
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 118 (2023) 56–61

2212-8271 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering
10.1016/j.procir.2023.06.011

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering

Keywords: RMS; Test methodology; Virtual commissioning

1. Introduction

Reconfigurable Manufacturing Systems (RMS) are
modular and complex and can be adapted regularly to meet
changed requirements. These changes include switching
hardware components like machine tools, industrial robots,
autonomous mobile robots (AMR), sensors, measuring
devices, and software components representing the hardware
like controllers, interfaces, or parameter sets.

The digitization trend of the last years complicates these
changes due to the rising number of internet of things (IoT)
devices used in manufacturing. Additional or changed devices
often come with changes in the provided interfaces, making
the integration into the cell control difficult.

Programming environments are filled with enormous
functionality, making control software more complex and
extensive. Changes in cell control still require human
interaction and programming skills and are therefore afflicted
by human errors. The cell control program must be tested and
verified to eliminate these errors, which becomes even more
challenging in complex systems like RMS.

Virtual commissioning (VC) is often used in these
scenarios and should be capable of reducing implementation
times and helping to eliminate errors. These solutions include
proprietary simulations and are entangled within the software.

This paper focuses on simple manufacturing cells for
machine tending, typically consisting of a machine tool, an
industrial handling robot, and some peripherical devices like
vision systems. Findings also may be applicable for upscaling
to complete RMS.

We begin with a brief overview of state of the art regarding
simulation and VC, control technologies, and cell control
architectures. Subsequently, we describe the proposed
methodology for functional testing in chapter 3. To better
understand, we explain the methodology using a proof of
concept. In chapters 5 and 6, we present our findings, evaluate
the methodology’s potential, and conclude. Also, a brief
outlook for further research activities is given.

16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘22, Italy

Functionality test methodology for virtual commissioning of reconfigurable
manufacturing systems

Bernhard Wallnera,*, Thomas Trautnera, Friedrich Bleichera

aTU Wien, Institute of Production Engineering and Photonic Technologies, Getreidemarkt 9, 1060 Wien, Austria

* Corresponding author. Tel.: +43-1-58801-31120; E-mail address: wallner@ift.at

Abstract

Reconfigurable manufacturing systems (RMS) are complex systems that regularly change the system behavior. One method to deal with this is
virtual commissioning (VC). The new behavior needs to be implemented in the individual machines and the RMS-control and tested and
verified afterward. Although various concepts for modeling behavior exist, simulations often lack interpreting and testing. This paper proposes
a methodology for simulating and testing the functionality of RMS based on different behavior descriptions. A Proof of concept shows the first
implementation of this methodology using a CAE platform combined with python.

Bernhard Wallner et al. / Procedia CIRP 118 (2023) 56–61 57

2. State of the art

2.1. Simulation methods and Virtual Commissioning

Simulation methods are widely used to test specific
functions within a manufacturing system. Especially the
planning of robotic system applications is standard with those
systems. Often the functionality focuses on the primary
operation of the machine in focus (e.g., path planning for
robot controllers) but lacks side functions (e.g., integration of
external devices’ control logic).

Also, VC is performed in closed systems and is highly
entangled with the control software or logic. This relation
results in some disadvantages for these methods: (1) due to
the often highly proprietary solutions, portability of solutions
is low, especially for machines from different manufacturers,
and (2) due to the restricted simulation possibilities, it is not
possible to test the whole control logic at once.

The drawbacks are especially true for PLC simulation
since simulation environments are provided mainly by the
PLC providers themselves.

VC will become more important in future years for
research in optimizing data analysis – especially with the
usage of machine learning. For example, Zhang et al. [1]
show a VC attempt to test machine learning algorithms in a
Siemens NX MCD environment for reconfigurable assembly
systems.

Additionally, VC-software tools often can be used as a
digital model of the physical world. Depending on the
implementation and automatic data flow, these digital
representations can be considered digital shadows
(unidirectional) or digital twins (bidirectional) [2].

2.2. Control technologies

At the different levels of the automation pyramid, various
methods are established to model processes or behavior and
use these to control arbitrary devices. There is a wide range of
aspects and detail levels, from top-level enterprise process
models like the Business Process Model and Notation
(BPMN) to bottom-level control programming like IEC
61131. As these contain encoded knowledge about the
behavior of a system and its components within the scope of
the application, we refer to them as behavior descriptions.

All have in common that they require domain experts that
understand the processes and machines and have to model and
implement the logic into the systems. Modeling and
implementation are often done using underlying proprietary
software. The Reference Architecture Model Industry 4.0 [3]
and cyber-physical systems claim the dissolution of the
automation pyramid [4], the borders between the layers blur,
and description formats can not be allocated to specific layers
anymore.

Since the introduction of the IEC 61131 in the 1980ies, it
has been widely used in the manufacturing domain for
programming PLCs. The main advantages are predefined
functions and low-level programming languages like
instruction list, structured text, ladder diagrams, function

block diagram, and sequential function chart (SFC) [5]. PLCs
often do not support the portability or exchange of programs.
AutomationML, PlantUML, PLCOpen, and other standards
try to ease the data exchange and counteract the issues caused
by proprietary solutions. These three standards are all
somehow based on or include IEC 61131.

Although IEC 61499 claims to meet today’s challenges
like portability, interoperability, reusability, or distribution,
the industry still has not accepted it [6]. It is handy for
distributed systems because it separates the application from
so-called resources where the application subtasks are
executed. Like IEC 61131, IEC 61499 also uses function
blocks for application modeling. The main difference is an
additional event head responsible for managing and triggering
the execution of the functionality. To facilitate the transition
from IEC 61131 to IEC 61499, the latter also defines and
implements IEC 61131 function blocks [7].

UML is often used to model various aspects of the
software of interest in software development. The UML
standard defines the state charts according to the work of
David Harel [8] of the 1980ies, where he combined and
extended Mealy- and Moore-machines [9]. Also, State Chart
XML (SCXML), an event-based state machine language, is
based on Harel State Tables [10].

OPC UA as a platform-independent communication
standard has been established over the last years. It allows a
semantic interpretation of the machines in focus, which is
beneficial for RMS. State machines have been added in part
16 of the standard. The implementation of the state machines
focuses on basic functionalities like states, transitions, and
substates but does not support complex functions like parallel
states [11]. Parallel states may be implemented in future
versions of OPC UA as it happened with guards for state
machines as proposed by Frühwirth et al. [12].
As the name indicates, BPMN provides a notation for
business processes. Business users, integrators, or developers
gain understanding due to the graphical aspect [13]. The flow-
based processes rely on a traceable token that passes through
the nodes. The graphical elements are organized into five
categories: flow objects, data, connecting objects, swimlanes,
and artifacts.

2.3. Control architectures

For flexible manufacturing systems, some kind of
manufacturing management software often is used that
supervises the system on the SCADA level of the automation
pyramid but is not responsible for control execution.

Within manufacturing cells, there are different possibilities
for implementing cell logic. This depends on interfaces
provided by the equipment manufacturers, which are therefore
often proprietary.

There are some attempts to unify the interfaces, e.g.,
VDMA 34180 [14], MTConnect, and OPC UA for Machine
Tools, but equipment manufacturers often do not or do not
implement these standards to their full extent. One possible
solution is switching to service-based interfaces, as proposed
by Wallner et al. [15]. Another attempt is using a BPMN-

58 Bernhard Wallner et al. / Procedia CIRP 118 (2023) 56–61

based approach for manufacturing orchestration like
centurio.work as proposed by Pauker et al. [16].

3. Proposed Methodology

Based on the identified demands of chapter 2, we propose
a test methodology as shown in Fig. 1.

The central concept of this methodology is modularity
which reduces proprietary restrictions and enables the
swapping of single modules.

The methodology uses three primary artifacts as input: (1)
Behavior Descriptions, (2) Test Cases, and (3) Failure
Descriptions, which are marked by the checklist icons in
Fig 1. The testing unit processes the test cases and
communicates with a predefined simulation using an I/O
interface. The output of the test methodology is a test log file
that includes all performed test cases with the pre-testing
states, completed transitions, and detected failures on which
the tested behavior description can be improved.

This methodology makes it possible to separate the
behavior description and cell control logic from the
simulation or physical system that executes or interprets the
control commands. Therefore, different cell controls can be
tested with minimum effort for the same simulation setup.

3.1. Behavior Description

Chapter 2.2 described different possibilities for control
technologies that represent the proprietary logic.

There are two possibilities to convert the proprietary logic
into an exchangeable behavior description: The first is an
automatic attempt requiring an abstraction layer to convert the
logic into a defined and interpretable format like SCXML,
that abstractly describes the available system states, the
offered triggers to change those states, and the relevant
conditions to make a state transition. The second attempt
relies on the domain expert who implemented the proprietary
logic and manually creates the behavior description within the
documentation process. This may be necessary, as e.g., low-
level PLC programming, omits some of the information
necessary to define a composed state, and possible transitions.

3.2. Simulation with I/O-Systems

A core feature for proper testing is an appropriate system
representation or so-called digital model. The simulation
should adequately replace the physical system and therefore
(1) provide an I/O interface that is identical in function and
labeling and (2) allow detection of the failures of interest.

The I/O interface (1) enables the cell control to use the
same logic as it would use to interact with the physical
system. Also, it makes hardware in the loop, model in the
loop, and software in the loop applications possible

One may also use this digital model and automatic data
transition to test digital shadow or digital twin applications.
The failure detection (2) enables the functionality of the
testing unit described in chapter 3.3.

Fig. 1. Proposed Methodology.

3.3. Failure Detection and Test Cases

Failures can occur on all levels of the automation pyramid.
Since we want to analyze the behavior description, there are
two main failure types we want to discuss in this paper:

Type 1 occurs with a formally correct but faulty behavior
description. It includes all kinds of crashes or faults caused by
allowed transitions that trigger machine actions or set signals.

Type 2 results from a wrong behavior description of the
physical system, including misalignments between targeted
states and reached states (wrong or no transition) or
deadlocks.

To analyze the behavior description properly, these kinds
of failures (1) have to be identified by a domain expert, (2)
have to be implemented into and detectable by the simulation
or the interpreter, and (3) have to be documented. (1) can be
achieved via a widely used method: Failure Mode and effects
analysis (FMEA). The advantage of this method is the relation
between failures and possible causes, but it can be hard to test
within Cyber-Physical Production Systems (CPPS) [17].

Since fault detection within the simulation environment is
a discipline of its own, it will not be discussed in detail. How
e.g., collision detection can be implemented into a simulation
environment is shown by Mei and Lee [18]. For the proposed
methodology, it is essential that failures identified by domain
experts can also be modeled and detected by the simulation.
These failures must be communicated to the testing unit,
evaluated, and documented.

Documentation of failures, especially why and when they
have occurred, is an essential step for system integrators. Unit
tests and test cases are standard in software development to
meet this problem. Programming languages often offer
specialized libraries for these tasks that cover all necessary
steps. E.g., python offers the unittest framework that can be
used for testing.

Fig. 2. System Architecture Proof of Concept.

Bernhard Wallner et al. / Procedia CIRP 118 (2023) 56–61 59

We suggest that the test cases can automatically be derived
from the behavior description since the description format is
interpretable. Da Silva et al. [19] propose a test specification
language (TSL) to describe machine- and human-readable test
cases, which might apply to this step. Also, some state chart
IDEs like YAKINDU define unit testing and state chart
testing languages like SCTUnit.

Each transition must be tested to avoid Type 1 and Type 2
failures. Especially changes that are related to user inputs
should be checked. Therefore, the minimum number of test
cases corresponds to the available transitions. The number of
test cases increases even more if the transitions rely on
multiple variables because all variable combinations create
additional test cases.

3.4. Adaption of State Machines

After identifying the faulty transitions, domain experts
have to adapt the state machine accordingly. The combination
of test cases (implying the states and transitions) and failures
as the output of the testing unit are beneficial for this task.
Deploying the new state machine triggers the next iteration
cycle, which can be repeated until no failures are found.

The adaption cycle might be helpful for VC of
reconfigurable digital twins where the software can be tested
in advance.

Especially for IEC 61499, there exist some promising fault
handling attempts: e.g., Leitao et al. [20] propose a
reconfiguration architecture for fault handling (RAFAH) that
detects fault states and dynamically reconfigures the control
system.

4. Proof of concept

We provide a proof of concept including a flexible
manufacturing cell implemented in Siemens NX MCD and a
Python Program. The system architecture is shown in Fig. 2.

In this use case, we want to investigate the state machine of
the cell controller regarding the communication between the
machine tool and robot. In particular, we are interested in
crashes due to wrong or incomplete logic conditions in the
state machine (especially transitions), also known as guards.
Two main crashes have been identified via the FMEA: (1) the
robot crashes into the closed side door of the machine tool,
and (2) the closing side door crashes into the robot which is
still inside the machine tool.

Fig. 3 shows the SCXML-file representing a control logic
that prevents these crashes. It consists of three parallel sub-
state machines for the side door, light curtain, and robot. To
test the methodology, we manipulated the state machine to
force collisions. An easy way is to remove the guard
conditions In(sd.opened) for the robot or malfunction the light
curtain to stay in the lc.untriggered state and not detect the
robot occupying the side door.

Fig. 3. State machine represented in the SCXML-file.

4.1. Simulation in Siemens NX MCD

Siemens NX MCD is a CAE tool for physics-based
simulation of mechanical components. Siemens NX MCD
was used because it offers OPC UA functionality which can
be used as the I/O interface as proposed by the methodology.

We set up a minimalistic digital representation of a
manufacturing cell, consisting of an EMCO 5-axis machine
tool and an ABB industrial robot, as shown in Fig. 4. The
main functionalities for testing the automation use case were
implemented on a sensor/actor level. E.g., the side door for
automatic loading is represented by two limit switches
indicating the state of the door and a pneumatic piston with a
5/2 directional valve to change the conditions of the door.
Also, some robot paths into and out of the machine tool were
defined. Lastly, a light curtain guarding the side door was set
up to determine if the robot is penetrating the machine tool or
not. Fig. 5 shows the robot outside the machine tool (a) and
reaching inside (b). The pink triangles represent the
intersection between the robot and the light curtain and
indicate the trigger of the corresponding signal.

These low-level signals are available via an OPC UA
server to monitor and control the simulation during runtime.
A complete list of the inputs and outputs of the simulation is
described in Table 1.

Fig. 4. Proof of concept setup in Siemens NX MCD.

60 Bernhard Wallner et al. / Procedia CIRP 118 (2023) 56–61

Fig. 5. (a) Robot outside; (b) Robot inside, triggering light curtain.

Table 1. I/O Variables of the Simulation available via OPC UA.

Signal name Type Description

SideDoorOpened Output Limit switch for the opened side door

SideDoorClosed Output Limit switch for the closed side door

SideDoorCrashed Output Indicates crash of robot and side door

LightcurtainOccupied Output Represents the light curtain guarding the
side door

OpenSideDoor Input Triggers opening of the side door

CloseSideDoor Input Triggers closing of the side door

StartRobotPath Input Starts one of three possible robot paths

4.2. Python Implementation

Python was used as the implementation language for the
state machine interpreter, GUI, OPC UA interface, and
logging functionality. Python is widely used in the scientific
community and offers all necessary frameworks and packages
to implement the functionality. Table 2 shows a list of the
used frameworks with the corresponding versions.

Table 2. Used Python Frameworks.

Framework name Version

asyncua 0.9.92

python 3.9.7

NumPy 1.21.2

PySide2 5.15.2

The python program performs several tasks
asynchronously: First, the program builds up an OPC UA
subscription to the signals provided by the simulation using
the asyncua library. Also, the output signals are set
accordingly to the state machine. Second, it imports the
SCXML-File, and the state machine is executed in the
QtSCXMLStateMachine-interpreter. Third, it hosts a GUI to
enable user input via QtWidgets.

Since the signal labels likely differ between the simulation
and the SCXML-File, mapping has been implemented. This
also allows configuration for different combinations of
simulations and description files.

Fig. 6. GUI of the Python Program.

4.3. Test strategy

Since the use case is relatively simple, the tests were
performed manually via the GUI of the python program,
which is shown in Fig. 6. It allows simple user commands to
request opening or closing the side door and for the robot to
move in or out of the machine.

Occurring faults were detected and logged automatically.
The logs consist of failure type, pre-failure state, user input,
and performed transition that led to the failure. Fig. 7 shows a
log that documents a crash of the industrial robot into the
closed side door.

The scxml.statemachine-State-flags indicate the pre-crash
states. The New data change event-flags show exchanged data
via OPC UA - the Request indicator documents user inputs
via the GUI.

This information eases the identification and debugging of
the cell control logic. In this example, the domain expert can
debug the transition of the industrial robot penetrating the side
door.

5. Findings

After the first implementation and testing of the
methodology, some findings have been identified.

It could be shown that testing the behavior description,
especially the failure identification and logging is possible.
SCXML can also represent complex state machines and
relevant transitions and signals for manufacturing cells. It was
also possible to implement the methodology through multiple
software tools and frameworks (Siemens NX MCD, Python).

One identified challenge relates to signal mapping. The
first implementation still needed manual mapping. It was not
easy to generically import the relevant OPC UA nodes into
the SCXML-file through the python state machine interpreter.
Here we have a disparity between the I/O interface, the
behavior description format, and the interpreter that has to be
solved in the future to make the exchange easier.

Since the methodology wants to meet the modularity
aspect of RMS, it faces similar problems regarding the
standardization of the I/O interfaces.

The interpretation was implemented and tested only for
one specific behavior description format. Although SCXML
fulfilled all requirements and showed promising results, the
methodology also has to be validated for other description
formats and corresponding interpreters.

Bernhard Wallner et al. / Procedia CIRP 118 (2023) 56–61 61

Fig. 7. Excerpt of the crash-log.

One crucial assumption also requires further research: We
assumed an automatic or semi-automatic transition between
the proprietary logic and the behavior description format. In
order to automate this step, it has to be investigated how
control technologies like IEC 61131 or IEC 61499 can be
transferred to standardized behavior description formats and if
additional information or manual tasks are required. This is
also applicable to the automatic generation of test cases. Some
unification and standardization should be considered.

6. Conclusion and Outlook

This work proposes a methodology to make functionality
testing of RMS easier and straightforward. The central aspect
lies in modularity and the exchangeability of test modules and
automatable steps. Therefore, it eases VC tasks and enables
the implementation of digital shadows or digital twins.

The proof of concept showed the first implementation of
the methodology and identified open challenges. Although
faulty transitions could be identified, further research has to
investigate the issues regarding mapping, interpreters, and
automatic transfer from proprietary logic to behavior
descriptions.

The methodology can also be further developed to test and
improve resilience for RMS. Resilience is often considered on
higher levels of the automation pyramid (ERP- or MES-level),
especially for redistributing manufacturing jobs to different
machines or supply chains. The methodology could be used
for validating and testing stress scenarios which is an essential
aspect of resilience in manufacturing as proposed by Weber et
al. [21].

References

[1] Zhang L, Qiang Cai Z, Joo Ghee L. Virtual Commissioning and Machine
Learning of a Reconfigurable Assembly System. 2020.

[2] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in
manufacturing: A categorical literature review and classification. IFAC-
PapersOnLine [Internet]. 2018;51(11):1016–22. Available from:
https://doi.org/10.1016/j.ifacol.2018.08.474

[3] DIN SPEC 91345 - Referenzarchitekturmodell Industrie 4.0 (RAMI4.0).
DIN. 2016;(April):1–40.

[4] VDI/VDA Cyber-Physical Systems: Chancen und Nutzen aus Sicht der
Automation. VDI/VDE [Internet]. 2013; Available from:
https://www.vdi.de/ueber-uns/presse/publikationen/details/cyber-
physical-systems-chancen-und-nutzen-aus-sicht-der-automation

[5] DIN EN 61131-1 Speicherprogrammierbare Steuerungen - Teil 1:
Allgemeine Informationen. DIN EN 61131-1. 2004;

[6] Thramboulidis K. IEC 61499 vs. 61131: A Comparison Based on
Misperceptions. J Softw Eng Appl [Internet]. 2013;06(08):405–15.
Available from:
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jsea.2013.68050

[7] DIN EN Funktionsbausteine für industrielle Leitsysteme - Teil 1:
Architektur. DIN EN 61499-1. 2014;(September).

[8] Harel D. Statecharts: a visual formalism for complex systems. Sci Comput
Program. 1987;8(3):231–74.

[9] Rupp C, Queins S. UML2 glasklar : Praxiswissen für die UML-
Modellierung ; eine praktische Übersicht über die Notationselemente der
UML zum Heraustrennen ; Extra: mit kostenlosem E-Book]. 4.,
aktualisierte... München: Hanser; 2012.

[10] State Chart XML (SCXML): State Machine Notation for Control
Abstraction [Internet]. [cited 2022 May 12]. Available from:
https://www.w3.org/TR/scxml/

[11] OPC Foundation. OPC Unified Architecture Part 16: State Machines.
2021;

[12] Frühwirth T, Pauker F, Fernbach A, Ayatollahi I, Kastner W, Kittl B, et
al. Guarded state machines in OPC UA. IECON 2015 - 41st Annual
Conference of the IEEE Industrial Electronics Society [Internet]. 2015. p.
4187–92.

[13] Business Process Model and Notation (BPMN), Version 2.0. 2010 [cited
2022 May 16]; Available from:
http://www.omg.org/spec/BPMN/20100501

[14] VDMA (Entwurf) - Datenschnittstelle für automatisierte
Fertigungssysteme. VDMA 34180. 2010;

[15] Wallner B, Trautner T, Pauker F, Kittl B. Evaluation of process control
architectures for agile manufacturing systems. Procedia CIRP [Internet].
2021 Jan 1 [cited 2021 Dec 17];99:680–5. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S221282712100384X

[16] Pauker F, Mangler J, Rinderle-Ma S, Pollak C. centurio.work - Modular
Secure Manufacturing Orchestration. 2018.

[17] Biffl S, Lüder A, Meixner K, Rinker F, Eckhart M, Winkler D. Multi-
view-Model Risk Assessment in Cyber-Physical Production Systems
Engineering. [cited 2022 Mar 15]; Available from: https://orcid.org/0000-
0002-6409-8639

[18] Mei K-J, Lee R-S. Collision detection for virtual machine tools and
virtual robot arms using the Shared Triangles Extended Octrees method.
Int J Comput Integr Manuf [Internet]. 2016 Apr 2 [cited 2022 Apr 25];
29(4):355–73. Available from:
http://www.tandfonline.com/doi/full/10.1080/0951192X.2015.1033755

[19] da Silva AR, Paiva ACR, da Silva VER. A test specification language
for information systems based on data entities, use cases and state
machines. Commun Comput Inf Sci [Internet]. 2019 [cited 2022 Apr 25];
991:455–74. Available from:
https://link.springer.com/chapter/10.1007/978-3-030-11030-7_20

[20] Leitão HAS, Rosso RSU, Leal AB, Zoitl A. Fault Handling in Discrete
Event Systems Applied to IEC 61499. IEEE Int Conf Emerg Technol Fact
Autom ETFA. 2020 Sep 1;2020-September:1039–42.

[21] Weber M, Brinkhaus J, Dumss S, Henrich V, Hoffmann F, Ristow GH,
et al. EuProGigant Resilience Approach: A Concept for Strengthening
Resilience in the Manufacturing Industry. Submit to Procedia CIRP.
2022;00.

