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Abstract. We introduce a Gentzen-style framework, called layered
sequent calculi, for modal logic K5 and its extensions KD5, K45, KD45,
KB5, and S5 with the goal to investigate the uniform Lyndon interpo-
lation property (ULIP), which implies both the uniform interpolation
property and the Lyndon interpolation property. We obtain complexity-
optimal decision procedures for all logics and present a constructive proof
of the ULIP for K5, which to the best of our knowledge, is the first such
syntactic proof. To prove that the interpolant is correct, we use model-
theoretic methods, especially bisimulation modulo literals.

1 Introduction

The uniform interpolation property (UIP) is an important property of a logic.
It strengthens the Craig interpolation property (CIP) by making interpolants
depend on only one formula of an implication, either the premise or conclusion.
A lot of work has gone into proving the UIP, and it is shown to be useful in
various areas of computer science, including knowledge representation [17] and
description logics [25]. Early results on the UIP in modal logic include positive
results proved semantically for logics GL and K (independently in [9,32,35])
and negative results for logics S4 [10] and K4 [5]. A proof-theoretic method to
prove the UIP was first proposed in [30] for intuitionistic propositional logic and
later adapted to modal logics, such as K and T in [5]. A general proof-theoretic
method of proving the UIP for many classical and intuitionistic (non-)normal
modal logics and substructural (modal) logics based on the form of their sequent-
calculi rules was developed in the series of papers [2,3,16].
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Apart from the UIP, we are also interested in the uniform Lyndon inter-
polation property (ULIP) that is a strengthening of the UIP in the sense that
interpolants must respect the polarities of the propositional variables involved.
Kurahashi [18] first introduced this property and proved it for several normal
modal logics, by employing a semantic method using layered bisimulations. A
sequent-based proof-theoretic method was used in [1] to show the ULIP for sev-
eral non-normal modal logics and conditional logics.

Our long-term goal is to provide a general proof-theoretic method to (re)prove
the UIP for modal logics via multisequent calculi (i.e., nested sequents, hyperse-
quents, labelled hypersequents, etc.). Unlike many other ways of proving inter-
polation, the proof-theoretic treatment is constructive in that it additionally
yields an algorithm for constructing uniform interpolants. Towards this goal, we
build on the modular treatment of multicomponent calculi to prove the CIP for
modal and intermediate logics in [8,19,21,23,24]. First steps have been made
by reproving the UIP for modal logics K, D, and T via nested sequents [12] and
for S5 via hypersequents [11,13], the first time this is proved proof-theoretically
for S5.

In this paper, we focus on logics K5, KD5, K45, KD45, KB5, and S5. The ULIP
for these logics was derived in [18, Prop. 3] from the logics’ local tabularity [28]
and Lyndon interpolation property (LIP) [20].

Towards a modular proof-theoretic treatment, we introduce a new form of
multisequent calculi for these logics that we call layered sequent calculi, the
structure of which is inspired by the structure of the Kripke frames for the
concerned logics from [27]. For S5, this results in standard hypersequents [4,26,
31]. For K5 and KD5, the presented calculi are similar to grafted hypersequent
calculi in [22] but without explicit weakening. Other, less related, proof systems
include analytic cut-free sequent systems for K5 and KD5 [34], cut-free sequent
calculi for K45 and KD45 [33], and nested sequent calculi for modal logics [7].

The layered sequent calculi introduced in this paper adopt a strong version
of termination that only relies on a local loop-check based on saturation. For
all concerned logics, this yields a decision procedure that runs in co-NP time,
which is, therefore, optimal [15]. We provide a semantic completeness proof via
a countermodel construction from failed proof search.

Finally, layered sequents are used to provide the first proof-theoretic proof of
the ULIP for K5. The method is adapted from [11,13] in which the UIP is proved
for S5 based on hypersequents. We provide an algorithm to construct uniform
Lyndon interpolants purely by syntactic means using the termination strategy of
the proof search. To show the correctness of the constructed interpolants, we use
model-theoretic techniques inspired by bisimulation quantification in the setting
of uniform Lyndon interpolation [18].

An extended version of the paper with more detailed proofs is found in [14].

2 Preliminaries

The language of modal logics consists of a set Pr of countably many (proposi-
tional) atoms p, q, . . ., their negations p, q, . . ., propositional connectives ∧ and ∨,
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Table 1. Modal axioms and their corresponding frame conditions.

Axiom Formula Frame condition

k �(ϕ → ψ) → (�ϕ → �ψ) none

5 ♦ϕ → �♦ϕ Euclidean: wRv ∧ wRu ⇒ vRu

4 �ϕ → ��ϕ transitive: wRv ∧ vRu ⇒ wRu

d �ϕ → ♦ϕ serial: ∀w∃v(wRv)

b ϕ → �♦ϕ symmetric: wRv ⇒ vRw

t �ϕ → ϕ reflexive: ∀w(wRw)

boolean constants � and ⊥, and modal operators � and ♦. A literal � is either
an atom or its negation, and the set of all literals is denoted by Lit. We define
modal formulas in the usual way and denote them by lowercase Greek letters
ϕ,ψ, . . .. We define ϕ using the usual De Morgan laws to push the negation
inwards (in particular, p := p) and ϕ → ψ := ϕ ∨ ψ. We use uppercase Greek
letters Γ,Δ, . . . to refer to finite multisets of formulas. We write Γ,Δ to mean
Γ ∪ Δ and Γ, ϕ to mean Γ ∪ {ϕ}. The set of literals of a formula ϕ, denoted
Lit(ϕ), is defined recursively: Lit(�) = Lit(⊥) = ∅, Lit(�) = � for � ∈ Lit,
Lit(ϕ ∧ ψ) = Lit(ϕ ∨ ψ) = Lit(ϕ) ∪ Lit(ψ), and Lit(�ϕ) = Lit(♦ϕ) = Lit(ϕ).

We consider extensions of K5 with any combination of axioms 4, d, b, and t
(Table 1). Several of the 16 combinations coincide, resulting in 6 logics: K5,
KD5, K45, KD45, KB5, and S5 (Table 2). Throughout the paper, we assume
L ∈ {K5,KD5,K45,KD45,KB5,S5} and write 	L ϕ iff ϕ ∈ L.

Definition 1 (Logic K5). Modal logic K5 is axiomatized by the classical tau-
tologies, axioms k and 5, and rules modus ponens (from ϕ and ϕ → ψ infer ψ)
and necessitation (from ϕ infer �ϕ).

Throughout the paper we employ the semantics of Kripke frames and models.

Definition 2 (Kripke semantics). A Kripke frame is a pair (W,R) where
W is a nonempty set of worlds and R ⊆ W × W a binary relation. A Kripke
model is a triple (W,R, V ) where (W,R) is a Kripke frame and V : Pr → P(W )
is a valuation function. A formula ϕ is defined to be true at a world w in a
model M = (W,R, V ), denoted M, w � ϕ, as follows: M, w � �, M, w � ⊥ and

M, w � p iff w ∈ V (p)
M, w � p iff w /∈ V (p)
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � �ϕ iff for all v ∈ W such that wRv, M, v � ϕ
M, w � ♦ϕ iff there exists v ∈ W such that wRv and M, v � ϕ.

Formula ϕ is valid in M = (W,R, V ), denoted M � ϕ, iff for all w ∈ W ,
M, w � ϕ. We call ∅ �= C ⊆ W a cluster (in M) iff C × C ⊆ R, i.e., the
relation R is total on C. We write wRC iff wRv for all v ∈ C.
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Table 2. Semantics for extensions of K5 (see [27,29]). Everywhere not ρRρ for the
root ρ, set C is a finite cluster, and � denotes disjoint union.

Logic L Axiomatization Class of L-frames (W, R)

K5 Definition 1 W = {ρ} or W = {ρ} � C

KD5 K5 + d W = {ρ} � C

K45 K5 + 4 W = {ρ} or (W = {ρ} � C and ρRC)

KD45 K5 + d + 4 W = {ρ} � C and ρRC

KB5 K5 + b W = {ρ} or W = C

S5 K5 + t W = C

We work with specific classes of Kripke models sound and complete w.r.t.
the logics. The respective frame conditions for the logic L, called L-frames, are
defined in Table 2. A model (W,R, V ) is an L-model iff (W,R) is an L-frame.
Table 2 is a refinement of Theorem 3, particularly shown for K45, KD45, and KB5
in [29]. More precisely, we consider rooted frames and completeness w.r.t. the
root, i.e., 	L ϕ iff for all L-models M with root ρ, M, ρ � ϕ (we often denote
the if-condition as �L ϕ). For each logic, this follows from easy bisimulation
arguments.

Theorem 3 ([27]). Any normal modal logic containing K5 is sound and com-
plete w.r.t. a class of finite Euclidean Kripke frames (W,R) of one of the follow-
ing forms: (a) W = {ρ} consists of a singleton root and R = ∅, (b) the whole W
is a cluster (any world can be considered its root), or (c) W\{ρ} is a cluster for
a (unique) root ρ ∈ W such that ρRw for some w ∈ W\{ρ} while not ρRρ.

Definition 4 (UIP and ULIP). A logic L has the uniform interpolation
property (UIP) iff for any formula ϕ and p ∈ Pr there is a formula ∀pϕ such
that

(1) Lit(∀pϕ) ⊆ Lit(ϕ) \ {p, p},
(2) 	L ∀pϕ → ϕ, and
(3) 	L ψ → ϕ implies 	L ψ → ∀pϕ for any formula ψ with p, p /∈ Lit(ψ).

A logic L has the uniform Lyndon interpolation property (ULIP) [1,18] iff
for any formula ϕ and � ∈ Lit, there is a formula ∀�ϕ such that

(i) Lit(∀�ϕ) ⊆ Lit(ϕ) \ {�},
(ii) 	L ∀�ϕ → ϕ, and
(iii) 	L ψ → ϕ implies 	L ψ → ∀�ϕ for any formula ψ with � /∈ Lit(ψ).

We call ∀pϕ (∀�ϕ) the uniform (Lyndon) interpolant of ϕ w.r.t. atom p (lit-
eral �).

These are often called pre-interpolants as opposed to their dual post-interpolants
that, in classical logic, can be defined as ∃pϕ = ∀pϕ and ∃�ϕ = ∀�ϕ (see, e.g.,
[1,5,11,18] for more explanations).
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Theorem 5. If a logic L has the ULIP, then it also has the UIP.

Proof. We define a uniform interpolant of ϕ w.r.t. atom p as a uniform Lyndon
interpolant ∀p∀pϕ of ∀pϕ w.r.t. literal p. We need to demonstrate conditions
LIP(1)–(3) from Definition 4. First, it follows from ULIP(i) that Lit(∀p∀pϕ) ⊆
Lit(∀pϕ) \ {p} ⊆ Lit(ϕ) \ {p, p}. Second, 	L ∀p∀pϕ → ∀pϕ and 	L ∀pϕ → ϕ by
ULIP(ii), hence, 	L ∀p∀pϕ → ϕ. Finally, if 	L ψ → ϕ where p, p /∈ Lit(ψ), then
by ULIP(iii), 	L ψ → ∀pϕ as p /∈ Lit(ψ) and 	L ψ → ∀p∀pϕ as p /∈ Lit(ψ). ��

3 Layered Sequents

Definition 6 (Layered sequents). A layered sequent is a generalized one-
sided sequent of the form

G = Γ1, . . . , Γn, [Σ1], . . . , [Σm], [[Π1]], . . . , [[Πk]] (1)

where Γi, Σi,Πi are finite multisets of formulas, n,m, k ≥ 0, and if k ≥ 1, then
m ≥ 1. A layered sequent is an L-sequent iff it satisfies the conditions in the
rightmost column of Table 3. Each Σi, each Πi, and

⋃
i Γi is called a sequent

component of G. The formula interpretation of a layered sequent G above is:

ι(G) =
∨n

i=1

( ∨
Γi

) ∨
∨m

i=1
�

( ∨
Σi

) ∨
∨k

i=1
��

( ∨
Πi

)
.

Layered sequents are denoted by G and H. The structure of a layered sequent
can be viewed as at most two layers of hypersequents ([ ]-components Σi and
[[ ]]-components Πi forming the first and second layer respectively) possibly
nested on top of the sequent component

⋃
i Γi as the root. Following the arboreal

terminology from [22], the root is called the trunk while [ ]- and [[ ]]-components
form the crown. Analogously to nested sequents representing tree-like Kripke
models, the structure of L-sequents is in line with the structure of L-models
introduced in Sect. 2. We view sequents components as freely permutable, e.g.,
[[Π1]], Γ1, [Σ1], Γ2 and Γ1, Γ2, [Σ1], [[Π1]] represent the same layered sequent.

Table 3. Layered sequent calculi L.L: in addition to explicitly stated rules, all L.L
have axioms idP and id� and rules ∨, ∧, ♦c, and t (see Fig. 1). Note that the rules of
system L.L may only be applied to L-sequents.

Calculus Sequent rules Conditions on layered sequents

L.K5 �t ♦t �c′ n ≥ 1, m, k ≥ 0

L.KD5 �t ♦t �c′ dt dc′ n ≥ 1, m, k ≥ 0

L.K45 �t ♦t �c n ≥ 1, m ≥ 0, k = 0

L.KD45 �t ♦t �c dt dc n ≥ 1, m ≥ 0, k = 0

L.KB5 �t′ �c n = 0, m ≥ 2, k = 0 or n = 1, m = 0, k = 0

L.S5 �c n = 0, m ≥ 1, k = 0
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Remark 7. The layered calculi presented here generalize grafted hypersequents
of [22] and, hence, similarly combine features of hypersequents and nested
sequents. In particular, layered sequents are generally neither pure hypersequents
(except for the case of S5) nor bounded-depth nested sequents. The latter is due
to the fact that the defining property of nested sequents is the tree structure
of the sequent components, whereas the crown components of a layered sequent
form a cluster. Although formally grafted hypersequents are defined with one
layer only, this syntactic choice is more of a syntactic sugar than a real dis-
tinction. Indeed, the close relationship of one-layer grafted hypersequents for
K5 and KD5 in [22] to the two-layer layered sequents presented here clearly
manifests itself when translating grafted hypersequents into the prefixed-tableau
format (see grafted tableau system for K5 [22, Sect. 6]). There prefixes for the
crown are separated into two types, limbs and twigs, which match the separation
into [ ]- and [[ ]]-components.

For a layered sequent (1), we assign labels to the components as follows:
the trunk is labeled •, [ ]-components get distinct labels •1, •2, . . . , and [[ ]]-
components get distinct labels 1, 2, . . . . We let σ, τ, . . . range over these labels.
The set of labels is denoted Lab(G) and σ ∈ G means σ ∈ Lab(G). We write
σ : ϕ ∈ G (or σ : ϕ if no confusion occurs) when a formula ϕ occurs in a sequent
component of G labeled by σ.

Example 8. G = ϕ,ψ, [χ], [ξ], [[θ]] is a layered sequent with the trunk and three
crown components: two [ ]-components and one [[ ]]-component. Since it has
both the trunk and a [[ ]]-component, it can only be a K5- or KD5-sequent. A cor-
responding labeled sequent is G = ϕ•, ψ•, [χ]•1, [ξ]•2, [[θ]]1, with the set Lab(G) =
{•, •1, •2, 1} of four labels. Similarly, for the KB5/S5-sequent H = [σ], [δ], a cor-
responding labeled sequent is H = [σ]•1, [δ]•2 with Lab(H) = {•1, •2}.

Fig. 1. Layered sequent rules: brackets � � and � � range over both [ ] and [[ ]].



Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 269

We sometimes use unary contexts, i.e., layered sequents with exactly one hole,
denoted { }. Such contexts are denoted by G{ }. The insertion G{Γ} of a finite
multiset Γ into G{ } is obtained by replacing { } with Γ . The hole { } in a
component σ can also be labeled G{ }σ. We use the notations � � and � � to
refer to either of [ ] or [[ ]].

Using Fig. 1 and the middle column of Table 3, we define layered sequent
calculi L.K5, L.KD5, L.K45, L.KD45, L.KB5, and L.S5, where L.L is the calculus
for the logic L. Following the terminology from [22], we split all modal rules into
trunk rules (subscript t) and crown rules (subscript c) depending on the position
of the principal formula. We write 	L.L G iff G is derivable in L.L.

Definition 9 (Saturation). Labeled formula σ : ϕ ∈ G is saturated for L.L iff

– ϕ equals p or p for an atom p, or equals ⊥, or equals �;
– ϕ = ϕ1 ∧ ϕ2 and σ : ϕi ∈ G for some i;
– ϕ = ϕ1 ∨ ϕ2 and both σ : ϕ1 ∈ G and σ : ϕ2 ∈ G;
– ϕ = �ϕ′, the unique rule applicable to σ : �ϕ′ in L.L is either �t or �c (i.e.,

a rule creating a [ ]-component), and •i : ϕ′ ∈ G for some i;
– ϕ = �ϕ′, the unique rule applicable to σ : �ϕ′ in L.L is �c′ (i.e., a rule

creating a [[ ]]-component), and i : ϕ′ ∈ G for some i.

In addition, we define for any label σ and formula ϕ:

– σ : ♦ϕ is saturated w.r.t. • ∈ Lab(G);
– σ : ♦ϕ is saturated w.r.t. a label •i ∈ Lab(G) iff •i : ϕ ∈ G;
– σ : ♦ϕ is saturated w.r.t. a label i ∈ Lab(G) iff σ = • or i : ϕ ∈ G;
– σ : ♦ϕ is dt-saturated iff σ �= • or •i : ϕ ∈ G for some i;
– σ : ♦ϕ is dc-saturated iff σ = • or •i : ϕ ∈ G for some i;
– σ : ♦ϕ is d′

c-saturated iff σ = • or i : ϕ ∈ G for some i.

G is propositionally saturated iff all ∨- and ∧-formulas are saturated in G. L-
sequent G is L-saturated iff a) each non-♦ formula is saturated, b) each σ : ♦ϕ
is saturated w.r.t. every label in Lab(G), c) each σ : ♦ϕ is d-saturated whenever
d ∈ L.L ∩ {dt, dc, dc′}, and d) G is not of the from H{�} or H{q, q} for some
q ∈ Pr.

Theorem 10. Proof search in L.L modulo saturation terminates and provides
an optimal-complexity decision algorithm, i.e., runs in co-NP time.

Proof. Given a proof search of layered sequent G, for each layered sequent H in
this proof search, consider its labeled formulas as a set FH = {σ : ϕ | σ : ϕ ∈ H}.
Let s be the number of subformulas occurring in G and N be the number of
sequent components in G. Since we only apply rules (that do not equal idP or id�)
to non-saturated sequents, sets FH will grow for each premise. Going bottom-up
in the proof search, at most s labels of the form •i and at most s labels of the
form i can be created, and each label can have at most s formulas. Therefore, the
cardinality of sets FH are bounded by s(N+s+s), which is polynomial in the size
of FG . Hence, the proof search terminates modulo saturation. Moreover, since
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each added labeled formula is linear in the size FG and the non-deterministic
branching in the proof search is bounded by (N + s + s)s(N + s + s), again a
polynomial in the size of FG , this algorithm is co-NP, i.e., provides an optimal
decision procedure for the logic. ��
Definition 11 (Interpretations). An interpretation of an L-sequent G into
an L-model M = (W,R, V ) is a function I : Lab(G) → W such that the following
conditions apply whenever the respective type of labels exists in G:

1. I(•) = ρ, where ρ is the root of M;
2. I(•)R I(•i) for each label of the form •i ∈ Lab(G);
3. I(•i)R I(j) and I(j)R I(•i) for all labels of the form •i and j in Lab(G);
4. Not I(•)R I(j) for any label of the form j ∈ Lab(G).

Note that none of the conditions (1)–(4) apply to layered S5-sequents.

Definition 12 (Sequent semantics). For any given interpretation I of an
L-sequent G into an L-model M,

M, I � G iff M, I(σ) � ϕ for some σ : ϕ ∈ G.

G is valid in L, denoted �L G, iff M, I � G for all L-models M and interpreta-
tions I of G into M. We omit L and M when clear from the context.

The proof of the following theorem is based on a countermodel construction
(for more standard parts of the proof we refer to the Appendix of [14]):

Theorem 13 (Soundness and completeness). For any L-sequent G,

	L.L G ⇐⇒ �L ι(G) ⇐⇒ �L G.

Proof. We show a cycle of implications. The left-to-middle implication, i.e., that
	L.L G =⇒ �L ι(G), can be proved by induction on the L.L-derivation of G.

For the middle-to-right implication, i.e., �L ι(G) =⇒ �L G, let G be a sequent
of form (1). We prove that M, I � G implies M, I(•) � ι(G) (if n = 0, use 1
in place of •). By definition, I(•) is the root of M. If M, I � G, then I(•) � ϕ
for all ϕ ∈ ⋃n

i=1 Γi, for each 1 ≤ i ≤ m we have I(•i) � ψ for all ψ ∈ Σi,
and for each 1 ≤ i ≤ k we have I(i) � χ for all χ ∈ Πi. By Definition 11, in
case k ≥ 1 label •1 is in G and I(•)RI(•1)RI(i) for each 1 ≤ i ≤ k. Therefore
M, I(•) � ι(G).

Finally, we prove the right-to-left implication by contraposition using a coun-
termodel construction: from a failed proof search of G, construct an L-model
refuting G from (1). In a failed proof-search tree (Theorem 10), since �L.L G, at
least one saturated leaf

G′ = Γ ′, [Σ′
1], . . . , [Σ

′
m], [Σ′′

1 ], . . . , [Σ′′
m′ ], [[Π′

1]], . . . , [[Π
′
k]], [[Π′′

1 ]], . . . , [[Π′′
k′ ]],

is such that
⋃

i Γi ⊆ Γ ′, Σi ⊆ Σ′
i, and Πi ⊆ Π′

i (or for KB5, if G = Γ , then
G′ = Γ ′ for Γ ⊆ Γ ′ or [Σ], [Σ1], . . . , [Σm] with Γ ⊆ Σ). Define M = (W,R, V ):

W = Lab(G′), V (p) = {σ | σ : p ∈ G′},

R = {(•, •i) | •i ∈ Lab(G′)} ∪ {(σ, τ) | σ, τ ∈ Lab(G′), σ, τ �= •}.

Since G′ is saturated, M is an L-model. Taking I of G into M as the identity
function (or I(•) = 1 in case of KB5), we have M, I � G as desired. ��
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4 Uniform Lyndon Interpolation

Definition 14 (Multiformulas). The grammar

� ::= σ : ϕ | (� � �) | (� � �)

defines multiformulas, where σ : ϕ is a labeled formula. Lab(�) denotes the set
of labels of �. An interpretation I of a layered sequent G into a model M is
called an interpretation of a multiformula � into M iff Lab(�) ⊆ Lab(G). If I is
an interpretation of � into M, we define M, I � � as follows:
M, I � σ : ϕ iff M, I(σ) � ϕ,
M, I � �1 � �2 iff M, I � �1 and M, I � �2,
M, I � �1 � �2 iff M, I � �i for at least one i = 1, 2.

Multiformulas �1 and �2 are said to be equivalent, denoted �1 ≡L �2, or simply
�1 ≡ �2, iff M, I � �1 ⇔ M, I � �2 for any interpretation I of both �1 and �2

into an L-model M.

Lemma 15 ([21]). Any multiformula � can be transformed into an equivalent
one in SDNF (SCNF ) as a �-disjunction (�-conjunction) of �-conjunctions
(�-disjunctions) of labeled formulas σ : ϕ such that each label of � occurs exactly
once per conjunct (disjunct).

Definition 16 (Bisimilarity) . Let M = (W,R, V ) and M′ = (W ′, R′, V ′)
be models and � ∈ Lit. We say M′ is �-bisimilar to M, denoted M′ ≤� M
iff there is a nonempty binary relation Z ⊆ W × W ′, called an �-bisimulation
between M and M′, such that the following hold for every w ∈ W and w′ ∈ W ′:

literals�. if wZw′, then a) M, w � q iff M′, w′ � q for all atoms q /∈ {�, �} and
b) if M′, w′ � �, then M, w � �;

forth. if wZw′ and wRv, then there exists v′ ∈ W ′ such that vZv′ and w′R′v′;
back. if wZw′ and w′R′v′, then there exists v ∈ W such that vZv′ and wRv.

M and M′ are bisimilar, denoted M ∼ M′, iff there is a relation Z �= ∅

satisfying forth and back, as well as part a) of literals� for any p ∈ Pr, in
which case Z is called a bisimulation. We write (similarly for ∼ instead of ≤�):

– (M′, w′) ≤� (M, w) iff there is an �-bisimulation Z, such that wZw′;
– (M′, I ′) ≤� (M, I) for functions I : X → W and I ′ : X → W ′ iff there is an

�-bisimulation Z such that I(σ)Z I ′(σ) for each σ ∈ X.

Note that ≤� is a preorder and we have M′ ≤� M iff M ≤� M′. By analogy
with [6, Theorem 2.20], we have the following immediate observation, which
additionally holds for multiformulas � (we provide a proof in [14]):

Lemma 17. Let I and I ′ be interpretations of a layered sequent G into mod-
els M and M′ respectively.

1. Let � /∈ Lit(G). If (M′, I ′) ≤� (M, I), then M, I � G implies M′, I ′ � G.
2. If (M, I) ∼ (M′, I ′), then M, I � G iff M′, I ′ � G.
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Definition 18 (BLUIP). Logic L is said to have the bisimulation layered-
sequent uniform interpolation property (BLUIP) iff for every literal � and every
L-sequent G, there is a multiformula A�(G), called BLU interpolant, such that:

(i) Lit
(
A�(G)

) ⊆ Lit(G)\{�} and Lab
(
A�(G)

) ⊆ Lab(G);
(ii) for each interpretation I of G into an L-model M,

M, I � A�(G) implies M, I � G;

(iii) for each L-model M and interpretation I of G into M, if M, I � A�(G),
then there is an L-model M′ and interpretation I ′ of G into M′ such that

(M′, I ′) ≤� (M, I) and M′, I ′
� G.

Lemma 19. The BLUIP for L implies the ULIP for L.

Proof. Let ∀�ϕ = A�(ϕ). We prove the properties of Definition 4. Variable prop-
erty is immediate. For Property (ii), assume �L A�(ϕ) → ϕ. By completeness,
we have M, ρ � A�(ϕ) and M, ρ � ϕ for some L-model M with root ρ. As ρ is
the root, it can be considered as an interpretation by Definition 11. By condi-
tion (ii) from Definition 18 we get a contradiction. For (iii), let ψ be a formula
such that � /∈ Lit(ψ) and suppose �L ψ → A�(ϕ). So there is an L-model M with
root ρ such that M, ρ � ψ and M, ρ � A�(ϕ). Again, ρ is treated as an inter-
pretation, and by (iii) from Definition 18, there is an L-model M′ with root ρ′

such that (M′, ρ′) ≤� (M, ρ) and M′, ρ′
� ϕ. By Lemma 17, M′, ρ′ � ψ, hence

�L ψ → ϕ as desired. ��
To show that calculus L.K5 enjoys the BLUIP for K5, we need two important

ingredients: some model modifications that are closed under bisimulation and
an algorithm to compute uniform Lyndon interpolants.

Definition 20 (Copying). Let M = (W,R, V ) be a K5-model with root ρ and
cluster C. Model N ′ = (W � {wc}, R′, V ′) is obtained by copying w ∈ C iff
R′ = R � ({wc} × C) � (C × {wc}) � {(ρ,wc) | (ρ,w) ∈ R} � {(wc, wc)}, and
V ′(p) = V (p)�{wc | w ∈ V (p)} for any p ∈ Pr. Model N ′′ = (W �{wc}, R′′, V ′)
is obtained by copying w away from the root iff R′′ = R′ \ {(ρ,wc)}.
Lemma 21. Let model N be obtained by copying a world w from a K5-model M
(away from the root). Let I : X → M and I ′ : X → N be interpretations such
that for each x ∈ X, either I(x) = I ′(x) or I(x) = w while I ′(x) = wc. Then,
N is a K5-model and (M, I) ∼ (N , I ′).

In the construction of interpolants, we use the following rules d′
t and dd and

sets Gc and �♦Gc of formulas from the crown of G:

Gc = {ϕ | σ : ϕ ∈ G, σ �= •} �♦Gc = {�ϕ | �ϕ ∈ Gc} � {♦ϕ | ♦ϕ ∈ Gc}
Γ,

[{ψ | ♦ψ ∈ Γ}]
Γ,♦�

d′
t

Γ
and

G,
[{ψ | ♦ψ ∈ G}], [[{χ | ♦χ ∈ Gc}

]]

dd G
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Rule d′
t shows similarities with rule dt from logics KD5 and KD45, but is only

applied in the absence of the crown. Rule d′
t is sound for K5 because it can be

viewed as a composition of an (admissible) cut on �⊥ and ♦� in the trunk,
followed by �t in the left premise on �⊥ that creates the first crown component
(though ⊥ is dropped from it), which is populated using several ♦t-rules for
♦ψ ∈ Γ . The label of this crown component is always •1. Rule dd provides
extra information in the calculation of the uniform interpolant and is needed
primarily for technical reasons. We highlight the two new sequent components
created by the last instance of dd using special placeholder labels •d and d for the
respective brackets. These labels are purely for readability purposes and revert
to the standard •j and k labels after the next instance of dd.

Table 4. Recursive construction of A�(t, Σc; G) for G that are not K5-saturated.

G matches A�(t, Σc; G) equals

1. G′{
}σ σ : 

2. G′{q, q}σ σ : 

3. G′{ϕ ∨ ψ} A�

(
t, Σc; G′{ϕ ∨ ψ, ϕ, ψ})

4. G′{ϕ ∧ ψ} A�

(
t, Σc; G′{ϕ ∧ ψ, ϕ})

� A�

(
t, Σc; G′{ϕ ∧ ψ, ψ})

5. G′, �ϕ
h

�
i=1

(
• : �δi � �

τ∈G
τ : γi,τ

)

where j is the smallest integer such that •j /∈ G and the SCNF

of A�

(
t, Σc; G′, �ϕ, [ϕ]•j

)
is

h

�
i=1

(
•j : δi � �

τ∈G
τ : γi,τ

)
,

6. G′, �Σ, �ϕ�σ

h

�
i=1

(
σ : �δi � �

τ∈G
τ : γi,τ

)

where j is the smallest integer such that j /∈ G and the SCNF

of A�

(
t, Σc; G′, �Σ, �ϕ�σ, [[ϕ]]j

)
is

h

�
i=1

(
j : δi � �

τ∈G
τ : γi,τ

)
,

7. G′, ♦ϕ, [Σ] A�

(
t, Σc; G′, ♦ϕ, [Σ, ϕ]

)

8. G′, �Σ, ♦ϕ� A�

(
t, Σc; G′, �Σ, ♦ϕ, ϕ�

)

9. G′, �Σ, ♦ϕ�, �Π� A�

(
t, Σc; G′, �Σ, ♦ϕ�, �Π, ϕ�

)

To compute a uniform Lyndon interpolant ∀�ξ for a formula ξ, we first com-
pute a BLU interpolant A�(0, ∅; ξ•) by using the recursive function A�(t, Σc;G)
with three parameters we present below. The main parameter is a K5-sequent G,
while the other two parameters are auxiliary: t ∈ {0, 1} is a boolean variable such
that t = 1 guarantees that rule dd has been applied at least once for the case
when G contains diamond formulas; Σc ⊆ �♦Gc is a set of modal formulas that
provides a bookkeeping strategy to prevent redundant applications of rule dd.

To calculate A�(t, Σc;G) our algorithm makes a choice of which row from
Table 4 to apply by trying each of the following steps in the specified order:

1. If possible, apply rows 1–2, i.e., stop and return A�(t, Σc;G) = σ : �.
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2. If some formula ϕ ∨ ψ (resp. ϕ ∧ ψ) from G is not saturated, compute
A�(t, Σc;G) according to row 3 (resp. 4) applied to this formula.

3. If some formula �ϕ ∈ G is not saturated (resp. ♦ϕ ∈ G is not saturated
w.r.t. σ ∈ G), compute A�(t, Σc;G) according to the unique respective row
among 5–9 applicable to this formula (w.r.t. σ).

4. If Steps 1–3 do not apply, i.e., G is saturated, proceed as follows:
(a) if G has no ♦-formulas, stop and return A�(t, Σc;G) = LitDis�(G) where

LitDis�(G) = �
σ:�′∈G,�′∈Lit\{�}

σ : �′ (2)

(b) else, if G = Γ consists of the trunk only, apply rule d′
t as follows:

A�(t, Σc;Γ ) =

(
• : �⊥ �

h

�
i=1

(• : ♦δi � • : γi

))
�

(• : ♦� � LitDis�(Γ )
)

(3)

where the SDNF of A�

(
0, Σc; Γ,

[{ψ | ♦ψ ∈ Γ}]
•1

)
is

h

�
i=1

(
•1 : δi � • : γi

)
(4)

(c) else, if t = 1 and �♦Gc ⊆ Σc, stop and return A�(t, Σc;G) = LitDis�(G).
(d) else, apply the rule dd as follows (where w.l.o.g. •1 ∈ G):

A�(t, Σc;G) =
h

�
i=1

(

• : ♦δi � •1 : ♦δ′
i ��

τ∈G
τ : γi,τ

)

(5)

where SDNF of A�

(
1,�♦Gc; G,

[{ψ | ♦ψ ∈ G}]•d,
[[{χ | ♦χ ∈ Gc}

]]
d

)
is

h

�
i=1

(

•d : δi � d : δ′
i ��

τ∈G
τ : γi,τ

)

(6)

The computation of the algorithm can be seen as a proof search tree
(extended with rules d′

t and dd). In this proof search, call A�(t, Σc;G) is suf-
ficient (to be a BLU interpolant for G) if each branch going up from it either
stops in Steps 1 or 4a or continues via Steps 4b or 4d. Otherwise, it is insuffi-
cient, if one of the branches stops in Step 4c, say, calculating A�(1, Σc;H). In
this case, A�(1, Σc;H) is not generally a BLU interpolant for H, but these leaves
provide enough information to find a BLU interpolant from some sequent down
the proof search tree.

Example 22. Consider the layered sequent G = ϕ for ϕ = p∨♦♦(p∨q). We show
how to construct A�(0, ∅;ϕ) for � = p. First, we compute the proof search tree
decorated with (t, Σc) to the left of each line, according to the algorithm, using
the following abbreviations Γ = ϕ, p,♦♦(p ∨ q) and Σ1 = ♦(p ∨ q), p ∨ q, p, q:
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(1, {♦(p ∨ q)}) Γ, [Σ1]•1, [♦(p ∨ q), p ∨ q, p, q]•d, [[p ∨ q, p, q]]d ∨
(1, {♦(p ∨ q)}) Γ, [Σ1]•1, [♦(p ∨ q), p ∨ q]•d, [[p ∨ q]]d

dd
(0, ∅) Γ, [♦(p ∨ q), p ∨ q, p, q]•1 ∨

(0, ∅) Γ, [♦(p ∨ q), p ∨ q]•1
t

(0, ∅) Γ, [♦(p ∨ q)]•1 Γ,♦�
d′
t(0, ∅) ϕ, p,♦♦(p ∨ q)

∨
(0, ∅) p ∨ ♦♦(p ∨ q)

H = ϕ, p,♦♦(p ∨ q), [♦(p ∨ q), p ∨ q, p, q]•1, [♦(p ∨ q), p ∨ q, p, q]•d, [[p ∨ q, p, q]]d in
the left leaf is a saturated sequent with ♦-formulas, crown components, t = 1,
and �♦Hc = {♦(p ∨ q)} ⊆ {♦(p ∨ q)} = Σc. Hence, by Step 4c,

Ap(1, {♦(p ∨ q)};H) = • : p � •1 : q � •d : q � d : q. (7)

Applications of rule ∨ do not change the interpolant (Step 2, row 3). To compute
Ap(0, ∅;Γ, [Σ1]•1) for the conclusion of dd, we convert (7) into an SDNF

(
• : p � �

σ∈{•1,•d,d}
σ : 


)
� �

τ∈{•1,•d,d}

(
τ : q � �

σ∈{•,•1,•d,d}\{τ}
σ : 


)
.

Now, by Step (d), and converting into a new SDNF, we get Ap(0, ∅;Γ, [Σ1]•1) ≡
(• : (p ∧ ♦�) � •1 : (� ∧ ♦�)

)
�

(• : (� ∧ ♦�) � •1 : (q ∧ ♦�)
)
�

(• : (� ∧ ♦q) � •1 : (� ∧ ♦�)
)

�
(• : (� ∧ ♦�) � •1 : (� ∧ ♦q)

)
.

Further applications of ∨ and t keep this interpolant intact. Note that the
application of d′

t does not require to continue proof search for the right branch.
Instead, Step 4b prescribes that Ap(0, ∅;ϕ, p,♦♦(p ∨ q)) ≡ (• : p � • : ♦�)

�

((• : (p ∧ ♦� ∧ ♦(� ∧ ♦�))
)

�
(• : (� ∧ ♦� ∧ ♦(q ∧ ♦�))

)
�

(• : (� ∧ ♦q ∧ ♦(� ∧ ♦�))
)

�
(• : (� ∧ ♦� ∧ ♦(� ∧ ♦q))

)
� • : �⊥

)
.

Simplifying, we finally obtain

Ap(0, ∅;ϕ) ≡ • :
(
(p∨♦�)∧ (

(p∧♦�)∨♦q ∨♦♦q ∨�⊥)) ≡ • : (p∨♦♦q). (8)

To check that p ∨ ♦♦q is a uniform Lyndon interpolant for ϕ w.r.t. literal p,
it is sufficient to verify that (8) is a BLU interpolant for G by checking the
conditions in Definition 18. We only check BLUIP(iii) as the least trivial. If
M, I � • : (p ∨ ♦♦q) for an interpretation I into a K5-model M = (W,R, V ),
then, by Definitions 14 and 11, M, ρ � p∨♦♦q for the root ρ of M. For � = p, we
have an �-bisimulation (M′, I) ≤� (M, I) for M′ = (W,R, V ′) with V ′(p) = {ρ}
and V ′(r) = V (r) for r �= p since literalsp allows to turn p from true to false.
It is easy to see that M′, ρ � p ∨ ♦♦(p ∨ q). Thus, M′, I � • : ϕ.

We have the following properties of the algorithm (we provide a proof in
[14]).
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Lemma 23. All recursive calls A�(t, Σc;G) in a proof search tree of A�(0, ∅;ϕ)
have the following properties:

1. The algorithm is terminating.
2. When Step 4b is applied, t = 0 and every branch going up from it consists of

Steps 2–3 followed by either final Step 1 or continuation via Step 4d.
3. After Step 4d is applied, every branch going up from it consists of Steps 2

followed by a call A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d) of one of the following types:
(a) sufficient and final when calculated via Step 1;
(b) sufficient and propositionally saturated when calculated via Step 3, with

every branch going up from there consisting of more Steps 2–3, followed
by either final Step 1 or continuation via Step 4d;

(c) insufficient and saturated when calculated via Step 4c.

Theorem 24. Logic K5 has the BLUIP and, hence, the ULIP.

Proof. It is sufficient to prove that, once the algorithm starts on A�(0, ∅;ϕ), then
every sufficient call A�(t, Σc;G) in the proof search returns a BLU interpolant
for a K5-sequent G. Because the induction on the proof-search is quite technical
and involves multiple cases, we demonstrate only a few representative cases and
omitting simple ones, e.g., BLUIP(i), altogether. We present more cases in the
Appendix of [14].

BLUIP(ii) We show that M, I � A�(t, Σc;G) implies M, I � G for any
interpretation I of G into any K5-model M = (W,R, V ). The hardest
among Steps 1–3 is Step 3 using row 5 in Table 4. Let G = G′,�ϕ and
M, I � A�(t, Σc;G′,�ϕ) for

A�(t, Σc; G′,�ϕ) =
h

�
i=1

(

• : �δi ��
τ∈G

τ : γi,τ

)

, (9)

i.e., for each 1 ≤ i ≤ h either M, ρ � �δi or M, I(τ) � γi,τ for some τ ∈ G.
For an arbitrary v such that ρRv and the the smallest j such that •j /∈ G,
clearly Iv = I � {(•j, v)} is an interpretation of G′,�ϕ, [ϕ]•j into M. Since
M, Iv(•j) � δi whenever M, ρ � �δi, it follows that for each 1 ≤ i ≤ h
either M, Iv(•j) � δi or M, Iv(τ) � γi,τ for some τ ∈ G, i.e., M, Iv �
A�

(
t, Σc;G′,�ϕ, [ϕ]•j

)
for

A�

(
t, Σc; G′,�ϕ, [ϕ]•j

) ≡
h

�
i=1

(

•j : δi ��
τ∈G

τ : γi,τ

)

. (10)

By IH, M, Iv � G′,�ϕ, [ϕ]•j whenever ρRv. If M, ρ � �ϕ, then M, I � G.
Otherwise, M, Iv(•j) � ϕ for some v with ρRv. For it, M, Iv � G′, hence,
M, I � G.
The only other case we consider (here) is Step 4d. Let M, I � A�(t, Σc;G)
for A�(t, Σc;G) from (5), i.e., for some 1 ≤ i ≤ h we have M, ρ � ♦δi, and
M, I(•1) � ♦δ′

i, and M, I(τ) � γi,τ for all τ ∈ G. In particular, M, v � δi for
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some ρRv and M, u � δ′
i for some I(•1)Ru. Let M′ be obtained by copying

u into u′ away from the root in M and let J = I � {(•d, v), (d, u′)} be a
well-defined interpretation. M′,J � A�(1,�♦Gc;G, [{ψ | ♦ψ ∈ G}]•d, [[{χ |
♦χ ∈ Gc}]]d), as (6) is true for M′ and J . By IH, M′,J � G, [{ψ | ♦ψ ∈
G}]•d, [[{χ | ♦χ ∈ Gc}]]d. If M′, v � ψ for some ♦ψ ∈ G or M′, u′ � χ for
some ♦χ ∈ Gc, then M′,J � G because of ♦ψ or ♦χ respectively. Otherwise,
also M′,J � G. Since we have (M, I) ∼ (M′,J ) by Lemma 21, we have
M, I � G by Lemma 17(2) in all cases.

BLUIP(iii) We show the following statement by induction restricted to suffi-
cient calls: if M, I � A�(t, Σc;G), then M′,J ′

� G for some interpretation J ′

of G into another K5-model M′ such that (M′,J ′) ≤� (M, I). Here we only
consider Step 4 as the other steps are sufficiently similar to K and S5 cov-
ered in [12,13]. Among the four subcases, Step 4a is tedious but conceptually
transparent. Step 4c is trivial because the induction statement is only for suf-
ficient calls while Step 4c calls are insufficient by Lemma 23. Out of remaining
two steps we only have space for Step 4d, which is conceptually the most
interesting because its recursive call may be insufficient, precluding the use
of IH for it. Let M, I � A�(t, Σc;G) for A�(t, Σc;G) from (5).

We first modify M and I to obtain an injective interpretation I ′ into a
K5-model N ′ = (W ′, R′, V ′) such that W ′\Range(I ′) is not empty and parti-
tioned into pairs (v, u) with I ′(•)Rv and not I ′(•)Ru. To this end we employ
copying as per Definition 20, constructing a sequence of interpretations Ii

from G into models Ni = (Wi, Ri, Vi) starting from N0 = M and I0 = I as
follows:
1. If Ii(τ1) = Ii(τ2) for τ1 �= τ2, obtain Ni+1 by copying Ii(τ2) to a new

world w and redirect τ2 to this new world, i.e., Ii+1 = Ii � {(τ2, w)} \
{(τ2, Ii(τ2))}.

2. If IK−1 is injective but WK−1\Range(IK−1) = ∅, obtain NK by copying
IK−1(•1) to a new world y. Set IK = IK−1. Now WK \ Range(IK) �= ∅.

3. Finally, define the two sets Y = {y ∈ WK \ Range(IK) | IK(•)RKy} and
Z = {z ∈ WK \ Range(IK) | not IK(•)RKz} and obtain N ′ by copying:

– for each y ∈ Y , copy IK(•1) away from the root to a new world y2;
– for each z ∈ Z, copy IK(•1) to a new world z1.

Then I ′ = IK is an injective interpretation of G into N ′.
Note that W ′ \Range(I ′) = Y �Z �{y2 | y ∈ Y }�{z1 | z ∈ Z} �= ∅. Further,
I ′(•)R′y for all y ∈ Y , and not I ′(•)R′y2 for all y ∈ Y , and I ′(•)R′z1 for
all z ∈ Z, and not I ′(•)R′z for all z ∈ Z. Thus, we obtain the requisite
partition P = {(y, y2) | y ∈ Y } � {(z1, z) | z ∈ Z} �= ∅ of the non-empty
W ′ \ Range(I ′).

It is clear that (N ′, I ′) ∼ (M, I). So N ′, I ′
� A�(t, Σc;G) by Lemma 17,

i.e., for each 1 ≤ i ≤ h we have N ′, ρ � ♦δi for ρ = I ′(•), or N ′, I ′(•1) � ♦δ′
i,

or N ′, I ′(τ) � γi,τ for some τ ∈ G. Thus, for any (v, u) ∈ P and each 1 ≤
i ≤ h, we have N ′, v � δi, or N ′, u � δ′

i, or N ′, I ′(τ) � γi,τ for some τ ∈ G.
Hence, (6) is false under injective interpretation Jv,u = I ′ � {(•d, v), (d, u)}
into N ′, i.e., abbreviating Θ = {ψ | ♦ψ ∈ G} and Φ = {χ | ♦χ ∈ Gc}, we get
N ′,Jv,u � A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d).
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Ordinarily, here we would use IH, but this is only possible for sufficient
calls, which, alas, is not guaranteed for (6). What is known by Lemma 23(3)
is that every branch going up from (6) leads to a call of the form

A�(1,�♦Gc; G, [Θj ]•d, [[Φj ]]d), (11)

where Θj ⊇ Θ and Φj ⊇ Φ, that returns multiformula �j and is either
sufficient or insufficient but saturated. Let Ξ denote the multiset of these
multiformulas �j returned by all these calls. Since Step 2 is the only one used
between that call and all the calls comprising (11), it is clear that (6) is their
conjunction, i.e., A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d) ≡ ��j∈Ξ �j . Collecting all this
together, we conclude that for each pair (v, u) ∈ P there is some �v,u ∈ Ξ
such that

N ′,Jv,u � �v,u. (12)

We distinguish between two cases. First, suppose for at least one pair (v, u) ∈
P there is a sufficient �v,u = A�(1,�♦Gc;G, [Θv,u]•d, [[Φv,u]]d) satisfying (12).
By IH for this �v,u there is an interpretation J ′

0 into a K5-model M′ such that
(M′,J ′

0) ≤� (N ′,Jv,u) and M′,J ′
0 � G, [Θv,u]•d, [[Φv,u]]d. Thus, M′,J ′

� G
for J ′ = J ′

0 �Lab(G). Finally, by restricting to labels of G, we can see that

(M′,J ′) ≤� (N ′, I ′) ∼ (M, I). (13)

Otherwise, (12) does not hold for any pair (v, u) ∈ P and any sufficient
�v,u ∈ Ξ. In this case, N ′,Jv,u � ��j∈Ξ �j guarantees the existence of an
insufficient �v,u ∈ Ξ for each pair (v, u) ∈ P such that (12) holds. Since all
these �v,u are insufficient, we cannot use IH. Instead, we construct M′ and J ′

directly by changing � from true to false if needed based on G within Range(I ′)
and based on �v,u’s outside of this range. Thanks to I ′ being injective, we do
not need to worry about conflicting requirements from different components
of G. Similarly, P being a partition prevents conflicts outside Range(I ′). Let
M′ = (W ′, R′, U ′) be N ′ with V ′ changed into U ′. We define V ′↓�T as the
valuation that makes � false in all worlds from T ⊆ W ′, i.e., (V ′↓�T )(q) =
V ′(q) for all q /∈ {�, �}, while

(V ′↓�T )(p) =

{
V ′(p) \ T if � = p,

V ′(p) ∪ T if � = p

for p ∈ {�, �}. Using this notation, we define U ′ = V ′↓�TG where

TG = {I ′(σ) | σ : � ∈ G} � {v | (v, u) ∈ P and • d : � ∈ �v,u}�
{u | (v, u) ∈ P and d : � ∈ �v,u}.

(14)

Finally, J ′ = I ′. It is clear that (13) holds for these M′ and J ′.
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It remains to show that M′,J ′
� G. This is done by mutual induction on the

construction of formula ϕ for the following three induction statements

σ : ϕ ∈ G =⇒ M′, I ′(σ) � ϕ, (15)
•d : ϕ ∈ �v,u =⇒ M′, v � ϕ, (16)
d : ϕ ∈ �v,u =⇒ M′, u � ϕ. (17)

Case ϕ = �′ ∈ Lit \ {�, �}. By Lemma 23(3), all �v,u are computed by
Step 4c due to their insufficiency, i.e., �v,u = LitDis�(G, [Θv,u]•d, [[Φv,u]]d).
(16) and (17) follow from (12) and (2) because M′ agrees with N ′ on
�′ /∈ {�, �}. Similarly, since Jv,u agrees with J ′ = I ′ on Lab(G), (15)
follows by using �v,u for any (v, u) ∈ P �= ∅.

Case ϕ = � is analogous to the previous one. The only difference is the
reason why M′ agrees with N ′ on �. Here, σ : � ∈ G implies σ : � /∈ G
because G was processed by Step 4d not Step 1. Therefore, I ′(σ) /∈ TG
by the injectivity of I ′, and � was not made true in I ′(σ), ensuring (15).
The argument for (16) and (17) is similar, except •d/d : � is taken from
�v,u processed by Step 4c not Step 1.

Case ϕ = �. All of (15)–(17) follow from (14).
Cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2 are standard and follow by IH due to

saturation of G for (15) and �v,u for (16) and (17).
Case ϕ = �ξ. If σ : �ξ ∈ G, then by saturation of G, there is a τ such that

τ : ξ ∈ G and I ′(σ)R′I ′(τ): if σ = •, then τ = •j for some j, while if
σ �= •, then τ �= •. By IH(15), M′, I ′(τ) � ξ, and M′, I ′(σ) � �ξ.
If •d/d : �ξ ∈ �v,u, then �ξ ∈ �♦Gc by conditions of Step 4c due to (11),
i.e., �ξ ∈ Gc. By saturation of G, there is a τ �= • such that τ : ξ ∈ G.
Since v, u, and I ′(τ) are all in the cluster C of M′, we have vR′I ′(τ) and
uR′I ′(τ). It remains to use IH(16) and IH(17).

Case ϕ = ♦ξ. First consider σ = • and • : ♦ξ ∈ G. Since I ′(•) = ρ is the root,
ρR′w implies either w = I ′(•j) for some j or w /∈ Range(I ′). In the former
case, •j : ξ ∈ G by saturation of G, so M′, w � ξ by IH(15). In the latter
case, (w, u) ∈ P for some u. Recall for A�(1,�♦Gc;G, [Θw,u]•d, [[Φw,u]]d)
that we have Θw,u ⊇ Θ = {ψ | ♦ψ ∈ G} � ξ. Hence, •d : ξ ∈ �w,u and
M′, w � ξ by IH(16). Since M′, w � ξ for all I ′(•) = ρR′w, we conclude
M′, I ′(•) � ♦ξ.

If σ �= • and σ : ♦ξ ∈ G, the argument is similar. But additionally we
may have w = I ′(k) for some k or (v, w) ∈ P for some v. In the former
case, k : ξ ∈ G by saturation of G, so M′, w � ξ by IH(15). In the latter
case, Φv,w ⊇ Φ = {χ | ♦χ ∈ Gc} � ξ. Hence, d : ξ ∈ �v,w and M′, w � ξ
by IH(17). Since M′, w � ξ for all I ′(σ)R′w, we conclude M′, I ′(σ) � ♦ξ.

If •d/d : ♦ξ ∈ �v,u, then, similar to the analogous subcase of �ξ,
conditions of Step 4c imply that ♦ξ ∈ Gc, i.e., τ0 : ♦ξ ∈ G for some τ0 �= •.
Then τ : ξ ∈ G for all τ �= • by saturation of G. Thus, M′, I ′(τ) � ξ for
all τ �= • by IH(15). For each y /∈ Range(I ′) such that ρR′y, there is x
such that (y, x) ∈ P and •d : ξ ∈ �y,x because Θy,x ⊇ Θ � ξ. Hence,
M′, y � ξ by IH(16). Finally, for each x /∈ Range(I ′) such that not ρR′x,
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there is y such that (y, x) ∈ P and d : ξ ∈ �y,x because Φy,x ⊇ Φ � ξ.
Hence, M′, x � ξ by IH(17). We have shown that M′, w � ξ whenever
vR′w (uR′w). Thus, M′, v � ♦ξ and M′, u � ♦ξ. ��

5 Conclusion

We presented layered sequent calculi for several extensions of modal logic K5:
namely, K5 itself, KD5, K45, KD45, KB5, and S5. By leveraging the simplicity
of Kripke models for these logics, we were able to formulate these calculi in a
modular way and obtain optimal complexity upper bounds for proof search. We
used the calculus for K5 to obtain the first syntactic (and, hence, constructive)
proof of the uniform Lyndon interpolation property for K5.

Due to the proof being technically involved, space considerations prevented
us from extending the syntactic proof of ULIP to KD5, K45, KD45, KB5, and S5.
For S5, layered sequents coincide with hypersequents, and we plan to upgrade the
hypersequent-based syntactic proof of UIP from [11] to ULIP (see also [13]). As
for KD5, K45, KD45, and KB5, the idea is to modify the method presented here
for K5 by using the layered sequent calculus for the respective logic and making
other necessary modifications, e.g., to rule dd, to fit the specific structure of the
layers. We conjecture that the proof for K45, KD45, and KB5 would be similar
to that for S5, whereas KD5 would more closely resemble K5.

Acknowledgments. Iris van der Giessen and Raheleh Jalali are grateful for the pro-
ductive and exciting four-week research visit to the Embedded Computing Systems
Group at TU Wien. The authors thank the anonymous reviewers for their useful com-
ments.

References

1. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform Lyndon interpolation for
basic non-normal modal and conditional logics. Eprint 2208.05202, arXiv (2022).
https://doi.org/10.48550/arXiv.2208.05202

2. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform Lyndon interpolation for
intuitionistic monotone modal logic. Eprint 2208.04607, arXiv (2022). https://doi.
org/10.48550/arXiv.2208.04607

3. Akbar Tabatabai, A., Jalali, R.: Universal proof theory: semi-analytic rules and
uniform interpolation. E-print 1808.06258, arXiv (2018). https://doi.org/10.48550/
arXiv.1808.06258

4. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
From Foundations to Applications: European Logic Colloquium, pp. 1–32. Claren-
don Press (1996)
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