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Abstract

We consider affine optimal control problems subject to semilinear el-
liptic PDEs. The results are two-fold; first, we continue the analysis of so-
lution stability of control problems under perturbations appearing jointly
in the objective functional and the PDE. In regard to this, we prove that
a coercivity-type property, that appears in the context of optimal control
problems where the optimal control is of bang-bang structure, is sufficient
for solution stability estimates for the optimal controls. The second result
is concerned with the obtainment of error estimates for the numerical ap-
proximation for a finite element and a variational discretization scheme.
The error estimates for the optimal controls and states are obtained un-
der several conditions of different strengths, that appeared recently in the
context of solution stability. The approaches used for the proofs are moti-
vated by the structure of the assumptions and enable an improvement of
the error estimates for the finite element scheme for the optimal controls
and states under a Hölder-type growth condition.

1 Introduction
To obtain error estimates for a finite element approximation scheme and to
study solution stability of PDE-constrained optimal control problems where the
Tikhonov regularization term is absent in the objective functional, one must
take into consideration additional difficulties. This is due to the fact, that in
this case, one cannot expect a coercivity-type growth of the second variation
of the objective functional with respect to the L2-distance of the controls. In
this paper, we address these difficulties by considering several coercivity-type
conditions on the joint growth of the first and second variation of the objective
functional. In regard to solution stability of optimal controls and states under
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perturbations appearing in the objective functional and the state equation si-
multaneously, the result of this paper is a continuation of the investigation in
[4, 11, 12]. In this paper, we consider a growth condition that is similar to the
one in [11], but weaker and that still allows for a Lipschitz-type estimate for
the optimal controls with respect to the perturbations. The main part of this
paper, deals with error estimates for the numerical approximation for problems
where the control appears at most in an affine way in the PDE and builds upon
the papers [7, 8, 10, 13]. In comparison to the results therein, we obtain error
estimates for the optimal controls without assuming the so-called structural as-
sumption on the adjoint state together and a second-order sufficient condition
assuming the second variation to be strict positive on a certain cone, see [6, 12]
for a discussion of various assumptions on the growth of the objective functional.
Instead, we work with the unified conditions established in [4, 11, 12]. This is
an improvement since to assume the structural assumption on the adjoint state
and a second order sufficient condition as in [7, ?] seems quite strong. Especially
since by assuming the structural assumption one can obtain already stability
results as long as the second variation is not too negative, as shown in this pa-
per. To be precise, we consider among others the condition: Given a reference
optimal control ū and a number γ ∈ (0, 1], there exist positive constants α and
c such that

J(u) − J(ū) ≥ c∥u− ū∥1+ 1
γ

L1(Ω) (1.1)

for all feasible controls u with ∥u− ū∥L1(Ω) < α and (u− ū) ∈ Dτ
ū.

Here, Dτ
ū denotes a cone, that extends the cone of critical directions commonly

used in optimal control of PDEs and will be specified later on. See also [3],
where it was first introduced.

Conditions of type (1.1) arise naturally in the characterization of strict bang-
bang optimal controls, appearing as a consequence of sufficient second-order op-
timality conditions and the structural assumption on the adjoint state, see [10].
A slightly stronger assumption that implies (1.1) was first considered in [18] for
affine ODE optimal control problems and [11] for PDE optimal control problems.
Recently (1.1) appeared in [16, 17] in the context of Eigenvalue optimization
problems. There it was shown that for a certain type of Eigenvalue optimization
problem, condition (1.1) is implied by a growth of the second variation. To re-
late (1.1) with the classical assumptions used in affine PDE-constrained optimal
control problems we refer to Theorem 4 in Section 4. We remark that to apply
condition (1.1) for solution stability, we need that the controls corresponding to
the perturbed problems are minimizers. This is not the case under the slightly
stronger condition in [11], where it is sufficient that the controls corresponding
to the perturbed problem satisfy a first-order optimality condition.
Finally, we do not consider a sparsity-promoting term appearing in the objective
functional, but the proofs in this paper can be easily adapted to include such
a term. One can consider a semilinear elliptic non-monotone and non-coercive
state equation as in [9] without any changes of the results in the section on
solution stability. The sections on error estimates can be adapted to the case
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of a non-monotone and non-coercive state equation using the results in [5]. To
the author’s best knowledge, the assumptions considered in this paper are the
weakest so far that still allow error estimates for the numerical approximation
for problems where the control appears at most in an affine way in the objective
functional.

We shortly list the novelties in the paper. Under conditions similar to the
one introduced in [4] in the context of solution stability and conditions (1.1),
we derive error estimates for a finite element scheme in Theorem 6.5. For this,
in the proof of Theorem 6.5, we argue similar as in the first arguments in [7,
Theorem 7], but in contrast to the proof therein, we then use the approximation
property of the linearized state to conclude the proof. This allows to obtain er-
ror estimates for bang-bang optimal controls similar as in [7, Theorem 9] and
also allows to improve the error estimates for the optmial controls for γ ∈ (0, 1],
from ∥ūh − ū∥L1(Ω) ≤ chγ2 to ∥ūy − ū∥L1(Ω) ≤ chγ . Then, using the assumptions
of [11, 4], we prove error estimates for a variational discretization in Theorem
6.9. In regard to solution stability, we prove that condition (1.1) is sufficient
for solution stability under quite general perturbations for a distributed control
problems in Theorem 5.2. Until now, to the author’s best knowledge, it was
an open question if condition (1.1) by itself allows for these results. We believe
this approach to be feasible also for the obtainment of error estimates for the
numerical approximation for a 2-dimensional Neumann boundary control prob-
lem, but postpone this analysis to future work.

The paper is structured as follows: In the remainder of this section, we state
the main assumptions that hold throughout the paper and state some additional
remarks on the notation. In Section 2, we collect results on the involved PDEs,
and in Section 3 the optimal control problem is discussed. In Section 4, we
investigate the sufficient conditions for local optimality. Section 5 is concerned
with solution stability. In Section 6 we define the discretization schemes and
prove error estimates. Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with
Lipschitz boundary.

We investigate the following optimal control problem. Given functions ua, ub ∈
L∞(Ω) such that ua < ub a.e in Ω, define the set of feasible controls by

U := {u ∈ L∞(Ω)| ua ≤ u ≤ ub for a.a. x ∈ Ω} (1.2)

and consider the problem

(P) min
u∈U

{
J(u) :=

ˆ
Ω
L(x, y(x), u(x)) dx

}
, (1.3)

subject to {
Ay + f(·, y) = u in Ω,
y = 0 on Γ. (1.4)
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Denote by yu, the unique solution of the state equation that corresponds to
the control u. The objective integrands L appearing in (1.3) satisfies additional
smoothness conditions, given below in Assumption 2.

1.1 Main assumptions and notation
The following assumptions, close to those in [4, 6, 7, 10], are standing in all of
the paper.

Assumption 1 The following statements are fulfilled.

(i) The operator A : H1
0 (Ω) → H−1(Ω), is given by

Ay := −
n∑

i,j=1
∂xj

(ai,j(x)∂xi
y),

where ai,j ∈ L∞(Ω). In Section 6 we additionally assume that ai,j ∈
C0,1(Ω̄). Further, the ai,j satisfy the uniform ellipticity condition

∃λA > 0 : λA|ξ|2 ≤
n∑

i,j=1
ai,j(x)ξiξj for all ξ ∈ Rn and a.a. x ∈ Ω.

(ii) We assume that f : Ω × R −→ R is a Carathéodory function of class C2

with respect to the second variable satisfying:

f(·, 0) ∈ L∞(Ω) and ∂f
∂y (x, y) ≥ 0 ∀y ∈ R,

∀M > 0 ∃Cf,M > 0 s. t.
∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +
∣∣∣∣∂2f

∂y2 (x, y)
∣∣∣∣ ≤ Cf,M ∀|y| ≤ M,

∀ρ > 0 and ∀M > 0 ∃ ε > 0 such that∣∣∣∣∂2f

∂y2 (x, y2) − ∂2f

∂y2 (x, y1)
∣∣∣∣ < ρ ∀|y1|, |y2| ≤ M with |y2 − y1| ≤ ε,

for almost every x ∈ Ω.

Assumption 2 The function L : Ω × R2 −→ R is Carathéodory and of class
C2 with respect to the second variable. In addition, we assume that

L(x, y, u) = La(x, y) + Lb(x, y)u with La(·, 0), Lb(·, 0) ∈ L1(Ω),
∀M > 0 ∃CL,M > 0 such that∣∣∣∂L
∂y

(x, y, u)
∣∣∣ +

∣∣∣∂2L

∂y2 (x, y, u)
∣∣∣ ≤ CL,M ∀|y|, |u| ≤ M,

∀ρ > 0 and M > 0 ∃ε > 0 such that∣∣∣∣∂2L

∂y2 (x, y2, u) − ∂2L

∂y2 (x, y1, u)
∣∣∣∣ < ρ |y1|, |y2| ≤ M with |y2 − y1| ≤ ε,

for almost every x ∈ Ω.
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2 Auxillary results for the state equation
We collect properties of solutions to linear and semilinear elliptic PDEs. The
results in this section are standard, we refer to [4, 7]. Let α ∈ L∞(Ω) be
a nonnegative function. We consider the properties of solutions to the linear
equation

Ay + αy = h. (2.1)

Theorem 2.1 [4, Lemma 2.2] Let h ∈ Lr(Ω) with r > n/2. Then the linear
equation (2.1) has a unique solution yh ∈ H1

0 (Ω) ∩C(Ω̄). Further there exists a
positive constant Cr independent of α and h such that

∥hu∥H1
0 (Ω) + ∥hu∥C(Ω̄) ≤ Cr∥u∥Lr(Ω). (2.2)

Lemma 2.2 [4, Lemma 2.3] Assume that s ∈ [1, n
n−2 ), s′ is its conjugate, and

let α ∈ L∞(Ω) be a nonnegative function. Then, there exists a constant Cs′

independent of a such that{
∥yh∥Ls(Ω) ≤ Cs′∥h∥L1(Ω),
∥φh∥Ls(Ω) ≤ Cs′∥h∥L1(Ω),

∀h ∈ H−1(Ω) ∩ L1(Ω), (2.3)

where yh and φh satisfy the equations (2.1) and A∗φh + αφh = h, respectively,
and Cs′ is given by (2.2) with r = s′.

For the semilinear state equation, we cite the following regularity result.

Theorem 2.3 [7, Theorem 1] For every u ∈ Lr(Ω) with r > n/2 there exists
a unique yu ∈ Y := H1

0 (Ω) ∩ C(Ω̄) solution of (1.4). Moreover, there exists a
constant Tr > 0 independent of u such that

∥yu∥H1
0 (Ω) + ∥yu∥C(Ω̄) ≤ Tr(∥u∥Lr(Ω) + ∥f(·, 0)∥L∞(Ω)).

If uk ⇀ u weakly in Lp(Ω), then the strong convergence

∥yuk
− yu∥H1

0 (Ω) + ∥yuk
− yu∥C(Ω̄) → 0

holds. If further u ∈ L∞(Ω) and {ai,j} ∈ C0,1(Ω̄) we have yu ∈ W 2,r(Ω) for all
r < ∞ and

∥yu∥W 2,r(Ω) ≤ M0r
(

∥u∥L∞(Ω) + ∥f(·, 0)∥L∞(Ω)

)
for a positive constant M0 independent of u and r.

For each r > n/2, we define the map Gr : Lr(Ω) → H1
0 (Ω) ∩ C(Ω̄) by

Gr(u) = yu.
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Theorem 2.4 [4, Theorem 2.6] Let Assumption 1 hold. For every r > n
2 the

map Gr is of class C2, and the first and second derivatives at u ∈ Lr(Ω)
in the directions v, v1, v2 ∈ Lr(Ω), denoted by zu,v = G′

r(u)v and zu,v1,v2 =
G′′

r (u)(v1, v2), are the solutions of the equations

Az + ∂f

∂y
(x, yu)z = v, (2.4)

Az + ∂f

∂y
(x, yu)z = −∂2f

∂y2 (x, yu)zu,v1zu,v2 , (2.5)

respectively.

Lemma 2.5 [4, Lemma 2.7] The following statements are fulfilled.

(i) Suppose that r > n
2 and s ∈ [1, n

n−2 ). Then, there exist constants Kr

depending on r and Ms depending on s such that for every u, ū ∈ U

∥yu − yū − zū,u−ū∥Ls(Ω) ≤ Ms∥yu − yū∥2
L2(Ω). (2.6)

(ii) Taking CX = K2
√

|Ω| if X = C(Ω̄) and CX = M2 if X = L2(Ω), the
following inequality holds

∥zu,v −zū,v∥X ≤ CX∥yu −yū∥X∥zū,v∥X ∀u, ū ∈ U and ∀v ∈ L2(Ω). (2.7)

(iii) Let be X as in (ii). There exists ε > 0 such that for all ū, u ∈ U with
∥yu − yū∥C(Ω̄) ≤ ε the following inequalities are satisfied

1
2∥yu − yū∥X ≤ ∥zū,u−ū∥X ≤ 3

2∥yu − yū∥X , (2.8)
1
2∥zū,v∥X ≤ ∥zu,v∥X ≤ 3

2∥zū,v∥X ∀v ∈ L2(Ω). (2.9)

3 The optimal control problem
The optimal control problem (1.3)-(1.2) is well posed under Assumptions 1 and
2. By the direct method of calculus of variations one can easily prove that there
exists at least one global minimizer, see [20, Theorem 5.7]. In this section, we
discuss the structure of the optimal control problem.

Definition 1 We say that ū ∈ U is an Lr(Ω)-weak local minimum of problem
(1.3)-(1.2), if there exists some positive ε such that

J(ū) ≤ J(u) ∀u ∈ U with ∥u− ū∥Lr(Ω) ≤ ε.

We say that ū ∈ U is a strict weak local minimum if the above inequalities are
strict for u ̸= ū.
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Theorem 3.1 For every r > n
2 , the functional J : Lr(Ω) −→ R is of class C2.

Moreover, given u, v, v1, v2 ∈ Lr(Ω) we have

J ′(u)v =
ˆ

Ω

[∂L
∂y

(x, yu, u)
]
zu,v +

[∂L
∂u

(x, yu, u)
]
v dx

=
ˆ

Ω

[
pu + ∂L

du
(x, yu, u)

]
v dx,

J ′′(u)(v1, v2) =
ˆ

Ω

[∂2L

∂y2 (x, yu, u) − pu
∂2f

∂y2 (x, yu)
]
zu,v1zu,v2 dx

+
ˆ

Ω

[ ∂2L

∂u∂y
(x, yu, u)

]
(zu,v1v2 + zu,v2v1) dx.

Here, pu ∈ H1
0 (Ω) ∩ C(Ω̄) is the unique solution of the adjoint equation A∗p+ ∂f

∂y
(x, yu)p = ∂L

∂y
(x, yu, u) in Ω,

p = 0 on ∂Ω.
(3.1)

We introduce the Hamiltonian Ω×R×R×R ∋ (x, y, p, u) 7→ H(x, y, p, u) ∈ R
in the usual way:

H(x, y, p, u) := L(x, y, u) + p(u− f(x, y)). (3.2)

The local form of the Pontryagin type necessary optimality conditions for prob-
lem (1.3)-(1.2) in the next theorem is well known (see e.g. [2, 6, 20]).

Theorem 3.2 If ū is a weak local minimizer for problem (1.3)-(1.2), then there
exist unique elements ȳ, p̄ ∈ H1

0 (Ω) ∩ L∞(Ω) such that{
Aȳ + f(x, ȳ) = ū in Ω,
ȳ = 0 on ∂Ω. (3.3) A∗p̄ = ∂H

∂y
(x, ȳ, p̄, ū) in Ω,

p̄ = 0 on ∂Ω.
(3.4)

ˆ
Ω

∂H

∂u
(x, ȳ, p̄, ū)(u− ū) dx ≥ 0 ∀u ∈ U . (3.5)

4 The optimality conditions
We consider conditions on the objective functional that are sufficient for local
optimality and solution stability under perturbations appearing jointly in the
objective functional and the equation.
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Assumption 3 Let ū ∈ U , γ ∈ (n/(2 + n), 1] and β ∈ {1/2, 1} be given. There
exist positive constants c and α such that

J ′(ū)(u− ū) + βJ ′′(ū)(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω) (4.1)

for all u ∈ U with ∥u− ū∥L1(Ω) < α.

In this paper, we prove for the first time, that Assumption 3 for β = 1/2, is
sufficient for solution stability if the control corresponding to the perturbed
problem is a minimizer. Assumption 3 with β = 1 was considered in [11], it is
the stronger assumption, in the sense, that if ū satisfies the first-order optimality
condtion, Assumption 3(β = 1) implies Assumption 3(β = 1/2). On the other
hand, if Assumption 3(β = 1) is satisfied, to obtain a solution stability result,
the control corresponding to a perturbed problem needs to satisfy only the first-
order necessary optimality condition. Under Assumption 3(β = 1/2) we need
that the controls corresponding to the pertrubed problems are minimizers. For
the achievement of error estimates for the numerical approximation, this is not
a constraint, here, we consider minimizers of the discrete problem. We state
some technical results that are needed later on

Lemma 4.1 [4, Proposition 5.3] Let ū ∈ U be given. It is equivalent:

1. There exist positive constants c and α such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω) (4.2)

for all u ∈ U with ∥u− ū∥L1(Ω) < α.

2. There exist positive constants c and α such that (4.2) holds for all u ∈ U
with ∥yu − yū∥L∞(Ω) < α.

The next lemma is crucial for the estimations later on. It is well known for objec-
tive functionals with varying generality and was proven in several publications
for case γ = 1. The proof for γ < 1 follows by exactly the same arguments.

Lemma 4.2 Given γ ∈ (n/(2 + n), 1] and ū, u ∈ U . Define uθ := ū+ θ(u− ū)
for some θ ∈ [0, 1]. For all ϵ > 0 there exists δ > 0 such that∣∣∣J ′′(ū)(u− ū)2 − J ′′(uθ)(u− ū)2

∣∣∣ ≤ ϵ∥u− ū∥1+ 1
γ

L1(Ω)

for all ∥u− ū∥L1(Ω) < δ.

Further, we have the following result.

Theorem 4.3 Let ū ∈ U be given. It is equivalent:

1. The control ū satisfies Assumption 3(β = 1).
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2. There exist positive constants c and α such that

J ′(ū)(u− ū) + J ′′(ū+ θ(u− ū))(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω)

for all u ∈ U with ∥u− ū∥L1(Ω) < α and θ ∈ [0, 1].

3. There exist positive constants µ, β, such that

J ′(u)(u− ū) ≥ µ∥u− ū∥1+ 1
γ

L1(Ω) (4.3)

for all u ∈ U with ∥u− ū∥L1(Ω) < β.

The direction from 1 to 3 was proven in [11, Lemma 12]. The direction from 3
to 1 follows by using Taylor’s theorem and Lemma 4.2: Define uθ : ū+ θ(u− ū)
for some θ ∈ [0, 1]. By Talyor’s theorem, there exists θ such that

J ′(u)(u− ū) − J ′(ū)(u− ū) = J ′′(uθ)(u− ū)2.

By Lemma 4.2 we obtain:

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2

= J ′(u)(u− ū) + J ′(ū)(u− ū) − J ′(u)(u− ū) + J ′′(ū)(u− ū)2

≥ µ∥u− ū∥1+ 1
γ

L1(Ω) −
∣∣∣J ′′(ū)(u− ū)2 − J ′′(uθ)(u− ū)2

∣∣∣.
Select α < min{δ, β}, such that µ > ε. Then defining c := µ − ε the claim
follows for controls u ∈ U with ∥u− ū∥L1(Ω) < α. The case 2 to 1 is trivial and
the argument from 1 to 2 follows again by using Taylor’s theorem and Lemma
4.2. The reformulation of Assumption 3(β = 1) to (4.3) is useful to provide
short proofs for the error estimates for the variational discretization later on. It
appeared first in [14] in the context of ODE optimal control.

Theorem 4.4 Assumptions 3 (with β = 1) together with (3.5) and Assumption
3 (β = 1/2) both imply strict weak local optimality.

The claim for Assumption 3 with β = 1 was proven in [11]. We provide alter-
native proof. We prove the statement for β = 1/2. But this follows easily by
Taylor’s theorem and Lemma 4.2

J(u) − J(ū) = J ′(ū)(u− ū) + 1
2J

′′(uθ)(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω)

for all u ∈ U with ∥u − ū∥L1(Ω) < α. This proves the claim for β = 1/2. If
ū satisfies (3.5), then Assumption 3 with β = 1 implies Assumption 3 with
β = 1/2.

Theorem 4.5 Let ū ∈ U be given. It is equivalent:

1. Assumption 3(β = 1/2) holds.
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2. There exist positive constants c and α such that

J ′(ū)(u− ū) + 1
2J

′′(ū+ θ(u− ū))(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω)

for all u ∈ U with ∥u− ū∥L1(Ω) and θ ∈ [0, 1].

3. There exists a positive constants c and α such that

J(u) − J(ū) ≥ c∥u− ū∥1+ 1
γ

L1(Ω), (4.4)

for all u ∈ U with ∥u− ū∥ < α.

The proof follows by the same arguments as in Theorem 4.3. To further relate
the cases β ∈ {1/2, 1} of Assumption 3 we state the following.

Theorem 4.6 Let Assumption 3(β = 1/2) be satisfied. Let there exist µ such
that c > µ and

J ′′(ū) ≥ −µ∥u− ū∥1+ 1
γ

L1(Ω) (4.5)

for all u ∈ U with ∥u − ū∥L1(Ω) < α. Then Assumption 3(β = 1) is satisfied
with constant c := γ − µ/2.

We consider the set{
v ∈ L2(Ω)

∣∣∣v ≥ 0 a.e. on [ū = ua] and v ≤ 0 a.e. on [ū = ub]
}

(4.6)

and define for some τ > 0

Dτ
ū :=

{
v ∈ L2(Ω)

∣∣∣v satisfies (4.6) and v(x) = 0 if
∣∣∣∂H̄
∂u

(x)
∣∣∣ > τ

}
,

Gτ
ū :=

{
v ∈ L2(Ω)

∣∣∣v satisfies (4.6) and J ′(ū)(v) ≤ τ∥zū,v∥L1(Ω)

}
,

Cτ
ū := Dτ

ū ∩Gτ
ū.

Here, H̄ denotes the Hamiltonian (3.2) corresponding to the reference control ū.
If the control does not appear explicitly in the objective functional, ∂H̄

∂u is given
by the adjoint p̄ corresponding to ū. Assumption 3 can be considered as acting
only on the cone Dτ

ū. For a prove see [11, Proposition 6.2] or [4, Coroallary 14].
Assumption 3 is equivalent to the assumption: Let ū ∈ U be given. There exist
positive constants c and α, such that

J ′(ū)(u− ū) + βJ ′′(ū)(u− ū)2 ≥ c∥u− ū∥1+ 1
γ

L1(Ω) (4.7)

for all u ∈ U with (u− ū) ∈ Dτ
ū and ∥u− ū∥L1(Ω) < α.

Further, we have the following theorem that relates Assumption 3 to the
assumptions made in [7, Theorem 9]. Let ∂Lb

∂y = 0 and let ū satisfy the following
conditions: There exist positive constants c, k and α with k < c such that

J ′(ū)(u− ū) ≥ c∥u− ū∥1+ 1
γ

L1(Ω) for all u ∈ U (4.8)
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and

J ′′(ū)(u− ū) ≥ −k∥u− ū∥1+ 1
γ

L1(Ω) for all (u− ū) ∈ Cτ
ū with ∥u− ū∥L1(Ω) < α.

Then Assumption 3(β = 1) holds for some appropriate constants. By Propo-
sition 3 it is sufficient to prove the statement for the Assumption 3 on the cone
Dτ

ū. Thus we only need to consider the case (u− ū) /∈ Gτ
ū. But by definition of

(u− ū) /∈ Gτ
ū, J ′(ū)(u− ū) > τ∥zū,u−ū∥L1(Ω). We estimate for some constant d

independent of u∣∣∣J ′′(ū)(u− ū)2
∣∣∣ ≤ d∥zū,u−ū∥L∞(Ω)∥zū,u−ū∥L1(Ω).

By the assumption of the theorem, it also holds

J ′(ū)(u− ū) ≥ c∥u− ū∥1+ 1
γ

L1(Ω).

Thus combining the estimates we obtain for ∥u− ū∥L1(Ω) sufficiently small

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2

≥ 1
2J

′(ū)(u− ū) + (1
2τ − d∥zū,u−ū∥L∞(Ω))∥zū,u−ū∥L1(Ω)

≥ c/2∥u− ū∥1+ 1
γ

L1(Ω) + (1
2τ − d∥zū,u−ū∥L∞(Ω))∥zū,u−ū∥L1(Ω) ≥ c/2∥u− ū∥1+ 1

γ

L1(Ω).

Remark 4.7 If the of the Hamiltonian satisfies C1(Ω̄) regularity, a sufficient
condition is given in [13].

5 Solution stability
We consider stability under perturbations appearing in the objective functional
and the PDE simultaneously. This was also considered for instance in [4, 11,
19] for different conditions. In this section we additionally assume the second
derivatives of L and f to be Lipschitz with respect to the y variable. We fix a
positive constant M and define the set of feasible perturbations

Γ :=
{
ζ := (ξ, η, γ) ∈ L2(Ω)×L2(Ω)×L∞(Ω)|∥ξ∥L2(Ω)+∥η∥L2(Ω)+∥ρ∥L∞(Ω) ≤ M

}
.

The perturbed problem is given by

min
u∈U

{
Jζ(u) :=

ˆ
Ω
L(x, yu, u) + ρu+ ηyu dx

}
(5.1)

subject to (1.2) and {
Ay + f(·, y) = u+ ξ in Ω,
y = 0 on ∂Ω. (5.2)
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The existence of a globally optimal solution to (5.1)-(5.2) is guaranteed by
the assumptions on the optimal control problem and the direct method in the
calculus of variations. We define

C̄ := max
u∈U

{∥yu∥L∞(Ω), ∥pu∥L∞(Ω)}. (5.3)

We need the next technical lemma, for a proof we refer to [4, Theorem 4.1].

Lemma 5.1 Given ξ ∈ L2(Ω), u ∈ U and v ∈ L2(Ω), it holds

∥yξ
u − yu∥L2(Ω) ≤ C2∥ξ∥L2(Ω),

∥zξ
u,v − zu,v∥Ls(Ω) ≤ C̄C2

2 ∥ξ∥L2(Ω)∥v∥L1(Ω).

Theorem 5.2 Let ū satisfy Assumption 3 for some γ ∈ (n/(n + 2), 1]. There
exist positive constants c and α such that

∥ūζ − ū∥L1(Ω) ≤ c(∥ξ∥L2(Ω) + ∥η∥L2(Ω) + ∥ρ∥L∞(Ω))γ ,

for any minimizer (ȳζ , p̄ζ , ūζ) of (5.1)-(5.2) with ∥ūζ − ū∥L1(Ω) < α.

Denote by yξ
u the solution to 5.2 corresponding to the perturbation ξ and data

u and define
Jξ(u) :=

ˆ
Ω
L(x, yξ

u, u) dx.

Let ūζ be a minimizer of the perturbed problem with perturbation ζ = (ξ, η, γ)
and denote by ȳζ the corresponding state and p̄ζ the corresponding adjoint state.
We notice that yζ

ūζ = yξ
ūζ if ξ is as in ζ. In this case, it holds

Jξ(ūζ) +
ˆ

Ω
ρūζ + ηyξ

ūζ dx ≤ Jξ(ū) +
ˆ

Ω
ρū+ ηyξ

ū dx.

Therefore,

Jξ(ūζ) − Jξ(ū) ≤
ˆ

Ω
ρ(ū− ūζ) + η(yξ

ū − yξ
ūζ ) dx

≤ (∥ρ∥L∞(Ω) + C2∥η∥L2(Ω))∥ū− ūζ∥L1(Ω).

We estimate the term on the left side, define uθ := ū + θ(ūζ − ū) for some
θ ∈ [0, 1] and denote by yuθ

and puθ the corresponding state and adjoint state.

Jξ(ūζ) − Jξ(ū) = J ′
ξ(ū)(ūζ − ū) + 1

2J
′′
ξ (uθ)(ūζ − ū)2

=
[
J ′

ξ(ū)(ūζ − ū) − J ′(ū)(ūζ − ū)
]

+
[1

2(J ′′
ξ (uθ)(ūζ − ū)2 − J ′′(uθ)(ūζ − ū)2)

]
+

[
J ′(ū)(ūζ − ū) + 1

2J
′′(uθ)(ūζ − ū)2

]
= I1 + I2 + I3.



Finite Element Error Analysis and Solution Stability 13

We estimate the terms I1, I2, and I3. By Theorem 4.5 there exist positive
constants c and α such that I3 ≥ c∥u−ū∥1+1/γ

L1(Ω) for all u ∈ U with ∥u−ū∥L1(Ω) <

α. By assumption, this is satisfied by ūζ . We continue with the term I1:

|I1| ≤
∣∣∣J ′

ξ(ū)(ūζ − ū) − J ′(ū)(ūζ − ū)
∣∣∣

≤
∣∣∣ˆ

Ω

∂L

∂y
(x, yξ

ū, ū)zξ
ū,ūζ−ū

− ∂L

∂y
(x, yū, ū)zū,ūζ−ū dx

∣∣∣
+

∣∣∣ ˆ
Ω

[∂L
∂u

(x, yξ
ū, ū) − ∂L

∂u
(x, yū, ū)

]
(ūζ − ū) dx

∣∣∣ = J1 + J2.

The term J1 is estimated using the mean value theorem and Lemma 5.1

|J1| ≤
∣∣∣ ˆ

Ω

[∂L
∂y

(x, yξ
ū, ū) − ∂L

∂y
(x, yū, ū)

]
zξ

ū,ūζ−ū
dx

∣∣∣
+

∣∣∣ˆ
Ω

∂L

∂y
(x, yū, ū)

[
zξ

ū,ūζ−ū
− zū,ūζ−ū

]
dx

∣∣∣
≤ CL,MC2∥ξ∥L2(Ω)∥zξ

ū,uζ−ū
∥L2(Ω) + ∥ψM ∥L2(Ω)∥zξ

ū,ūζ−ū
− zū,ūζ−ū∥L2(Ω)

≤ C2(CL,M + C2Cf,M ∥ψM ∥L2(Ω))∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω).

The term J2 is estimated by using again the mean value theorem and Lemma
5.1

|J2| ≤
∥∥∥∂L
∂u

(yξ
ū, ū) − ∂L

∂u
(yū, ū)

∥∥∥
L∞(Ω)

∥ūζ − ū∥L1(Ω)

≤ C2CL,M ∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω).

To estimate I2 we write

I2 =
ˆ

Ω

[∂2L

∂y2 (x, yξ
uθ
, uθ) − ∂2L

∂y2 (x, yuθ
, uθ)

]
(zξ

uθ,ūζ−ū
)2 dx

+
ˆ

Ω

[
puθ

∂2f

∂y2 (x, yuθ
) − pξ

uθ

∂2f

∂y2 (x, yξ
uθ

)
]
(zξ

uθ,ūζ−ū
)2 dx

+
ˆ

Ω

[∂2L

∂y2 (x, yuθ
, uθ) + puθ

∂2f

∂y2 (x, yuθ
)
][

(zξ
uθ,ūζ−ū

)2 − z2
uθ,ūζ−ū

]
dx

+ 2
ˆ

Ω

[∂L
∂u

(x, yξ
uθ
, uθ) − ∂L

∂u
(x, yuθ

, uθ)
]
zξ

uθ,ūζ−ū
(ūζ − ū) dx

+ 2
ˆ

Ω

∂L

∂u
(x, yuθ

, uθ)
[
zξ

uθ,ūζ−ū
− zuθ,ūζ−ū

]
(ūζ − ū) dx =

5∑
i=1

Ki.

For the first term, we find by Theorem 2.1, Lemma 2.2 and Lemma 5.1

|K1| ≤ LipL,MC2C∞∥ub∥L∞(Ω)∥ξ∥L2(Ω)∥ūζ − ū∥2
L1(Ω).
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The estimate for the second and third terms follows by Theorem 2.1, Lemma
2.2, Lemma 5.1 and (5.3)

|K2| ≤ C2

(
Cf,MC∞ + Lipf,M C̄

)
∥ξ∥L2(Ω)∥ūζ − ū∥2

L1(Ω),

|K3| ≤ 2
(
CL,M + C̄Cf,M

)
∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω).

For the fourth and fifth terms using the same arguments, we find

|K4| ≤ CL,MC2
∞C̄∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω),

|K5| ≤ 2C̄C2
2 ∥ub∥L∞(Ω)∥Lb(,̇yuθ

(·))∥L∞(Ω)∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω).

Summarizing, we conclude the existence of a positive constant c such that

|I2| ≤ c∥ξ∥L2(Ω)∥ūζ − ū∥L1(Ω).

Further, it holds I3 − |I1| − |I2| ≤ (∥ρ∥L∞(Ω) + ∥ξ∥L2(Ω))∥ū− ūζ∥L1(Ω). By the
estimates on terms I1, I2 and I3 we conclude the existence of a positive constant
c with

∥ūζ − ū∥1+ 1
γ

L1(Ω) ≤ c(∥ρ∥L∞(Ω) + ∥ξ∥L2(Ω))∥ū− ūζ∥L1(Ω),

for all ∥ūζ − ū∥L1(Ω) < α.

6 Discrete model and error estimates
We come to the main part of this manuscript. The goal is to prove error
estimates for the numerical approximation under mainly Assumptions 3 for
γ ∈ (n/(n + 2), 1]. Additionally, we consider assumptions introduced in [4]. In
a remark at the end of the next subsection, we address assumptions that allow
us to admit γ ∈ (0, 1].

6.0.1 The finite element scheme

The finite element scheme we consider, is close to the one in [7], we also refer to
[1] for an overview of the finite elements method. In this section, we consider Ω
to be convex and let {τh}h>0 be a quasi-uniform family of triangulations of Ω̄.
Denote Ω̄h = ∪T ∈τh

T and assume that every boundary node of Ωh is a point of
Γ. Further, suppose that there exists a constant CΓ > 0 independent of h such
that the distance dΓ satisfies dΓ(x) < CΓh

2 for every x ∈ Γh = ∂Ωh. Then we
can infer that the existence of a constant CΩ > 0 independent of h such that

|Ω \ Ωh| ≤ CΩh
2, (6.1)

where | · | denotes the Lebesgue measure. We define the finite-dimensional space

Yh = {zh ∈ C(Ω̄) : zh|T ∈ P1(T ) ∀T ∈ τh and zh ≡ 0 on Ω \ Ωh},
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where Pi(T ) denotes the polynomials in T of degree at most i.
For u ∈ L2(Ω), the associated discrete state is the unique element yh(u) ∈ Yh

that solves

a(yh, zh) +
ˆ

Ωh

f(x, yh)zh dxdt =
ˆ

Ωh

uzh dx ∀zh ∈ Yh, (6.2)

where
a(y, z) =

n∑
i,j=1

ˆ
Ω
aij∂xi

y∂xj
z dx ∀y, z ∈ H1(Ω).

The proof of the existence and uniqueness of a solution for (6.2) is standard.

Lemma 6.1 [7, Lemma 3] There exists a constant c > 0, which depends on the
data of the problem but is independent of the discretization parameter h, such
that for every u ∈ U

∥yh(u) − yu∥L2(Ω) ≤ ch2, (6.3)
∥yh(u) − yu∥L∞(Ω) ≤ ch2| log h|2. (6.4)

The set of feasible controls for the discrete problem is given by

Uh := {uh ∈ L∞(Ωh) : uh|T ∈ P0(T ) ∀T ∈ τh}.

By Πh we denote the linear projection onto Uh in the L2(Ωh) by

(Πhu)|T = 1
|T |

ˆ
T

udx, ∀T ∈ τh.

By uh ⇀ u weak* in L∞(Ω) we mean, as in [7], the followingˆ
Ωh

uhv dx →
ˆ

Ω
uv dx ∀ v ∈ L1(Ω).

Lemma 6.2 [7, Lemma 4] Given 1 < p < ∞ there exists a positive constant
Kp that depends on p and Ω but is independent of h such that

∥u− Πhu∥W −1,p(Ωh) ≤ Kph∥u∥Lp(Ω) ∀ u ∈ Lp(Ω).

We define
Jh(u) :=

ˆ
Ωh

L(x, yh(u), u) dx.

The discrete problem is given by

min
uh∈Uh

Jh(uh), (6.5)

where Uh := Uh ∩ U . This set is compact and nonempty and the existence of a
global solution of (6.5) follows from the continuity of Jh in Uh. For u ∈ L2(Ω),
the discrete adjoint state ph(u) ∈ Yh is the unique solution of

a(zh, ph) +
ˆ

Ωh

∂f

∂y
(x, yh(u))phzh dx =

ˆ
Ωh

∂L

∂y
(x, yh(u))zh dx ∀zh ∈ Yh. (6.6)
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One can calculate that

J ′
h(u)(v) =

ˆ
Ωh

ph(u)v dx.

A local solution of (6.5) satisfies the variational inequality

J ′
h(ūh)(uh − ūh) ≥ 0 ∀uh ∈ Uh.

We consider the next two assumptions on the optimal control problem that
were first introduced in [4]. They present a weakening of Assumption 3 and are
applicable to obtain state stability for possibly non-bang-bang optimal controls.

Assumption 4 Let ū ∈ U and β ∈ {1/2, 1} be given. There exist positive
constants c and α with

J ′(ū)(u− ū) + βJ ′′(ū)(u− ū)2 ≥ c∥zū,u−ū∥2
L2(Ω)

for all u ∈ U with ∥u− ū∥L1(Ω) < α.

Assumption 5 Let ū ∈ U and β ∈ {1/2, 1} be given. There exist positive
constants c and α with

J ′(ū)(u− ū) + βJ ′′(ū)(u− ū)2 ≥ c∥zū,u−ū∥L2(Ω)∥u− ū∥L1(Ω)

for all u ∈ U with ∥u− ū∥L1(Ω) < α.

6.1 Discretization with piecewise constant controls
We prove that under Assumption 3, the estimates in Theorem 6.5 hold true.
Additionally, it is possible to derive error estimates under Assumptions 4 and
5.

Lemma 6.3 Consider ū ∈ U satisfying the first order optimality condition and
define σ̄ := pū + Lb(x, yū). Assume that σ̄ is Lipschitz on Ω, then

J ′(ū)(Πhū− ū) ≤ Lipσ̄h∥ū− Πhū∥L1(Ω).

We argue as in [7, Lemma 7]. The next lemma is crucial to obtain error
estimates for the numerical approximation without assuming the structural as-
sumption.

Lemma 6.4 We assume that pū +Lb(x, yū), corresponding to the reference so-
lution ū, is Lipschitz continuous on Ω and we select β = 1/2 in the assumptions
referenced below.

1. Let ū ∈ U satisfy Assumption 3. Then there exists a positive constant c
independent of h, such that for h sufficiently small

∥ū− Πhū∥L1(Ωh) ≤ ch. (6.7)
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2. If ū ∈ U satisfies Assumption 5, there exists a positive constant c indepen-
dent of h such that for h sufficiently small

∥yū − yΠhū∥L2(Ω) ≤ ch. (6.8)

3. Finally, if ū ∈ U satisfies Assumption 4, there exists a positive constant c
independent of h such that for h sufficiently small

∥yū − yΠhū∥L2(Ω) ≤ ch
1
2 . (6.9)

The assumption in Lemma 6.3, that pū + Lb(x, yū) is Lipschitz, is not a big
constraint. By the assumptions in this section, the adjoint state is already
Lipschitz. We begin proving (6.7). Let ū ∈ U satisfy Assumption 3, then there
exist positive constants c and α such that for h with ∥Πhū− ū∥L1(Ωh) < α

J ′(ū)(Πhū− ū) + βJ ′′(ū)(Πhū− ū)2 ≥ c∥Πhū− ū∥2
L1(Ωh).

We remark that there exists h0 such that condition ∥Πhū − ū∥L1(Ωh) < α is
satisfied for all h < h0. This follows since ∥Πhū − ū∥L2(Ωh) → 0. By Lemma
6.3, we obtain

J ′(ū)(Πhū− ū) =
ˆ

Ω
(pū + Lb(x, yū))(Πhū− ū) dx ≤ Liph∥Πhū− ū∥L1(Ω).

The right-hand side is further estimated employing the Peter-Paul inequality
for some ε < c, where c is the constant appearing in condition (3)

Liph∥Πhū− ū∥L1(Ω) ≤ (Liph)2

2ε +
ε∥Πhū− ū∥2

L1(Ω)

2 . (6.10)

Given n < p, using [7, Lemma 1, Lemma 4], the second variation is estimated
by

J ′′(ū)(Πhū− ū)2 ≤
∥∥∥∂2L

∂2y
(·, yū) − pū

∂2f

∂2y
(·, yū)

∥∥∥
L∞(Ω)

∥zū,Πhū−ū∥2
L2(Ω)

≤ Cp(C̄Cf,M + CL,M )∥Πhū− ū∥2
W −1,p ≤ CpK

2
p(C̄Cf,M + CL,M )h2.

Now, the first claim follows by absorbing the second term of (6.10). The proofs
of the second and third claims follow by the same arguments from the estimate

J ′(ū)(Πhū− ū) + J ′′(ū)(Πhū− ū)2

≤
(

Lipσ̄h+
∥∥∥∂2L

∂2y
(·, yū) − pū

∂2f

∂2y
(·, yū)

∥∥∥
L∞(Ω)

∥Πhū− ū∥W −1,p(Ω)

)
∥Πhū− ū∥L1(Ω).

Theorem 6.5 Let ū be a local solution of (P). Consider the constant α corre-
sponding to the Assumptions 3, 4 or 5. Consider discrete controls ūh ∈ Uh that
satisfy ∥ūh − Πhū∥L1(Ωh) < α and

ch2 ≥ Jh(ūh) − Jh(Πhū). (6.11)

for some positive constant c. We recall that ȳ is the solution of (1.4) and y(ūh)
denotes the solution of (6.6) for ūh.
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1. Let Lb = 0 in the objective functional and let ū satisfy Assumption 4.
Then, there exists a positive constant c independent of h such that

∥y(ūh) − ȳ∥L2(Ω) ≤ c
√
h. (6.12)

2. Let Lb = 0 in the objective functional and let ū satisfy Assumption 5.
Then, there exists a positive constant c independent of h such that

∥y(ūh) − ȳ∥L2(Ω) ≤ ch. (6.13)

3. Let ∂Lb

∂y = 0 in the objective functional and let ū satisfy Assumption 3(β =
1/2). Then, there exists a positive constant c independent of h such that

∥ūh − ū∥L1(Ωh) + ∥y(ūh) − ȳ∥L2(Ω) ≤ chγ . (6.14)

If ∂Lb

∂y ̸= 0 we obtain the estimate

∥ūh − ū∥L1(Ωh) + ∥y(ūh) − ȳ∥L2(Ω) ≤ ch
(1+min{1/r,1/γ})γ

γ+1 . (6.15)

It is clear that the condition (6.11) is satisfied if the controls ūh are minimizers
of the corresponding discrete problems. We notice that for a discrete control
ūh that satisfies the assumptions of the theorem, we have for some positive
constant c

J(ūh) − J(ū) =
[
J(ūh) − Jh(ūh)

]
+

[
Jh(ūh) − Jh(Πhū)

]
+

[
Jh(Πhū) − J(Πhū)

]
+

[
J(Πhū) − J(ū)

]
= I1 + I2 + I3 + I4 ≤ ch1+γ .

We give a short argument why this is true. For the second term, it follows from
the fact that I2 ≥ −ch2 by (6.11). For the term I3 we use the estimates in
Lemma 6.1 and (6.1), to obtain

I3 =
ˆ

Ω
L(x, yΠhū,Πhū) dx−

ˆ
Ωh

L(x, y(Πhū),Πhū) dx

=
ˆ

Ω\Ωh

L(x, yΠhū,Πhū) dx+
ˆ

Ωh

L(x, yΠhū,Πhū) − L(x, y(Πhū),Πhū) dx

≥ −h2
(∥∥∥∂La

∂y
(x, yθ)

∥∥∥
L2(Ω)

+
∥∥∥∂Lb

∂y
(x, yϑ)Πhū

∥∥∥
L2(Ωh)

+ CΩ∥L(x, yϑ,Πhū)∥L∞(Ω)

)
.

For the first term, similar arguments guarantee the estimate

I1 = −
ˆ

Ω\Ωh

L(x, yūh
, ūh) dx+

ˆ
Ωh

L(x, y(ūh), ūh) − L(x, yūh
, ūh) dx

≥ −h2
(∥∥∥∂La

∂y
(x, yθ)

∥∥∥
L2(Ω)

+
∥∥∥∂Lb

∂y
(x, yϑ)ūh

∥∥∥
L2(Ωh)

+ CΩ∥L(x, yūh
, ūh)∥L∞(Ω)

)
.
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The last term can be estimated using Lemma 6.4 and the fact that by Lemma
6.2, ∥yΠhū − ȳ∥L2(Ω) ≤ c∥Πhū− ū∥W −1,2 ≤ K2h∥ū∥L2(Ω). To shorten notation,
we denote by La,y and Lb,y the derivatives of La and Lb by y. By Taylor’s
theorem

J(Πh(ū)) − J(ū) =
ˆ

Ω
L(x, yΠh(ū),Πh(ū)) − L(x, yū, ū) dx

=
ˆ

Ω
La,y(x, yθ)(yΠhū − yū) dx

+
ˆ

Ω
Lb,y(x, yϑ)(yΠhū − yū)Πhūdx+

ˆ
Ω
Lb(x, yū)(Πhū− ū) dx

=
ˆ

Ω
La,y(x, yū)(yΠhū − yū) dx+

ˆ
Ω
Lb,y(x, yū)(yΠhū − yū)ūdx

+
ˆ

Ω
Lb(x, yū)(Πhū− ū) dx+

ˆ
Ω

(La,y(x, yθ) − La,y(x, yū))(yΠhū − yū) dx

+
ˆ

Ω
(Lb,y(x, yϑ) − Lb,y(x, yū))(yΠhū − yū)Πhūdx

+
ˆ

Ω
Lb(x, yū)(Πhū− ū) dx+

ˆ
Ω
Lb,y(x, yū)(yΠhū − yū)(Πhū− ū) dx.

Thus,

J(Πh(ū)) − J(ū)

=
ˆ

Ω
(La,y(x, yū) + Lb,y(x, yū)ū)zū,Πhū−ū dx+

ˆ
Ω
Lb(x, yū)(Πhū− ū) dx

+
ˆ

Ω
(La,y(x, yū) + Lb,y(x, yū)Πhū)(yΠhū − yū − zū,Πhū−ū) dx

+
ˆ

Ω
(La,y(x, yθ) − La,y(x, yū))(yΠhū − yū) dx

+
ˆ

Ω
(Lb,y(x, yϑ) − Lb,y(x, yū))(yΠhū − yū)Πhūdx

+
ˆ

Ω
Lb,y(x, yū)(yΠhū − yū)(Πhū− ū) dx =

6∑
i=1

Ii.

We provide the estimates for (6.14) under Assumption 3. Integration by parts,
Lemma 6.3 and Lemma 6.4 guarantee the existence of a positive constant c with

|I1 + I2| =
ˆ

Ω
(pū + Lb(x, yū))(Πhū− ū) dx ≤ ch1+γ .

The term I3 can be estimated using (2.6) and (6.7)

|I3| ≤ ∥ψM ∥L2(Ω)∥yΠhū − yū∥2
L2(Ω) ≤ ch2.

For the terms I4 and I5, we use (6.7) and the local Lipschitz property of La,y

and Lb,y to infer the existence of a constant c such that |I4|, |I5| ≤ c∥yΠhū −
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yū∥2
L2(Ω) ≤ ch2. Finally, for some number r > n/2, we estimate |I6| ≤ ∥Πhū −

ū∥1+1/r
L1(Ω) ≤ ch1+1/r. If the term I6 is absent we obtain the better estimate

(6.14), if not (6.15) holds. To continue the proof of (6.14), we conclude from
the estimates of the terms Ii, and by Theorem 4.5 the existence of a positive
constant k such that

kh1+γ ≥ J(ūh) − J(ū) ≥ c∥ūh − ū∥1+ 1
γ

L1(Ω), (6.16)

where in (6.16), the constant c is from Theorem 4.4. Now, this is equivalent to

(c/k)
γ

γ+1hγ ≥ ∥ūh − ū∥L1(Ω).

The proofs for the claims (6.12) and (6.13) follow by similar arguments.

Remark 6.6 In the proof of Theorem 6.5, Assumption 3 is used to guarantee
the existence of positive constants c and α such that

J(ūh) − J(ū) ≥ c∥ūh − ū∥1+ 1
γ

L1(Ω)

for all ∥ūh − ū∥L1(Ω) < α. This growth can be obtained under the stronger as-
sumptions of Theorem 4 for all γ ∈ (0, 1]. Thus, the constraint γ ∈ (n/(2+n), 1]
can be weakened to γ ∈ (0, 1] for the cost of considering stronger conditions.

For a numerical example supporting the theoretical error estimate achieved in
this paper, especially for the case γ < 1, we refer to [7].

6.2 Variational discretization
We prove that Assumption 3 with β = 1 is sufficient for approximation error
estimates for a variational discretization. We refer to the [15] for the idea and
introduction of variational discretization. Additionally, we consider Assump-
tions 4 and 5 for β = 1. Although we consider weaker conditions in this paper,
the estimates under the estimates given in Theorem 6.9 below agree with the
estimates in [7, Remark 7] for the variational discretization. For these assump-
tions, we can formulate an analog to Theorem 4.3. For a proof we refer to [4,
Lemma 4.5, Lemma 5.4].

Theorem 6.7 We have the following equivalence.

1. Assumption 4 with β = 1 holds for ū ∈ U .

2. There exist positive constants c and α such that

J ′(u)(u− ū) ≥ c∥zū,u−ū∥2
L2(Ω)

for all u ∈ U with ∥ū− u∥L1(Ω) < α.

Further, it is equivalent
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1. Assumption 5 for β = 1 holds for ū ∈ U .

2. There exist positive constants c and α such that

J ′(u)(u− ū) ≥ c∥zū,u−ū∥L2(Ω)∥ū− u∥L1(Ω) (6.17)

for all u ∈ U with ∥ū− u∥L1(Ω) < α.

Theorem 6.8 [7, Theorem 9] Let ūh denote a solution to (6.5). We denote
by yūh

and pūh
the solution to the continuous state equation and to the corre-

sponding adjoint equation with respect to ūh. By p(ūh) we denote the discrete
adjoint equation corresponding to ūh and ph

ūh
denotes the solution to the follow-

ing equation {
A∗p+ ∂f

∂y (·, ȳh)p = ∂L
∂y (·, y(ūh)) in Ω,

p = 0 on Γ.

Then there the following estimates hold

∥pūh
− ph

ūh
∥L∞(Ω) ≤ ch2 (6.18)

∥p(ūh) − ph
ūh

∥L∞(Ω) ≤ ch2| log h|2. (6.19)

We come to the error estimates for the variational discretization.

Theorem 6.9 Let ūh be a sequence of solutions to the first-order optimality
condition of the discrete problems such that ∥ūh − ū∥L1(Ωh) < α. Here, α is the
constant appearing in Theorem 4.3 or Theorem 6.7 depending on the selected
growth assumption.

1. Let Assumptions 4 be satisfied by ū ∈ U . There exists a positive constant
c such that

∥y(ūh) − ȳ∥L2(Ω) + ∥p(ūh) − p̄∥L2(Ω) ≤ ch. (6.20)

2. Let Assumptions 5 be satisfied by ū ∈ U . There exists a positive constant
c such that

∥y(ūh) − ȳ∥L2(Ω) + ∥p(ūh) − p̄∥L2(Ω) ≤ c(h| log h|)2. (6.21)

3. Let Assumptions 3 be satisfied by ū ∈ U for some γ ∈ (n/(2+n), 1]. There
exists a positive constant c such that

∥ūh − ū∥L1(Ω) + ∥y(ūh) − ȳ∥L2(Ω) + ∥p(ūh) − p̄∥L2(Ω) ≤ c(h| log h|)2γ .
(6.22)

We consider (6.22). Since ūh satisfies the first-order necessary optimality con-
dition of the discrete problem, it holds

0 ≥ J ′
h(ūh)(ūh − ū) = J ′(ūh)(ūh − ū) + J ′

h(ūh)(ūh − u) − J ′(ūh)(ūh − ū),
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and by Theorem 4.3, (4.3)

c∥ūh − ū∥1+ 1
γ

L1(Ω) ≤ J ′(ūh)(ūh − ū) − J ′
h(ūh)(ūh − ū).

We use that ūh = ū on Ω \ Ωh by definition and write

J ′
h(ūh)(ūh − ū) − J ′(ūh)(ūh − ū) =

ˆ
Ωh

(p(ūh) + Lb(x, y(ūh)))(ūh − ū) dx

−
ˆ

Ωh

(pūh
+ Lb(x, yūh

))(ūh − ū) dx = I.

To estimate the term I, we follow similar reasoning as in [7], using (6.4) (6.18),
(6.19) and also using the local Lipschitz property of Lb with respect to y, to
infer

I ≤ CL,M (∥p̄(ūh) − pūh
∥L∞(Ω) + ∥y(ūh) − yūh

∥L∞(Ω))∥ūh − ū∥L1(Ω)

≤ CL,M (∥p(ūh) − ph
ūh

∥L∞(Ω) + ∥ph
ūh

− pūh
∥L∞(Ω))∥ūh − ū∥L1(Ω)

+ CL,M ∥y(ūh) − yūh
∥L∞(Ω)∥ūh − ū∥L1(Ω)

≤ CCL,M (h2 + 2h2| log h|2)∥ūh − ū∥L1(Ω),

for some positive constant C. Altogether, we obtain

∥ūh − ū∥L1(Ω) ≤ CCL,M (h2 + 2h2| log h|2)γ . (6.23)

Applying the estimates (6.3), (6.18) and (6.19) the claim (6.22) holds for the
controls. For the states we use (6.4) to find

∥y(ūh) − yū∥L2(Ω) ≤ ∥y(ūh) − yūh
∥L2(Ω) + ∥yūh

− yū∥L2(Ω)

≤ ch2 + ∥ūh − ū∥L1(Ω)

and the estimate follows from (6.23). For Assumption 5, by (6.17) of Theorem
6.7

c∥ūh − ū∥L1(Ω)∥yūh
− yū∥L1(Ω) ≤ J ′(ūh)(ūh − ū) − J ′

h(ūh)(ūh − ū).

Estimating as before, we obtain the existence of a positive constant c that
satisfies

∥yūh
− yū∥L2(Ω) ≤ c(h2 + h2| log h|2).

By again (6.3), (6.18) and (6.19) the claim (6.21) holds. Finally, consider As-
sumption 4. To estimate the term I, we use (6.18)-(6.19) to find

I ≤ ∥p(ūh) − pūh
∥L2(Ω)∥ūh − ū∥L2(Ω)

≤ (∥p(ūh) − ph
ūh

∥L2(Ω) + ∥ph
ūh

− pūh
∥L2(Ω))∥ūh − ū∥L2(Ω) ≤ 2ch2∥ua − ub∥L∞(Ω),

for some positive constant c. Taking the root, this leads to the estimate ∥yūh
−

yū∥L2(Ω) ≤ ch, and by (6.3), (6.18) and the claim (6.20) holds.
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