exhibits a kink (as does the
wedge-shaped lip) at s = sd such that θw(sd+) > θw(sd−). (It is noteworthy that this
inequality is a purely geometrical result if that apex is obtained in the limit of a vanishing
radius of curvature.) The conventional dynamic BCs express the stress equilibrium the
liquid–gas interfaces are subjected to: the total stresses acting on the lower and upper
one given by ϵn0,1 ·Σ−n0,1 p must equal −n0,1 pL,0,1 where pL,0 = −τκ0 and pL,1 = τκ1
are the corresponding Laplace pressures. Hence, for

n = 0 , s > sd : ϵn0 ·Σ = n0(p+ τκ0) , n = h(s) : ϵn1 ·Σ = n1(p− τκ1) . (14)

These dynamic BCs describe a free-slip condition in terms of requiring zero tangential
stress and account for the capillarity-induced normal-stress jump. There is no need to
state Σ in (14) explicitly, upon execution of ∇ and substitution of (7), in the light of
the subsequent investigation.
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Given the definition of H̃, h stays finite as s→ −∞. Hence, our concern is with the
far-upstream matching conditions

h(−∞) = h− , ψ(−∞, n) = ψ−(n) (15)

where the value of h− and the profile ψ− of the incident flow are given. However, they
are yet to be determined by envisaging the flow taking place over the horizontal extent
L, see (2). The no-slip condition requires the regular behaviour ψ′

− = O(n) (n → 0).
Arbitrarily far downstream, a physically admissible free jet must not intersect itself.
This topological constraint requires the streamline curvature and thus κ0,1 to vanish
for s → ∞ as for s → −∞. We anticipate that a uniform parallel flow describes the
terminal structure of the jet as the vorticity dies out by the action of viscous diffusion. In
combination with the outflow or forward-flow condition, it is indeed sufficient to require

h′(∞) = θ′0(∞) = 0 , ψn(∞, n) > 0 . (16)

Tied in with (15) and (16), p→ 0 as the film (upstream) and jet (downstream) become
slender. These BCs complete the formulation of the flow problem, consisting of (9)
and (10) supplemented with (6)–(8) and subject to (12)–(16) as governing [ψ, p](s, n),
h(s), sd, θ0(s), this for s > sd. The specification of h− and ψ− as well as the rationale
underlying (16) are deferred to § 3.4.

One has to be aware of that for |s| becoming large, as the free streamlines become
straight lines, the capillary influence is manifest as surface ripples having a wavelength
comparable to H and dying out exponentially: cf. Scheichl, Bowles & Pasias (2018) for
the upstream and Scheichl, Bowles & Pasias (2021) for the downstream case. Tied in
with the well-posedness of the problem, this behaviour provides the excitation of non-
trivial values of h′ as s → ±∞ and θ0 as s → +∞ because h′, h′′ and θ′0 enter the
problem via (7) and (14). The terminal thickness and uniform speed of the pouring jet,
h+ = h(∞) and u+ = u(∞, n), are then determined by h−, ψ− and global conservation
of linear momentum and the volume flow (h+u+ = 1).

3.3 Essential Preliminary Findings

Even without knowing the parametrised solution to the full NS problem stated above,
one can deduce some of its most important properties from previous related studies and
the inviscid limit. We list these in the following.

• As indicated by the last considerations closing § 3.2, the uniform terminal turning
angle of the jet, θ+ = θ(∞, n), is part of the solution. On geometrical grounds,
0 ≤ θ+ ≤ max θw = θw(∞) ≤ π. This is the state referred to by figure 1(b).

• The wavelengths of the decaying short-scale capillary undulations above the wall
far upstream and on two frees surfaces far downstream are typically controlled
by Rayleigh problems of free-surface type (Scheichl, Bowles & Pasias, 2018, 2021).
However, this local, inviscid description should be complemented by the streamwise
modulation of their wavelength and the attenuation of their amplitude found by
a (yet unavailable) WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) analysis. This
correctly accounts for the slowly varying background flow as [ψ, h] → [ψ±, h±].

• The analysis in the inviscid limit ϵ = 0 (§ 5) reveals a loss of the existence of the
solution to the steady-state problem if the value of τ exceeds some critical threshold
τ∗(θc, ϵ), where θ+ = max θw for a fixed wall geometry. This is a central result of
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the (non-rigorous) investigation of the integral conservation of linear momentum
where the hydrodynamic retention force caused by the suction pressure near the
tip or highest curvature of the lip must be modelled (Duez et al., 2010; Bouwhuis
& Snoeijer, 2015, unpublished).

• This loss suggests an appealing physical interpretation: presumably, it corresponds
to incipient break-up of the film into droplets and a fully trickling behaviour as
the flow can neither cling to nor detach from the wall any longer.

• Finally, the momentum balance for the inviscid flow as well as the asymptotic anal-
ysis by Scheichl, Bowles & Pasias (2021) of a developed flow passing a relatively
sharp lip indicate the following trends: a higher wettability of the wall, i.e. increas-
ing θc, increases θ+ and thus promotes the teapot effect; the same trend is found
for increasing τ ; however, the associated behaviour of sd exhibits a non-uniqueness
with respect to the variation of τ ; increasing the sharpness of the lip (such that S̃
becomes H̃) tentatively suggests a decrease of the pressure force and therefore a
contrary tendency; also, both increasing θc and the curvature of the lip shifts τ∗

to larger values and thus stalls the onset of trickling.

As a highlight of their study of the global momentum balance, Bouwhuis & Snoeijer
(2015) predict an absolute minimum of τ for which the fully attached film can bend
around a lip having the shape of a semi-circle θc = π but is on the verge of trickling.
Under their restriction of an irrotational flow (u− = u+ = 1),

min τ(θc, 0) = τ∗(π, 0) = 1/2 for θ+ = π . (17)

As the authors noticed, then Ũ just equals the well-known Taylor–Culick (TC) speed of
a retracting inviscid thin sheet: as demonstrated by Taylor (1959b) and Culick (1960),
in a first approximation, the temporal change of the momentum contained in the “blob”
forming at the end of the sheet equals the surface force drawing on it (alike an extreme
localised Marangoni effect). This gives, in our notation, Ũ = [2τ̃ /(ρ̃H̃)]1/2 for that speed.
Likewise, in the present scenario the film starts to disintegrate once its momentum flow
per unit depth is exactly compensated by surface tension as the hydrodynamic retention
(pressure) force vanishes. For τ > 1/2, the film has ruptured due to droplet formation.
Our preliminary investigation shows that this critical threshold stays intact under the
more realistic assumption of vorticity being carried in by the (developed) flow upstream,
which corroborates its physical interpretation. More generally, we find

T =
τ

J
<

1

2
, J =

∫ h−

0
ψ′2
−(n) dn , (18)

for the reciprocal Weber number T suitably formed with the incoming momentum flow
J . It is an unsettled question how finite values of ϵ modify this constraint.

Solving the full problem poses a formidable numerical challenge, given the initially
unknown positions of the two free streamlines, including origin (s, n) = (sd, 0) of the
lower one. Mastering it longs for the transformation η = n/h(s), mapping the physical
plane onto the unit stripe −∞ < s < ∞, 0 ≤ η ≤ 1. To the author’s knowledge,
the only available relevant solution is by Kistler & Scriven (1994), who considered the
flow past an acute wedge by including gravity, adopting some further simplifications
and using finite elements. Their variation of the Reynolds number, the characteristic
Kapitza number and θc confirms the trends mentioned above even though embedded in
a surprising complexity and non-uniqueness of the flow, involving localised reversed-flow



B. Scheichl Introductory Lectures 9

eddies immediately upstream of flow detachment. Experiments carried out by these
authors corroborate their numerical findings. However, their variety still longs for a
clarification by asymptotic analysis.

3.4 Far-Upstream and -Downstream Conditions

We now address the missing ingredients leading to (15) and (16) with due rigour. These
concern special self-similar solutions of the NS equations and their reduction to the
slender-flow and BL equations.

3.4.1 Far Upstream: Watson’s Flow Revisited

In the distinguished developed-flow limit given by (1) and (4), we describe the oncoming
flow over the almost horizontal part of the wall (spout) upstream of its lip by setting
x = s/L = O(1) (x ≤ 0) and writing [ψ, h/H] ∼ [f(x, η), hu(x)] = O(1). To leading
order, f and hu satisfy the slender-layer approximation of (9) subject to (12) and the
free-slip condition at the free surface arising from (14) while (10) predicts |p| being as
small as τ/L2. By the change of variables,

hu(fηfηx − fxfηη)− h′u f
2
ηη = fηηη , (19)

η = 0: f = fη = 0 , η = 1: f = 1 , fηη = 0 . (20)

Formulating appropriate upstream conditions, modelling the generation of the flow at
the virtual origin x = −1 (i.e. the end of the spout), complements (19) and (20) to a
parabolic problem governing fand hu, to be solved via numerical downstream marching.
Matching provides ψ−(n) and h− as given by the terminal values f(0, η) and Hhu(0).

It deserves mentioning at his point that typically the Mangler–Stepanov transforma-
tion can be used to convert the solution of the above problem into that governing the
streamfunction f of the corresponding axisymmetric radial flow: then ρ = (3x)1/3 is the
radial distance from the axis, hu(x)/ρ the film height, thus ηhu/ρ the axial flow position.

In many related situations, L is so large that the flow described by f and hu can be
regarded as almost fully developed or independent of its upstream history. This probably
not applies to the rationally founded description of the flow emitted by a spout, but
the associated universality of ψ− and h− is beneficial and provides a good qualitative
approximation of more realistic upstream conditions even though. One readily finds that
f ∼ fW (η) and hu ∼ aW (x + 1) with aW = const expresses this self-preserving state
of the flow as −aW f ′2W = f ′′′W where aW represents an eigenvalue. This special flow was
investigated first by Watson (1964). Notably, f ′W can be expressed by a Jacobi elliptic
function, and aW = π/31/2.

Given the the linear growth of hu(x), Watson’s planar flow is unaffected by surface
tension for howsoever large values of τ (in contrast to its axisymmetric counterpart,
where the film heigh increases quadratically with the radius).

3.4.2 Far Downstream: Squire–Taylor Modes Over Uniform Flow

In general, the nearly straight streamlines sufficiently far downstream represent a source
flow with some opening angle 2α greater or, in the case of a parallel flow, equal to zero
and smaller than 2π. It is expedient at this point, also for later purposes, to introduce
polar coordinates: the radial distance r measured from the centre assumed in some point
of the lower free streamline; the azimuth angle φ measured in counterclockwise direction
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from the latter. By the local absence of a characteristic length scale, we seek ψ and p
typically via separation of variables involving (logarithmic–)algebraically varying gauge
functions in r in the form

ψ ∼ rλF (φ) , p− p0 ∼ rλ−2Π(θ) , (21)

where the radial pressure variation is replaced by ln r if λ02 either for r → ∞ or r → 0
for any finite, howsoever small value of ϵ. The constant λ and F , Π (parametrised
by ε) are determined in the course of the analysis. The variation of p in (21) follows
from (9) and (10), where p0 denotes some constant of integration and we tacitly include a
logarithmic radial variation if λ = 2. With the unit vectors er in the radial and eφ in the
azimuthal direction, ∇ = er ∂r + r−1eφ ∂φ, and one finds the corresponding components
Σij (i, j = r, φ) of Σ as given by

Σrr
rλ−2

= 2[(λ− 1)F ′ + λrF ] ,
Σrφ
rλ−2

= F ′′ + λ(2− λ)F ,
Σφφ
rλ−2

= 2(1− λ)F ′ . (22)

Specifically, here continuity implies |u| = O(1/s) for s→ ∞, subject to (12). Let the
polar centre coincide with the virtual intersection of the free streamlines. We then have
ψ → F (0 ≤ φ ≤ α, λ = 0) as r → ∞, i.e. the flow assumes a special member of the class
of the well-known self-preserving Jeffery–Hamel (JH) flows (Fraenkel & Squire, 1962).
Restricted to a purely radial forward flow, this is seen as the half of a symmetric jet.
The NS equations for the radial and azimuthal directions and (11) become respectively

Π = −(F ′2 + ϵF ′′′)/2 , Π ′ = 2ϵF ′′ , ϵ(F ′′ + 4F )′ + F ′2 + 2C = 0 (23)

with some integration constant C. Accordingly, (12) entails F (0) = 0, F (α) = 1 and
(14), in combination with (22) and n0,1 identified with eφ, F

′′(0) = F ′′(α) = 0, 2ϵF ′(α) =
Π(α), so this condition C = 0. Then the last equation in (23) subject to the remaining
four BCs represents an eigenvalue problem for F and positive eigenvalues of α. However,
the contradiction

∫ α
0 F ′2 dφ = −4ϵ stymies their existence. (We note that (23) recovers

the classical radial irrotational flow as F ′ = 1/(2π), which, however, requires the absence
of free streamlines and thus α = 2π.)

We are thus left with the only possibility of a parallel, developed flow, where (9)
yields ψnn = 0. Then the BCs confirm the uniform plug flow, u = u+. It is interesting
to focus on the aforementioned capillary undulations of accordingly damped amplitude
on a streamwise scale comparable to the terminal jet height h+ = 1/u+: these then
are stationary Squire–Taylor modes (Squire, 1953; Taylor, 1959a; Drazin & Reid, 2004,
chap. 1). The two families of linear harmonic modes are depicted in figure 3(a): “flap-
ping”, sinusoidal or symmetric ones; “varicose” or anti-symmetric ones. Their phase
speeds c+ and wavnumbers k+, non-dimensional with u+ŨS and h+S̃, found by normal-
mode analysis satisfy the dispersion relations

(c+ − 1)2 = τh+k+ ×

{
coth(k+/2) (skew-symmtric modes) ,

tanh(k+/2) (symmetric modes) .
(24)

These recover the classical anomalous dispersion of capillary waves. Here our concern
is with c+ = 0, which yields the constraints between τ+ = τh+ and k+ maintaining
steady wavetrains, plotted in figure 3(b). The decrease of the actual dimensionless
surface tension τh+ with k+ can be explained by surface tension balancing the integral
momentum flux at two vertical cuts through the layer a wavelength apart. For symmetric
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Figure 3: Stationary antisymmetric (solid) and symmetric (dashed) Squire–Taylor modes
over locally unperturbed uniform flow: (a) sketch; (b) τh+ vs. k+ by (24) with c+ = 0.

waves, where the perturbed streamlines are anti-parallel, higher values of τ+ compensate
for the with decreasing values of k+ reduced inclination of the streamlines, finally leading
to the pole emerging in the long-wave limit k+ → 0; for the antisymmetric ones, where
the streamlines are parallel, the momentum flow can again no longer sustain the drawing
surface force once the terminal flow speed becomes as small as the TC speed or τ+ →
1/2− as k+ → 0, in full agreement with the findings of the strongly nonlinear analysis
summarised in § 3.3.

4 Weakly Perturbed Stokes Flow Near Detachment

The flow near detachment represents an essential ingredient to the full solution. Ac-
cording to (13), break-away is locally described by a wedge flow of turning angle θd,
where the wedge is formed by wall upstream (s < sd) and by the lower free streamlines
downstream (s > xsd) of the detachment point. The flow variables then again admit the
form (21), where the centre of the polar coordinates now lies in the detachment point as
we take r → 0.

We make the dependence of F , Π on ϵ explicit by assuming

F ∼ γ(ϵ)F0(φ) , Π ∼ ϵγ(ϵ)Π0(φ) (ϵ→ 0) (25)

for some gauge function γ > 0 and F0, Π0 = O(1) In general, here the offset pressure p0
must be taken as finite as ϵ → 0. Then (22) giving ϵΣ = O(ϵγrλ−2) confirms that the
viscous stresses scale with p− p0. We impose three further constraints:

(I) 0 < θd < π , (II) Reλ > 1 , (III) r ≪ ρ(ϵ) = [ϵ/γ(ϵ)]1/Reλ . (26)

The regular scenario θd = θc demands continuous inclination of the wall in the detach-
ment point such that the wedge filled with liquid is concave. In the remaining patho-
logical situation, the Gibbs inequality allows also for θd > π. However, detachment
from a sharp tip to a wedge apex generally calls for a further inner limit governed by
the microscopic length scale characteristic of the then accordingly smoothed apex. We
here exclude this degenerate case as well as the hypothetical limit θc = π of a perfectly
superhydrophobic wall. Restricting the results below to the range (I), see figure 4(a),
meets reality if θd = θc but even accounts for the possibility θc ̸= θd < π. The condition
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Figure 4: (a) Corner flow immediately near detachment; (b) Photograph of Moffatt’s
eddies by Taneda (1979) in a roll-driven wedge flow for a characteristic Reynolds number
≈ 0.17 (©Physical Society of Japan).

(II) grants integrability of the stresses being of O(rλ−2) as r → 0. Finally, the require-
ment (III) entails the Stokes limit of (11). At first, analysis by inspection reveals the
inertial–viscous balance as retained in full at distances r comparable to ρ(ϵ) introduced
by (III).

The precise form of γ ≫ ϵ must be ascertained by matching the associated local NS
solution in leading order to the surrounding adjustment of the BL to this wedge-shaped
gross break-away of the entire film. However, this would require a thorough but yet
unavailable understanding of the multi-tiered splitting of the oncoming BL, due to the
contraction of the streamwise scale as s − sd → 0−. Even though, for the time being,
one can assure that the polar separation of variables subject to (II) and thus a Stokes
limit must take place arbitrarily close to the detachment point.

In leading order, (11) reduces to the biharmonic equation ∆2(rλF0) = 0 subject to
(12) for φ = 0 and θd and the free-slip condition by virtue of the requirement of zero
tangential stress in (14) implying Σrφ = 0, see (22). Then the polar decomposition of ∆
yields ω ∼ γrλ−2ω0(φ) with ω0 and F0 determined by a (self-adjoint) eigenvalue problem
with respect to λ as a function θd:

(λ−2)2ω0+ω
′′
0 = 0 , −ω0 = λ2F0+F

′′
0 , F0(0) = F ′′

0 (0) = F0(θd) = F ′
0(θd) = 0 . (27)

The eigenfunctions F0, proportional to some θd-dependent factor determined by the
solution to the aforementioned full NS problem, are given by

F0 =

{(
sin(λφ) sin[(λ− 2)θd]− sin(λθd) sin[(λ− 2)φ]

)
/(λ− 2) (λ ̸= 2) ,

sin(2φ) θd − sin(2θd)φ (λ = 2) .
(28)

Factors herein were chosen such that continuity is achieved for λ = 2. The eigenvalue
relation follows from the free-slip condition, i.e. the last BC in (27):

(λ− 1) sin(2θd) = sin[2θd(λ− 1)] (λ ̸= 2) , tan(2θd) = 2θd (λ = 2) . (29)

The branches of (29) were discussed first in the study of corner flows by Moffatt (1964)
and taken up in more depth by Scheichl, Bowles & Pasias (2021). Here we resume
this analysis to extend the previous results. For their following summary we refer to
figures 4(b) and 5:
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Figure 5: Static contact angle θd vs. λ (cases λ = 2 and λ = λ∗ highlighted).

• The real branches of θd as function of λ exhibit an absolute minimum at the turning
point λ = λ∗ ≈ 3.7818, θd = θ∗d ≈ 79.557◦. For smaller wetting angles, Imλ ̸= 0
predicts a family of the infinite, radially aligned sequence of Moffat’s celebrated
eddies, where Reλ controls their (numerically rather large) damping rate (Moffatt,
1964. As this flow picture can hardly be accepted as a physically viable solution,
θd falling below of θ∗d is presumably associated with a loss of stationarity. However,
this situation is yet to be clarified.

• A discrete set of real eigenvalues of cardinality ≥ 2 is found for values of θd between
θ∗d and θ−d ≈ 100◦ and between θ+d ≈ 165◦ and 180◦. Their number increases to
∞ for θ = 90◦ (λ = 3, 4, 5, . . .) and in the fully hydrophobic limit θc = 180◦

(λ = 3/2, 4/2, 5/2, . . .).

• For θ−d < θd < θ+d , λ is real and unique, where θd = θd,2 ≈ 128.727◦ applies to the
degenerate case λ = 2.

• Physically admissible solutions must not exhibit gross reversed-flow regions. This
applies to all minimum values of λ ∈ R as F0(φ) > 0 for all φ ∈ (0, θd).

We may now formulate the present Stokes limit more precisely. To this end, we
consider (11) restored in full by taking

r̂ = r/ρ(ϵ) = O(1) , [ψ/ϵ, (ρ/ϵ)2(p− p0)] → [ψ̂, p̂](r̂, φ) (ϵ→ 0) . (30)

We note that the reference distance ρ is effectively independent of λ but remains undeter-
mined as long as our understanding lacks the BL structure near detachment. The most
interesting of the analysis of the complete NS solution expressed via the O(1)-quantities
ψ̂ and p̂ boils down to the small-r̂ expansion

[ψ̂, p̂] =
r̂→ 0

∑
i≥0

ci(θc)
[
r̂λiFi(φ), p̂i

]
+ c.c.+ c20 r̂

2λ0
[
G0(φ), r̂

−2Γ0(φ)
]
+ · · · , (31)

p̂i =

{
r̂λi−2Πi(φ) (λ0 ̸= 2) ,

ln r̂ Πi (λ0 = 2 , Πi = const) ,
(32)
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where constants of integration are already absorbed by p0. The coefficients ci are taken
as fixed by the full NS solution, and the index i = 0 now refers only to the, physically
acceptable and most relevant, eigenvalue of smallest real part while the subscripts i > 0
indicate the cases exhibiting a multiplicity of λ. Hence, we take c0 > 0 so as to guarantee
strict forward flow. The functions G0, Γ0 then govern the dominant weak disturbance
of the Stokes limit due to its forcing of its inertial response, see (11). They solve the
accordingly inhomogeneous counterpart to (27).

The azimuthal pressure variations Πi(φ) follow from the Stokes balances

∇p̂i = ∆ui , ui = r̂λi−1(erF
′
i − eφFi) (33)

are the corresponding velocity contributions. This yields

Πi =


λ2iF

′
i + F ′′′

i

λi − 2
=

4(1− λi) sin(λiθc) cos[(λi − 2)φ]

λi − 2
(λ0 ̸= 2) ,

−4 sin(2θd) (λ0 = 2) .

(34)

The first of the dynamic BCs (14) in combination with (22) gives the limiting variation
of total normal stress ϵΣφφ − p as

ϵΣφφ− (p− p0) ∼
r̂→0

ϵ2c0
ρ2

×

{
r̂λ0−2[(4− 6λ0 + 3λ20)F

′
0 + F ′′′

0 ]/(2− λ0) (λ0 ̸= 2) ,

(4 ln r̂ + 1) sin(2θd)− 2θd cos(2φ) (λ0 = 2) .
(35)

After some algebra using (28), one then obtains the shape of the just detaching
streamline, first for

λ0 ̸= 2 , ∆s = s− sd → 0+: (36)

τκ0(s) + p0 ∼
2ϵ2

ρλ0
c0λ0(λ0 − 1)

λ0 − 2
[sin(λ0θd)− sin(λ0θd − 2θd)](∆s)

λ0−2 + c.c. < 0 , (37)

θ0(s) = θw(sd−)− τp0∆s+O
(
∆sλ0−1

)
(θd ̸= π/2, π) . (38)

Likewise, we have in the special case

λ0 = 2 , ∆s/ρ→ 0+: (39)

τκ0(s) + p0 ∼ (ϵ/ρ)2 c0
[
(4 ln(∆s/ρ) + 1) sin(2θd)− 2θd cos(2φ)

]
< 0 , (40)

θ0(s) = θw(sd−)− τp0∆s+O
(
ln(∆s/ρ)

)
. (41)

These relations prompts us to distinguish between the following cases.

• θd ≥ θd,2 (λ0 ≤ 2): the diverging normal stress produces a convex underside of
the free film at detachment (κ0 → −∞ as ∆s→ 0+), which occurs in an irregular
manner. This is the situation sketched in figure 4(a). A higher-order analysis is
necessary though in the superhydrophobic limit θc → π where the right side of
(37) vanishes.

• θd < θd,2 (λ0 > 2): detachment is controlled by the (yet unknown) local Laplace
pressure p0 as the viscous normal stress dies out irregularly.
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The flow arbitrarily close to detachment is controlled by viscosity (ϵ) and capillarity
(τ , θc). Here a small viscous length scale is given by ρ and as any non-vanishing p0
induced by the presence of a BL. In contrast, Moffatt (1964) in his pioneering study
considered a Stokes flow from the outset and, therefore, ignored any presence of such a
further length scale. Here this situation is recovered by setting γ to unity in (25) and p0
to zero throughout. Then the scaling factors ϵ2/ρλ0 in (37) and (40) reduce to ϵ, and the
capillary number

Ca = ϵ/τ = ρ̃ ν̃ŨS/τ̃ (42)

is the sole dimensionless group locally relevant. Moffatt (1964) also ignored the normal-
stress balance at the interface and assumed a wedge flow by disregarding any deviation of
the shape of the detaching streamline from a straight line. This is feasible by requiring
Ca → 0: physically, by this predominance of the surface over internal friction force
the free streamline acts as a rigid boundary that permits the fluid to slip along it.
Apparently, in the opposite case Ca → ∞ the initial curvature of the free can only be
calculated in a suitably defined distinguished superhydrophobic limit θc → π such that
the left and right sides of (37) vanish at the same rate. Remarkably, this restriction
proves sensible from a physical point of view: only then the influence of surface tension
becomes consistently marginalised in the Young–Dupré equation, balancing the surface
tensions of all three phases involved.

Due to the curvature of the free streamline, the inhomogeneities in the problems
controlling the convective feedback entering (31) also affect the BCs. Since also 2λ0
is an eigenvalue in the cases θd = π/2 and π, further restrictions will arise from the
associated solvability conditions. For instance, θd = π as θ0 ≡ 0 for the NS problem over
the upper half of the physical plane considered by Scheichl, Bowles & Pasias (2021), but
the secularity condition implies c0 = 0.

5 Euler Problem for Non-Zero Vorticity

To address the distinguished limit (1) and (3) and thus the BL structure of the flow
properly, one has first to consider the essentially core of the layer occupied by essentially
inviscid flow and introduce there uppercase O(1)-quantities for

ϵ→ 0: [ψ, ω, θ, p, |u|,u] → [Ψ,Ω,Θ, P,Q,U] . (43)

Since Ω is conserved along Ψ = const (and given by −ψ′
−(n) representing the developed

incident flow), the natural coordinates are preferably replaced by curvilinear ones along
and perpendicular to each streamline. We then adopt Ψ and a pseudo-potential Φ as
independent variables, Φ shall equal the flow potential if Ω ≡ 0, and the flow speed Q, the
flow angle Θ and the pressure P as dependent ones: [Q,Θ, P ](Φ, Ψ). The orthogonality
relation or set of Beltrami equations are then condensed into

∇Φ = χ(Φ, Ψ)∇⊥Ψ , ∇⊥Ψ = U . (44)

Hence, Φ serves as a progress variable and χ an integrating factor yet to be determined.
It shall satisfy χ ≡ 1 in the case of an irrotational flow. With eϕ and eψ being the
unit vectors respectively in the Φ- and the Ψ -direction, (∇,∇⊥)Ψ = (eψ, eϕ)Q and ∇ =
Q(eϕχ∂Φ+eψ∂Ψ ). Furthermore, ∂Φ,Ψ (eϕ, eψ) = (−eψ, eϕ)ΘΦ,Ψ . In turn, U ·∇ = χQ2∂Φ
and ∇ ·U = χQQΦ −Q2ΘΨ .
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5.1 Governing equations

On applying the relationships above, we arrive at the Euler equations consisting of the
continuity equation (45) and the momentum equations (46) and (47):

χQΦ −QΘΨ = 0 , (45)

QQΦ = −PΦ , (46)

−χQ2Θϕ = −PΨ . (47)

Eliminating P confirms that Ω = −∆Ψ is convected along the streamlines and thus just
a function of Ψ :

χQ2ΘΦ +QQΨ = −Ω(Ψ) . (48)

Requiring∇×∇Φ = 0 in (44) yields the integrability condition governing χ in differential
and integrated form as

Q2χΨ = χΩ , χ = exp

∫ Ψ

1

Ω(t)

Q2(Φ, t)
dt . (49)

We adhere to two conventions without any loss of generality: we conveniently set
χ(Φ, 1) = 1; from here onwards, we identify the origin of (Φ, Ψ) with the point of flow
detachment. By the first choice, χ exists for 0 < Ψ ≤ 1, which proves crucial in view of
the potential stagnation points (Q = 0) on Ψ = 0 far upstream (Φ = −∞) and at Φ = 0.

From integrating (46) Bernoulli’s law giving the first integral of motion B(Ψ) ensues:

Q2/2 + P = B(Ψ), B′ = −Ω (50)

is confirmed by (47) with (48). One infers from (44) that the curvature of streamline
reads χQΘΦ, thus the Laplace pressures τ(QΘΦ)(Φ, 1) and −τ(χQΘΦ)(Φ, 0). Hence,
(12) combined with (14) result into mixed BCs,

Ψ = 1: τQΘΦ = B(1)− Q2

2
, Ψ = 0: χQΘΦ =

{
θ′w(s) (Φ ≤ 0) ,

[Q2/2−B(0)]/τ (Φ > 0) .
(51)

Evaluating the condition for Ψ = 0 upstream of detachment invokes the dependence of
the arc length s along the wall and Φ. This is readily inferred from (44) as dΦ/ds|Ψ =0 =
(χQ)(Φ, 0), entailing the auxiliary relationship

s− sD =

∫ Φ

0

dt

(χQ)(t, 0)
. (52)

Typically, the position of detachment s = sD can be chosen arbitrarily in an inviscid-flow
calculation. It is therefore distinguished from the actual one, s = sd, found for finite
values ϵ. However, we will see how to determine sd ∼ sD in advance as ϵ→ 0.

Finally, the far-upstream and -downstream BCs are stated using (50) as

Φ→ ±∞ : Q→ Q∞(Ψ) =
√
2B(Ψ) , Φ→ −∞ : Θ → 0 . (53)

Prescribing Q∞ = ψ′
−(n), see § 3.4.1, using the inversion n = ψ−1

− (Ψ) fixes B(Ψ). From
(49) then follows the missing far-field condition χ(±∞, Ψ) = Q∞(1)/Q∞(Ψ). The dis-
cussion of the BCs for s → ±∞ closing § 3.2 remains valid here to some extent. Most
importantly, here the requirement of vanishing streamline curvature far downstream in
connection with (48) forces the inviscid flow to fully recover and attain its oncoming
state. The uniform turning angle, Θ+ = Θ(+∞, Ψ), is also part of the solution of the
well-posed elliptic Euler problem we have established. Consisting of (45), (48), (49) and
(51)–(53), it governs Q and Θ once the position s = sd of detachment has been chosen
adequately.
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5.2 Solution strategy and solution properties

The solution depends strongly on the properties of B(Ψ), where two most essential ones
account crucially for the pressure-free incident flow, hence implying B(Ψ) = Q2

∞/2. At
first, the free slip on the upper free streamline gives B′(1) = Ω(1) = 0. Secondly, with
the constant σ denoting the terminal wall shear stress of the oncoming layer, one reveals
ψ−(n) = σn2/2+O(n5) (n→ 0) and, in turn, B(Ψ) = σΨ+O(Ψ5/2) (Ψ → 0). Due to this
initial stagnation on the wall, the flow first accelerates as the pressure decreases according
to (50). We will elucidate how this behaviour has a crucial impact on detachment.

One then advantageously eliminates Θ from (45), (48) and (51) using (49) to obtain(
χQΦ/Q

)
Φ
+
[
χ−1(χQ)Ψ/(χQ)

]
Ψ
= 0 , (54)

Ψ = 1: τQΨ =
Q2

2
−B(1) , Ψ = 0:

σ

Q
−QΨ =

{
θ′w(s) (Φ ≤ 0) ,

[Q2/2−B(0)]/τ (Φ > 0) .
(55)

These relationships complemented with by (49), (52) and (53) pose a problem governing
Q on the stripe −∞ < ϕ < ∞, 0 ≤ ψ ≤ 1, parametrised by τ , sd and B(ψ). The flow
angle Θ and the locations of the streamlines in the physical plane can be readily found a
posteriori from integrating (48) on Ψ = const . The aforementioned inversion at Φ = −∞
yields the initial elevation of the streamlines above the wall. Although numerically
demanding and highly nonlinear, this inviscid-flow problem is yet much easier to tackle
than the full NS problem for realistically small values of ϵ. As it stands, it is ripe for its
numerical solution with finite differences and/or Chebychev collocation, advantageously
after mapping the stripe onto the unit square once the asymptotic corrections to the
limits in (53) have been determined.

Of utmost interest is the detachment or apparent contact angle ΘD, in sharp con-
trast with the actual one, θc, here following from the computed flow angle Θ(0+, 0)
immediately downstream of detachment, cf. (13):

θw(sD)−Θ(0+, 0) = π−ΘD . (56)

One can identify ΘD with θc (and thus prescribe sD) only in the hypothetical case of a
perfectly ideal fluid (ν̃ = ϵ = 0), apart from the exceptional situation of a fluid entirely at
rest (as a sessile droplet). In any other case, θD is part of the inviscid-flow solution. Due
to the lack of any further physical length scale, the detachment angle θD indeed cannot
be altered if one introduces some artificial smaller scale to describe the potential flow
around the detachment point: in general, θD < π, and a stagnant wedge flow describes
detachment locally. However, we anticipate at this stage that tangential detachment,

ΘD = π , (57)

is the rule rather than the exception as (57) sorts out the only acceptable situation that
is not in conflict with BL separation in the limit ϵ→ 0. This result holds for τ ≥ 0, but
the limit τ → 0 applied to the above Euler problem is also singular.

In the present context, the relevance of the TC speed can also be inferred from
the cross-stream momentum balance (47) supplemented with (51) in case of a free jet
(Φ > 0). It is first observed that (45) and (48) allow for a parallel-flow solutionQ = Q(Ψ),
hence χ = Q(1)/Q(Ψ) by (49), and Θ = Θ(Φ) where Θ′ = K = const is the (non-zero)
curvature of the then parallel streamlines. This situation might also apply to the leading-
order description of a slender layer in the long-wave limit. Now on integration of (47)
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using the notation in (18) and P (1) = τQ(1)K, P (0) = −τQ(1)K, see (51),

Q(1)KJ = P (1)− P (0) = 2τQ(1)K or T = 1/2 . (58)

That is, such a flow can only exist if T is locked to 1/2 and thus assumes the TC speed
if it is irrotational. The linkage to the long sinusoidal Taylor–Squire modes of small
amplitude (§ 3.4.2) is striking.

To the author’s knowledge, the only solution of an inviscid free-surface flow problem
of the type negotiated here, i.e. with vorticity fully at play and no ad-hoc slenderness
assumption made, presently available must be attributed to Pasias (2022). In this work,
a closely related situation is considered, but no curved wall.

5.3 Potential flow

Drastic simplifications arise if one assumes ad-hoc an irrotational flow, hence χ ≡ 1,
preferably normalised by Q∞ ≡ 1. Although a potential flow does not match the (real-
istic premise of a) developed flow far upstream, elegantly exploiting the well-established
semi-analytical conformal-mapping techniques allows for gaining a profound understand-
ing of how inertia controls the teapot effect. The hydrodynamic retention force can be
predicted in straightforward manner. Most rational studies of the teapot effect rely on
the potential-flow assumption, but so far at the expense of the entire neglect of capillarity
and thus reducing the underlying physics to inertia and partially gravity.

5.3.1 Outline

The first as early as by Keller (1957) predicted analytically the complete turn of θ+ = π

for a flow around a thin plate, i.e. having sharp trailing edge and thus a concentrated
retention force. He also considered the gravitational influence. The first of the refinement
by Vanden-Broeck & Keller (1986, 1989) took into account a wedge-shaped lip and
gravity from the start, which requires a numerical treatment. The second ignored gravity
again and thereby put forward an analytic solution for the flow found to detach from
the underside of the wedge. As a further advancement, it also deals with its concavely
shaped underside, where the solution had to be constructed numerically. The inclusion
of surface tension has been only addressed in Chapman & Vanden-Broeck (2002), albeit
under the assumption of strictly attached flow, i.e. having just one free surface.

The numerical method at play is these studies is the so-called series truncation
method. Here the complex flow potential w = Φ + iΨ and velocity potential ζ(w) =
Q exp(iΘ) are mapped consecutively conformally in an advantageous, problem-specific
manner, finally onto the half of a unit circle in an auxiliary complex plane. In its interior,
ζ is found via collocation on its boundaries which represent the free streamlines and solid
walls in the problem. The flow is then reconstructed in the physical plane by calculat-
ing the potential z(w) = x + i y where x, y denote appropriately positioned Cartesian
coordinates. It is often useful to also consider ϖ(W ) = ln ζ = V + iΘ, V = lnQ. For
expanding upon this technique see (Vanden-Broeck, 2010, chap. 6.2), e.g. its recent ap-
plication to long-standing hydraulic problems by McLean et al. (2022). We also refer to
a related method suggested by Eggers & Smith (2010).

To study the flow near detachment, one advantageously rewrites (50) as Q2/2 −
τQΘΦ = 1/2 for Φ > 0 or

Ψ = 0 , Φ > 0: sinhV = τΘΦ , V = Reϖ , Θ = Imϖ . (59)
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Without any substantial loss of generality, we hereafter ignore the local slope of the wall
by identifying Θ with Θ − θw(sD). As consistent with our previous notation, Θ then is
the flow angle measured relative to the wall in the clockwise direction such that ΘD < 0.
Since this is taken as sufficiently smooth, it is locally replaced by a straight line. Then
for

Ψ = 0 , Φ ≤ 0: Θ = 0 . (60)

This kinematic BC complements the dynamic one (59) to mixed BCs, determining ζ
or ϖ in terms of local eigensolutions in the limit w → 0. The most essential findings
are summarised in the following. An important ingredient here is the potential loss of
analyticity ofϖ in w = 0 as it can in general behave logarithmic–algebraically locally, We
refer to the Vanden-Broeck (2010), in particular chaps. 3.1.2 and 3.2.2 therein surveying
irrotational separation from a smooth surface in great detail.

5.3.2 Neglect of surface tension

If τ = 0, (59) predicts the recovery Q = 1, V = 0 at and downstream of then tangential
detachment (θD = 0). It is easily seen that the general behaviour is

ϖ = iβ(sD)w
1/2 +O(w3/2) , β ≥ 0 (w → 0) . (61)

The dominant term in this expansion indicates the famous Brillouin–Villat (BV) singu-
larity, characteristic of purely inertia-driven irrotational free-streamline separation and
having some strength β that depends on the, yet largely arbitrary, position of its occur-
rence. For β ̸= 0, Θ (Q) behaves regular (singular) as s → sD− but irregular (regular)
as s→ sD+. In particular, the streamline detaches with infinite curvature as Θ (Q) are
here constant upstream (downstream) of detachment. The degenerate case β = 0 is com-
monly referred to as BV condition, a notion becoming evident in § 6. For positive values
of β, (50) predicts an pressure increase as the flow just approaches detachment, nega-
tive ones are prohibited on geometrical grounds (the free streamline would immediately
intersect the wall).

5.3.3 Influence of surface tension

Here we give only the general result that describes the flow around a concave wedge
where the free surface forms the downstream portion of its boundary. It is illuminating
to express it for z(w) where x, y have heir origin in the detachment point, x points
tangentially to the wall upstream of detachment in the flow direction and y normally to
it. Successive evaluation of (59) and (60) and the requirement that Ψ = 0 determines the
position z of the free streamline then reveal a Taylor expansion in terms of the dominant
formulation of a wedge-flow (only this seems to be treated in the existing literature):

z =
∑∞

k=1
βk(sD, τ) e

−ikΘDwk(1+ΘD/π) , βk ∈ R , (w → 0) . (62)

Only the dominant coefficient β1 is fixed by the global flow; for any k > 1, βk then
follows from (59). Specifically,

β2 = −β21/(4τ sinΘD) (> 0) . (63)

The expansion (62) also predicts an retarded flow upstream of but stagnation at
detachment. Investigating the limit Θ → 0− discloses the exceptional situation of tan-
gential detachment at some sD = s∗D(τ), where the pressure increase immediately ahead
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of detachment vanishes. Evidently, a similar situation is found if we let τ → 0. As
an important consequence, s∗D must approach the value at which the BV condition is
fulfilled in the limit τ → 0. Problems subjected to this type of limit process fall under
the category of selection problems. The current example illustrates the fundamental
mechanism: the flow for finite values of τ “selects” the correct member out of a one-
parametric family of flows having τ = 0 from the outset and thus controlled solely by
sD (see Vanden-Broeck, 2010, chap. 3.2).

6 Regularising Role of Viscosity and Selection Problems

Finally, we briefly address the two central modifications of the inviscid flow in the singular
limit ϵ→ 0. Most importantly, the first renders it unique as it fixes the position s = sD
of break-away. The second concerns the transition of the terminal state of the parallel
Euler flow having finite vorticity towards the fully homogenous one for s → ∞ over a
long streamwise scale of O(ϵ).

6.1 Position of and structure around detachment

The adverse pressure gradient the inviscid flow exerts on the wall as it approaches
detachment becomes infinite there while the BV singularity, if τ = 0, has a finite strength
β > 0 or, if τ > 0, detachment is wedge-type. In both cases, it is a well-established fact
that the BL would terminate further upstream (in terms of the well-known Goldstein
singularity) as it cannot withstand such an unbounded pressure gradient. Therefore, a
self-consistent (asymptotically correct) flow description in the limit ϵ→ 0 requires β to
vanish if τ = 0 but also pure tangential detachment if τ > 0, as claimed by (57). In
other words, in both cases the position of detachment of the inviscid flow must be chosen
such that PΦ(0, Ψ) < 0 upstream of s = sD and PΦ(0, Ψ) = 0 for s = sD. Calculations
for finite values of ϵ will show this variation of the detachment point once ϵ becomes
arbitrarily small. Therefore, this type of regularisation must also be categorised as a
selection process: now the viscous flow “selects” the correct member in class of potential
flows parametrised by sD to accommodate to it.

For single-phase stationary gross separation (τ = 0), this adaption is well understood
and accomplished by triple-deck theory. This accounts for the correct splitting of the BL
due to the shortening of the streamwise scale and the local breakdown of the classical
hierarchical scheme of matched asymptotic expansion governing the oncoming BL, in
favour of a strong localised interaction between the self-induced pressure gradient, suit-
ably smoothing the imposed one, and the associated displacement exerted by the viscous
near-wall portion of the just detaching BL. Finally, this mechanism effectively regularises
a BV singularity of a strength β = O(ϵ1/16). For the details the reader is referred to
the survey by Sychev et al. (1998, chap. 1) and the original solution to the triple-deck
problem by Smith (1977) (and the references therein). In the situation of § 4, the – yet
unavailable – counterpart of this flow description including surface tension would give
the correct answer to the embedding of the Stokes flow observed on the smallest scale,
where t negotiating the real, chemical contact angle θc < π, into the BL. Considering an
appropriate distinguished limit τ → 0 as ϵ→ 0, hence starting with a vanishingly weak
BV singularity at inviscid flow detachment, presumably provides the first sensible step
towards unravelling this demanding question of perturbation theory.

As demonstrated by Vanden-Broeck & Keller (1989), the BV condition can only be
met if the underside of the wedge-shaped lip is (concavely) curved. Therefore, if straight
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Figure 6: Evolution of detached shear layer flow for S = 0.005i, i = 0, 1, . . . , 20 (left to
right): scaled flow profiles uh−, from Watson’s self-preserving (S = 0, dash-dotted) to
uniform flow (S = 0.999, dash-dot-dotted), and vertical height (dashed, top abscissa)
with leading-order asymptotes (dotted) found for S → 0 (Goldstein wake) and S → ∞
(h = h+).

lines form its walls, only the trivial solution of a uniform parallel flow passing its sharp
tip as undisturbed is the acceptable selection for ϵ = 0.

6.2 Terminal evolution of free jet

Given the recovery of a stagnant flow on Ψ = 0, ensuing from the properties of B(Ψ)
addressed in § 5.2 and § 3.4.1, we notice a viscous shear layer astride the lowermost
streamline smoothing the shear rate σ at the base of the Euler flow. This produces a
slip (increasing from zero) along the lower free surface. Far downstream, the flow in
this viscous sublayer assumes the self-similar form of the well-known Goldstein wake
(GW). Since its width becomes of O(ϵs)1/3, it merges with the whole jet and triggers
a redistribution of vorticity over the long scale where S = s/(ϵh−) = O(1). There (9)
reduces to shallow-water form and describes a pressure-free shear layer bounded by two
free streamlines to leading order. Capillarity has become a higher-order effect. The
evolution of the flow over S towards the uniform one (u = u+, h = h+) provides the
slowly varying background flow in the WKBJ analysis brought up in § 3.3.

We present its development by numerical marching, where the incident recovered
flow is given by Watson’s self-similar one (§ 3.4.1), in figure 6: the results are extracted
from Scheichl, Bowles & Pasias (2018) as the developed flow passing a sharp trailing edge
raises the same problem over that viscous length scale. Its terminal modification on that
scale is initiated by the GW, there forming immediately downstream of the plate edge
(S = 0). Hence, h/h− = 1 + O(S1/3) as S → 0. Accordingly, the requirement that the
GW exerts zero vertical displacement of the streamlines in leading order yields a cuspidal
shape of the just forming lower free streamline. Otherwise, its vertical transfer would
provoke an associated singularity in the upper free streamline and an accordingly large
streamline curvature. This would produce an unacceptably large streamwise pressure
gradient due to the cross-stream momentum transfer.
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7 Final remarks

This synopsis presents selected ingredients to the holistic asymptotic analysis of the
teapot effect and related free-surface flows where inertia effects are dominantly at play
at the outset. It points to the foci of the ongoing activities in this thrust of research.
Further aspects and specific technical details will be put forward during the lectures and
in the book chapter. In particular, the integral conservation of linear momentum will
also be envisaged. This final form of these lecture notes will also be disseminated to the
participants of the course.
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