
Library Development with MPI: Attributes, Request Objects,
Group Communicator Creation, Local Reductions and Datatypes

Jesper Larsson Träff
traff@par.tuwien.ac.at
Faculty of Informatics

TU Wien
Vienna, Austria

Ioannis Vardas∗
vardas@par.tuwien.ac.at
Faculty of Informatics

TU Wien
Vienna, Austria

ABSTRACT
A major design objective of MPI is to enable support for the con-
struction of safe parallel libraries that can be used and mixed freely
in complex applications. In this respect, MPI has been extremely
successful; but may nevertheless lack elementary supporting func-
tionality for some situations, and may have made design choices
that are difficult to accommodate in certain libraries. We discuss
several cases of library construction requiring different kinds of
supporting MPI functionality, and propose concrete improvements
for library implementations and future MPI versions to alleviate
the problems that were encountered. Specifically, we pinpoint (per-
formance) issues with MPI object attributes, caching and lookup,
request objects, partly collective and non-blocking communica-
tor creation, process local reductions, type correct process local
copying, and user-defined datatypes.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; •Computingmethodologies→ Parallel programming
languages.

KEYWORDS
MPI, library building, attributes, request objects, collective opera-
tions, derived datatypes
ACM Reference Format:
Jesper Larsson Träff and Ioannis Vardas. 2023. Library Development with
MPI: Attributes, Request Objects, Group Communicator Creation, Local
Reductions and Datatypes. In Proceedings of EuroMPI2023: the 30th European
MPI Users’ Group Meeting (EUROMPI ’23), September 11–13, 2023, Bristol,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3615318.3615323

1 INTRODUCTION
A major design objective of MPI, theMessage-Passing Interface [15],
is to enable support for the construction of safe parallel libraries
that can be used and mixed freely in complex applications without
∗This work was partially supported by the Austrian Science Fund (FWF):
project P 31763-N31.

This work is licensed under a Creative Commons Attribution International
4.0 License.

EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0913-5/23/09.
https://doi.org/10.1145/3615318.3615323

any possibilities of unintended, destructive interference, neither
concerning local objects and data nor concerning communication.
Libraries may likewise implement new abstractions and operations
that better fit the intended application domains, and hide complex-
ities of MPI communication that are irrelevant to the application
programmer. In that respect, MPI has been extremely successful, as
witnessed by libraries for a plethora of different types of applica-
tions; see for instance the cases provided by Hoefler and Snir [11]
in their discussion of library construction with MPI. One key MPI
construct for safe communication libraries is the communicator
(and communication window), which safely isolates communication
between processes in different application libraries. However, much
additional, surrounding functionality is needed for the construc-
tion of portable libraries that use and expose (or hide) various MPI
objects, and much such support functionality is indeed provided by
the MPI standard.

The list of widely used parallel libraries for different scientific do-
mains built using MPI is long. Some examples of numerical (linear
algebra) libraries include ScaLAPACK [5], Elemental [17], PETSc [2],
and many, many more. Libraries for machine learning, such as
PyTorch [16], can be built with MPI as the underlying commu-
nication library for distributed model training and applications.
Such libraries usually hide MPI specifics by using the supporting
functionality of MPI for library construction.

An instructive test of adequate library building support is to
examine which parts of the MPI standard itself can be implemented
efficiently and transparently to the user with full-fledged support
and full safety guarantees, in terms of other, more basic MPI func-
tionality, notably point-to-point and one-sided communication and
certain book-keeping operations, e.g., for communicator and data-
type management.

As discussed in the MPI standard [15, Section 7.7], the whole
set of blocking, collective operations, including a hidden shadow
communicator for isolating library specific (non-blocking) commu-
nication from the user’s communication, can be implemented by
point-to-point communication, the MPI_Comm_dup function, and
the communicator attribute caching mechanism. This is concretely
done in many libraries offering collective functionality, for instance
in the library described in [22] that gives alternative, hierarchical
implementations for all regular, blocking MPI collectives, and uses
two hidden orthogonal communicators per process.

The MPI virtual topology functionality can likewise be imple-
mented entirely and transparently on top of MPI, as an external
library, again by relying heavily on the attribute caching function-
ality. The MPI standard itself prescribes that topology information

https://orcid.org/0000-0002-4864-9226
https://orcid.org/0000-0001-5461-556X
https://doi.org/10.1145/3615318.3615323
https://doi.org/10.1145/3615318.3615323
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3615318.3615323
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3615318.3615323&domain=pdf&date_stamp=2023-09-21


EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom Jesper Larsson Träff and Ioannis Vardas

(Cartesian or distributed graph) is attached to the created com-
municators in the form of MPI attributes [15, Section 8.3]. It can
therefore be expected that many production MPI libraries indeed
build on their own implementation of the attribute caching mech-
anism. The blocking, neighborhood collectives that build on the
topology functionality can likewise be implemented transparently
and entirely as an external library, again relying on MPI_Comm_dup
and the attribute caching mechanism. This was partly done in [24]
which proposes a more economic use of the MPI interfaces and
suggests and implements extensions to the expressive power of
the (Cartesian) topology mechanism. Such proposals can, due to
the strong MPI library building support, be explored as external
libraries.

Non-blocking collective operations, as later specified in the MPI
standard, were initially explored as external MPI libraries [9]. The
implementations involve checking for and enforcing the completion
of multiple outstanding communication requests, as well as delib-
erate posting of further, non-blocking communication operations,
which makes a fully transparent, external library implementation
of this functionality as now specified by the MPI standard difficult.
See additional discussion and proposals in [10].

Libraries with non-blocking, collective semantics pose additional,
interesting requirements to supporting MPI functionality. To en-
sure communication safety, hidden shadow communicators are
convenient and can be attached to the library communicator as
attributes as explained above. In order for all collective library calls
to indeed satisfy the non-blocking requirements, all communicator
creation functionality required to manage these hidden commu-
nicators must be non-blocking as well. Currently, the MPI stan-
dard defines a non-blocking MPI_Comm_idup operation. For more
complex, communicator splitting operations like MPI_Comm_split,
there are currently no non-blocking counterparts in MPI. A truly
non-blocking version of the collective library described in [22] (two
non-trivial communicators per process), for instance, would thus
not be implementable with the current MPI standard.

Also initially explored outside the MPI standard was MPI sup-
ported functionality for collective IO.Much of this was implemented
in a fully portable manner in the ROMIO library by relying on MPI
functionality for library building and user-defined datatypes [18].

In the rest of this paper, we recount recent experience with build-
ing communication and tool libraries on top of MPI (and for MPI
applications). We examine in more detail some of the requirements
to the MPI support for building transparent and efficient parallel
libraries, in particular in situations where we found that support
from current MPI [15] is lacking.

2 ATTRIBUTES
Attributes make it possible to associate certain information, as
key-value pairs, locally, with certain objects defined by MPI. The
attribute caching mechanism is essential for libraries that allocate
MPI objects that are possibly hidden from the library user, but need
to survive between library operations that (re-)use these objects.

MPI makes it possible to use attributes with three types of MPI
objects: Communicators, windows, and datatypes. Attributes for
other MPI objects, e.g., MPI_Request objects not are supported,
which may be a lack as will be discussed in Section 3. For these

three types of objects, functions for generating a new key, attaching
and detaching attribute values, and deleting a key are provided [15,
Section 7.7]. Associated attribute values can be arbitrary (data struc-
tures) represented by a pointer to the attribute content, and are
copied and deleted via user-defined call-back functions. In addition
to the attributes, MPI defines special functionality to name objects of
these three types by a string, e.g. MPI_Comm_set_name/MPI_Comm_-
get_name [15, Section 7.8]. With the flexibility of the attribute
mechanism, this functionality seems superfluous. There are, how-
ever, some reasons not to handle naming by attributes as explicitly
rationalized in the MPI standard [15, Section 7.8], and for these
reasons, the MPI standard chose to provide both attributes and
explicit naming.

A concrete example of communicator attribute usage is a recently
developed library for collective operations for clustered, hierarchi-
cal systems [22] that was already mentioned in the introduction.
This library provides regular collective operations for any communi-
cator and requires a decomposition of the given communicator into
a set of communicators for the compute nodes (node communica-
tors), and a set of communicators between single processes of each
compute node (lane communicators; for the actual details that are
not important here, see [22]). This communicator decomposition
into lane- and node-communicators is computed once and for all at
the first call to a collective operation using MPI_Comm_split_type
and MPI_Comm_split. Each process in the calling communicator
will belong to two subcommunicators which it attaches to the call-
ing communicator as an attribute. Any subsequent call to a library
function of this library then looks up the required subcommunica-
tors and proceeds with communication on these subcommunicators.
For this to work, a new attribute key is created by the first call of
a library function (in a static variable). For this particular library,
an explicit library initialization call is therefore not needed, and
the user can do this particular type of collective communication
as if the functions were just some MPI collective operations. The
two subcommunicators function as hidden shadow communicators,
exactly as commonly used in the native implementations of the
MPI collectives, but neither span all processes of the calling com-
municator. As mentioned in the MPI standard [15, Section 7.7], and
demonstrated by this library, the (blocking) collective operations
can be implemented entirely transparently as a library building on
simpler MPI functionality.

For such a library to be used in production, where collective calls
are frequent and latency-critical, attribute retrieval, in particular,
must be fast. There seems to be no empirical performance studies
available similar to the work of Balaji et al. [3], for instance, on the
quality (speed) of the MPI attribute caching mechanism.

We have created a simple, synthetic benchmark to measure the
cost of sequences of attribute operations: key creation, attribute
setting and getting (retrieval), and final deletion. The benchmark
does not exercise the key-value copy and delete call-back functions,
and uses only the simple, built-in functions provided by MPI. The
benchmark takes two parameters, the number 𝑛 of attribute keys
(and attributes) to be created, and𝑚 the number of attribute lookup
operations. It measures attribute operation time over a number
of repetitions. In each repetition, an MPI object of the type to be
investigated (here: communicator) is created; the time for this is



Library Development with MPI: Attributes, Objects, Communicators, Local Reduce, Datatypes EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom

not counted. The processes are then synchronized with an MPI_-
Barrier operation. Several 𝑛 attribute keys are generated, and for
each of these, an attribute value in the form of a pointer to a prede-
fined table entry is attached. This is a total of 2𝑛 attribute operations.
After that,𝑚 lookup sequences are performed. In each sequence,
first the 𝑛 attribute keys are looked up in order of creation, and
then looked up again in decreasing order of creation. This amounts
to a total of 2𝑚𝑛 attribute operations. Finally, the 𝑛 attributes are
deleted, and the 𝑛 keys are freed, again for a total of 2𝑛 attribute
operations. A total of 2𝑚𝑛 + 4𝑛 attribute operations are therefore
performed per repetition.

We measure the total time per repetition, and we divide it by
the counted number of attribute operations. In this, and all other
benchmarks, we do five (5) initial “warm-up” repetitions that are
not measured in order to let the MPI library become properly initial-
ized. We record the time of the slowest process, and from this, we
compute the average time over all repetitions, as it is the minimum,
best time over all repetitions.

We conducted our experiments on single nodes of two HPC clus-
ters, our own small Hydra cluster at TU Wien and LUMI1 (Large
Unified Modern Infrastructure) located at CSC in Finland. Hydra
consists of 36 dual socket, 16-core Intel(R) Xeon(R) Gold 6130F com-
pute nodes. The nodes are interconnected via Intel Omnipath with
a bandwidth of 100 Gibt/ and are running Debian 11 GNU/Linux
with kernel v5.10.0 as the OS. In LUMI , we used the CPU partition
(LUMI-C) which consists of 1536 compute nodes, each of which
is equipped with two AMD EPYC 7763 CPUs with 64 cores each
running at 2.45 GHz for a total of 128 cores per node. LUMI-C com-
pute nodes are connected via a single 200 Gibt / s interface to the
Slingshot-11 interconnect and are running SUSE Linux Enterprise
Server 15 SP4 with kernel v5.14.21. We used five different MPI
libraries, namely OpenMPI 4.1.4, MPICH 4.0.2, MVAPICH2 2.3.7,
IntelMPI 2021.8, and Cray MPICH 8.1.23. The latter four libraries
are originally based on mpich2. We ran our experiment with Cray
MPICH 8.1.23 on the LUMI supercomputer and used Hydra for the
other four libraries.

The results with the five different MPI libraries with different
numbers of processes 𝑝 on a single node, different 𝑛 = 10, 100, 1000
and 𝑚 = 1000 and 𝑟 = 95 repetitions are shown in Tables 1–5.
Running times are in microseconds and measured with the MPI_-
Wtime function. The first column is the average time for the 𝑟 = 95
repetitions, and the second column is the best time seen over the
repetitions.

For all five libraries and both machines, there seems to be no (or
only very little) dependence on the number of processes per node
(and the number of processes overall, not documented here). This
is as it should be since the attribute caching mechanism is a purely
process-local facility. There is also very little difference between
the average time and the best seen time over the 𝑟 = 95 repetitions,
which indicates that the facility is robust (for this experiment, the
warmup repetitions do not seem to matter, results are stable). There
are, however, significant differences in raw performance between
the tested libraries.

The results for the MPICH 4.0.2, MVAPICH2 2.3.7 and IntelMPI
2021.8 libraries are shown in Tables 1, 2, and 3. The behavior is quite

1https://lumi-supercomputer.eu

Table 1: Attribute operation time with MPICH 4.0.2.

𝑝 𝑛 𝑚 𝑟 Ops Time/Op (𝜇s)
Avg Min

1 10 1000 95 20040 0.021 0.021
1 100 1000 95 200400 0.165 0.165
1 1000 1000 95 2004000 2.124 2.104
32 10 1000 95 20040 0.023 0.023
32 100 1000 95 200400 0.171 0.170
32 1000 1000 95 2004000 2.137 2.123

Table 2: Attribute operation time with MVAPICH2 2.3.7.

𝑝 𝑛 𝑚 𝑟 Ops Time/Op (𝜇s)
Avg Min

1 10 1000 95 20040 0.026 0.025
1 100 1000 95 200400 0.156 0.155
1 1000 1000 95 2004000 2.063 2.048
32 10 1000 95 20040 0.026 0.026
32 100 1000 95 200400 0.164 0.163
32 1000 1000 95 2004000 2.091 2.083

Table 3: Attribute operation time with IntelMPI 2021.8.

𝑝 𝑛 𝑚 𝑟 Ops Time/Op (𝜇s)
Avg Min

1 10 1000 95 20040 0.027 0.027
1 100 1000 95 200400 0.160 0.159
1 1000 1000 95 2004000 2.079 2.066
32 10 1000 95 20040 0.028 0.027
32 100 1000 95 200400 0.163 0.162
32 1000 1000 95 2004000 2.098 2.090

Table 4: Attribute operation time with Cray MPICH 8.1.23.

𝑝 𝑛 𝑚 𝑟 Ops Time/Op (𝜇s)
Avg Min

1 10 1000 30 20040 0.012 0.012
1 100 1000 30 200400 0.073 0.072
1 1000 1000 30 2004000 0.765 0.748

128 10 1000 30 20040 0.062 0.024
128 100 1000 30 200400 0.119 0.108
128 1000 1000 30 2004000 0.878 0.857

similar, which is perhaps not surprising, considering the common
ancestry of these MPI libraries. The time per operation for a small
number of 𝑛 = 10 attributes is small, but increases linearly (and
even more) with increasing 𝑛, and becomes more than a factor of
100 slower for 𝑛 = 1000 attributes. This is not a desired behavior,
and the operation time of more than 2 𝜇s per operation could be a
factor for low latency operations. Attribute lookup time should in
the best case be constant, or depend only weakly on 𝑛 (say,𝑂 (log𝑛)
by some efficient tree data structure).

The results for Cray MPICH 8.1.23 are shown in Table 4. This
library is faster than the others, performing well for a small number



EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom Jesper Larsson Träff and Ioannis Vardas

Table 5: Attribute operation time with OpenMPI 4.1.4.

𝑝 𝑛 𝑚 𝑟 Ops Time/Op (𝜇s)
Avg Min

1 10 1000 95 20040 0.047 0.046
1 100 1000 95 200400 0.046 0.046
1 1000 1000 95 2004000 0.053 0.053
32 10 1000 95 20040 0.048 0.047
32 100 1000 95 200400 0.047 0.046
32 1000 1000 95 2004000 0.054 0.054

of attribute keys, but again its performance decreases almost lin-
early with the number of keys. In absolute terms, the LUMI seems
substantially faster (for this type of operations) than Hydra.

Finally, the results for the OpenMPI 4.1.4 library are shown
in Table 5. In contrast to the four other libraries, the OpenMPI
4.1.4 library exhibits (almost) constant time per attribute operation,
independent of 𝑛 (and of 𝑝), as should be. However, the time for
small 𝑛 is about a factor of two higher, so the better, more scalable
implementation punishes use-cases with small number of attributes.

3 REQUEST OBJECTS
A recently developed profiling library [25] profiles communication
operations for the communicators on which they are invoked. The
implementation of this library, which uses the old-fashioned MPI
profiling interface posed two problems for non-blocking operations:
Where to account for the time spent in MPI_Wait etc. operations,
and how to associate this time with the corresponding non-blocking
call (as far as this is possible and meaningful)? From the request
object of the MPI_Wait etc. calls, we aim to associate the time spent
on that call with the communicator (and even the specific operation)
for which the request object was created.

The MPI (check-for-)completion operations do not take a com-
municator argument, only an MPI_Request object as an input pa-
rameter from which a corresponding MPI_Status object may be
set. Neither MPI_Request nor MPI_Status objects give access to
the communicator from which the object was created. To make the
association of the request object with the communicator and oper-
ation possible, the ability to cache information from the creation
call with the request object itself would be extremely valuable, but
this is not possible with the current MPI.

The MPI standard does not give a rationale for why attributes are
not defined for MPI_Request objects, nor why the mechanism is
limited to only three types ofMPI objects (communicators, windows,
datatype). The first two of these are distributed objects, and the
last is an object created by purely local operations, so non-locality
or dependent behavior cannot be the argument. Process local MPI
group objects (MPI_Group) also do not allow attributes.

What was needed for the concrete library [25] is a way to deter-
mine or extract the communicator (or window) that was used to
instantiate a given MPI_Request object. We found no way to cir-
cumvent the problem with standardized MPI functionality, neither
with generalized requests [15, Section 13.2], nor with the tool in-
formation interface [15, Section 15.3]. The generalized requests are
useful for user-defined non-blocking operations but do not solve

the problem of associating the MPI_Request with the communica-
tor. The MPI tool information interface [15, Section 15.3] exposes
performance information depending on the MPI implementation,
however, through it, we were unable to store new information,
therefore, it was not suited for our profiling library.

Our solution for the profiling library [25] was to manually mimic
an attribute mechanism, and use an additional hash table with the
request object handle as a key to store the communicator for which
the request object should be associated. This works for the concrete
case and the concrete MPI library implementations for which we
have used the profiler, but is not a sound approach in general, since
some MPI operations are allowed to give back a new request handle
still representing the same request. This is potentially possible for
operations that pass an MPI_Request object as a reference, e.g.,
MPI_Start to start a persistent operation on the request object.

For a more elegant and portable solution to such problems, we
make either of two non-exclusive proposals: Either a specific func-
tion for MPI_Request objects that can return the communicator
for which the request object was created, similar to MPI_Comm_-
group (with a similar function for windows), or an extension of
the attribute mechanism to MPI_Request (and possibly other MPI)
objects.

4 GROUP COMMUNICATOR CREATION
In the profiling library [25] mentioned in Section 3, we encoun-
tered another interesting problem, to which we did not find a good
solution. The aim of the library is to profile (all) communication
relative to the communicator on which they were performed. For
that, we need to associate profiling information, e.g., a table indexed
by operations with local time, number of calls and data volume,
with each new communicator created by the profiled application,
in a way that this information can be collected and retrieved at the
end of the application.

Profiling information is collected per process and stored per pro-
cess in a table per communicator. When the communicator is freed,
at the latest at application termination, the profiling information
from all processes is summarized per communicator. For this, we
needed to generate a unique “name” (key or index) for each new
generated communicator, which must be the same for all processes
belonging to the same communicator. We devised an algorithm
to generate such unique keys at communicator creation time by
a collective call over the calling communicator. Our solution is
explained in detail in [25]; a different solution for essentially the
same problem was given previously in [7].

For the standard, blocking communicator creation operations
like MPI_Comm_dup, MPI_Comm_create, and MPI_Comm_split, this
is not a problem, since these operations are collective over all calling
processes. Each process contributes information (rank, number of
subcommunicators) to the generation of the new key(s) for the
created subcommunicators, and the uniqueness of the new keys are
then guaranteed by an MPI_Allreduce operation over the calling
processes. These operations are by the way all blocking.

The operations MPI_Comm_create_group and MPI_Comm_create_-
from_group have a different semantics, and are problematic in this
scheme. The MPI_Comm_create_group and MPI_Comm_create_-
from_group operations are collective over the groups given in the



Library Development with MPI: Attributes, Objects, Communicators, Local Reduce, Datatypes EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom

call and not over all processes in the calling communicator; for
MPI_Comm_create_from_group there is no calling communicator
at all! These are exceptional MPI functionalities (in some sense
violating basic principles of MPI, namely that new objects are cre-
ated out of old ones of the same kind), and there is therefore no
way to apply a scheme that is based on a global MPI_Allreduce
operation. A non-blocking MPI_Iallreduce could be used in our
key generation to semantically solve the problem for MPI_Comm_-
create_group, but would entail blocking behavior (delay) when
processes in a subcommunicator created by a process group per-
form profiling operations before the processes not belonging to the
process group have completed the MPI_Comm_create_group and
the pending MPI_Iallreduce calls. This is incommensurate with
a fast profiling library, and an unacceptable solution. Because of
the special semantics of MPI_Comm_create_group and MPI_Comm_-
create_from_group, our profiling library [25] currently does not
handle code with these MPI calls.

In retrospect, we could have circumvented the problems by rely-
ing more on what an MPI implementation already does. First, for all
communicator creation operations, including the problematic MPI_-
Comm_create_group and MPI_Comm_create_from_group calls, some
form of internal, unique context identification for each created com-
municator is already created by the MPI implementation [6]. Pro-
filing information per communicator could, therefore, be attached
to the newly created (in that sense unique) communicator as an
attribute for each process locally. Each profiled call would need
to look up the profiling attribute on the communicator, and up-
date the local profile, which again motivates strongly why a quick
attribute lookup mechanism is essential. Per communicator, the
local profiles are summarized together as profiling communication
for that communicator, which can be done by a collective MPI_-
Gather, MPI_Reduce or MPI_Allreduce operation, possibly with
a (commutative, or non-commutative, see discussion in Section 5)
user-defined reduction operation at the time when the communica-
tor is freed by MPI_Comm_free. After the free operation, profiling
information for this (sub)communicator would be available at some
local root process of the communicator and could be transferred as
an attribute to the MPI_COMM_WORLD communicator of that process
with a proper name identifying this particular communicator. A
convenient name to identify the (sub)communicator could easily be
composed locally from the rank of the process in MPI_COMM_WORLD,
the running number of the communicator created by that process,
its size, the type of communicator-creating operation used and the
size of the subcommunicator.

Although the MPI_Comm_free operation is technically collective,
it is mostly implemented as a purely local, at least non-blocking
operation, and is typically used in a very asynchronous fashion (if at
all). Therefore, forcing blocking behavior through a blocking MPI_-
Reduce collective call could badly hurt application performance,
and would not be a good solution for a fast, low-overhead profiling
library (recall the discussion in Section 1). This is again a use-
case for non-blocking collective operations. A non-blocking MPI_-
Ireduce operation would have to be initiated by MPI_Comm_free,
giving rise to a request object that would have to be stored, and
tested, by the process in the MPI_COMM_WORLD communicator. Upon
completion, the profiling information for the subcommunicator
would have to be transferred to MPI_COMM_WORLD.

5 LOCAL REDUCTIONS
Libraries implementing reduction-like collective operations can
and do benefit from the MPI mechanism for locally applying MPI
binary operators (MPI_Op) on MPI buffers. Operators are either the
standard, predefined MPI operators (MPI_SUM, MPI_BAND, . . . ) or
user-defined operators that are allowed to operate on structured
data described by MPI user-defined datatypes. Local application of
these operators was made possible with the MPI_Reduce_local op-
eration which is absolutely essential for such library building [11].

To mimic the flair of the various collective reduction operations
(MPI_Reduce, MPI_Allreduce, . . . ), the MPI_Reduce_local func-
tionality unfortunately implements only a two-argument, destruc-
tive update functionality. This is both inconvenient and, in some
cases inefficient, since it forces copy operations into temporary
buffers, or temporary copy out of data in reduction buffers that
should not be destroyed. Especially for non-commutative operators
(user-defined operators may well be non-commutative) where the
order, from-left or from-right, in which an operator is applied is
crucial, it is easy to come into a situation where a result has to be
computed in a temporary buffer and later copied back.

Here is a concrete example. A butterfly/hypercube algorithm for
some reduction collective goes through a logarithmic number of
iterations, in each of which each process receives a partial result
from a neighboring process, found by flipping the 𝑘th bit of the
process’ rank for iteration 𝑘, 0 ≤ 𝑘 < log 𝑝 (for 𝑝 processes and
𝑝 being a power of 2). The neighboring process may, by the bit
flip, thus have a rank that is smaller than the process’s rank (if the
bit was 1), or larger than the process’s rank (the bit was 0). In the
code snippet below, each process maintains a partial result in its
recvbuf. It sends this to its neighbor and receives a partial result
in tempbuf from its neighbor. To compute a new partial result for
the next iteration, the two partial results are “added” together using
the given MPI operator op – in the right order, which is strictly
necessary if op is non-commutative.

int neighbor = (rank^k); // flip bit k
MPI_Sendrecv(recvbuf ,..., neighbor ,

tempbuf ,..., neighbor ,..., comm);
if (neighbor <rank) {

MPI_Reduce_local(tempbuf ,recvbuf ,...,op);
} else { // neighbor >rank

MPI_Reduce_local(recvbuf ,tempbuf ,...,op);
// now typed MPI copy back to recvbuf needed
MPICPY(tempbuf ,recvbuf ,...);

}

In the code, MPICPY denotes type correct copying of MPI buffers,
for which there is some discussion in Section 6. This additional
copy can roughly double the local time taken for a process, for
some iterations, and lead to delays in the entire algorithm. For
large buffers this can be significant. We note, though, that in the
concrete butterfly code, the extra copies can be partly avoided by
introducing a double buffering scheme with two temporary buffers
together with a more complex control structure to keep track of the
buffer containing the partial result for the next iteration. This may
not be possible for other algorithms, and is still an unnecessary
complication of the algorithm [23].



EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom Jesper Larsson Träff and Ioannis Vardas

Amore natural and convenient solutionwould be to introduce (or
replace MPI_Reduce_local by) a three-argument local reduction
operation, which could look as follows2.

int NEW_Reduce_locals(const void* inbuf ,
const void *argbuf ,
void* inoutbuf , int count ,
MPI_Datatype datatype ,
MPI_Op op)

The NEW_Reduce_locals applies the operation given by the MPI
built-in or user-defined operator op element-wise to the elements
of inbuf and argbuf in that order with the result stored element-
wise in inoutbuf, as explained for user-defined operations in [15,
Section 6.9.5]. The inbuf, argbuf and inoutbuf (the two inputs
as well as the result) have the same number of elements given
by count and the same datatype given by datatype. If the MPI_-
IN_PLACE option is given for either inbuf or argbuf (or both),
the corresponding input is taken from inoutbuf. The MPI_IN_-
PLACE option is not allowed for the inoutbuf argument. The inbuf
and argbuf buffers are not required to be distinct but must be
distinct from the inoutbuf argument. This definition follows the
spirit of other MPI reduction and communication operations (no
overlapping send- and receive-buffers). This is possible by using
the MPI_IN_PLACE option.

In applications (libraries, typically) applying local reductions
with MPI predefined operators, a specific order of the arguments
may be required, and some argument may not be placed in the
required input or output buffer. In such cases, the two-argument
MPI_Reduce_local function necessitates extra copying of either
or both arguments. The three-argument function alleviates such
extra copying. A call to MPI_Reduce_local can always be replaced
by a call to NEW_Reduce_localswith MPI_IN_PLACE as the second
input argument. By this observation MPI_Reduce_local could be
deprecated in favor of NEW_Reduce_locals.

The proposed three-argument local reduction operation is con-
siderably more flexible than MPI_Reduce_local, as shown by the
following five use-case examples: Let A, X, Y be the buffers pro-
vided for inoutbuf, inbuf, and argbuf, respectively. The follow-
ing reduction-assignments can readily be implemented with NEW_-
Reduce_locals:

• A = X op Y (with MPI_Reduce_local this would require first
copying Y into A)

• A = A op Y (if X is MPI_IN_PLACE; with MPI_Reduce_local
this would require first reducing into Y destructively, and
then copying the result Y into A)

• A = X op A (if Y is MPI_IN_PLACE; this has the same effect
as MPI_Reduce_local)

and even
• A = X op X (if Y is the same as X)
• A = A op A (if both X and Y are MPI_IN_PLACE)

The latter use-cases may be somewhat artificial (the latter could
be relevant for algorithms that employ some form of logarithmic
round doubling), but come for free through the semantics allowing
MPI_IN_PLACE arguments.

2There is an open MPI Forum ticket with this proposal by one of the authors.

To complete the proposal for NEW_Reduce_locals, it must be
possible to define three-argument, user-defined operators. Follow-
ing the MPI standard, a prototype for this could be:

typedef void MPI_User_function_three(
void *in0 , void *in1 ,
void *inout , int *len , MPI_Datatype *datatype)

User-defined functions should implement reductions of the form

A = X op Y

where A is the inout buffer, and X and Y are the two in buffers,
either of which may be the same as the inout buffer. Thus, in the
user code for the reduction operator, the MPI_IN_PLACE option
would not have to be used. The reduction function is written as a
standard C assignment with an expression on two arguments.

Here is the butterfly example with the proposed, three-argument
local reduction function, which alleviates the need for a typed copy
operation.

int neighbor = (rank^k); // flip bit k
MPI_Sendrecv(recvbuf ,..., neighbor ,

tempbuf ,..., neighbor ,..., comm);
if (neighbor <rank) {

NEW_Reduce_locals(tempbuf ,MPI_IN_PLACE ,recvbuf ,
...,op);

} else { // neighbor >rank
NEW_Reduce_locals(MPI_IN_PLACE ,tempbuf ,recvbuf ,

...,op);
}

It is curious and worth mentioning that the specification of
MPI_Reduce_local does not say explicitly in which order the two
arguments are used. This is explained in the section on user-defined
operators [15, Section 6.9.5]. An explicit and precise specification
of the order in which the arguments are applied by MPI_Reduce_-
local would benefit the MPI standard.

We have tried to realistically benchmark the cost of two- and
three-argument local reduction operations in comparison to the
MPI_Reduce_local operation. Our use-case is the following. An
MPI process has data in a sendbuf, has received data into a tempbuf,
and needs to combine these into a recvbuf. Each buffer has a count
of 𝑛 MPI_INT elements. The operation to be applied is element
wise addition (MPI_SUM). With two-argument reduction functions
like MPI_Reduce_local, we first copy sendbuf into recvbuf and
then perform the reduction. This is done either with a handwritten,
simple loop function, or with the MPI_Reduce_local operation.
In the latter case, the copying is done in a type safe manner as
will be discussed in Section 6; in the former case, with memcpy.
These reductions are contrasted with a handwritten three-argument
function directly on the three arguments sendbuf, tempbuf and
recvbuf. The benchmark involves no communication.

We have benchmarked as explained in Section 2. We perform
𝑟 = 95 repetitions with five (5) warmups (for this benchmark, the
first few iterations were more expensive than the rest) with different
element counts 𝑛 = 10, 100, . . . , 1 000 000. Results with OpenMPI
4.1.4 are shown in Table 6. For small counts 𝑛 = 10, 100, the solution
with MPI_Reduce_local has a surprisingly high latency, and is
a factor of 5 − 8 slower than either of the handwritten solutions.



Library Development with MPI: Attributes, Objects, Communicators, Local Reduce, Datatypes EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom

Table 6: Local reductions with two- and three-argument local
reduction operations with OpenMPI 4.1.4.

Time/Op (𝜇s)
2-args 3-args MPI

𝑝 𝑛 𝑟 Avg Min Avg Min Avg Min
1 10 95 0.054 0.050 0.043 0.042 0.470 0.336
1 100 95 0.067 0.065 0.059 0.057 0.495 0.353
1 1000 95 0.304 0.293 0.221 0.218 0.627 0.475
1 10000 95 4.058 4.018 2.780 2.683 3.362 3.327
1 100000 95 46.64 45.98 35.24 34.48 45.23 44.67
1 1000000 95 1088 1082 553 548 1049 1039
32 10 95 0.070 0.055 0.051 0.047 0.833 0.371
32 100 95 0.230 0.070 0.066 0.061 0.532 0.370
32 1000 95 0.413 0.319 0.228 0.223 0.890 0.526
32 10000 95 4.182 3.961 2.956 2.668 3.700 3.668
32 100000 95 49.38 48.33 40.38 39.09 47.59 46.78
32 1000000 95 4255 4158 3322 3280 4234 4178

For large counts, the handwritten and MPI_Reduce_local two-
argument solutions are on par. Here, the three-argument solution
is about 20 − 25% faster, and also has an advantage for the small
counts. The differences between 𝑝 = 1 and 𝑝 = 32 are considerable
for large counts 𝑛 due to limited, total memory bandwidth.

6 DATATYPES AND TYPED COPY
OPERATIONS

As was discussed, usages of local reductions with the restricted
two-argument MPI_Reduce_local function as in the butterfly ex-
ample in Section 5 may easily make process local copying of MPI
structured data (user-defined datatypes) necessary. In general, li-
braries that work on structured data (matrices, tensors, . . . ) and rely
on the MPI derived datatype mechanism for describing such data,
are likely to come into a situation where structured data have to be
locally copied from one (user or temporary) buffer to another [2].

There is no explicit functionality for type correct local copying
between buffers of structured data in the MPI standard. Users either
use a memcpy operation, which is not type safe (respecting signature
and semantics of the data being copied) and only efficient and
correct for consecutive data buffers, or employ the standard trick
of doing MPI_Sendrecv communication from the process to itself
in the MPI_COMM_SELF communicator.

MPI_Sendrecv(sendbuf ,sendcount ,sendtype ,0,0,
recvbuf ,recvcount ,recvtype ,0,0,
MPI_COMM_SELF ,MPI_STATUS_IGNORE );

Although tedious to write, this is an acceptable and correct solu-
tion to the problem that provides enough information for the MPI
library to do the typed copy efficiently. The designated MPI_COMM_-
SELF communicator indicates to a high-quality MPI library that
the MPI_Sendrecv operation can be handled specially, by memcpy
for consecutive datatypes of the same type, and otherwise by effi-
cient packing, unpacking and transpacking [13, 14] routines, and/or
other, special treatment.

6.1 Performance of MPI typed memory copy
We check how well current MPI libraries handle typed copy op-
erations with the MPI_Sendrecv-MPI_COMM_SELF implementation
by a simple benchmark, by which we implicitly express certain
expectations on how a process local, type safe copy operation could
be expected to perform. Performance expectations on the use of da-
tatypes in communication operations were formalized much more
extensively and benchmarked in [4, 8]. The investigation here fo-
cuses exclusively on the process-local performance for which there
is potential for optimizations that do not apply in general.

Our benchmark locally copies different representations of𝑚 × 𝑛

matrices of doubles (MPI_DOUBLE), where𝑚 and 𝑛 are parameters
to the benchmark. Each of 𝑝 processes (also a parameter to the
benchmark) performs the same local copy operations. With derived
datatypes, we can specify different traversals of the given𝑚 × 𝑛

matrix stored in row-wise C order. The type correct local copy
operation can thus be used to transform the given matrix from one
representation to another [1].

Using an MPI_DOUBLE datatype with an element count𝑚𝑛 tra-
verses the matrix in row-wise order. The local copy operation with
this type as both sendtype and recvtype could thus be expected
to perform comparably to the (not type safe) memcpy operation. A
datatype describing a column order traversal of the𝑚×𝑛matrix can
easily be set up with a vector datatype (block of 1 element and stride
of 𝑛 elements) and “tiling” by resizing. This is the “col” datatype in
the following tables and discussion. Finally, a datatype traversing
the matrix as if the first and the last row had been swapped is set
up with an indexed-type constructor. This datatype is called “swap”
in the following tables and discussion.

With derived datatypes defining different traversals of the𝑚 ×𝑛

matrix, a local typed copy will amount to a transformation of the
matrix, for instance, a transposition (copy from row order to column
order) [1], or a swap of two rows (typed copy from row to “swap”).
Further, non-trivial, more involved transformations, e.g., swapping
both rows and columns in the same go, can be defined and executed
automatically by an MPI typed copy mechanism.

The point for our benchmarking of typed copy via MPI_Sendrecv
on MPI_COMM_SELF is that all of the defined datatype (traversals)
of the matrix have the same extent (footprint) in memory, namely
𝑚𝑛 MPI_DOUBLE doubles. Therefore, when input and output types
(send and receive types) are the same, it would be reasonable to
expect the typed copy operation to perform similarly to memcpy.
We benchmark and check for this expectation.

We benchmark the memcpy operation against all combinations
of the defined derived datatypes. We notice that in the MPI libraries
we tried, a row wise traversal datatype (two nested, contiguous
MPI datatypes) performs the same as the𝑚𝑛 MPI_DOUBLE case, and
we therefore omit these results. This is a good sanity check of the
handling of derived datatypes in an MPI library implementation.

We now show results for two combinations of𝑚 and 𝑛 corre-
sponding to a small and a large matrix. We try for 𝑝 = 1 and 𝑝 = 32
processes on Hydra to see the effect of concurrent copy operations
on the same compute node.

Results with the MVAPICH2 2.3.7 library on the Hydra machine
are given in Table 7. For the larger 200 × 10 000 matrix, the results
are good in the sense that the time for memcpy and typed copy of



EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom Jesper Larsson Träff and Ioannis Vardas

Table 7: Local copy, untyped and typed, MVAPICH2 2.3.7.

Test 𝑝 𝑚 𝑛 𝑟 Time (𝜇s)
Avg Min

memcpy 1 20 10 95 0.058 0.000
double-double 1 20 10 95 0.502 0.477
double-col 1 20 10 95 1.601 1.431
col-double 1 20 10 95 1.631 1.431
col-col 1 20 10 95 2.585 2.384

double-swap 1 20 10 95 0.931 0.715
swap-double 1 20 10 95 0.964 0.715
swap-swap 1 20 10 95 1.403 1.192
col-swap 1 20 10 95 2.043 1.907
swap-col 1 20 10 95 1.995 1.907
memcpy 1 200 10000 95 3072 3005

double-double 1 200 10000 95 3083 3028
double-col 1 200 10000 95 8835 8795
col-double 1 200 10000 95 6541 6480
col-col 1 200 10000 95 21914 19603

double-swap 1 200 10000 95 5527 5485
swap-double 1 200 10000 95 5060 5004
swap-swap 1 200 10000 95 15145 12935
col-swap 1 200 10000 95 17108 17056
swap-col 1 200 10000 95 18880 18832
memcpy 32 20 10 95 0.284 0.238

double-double 32 20 10 95 0.781 0.715
double-col 32 20 10 95 1.697 1.431
col-double 32 20 10 95 1.822 1.669
col-col 32 20 10 95 2.705 2.623

double-swap 32 20 10 95 1.119 0.954
swap-double 32 20 10 95 1.195 0.954
swap-swap 32 20 10 95 1.501 1.431
col-swap 32 20 10 95 2.229 1.907
swap-col 32 20 10 95 2.133 1.907
memcpy 32 200 10000 95 7306 7227

double-double 32 200 10000 95 7307 7245
double-col 32 200 10000 95 19929 19857
col-double 32 200 10000 95 17877 17767
col-col 32 200 10000 95 43317 37297

double-swap 32 200 10000 95 16728 16664
swap-double 32 200 10000 95 16267 16186
swap-swap 32 200 10000 95 38035 33863
col-swap 32 200 10000 95 40233 39402
swap-col 32 200 10000 95 41452 41045

𝑚𝑛 MPI_DOUBLE are the same. Also average and best seen times
over the 𝑟 = 95 repetitions are very close. There is, however, a
significant, negative dependency on the number of processes 𝑝 for
which copy operations are done simultaneously with a slowdown
of a factor of two to three from the 𝑝 = 1 to the 𝑝 = 32 case. For the
non-contiguous accesses described by the two derived datatypes,
the typed copy times increase by a large factor. The most expensive
traversal is column-wise with the “col” datatype, and the time for
copying from “col” to “col” about twice the time for copying MPI_-
DOUBLE from or to “col”, and about a factor of 6 from the simple
copying of 𝑚𝑛 MPI_DOUBLE. Traversal of the matrix where two

rows have been swapped is also expensive, but a bit less so than the
column wise traversal. For the “col-col” and the “swap-swap” order
copy operations (same send and receive type in the typed copy
operation), the best to hope for is that the MPI library realizes that
only a consecutive block of doubles has to be copied, and therefore
internally performs the operations by a memcpy equivalent. This is
most clearly not being done with the MVAPICH2 2.3.7 library.

For the small 20×10matrix, the results clearly show that a memcpy
is not being used internally for the MPI_COMM_SELF communicator.
The difference between a memcpy and the typed copy of 20×10 = 200
doubles is about a factor of 3 apart. Also here, the fact that all
datatypes have the same total (“true”) extent is not exploited by the
library. This makes typed copy of small buffers via MPI_Sendrecv
an expensive operation, relatively speaking.

Since we look for implementation differences between different
MPI libraries, we give the results with the OpenMPI 4.1.4 library in
Table 8. There are performance differences between the two libraries
in absolute terms, with the OpenMPI 4.1.4 being somewhat slower;
but the qualitative behavior and the qualitative differences between
memcpy and typed memory copy remain the same. This is overall
disappointing.

In summary, MPI libraries could improve their performance
of process-local communication with the special MPI_COMM_SELF
communicator to provide advanced, type conscientious users a
handle for doing type correct local copy operations. This could
have a noticeable performance impact for libraries that work with
non-consecutive data of smaller size.

6.2 Other datatype issues
Library building for applications that use non-consecutive, struc-
tured data described with MPI datatypes can be tedious, since the
MPI standard is (still) weak on supporting functionality for data-
type introspection and navigation, as have been argued at length
in [19, 20] and elsewhere. We here briefly recapitulate some of the
criticism and proposals for either additional, structure-conscious
libraries built with MPI, or extensions to the MPI standard.

Overall, the list of lacking functionality for MPI derived data-
types that would be convenient is long. The syntactic decoding
functionality provided by MPI [15, Section 5.1.13] is tedious, incon-
venient, and unsupportive, and can even lose relevant, structural
information.

We return to the reduction library example, where the library
implementer may have to write a reduction operator to handle,
say, blocks of sparse matrices. By the function prototype for such
user-defined operators, a pointer to the MPI datatype describing
the structure of the user data is passed and it has to be interpreted
correctly by the library code. Since the sparsity pattern may be
unknown in advance to the library, the datatype would have to
be interpreted in order to locate the individual matrix elements.
For such usages, MPI provides little or no direct functionality. The
following functionality would be convenient for the writer of such
advanced libraries.

• Is the datatype a built-in MPI datatype? Since there is no
such MPI predicate, the library developer would have to case
analyze for all the different built-in datatypes. In the worst
case with MPI 4.0 [15, Annex A.1], this means the 32 built-in



Library Development with MPI: Attributes, Objects, Communicators, Local Reduce, Datatypes EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom

Table 8: Local copy, untyped and typed, OpenMPI 4.1.4.

Test 𝑝 𝑚 𝑛 𝑟 Time (𝜇s)
Avg (Min.)

memcpy 1 20 10 95 0.061 0.061
double-double 1 20 10 95 0.342 0.327
double-col 1 20 10 95 1.485 1.454
col-double 1 20 10 95 1.561 1.532
col-col 1 20 10 95 2.701 2.656

double-swap 1 20 10 95 0.534 0.517
swap-double 1 20 10 95 0.533 0.515
swap-swap 1 20 10 95 0.719 0.691
col-swap 1 20 10 95 1.741 1.704
swap-col 1 20 10 95 1.675 1.642
memcpy 1 200 10000 95 3065 3015

double-double 1 200 10000 95 3084 2977
double-col 1 200 10000 95 15357 15247
col-double 1 200 10000 95 13004 12722
col-col 1 200 10000 95 35008 32200

double-swap 1 200 10000 95 5703 5658
swap-double 1 200 10000 95 5645 5598
swap-swap 1 200 10000 95 17964 14186
col-swap 1 200 10000 95 24095 23925
swap-col 1 200 10000 95 28730 28619
memcpy 32 20 10 95 0.084 0.069

double-double 32 20 10 95 0.641 0.358
double-col 32 20 10 95 2.003 1.545
col-double 32 20 10 95 2.108 1.633
col-col 32 20 10 95 3.389 2.828

double-swap 32 20 10 95 1.064 0.601
swap-double 32 20 10 95 1.080 0.620
swap-swap 32 20 10 95 1.211 0.836
col-swap 32 20 10 95 2.919 1.858
swap-col 32 20 10 95 2.271 1.804
memcpy 32 200 10000 95 7320 7285

double-double 32 200 10000 95 7360 7295
double-col 32 200 10000 95 23789 23673
col-double 32 200 10000 95 21949 21778
col-col 32 200 10000 95 51177 45451

double-swap 32 200 10000 95 14529 14456
swap-double 32 200 10000 95 14547 14431
swap-swap 32 200 10000 95 33577 28642
col-swap 32 200 10000 95 41431 41001
swap-col 32 200 10000 95 43298 42877

datatypes for the different C types, and the 6 special two-
element types for the MPI_MAXLOC, MPI_MAXLOC operators,
etc..

• Is the datatype contiguous? This is typically decided by com-
paring size and (true) extent of the datatype; but since extents
can be changed, and since types can have overlapping entries
(as allowed for datatypes for send buffers), the implementer
has to be careful with such tests.

• Is the datatype non-overlapping with no more than one data
element for each index, offset or displacement addressed by
the datatype?

• Is the datatype homogeneous with only elements of one
built-in datatype? What is the base built-in datatype?

• What is the total number of elements in the datatype?
• What is the type of the 𝑖th element?
• What is the offset/displacement of the 𝑖th element?
• What is the repetition count for the largest consecutive, ho-
mogeneous segment starting from element 𝑖?

Much functionality of this sort was discussed and implemented
in the library in [19, 20]. This library used the old-fashioned MPI
profiling interface (which is then “gone”), relied heavily on the
attribute caching mechanism, and used the MPI decoding function-
ality for the first pass through a user-defined datatype to build its
own representation of the type that is then cached with the data-
type. A particular, unsolvable problem with this approach is that
the decoding functionality, as specified in the standard [15, Section
5.1.13], may return new datatypes for the component datatypes
of a complex, derived datatype. Thus, information on whether the
datatype was created by reuse of the same datatype is lost. It is not
possible with the provided MPI functionality to determine whether
the user created a particular datatype compactly by reuse of com-
ponents, or wastefully using new datatypes for all components.

MPI provides no functionality for semantic introspection into da-
tatypes. There is for instance no functionality for checking whether
two derived datatypes are equivalent or similar in some appropriate
sense (there is a weak definition of datatype equivalence in [15,
Section 2.4.3]). In contrast, there is such (limited) functionality for
groups and communicators, namely the MPI_Group_compare and
MPI_Comm_compare functions.

A proposal would be to introduce a stronger semantic concept
of datatype equivalence, and provide an operation, say NEW_Type_-
compare for datatypes. Outcomes could, as for the group and com-
municator operations, be that the compared datatypes are indeed
identical (same handle), equivalent, by describing the same layouts
in the same order (identical type maps), similar (by having the same
signature type which means the same order of elements of the same
types, but possibly different displacements), or simply different.

The “col” and “swap” datatypes used in experiment in Section 6.1
are for instance similar to a sequence of𝑚𝑛 MPI_DOUBLE, and since
they are also contiguous, it was possible to copy between to “col”
types by a memcpy operation. The NEW_Type_compare functionality
could therefore be used to answer some of the questions listed
above.

MPI lacks functionality for effectively using pipelining with de-
rived datatypes, namely for selectively addressing a next segment
of data described by a derived datatype as the next block to the
pipeline. The only type-safe alternative is to pack the entire buffer
described by the derived datatype into a consecutive buffer, and
pipeline from this buffer (in a type-safe manner, and even this is dif-
ficult). This entails an overhead of a full copy of the data buffer. MPI
library implementations provide such functionality internally for
their efficient, pipelined algorithms, e.g., for collective operations,
but such functionality is not exposed through standardized MPI
operations. This makes efficient library writing for new, application-
specific collective communication operations that may support or
use user-defined datatypes very tedious.



EUROMPI ’23, September 11–13, 2023, Bristol, United Kingdom Jesper Larsson Träff and Ioannis Vardas

7 SUMMARY
Based on concrete experience with parallel library building with
MPI, we discussed desired, but missing or awkward MPI functional-
ity, and outlined possible solutions. The main thrust of our discus-
sion is an argument for orthogonality: If a feature, say attributes, is
defined for some objects, it should be, as far as it is sensible, defined
for all objects. Surely, some user or library writer will someday
come up with a use-case for attributes for MPI_Group, or MPI_-
Status objects. If a semantic property, say non-blockingness, is
defined for some operations in a class, it should be, as far as it makes
sense, defined for all operations in the class. For writers of truly
non-blocking libraries, non-blocking versions of all communicator-
creating functions will eventually be needed.

More concretely, we
• discussed why non-blocking versions for all communicator
creation functions make sense,

• motivated why attributes for MPI_Request objects would be
desirable,

• urged for a three-argument, local reduction operation,
• argued for an MPI typed local copy operation, possibly im-
plemented through a special case MPI_Sendrecv operation,
and

• revisited arguments for more, and more semantically ori-
ented datatype introspection functionality.

The discussions of the three-argument reduction operation and
the type navigation and pipelining functionality are arguments for
considering to expose more of the functionality internally used in
MPI libraries to the application programmer.

We benchmarked the performance of the MPI attribute caching
mechanism, the two-argument MPI_Reduce_local operation, and
a type-safe local copy with common MPI libraries, and found room
for improvement, to varying degrees, in all of them.

A valuable proof-of-concept (proof of completeness) and perhaps
a valuable addition to the MPI standard itself is to write stand-alone,
fully transparent library versions for collective communication,
topology functionality, and MPI-IO. This would also provide a per-
formance baseline, in the sense of performance guidelines [12, 21],
for professional implementations of these crucial parts of MPI.

REFERENCES
[1] Enes Bajrović and Jesper Larsson Träff. 2011. Using MPI derived datatypes in

numerical libraries. In Recent Advances in Message Passing Interface. 18th European
MPI Users’ Group Meeting (Lecture Notes in Computer Science, Vol. 6960). Springer,
29–38.

[2] Pavan Balaji, Darius Buntinas, Satish Balay, Barry F. Smith, Rajeev Thakur, and
William Gropp. 2007. Nonuniformly Communicating Noncontiguous Data: A
Case Study with PETSc and MPI. In 21th International Parallel and Distributed
Processing Symposium (IPDPS). 1–10.

[3] Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ewing L. Lusk.
2010. The Importance of Non-Data-Communication Overheads in MPI. In-
ternational Journal on High Performance Computing Applications 24, 1 (2010),
5–15.

[4] Alexandra Carpen-Amarie, Sascha Hunold, and Jesper Larsson Träff. 2017. On Ex-
pected and Observed Communication Performance with MPI Derived Datatypes.
Parallel Computing 69 (2017), 98–117.

[5] Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, David W.
Walker, and R. Clinton Whaley. 1996. Design and Implementation of the ScaLA-
PACK LU, QR, and Cholesky Factorization Routines. Scientific Programming 5, 3

(1996), 173–184.
[6] James Dinan, David Goodell, William Gropp, Rajeev Thakur, and Pavan Balaji.

[n. d.]. Efficient Multithreaded Context ID Allocation in MPI. In Recent Advances
in theMessage Passing Interface. 19th EuropeanMPI Users’ GroupMeeting (EuroMPI)
(Lecture Notes in Computer Science, Vol. 7490). 57–66.

[7] Markus Geimer, Marc-André Hermanns, Christian Siebert, Felix Wolf, and Brian
J. N. Wylie. 2011. Scaling Performance Tool MPI Communicator Management. In
Recent Advances in the Message Passing Interface. 18th European MPI Users’ Group
Meeting (EuroMPI) (Lecture Notes in Computer Science, Vol. 6960). 178–187.

[8] William D. Gropp, Torsten Hoefler, Rajeev Thakur, and Jesper Larsson Träff.
2011. Performance expectations and guidelines for MPI derived datatypes: a
first analysis. In Recent Advances in Message Passing Interface. 18th European MPI
Users’ Group Meeting (Lecture Notes in Computer Science, Vol. 6960). Springer,
150–159.

[9] Torsten Hoefler, Prabhanjan Kambadur, Richard L. Graham, Galen M. Shipman,
and Andrew Lumsdaine. 2007. A Case for Standard Non-blocking Collective
Operations. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface. 14th European PVM/MPI User’s GroupMeeting (Lecture Notes in Computer
Science, Vol. 4757). Springer, 125–134.

[10] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2009. Group Opera-
tion Assembly Language - A Flexible Way to Express Collective Communication.
In International Conference on Parallel Processing (ICPP). 574–581.

[11] Torsten Hoefler and Marc Snir. 2011. Writing Parallel Libraries with MPI –
Common Practice, Issues, and Extensions. In Recent Advances in the Message
Passing Interface. 18th European MPI Users’ Group Meeting (EuroMPI). 345–355.

[12] Sascha Hunold, Alexandra Carpen-Amarie, Felix Donatus Lübbe, and Jesper Lars-
son Träff. 2016. Automatic Verification of Self-Consistent MPI Performance
Guidelines. In Euro-Par Parallel Processing (Lecture Notes in Computer Science,
Vol. 9833). 433–446.

[13] Faisal Ghias Mir and Jesper Larsson Träff. 2008. Constructing MPI input-output
Datatypes for efficient Transpacking. In Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface. 15th European PVM/MPI Users’ Group Meeting
(Lecture Notes in Computer Science, Vol. 5205). Springer, 141–150.

[14] Faisal Ghias Mir and Jesper Larsson Träff. 2009. Exploiting efficient Transpacking
for One-sided Communication and MPI-IO. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 16th European PVM/MPI Users’ Group
Meeting (Lecture Notes in Computer Science, Vol. 5759). Springer, 154–163.

[15] MPI Forum. 2021. MPI: A Message-Passing Interface Standard. Version 4.0. www.
mpi-forum.org.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. 8024–8035.

[17] Jack Poulson, BryanMarker, Robert van de Geijn, Jeff R. Hammond, and Nichols A.
Romero. 2013. Elemental: A New Framework for Distributed Memory Dense
Matrix Computations. ACM Trans. Math. Software 39, 2 (2013).

[18] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On Implementing MPI-IO
Portably and with High Performance. In 6th Workshop on I/O in Parallel and
Distributed Systems (IOPADS). 23–32.

[19] Jesper Larsson Träff. 2016. A Library for Advanced Datatype Programming. In
23rd European MPI Users’ Group Meeting (EuroMPI). ACM, 98–107.

[20] Jesper Larsson Träff. 2020. Signature datatypes for type correct collective opera-
tions, revisited. In 27th European MPI Users’ Group Meeting (EuroMPI/USA). ACM,
1:1–1:8.

[21] Jesper Larsson Träff, William D. Gropp, and Rajeev Thakur. 2010. Self-consistent
MPI Performance Guidelines. IEEE Transactions on Parallel and Distributed
Systems 21, 5 (2010), 698–709.

[22] Jesper Larsson Träff and Sascha Hunold. 2020. Decomposing MPI Collectives
for Exploiting Multi-lane Communication. In IEEE International Conference on
Cluster Computing (CLUSTER). IEEE Computer Society, 270–280.

[23] Jesper Larsson Träff, Sascha Hunold, Nikolaus Manes Funk, and Ioannis Vardas.
2023. Uniform Algorithms for Reduce-scatter and (most) other Collectives for
MPI. In IEEE International Conference on Cluster Computing (CLUSTER). IEEE
Computer Society.

[24] Jesper Larsson Träff, Sascha Hunold, Guillaume Mercier, and Daniel J. Holmes.
2021. MPI collective communication through a single set of interfaces: A case
for orthogonality. Parallel Computing 107 (2021).

[25] Ioannis Vardas, Sascha Hunold, Jordy I. Ajanohoun, and Jesper Larsson Träff.
2022. mpisee: MPI Profiling for Communication and Communicator Structure. In
27th International Workshop on High-level Parallel Programming Models and Sup-
portive Environments (HIPS), 36th International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 520–529.

www.mpi-forum.org
www.mpi-forum.org

	Abstract
	1 Introduction
	2 Attributes
	3 Request objects
	4 Group communicator creation
	5 Local reductions
	6 Datatypes and typed copy operations
	6.1 Performance of MPI typed memory copy
	6.2 Other datatype issues

	7 Summary
	References

