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Figure 1: A scanned sketch, vectorized using [FLB16], ε-samples (ε = 0.5) generated using our method, a result of coloring using (updated)
Delaunay Painting algorithm [PMC22], another result after feature-aware meshing with max edge length = 0.1 of bounding box diagonal.

Abstract

By introducing a first-of-its-kind quantifiable sampling algorithm based on feature size, we present a fresh perspective on the
practical aspects of planar curve sampling. Following the footsteps of ε-sampling, which was originally proposed in the context
of curve reconstruction to offer provable topological guarantees [ABE98] under quantifiable bounds, we propose an arbitrarily
precise ε-sampling algorithm for sampling smooth planar curves (with a prior bound on the minimum feature size of the curve).
This paper not only introduces the first such algorithm which provides user-control and quantifiable precision but also highlights
the importance of such a sampling process under two key contexts: 1) To conduct a first study comparing theoretical sampling
conditions with practical sampling requirements for reconstruction guarantees that can further be used for analysing the upper
bounds of ε for various reconstruction algorithms with or without proofs, 2) As a feature-aware sampling of vector line art that
can be used for applications such as coloring and meshing.

CCS Concepts
• Computing methodologies → Point-based models; Parametric curve and surface models;

1. Introduction

Several algorithms have addressed curved reconstruction from un-
structured 2D points, sometimes equipped with theoretical guaran-
tees under provided sampling conditions. Usually, these conditions
relate to the number of sample points required for a provably cor-
rect reconstruction and are not necessarily verified by the given in-
put to the algorithm. The most common sampling condition, called
ε-sampling [ABE98], uses the local feature size to capture the fea-
tures of the curve in a localized manner (details in Section 3).

This work is motivated by a fundamental question in this con-
text: How many points are necessary (as a function of the geo-
metric features of the curve) to represent a curve such that its fea-
tures can be consistently preserved through a relevant reconstruc-
tion procedure? The main practical consequence of such a repre-
sentation is to design a sampling strategy relating to a generic re-

construction algorithm through a specific sampling condition, i.e.
ε-sampling, that ensures a minimum sample points budget while
retaining the reconstruction fidelity. Sampling fewer points from a
curve reduces processing and storage costs. Additionally, certain
applications, such as meshing, require working with discrete points
(2D) rather than continuous curves. Therefore, intelligent sampling
of the continuous curve while preserving its features becomes es-
sential. Moreover, specific applications, such as sketch coloring,
require Delaunay-conforming curves. In such cases, random sam-
pling is insufficient, necessitating intelligent sampling, which con-
stitutes the primary objective of this paper.

This study also serves as a foundation for an analogous surface
sampler to better handle common representation issues, such as re-
dundant vertices in triangulations, from a sampling perspective.

The main contributions of this work can be summarised as follows:
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• An arbitrarily precise ε-sampling algorithm for smooth curves.
• A practical implementation and analysis of the state-of-the-art

reconstruction method [BB22] related to ε-sampling guarantees.
• The first evaluation analysis of ε upper bounds for nine existing

curve reconstruction algorithms based on 45,000 experiments.
• The first study comparing theoretical sampling conditions with

practical sampling requirements for reconstruction guarantees.
• Quantitative evaluation of these curve reconstruction algorithms

on a large number of real-world datasets.
• Applications of our sampler for Vector line art coloring and finite

element simulations based on Delaunay conforming meshing.

After some preliminaries, we provide an overview of related works,
followed by a description of our ε-sampler and a specific imple-
mentation in Section 3. Section 4 reports the results of the ε-
analysis and the benchmark for nine existing curve reconstruction
algorithms. Moreover, possible applications of our proposed sam-
pler in vector line art and finite element meshing simulations are
presented in Section 5, before concluding with an outlook on fu-
ture works. All source code is available at https://github.
com/stefango74/sampling2d.

Preliminaries

Let us recall some preliminaries in a formal but concise manner.
Let C be a set of simple closed smooth planar curves. The medial
axis M is the set of all points R2 having at least two closest points
in C [Blu67]. The local feature size lfs(p) at a point p ∈ C is the
distance from p to its closest point in M of C [Rup93]. A curve C is
ε-sampled by a point set S if every point p ∈C is closer to a sample
s ∈ S than the ε-fraction of its local feature size lfs(p), see Fig. 2.

Note that measuring the geometric features of the curve globally,
i.e., not just local aspects such as curvature, is classically linked to
the computation of the local feature size at curve points, which it-
self requires determining the medial axis of the curve. To efficiently
handle such computation, we will use the fact that many generic
curves can be represented or approximated well by piece-wise
Bézier curves [Sch07], as shown by BÉZIERSKETCH [DYH∗20].
We recall that Bézier curves of degree n are defined as:

Bn(t) =
n

∑
i=0

(
n
i

)
t i(1− t)n−i pi, t ∈ [0,1] (1)

By their higher degree, cubic Bézier curves also have higher
computational complexity than circular arcs and quadratic Bézier
curves, even if fast evaluation algorithms exist [WC20], so their
exact medial axis computation is challenging. For our sampling
context, we suggest a parameter-based discretization for estimat-
ing the local feature size, and a parameter-dependent analysis of its
accuracy. This leads to an efficient piece-wise linear approximation
of the medial axis for cubic Bézier curves with C1 tangent continu-
ity (ensuring the smoothness), which offers a user-controllable and
quantifiable precision to our ε-sampling procedure.

2. Related Work

We discuss three categories of relevant works here: sampling algo-
rithms for planar curves, works related to the medial axis computa-
tion, and curve reconstruction algorithms linked to ε-sampling.

Figure 2: Example curve sampled with ε=0.33, 0.66, and 1.

2.1. Sampling of Curves

The sampling of curves has been regarded via different angles in
the literature based on error measures, curvature, arc length, crit-
ical points, or their combinations - see [PS18] for more details.
While distributing points based on absolute error measures (such
as RMSE) cannot adapt to small features, local measures like cur-
vatures struggle to capture the global characteristics of the curve.

To the best of our knowledge, the sampling shown in [OMW16]
is the only work that considers feature size while sampling. Unfor-
tunately, it suffers from drawbacks such as limited precision (using
single floats, which in our experiments show a large error of 10−5

in the normal lengths computation), limit on the number of samples
(as it has a quadratic runtime complexity w.r.to the sample count)
on the discretized medial axis, and lacks an error analysis.

2.2. Medial Axis Computation

The medial axis is, in general, hard to compute since it has higher
algebraic complexity than the curve itself, resulting in instability
of computation. In other words, small perturbations on the curve
may yield large changes in the medial axis. Therefore, algorithms
found in the literature usually rely on approximations. Aichholzer
et al. [AAA∗09] approximate free-form planar curves by a collec-
tion of circular arcs in order to quickly compute the exact me-
dial axis of this approximated curve using a divide-and-conquer
approach. However, results show high and very localized errors
when approximating curves based on Bézier splines. Yang et al.
[YBM04] propose an algorithm that also works in 3D and fills the
boundary with partially overlapping balls sampling an approximate
medial axis and connecting them using corresponding relations on
the boundary. Its computational complexity is proportional to the
size of this approximate medial axis instead of the boundary, but its
accuracy is limited by the number of balls. [RG03] applies bound-
ary marching with user-defined step size to approximate the medial
axis instead of tracing bisectors to gain more efficiency in identi-
fying the branching points, while no error analysis is provided. Let
us also refer to this survey [ABE09] discussing the challenges and
new solutions for medial axis approximation. For our use case, we
require complex input as used in real-world examples, such as cu-
bic Bézier curves, and an approximation of the output constructed
in reasonable runtime with a quantifiable error.

2.3. Curve Reconstruction Algorithms with Guarantees

In the literature, several curve reconstruction algorithms have been
proposed together with theoretical guarantees of how many sam-
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ples are required for successfully reconstructing the original curve.
These requirements are usually based on the ε-sampling condition,
its variants or extensions (in 3D), which gives a quantifiable no-
tion of sampling density as a function of the local feature size. As
the next paragraph summarises, many subsequent works have tried
to give algorithms that can guarantee correct connectivity under
sparser ε-samples (higher ε).

CRUST [ABE98] was the first algorithm with such a proof, re-
quiring ε < 0.252. NNCRUST [DK99] simplified both their algo-
rithm and the proof, enhancing it to ε < 1

3 . CCRUST [DMR00] also
extends CRUST to support open and multiply connected curves.
However, their guarantee is more complex as it involves addi-
tional parameters. GATHAN [DW01] is the first algorithm that han-
dles sharp corners in practice. Although it comes with a ε < 0.5-
sampling condition suggestion, no theoretical proof is provided. As
a follow-up work, GATHANG [DW02] adds a distance-based sam-
pling condition to finally prove the reconstruction of sharp corners
for ε < 0.5. Later, LENZ [Len06] claims ε < 0.48, but no proof is
given for that sampling condition. This long quest continues with
the proof of CONNECT2D [OM13] for ε < 0.5 but an additional
limit on adjacent edge length ratio of u < 1.609, leading to a higher
number of requires samples. Then, HNNCRUST [OMW16] man-
ages to prove an enhanced limit of ε < 0.47 while also introduc-
ing a new relatable ρ-sampling condition that works better on re-
gions with little curvature, requiring even fewer points at the end.
Both CRAWL [PM16] and PEEL [PMM18] only prove generic ε-
sampling without a specific limit constant. SIGDT [MOW22] ex-
tends the result of CONNECT2D by proving ε < 0.5 with an en-
hanced u < 2. For more details, we refer to the curve reconstruction
survey and benchmark [OPP∗21] where many of these algorithms
are evaluated w.r.t. real-world, and ε-sampled curves. In most re-
construction scenarios, one can globally notice the lack of upper
bound analysis (naturally challenging) for ε. The recently proposed
algorithm COMPATIBLECRUST [BB22] proves the currently best
limit of ε < 0.66, together with a counterexample of ε = 0.72 that
is shown not to be reconstructible unambiguously, and therefore
limiting the upper bound of ε-sampling.

Despite all the existing theoretical proofs, no practical sampling
strategy was available before this current work to precisely eval-
uate the proposed reconstruction methods under quantifiable sam-
pling conditions. Thanks to the sampling control provided by our ε-
sampler, we provide for the first time an evaluation of the tolerated
sampling sparsity of the state-of-the-art curve reconstruction meth-
ods in the context of ε-sampling. This is done through a detailed
analysis of their corresponding upper bounds for ε, see Section 4.1.

3. Our method: ε-Curve-Sampler (ECS)

We propose a quantifiable ε-sampling framework in three steps.

1. Medial axis approximation by polylines
2. Local feature size estimation
3. ε-samples generation

We approximate the medial axis by a set of polylines using a dis-
crete walkaround along the curve, leading to a parameter-based es-
timation of the local feature size. To progressively generate sam-
ples, one generic strategy is to grow feature-sized disks along the

Figure 3: Stepping along curve C at foot points fi to determine
corresponding points mi on the medial axis M (red), which are con-
nected along the walk to form a set of differently colored medial
polylines p0, p1, p2 as a piece-wise linear approximation M′ of M.

curve touching the previously generated sample as long as it fulfils
the ε-sampling condition and defines the other intersection as the
next sample. An efficient implementation is provided for the spe-
cific case of approximation by cubic Bézier curves. We elaborate
later on how it can be adapted to curves that are not C1 continuous.

3.1. Medial Axis Approximation by Polylines

Given a smooth curve C, the medial axis branches out into its fea-
tures, forming a graph that would require a tree-like representation.
However, we observe that in order to approximate the local feature
size of C, branching vertices of the medial axis do not need to be
handled globally. In other words, given a prior precision parameter,
a local one-sided polyline approximation of (the branches of) the
medial axis is sufficient to estimate the local feature size (lfs). To
ensure this, we assume that the default stepping parameter is small
enough with respect to the finest feature of the curve (the so-called
reach [Fed59]). Then none of the features of the curve are missed
while stepping and generating foot points along the curve, knowing
that the exact local feature size computation in a discrete setting is
an ill-posed problem by definition. Based on that observation, we
suggest the following procedure to efficiently compute the approx-
imated medial polylines:

We step along the given curve C in parametric intervals to de-
termine foot points fi. For each foot point fi, the corresponding
point mi on the medial axis M is then computed as the center of
the largest disk Di that is tangent to C at fi and empty of points in
C. Implementation details on how this is computed by intersecting
with each curve segment are given in the supplement, Section 7.1.
Successive mi are connected as long as they remain on the same
side of the curve since a change in the sign of the curvature will
place the center of the disk on the opposite side of the curve. Since
the generation of medial axis points follows the curve segments,
each medial axis segment will be sampled twice (from both sides
of the curve as we walk around it). As mentioned before, in the con-
text of local feature size estimation, there is no need to merge such
one-sided polylines nor to handle their branching connectivity. We
only store the order of the generated points and note their orien-
tation (inside or outside of the curve). In this efficient encoding,
two neighbor medial points are connected unless their orientation
differs. This forms the linear piece-wise set of polylines M′ that
approximates M (Figure 3). In Section 3.4, we show an analysis
of this approximation error that, by definition, depends on the step
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Figure 4: Sampling: Starting from s0, fk is the farthest foot point
that fulfills the ε-sampling condition, |s0, fk| < εlfs( fk). We then
bisect the interval I0 = [ fk, fk+1] to compute the more precise far-
thest x∈C with |s0,x|< εlfs(x), and then determine the next sample
point s1 as the second intersection of the disk D(x,εlfs(x))∩C.

size between foot points, which is assumed small enough with re-
spect to the minimum lfs of the points on the curve (the reach). This
parameterization-based precision control is practically convenient
to preserve the features of the cubic Bézier curves (which have at
most two inflection points).

3.2. Local Feature Size Estimation

For any point pi ⊂ C, the local feature size lfs(pi), being defined
as the distance of pi to the medial axis M, can be instead estimated
as the distance of pi to the set of medial polylines M′. For this, let
V (M′) denote the set of vertices of M′, ni be the nearest neighbor
of pi in V (M′). We can then reduce the computation of the closest
point of pi to M′ to the incident edges to ni in M′. There are at most
two of those, based on our polyline-based representation of M′. The
distance of pi to M′ is then simply obtained by a projection of pi
onto those edges and computing the minimum distance to pi.

3.3. Generating ε-Samples on a Smooth Curve

We aim to distribute samples on the curve C so that the ε-sampling
condition is fulfilled everywhere and the geodesic distance between
all pairs of consecutive samples is maximized to generate the fewest
samples possible. Therefore, starting with a sample s0 ∈C, we want
to determine the farthest point s1 ∈ C along a consistent direc-
tion such that for any point xi on the curve segment ]s0,s1[, the
ε-sampling condition is fulfilled.

Since we cannot determine s1 with a closed-form computation
based on s0, we step along C in parametric intervals at the sub-
sequent foot points f j (reused from the medial axis computation)
starting from fi = s0 to test the sampling condition. To achieve this,
first, we want to find the fk which is geodesically farthest from s0

and still fulfils the | fk,s0|< εlfs( fk) condition. |x,s0|
εlfs(x) is monotonic

at least for some time (for |x− s0|< δ for some δ > 0). This is why
you need a fine enough stepping time. This stepping parameter n
was chosen carefully to approximate well within the numerical pre-
cision of the double float range, see Table 1. Since foot points are
only pre-computed at discrete intervals, we further bisect the curve
interval I0 = [ fk, fk+1] to locate the point x ∈ I0 with maximum

count time MAσ lfsσ distσ
[OMW16] 10 0.004 0.018 0.0459 0.706
[OMW16] 100 0.051 0.008 0.0429 0.491
[OMW16] 1000 4.786 0.112 0.1208 0.482
[OMW16] 10k 477.237 0.272 1.998 0.612
Ours 10 0.016 1.38e-5 0.0026 0.212
Ours 100 0.235 2.55e-5 0.0006 0.121
Ours 1000 3.329 1.46e-6 0.0005 0.097
Ours 10k 44.405 - - -

Table 1: Sample count per Bézier curve segment and total runtime
(in seconds) for COMPLEX curve, and comparing with Ours 10k
samples for ours and inaccurate algorithm [OMW16]: RMSE of
medial axis M, local feature size, and distance between subsequent
samples as a function of the longest curve segment hull diagonal.

Figure 5: Example curves consisting of cubic Bézier segments:
BUNNY, COMPLEX and SPIRAL.

|x,s0|< εlfs(x) iteratively, up to a specified precision (Fig. 4). The
next sample s1 is then located at the second intersection of the disk
D(x,εlfs(x)) with the curve C.

3.4. Error and Runtime of ε-Sampling Cubic Bézier Curves

In this section, we analyze the runtime and precision of our pro-
posed sampler, including medial axis and local feature size ap-
proximation, to highlight the tradeoff between precision and ef-
ficiency and show our advantage over the early sampler proto-
type [OMW16] that has also been used in this benchmark for the
generation of test data [OPP∗21].

Medial axis: We sample the medial axis with the desired sam-
pling density and connect the samples as sets of polylines. Then,
we measure the distance of the ground truth samples to that curve
by locating the closest vertex of the curve with a nearest-neighbor
search algorithm. Finally, we determine whether their incident
edges contain a point that is closer than that vertex. The computa-
tional complexity is O(kn log n

k ) for k curve segments and n foot
points in our implementation. Note that in our experiments, the
value of k is relatively small. We additionally reduce the run-time
several times by bounding the curve segments with their convex
hull (see hull test in Table 2). However, for larger curves, the com-
plexity can easily be reduced to O(n log n) by using a kd-tree for
the bounded segments.

Local feature size and sampling: We compare the local feature
size directly at the sampled foot points that are contained in both
sample sets, with a computational complexity O(n log n), for n foot
points, since we use a kd-tree for nearest neighbor lookup. How-
ever, the computational complexity of sample generation is O(n).

Runtimes: Overall, the runtime is bounded by the medial
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Curve segments runtime no hull test with Eigen
BUNNY 68 0.64 2.22 4.52
COMPLEX 108 4.36 10.76 26.20
SPIRAL 152 3.00 13.91 17.86

Table 2: Run times in seconds for several curves, with their Bézier
curve segment count, without bounding hulls and using Eigen lib.

axis/lfs computation cost, which is O(n log n). We also show run-
times for some curve examples (see Figure 5) in Table 2 and the
advantage of the specialized quintic solver over the general Eigen
library [eig], as well as some results without curve bounding hulls.

Precision setting Since it is infeasible to compute the exact me-
dial axis and, subsequently, the local feature size, we will evalu-
ate their precision using an extremely dense sampling of 10,000
samples per Bézier curve segment as ground truth. This permits
comparing with sampling densities that can be run in a reasonable
time for the brute-force search and shows their precision/runtime
trade-off (Table 1). The analysis shows that the precision increases
significantly from 10 to 100 but less so on to 1000 samples per seg-
ment. Thus, we used 1000 samples per curve segment in our setting
(n = 1000k). Comparing with the prototype sampler [OMW16],
one can see that we increased the precision of the lfs computation
by orders of magnitude while reducing the time complexity from
quadratic to logarithmic, subsequently enabling a much more pre-
cise ε-sampling of the curve, with a clear quality/runtime tradeoff.

4. Reconstruction guarantees: from theory to practice

The provided feature-aware quantifiable sampling algorithm allows
us to analyze for the first time, the performance of the existing re-
construction methods, under supervised ε-sampling settings, where
the order of the samples on the original curve is recovered accu-
rately as in the ground truth. This is a remarkable contribution in
the context of curve reconstruction to evaluate the quality of the
known theoretical bounds on ε and to compare the practical perfor-
mance of existing methods in terms of guarantees under supervised
and quantifiable sampling conditions on input. As we will see, this
evaluation confirms that the proven guarantees are often too weak
compared to what can be reconstructed in practice. The best theo-
retical bound for ε was recently provided in the theory-only algo-
rithm COMPATIBLECRUST [BB22] for ε < 0.66, together with a
limit example of ε = 0.72 for which no unambiguous curve can be
reconstructed. In order to have a first ε-sampling-based evaluation
of the state-of-the-art methods, we have implemented COMPATI-
BLECRUST to complete the whole range of existing codes contain-
ing nine reconstruction algorithms.

Our evaluation settings sample the space of ε ∈ [0.5,1] to gen-
erate a rich set of input point configurations for our experiments.
Using these inputs with various quantifiable sampling properties,
we perform an evaluation study that allows us to limit the upper
bound of ε, closely approaching the theoretical maximum of 0.72.

We also observe how well reconstruction works in practice even
if the guarantee is not fulfilled. Finally, we show how the theoretical
state-of-the-art algorithm COMPATIBLECRUST performs in prac-
tice on challenging real-world datasets, using the established curve

reconstruction benchmark [OPP∗21] to determine the percentage
of the correctly reconstructed curves (Figure 6). All experiments
were run on an AMD Ryzen 7 5800X 8-Core with 4.1 GHz.
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Figure 6: Benchmark with 2000+ real-world curves [OPP∗21].

4.1. Analysis: Upper Bounds of Algorithms for ε-Sampling

We sample a single curve representative of various features (with
differing scales, also opposing each other, and nested, see Figure
5, center) with ε-sampling of ε ∈ [0.5,1] of step size 0.01, and
1000 steps per cubic Bézier curve segment. In order to augment
the number of point configurations, we also change the start of the
sampling of that curve to varying offsets in steps of 0.01 of the
parametric length of the entire curve. This results in 5,000 sampled
point sets that cover a very wide range of point configurations
through the density and start point variations, equivalent to testing
many individual point sets (an entirely different set from the
real-world data sets evaluated in Figure 6). Therefore, in total we
run 45,000 experiments for the following reconstruction methods:
CONSERVATIVECRUST, COMPATIBLECRUST, CONNECT2D,
CRAWL, CRUST, HNN-CRUST, NN-CRUST, PEEL, and SIGDT.

Algorithm lower ε upper ε top ε valid
CONSERVATIVECRUST - < 0.5 0.90 27%
COMPATIBLECRUST 0.66 0.74 0.92 62%
CONNECT2D - < 0.5 < 0.5 0%
CRAWL - < 0.5 0.51 0%
CRUST 0.25 0.60 0.85 49%
HNN-CRUST 0.47 < 0.5 0.95 12%
NN-CRUST 0.33 < 0.5 0.71 47%
PEEL - 0.66 0.79 41%
SIGDT - < 0.5 0.73 4%

Table 3: Analysis: known lower bounds for ε (existing proofs),
practical upper bounds for ε (based on our experiments) for correct
reconstruction under ε-sampling setting, the top observed ε for any
correct reconstruction, and the percentage of such correct outputs
integrated overall ε-samples per algorithm in ε ∈ [0.5,1].

Thanks to our quantifiable sampler, this study constitutes a brute-
force test for failure cases of existing reconstruction methods for
which only some weak lower epsilon bounds were proved in the
past and caps their ε upper bounds in a practical manner, Table 3. It
shows that while COMPATIBLECRUST has the highest theoretical
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Figure 7: Practical correct reconstruction of ε-sampled curves.

guarantee, it performs worse for real-world examples, where CON-
NECT2D and SIGDT perform best, although having low bounds.
CRUST and PEEL perform quite well in both theory and practice.

Figure 7 shows a chart with the detailed results of the brute-
force test as the percentage of success as a function of ε, for a set
of algorithms that we expect to relate to ε-sampling (not all from
the benchmark [OPP∗21]). Several sample configurations may still
achieve perfect reconstruction even when the epsilon value exceeds
the theoretical bound. Therefore, the resulting graph is noisy. The
runtime for generating a single sample (using ε = 0.5) of the COM-
PLEX test set is ≈ 4s, resulting in a total runtime of ≈ 50h for this
analysis study.

5. Applications

This section presents two applications of our sampling framework:
fast approximate meshing with Delaunay conforming guarantees
for vector line art coloring and finite element simulations (most
Figures are located in the supplement).

5.1. Coloring Vector Line Art

Coloring line art is a challenging and time-consuming task, par-
ticularly when the line art contains gaps. This challenge is further
worsened when working with vector line art, where having gaps
is common. Additionally, coloring vector art demands high accu-
racy (especially for detailed and complex art) and requires precise
boundary selection to get the desired result. Even though vector
line art is extensively used in the 2D animation industry, existing
coloring methods [SDC09, PMC22] are particularly designed for
raster sketches. This means the vector art must be rasterised first to
employ these methods, particularly since there is no such easy-to-
color alternative available for vector line art.

However, converting a vector sketch to a rasterized version for
coloring is not ideal since it results in a loss of scalability and qual-
ity. Also, it requires a high resolution to capture small features,
which in turn requires processing a huge number of pixels. To over-
come these limitations, we extend the Delaunay-Painting approach
[PMC22] - which is demonstrated to work well on raster sketches
with gaps - to handle vector line art. As explained in [PMC22], the
core idea remains the same: the user-specified color hint is intelli-
gently propagated through the Delaunay triangles generated from
the input pixels to give the desired coloring.

Figure 8: Left to right: A vector sketch, Samples generated using
our method (ε= 0.5), Delaunay triangulation with padded borders,
Delaunay superimposed with strokes (demonstrating the Delaunay
conforming property), Final colorization.

Unlike raster contours, where each pixel corresponds to a point
in the Delaunay triangulation, sampling rules are not defined for
vector line art. Although works like TriWild [HSG∗19] can be em-
ployed to sample line arts, there is no guarantee that these samples
can be used for Delaunay Painting as the Delaunay edges might not
consistently align with the vector strokes. Thanks to our sampling
method, which leverages the advantageous Delaunay conforming
property of ε-sampling, our output can be effectively used as an
input to Delaunay Painting (Fig. 8). Moreover, it stays consistent
even when the value of ε is changed (Fig. 11). To prevent color
bleeding across the boundary (which cannot be quantified just by
the edge length as in [PMC22]), we enforce an additional constraint
that the color should not spread through edges shared by adjacent
samples in the same curve. Figure 14 shows a few results gener-
ated on vector line art (original inputs were taken and vectorized
from [PMC22]) using our updated version of Delaunay Painting.

5.2. Fast Approximative Meshing

As another example, we show the effectiveness of using our sam-
pling in meshing 2D curves, permitting interactive simulations with
a quality tradeoff for fast quantifiable prototyping and 2D design.

Pipeline: As in Figure 1, our pipeline starts with a scanned hand-
drawn sketch, which is converted to a set of (almost cubic) Bézier
curves (using this method [FLB16]). These curves are then post-
processed (an engineering task that can be easily automated) to
create a set of connected tangent continuous curve segments. These
segments might contain multiple and open curves, T-junctions, and
intersections, which our sampling algorithm can handle gracefully
by limiting the minimum distance between samples (see paragraph
Robustness below). The curves are then fed to our ε-curve sampler,
and the edges between resulting adjacent samples can then be used
as constraining edges for any meshing algorithm (we used CGAL
mesher [RY07] based on Shewchuk’s meshing algorithm [She00]).
Please note that though the recent TriWild meshing [HSG∗19] can
also take Bézier curves as input, output non-linear triangles, and
offers good performance in triangle quality, it requires a fixed tar-
get edge length, resulting in a dense uniform mesh while consider-
ing small features. Moreover, we focus on interactive approxima-
tion meshing, and hence we restrict our comparison to the CGAL
mesher which can also output nonuniform meshes.

Finally, our pipeline is completed by running a common finite
element simulation on this mesh that aims to interpolate data given
at the input curves as smoothly as possible. In this simulation, we
discretize the Poisson problem using the well-known ‘cotan’ Lapla-
cian over the triangulation. We apply Dirichlet conditions of equal
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value on the vertices corresponding to the sampled input curve as
well as on the rectangular boundary. This simulation illustrates the
trade-off between the number of triangles, precision, and runtime,
and can be applied to common Poisson problems in physics, in-
cluding fluid pressure, static electrical fields, soap films (and other
minimal surfaces), heat conduction, etc.

Robustness: One of the challenges in curve reconstruction and
sampling is handling sharp features along which the local feature
size vanishes. We tackle this by specifying a minimum distance
dmin between samples that captures the size of the smallest desired
feature. During the sampling procedure, we simply need to check
whether the distance to the previous sample is at least dmin; other-
wise, we step along the foot points on the curve until dmin (in our
experiments, 0.01 of bounding box diagonal) is reached.

Required ε: An ε = 0.66 parameter for sampling the curves
not only guarantees the reconstruction of the original curve by
COMPATIBLECRUST but also a conforming Delaunay triangulation
when meshing, and subsequently a positive Jacobian for triangles
with non-linear boundary edges. However, since our simulation is
approximative, we can use an even more relaxed ε = 1 that gener-
ates fewer samples and, subsequently, many fewer triangles in the
triangle mesh. Figure 12 shows three of the five sketches used in the
evaluation (except LION and CROCO, see Figures 1, 9), together
with Bézier curves, sampled polylines, and triangle count meshes
for a minimum sampling density of 0.1 of bounding box diagonal.

Figure 9: From left to right: Scanned user sketch, after fitting
Bézier curves, sampled with ε = 1 constrained to [0.01, 0.1] dis-
tance in terms of the bounding box diagonal, and the result of
feature-aware meshing with max edge length = 0.1.

Tradeoff evaluation: In order to show the speed/quality tradeoff
for simulations on the meshed triangulations, we evaluate the mesh
on five sketches that we sample with six varying sampling densities
(0.1, 0.05, 0.03, 0.02, 0.015, and 0.01), each using the densest (the
last one) as the baseline. Figure 13 shows the six polylines for vary-
ing sampling densities, the resulting meshes, and their respective
simulation results for the LION sketch. While generating samples,
we limit the sampling density with a parameter dmax that we en-
force similarly to dmin, but this time by backtracking the foot points
on the curve. In the appendix, Table 4 lists triangle count, simu-
lation runtime, and RMSE with respect to the baseline averaged
over the five sketches (Figures 12, 13) for the six sampling densi-
ties, these results are visualized in Figure 10 for uniform and non-
uniform meshing respectively. For uniform meshing, runtime goes
up almost quadratically with the number of triangles (and therefore
fourth-order with sampling density), while reducing the simulation
time by two orders of magnitude only doubles the error. For non-
uniform meshing, runtime is much more linear but exhibits a higher
error, due to many fewer triangles in the mesh. The total runtime for

our sampling (with ε = 1), (with reduced N=100), meshing (sam-
pling density 0.03), and simulation steps for these sketches is less
than a second, which offers an interesting tradeoff between speed
and quality so that changes to the input can be roughly simulated
in interactive time, a promising feature for sketch-based design.

6. Discussions and Future Work

We proposed an algorithm that ε-sample curves (based on a pa-
rameter ε) in a quantified and feature-aware manner.The proposed
computational framework is based on an efficient estimate of the lo-
cal feature size of the points of the curve, which only requires a set
of one-sided polylines, approximating branches of the medial axis
(seen from two sides of the curve). The precision of this approx-
imation can be controlled arbitrarily close. We, however, assume
a prior lower bound for the reach of the curve, which is a natural
requirement for any discrete representation of smooth curves. One
may see that as the main limitation of our proposed sampling algo-
rithm. However, since the exact lfs computation in a discrete setting
is an ill-posed problem by definition, we do not see any alternatives
to our lfs approximation strategy.

We also evaluated the corresponding approximation error as a
tradeoff with the acceptable computation budget for sampling. To
highlight the utility of such an efficient while quantifiable sam-
pler, we implemented the theoretical state-of-the-art reconstruction
method COMPATIBLECRUST and compared its reconstruction per-
formance based on a curve reconstruction benchmark. Remarkably,
we managed to reduce the theoretical upper bounds for ε in the con-
text of ε-sampling, to ensure reconstruction guarantees in practice
for a number of algorithms. We achieved this by brute-force search-
ing many point configurations in order to find counter-examples for
specific ε values. This study opens new lines of research in the con-
text of curve reconstruction by evaluating the quality of the known
theoretical bounds on ε, and comparing them with the practical per-
formance of existing methods for the first time under quantifiable
sampling settings.

Our proposed sampling framework can be extended in various
ways, e.g., be adapted to ρ-sampling [OMW16], or combine fea-
ture size-based distances with absolute distance limits between the
original smooth curve and its sampled approximation. Other types
of curves can be integrated into our framework easily, such as lower
order quadratic Bézier curves, circular arcs, lines, or even NURBS.
Finally, the extension of our framework to an ε-sampler for sur-
faces in 3D seems to be a promising and important future work
avenue, having applications, e.g., in determining upper bounds for
ε-sampling guarantees which are very weak in 3D, mesh simplifi-
cation, and meshing for finite element simulations.
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Supplementary Material

7.1. Implementation Details for Cubic Bézier Curves

Our sampler is implemented for piece-wise cubic Bézier curves
as it provides a flexible and computationally efficient representa-
tion. In our experiments, along with manually created curves using
Inkscape and parsed using open source nanosvg [nan], we also used
scanned hand-drawn sketches that are vectorized using [FLB16]
since curve identification is not part of our contribution. Our sam-
pling does not require any tangent continuity between the piece-
wise cubic Bézier curve segments. However, using C1 continuity
will avoid the vanishing of the local feature size at joints, leading
to better results, though, for our applications, we show that we can
handle these artifacts as well.

The sampling process on Bézier curve segments is performed by
inserting foot points as follows. Let p ∈ C correspond to a point
evaluated as B3

k(t) on curve segment k at parameter value t; for
simplicity, we will denote this using the notation B(t). Each foot
point fi ∈ C can be evaluated as fi = B(t). The normal n(t) to C
at a point p = B(t) is orthogonal to the tangent B′(t) at p, thus
n(t) = [B′

y(t),−B′
x(t)]

T . To compute the medial point mi for a foot
point fi ∈C, we determine mi as the center of a disk Di with radius
ri. This disk is tangent to C at fi and constrained by passing through
the subsequent foot point fi+1, thus fixing ri and, later, mi. As mi
may be located on either side of the curve, we first initialize our
radius estimate ri with a circle of radius equal to the bounding box
diagonal of C. For both sides, we then compute the closest point q
of the curve (for all segments) to the current medial point estimate,
and if it is closer, replace it with the center of the circle tangent to
C at fi and passing through q. We iterate until a desired precision
threshold (10−9) is reached and select the point mi from the side
that is closer to fi. Note that this threshold always converged in our
experiments but could be further adjusted proportionally to curve
sampling distances.

The distance of a point m to a cubic Bézier curve B can be ex-
pressed as |B(t)−m|. We translate the coordinates of B such that
m is at the origin. Then, in order to find the point on B closest to
m, B(t), we minimize the squared term |B(t)|2, thus eliminating the
square root, by setting its first derivative (|B(t)|2)′ = 0. This results
in a quintic polynomial that we solve using a specialized quintic
root finder [qui] that employs the real roots isolation method using
both Cauchy’s bound as well as Kojima’s bound, as it is several
times faster than the general Eigen library method (see Sec. 3.4 for
the analysis). Since computing the closest point to a cubic Bézier
curve is still expensive, we first test its bounds using its convex hull
property. Testing whether any point of a convex hull edge is closer
than the current minimum distance, using the same edge projection
procedure as in Sec. 3.2, accelerates it further, resulting in a global
runtime reduced by an order of magnitude, as shown in Table 2.

Uniform meshing
Density 0.1 0.05 0.03 0.02 0.015 0.01
Triangles 1087 1654 3373 6702 11333 24536
Runtime 0.011 0.021 0.069 0.273 0.835 6.784
RMSE 3.526 3.106 2.700 1.933 1.703 -
Uniform meshing
Triangles 249 252 267 301 350 477
Runtime 0.013 0.012 0.014 0.013 0.016 0.074
RMSE 7.631 3.481 2.039 2.354 1.268 -

Table 4: Sampling densities evaluated for the simulation w.r.t. 0.01:
Density is maximum sampling distance/edge length in bounding
box diagonal, runtime in seconds, and RMSE in terms of the uni-
form Dirichlet boundary conditions, for the five sketches’ average.

Figure 10: For varying sampling densities (=maximum edge length
of the meshed triangulation), triangle count, runtime and RMSE
(compared to 0.01 density) of the Laplacian simulation are shown.
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Figure 11: Delaunay conforming property with different ε values. Left to right: ε = 0.4, 0.5, 0.6, 0.7

Figure 12: From left to right: Scanned user sketch, after fitting Bézier curves, sampled with ε = 1 constrained to [0.01, 0.1] distance in terms
of the bounding box diagonal, and the result of feature-aware meshing with max edge length = 0.1.
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Figure 13: Left to right: Varying sampling densities of 0.1, 0.05, 0.03, 0.02, 0.015, and 0.01 of bounding box diagonal for the LION. Top to
bottom: Sampled curve connected by polylines, Meshed triangulation, and Visualization of the Laplacian simulation results with the Dirichlet
conditions as dark blue dots from the vertices of the above polylines as well as the rectangular boundary, above with uniform and then below
with non-uniform meshing.

Figure 14: Vector sketches colored using our improved Delaunay Painting [PMC22] - Images taken and vectorized from [PMC22]
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