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1. Introduction

Reconfigurable Manufacturing Systems (RMS) are
modular and complex and can be adapted regularly to meet 
changed requirements. These changes include switching
hardware components like machine tools, industrial robots,
autonomous mobile robots (AMR), sensors, measuring 
devices, and software components representing the hardware
like controllers, interfaces, or parameter sets. 

The digitization trend of the last years complicates these 
changes due to the rising number of internet of things (IoT)
devices used in manufacturing. Additional or changed devices 
often come with changes in the provided interfaces, making
the integration into the cell control difficult. 

Programming environments are filled with enormous 
functionality, making control software more complex and 
extensive. Changes in cell control still require human 
interaction and programming skills and are therefore afflicted 
by human errors. The cell control program must be tested and 
verified to eliminate these errors, which becomes even more 
challenging in complex systems like RMS.

Virtual commissioning (VC) is often used in these 
scenarios and should be capable of reducing implementation 
times and helping to eliminate errors. These solutions include 
proprietary simulations and are entangled within the software.

This paper focuses on simple manufacturing cells for 
machine tending, typically consisting of a machine tool, an 
industrial handling robot, and some peripherical devices like 
vision systems. Findings also may be applicable for upscaling 
to complete RMS.

We begin with a brief overview of state of the art regarding
simulation and VC, control technologies, and cell control 
architectures. Subsequently, we describe the proposed 
methodology for functional testing in chapter 3. To better 
understand, we explain the methodology using a proof of 
concept. In chapters 5 and 6, we present our findings, evaluate 
the methodology’s potential, and conclude. Also, a brief 
outlook for further research activities is given.
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Abstract

Reconfigurable manufacturing systems (RMS) are complex systems that regularly change the system behavior. One method to deal with this is 
virtual commissioning (VC). The new behavior needs to be implemented in the individual machines and the RMS-control and tested and 
verified afterward. Although various concepts for modeling behavior exist, simulations often lack interpreting and testing. This paper proposes 
a methodology for simulating and testing the functionality of RMS based on different behavior descriptions. A Proof of concept shows the first 
implementation of this methodology using a CAE platform combined with python. 



Bernhard Wallner  et al. / Procedia CIRP 118 (2023) 56–61 57

2. State of the art

2.1. Simulation methods and Virtual Commissioning

Simulation methods are widely used to test specific 
functions within a manufacturing system. Especially the 
planning of robotic system applications is standard with those 
systems. Often the functionality focuses on the primary
operation of the machine in focus (e.g., path planning for 
robot controllers) but lacks side functions (e.g., integration of 
external devices’ control logic). 

Also, VC is performed in closed systems and is highly 
entangled with the control software or logic. This relation 
results in some disadvantages for these methods: (1) due to 
the often highly proprietary solutions, portability of solutions 
is low, especially for machines from different manufacturers, 
and (2) due to the restricted simulation possibilities, it is not 
possible to test the whole control logic at once.

The drawbacks are especially true for PLC simulation
since simulation environments are provided mainly by the 
PLC providers themselves.

VC will become more important in future years for 
research in optimizing data analysis – especially with the 
usage of machine learning. For example, Zhang et al. [1]
show a VC attempt to test machine learning algorithms in a 
Siemens NX MCD environment for reconfigurable assembly 
systems. 

Additionally, VC-software tools often can be used as a 
digital model of the physical world. Depending on the 
implementation and automatic data flow, these digital 
representations can be considered digital shadows 
(unidirectional) or digital twins (bidirectional) [2].

2.2. Control technologies

At the different levels of the automation pyramid, various 
methods are established to model processes or behavior and 
use these to control arbitrary devices. There is a wide range of 
aspects and detail levels, from top-level enterprise process 
models like the Business Process Model and Notation 
(BPMN) to bottom-level control programming like IEC 
61131. As these contain encoded knowledge about the 
behavior of a system and its components within the scope of 
the application, we refer to them as behavior descriptions.

All have in common that they require domain experts that 
understand the processes and machines and have to model and 
implement the logic into the systems. Modeling and 
implementation are often done using underlying proprietary 
software. The Reference Architecture Model Industry 4.0 [3]
and cyber-physical systems claim the dissolution of the 
automation pyramid [4], the borders between the layers blur, 
and description formats can not be allocated to specific layers 
anymore.

Since the introduction of the IEC 61131 in the 1980ies, it
has been widely used in the manufacturing domain for 
programming PLCs. The main advantages are predefined 
functions and low-level programming languages like 
instruction list, structured text, ladder diagrams, function 

block diagram, and sequential function chart (SFC) [5]. PLCs 
often do not support the portability or exchange of programs. 
AutomationML, PlantUML, PLCOpen, and other standards 
try to ease the data exchange and counteract the issues caused 
by proprietary solutions. These three standards are all 
somehow based on or include IEC 61131.

Although IEC 61499 claims to meet today’s challenges 
like portability, interoperability, reusability, or distribution, 
the industry still has not accepted it [6]. It is handy for 
distributed systems because it separates the application from 
so-called resources where the application subtasks are 
executed. Like IEC 61131, IEC 61499 also uses function 
blocks for application modeling. The main difference is an 
additional event head responsible for managing and triggering 
the execution of the functionality. To facilitate the transition
from IEC 61131 to IEC 61499, the latter also defines and 
implements IEC 61131 function blocks [7].

UML is often used to model various aspects of the 
software of interest in software development. The UML 
standard defines the state charts according to the work of 
David Harel [8] of the 1980ies, where he combined and 
extended Mealy- and Moore-machines [9]. Also, State Chart 
XML (SCXML), an event-based state machine language, is 
based on Harel State Tables [10].

OPC UA as a platform-independent communication 
standard has been established over the last years. It allows a 
semantic interpretation of the machines in focus, which is 
beneficial for RMS. State machines have been added in part 
16 of the standard. The implementation of the state machines 
focuses on basic functionalities like states, transitions, and 
substates but does not support complex functions like parallel 
states [11]. Parallel states may be implemented in future 
versions of OPC UA as it happened with guards for state 
machines as proposed by Frühwirth et al. [12].
As the name indicates, BPMN provides a notation for 
business processes. Business users, integrators, or developers 
gain understanding due to the graphical aspect [13]. The flow-
based processes rely on a traceable token that passes through 
the nodes. The graphical elements are organized into five 
categories: flow objects, data, connecting objects, swimlanes, 
and artifacts. 

2.3. Control architectures

For flexible manufacturing systems, some kind of 
manufacturing management software often is used that 
supervises the system on the SCADA level of the automation 
pyramid but is not responsible for control execution. 

Within manufacturing cells, there are different possibilities 
for implementing cell logic. This depends on interfaces 
provided by the equipment manufacturers, which are therefore 
often proprietary. 

There are some attempts to unify the interfaces, e.g.,
VDMA 34180 [14], MTConnect, and OPC UA for Machine 
Tools, but equipment manufacturers often do not or do not
implement these standards to their full extent. One possible 
solution is switching to service-based interfaces, as proposed 
by Wallner et al. [15]. Another attempt is using a BPMN-
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based approach for manufacturing orchestration like 
centurio.work as proposed by Pauker et al. [16].

3. Proposed Methodology

Based on the identified demands of chapter 2, we propose
a test methodology as shown in Fig. 1.

The central concept of this methodology is modularity
which reduces proprietary restrictions and enables the 
swapping of single modules. 

The methodology uses three primary artifacts as input: (1) 
Behavior Descriptions, (2) Test Cases, and (3) Failure 
Descriptions, which are marked by the checklist icons in 
Fig 1. The testing unit processes the test cases and
communicates with a predefined simulation using an I/O 
interface. The output of the test methodology is a test log file 
that includes all performed test cases with the pre-testing 
states, completed transitions, and detected failures on which 
the tested behavior description can be improved.

This methodology makes it possible to separate the 
behavior description and cell control logic from the 
simulation or physical system that executes or interprets the 
control commands. Therefore, different cell controls can be 
tested with minimum effort for the same simulation setup.

3.1. Behavior Description

Chapter 2.2 described different possibilities for control 
technologies that represent the proprietary logic.

There are two possibilities to convert the proprietary logic 
into an exchangeable behavior description: The first is an 
automatic attempt requiring an abstraction layer to convert the 
logic into a defined and interpretable format like SCXML,
that abstractly describes the available system states, the 
offered triggers to change those states, and the relevant 
conditions to make a state transition. The second attempt 
relies on the domain expert who implemented the proprietary 
logic and manually creates the behavior description within the 
documentation process. This may be necessary, as e.g., low-
level PLC programming, omits some of the information 
necessary to define a composed state, and possible transitions.

3.2. Simulation with I/O-Systems

A core feature for proper testing is an appropriate system 
representation or so-called digital model. The simulation 
should adequately replace the physical system and therefore 
(1) provide an I/O interface that is identical in function and 
labeling and (2) allow detection of the failures of interest. 

The I/O interface (1) enables the cell control to use the 
same logic as it would use to interact with the physical 
system. Also, it makes hardware in the loop, model in the 
loop, and software in the loop applications possible

One may also use this digital model and automatic data 
transition to test digital shadow or digital twin applications.
The failure detection (2) enables the functionality of the 
testing unit described in chapter 3.3.

Fig. 1. Proposed Methodology.

3.3. Failure Detection and Test Cases

Failures can occur on all levels of the automation pyramid. 
Since we want to analyze the behavior description, there are 
two main failure types we want to discuss in this paper:

Type 1 occurs with a formally correct but faulty behavior 
description. It includes all kinds of crashes or faults caused by 
allowed transitions that trigger machine actions or set signals. 

Type 2 results from a wrong behavior description of the 
physical system, including misalignments between targeted 
states and reached states (wrong or no transition) or 
deadlocks. 

To analyze the behavior description properly, these kinds
of failures (1) have to be identified by a domain expert, (2) 
have to be implemented into and detectable by the simulation 
or the interpreter, and (3) have to be documented. (1) can be 
achieved via a widely used method: Failure Mode and effects 
analysis (FMEA). The advantage of this method is the relation 
between failures and possible causes, but it can be hard to test 
within Cyber-Physical Production Systems (CPPS) [17]. 

Since fault detection within the simulation environment is 
a discipline of its own, it will not be discussed in detail. How 
e.g., collision detection can be implemented into a simulation
environment is shown by Mei and Lee [18]. For the proposed 
methodology, it is essential that failures identified by domain 
experts can also be modeled and detected by the simulation. 
These failures must be communicated to the testing unit,
evaluated, and documented.

Documentation of failures, especially why and when they 
have occurred, is an essential step for system integrators. Unit
tests and test cases are standard in software development to 
meet this problem. Programming languages often offer 
specialized libraries for these tasks that cover all necessary 
steps. E.g., python offers the unittest framework that can be 
used for testing.

Fig. 2. System Architecture Proof of Concept.
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We suggest that the test cases can automatically be derived 
from the behavior description since the description format is 
interpretable. Da Silva et al. [19] propose a test specification 
language (TSL) to describe machine- and human-readable test 
cases, which might apply to this step. Also, some state chart 
IDEs like YAKINDU define unit testing and state chart 
testing languages like SCTUnit. 

Each transition must be tested to avoid Type 1 and Type 2 
failures. Especially changes that are related to user inputs 
should be checked. Therefore, the minimum number of test 
cases corresponds to the available transitions. The number of 
test cases increases even more if the transitions rely on 
multiple variables because all variable combinations create 
additional test cases.

3.4. Adaption of State Machines

After identifying the faulty transitions, domain experts 
have to adapt the state machine accordingly. The combination 
of test cases (implying the states and transitions) and failures 
as the output of the testing unit are beneficial for this task. 
Deploying the new state machine triggers the next iteration 
cycle, which can be repeated until no failures are found. 

The adaption cycle might be helpful for VC of 
reconfigurable digital twins where the software can be tested 
in advance.

Especially for IEC 61499, there exist some promising fault 
handling attempts: e.g., Leitao et al. [20] propose a 
reconfiguration architecture for fault handling (RAFAH) that 
detects fault states and dynamically reconfigures the control 
system.

4. Proof of concept

We provide a proof of concept including a flexible 
manufacturing cell implemented in Siemens NX MCD and a 
Python Program. The system architecture is shown in Fig. 2.

In this use case, we want to investigate the state machine of 
the cell controller regarding the communication between the 
machine tool and robot. In particular, we are interested in 
crashes due to wrong or incomplete logic conditions in the 
state machine (especially transitions), also known as guards.
Two main crashes have been identified via the FMEA: (1) the 
robot crashes into the closed side door of the machine tool, 
and (2) the closing side door crashes into the robot which is 
still inside the machine tool. 

Fig. 3 shows the SCXML-file representing a control logic 
that prevents these crashes. It consists of three parallel sub-
state machines for the side door, light curtain, and robot. To
test the methodology, we manipulated the state machine to 
force collisions. An easy way is to remove the guard 
conditions In(sd.opened) for the robot or malfunction the light 
curtain to stay in the lc.untriggered state and not detect the 
robot occupying the side door.

Fig. 3. State machine represented in the SCXML-file.

4.1. Simulation in Siemens NX MCD

Siemens NX MCD is a CAE tool for physics-based 
simulation of mechanical components. Siemens NX MCD 
was used because it offers OPC UA functionality which can 
be used as the I/O interface as proposed by the methodology. 

We set up a minimalistic digital representation of a 
manufacturing cell, consisting of an EMCO 5-axis machine 
tool and an ABB industrial robot, as shown in Fig. 4. The 
main functionalities for testing the automation use case were 
implemented on a sensor/actor level. E.g., the side door for 
automatic loading is represented by two limit switches 
indicating the state of the door and a pneumatic piston with a 
5/2 directional valve to change the conditions of the door. 
Also, some robot paths into and out of the machine tool were 
defined. Lastly, a light curtain guarding the side door was set 
up to determine if the robot is penetrating the machine tool or 
not. Fig. 5 shows the robot outside the machine tool (a) and 
reaching inside (b). The pink triangles represent the 
intersection between the robot and the light curtain and 
indicate the trigger of the corresponding signal.

These low-level signals are available via an OPC UA 
server to monitor and control the simulation during runtime. 
A complete list of the inputs and outputs of the simulation is
described in Table 1.

Fig. 4. Proof of concept setup in Siemens NX MCD.
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Fig. 5. (a) Robot outside; (b) Robot inside, triggering light curtain.

Table 1. I/O Variables of the Simulation available via OPC UA.

Signal name Type Description

SideDoorOpened Output Limit switch for the opened side door

SideDoorClosed Output Limit switch for the closed side door

SideDoorCrashed Output Indicates crash of robot and side door 

LightcurtainOccupied Output Represents the light curtain guarding the
side door

OpenSideDoor Input Triggers opening of the side door

CloseSideDoor Input Triggers closing of the side door

StartRobotPath Input Starts one of three possible robot paths

4.2. Python Implementation

Python was used as the implementation language for the 
state machine interpreter, GUI, OPC UA interface, and 
logging functionality. Python is widely used in the scientific 
community and offers all necessary frameworks and packages 
to implement the functionality. Table 2 shows a list of the
used frameworks with the corresponding versions.

Table 2. Used Python Frameworks.

Framework name Version

asyncua 0.9.92

python 3.9.7

NumPy 1.21.2

PySide2 5.15.2

The python program performs several tasks 
asynchronously: First, the program builds up an OPC UA 
subscription to the signals provided by the simulation using 
the asyncua library. Also, the output signals are set 
accordingly to the state machine. Second, it imports the 
SCXML-File, and the state machine is executed in the 
QtSCXMLStateMachine-interpreter. Third, it hosts a GUI to 
enable user input via QtWidgets.

Since the signal labels likely differ between the simulation 
and the SCXML-File, mapping has been implemented. This 
also allows configuration for different combinations of 
simulations and description files.

Fig. 6. GUI of the Python Program.

4.3. Test strategy

Since the use case is relatively simple, the tests were
performed manually via the GUI of the python program,
which is shown in Fig. 6. It allows simple user commands to 
request opening or closing the side door and for the robot to 
move in or out of the machine.

Occurring faults were detected and logged automatically. 
The logs consist of failure type, pre-failure state, user input,
and performed transition that led to the failure. Fig. 7 shows a 
log that documents a crash of the industrial robot into the 
closed side door. 

The scxml.statemachine-State-flags indicate the pre-crash 
states. The New data change event-flags show exchanged data 
via OPC UA - the Request indicator documents user inputs 
via the GUI.

This information eases the identification and debugging of 
the cell control logic. In this example, the domain expert can 
debug the transition of the industrial robot penetrating the side 
door.

5. Findings

After the first implementation and testing of the 
methodology, some findings have been identified.

It could be shown that testing the behavior description,
especially the failure identification and logging is possible. 
SCXML can also represent complex state machines and 
relevant transitions and signals for manufacturing cells. It was 
also possible to implement the methodology through multiple 
software tools and frameworks (Siemens NX MCD, Python). 

One identified challenge relates to signal mapping. The 
first implementation still needed manual mapping. It was not 
easy to generically import the relevant OPC UA nodes into 
the SCXML-file through the python state machine interpreter. 
Here we have a disparity between the I/O interface, the 
behavior description format, and the interpreter that has to be 
solved in the future to make the exchange easier. 

Since the methodology wants to meet the modularity 
aspect of RMS, it faces similar problems regarding the 
standardization of the I/O interfaces. 

The interpretation was implemented and tested only for 
one specific behavior description format. Although SCXML 
fulfilled all requirements and showed promising results, the
methodology also has to be validated for other description 
formats and corresponding interpreters.
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Fig. 7. Excerpt of the crash-log.

One crucial assumption also requires further research: We 
assumed an automatic or semi-automatic transition between 
the proprietary logic and the behavior description format. In 
order to automate this step, it has to be investigated how 
control technologies like IEC 61131 or IEC 61499 can be 
transferred to standardized behavior description formats and if 
additional information or manual tasks are required. This is 
also applicable to the automatic generation of test cases. Some 
unification and standardization should be considered.

6. Conclusion and Outlook

This work proposes a methodology to make functionality 
testing of RMS easier and straightforward. The central aspect 
lies in modularity and the exchangeability of test modules and
automatable steps. Therefore, it eases VC tasks and enables 
the implementation of digital shadows or digital twins. 

The proof of concept showed the first implementation of 
the methodology and identified open challenges. Although 
faulty transitions could be identified, further research has to 
investigate the issues regarding mapping, interpreters, and 
automatic transfer from proprietary logic to behavior 
descriptions.

The methodology can also be further developed to test and 
improve resilience for RMS. Resilience is often considered on 
higher levels of the automation pyramid (ERP- or MES-level), 
especially for redistributing manufacturing jobs to different 
machines or supply chains. The methodology could be used 
for validating and testing stress scenarios which is an essential
aspect of resilience in manufacturing as proposed by Weber et 
al. [21].
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