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Abstract

Being one of the oldest building materials in human history, clay block masonry remains widely used in
modern construction. Over time, modern clay blocks have evolved to be more lightweight and offer
better thermal insulation properties. As a result, vertical perforations were introduced to the blocks. Due
to this intricate block geometry, the brittle and orthotropic behavior of fired clay, and the interaction
between blocks through mortar or glued joints, describing the behavior of masonry through numerical
models is a major challenge. Consequently, current clay block products and masonry design rules are
largely based on empirical studies. Hence, this thesis presents finite-element-based unit cell models for
simulating the complex behavior of clay block masonry structures and their potential application in
optimizing clay block products.

Since lateral tensile stresses in the transversal webs are the main reason for the failure of vertically
perforated clay block masonry under dominant vertical compression, reinforced bed joints are a promis-
ing approach to increase the compressive strength, without changing the block geometry. Using the
eXtended Finite Element Method to model the fracture of fired clay and a multiscale homogenization
approach to incorporate the effect of the reinforcement on the mortar joint, the impact of reinforced
bed joints on the compressive strength of clay block masonry is investigated. The results indicate that
the 5 %-quantile of the compressive strength can be increased by up to 33 %, with reinforced bed joints.

Among all the experiments required to obtain a specific level of material certification, fire tests are the 

most expensive and time-consuming. For this reason, a numerical model for predicting the fire resistance 

of clay block masonry has been developed. The aim is to provide a small-sized, yet detailed model, which
is capable of predicting the performance of a masonry wall in a fire test and offering insights into the
involved failure mechanisms. A novel energy-based spalling criterion allows for decoupling the spalling
of the longitudinal webs from the vertical loading. Thus, a two-dimensional temperature-displacement
finite element model is adequate, which reduces the computational effort significantly. The model is
validated using novel experimental data.

As structural engineers increasingly rely on modern FE software for the design of entire structures,
an understanding of the effective masonry strengths under various loading states becomes essential.
Although failure surfaces for masonry can be found in the literature, the calibration of the necessary
parameters often requires experiments with complex loading conditions. Hence, the unit cell model for
the vertical compressive strength is extended by a failure model for the mortar joints and validated using
experimental data from the literature. Applying this model to a simplified geometry, the peak stress
states of masonry under 150 different loading conditions are investigated. In doing so, seven different
failure mechanisms are identified and assigned to regions with similar loading conditions. Furthermore,
the numerically obtained peak stress states are used to calibrate failure surfaces from the literature: the
failure surface formulated by Ganz (1985) and the Rankine–Hill failure surface proposed by Lourenço
(1996). Both failure surfaces show good agreement with the numerically obtained results. Nevertheless,
qualitative differences compared to the Rankine–Hill failure surface under governing vertical tension
and governing vertical compression are observed. Finally, a concept for calibrating the parameters of the 

Rankine–Hill surface is presented, using the developed numerical model as a substitute for experiments.





Kurzfassung

Als einer der ältesten Baustoffe in der Geschichte der Menschheit wird Ziegelmauerwerk auch heu- 

te noch häufig verwendet. Im Laufe der Zeit wurden die Ziegel für moderne Ansprüche optimiert. 

Vertikale Löcher verbessern die Wärmedämmeigenschaften und reduzieren das Gewicht der Ziegel.
Diese komplexe Ziegelgeometrie, das spröde und orthotrope Verhalten von gebranntem Ton sowie die
Wechselwirkung zwischen Ziegel und Mörtel machen die numerische Modellierung von Ziegelmau- 

erwerk zu einer großen Herausforderung. Deshalb beruhen die verfügbaren Ziegelprodukte und die 

Bemessungsregeln für Mauerwerk hauptsächlich auf empirischen Studien. In dieser Arbeit werden
daher Finite-Elemente-basierte Einheitszellenmodelle zur Modellierung des komplexen Verhaltens von
Hochlochziegelmauerwerk vorgestellt und zur Optimierung von Ziegelprodukten angewandt.

Da horizontale Zugspannungen in den Querstegen die Hauptursache für das Versagen von Hochloch- 

ziegelmauerwerk unter Vertikaldruck sind, stellen bewehrte Lagerfugen einen vielversprechenden Ansatz
zur Erhöhung der Druckfestigkeit dar, ohne die Geometrie der Ziegel zu verändern. Unter Verwendung
von XFEM zur Modellierung des Ziegelversagens und eines Mehrskalen-Homogenisierungsansatzes zur
Berücksichtigung der Bewehrung in der Mörtelfuge wird die Auswirkung von verstärkten Lagerfugen
auf die Druckfestigkeit untersucht. Die Ergebnisse zeigen, dass das 5 %-Quantil der Druckfestigkeit
durch bewehrte Lagerfugen um bis zu 33 % gesteigert werden kann.

Von allen Versuchen, die zur Erlangung einer Materialzertifizierung erforderlich sind, sind Brand-
versuche die teuersten und zeitaufwändigsten. Daher wird ein numerisches Modell zur Vorhersage der
Feuerbeständigkeit von Ziegelmauerwerk entwickelt. Ein neuartiges energiebasiertes Abplatzkriterium
erlaubt es, das Abplatzen der Längsstege von der vertikalen Belastung zu entkoppeln. Damit ist ein
zweidimensionales FE-Modell ausreichend, was den Rechenaufwand erheblich reduziert, aber dennoch
einen detaillierten Einblick in die Versagensmechanismen ermöglicht. Das Modell wird anhand neuer
experimenteller Daten validiert.

Da Bauingenieure bei der Bemessung ganzer Bauwerke auf moderne FE-Software angewiesen sind,
ist die Kenntnis von effektiven Mauerwerksfestigkeiten unter verschiedenen Belastungszuständen von
großer Bedeutung. In der Literatur sind zwar Versagensflächen für Mauerwerk verfügbar, jedoch erfor-
dert die Kalibrierung der notwendigen Parameter oft Experimente mit komplexen Randbedingungen.
Daher wird das bereits entwickelte Einheitszellenmodell durch ein Versagensmodell für die Mörtelfu-
gen erweitert und mit experimentellen Daten aus der Literatur validiert. Anhand einer vereinfachten
Geometrie werden die Grenzspannungszustände von Mauerwerk unter 150 verschiedenen Lastfällen
untersucht. Dabei werden sieben verschiedene Versagensmechanismen identifiziert und Regionen mit
ähnlichen Belastungszuständen zugeordnet. Die numerisch ermittelten Grenzspannungszustände er-
möglichen die Kalibrierung zweier Versagensflächen aus der Literatur: jene nach Ganz (1985) und
die Rankine-Hill-Versagensfläche nach Lourenço (1996). Beide Versagensflächen stimmen gut mit den
numerisch ermittelten Ergebnissen überein. Dennoch sind qualitative Unterschiede im Vergleich zur
Rankine-Hill-Fläche bei überwiegend vertikalem Zug und überwiegend vertikalem Druck zu beobachten.
Abschließend wird ein Konzept zur Kalibrierung der Parameter der Rankine-Hill-Fläche mithilfe des
numerischen Modells vorgestellt.
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Introduction

Motivation

Clay block masonry is one of the oldest building materials in human history. The first known fired clay
bricks probably date back to 3000 BC. Since then, clay block masonry has been used in many different
cultures and has been continuously developed. However, the main concept stayed essentially the same:
clay blocks are stacked on top of each other and connected with mortar. The simplicity of this concept
is one of the main reasons for the widespread use of masonry. Additionally, the raw material is available
almost everywhere in the world and the basic production of the blocks is not overly complicated. For
modern high-quality products, on the other hand, a great deal of material and process experience is
required.

One of the most important developments for meeting today’s requirements for energy-efficient 

buildings was the development of vertically perforated clay blocks. These blocks have a complex 

geometry with slender webs and vertical perforations, leading to low thermal conductivity and low 

weight. In combination with thin layer mortar or polyurethane adhesive, vertically perforated clay
blocks allow for fast and easy construction of load-bearing and non-load-bearing walls. Thus, vertically
perforated clay block masonry is a highly appreciated building material in many countries, especially in
Europe.

However, the upcoming of steel and concrete construction in the 20th century led to a decline in
the use of masonry. Especially in industrialized countries, steel and concrete construction became the
preferred building method for larger buildings. Nevertheless, vertically perforated clay block masonry
is still the most used building material for single-family houses and smaller residential buildings, for
its good thermal insulation properties and a pleasant indoor climate. Yet, the limited knowledge of the
complex material behavior, and the lack of simple design methods, may reduce the use of masonry also
in this area. Thus, there is a need to improve the understanding of the material behavior and to develop
simple design methods for masonry.

Clay block masonry consists of different materials, which all influence the material behavior in
different ways. The raw material for the clay blocks is natural clay, which has a unique mineralogical
composition, depending on the local clay reservoir. This natural material is then mixed with different
pore-forming additives and burned at high temperatures, leading to a complex pore space. Before 

the firing process, the raw material is extruded, leading to its unique block geometry with vertical
perforations. This extrusion process causes orthotropic material properties. Another level of complexity
is introduced, when the blocks are composed to a masonry wall in combination with a joint material,
such as cement mortar or polyurethane adhesive. Additionally, while the horizontal bed joints are in
general always filled with mortar, there are different types of head joints, which lead to a strongly
different load-bearing behavior, especially under horizontal and shear loading. Each of these components
contributes to the complex material behavior of a vertically perforated clay block wall.

Notably, the variation of some parameters affects different macroscopic material properties contrarily.
For example, increasing the size of the vertical perforations improves the thermal insulation properties,
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Fig. 1: Optimization potential of vertically perforated clay block masonry. Starting with a requirement
for the thermal resistance, a minimum and a maximum attainable strength can be identified, con-
sidering the block geometry, the pore-forming additives, and the raw material. The optimization
potential is the difference between the maximum and the minimum attainable strength. The
same procedure can be applied for a strength requirement.

but reduces the compressive strength. Therefore, optimizing vertically perforated clay block masonry is
always a trade-off between different material properties. The goal and boundaries of the optimization
problem have to be chosen wisely, considering the desired application area of the product (see Fig. 1).

Currently used clay block products are the result of decades of development involving mostly empirical
testing and rules of thumb. Remarkably, for modifying the block geometry, the optimization potential
for the thermal properties and the vertical compressive strength is already exhausted, as Bruggi and
Taliercio [18] showed using topology optimization. The larger optimization potential for the vertical
compressive strength and the thermal properties lies in the optimization of the clay material itself, as
Buchner et al. [19–23] showed with their multi-scale homogenization model. Additionally, new ways of
optimizing the material properties are sought after, such as the use of bed joint reinforcement. However,
there is still a lot of expensive testing involved, since there are currently no simple and scientifically
sound numerical models for predicting the macroscopic material behavior of vertically perforated clay
block masonry. Thus, clay block manufacturers and researchers would benefit from new numerical
models.

Typically, three different experiments are performed for characterizing the material behavior of 

a specific vertically perforated clay block: uniaxial compressive tests on single blocks and uniaxial
compressive tests on wall specimens according to EN 1052-1 [43], and shear tests on specimens consisting
of two or three blocks according to EN 1052-3 [44]. While these tests consider the most relevant load
cases, i. e. vertical compression and shear loading, no information on the horizontal and vertical tensile
strength, and the horizontal compressive strength is gathered. However, these material properties can
be crucial for the design of masonry structures under certain loading conditions. Kiefer et al. [76]
already showed, that the vertical compressive strength of vertically perforated clay block masonry can
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be predicted with a unit cell finite element model. Thus, their model can be used as a substitute for the
vertical compressive tests on wall specimens. Finding a sound numerical model for predicting the other
material properties would allow for reducing the number of experiments needed for characterizing the
material behavior of a specific vertically perforated clay block.

Another issue leading to the preference for concrete and steel is the low priority given to masonry
in civil engineering curricula. The reason for that is not only the complexity of masonry as a material
but also the structural composition of masonry buildings. While steel and concrete buildings consist
mostly of beams, slabs, and columns, masonry buildings consist of walls, which are more difficult to
analyze. Considering a typical civil engineering curriculum, the students learn how to analyze beams,
slabs, and columns in the first semesters. The load bearing behavior of walls is harder to grasp, which is
why it is often postponed to later semesters and kept short. Therefore, the knowledge of masonry is
often limited to the basics, which in turn makes civil engineers reluctant to calculate masonry. This also 

has an impact on masonry research, which is why there are significantly fewer publications on masonry
than on steel and concrete.

As a result, macroscopic failure surfaces for masonry are not well developed, although they are
essential for the design of entire masonry structures with FE software. Since FE software is nowadays 

an essential part of a structural engineer’s modeling process, including failure surfaces in FE software
would probably compensate for the lack of knowledge of masonry in civil engineering curricula. Notably, 

it is not the lack of failure surfaces, that is the problem, but the difficult calibration process. For example,
the Rankine–Hill failure surface proposed by Lourenço [86] is well-suited for the implementation into
FE software. However, the calibration process requires numerous tests on wall specimens with complex
loading states. Therefore, a scientifically sound numerical model for predicting the macroscopic material
behavior of vertically perforated clay block masonry would be a valuable tool for substituting the
experiments needed for calibrating the failure surface.

Last but not least, as a major problem of our society, the climate change is also a concern for the 

construction industry. Thus, the production of building materials is also under scrutiny. In recent 

years, reducing CO2 emissions has become a major goal for many companies. Clay block masonry
is a sustainable building material, since masonry buildings have a large life span, and clay blocks are
mostly made of natural raw materials which constitute 74 % of the earth’s crust [33]. Nevertheless, 

the production of clay blocks is energy intensive and the production process is not optimized yet.
Additionally, extensive testing is also environmentally unfriendly, since it requires a lot of material and
energy. Therefore, it is desirable to reduce the number of experiments and replace them with numerical
simulations, where possible.

This Ph.D. thesis is intended to contribute to developing new design methods for vertically perforated
clay block masonry by using numerical simulations. Thus, we developed unit cell finite element 

models for vertically perforated clay block masonry, which allow for predicting the mechanical and
thermal behavior of the material under different loading conditions. Using these models, the number of
experiments needed for optimizing the material can be reduced and the understanding of the material
behavior can be improved.

Research Objectives and Outline of the Thesis

This thesis consists of four publications in peer-reviewed scientific journals. Publication 4 is currently
under review. For the sake of consistency, some phrases and symbols have been changed compared to
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the original publications, without changing the scientific content. The main research objectives of these
publications are summarized below.

In Publication 1 we investigated the influence of bed joint reinforcement on the vertical compressive
strength of vertically perforated clay block masonry. For this purpose, we used the numerical unit 

cell model proposed by Kiefer et al. [76] and extended it to consider bed joint reinforcement. This
was achieved by introducing a multi-scale homogenization procedure, which allows for computing the
effective elastic properties of the reinforced bed joint. By varying the reinforcement ratio, we wanted to
quantify the influence of bed joint reinforcement on the compressive strength of vertically perforated
clay block masonry. By comparing the considered reinforcement ratios with the reinforcement ratios
achieved with commercial glass fiber products, we wanted to assess the applicability of the proposed
model for the design of bed joint reinforcement in vertically perforated clay block masonry. Additionally, 

we investigated the effect of material strength fluctuations on the vertical compressive masonry strength
by introducing a stochastic FE approach. Thereby, we randomly allocated material strengths to the
transversal webs of each block and simulated ten different models with varying reinforcement ratios.
Publication 2 deals with the numerical simulation of a fire test on vertically perforated clay block

masonry. The main research objective was to find an efficient FE-based procedure to predict the 

performance of a masonry wall in a fire test, as a substitute for expensive experiments. Thereby, we
used a 2D transient thermal FE model to model the heat transfer through the wall and a 2D mechanical
FE model with periodic boundary conditions to model the mechanical response. Since the performance
of a masonry wall in a fire situation is strongly influenced by spalling of the longitudinal webs, we
used a stepwise approach, to account for the material degradation due to spalling. To identify the exact
moments of spalling, we proposed an energy-based criterion, which is based on the assumption, that
the overall strain energy in the first longitudinal web decreases abruptly when spalling occurs. The
proposed criterion was validated by comparing the predicted spalling moments with the results of a fire
test on vertically perforated clay block masonry.
Publication 3 concerns the extension of the unit cell FE model used in Publication 1 for arbitrary

in-plane loading states. For this purpose, we introduced a cohesive behavior interaction criterion for
considering joint failure. Using a two-condition failure criterion, the model allows for computing the
peak stress state for a given loading path. We validated the proposed model using seven uniaxial
compressive tests with inclined bed joints from the literature. Subsequently, we simulated additional
loading states and compared the numerically obtained peak stress states to the Rankine–Hill failure
surface. In doing so, the model could serve as a basis for the numerical calibration of macroscopic failure
surfaces for vertically perforated clay block masonry.

In Publication 4we used the FE model developed in Publication 3 to provide a concept for numerically
obtaining macroscopic failure surfaces for vertically perforated clay block masonry. Thereby, we 

simulated 150 different loading states and obtained the peak stress state and the governing failure
mechanism of each simulation. Additionally, we considered three different head joint types, to identify
how these types affect the obtained peak stresses. Using that many different loading states, we needed to 

define a simplified block geometry, to keep the computation time at a reasonable level. Subsequently, we
compared the numerically obtained peak stresses with two failure surfaces from literature, to pinpoint
similarities and differences. Considering the Rankine–Hill failure surface, we also investigated different
calibration approaches, to identify the most suitable one. To varify the results obtained with the 

simplified model, we performed additional simulations using two real block geometries. Taking the



Contributions by the author 17

identified similarities and differences into account we proposed a concept for numerically calibrating
the Rankine–Hill failure surface for vertically perforated clay block masonry.

Contributions by the author

The author’s contributions to the publications are as follows:

• Publication 1, A finite-element-based approach to quantify the impact of bed joint reinforcement
on the compressive strength of vertically perforated clay block masonry.: The author developed the
proposed numerical model, performed all simulations, and prepared most of the manuscript.

• Publication 2, The performance of vertically perforated clay block masonry in fire tests predicted by 

a finite-element model including an energy-based criterion to identify spalling: The author developed
the proposed model, performed all simulations, and prepared most of the manuscript.

• Publication 3, A numerical unit cell model for predicting the failure stress state of vertically
perforated clay block masonry under arbitrary in-plane loads: The author developed the proposed
model, performed all simulations, and prepared most of the manuscript.

• Publication 4, Developing failure surfaces for vertically perforated clay block masonry using a 

validated numerical unit cell model: The author developed the proposed model, performed all
simulations, and prepared most of the manuscript. 
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took my wife’s last name when we got married. The earlier work, including the first publication within
this  thesis,  was  published  under  the  name  Suda,  while  subsequent  contributions  have  been  made  under
the name Reismüller.
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A finite-element-based approach to quantify the 

impact of bed joint reinforcement on the 

compressive strength of vertically perforated 
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Abstract
Since lateral tensile stresses trigger failure of vertically perforated clay block masonry under vertical
loading, reinforcement of the bed joints introduces a new way to improve the vertical resistance of
masonry. The aim of this work is to estimate the feasible increase of the vertical compressive strength
by means of the eXtended Finite Element Method (XFEM). Using a unit cell approach and a stochastic
strength distribution, the increase of the masonry strength’s 5 %-quantile could be predicted with 33 %.
Hence, this work constitutes the vast potential of fiber-reinforced bed joints in improving the vertical
compressive strength of clay block masonry.

1My last name has changed from Suda to Reismüller in 2021 since I took my wife’s last name when we got married.
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1.1 Introduction

Being one of the oldest building materials in human history, brick masonry has been used widely, 

especially in Central Europe. Despite its excellent properties (such as durability, sound protection,
energy efficiency, and superior indoor climate), masonry lost its dominating role in the building industry,
due to the rise of steel and reinforced concrete in the second half of the twentieth century. While
innovative research in concrete and steel constructions encouraged the wide usage of these materials,
big innovations in optimizing the load-bearing capabilities of newly built block masonry have not 

been found. Developments such as the use of polyurethane-based glue in the bed joints simplify the
construction process, however, the strength of masonry structures is not enhanced, if not even reduced.
However, the activity in masonry research has increased again in this field of interest, especially because
of the rapid development of computational mechanical methods (see e. g. [4, 9, 58, 61, 84, 86, 93, 94, 102,
109, 135].

Recently, Kiefer et al. [76] proposed a numerical simulation tool to derive the compressive strength
of masonry made of vertically perforated clay blocks, as they are widely used for residential low-rise
buildings in central Europe. The usage of such kinds of blocks, laid in thin-bed mortar without mortared
head joints, results in numerous advantages, for instance, shorter building periods, higher accuracy
of construction, and improved masonry properties regarding thermal insulation. However, using this 

construction technique does not allow for a continuous mortar layer between the blocks, resulting in
vertically connected chambers. Especially with installations in the façade and subsequently occurring
air circulation, this causes severe problems concerning the airtightness of the building shell. This
airtightness is demanded by standards to prevent problems, such as arising mold (e. g. DIN 4108-1 [35]).
To encounter this problem, bed joints are occasionally reinforced with fibers, leading to a continuous
mortar layer. In the investigated block masonry, failure under vertical compressive loading is triggered
by transverse tensile stresses and subsequent occurring cracks. Yet, the fiber reinforcement within the
mortar layer increases its stiffness, thereby reducing the tensile stresses in the transversal webs of the
block. Since the potential for optimization in changing the block geometry is rather exhausted (see e. g.
[18, 27, 107, 141]), reinforcement of the bed joints introduces a new way to improve not only the ductility 

and horizontal strength (as e.g. Sadek and Lissel [132] already showed) but also the vertical compressive
strength of masonry (as e.g. Jasiński and Drobiec [73] suspected for solid autoclaved aerated concrete
masonry).

Thus, the main aim of this work is to assess the feasible compressive strength increase due to fiber
reinforcement of the bed joints, by extending the unit cell approach proposed by Kiefer et al. [76], which
uses the eXtended Finite Element Method (XFEM) combined with the Virtual Crack Closure Technique
(VCCT) to model the brittle fracture of brick. Other popular modeling approaches are smeared damage
models like regularized damage models or phase field models (see e. g. [38, 90, 97, 114]). While the XFEM
introduces discrete cracks in the finite element model, smeared damage approaches are able to model
smeared fracture zones by including damage variables in the constitutive model. Especially when facing
problems like hard-to-predict initial crack locations, uniting cracks, or dynamic crack growth, classic
XFEM poses hard-to-overcome problems. Although different approaches for improving the traditional
XFEM tackle these shortcomings (see e. g. [36, 150, 153]), smeared damage models stay superior in the
aforementioned cases. Since the location of cracks could be predicted easily and uniting cracks were
not relevant to the problem, using a stable, reliably validated, and already available numerical model
seemed to be sufficient for reaching this goal.
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Building on this model, the outline of the paper can be summarized as follows: First of all, the
reinforced mortar joints were introduced by homogenizing the overall stiffness based on a multi-scale
material model. Secondly, this modeling strategy was validated by means of compression tests on
solid brick pillars, conducted by Trinko et al. [144]. Considering these adaptations, a relation between
the amount of reinforcement and the overall strength increase could be developed. Additionally, ten
different models with stochastically allocated strength values were generated and numerically evaluated
with and without reinforcement. In that way, the effect of strength fluctuations within the clay block
could be investigated. These fluctuations are often caused by micro-cracks or material inhomogeneities,
originating from the production process.

Finally, a reasonable estimate for the vertical compressive strength increase of clay block masonry
due to fiber-reinforced bed joints should be provided. Section 1.2 contains an overview of the applied
modeling strategies as well as the validation of these, while Section 1.3 provides a detailed description
of the numerical model. Afterwards, the results are explained and discussed in Section 1.4, followed by
final conclusions to the work in Section 1.5.
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1.2 Modeling strategies

In the development of new block geometries, manufacturers conduct compressive tests on two different
specimen types: single blocks and standardized wall specimens according to EN 1052-1:1998 [43]. The
standardized wall specimen is two block lengths wide, five block heights high, and includes mortar joints, 

thereby reproducing the load transfer mechanisms inside a masonry wall. Due to the difference of these
specimens, the obtained compressive strength is significantly smaller when testing a wall specimen 

than in the single block experiment. This difference originates in the distinct failure mechanisms of
both tests.

In the single-block experiment, the block’s top and bottom surfaces are fully in contact with the steel
plates of the testing machine. Therefore, the applied vertical forces induce approximately constant 

vertical compressive stresses over the block’s cross-section (see Fig. 1.1a). Additionally, the friction
between the machinery and the specimen disables the lateral deformation of the block’s top and bottom
faces, leading to lateral compressive stresses close to the top and bottom faces. Conversely, in block
masonry under axial compression, as it is represented by the wall specimen, the vertical compressive
stresses vary over the block’s cross-section. While the vertical stresses are approximately constant at
half the height of each block, transversal webs not standing on top of each other cannot underlie vertical
stresses on the top and bottom faces (see Fig. 1.1b). Hence, the forces have to be redistributed to the 

load-transferring longitudinal webs, yielding tensile stresses on the surface, similar to a plate under
vertical loading supported in both lower corners (see Fig. 1.1c).

(a) (b) (c)

transversal webs

longitudinal webs

cracks

𝒆𝑦𝒆𝑧
Fig. 1.1: Differences in load transfer of (a) single block specimen and (b) wall specimen. The truss

system in (c) visualizes the load transfer from transversal webs to longitudinal webs (green –
compressive force, red – tensile force). The vector 𝒆𝑦 is normal to the wall surface.

There is no way to reliably predict the compressive strength of masonry solely on the single block
strength; thus, it is important to consider both block and mortar in the numerical simulation tool. Since
the numerical simulation of the whole standardized wall specimen is rather time-consuming, Kiefer
et al. [76] suggested the usage of a unit cell approach with periodic boundary conditions. This approach
enables the simulation of an infinitely large masonry wall, represented through a sufficiently large, 

characteristic part of the wall. Hence, it was possible to simulate a uniaxial macroscopic stress state,
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as can be expected in the middle of the wall specimen, with a model, which was 80 % smaller than the
real specimen. In combination with Hoffman’s orthotropic damage criterion [67] and discrete crack 

simulation by means of the eXtended Finite Element Method (XFEM), they were able to efficiently
predict the vertical compressive strength of different block geometries.

1.2.1 Unit cell with periodic boundary conditions

A masonry wall is here considered a two-dimensionally periodic structure; bricks (or blocks) and mortar 

form a constantly repeating pattern. To reduce the computational expense of the numerical simulation, it
seems obvious to make use of this structural property. Doing so, it is sufficient to define the mechanical
properties solely on a small part of the structure, the so-called repeating unit cell, with periodic boundary
conditions.

The periodicity of masonry with a lateral block offset of half the block length (see Fig. 1.2) can be 

defined by a basis of two linearly independent vectors 𝒗1 and 𝒗2, with the following characteristics: 

Any point 𝒙𝑏 within the structure can be reached by translating a starting point 𝒙𝑎 along a vector𝑚1 ⋅ 𝒗1 + 𝑚2 ⋅ 𝒗2 (𝑚1, 𝑚2 ∈ ℤ). Points 𝒙𝑎 and 𝒙𝑏, which are associated in that manner, have the same
mechanical properties. The smallest possible unit cell, without considering line or point symmetries,
would be the parallelogram spanned by the two vectors 𝒗1 and 𝒗2. However, for easily applying the 

periodic boundary conditions on the FE mesh, it is better to have a cuboid unit cell. Therefore, the
extracted section in Fig. 1.3 was chosen as unit cell. The vectors 𝒄𝑥 and 𝒄𝑧 describe the unit cell periodicity
in directions 𝒆𝑥 and 𝒆𝑧 , respectively.

𝒆𝑥
𝒆𝑧 𝒗1 + 𝒗22𝒗1

2𝒗2 − 𝒗12𝒗2 − 2𝒗1

−𝒗2 𝒗1 − 𝒗2
𝒗1𝒗2

𝒙a 𝒙b

Fig. 1.2: Two-dimensional periodicity of a common bonding pattern

Hence, the masonry wall consists of a periodic concatenation of unit cells. Both in undeformed 

and deformed state, these unit cells have to form a geometrically compatible structure. To satisfy 

this condition, periodic boundary conditions were formed and applied to the unit cell. These special 

boundary conditions ensure that two neighboring faces (thus, opposing faces of a unit cell) deform 

in the same manner: every point 𝒔𝑘 on the unit cell’s face has a corresponding point 𝒔𝑘 + 𝒄𝑘 on the
opposing face. 

Michel et al. [96] split the strain field 𝜺(𝒙) in a constant part ⟨𝜺⟩ and a locally fluctuating part 𝜺′(𝒙):𝜺(𝒙) = ⟨𝜺⟩ + 𝜺′(𝒙), (1.1)
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𝒄𝑥𝒄𝑧𝒆𝑥
𝒆𝑧𝒆𝑦

Fig. 1.3: Chosen unit cell

where 𝒙 marks a point within the unit cell. The constant part of the strain field is defined as mean value
over the volume 𝑉 : ⟨𝜺⟩ = 

1|𝑉 | 

∫𝑉 𝜺(𝒙)d𝒙. (1.2)

Following Eqs. (1.1) and (1.2), the local fluctuations have to vanish on average. Integrating Eq. (1.1)
yields to the deformation field 𝒖(𝒙): 𝒖(𝒙) = ⟨𝜺⟩ ⋅ 𝒙 + 𝒖′(𝒙). (1.3)

Each repetition of the unit cell contributes the same deformation Δ𝒖 to the overall deformation. This
deformation can be calculated for each pair of corresponding points, by means of Eq. (1.3):Δ𝒖𝑘 = 𝒖(𝒔𝑘 + 𝒄𝑘) − 𝒖(𝒔𝑘) = ⟨𝜺⟩ ⋅ 𝒄𝑘 . (1.4)

Since ⟨𝜺⟩ and 𝒄𝑘 are constant within the unit cell, the deformation difference of two in direction 𝑘
opposing faces, Δ𝒖𝑘 , has to be constant too. This property enables the definition of so-called primary
vertices; the deformation of those primary vertices defines the deformation state on the boundary of the
unit cell.

Fig. 1.4a shows a reasonable name convention for cuboid unit cells, proposed by Böhm [13]. Hereby,
faces are labeled 𝑁 , 𝑆, 𝐸, 𝑊 , 𝑇 , and 𝐵 (𝑁 𝑜 𝑟 𝑡 ℎ, 𝑆 𝑜 𝑢𝑡 ℎ, 𝐸 𝑎𝑠 𝑡, 𝑊 𝑒 𝑠 𝑡, 𝑇 𝑜 𝑝, and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚, respectively), while
names of edges and vertices consist of the labels of the intersecting faces (eg. SE for an edge and SWB
for a vertex).

The chosen unit cell is periodic in 𝑥- and 𝑧-direction, the 𝑦-axis is rectangular to the wall surface. 

Therefore, the faces 𝐸 𝑎𝑠 𝑡 and 𝑊 𝑒 𝑠 𝑡 are coupled, as well as 𝑇 𝑜 𝑝 and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚, while 𝑆 𝑜 𝑢𝑡 ℎ and 𝑁 𝑜 𝑟 𝑡 ℎ
may deform freely. Although this paper only considers strictly vertical loading, the following periodic
boundary conditions include the implementation of more general deformation states. Considering the
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(a)

NEB

NWB

NWT

SWT

SET

SEB

NET

SWB

𝑥 𝑦

𝑧

𝑢NWB𝑥
𝑢SWB𝑥

𝑢NWT𝑥
𝑢SWT𝑥

𝑢NWB𝑧
𝑢SWB𝑧

𝑢NWT𝑧
𝑢SWT𝑧

𝑢NEB𝑦

𝑢NET𝑦

(b)

Fig. 1.4: (a) Name convention for the faces, edges, and vertices of a three-dimensional cuboid unit cell
and (b) Translation and rotation of face 𝑊 𝑒 𝑠 𝑡 due to displacements of primary nodes.

translation of the edges WB and WT, the displacements in 𝑥- and 𝑧-direction are the following on each
point on face 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚 (see Fig. 1.4b):

(𝑢𝐵𝑥 (𝑦)𝑢𝐵𝑧 (𝑦)) = (𝑢SWB𝑥𝑢SWB𝑧 ) + 𝑦𝑙𝑦 ⋅ (𝑢NWB𝑥 − 𝑢SWB𝑥𝑢NWB𝑧 − 𝑢SWB𝑧 ) . (1.5) 

The same relation applies on face 𝑇 𝑜 𝑝:
(𝑢𝑇𝑥 (𝑦)𝑢𝑇𝑧 (𝑦)) = (𝑢SWT𝑥𝑢SWT𝑧 ) + 𝑦𝑙𝑦 ⋅ (𝑢NWT𝑥 − 𝑢SWT𝑥𝑢NWT𝑧 − 𝑢SWT𝑧 ) . (1.6)

Since 𝑢SWB𝑥 and 𝑢NWB𝑥 are not necessarily equal, rotations may occur, which result in displacements
along the 𝑦-axis, 𝑢𝑦 (see Fig. 1.4b):𝑢𝐵 𝑦 (𝑥) = 𝑢SWB𝑦 − 𝑥𝑙𝑦 ⋅ (𝑢NWB𝑥 − 𝑢SWB𝑥 ) and (1.7)𝑢𝑇 𝑦 (𝑥) = 𝑢SWT𝑦 − 𝑥𝑙𝑦 ⋅ (𝑢NWT𝑥 − 𝑢SWT𝑥 ) . (1.8) 

Joining Eqs. (1.5) to (1.8) results in the coupling of the faces 𝑇 𝑜 𝑝 and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚:

Δ𝒖𝑧 = ⎛ ⎜ ⎜ ⎜ ⎝
𝑢𝑇𝑥 (𝑥 , 𝑦) − 𝑢𝐵𝑥 (𝑥 , 𝑦)𝑢𝑇𝑦 (𝑥 , 𝑦) − 𝑢𝐵𝑦 (𝑥 , 𝑦)𝑢𝑇𝑧 (𝑥 , 𝑦) − 𝑢𝐵𝑧 (𝑥 , 𝑦)⎞ ⎟ ⎟ ⎟ ⎠ =

⎛ ⎜ ⎜ ⎜ ⎝
𝑢SWT𝑥 − 𝑢SWB𝑥𝑢SWT𝑦 − 𝑢SWB𝑦𝑢SWT𝑧 − 𝑢SWB𝑧

⎞ ⎟ ⎟ ⎟ ⎠ +
⎛ ⎜ ⎜ ⎜ ⎝

𝑦𝑙𝑦 ⋅ ((𝑢NWT𝑥 − 𝑢SWT𝑥 ) − (𝑢NWB𝑥 − 𝑢SWB𝑥 ))− 𝑥𝑙𝑦 ⋅ ((𝑢NWT𝑥 − 𝑢SWT𝑥 ) − (𝑢NWB𝑥 − 𝑢SWB𝑥 ))𝑦𝑙𝑦 ⋅ ((𝑢NWT𝑧 − 𝑢SWT𝑧 ) − (𝑢NWB𝑧 − 𝑢SWB𝑧 )) 

⎞ ⎟ ⎟ ⎟ ⎠ . (1.9)
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Formulating the deformations for the edges WB and EB in an analogous manner results in the coupling
of the faces 𝐸 𝑎𝑠 𝑡 and 𝑊 𝑒 𝑠 𝑡:

Δ𝒖𝑥 = ⎛ ⎜ ⎜ ⎜ ⎝
𝑢𝐸𝑥 (𝑦 , 𝑧) − 𝑢𝑊𝑥 (𝑦 , 𝑧)𝑢𝐸𝑦 (𝑦 , 𝑧) − 𝑢𝑊𝑦 (𝑦 , 𝑧)𝑢𝐸𝑧 (𝑦 , 𝑧) − 𝑢𝑊𝑧 (𝑦 , 𝑧)⎞ ⎟ ⎟ ⎟ ⎠ =

⎛ ⎜ ⎜ ⎜ ⎝
𝑢SEB𝑥 − 𝑢SWB𝑥𝑢SEB𝑦 − 𝑢SWB𝑦𝑢SEB𝑧 − 𝑢SWB𝑧

⎞ ⎟ ⎟ ⎟ ⎠ +
⎛ ⎜ ⎜ ⎜ ⎝

𝑦𝑙𝑦 ⋅ ((𝑢NEB𝑥 − 𝑢SEB𝑥 ) − (𝑢NWB𝑥 − 𝑢SWB𝑥 ))− 𝑧𝑙𝑦 ⋅ ((𝑢NEB𝑧 − 𝑢SEB𝑧 ) − (𝑢NWB𝑧 − 𝑢SWB𝑧 ))𝑦𝑙𝑦 ⋅ ((𝑢NEB𝑧 − 𝑢SEB𝑧 ) − (𝑢NWB𝑧 − 𝑢SWB𝑧 )) 

⎞ ⎟ ⎟ ⎟ ⎠ . (1.10)

The linear equations (1.9) and (1.10) were applied to each pair of corresponding nodes to ensure the
geometrical compatibility of the unit cell in any loading scenario. Both free surfaces 𝑇 𝑜 𝑝 and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚may
deform freely; thus, the stresses on those surfaces have to equal zero. Hence, merely the deformations
of six out of eight vertices are needed to fully define the boundary conditions. Therefore, these vertices,
SWT, NWT, SWB, NWB, SEB, and NEB, are designated primary nodes. To simulate a specific loading
scenario, deformations were applied on the primary nodes, following Eq. (1.4). A pure vertical loading
is applied by specifying the constant strain in 𝑧-direction, ⟨𝜀𝑧 𝑧⟩, to nonzero, while setting each other
constant strain component to zero:

Δ𝒖𝑥 = ⟨𝜺⟩ ⋅ 𝒄𝑥 = ⎛ ⎜ ⎜ ⎜ ⎝
0 0 0⎞ ⎟ ⎟ ⎟ ⎠ , Δ𝒖𝑧 = ⟨𝜺⟩ ⋅ 𝒄𝑧 = ⎛ ⎜ ⎜ ⎜ ⎝

0 0⟨𝜀𝑧 𝑧⟩ ⋅ 𝑙𝑧⎞ ⎟ ⎟ ⎟ ⎠ . (1.11)

Excluding rigid body translations and rotations, the periodic boundary conditions (Eqs. (1.9) and (1.10))
only fulfill these constraints by setting the vertical displacements of the vertices NWT and SWT to⟨𝜀𝑧 𝑧⟩ ⋅ 𝑙𝑧 and the remaining displacements to zero (see Fig. 1.5).

𝑢i𝑥 = 0𝑢i𝑦 = 0𝑢i𝑧 = 0

NEB

NWB

NWT

SWT

SET

SEB

NET

SWB

𝑢SWT𝑧 𝑢NWT𝑧

𝑥 𝑦

𝑧

Fig. 1.5: Applied deformations on the unit cell

1.2.2 Brittle failure of fired clay

Extruded bricks show a distinct orthotropic material behavior, caused by the production process. When
the raw mixture is being extruded, the flat clay minerals align parallel to the extrusion direction, as 

Bourret et al. [17] showed. The highest stiffness and strength values are oriented in the extrusion
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direction, while the values in the perpendicular direction may be significantly smaller. This orthotropy
especially occurs in vertically perforated clay blocks with thin webs. Fig. 1.6 shows the varying local
coordinate systems over the block’s cross-section. While the local 𝑍-axis is always parallel to the global𝑧-axis (the extrusion direction), the orientation of the 𝐿- and 𝑇 -axis depends on the location within 

the block geometry. The 𝐿-axis (longitudinal) is parallel to the longer side of each part; the 𝑇 -axis 

(transversal) is rectangular to the 𝐿-axis. Capital letters are used for the local coordinates (𝐿, 𝑇 , 𝑍), 

whereas lower case letters indicate global coordinates (𝑥 , 𝑦, 𝑧). Two different types of webs may be
distinguished due to the geometry of the vertical perforations: longitudinal webs are aligned lengthwise
with the wall, transversal webs are oriented rectangular to the wall surface.

𝑧 𝑦
𝑥

𝑍 𝑇
𝐿

𝑍𝑇 𝐿
vertical cavity

longitudinal web

transversal web

wall surface

Fig. 1.6: Parts of a vertically perforated clay block and local coordinates for describing the material
properties

Cracking processes are a central matter in the failure of brittle materials like fired clay. Those cracks
are always attended with high gradients in the stress field near the crack tip. Thus, the mesh would
have to be refined around the crack tip. Consequently, the mesh has to be continually updated when
simulating propagating cracks. The eXtended Finite Element Method (XFEM), introduced by Belytschko
and Black [7], allows the modeling of discrete propagating cracks without remeshing. Based on the
partition of unity finite element method of Melenk and Babuška [92], the elements are being subdivided 

into parts, on which different shape functions are applied. This partition enables the local enrichment of
the nodal degrees of freedom with special displacement functions:

𝒖(𝒙) ≈ 𝑁 𝑁∑𝑖 𝑁𝑖(𝒙) ⋅ [𝑢𝑖 + 𝐻𝑖(𝒙) ⋅ 𝑎𝑖 +∑𝑗 𝐺𝑗 (𝒙) ⋅ 𝑏𝑖𝑗] , (1.12)

where 𝑁𝑖 are the used nodal shape functions, 𝑢𝑖 the nodal displacements, 𝐻𝑖 the nodal enrichment
functions,𝐺𝑗 the crack tip functions, and 𝑎𝑖 as well as 𝑏𝑖𝑗 the additional degrees of freedom for totally and 

partly cracked elements. While the first term in square brackets of Eq. (1.12) describes the approximation
of the displacement field for the uncracked regions, the second and third part apply for fully and partly
cracked elements, respectively. The numerical simulation tool was modeled in the commercial FE
software Abaqus, in which the crack tip functions are not considered. Since these functions depict the
large stress gradients near the crack tip, the used approach is more sensitive to the chosen mesh. Being
fully aware of this fact, the chosen meshes were sufficiently refined where needed.
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For describing the location and geometry of cracks, the so-called level-set method is applied [59,
99]. The two level-set functions 𝜙(𝒙) and 𝜓(𝒙) are able to describe the location of a crack, relative to a
given position 𝒙. The function 𝜙(𝒙) specifies the orthogonal distance of the point 𝒙 to the crack surface,
while 𝜓(𝒙) denotes the distance to the crack tip. With these two functions, the crack geometry may be
described, whereas 𝜙(𝒙) = 0, 𝜓(𝒙) < 0 defines the crack surface, (1.13)𝜙(𝒙) = 0, 𝜓(𝒙) = 0 defines the crack tip, and (1.14)𝜓(𝒙) > 0 is not located on the crack at all. (1.15)

Abaqus uses the modified Heaviside function 𝐻 (𝑥) [99] as the nodal enrichment function:

𝐻𝑖(𝒙) = 𝐻 (𝜙(𝒙)) = {−1 for 𝜙(𝒙) < 0 +1 for 𝜙(𝒙) ≥ 0 . (1.16) 

The level-set for the crack surface, 𝜙(𝒙), is directly used as the argument for the enrichment function. 

Two different components are necessary for the modeling of propagating cracks with the FEM:

1. a damage initiation criterion 𝑓 (𝝈) to indicate failure within an element, and

2. a damage evolution criterion to define the ductility and therefore the propagation rate of the
crack.

When the damage initiation criterion indicates failure, the affected element is being partitioned along
a plane surface, given by the maximum plain stress, but not yet split. Those partitions stay bonded
until the damage evolution criterion is fulfilled. Within the present work, a combination of Hoffman’s
orthotropic failure criterion [67] with the Virtual Crack Closure Technique (VCCT) was used.

1.2.2.1 Crack initiation with the orthotropic Hoffman criterion

Graubner and Richter [58] studied different failure criteria for the numerical simulation of brick and
found  the  Hoffman  criterion  [67]  to  be  suitable  for  modeling  brick  failure.  The  criterion  uses  each
component of the stress tensor 𝝈 and is capable of indicating failure under tensile as well as combined
stress states. Triaxial compression failure cannot be depicted with the Hoffman criterion. Since the
main reason for failure are tensile stresses in the transversal webs, this lack of coverage is acceptable for
the present work. Anyhow, Kiefer et al. [76] have shown that even a simple principal stress criterion
yields reasonable results, which confirms the assumption of lateral tensile stresses governing the failure
mechanism. 

Mathematically, Hoffman’s failure criterion reads as follows:𝑓 (𝝈) = 𝐶1 ⋅ (𝜎𝑇 𝑇 − 𝜎𝑍 𝑍)2 + 𝐶2 ⋅ (𝜎𝑍 𝑍 − 𝜎𝐿𝐿)2+ 𝐶3 ⋅ (𝜎𝐿𝐿 − 𝜎𝑇 𝑇 )2+ 𝐶4 ⋅ 𝜎𝐿𝐿 + 𝐶5 ⋅ 𝜎𝑇 𝑇 + 𝐶6 ⋅ 𝜎𝑍 𝑍+ 𝐶7 ⋅ (𝜎𝐿𝑇 )2 + 𝐶8 ⋅ (𝜎𝑇 𝑍)2 + 𝐶9 ⋅ (𝜎𝐿𝑍)2, (1.17)
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with the components of the stress tensor, 𝜎𝑖𝑗 , and the constant parameters 𝐶1 to 𝐶9 depending on the
materials tensile, compressive, and shear strengths, 𝜎t,𝑖, 𝜎c,𝑖, and 𝜎s,𝑖𝑗 , respectively:𝐶1 = 

12 [(𝜎t,𝑇 ⋅ 𝜎c,𝑇 )−1 + (𝜎t,𝑍 ⋅ 𝜎c,𝑍)−1 − (𝜎t,𝐿 ⋅ 𝜎c,𝐿)−1] , (1.18)𝐶2 and 𝐶3 by permutation of indices 𝐿, 𝑇 , 𝑍 , 𝐶4 = (𝜎t,𝐿)−1 − (𝜎c,𝐿)−1 , (1.19)𝐶5 and 𝐶6 by permutation of indices 𝐿, 𝑇 , 𝑍 , 𝐶7 = (𝜎s,𝑇 𝑍)−2 , (1.20)𝐶8 and 𝐶9 by permutation of indices 𝐿, 𝑇 , 𝑍 .
While tensile and compressive strengths are available from experiments (see Section 1.3.2), the shear

strengths could only be estimated. Graubner and Richter [58] obtained reasonable results by assuming
the shear strengths between the mean value of the corresponding tensile strengths and half of the mean
value of the corresponding compressive strengths:𝜏𝑖𝑗 ,min = 𝜎t,𝑖 + 𝜎t,𝑗2 , 𝜏𝑖𝑗 ,max = 𝜎c,𝑖 + 𝜎c,𝑗4 . (1.21) 

In the present work, the shear strengths were specified as mean value of those boundaries.

1.2.2.2 Crack propagation with the Virtual Crack Closure Technique

The brittle material behavior of fired clay can be described accurately by means of linear elastic fracture
mechanics, which forms the basis for the application of the Virtual Crack Closure Technique. The main
assumption of this technique is the following: The released strain energy due to the opening of a crack
is equal to the energy, required for closing the same crack. Based on this assumption, the energy release
rate 𝐺 is calculated and compared with the critical energy release rate 𝐺c, which is a material property.
As soon as the energy release rate exceeds the critical value, the crack extends. In the present work, the
crack propagation criterion was defined to consider all three failure modes by means of a power law (as
it is implemented in Abaqus):𝑓 = 𝐺𝐺c = ( 𝐺I𝐺I,c)𝑎 +( 𝐺II𝐺II,c)𝑏 +( 𝐺III𝐺III,c)𝑐 = 1. (1.22)

Hereby, the energy release rate is calculated and compared to the critical energy release rate for each
failure mode separately. Additionally, the superscripts 𝑎, 𝑏, and 𝑐 affect the interaction between the
failure modes.

Kiefer et al. [76] assigned 0.025 J/mm2 to the critical energy release rate for mode-I failure, 𝐺I,𝑐 . These
values were chosen after Eis and Vassilev [41], who did three-point bending tests on different brick 

specimens and back-calculated the fracture energy via a genetic algorithm proposed by Hannawald 

[63]. Bocca et al. [12] determined similar fracture energy values from three-point bending tests and 

achieved good results recalculating the experiments with a cohesive crack model considering linear 

elastic fracture mechanics. While critical energy release rates for mode-I failure are already scarce 

in the literature, data for mode II and mode III are even harder to find. However, since Kiefer et al. 

showed that the tensile stresses govern failure of vertically perforated clay block masonry, mode I is
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the decisive failure mode. Therefore, the values 𝐺II,𝑐 and 𝐺III,𝑐 have to be distinctly higher, for example𝐺II,𝑐/𝐺I,𝑐 = 𝐺III,𝑐/𝐺I,𝑐 = 10, as proposed by Kiefer et al. Considering this ratio, 𝐺II,𝑐 and 𝐺III,𝑐 were set to0.25 J/mm2, assuming linear interaction the coefficients 𝑎, 𝑏, and 𝑐 were all set to 1.

1.2.3 Mortar bed joint

The considered vertically perforated clay blocks are usually used with thin bed mortar as bed joints.
In general, those mortars consist of cement, chalk, and sand or quartz sand powder. Thin bed mortar
behaves similarly to concrete without reinforcement: strengths and Young’s modulus are isotropic, the
mortar basically deforms linear elastic and fails brittle under tensile stresses without distinct plastic
behavior. While the compressive strength of different thin-bed mortars is fairly high, the tensile stresses
stay rather low in comparison.

Due to the hydraulic solidification of cement mortar, the material properties strongly depend on the
amount of available water. For complete hydration of the mortar, a water-cement ratio around 0.4 is
ideal – the weight of available water should be 0.4 times the cement’s weight. Since fired clay tends to
absorb significant amounts of the water bound to the mortar, manufacturers adjust their mortars to their
range of products; in the mixing instruction a water amount is specified, which takes the absorption
behavior of the fired clay into account. The compressive strength obtained from experiments on mortar
specimens is therefore smaller than the compressive strength of the same mortar as part of the masonry.

Within this work, the mortar material behavior was considered linear elastic and isotropic. Mortar
failure was assumed to be insignificant for the vertical compressive strength of the numerical model.
This assumption is based on the following reasons:

• The (already high) compressive strength obtained from tests on mortar cubes increases further in
the masonry due to the absorption behavior of the fired clay.

• In those regions of the reinforced mortar joint, that are not located on top of a web, tensile stresses
occur. Additionally, shrinkage yields small cracks. Those regions are therefore considered as
cracked within the model; accordingly, solely the stiffness of the glass fiber mesh is considered
there (see Section 1.3.3).

1.2.3.1 Reinforced mortar with homogenized stiffness

To encounter the aforementioned problems regarding airtightness using vertically perforated clay block
masonry, a glass fiber mesh is occasionally embedded in the mortar bed joints. Failure of the masonry is 

induced by lateral tensile stresses in the webs due to transversal webs being not on top of each other. The
fiber mesh within the mortar joint increases its overall stiffness, thereby reducing the tensile stresses in
the transversal webs of the block. Glass fibers have a rather high Young’s modulus and tensile strength,
compared to common mortars (see Table 1.1).

Tab. 1.1: Glass fiber properties compared to thin bed mortar [52, 68]

glass fiber mortar

Young’s modulus 𝐸 80 000 MPa 5000 MPa
Tensile strength 𝜎t 2000 MPa 7.7 MPa



1.2 Modeling strategies 31

The mesh was assumed to be fully embedded in mortar, lying midmost in the bed joint (see Fig. 1.7).
Discretely modeling each glass fiber would be inefficient; not only the modeling of every single fiber
would have been time-consuming (especially when modeling different ratios of reinforcement!), but the
computational expense would also increase heavily. Instead, the reinforced Mortar joint was considered
as a homogenized layer within the model; the homogenized material parameters were obtained from
a multiscale model. Therefore, only the materials’ stiffness tensors ℂ𝑖, the volume fractions of the
components on the entire layer, 𝑓𝑖, and information about the fiber’s orientation were needed.

The homogenization was conducted on a representative part of the layer, the so-called representative
volume element (RVE, see Fig. 1.7). For reasonably defining an RVE, the separation of scales must be
fulfilled: 𝑑 ∼1.5−3≪ 𝑙 ≪∼5−10, (1.23)

meaning that the characteristic length of the RVE, 𝑙, has to be at least one and a half to three times bigger 

than the characteristic size of the inhomogeneities, 𝑑, [40, 122] and at least five to ten times smaller than
the characteristic length scale of the loading,  [77]. With this requirement fulfilled, the strains and
stresses on the macroscale (on the edges of the RVE), 𝜺M and 𝝈M, respectively, may be calculated from
the stresses and strains on the microscale, 𝜺µ and 𝝈µ, in the following way:𝜺M = ⟨𝜺µ(𝒙µ)⟩, 𝝈M = ⟨𝝈µ(𝒙µ)⟩, (1.24) 

where ⟨.⟩ is defined as the average over the RVE’s volume, similar to the definition in Eq. (1.2).
The microstructure consists of different regions with quasi-homogeneous properties – the so-called

material phases. In this case, the material phases are mortar and glass fibers. Each of those phases 𝑟
occupies a volume 𝑉 µ𝑟 , and therefore has a volume fraction 𝑓 µ𝑟 on the entire volume 𝑉RVE:𝑓 µ𝑟 = 𝑉 µ𝑟𝑉RVE , 𝑁𝑟∑𝑟=1 𝑓 µ𝑟 = 1, (1.25)

where𝑁𝑟 is the total number of material phases. With these volume fractions defined, the homogenization
scheme in Eq. (1.24) simplifies to the following discrete scheme:

𝜺M = 𝑁𝑟∑𝑟=1 𝑓 µ𝑟 ⋅ 𝜺µ𝑟 (𝒙µ), 𝝈M = 𝑁𝑟∑𝑟=1 𝑓 µ𝑟 ⋅ 𝝈µ𝑟 (𝒙µ) (1.26) 

The homogenized stiffness tensor ℂM is then calculated as follows:

ℂM = 𝑁𝑟∑𝑟=1 𝑓 µ𝑟 ⋅ ℂµ𝑟 ∶ 𝔸µ𝑟 , (1.27) 

with each phase’s stiffness tensor ℂµ𝑟 and concentration tensor 𝔸µ𝑟 .
Eshelby [49] and Laws [81] provided an approach to calculate these concentration tensors, which

only requires the knowledge of the inclusions’ shape additionally to the phases’ stiffness tensors. The
glass fibers were considered as cylindrical inclusions in two orthogonal directions (see Fig. 1.7); the
Mori-Tanaka-scheme [103] was used for solving the homogenization problem.
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Fig. 1.7: Representative volume element (RVE)

1.2.4 Surface interaction between brick and mortar

The contact properties between brick and mortar play a major role in the interaction of both materials.
Hereby, the shear strength 𝜏u depends on the present axial (compressive) stress in the joint. Van der
Pluijm [145] proposes a relation, based on Coulomb’s friction law:𝜏u = 𝑐0 − tan(𝜑) ⋅ 𝜎n, (1.28)

with the shear bond strength 𝑐0, the angle of internal friction 𝜑, and the axial compressive strength 𝜎n.
As long as the shear stresses on the interface remain sufficiently small, the bonding of brick and mortar
stays intact. Hence, the interface is modeled as being tied. To check out the validity of this clearly strong
simplification, the shear stresses on the interface were monitored throughout the simulations.

1.2.5 Stochastic allocation of material strengths to the webs

Calculations with homogeneous material properties showed that without reinforcement the first crack
was critical for the failure. When exceeding a certain amount of reinforcement, additional cracks may
be formed before reaching the peak stress (see Section 1.4.1). Considering that fired clay is a rather
inhomogeneous material – the production process causes microcracks to occur –, the weakest web of
the block should be the one triggering failure. Let’s assume, that this weakest web has a significantly
smaller strength than each other web. Now, if failure of the reinforced masonry requires the formation
of a second crack, the strength increase due to the stiffer bed joint should be even higher than in the
first case. Therefore, a stochastic approach was chosen to capture these effects within the model.

Inhomogeneities in the single block are common, affecting the material’s strength. On the one hand,
the used clay is a natural resource; thus, inclusions may occur in the mixture. On the other hand, the
mechanical impact on the blocks during the production process as well as the firing process accompanied
by material shrinkage induce microcracks.

Structural inhomogeneities, like microcracks, are the main reason for the fluctuation of the obtained
strengths. Each block in the numerical model was subdivided into longitudinal webs and transversal
webs. Since cracks-inducing failure only occurs in the transversal webs, solely the differences between
these webs were considered. Thereby, a random strength was allocated to each transversal web, while 

assuming that each web separately has a homogeneous strength.
Kiefer et al. [76] obtained tensile and compressive strengths from experiments in longitudinal, transver- 

sal, and extrusion directions. Therefore, mean values 𝜇 and standard deviations 𝑠 are available, assuming
that the strength values are distributed normally. For each transversal web, a value 𝑥 was randomly
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generated from a standard normal distribution (see Fig. 1.8a) with the function randn() in the pro- 

gramming language Julia [10]. The probability density function of the standard normal distribution
ensures the random values are around the mean value of 0. Consider 𝑥 as kind of a strength modification 

parameter: If 𝑥 is lower than 0, the strength is less than the mean value; if 𝑥 is greater than 0, conversely.
This parameter was then used to calculate the tensile and compressive stresses for each direction 𝐿, 𝑇 ,
and 𝑍 : 𝜎𝑖 = 𝜇𝜎𝑖 − 𝑥 ⋅ 𝑠𝜎𝑖 , (1.29)

with the mean value 𝜇𝜎𝑖 and standard deviation 𝑠𝜎𝑖 of the treated strength 𝜎𝑖 (see Fig. 1.8b). The obtained
values were further used to calculate the shear strengths according to Eq. (1.21).

−2 2
0.2
0.4

𝑥1
𝑠 = 1
𝜇 = 0 𝑥

𝑓 (𝑥)

(a) The value 𝑥1 is randomly picked from a standard normal
distribution.

𝜇𝜎𝑖 𝜎𝑖,1
𝑠𝜎𝑖 𝜎𝑖

𝑓 (𝜎𝑖)

(b)With a given mean value 𝜇𝜎𝑖 and standard deviation 𝑠𝜎𝑖 the
randomly picked strength 𝜎𝑖,1 can be calculated.

Fig. 1.8: Standard normal distribution (a) and normal distribution of material strength 𝜎𝑖 (b).
During cracking processes in a system, energy is released. Since the damage evolution depends on

the critical energy release rate, the strength fluctuation due to existing microcracks has to be considered.
The entirely undamaged material with a failure stress 𝜎f,max has a critical energy release rate 𝐺c,max. At
the mean failure stress 𝜇𝜎f , the critical energy release rate results in 𝜇𝐺c , which is defined by the values𝐺c,I to 𝐺c,III for each failure mode in Section 1.2.2.2. Since the production-related damage and, therefore,
the failure stress 𝜎f varies with each transversal web, the related critical energy release rate 𝐺∗c has to
deviate from the mean value by Δ𝐺: 𝐺∗c = 𝜇𝐺c − Δ𝐺 . (1.30)

Note, that the difference Δ𝐺 may be negative in the case of a web, being stronger than the average.
Griffith [60] proposed a way to calculate the critical stress as follows:𝜎f = √𝐺c ⋅ 𝐸𝜋 ⋅ 𝑎 

, (1.31)

with the material’s Young’s modulus 𝐸 and the crack length 𝑎. Comparing the deviating failure stress 𝜎∗f
to the mean failure stress 𝜇𝜎f in terms of Griffith’s formulation yields to an equation for the adapted
critical energy release rate 𝐺∗c (see Fig. 1.9):𝜇𝜎f𝜎∗f = √𝜇𝐺c𝐺∗c → 𝐺∗c = 𝜇𝐺c ⋅ 𝜎∗f 2𝜇2𝜎f

. (1.32)
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Fig. 1.9: The critical energy release rate is reduced due to production-related damage.

1.2.6 Validating the strategies

Trinko et al. [144] investigated the effect of fiber-reinforced bed joints on the vertical compressive 

strength of brick masonry in experiments on solid brick pillars (see Fig. 1.10). Therefore, he tested 

three pillars without reinforcement and another three pillars, reinforced with a glass fiber mesh, as
it is typically used for plastering facades. He considered pillars with a square cross-section and eight
layers, consisting of Austrian standard-sized bricks reduced to 40 % of their original size. Hence, the
pillars were 10 cm wide and 22.2 cm high, with a 2 mm mortar joint between each layer of bricks. Those
masonry specimens were modeled with the previously described simulation strategies (Sections 1.2.1
and 1.2.5) in order to verify the proposed numerical model, which was then used to estimate the effect
of a reinforced mortar bed joint on the compressive strength of vertically perforated clay blocks. Kiefer
et al. [76] already validated the model for the compressive strength of unreinforced clay block masonry
by an extensive set of experiments. Therefore, the focus lies in the validation of the modeling strategies
considering the bed joint reinforcement.

Fig.  1.10: Solid brick pillar without reinforcement, before and after the experiment [144]

1.2.6.1 Material parameters

Trinko et al. [144] experimentally obtained most of the material parameters in Tables 1.2 to 1.4 for the
used brick and mortar, missing values were predicted by applying ratios between values obtained in
literature.
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Tab. 1.2: Orthotropic elastic properties for solid bricks [144]

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa)𝐸𝐿𝐿 𝐸𝑇 𝑇 𝐸𝑍 𝑍 𝜈𝑇 𝑍 𝜈𝑍 𝐿 𝜈𝐿𝑇 𝐺𝑇 𝑍 𝐺𝑍 𝐿 𝐺𝐿𝑇9951
(±898.6) 8670

(±471.7) 13 500 0.1 0.1 0.1 3774
(±261.2) 3725

(±232.3) 2700
Values in parenthesis represent standard deviations.

Tab. 1.3: Orthotropic material strengths for solid bricks [144]

Compressive strength (MPa) Tensile strength (MPa) Shear strength (MPa)𝜎c,𝐿 𝜎c,𝑇 𝜎c,𝑍 𝜎t,𝐿 𝜎t,𝑇 𝜎t,𝑍 𝜎s,𝑇 𝑍 𝜎s,𝑍 𝐿 𝜎s,𝐿𝑇16.42
(±1.62) 13.69

(±2.56) 21.38
(±2.79) 8.04a 6.87a 9.12a 8.38b 9.02b 7.49b

Values in parenthesis represent standard deviations.
a Scaled based on experiments conducted by Kiefer et al. [76].
b Mean value of results obtained with Eq. (1.21).

Tab. 1.4: Isotropic elastic properties of the used mortar

Young’s modulus 𝐸 8378 MPa (±264.93)
Poisson’s ratio 𝜈 0.223 (±0.00474)

Values in parenthesis are standard deviations.

Brick

Nine independent parameters, eg. three Young’s moduli 𝐸𝑖, three Poisson’s ratios 𝜈𝑖𝑗 , and three shear
moduli 𝐺𝑖𝑗 , are necessary to fully describe the stiffness tensor of an orthotropic material. Measuring the
travel time of ultrasonic longitudinal and transverse waves through a solid specimen for each direction𝐿, 𝑇 , and 𝑍 yields six independent components of the stiffness tensor. With the Poisson’s ratios of the
brick approximated with 0.1 according to the data provided by Hannawald and Brameshuber [64], the
Young’s moduli and shear moduli could be calculated (see Table 1.2).

To obtain the compressive strengths, Trinko et al. [144] conducted compression tests in each principal
material direction. While the tensile strengths were scaled to the compressive strengths with the ratio
given by Kiefer et al. [76], the shear strengths were estimated as the mean value of Eq. (1.21). Table 1.3
contains all the strength values used for the model.

Mortar

Measuring the travel time of ultrasonic transverse and longitudinal waves led Trinko et al. [144] to 

the stiffness properties of mortar. Since the mortar is supposed to be isotropic, the two independent
measured values suffice to fully describe the stiffness tensor of the mortar.



36 1 Impact of bed joint reinforcement on the compressive strength

Glass fiber mesh and reinforced mortar

Synthetically coated glass fibers form the orthogonally organized mesh, with a mesh width of 4 mm,
which was embedded in the bed joint of the pillars. Since the fiber strands consist of numerous fine glass
fibers, the cross-section of the strands may vary over the mesh. Therefore, a reliable way to estimate
the volume fraction of the glass fibers is found over the areal weight of the mesh. Hence, dividing the
areal weight 𝑚 by the mass density 𝜌f times the bed joint thickness 𝑑m times two (for considering only
fibers  oriented  in  the  same  direction),  results  in  the  volume  fractions  in  directions 𝑥 and 𝑦, 𝑓f,𝑥 and 𝑓f,𝑦 ,
respectively: 𝑓f,𝑥 = 𝑓f,𝑦 = 𝑚2 ⋅ 𝜌f ⋅ 𝑑m = 

0.0145 g/cm22 ⋅ 2.5 g/cm3 ⋅ 0.2 cm 

= 1.45 %. (1.33)

Applying the homogenization scheme presented in Section 1.2.3.1 on the mortar properties in Table 1.4,
the glass fiber properties in Table 1.1 and the volume fractions in Eq. (1.33) yields the homogenized 

stiffness of the reinforced mortar. Thereby, the components 𝐶𝑥 𝑥 𝑥 𝑥 and 𝐶𝑦 𝑦 𝑦 𝑦 of the stiffness tensor,
which have a strong influence on the lateral stresses triggering failure, increase around 13 %.
1.2.6.2 Experimental results

Trinko et al. [144] obtained failure loads for each specimen and divided them by their cross-section to
receive the vertical compressive masonry strengths in Table 1.5. While the mean value of the masonry
strength increased by 15.38 %when reinforcing the mortar bed joint, the standard deviation of the results
decreased significantly. Additionally, Trinko et al. observed a main difference in the failure mechanism:
While  the  specimens without  reinforcement failed  brittle,  immediately  after  the  first  crack  occurred,  the
reinforced specimens allowed the loading to be increased further, even after the first crack. Hence, the
reinforced mortar joints caused a more ductile damage evolution behavior.

Tab. 1.5: Vertical compressive strength of the specimen (MPa) [144]

Series

w/o reinforcement with reinforcement

Te
st

I 15.08 15.91
II 11.96 16.39
III 14.82 16.00

Mean value 13.95 (±1.73) 16.10 (±0.26)
Increase — 15.38 %

Values in parenthesis represent standard deviations.

1.2.6.3 Numerical results

Both the unreinforced and reinforced specimens were simulated with the modeling strategies above
(except the stochastic allocation of strengths), considering the material parameters in Tables 1.2 to 1.4.
The representative unit cell consists of two bricks and two bed joints in height (see Fig. 1.11). As the
solid brick pillars are more than two times higher than wide, a uniaxial stress state can be expected in
the middle of the specimen. Hence, the unit cell approach with periodic boundary conditions, which
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Head joint 4mm thick,
interface Tied

Each brick is an enriched region

Bed joint 2mm thick,
interface Tied

Model parameters

• 39 304 C3D8 elements
• 49 945 nodes
• 3671 periodic boundary conditions
• Total CPU time 9771 s

Fig. 1.11: FE mesh of the solid brick model

represents an infinitely large pillar in a uniaxial stress state, is suitable for efficiently modeling the
considered problem.

When comparing the obtained masonry strengths to each other, the numerical results fit rather
accurately to the experimentally found values (see Fig. 1.12). While the boxes represent the experiments, 

the crosses mark the numerically obtained strengths. Both models led to results just above the mean value 

of the experiments and predicted a strength increase of 13.64 % (compared to 15.38 % in the experiments).
Since the tensile failure of the mortar head joints was neglected, an overestimation of the peak stress
seems reasonable. Modeling the pillars without a mortared head joint at all would lead to a lower bound
of the peak stress, as comparative calculations showed.

Additionally, the same mechanism as Trinko et al. observed, occurred: While the unreinforced pillar
failed immediately after the formation of the first crack, the reinforced pillar could bear a load increase,
even after the first crack occurred (see Fig. 1.13). The experiments showed a distinct nonlinear behavior,
due to micro-cracks in both brick and mortar as well as the rupture of the head joints. Since solely
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Fig. 1.12: Numerical results compared to the experimental results
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Fig. 1.13: Load-displacement diagram for simulations and experiments (with and without reinforcement)

macro cracks in the brick units were introduced in the model, which is crucial for the magnitude of the
peak stress, the numerical simulations followed a linear path until peak stress.

Considering the good agreement of the peak stress values between the simulations and the experiments,
the proposed modeling strategies seem to be suitable for application on the block masonry model.
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1.3 Compressive strength increase of vertically perforated clay block 

masonry

In the next step, the validated numerical simulation tool was used to estimate the increase of the vertical 

compressive strength of vertically perforated clay block masonry due to the use of reinforced bed joints.

1.3.1 Unit cell

The examined block has a height of 249 mm and a length of 248 mm. Choosing the unit cell one block
long and two blocks high and considering a 1 mm thick bed joint, as well as a 1 mm wide horizontal
gap between the blocks, the total dimensions of the cell add up to 249 mm length and 500 mm height.
Hence, the periodicity vectors 𝒄𝑥 and 𝒄𝑧 are:

𝒄𝑥 = ⎛ ⎜ ⎜ ⎜ ⎝
249 0 0 ⎞ ⎟ ⎟ ⎟ ⎠mm and 𝒄𝑧 = ⎛ ⎜ ⎜ ⎜ ⎝

0 0 500⎞ ⎟ ⎟ ⎟ ⎠mm. (1.34)

As a perfect offset of half a block’s width is not to be expected on a construction site, the offset was
modeled slightly higher, thereby minimizing the contact area. Hence, compressive stresses are directly
transferred between the longitudinal webs, but not between the transversal webs. Since the mortar layer
over the vertical shafts and transversal webs was supposed to be damaged due to shrinkage-induced
cracks, the bed joint was partitioned into two sections (see Fig. 1.14):

• the uncracked mortar layer above the longitudinal webs of the blocks and

• the cracked mortar layer above the vertical shafts and transversal webs of the blocks.

Fig. 1.14: Partitioning of the bed joint in two sections: uncracked (green) and cracked (red). The black
lines represent the outline of the blocks directly below and above the bed joint.

While the uncracked section was modeled with the properties of the pure mortar or the homogenized
properties of the reinforced mortar, the cracked part was not modeled at all in the unreinforced model.
However, the properties of the glass fiber mesh were considered in the model with reinforcement. 

Fig. 1.15 shows the FE mesh of the modeled unit cell. The transversal webs were defined as enriched 

regions, thus regions where nodal degrees of freedom are enriched. The simulations were run on a 

high-performance computing cluster, using eight CPU cores in parallel per model. Therefore, the
calculations took approximately 4 hours on average.
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1mm gap in 𝑥-direction
Thin layer bed joint 1mm thick,
connection Tied

Transversal webs are enriched regions
(red)

Model parameters

• 107 174 C3D8 elements
• 152 013 nodes
• 10 919 periodic boundary conditions
• Mean CPU time 108 672 s

part of reinforced model

unreinforced model

𝑧 𝑦𝑥
Fig. 1.15: FE mesh of the unreinforced model and part of the reinforced model

1.3.2 Brick

Nine independent parameters, more precisely the Young’s moduli 𝐸𝐿𝐿, 𝐸𝑇 𝑇 , 𝐸𝑍 𝑍 , the Poisson’s ratios 𝜈𝐿𝑇 ,𝜈𝑇 𝑍 , 𝜈𝑍 𝐿, and the shear moduli 𝐺𝐿𝑇 , 𝐺𝑇 𝑍 , 𝐺𝑍 𝐿, were used to define the stiffness properties of the used
clay (see Table 1.6). Kiefer et al. [76] obtained values for 𝐸𝑍 𝑍 in experiments on comparable blocks and
took them as a basis for calculating the remaining Young’s moduli and shear moduli, with the ratios 

from Bourret et al. [17] as well as Hannawald and Brameshuber [64]. As before, the Poisson’s ratios
were estimated with the experimentally obtained data from Hannawald and Brameshuber.

For the strength properties Kiefer et al. [76] referred to an extensive series of compressive and bending
tensile tests of a comparable block (see Table 1.7). The shear strengths were estimated as the mean
values of the results, obtained in Eq. (1.21).

Tab. 1.6: Applied transversally isotropic, elastic properties of the vertically perforated clay blocks [76]

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa)𝐸𝐿𝐿 𝐸𝑇 𝑇 𝐸𝑍 𝑍 𝜈𝑇 𝑍 𝜈𝑍 𝐿 𝜈𝐿𝑇 𝐺𝑇 𝑍 𝐺𝑍 𝐿 𝐺𝐿𝑇8738 8738 11 970
(±465) 0.1 0.1 0.1 5509 5509 3972

Values in parenthesis represent the standard deviation.
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Tab. 1.7: Applied orthotropic strength properties of the vertically perforated clay blocks [76]

Compressive strength (MPa) Tensile strength (MPa) Shear strength (MPa)𝜎c,𝐿 𝜎c,𝑇 𝜎c,𝑍 𝜎t,𝐿 𝜎t,𝑇 𝜎t,𝑍 𝜎s,𝑇 𝑍 𝜎s,𝑍 𝐿 𝜎s,𝐿𝑇20.8a 15.0a 21.8
(±1.15) 8.2a 7.0a 9.3a 8.675b 9.7b 8.275b

Values in parenthesis represent the standard deviation.
a Scaled with ratios, obtained in other experiments (see [76]).
b Mean value of results obtained with Eq. (1.21).

Tab. 1.8: Applied isotropic, elastic properties of the thin-bed mortar [76]

Young’s modulus 𝐸 5000 MPa
Poisson’s ratio 𝜈 0.2

Tab. 1.9: Applied elastic properties of the reinforced mortar joint between the longitudinal webs

Young’s modulus (MPa) Poisson’s ratio Shear modulus (MPa)𝐸𝑥 𝑥 𝐸𝑦 𝑦 𝐸𝑧 𝑧 𝜈𝑦 𝑧 𝜈𝑧 𝑥 𝜈𝑥 𝑦 𝐺𝑦 𝑧 𝐺𝑧 𝑥 𝐺𝑥 𝑦𝐸f ⋅ 𝑓f,𝑥 𝐸f ⋅ 𝑓f,𝑦 5000 0.001 0.001 0.001 10 10 10
1.3.3 Mortar

Compressive failure of the mortar bed joint is not considered relevant for the given loading scenario.
In the absence of experimental data, Kiefer et al. [76] estimated the elastic properties considering the
findings of Vekey [147] as well as Sarhosis and Sheng [134] (see Table 1.8).

While the elastic properties of the uncracked reinforced mortar were homogenized by means of
the homogenization scheme presented in Section 1.2.3.1, solely the properties of the fiber mesh were
considered in the cracked regions (see Table 1.9). To avoid numerical problems due to changing thickness
of the mortar layer, the fiber stiffness was converted to an effective stiffness over the thickness of the
mortar layer. Therefore, the lateral Young’s moduli were obtained by multiplying the fiber’s Young’s
modulus 𝐸f with the volume fraction in the particular direction, 𝑓f,𝑖. Since the shear stiffness of the mesh
is rather small, compared to the Young’s modulus, the shear moduli and Poisson’s ratio were set to
nearly zero.

1.3.4 Numerical approaches

1.3.4.1 Fixed strength values

For developing a relationship between the volume fraction of the reinforcing mesh and the compressive
masonry strength, at first 25models with different volume fractions were simulated. Hereby, the volume
fraction of the glass fibers was increased in steps of 0.25 %, starting at 0 % until reaching 6 %. The
allocated strengths for these models were fixed to the mean values, given in Table 1.7.
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1.3.4.2 Stochastic allocated strength values

For the stochastic approach, ten models with different strength allocations were randomly generated.
Thereby, random strength properties were assigned to each transversal web according to Section 1.2.5.
Each model was simulated in three different states: without reinforcement, reinforced with 𝑓f,𝑦 = 3 %,
and reinforced with 𝑓f,𝑦 = 6 %. Therefore, 30models were simulated in total, the results were statistically
evaluated afterwards.
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1.4 Results and discussion

1.4.1 Fixed strength simulation

Fig. 1.16 shows the developed relationship between the volume fraction of the glass fibers and the 

compressive masonry strength. While the blue curve denotes the calculated compressive masonry
strength, the red dashed curve defines the average compressive stress when the first crack occurred in
the model. Thus, the average compressive stress when the first crack occurs increases linearly, which
confirms the assumption of decreasing lateral stresses with increasing mortar stiffness. After the first
crack occurrence, the models behave differently with varying volume fraction. Until a volume fraction
of 𝑓f,𝑦 = 1.75 %, the numerical models failed immediately after the first crack occurred. With higher
amounts of reinforcement, the applied load could be increased beyond the first crack loading. Detailed
examination of the resulting crack patterns revealed that, with the volume fraction exceeding 2 %, the
first crack was being held together by the stiffer bed joint. Additionally, the load could be increased,
until a second transversal web failed (see Fig. 1.17). Therefore, the reinforced bed joint caused the lateral
tensile stresses to distribute more evenly over the block profile.

Comparing the failure mechanisms observed, this is in accordance with Kiefer et al. [76], who showed
that the used approach not only serves an accurate prediction of the compressive masonry strength but
also allows for identification of the failure mechanism of vertically perforated block masonry: a spalling
of the outer longitudinal webs, due to tensile failure of the transversal webs behind.

When a crack forms in the model without reinforcement, the released tensile stresses redistribute
mainly to the crack tip, which is why the crack propagates fast. In the reinforced models, the glass fiber
mesh takes most of the released stresses; crack propagation is therefore suspended. Nevertheless, the
failure mechanism stayed the same.

At the highest modeled volume fraction, the reinforced bed joint enabled a total masonry strength
increase of 19.5 %.
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Fig. 1.16: Effect of the glass fiber reinforcement on the vertical compressive masonry strength
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(a) 𝑓f,𝑦 = 0→ one crack (b) 𝑓f,𝑦 = 2 %→ two cracks

(c) 𝑓f,𝑦 = 6 %→ four cracks

Fig. 1.17: Comparison of the crack pattern at peak stress with different volume fractions 𝑓f,𝑦 . The
asymmetric crack pattern originates in asymmetries of the mesh.

1.4.2 Random strength simulation

The location of the first crack could be predicted in the first approach: due to the homogeneous strengths,
the web being subject to the greatest tensile stresses is expected to tear apart first. Taking a closer look
at the distribution of longitudinal stresses 𝜎𝐿, the outer webs turn out to be the ones with the highest
stresses. Considering the randomly allocated web strengths, such a prediction cannot be made anymore.
The results showed that if there was an extremely weak web in the middle of the block, the first crack
occurred there (see Fig. 1.18). Interestingly, in cases where the firstly torn web was not one of the outer
webs, the loading could be increased after the first crack, even without reinforcement. In each of the
ten models, the compressive masonry strength was not reached until at least one of the outer webs
contained a crack. Hence, the failure mechanism of the models amounted to the familiar mechanism of
vertically perforated block masonry: a spalling of the outer shell.

The randomly generated models consisted of webs with lower strengths than the mean values as well
as webs with higher strengths. Therefore, on average the mean clay strength over an individual model
amounted to approximately the mean strengths in Table 1.7. However, each of the randomly generated
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Fig. 1.18: Comparison of the crack pattern at peak stress with different strength allocations on unrein-
forced models.

models led to a lower compressive masonry strength than with the homogeneously allocated strengths.
This illustrates that the webs with strengths below average have a greater effect on the compressive
strength than the stronger ones, even though the weakest web alone is not decisive for structural failure.

Fig. 1.19a shows the increase of the compressive masonry strength with the volume fraction. Since
the strength increase of each individual model more or less doubled when changing the volume fraction
from 3 % to 6 %, the standard deviation changed in the same manner. The mean value of the strength
increase at the highest modeled volume fraction amounted to 28.87 %.

Even though the obtained masonry strengths were consistently lower in the randomly generated
models, the mean strength increase exceeded the aforementioned by 9 %.
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Fig. 1.19: (a) Statistical evaluation of the strength increase and (b) Compressive strengths obtained in
experiments on RILEM samples (left box) compared to results using the stochastic simulation
approach (right box) and the results according to Kiefer et al. [76] (marked with x). The
strength values are scaled to the maximum strength obtained in the experiments.
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Fig. 1.19b shows the obtained results with the stochastic simulation approach without reinforcement
(right box) in comparison to compressive tests on RILEM samples, using the examined block geometry
(left box). While Kiefer et al. [76] accomplished estimating the compressive strength within the fluctua-
tion of the test results (red cross), the stochastic approach reproduces even these fluctuations pretty
accurately. The simulated mean value is nearly the same as the mean value obtained in experiments.

1.4.3 Feasible volume fraction

Regarding the maximum feasible volume fraction of reinforcement within the bed joint, one can consider
the aforementioned separation of scales (see Eq. (1.23)). Assuming perfectly round fiber strands with a
diameter of 1/𝛼 times the joint thickness, in an orthogonally arranged mesh with a constant mesh width
of 𝛽 times the strand diameter, the volume fraction can be calculated as follows:

𝑓f,𝑦 = 𝐴fiber𝐴joint
= 𝑑2𝜋4 ⋅ 𝑙𝑎𝑙 ⋅ ℎ = ℎ2𝜋𝛼2 ⋅4 ⋅ 𝑙𝛽⋅ℎ𝑙 ⋅ ℎ = 𝜋4 ⋅ 𝛼2 ⋅ 𝛽 

. (1.35)

Considering the generally acknowledged values for the separation of scales, 𝛼 should be at least 1.5
to 3 [40, 122]. Additionally, the mesh width should be great enough, not to separate the mortar joint 

into two layers. Hence, a mesh width three times greater than the fiber strand diameter seems to be
reasonable. Using 2 for 𝛼 and 3 for 𝛽 in Eq. (1.35), the maximum volume fraction results in 6.54 %.

Concludingly, the simulated volume fraction of 6 % seems to be reasonably attainable with an embed-
ded glass fiber mesh. Therefore, the 5 %-quantile of the compressive masonry strength could reach an
increase of over 33 % (see Table 1.10).

Tab. 1.10: Comparison of the fixed value and random value strength increase

Volume fraction 𝑓f,𝑦 (%)0 3.0 6.0
Fixed values 

increase — 10.1 19.5
Statistically allocated values 

Mean value increase — 13.63 28.87 5 %-quantile increase — 15.28 33.81
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1.5 Conclusion

Within the present work, a numerical approach for estimating the effect of glass fiber-reinforced bed
joints on the vertical compressive strength of vertically perforated clay block masonry was developed.
Based on the presented research, the following conclusions could be drawn:

• Glass fiber reinforced bed joints enable a significant increase in the vertical compressive strength
of perforated clay block masonry. The compressive masonry strength increase can be split up
into two mechanisms:

– the first crack occurring at a higher load, due to the decrease of lateral tensile stresses, and

– the onset of cracking arising at a higher load, as the fiber mesh bridges the open crack.

• The reinforcement within the mortar layer prevents the outer shell from spalling, after the first
cracks occur, thereby yielding a more ductile damage behavior.

• Weaker webs within the block affect the vertical compressive strength, which is why the approach
from Kiefer et al. [76] tended to overestimate the test results. Nevertheless, considering the
fluctuation of test results and the high effort for stochastic calculations, their approach seems to
be sufficient to reasonably estimate masonry strengths.

Besides numerous advantages of glass fiber reinforced bed joints (such as the increase of ductility, 

weather protection during construction, or a continuous mortar layer), the conducted simulations 

reveal the potential of bed joint reinforcement in raising the compressive masonry strength. While
the potential for optimization is exhausted in modifying the block geometry, bed joint reinforcement
could be a possible approach for increasing the masonry strength further. Even for already existing
block geometries, the approach could enable a significantly higher vertical compressive strength with
relatively low effort. Thereby, it is necessary to emphasize that the presented compressive strength
increase of vertical perforated clay blocks originates in numerical simulations with complex modeling
strategies, which were solely validated by experiments on solid brick masonry pillars. Hence, to check
the significance of these results, a series of experiments on vertically perforated clay block masonry is
necessary.

By use of the presented unit cell approach, arbitrary loading states on masonry walls can be investi-
gated apart from uniaxial compression. Therefore, the effect of a reinforced bed joint on the load-carrying
capacity in shear or bending scenarios could be estimated. For these reasons, the presented approach
constitutes a significant contribution to the potential assessment of fiber-reinforced bed joints.



48 1 Impact of bed joint reinforcement on the compressive strength

Acknowledgements

The authors gratefully acknowledge the financial support of the Austrian Research Promotion Agency
(FFG, project number 865067) and the industry partner Wienerberger for funding the research work
within the project “Innovative Brick 2”. Furthermore, the authors acknowledge TU Wien Bibliothek for
financial support through its “Open Access Funding Programme”.



Publication 2 

The performance of vertically perforated clay 

block masonry in fire tests predicted by a 

finite-element model including an energy-based 

criterion to identify spalling

Authors Raphael Reismüller, Markus Königsberger, Andreas Jäger, Josef Füssl

Published in Fire Safety Journal, 135 (2023) 103729

DOI https://doi.org/10.1016/j.firesaf.2022.103729

Abstract
Fire tests on masonry are one of the most expensive experiments in developing new vertically perforated
clay block geometries. Numerical simulations might be a reasonable substitute for such experiments,
leading to a significant cost reduction in the development phase. However, the prediction of such tests
with numerical modeling concepts is challenging due to large temperature and stress gradients, highly
non-linear material effects, and the complex geometry of the blocks. Herein, we present a finite-element-
based concept, including thermal and mechanical simulations, a unit-cell approach, a smeared damage
model, and a novel energy-based spalling criterion to describe the structural and material behavior of a
masonry wall in a fire experiment. We could predict the obtained spalling times of longitudinal webs
and the total endurance of a masonry wall without any empirical fitting parameters in good agreement
with experimental data. These results show that we can use our modeling approach for simulating such
fire tests, enabling a much cheaper and more efficient development of block geometries.
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2.1 Introduction

Fired clay block masonry obtains its strength and stiffness through a controlled firing process of the
main constituents: the blocks. Nevertheless, fire poses a crucial impact on the load-carrying capacity
of fired clay block masonry. Therefore, elaborate experiments are necessary to predict how resilient 

a masonry wall is to fire. These large-scale experiments are time-consuming, require special testing 

equipment, and, therefore, are costly. A review of different testing methods under fire was recently
published by Daware and Naser [31].

The rapid advancements in computational methods and the increasing performance of modern 

computers allow the simulation of complex and highly non-linear problems in a reasonable amount
of time. Hence, shifting the current procedure from these elaborate experiments to simulations seems
obvious. However, these experiments are compulsory to obtain a certain level of product certification
according to EN 13501-2 [45]. Nonetheless, simulations seem to be a reasonable substitute for the
experiments when comparing different block designs before bringing the best one to certification.

A growing group of scientists is trying to advance research considering the simulation of masonry
under elevated temperatures. Kumar and Srivastava [80] published a comprehensive review of numerical
models for structural frames with masonry infills in case of fire. Different approaches for solid block
masonry exist using two-dimensional models [105, 124], or three-dimensional models [79, 117].

Another set of publications is dedicated to hollow block masonry made out of concrete or fired clay.
Again there are two-dimensional approaches [106] as well as three-dimensional approaches [32, 108,
112, 116]. Especially in Central Europe, vertically perforated clay block masonry is used extensively,
particularly in residential buildings. Such vertically perforated clay blocks have a void pattern formed by
orthogonally oriented webs. These webs can be divided into two groups according to their orientation:
longitudinal webs are oriented parallel to the wall surface; transversal webs are oriented orthogonal 

to the wall surface (see Fig. 2.1). To our knowledge, the approach introduced by Nguyen and Meftah 

[112] is currently the only published model which covers the requirements for this kind of masonry.
In a three-dimensional coupled temperature-displacement finite-element analysis, they simulated four
full-scale fire experiments with good agreement of the temperatures and displacements. Nguyen and
Meftah thoroughly investigated the mechanisms driving the failure of vertically perforated clay block
masonry in fire experiments and identified the progressive spalling of the longitudinal webs as the most
relevant [111, 113]. This mechanism refers to the detachment of parts of the masonry wall, which leads

vertical cavity

longitudinal web

transversal web

wall surface

Fig. 2.1: Parts of a vertically perforated clay block.
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to a decreasing wall thickness. With vertical loads present, spalling is accompanied by an increasing
load eccentricity, which introduces significant bending moments. In their studies, they suggested three
mechanisms driving spalling:

• detachment of longitudinal webs due to tensile cracks at the intersection between longitudinal
webs and transversal webs,

• buckling of longitudinal webs due to compressive stresses, and

• crushing of longitudinal webs due to a network of compressive cracks.

Therefore, they proposed a spalling criterion based on a maximum stress condition and plate buckling
equations and introduced it to their finite-element framework.

Especially the first mechanism, i. e. the interaction between transversal and longitudinal webs, is
essential for the mechanical behavior in fire situations for the following reasons: In the case of a fire,
the longitudinal web closest to the fire gets heated up. This increase in temperature causes a significant
increase in strains. Since the temperature in the second longitudinal web increases delayed to the first
one, these two webs show a difference in temperature-induced strains. These strains would not induce
any stresses in an internally static determinate system, but this is not the case with a typical block 

design. Some design features, such as the type of head joint, the masonry bond, and the transversal
webs, restrict the thermally-induced strains, inflicting stresses in different regions of the block.

In the case of fire, the mentioned strain difference of the longitudinal webs induces significant stresses 

in the transversal webs, which will start failing at some point. As soon as a certain amount of transversal
webs has failed, the outermost longitudinal web spalls due to the vertical loading [111]. As more and
more longitudinal webs fail, the eccentricity of the vertical load increases until the whole wall collapses
eventually.

While the model of Nguyen and Meftah [112] can simulate a fire experiment with good results, we
wanted to take a more detailed look at the stresses and damage appearing in the blocks, requiring a
finer mesh. Especially when comparing different block designs or optimizing a product, these details
can be essential. Since Nguyen and Meftah [112] modeled an entire wall specimen, a finer mesh 

would lead to exploding computation times. Therefore, we used a unit-cell approach to model only a
small representative part of the specimen with periodic boundary conditions. The saved computational
expense could be reinvested in more detailed meshing and sophisticated non-linear material models.
Unfortunately, the overall deformation of the wall cannot be obtained using this approach. Since the
model published by Nguyen and Meftah [112] already does a great job in calculating the deformations,
the main aim of our study should be in another field of interest: the estimation of the endurance of
load-bearing vertically perforated clay brick masonry in fire situations with a focus on the stress and
strain fields, as well as damage in the cross-section.

Thus, the outline of the work can be summarized as follows: First, we created a two-dimensional 

transient thermal finite-element model to simulate the non-linear heat transfer in a wall made of
vertically perforated clay block masonry. Secondly, we defined a novel energy-based spalling criterion
to predict the failure of the wall in terms of spalling of longitudinal webs. Then we applied the nodal
temperatures gained from the thermal model to a two-dimensional mechanical finite-element model.
Using Concrete Damaged Plasticity (CDP), a unit-cell approach with periodic boundary conditions, and the
energy-based spalling criterion, this model was able to reproduce the behavior of a masonry wall in a 

standard fire test, without using any empirical fitting parameters. We also used a three-dimensional
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mechanical finite-element model to observe the stresses introduced by the vertical loading applied in
the experiment. Given the model’s high level of detail, the proposed approach provides unique insights
into the behavior of fired clay block masonry in fire situations.

Section 2.2 contains a short description of the used experiments. An overview of the applied modeling
strategies, the numerical model, and the used material properties is provided in Section 2.3. Afterward,
the results are explained and discussed in Section 2.4, followed by conclusions to these results in
Section 2.5.
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2.2 Fire experiments on vertically perforated clay block masonry

2.2.1 Test setup

The tested masonry wall specimen was seven blocks high and six blocks wide, resulting in an approxi-
mately 3.00 m high and 3.00 m wide specimen (see Fig. 2.2a). This specimen was placed in a concrete
frame with gaps on the left and right sides; these gaps were then filled with insulation. The blocks were
connected by thin-bed mortar in the horizontal joints. The two adjacent blocks were in contact in the
vertical joints, but no mortar was used. The blocks themselves had a thickness of 200 mm with the void
pattern shown in Fig. 2.2b. While the unexposed side was plastered, the fire-exposed side was covered
with 120 mm expanded polystyrene (EPS) and a 13 mm gypsum plasterboard.

thermocouples
TC1–TC6 & TCue

3.0m
3.0m

(a)

TC1

TC2

TC3

TC4

TC5

TC6

TCue

fire-exposed side

unexposed side

(b)

Fig. 2.2:Masonry specimen (a) subjected to vertical compressive load. The Block geometry (b) is
composed of many slender webs. The seven thermocouples (TC) relevant for the simulations
were sitting in six adjacent cavities and on the unexposed side, all located in the center of the
wall.

Thermal and mechanical loads were applied, as described next. The wall was subjected to vertical
compressive loads amounting to 130 kN/m (load-controlled application using hydraulic presses), which
corresponds to approximately 10 % of the compressive masonry strength. This load was applied to a 

loading bar resting on top of the specimen and kept constant throughout the experiment. An addi-
tional construction guided the loading bar to minimize out-of-plane deformations (see Fig. 2.2a). The
plasterboard side of the wall faced a furnace in which the temperature was increased according to the
temperature curve in EN 13501-2 [45] (similar to the curve in ISO 834-1 [70]) reading as𝑇furnace = 345 ⋅ log10(8𝑡 + 1) + 20, (2.1) 

with the time 𝑡 starting at the beginning of the experiment (see also Fig. 2.3).
The temperature was monitored at multiple locations, i. e. the furnace, the cavities, and the unexposed

face of the wall. The thermocouples relevant to the simulations were positioned along the thickness
direction inside six different adjacent cavities of the block and on the unexposed side, all located in the
center of the wall (see points labeled TC1 to TC6 as well as TCue in Fig. 2.2).
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2.2.2 Test results: temperature evolutions and spalling times

The moment when the plasterboard fell off and the EPS burned down, i. e. the moment when the blocks
were exposed to the thermal load, was considered the actual start of the test for the simulations, indicated
by 𝑡 = 0. The times referred to are always shown in relation to the total time, i. e. 𝜏 = 𝑡𝑡max

. While the
temperature did not increase significantly on the unexposed side of the wall (see thermocouple TCue in
Fig. 2.3), the temperature in the cavities increased in sequential fashion (see Fig. 2.3) due to sequential
spalling of the longitudinal webs. After spalling of the first web, a rapid increase of the temperature𝑇TC1 in the outermost cavity could be observed, quickly followed by a similarly rapid increase of 𝑇TC2.
The temperature 𝑇TC3 increased significantly only after roughly 𝜏 = 0.116, the increase for temperature𝑇TC4 became significant around 𝜏 = 0.290. The temperature in the fifth outermost cavity 𝑇TC5 increased
significantly only after roughly 𝜏 = 0.362, but the increase was already less sharp. The temperature 𝑇TC6
remained below 120 °C, even after 𝜏 = 1.0, when the wall finally collapsed.
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Fig. 2.3: Evolution of cavity temperatures 𝑇𝑖 (top) and evolution of temperature change �̇�𝑖 (bottom). The

spalling times 𝑡𝑖 for each phase were estimated 15 s before the temperature change reached3 °C/s, as shown for 𝑡2. The respective curves are cut off as soon as a thermocouple is considered
exposed to the furnace temperature. The furnace temperature 𝑇fire was derived according to
EN 13501-2 [45] as well as ISO 834-1 [70].

Deformations towards the furnace could be observed, with a maximum value at approximately 2⁄3 of the
specimen height. These deformations can be traced back to the material expansion at the fire-exposed
side in combination with the boundary conditions and are already well-documented in literature (e. g.
Nguyen and Meftah [111], Prakash et al. [124]). According to these publications, the bottom edge can
be considered as clamped, which leads to bending moments in the wall. From the center of the wall
downward, these bending moments yield vertical compressive stresses on the fire-exposed side, causing
the most severe degradation of the blocks at these locations. Therefore, we used the thermocouples
located in the center for evaluating the results and validating the numerical model.
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As discussed next, we estimated the times when the longitudinal webs spalled in the experiment from
the cavity temperature gradients (Fig. 2.3). This spalling time 𝑡𝑖 of the longitudinal web 𝑖 was estimated
by the sharp increase of the temperature derivative in the next cavity measured with thermocouple
TC𝑖+1. Since the mass of the heated longitudinal web delays the temperature increase in the cavity
behind, spalling was considered to occur 15 s before the temperature change reached 3 °C/s (the dashed
line indicates this threshold in Fig. 2.3). For 𝑡5, this criterion could not be applied since the temperature
change of thermocouple TC6 stayed below this threshold. Given the increasing gradient of 𝑇TC6 at the
end of the experiment, 𝑡5 was chosen 10 s before 𝑡6, where the wall collapsed. The estimated spalling
times are summarized in Table 2.1, and they were used to divide the experiment into seven Phases (0 to
6), which are dealt with individually in the following modeling section. Notably, these times were solely
used for validating the thermal modeling strategies; in the simulations, an energy-based criterion was
used to obtain spalling times from a mechanical finite-element model.

Tab. 2.1: Subdivision of the experiment into seven Phases according to the experimentally observed
spalling times.

Phase 0 

Start of the experiment, wall loaded with 130 kN/m𝜏0 = 𝑡0𝑡6 = 0.000 Gypsum plasterboard came down, EPS burned down, block 

surface exposed to fire
Phase 1 𝜏1 = 𝑡1𝑡6 = 0.028 First longitudinal web spalled, second web exposed to fire

Phase 2 𝜏2 = 𝑡2𝑡6 = 0.115 Second longitudinal web spalled, third web exposed to fire

Phase 3 𝜏3 = 𝑡3𝑡6 = 0.300 Third longitudinal web spalled, fourth web exposed to fire

Phase 4 𝜏4 = 𝑡4𝑡6 = 0.645 Fourth longitudinal web spalled. fifth web exposed to fire

Phase 5 𝜏5 = 𝑡5𝑡6 = 0.986 Fifth longitudinal web spalled, sixth web exposed to fire

Phase 6 𝜏6 = 𝑡6𝑡6 = 1.000 Wall collapsed
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2.3 Numerical modeling

2.3.1 Sequential spalling and associated modeling phases

The sequential spalling of the longitudinal webs leads to a geometry change and a corresponding change
in the boundary conditions. Hence, the numerical modeling of the fire experiment was divided into
seven phases introduced in Table 2.1. Note that the spalling times obtained from the experiment were
not used for the numerical model (except for validating the 2D thermal model in Section 2.4.1). Instead,
an energy-based spalling criterion was used to obtain a spalling time for each phase of the numerical
model. Phase 0 was considered irrelevant for the model since the cavity temperatures remained very
low due to the thermal insulation provided by the intact EPS cover (see Section 2.2). As for Phase 1, the
initial block geometry was used. In Phase 2, the first longitudinal web and all transversal webs in the
first cavity were removed (Fig. 2.4), leading to the exposure of the second longitudinal web to the fire.
This strategy was extended to all following phases until Phase 6, where the first five longitudinal webs
and the corresponding parts of the transversal webs were removed.
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Geometry Phase 1

temperature from this location
is applied in step 1

of thermal model phase 2

Geometry Phase 2

temperature from this location
is applied in step 1

of thermal model phase 3

first longitudinal web spalled

3D Mechanical Model
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2DThermal Model
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2D Mechanical Model
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3D Mechanical Model
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2D Mechanical Model
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Check if vertical loading leads
to failure.
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Initial temperature phase Fire phase
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spalling time 𝑡1 acc. to energy criterion 𝑡end

Check if vertical loading leads
to failure.
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Initial temperature phase Fire phase

Step 1 Step 2

0
spalling time 𝑡2 acc. to energy criterion 𝑡end

Temperature evolution from thermal model

Temperature evolution from thermal model

Analogous procedure for phases 3, 4, 5, and 6

Fig. 2.4: Overview of the sequential procedure for modeling the six-phase fire experiment (Phases 1 to
6, experimental Phase 0 is omitted): Each phase consists of an elastic 3D mechanical model,
a two-step 2D thermal, and a 2D mechanical model. The nodal temperatures obtained in the
thermal model of Phase 𝑖 were imposed on the mesh of the corresponding mechanical model
of Phase 𝑖. The spalling time predicted in the mechanical model of Phase 𝑖 sets the duration of
the steps in the thermal model of the subsequent Phase 𝑖 + 1.
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2.3.2 Decoupling of fire loading from vertical loading and corresponding unit-cell 

models

Previous fire experiments of masonry without vertical loading, see e. g. Nguyen and Meftah [111], 

indicate no spalling of longitudinal webs and no wall failure until the end of the experiment but
significant cracking in transversal webs. In contrast, tests with vertical loading, like the test presented in
Section 2.2, show prevalent spalling of longitudinal webs after the cracking of the adjacent transversal
webs. Notably, the sequential spalling of the webs introduces an eccentricity of the vertical loading (see
Fig. 2.6b), which leads to bending moments in the wall and thus to additional vertical stresses, which
eventually lead to the collapse of the whole structure.

For both loaded and unloaded walls, failure of transversal webs due to temperature-induced stresses
is crucial and was tackled in the first step, independently from the vertical loading. A two-dimensional
finite-element model was used to solve two main problems: (i) to predict the transient temperature field
in the brick wall for each phase of the fire test and (ii) to model the cracking of transversal webs due
to temperature-induced stresses leading to spalling of the longitudinal webs. Notably, the modeling
of the transient temperature field within a single phase is, in good approximation, independent of the
mechanical solution since the deformations were generally small compared to the size of the structure
and since stresses have no effect on the thermal properties of the materials. Therefore, the sub-problems
mentioned above could be solved individually: A 2D thermal model was used to obtain the temperature
field (Section 2.3.3), which was then applied to a 2D mechanical model (Section 2.3.4) to predict the
stress field and eventually the spalling (see Fig. 2.4). The vertical loading and the load eccentricity were
then considered separately within a 3D finite-element model (Section 2.3.5). Although three different FE
models in each phase are necessary for this approach, the decoupling is still more efficient than a single
3D coupled approach with a similar mesh and material behavior.

A unit-cell approach was adopted to minimize the computational effort. In more detail, the 2D unit-cell
exhibits a length of a single brick and contains two halves of the brick connected by a central joint (see
Fig. 2.5). The corresponding 3D unit-cell is two blocks high and one block wide (see Fig. 2.6a) and is
based on a recently developed FE model for failure of masonry Kiefer et al. [76].
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Fig. 2.5: Two-dimensional unit-cell model. The edges of the model were named North, East, South,

and West; the Vertices were named after the edges intersecting in the particular vertex.
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Fig. 2.6: Three-dimensional mechanical finite-element model (a) and load eccentricity (b), which is
introduced by the spalling longitudinal webs.

2.3.3 Two-dimensional transient thermal finite-element model

2.3.3.1 Strategy, mesh, and boundary conditions

A two-dimensional transient thermal finite-element simulation was performed in the FE software Abaqus 

to identify the temperature field over the entire duration of the experiment. Thereby, both the solid clay
parts and the air-filled cavities were considered in the model. For the latter, a temperature-dependent
effective thermal conductivity was introduced to model convective and radiant heat transfer. Conductive
heat transfer can be described by the heat conduction equation, which reads as(𝜌 ⋅ 𝑐p) ⋅ �̇� − ∇(𝝀 ⋅ ∇𝑇 ) = 0, (2.2)

with the mass density 𝜌, the heat capacity 𝑐p, the temperature 𝑇 , and the thermal conductivity tensor 𝝀
[8]. In the case of isotropic conductivity, the thermal conductivity tensor is formed by multiplying the 

thermal conductivity 𝜆 with the identity matrix 𝐈.
Each thermal model consists of two loading steps (see Fig. 2.4). In both steps, adiabatic boundary

conditions were applied on the East and West side of the model. On the “unexposed” side of the model
(North), the temperature was fixed at 21 °C in both steps. To recreate the temperature and heat flux
field at the end of the previous Phase 𝑖− 1 in Phase 𝑖, the temperature 𝑇TC𝑖−1 (see Fig. 2.2) was applied on
the fire-exposed side of the model (South) in the first step. In the second step, the furnace temperature
according to Eq. (2.1) [45, 70] was applied directly on the fire-exposed side of the model. The boundary
conditions can be found in Fig. 2.7. The finite-element models consist of 14 676 to 29 183 three-node
and four-node linear diffusive heat transfer elements (DC2D3 and DC2D4, respectively), see Fig. 2.7.
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Fig. 2.7: The two-dimensional thermal finite-element model for the first experimental phase (all webs
intact) with the imposed boundary conditions. The dashed lines indicate where the geometry
was cut for later phases and, therefore, where the fire temperature was applied.

2.3.3.2 Thermal properties of fired clay

The mass density of the fired clay in the experiments was 𝜌c = 1575 kg/m3 and was considered to be
temperature-independent, see also Table 2.2. In contrast to the mass density, the thermal conductivity
and specific heat were considered temperature-dependent [1, 113]. At room temperature, they amount
to 𝜆c = 0.42 W/(m ⋅ K) (calculated according to EN 1745 [46]) and 𝑐p,c = 876 J/(kg ⋅ K) [112]. From 

steady-state heat flow experiments on hollow clay blocks, Nguyen et al. [113] estimated a relatively
constant thermal conductivity of approximately 300 °C followed by a linear decrease to 39 % of the initial
value at 800 °C. However, calculating the thermal conductivity from measurements on the mass density,
the specific heat, and the thermal diffusivity, AIT [1] obtained a nearly linear decrease of the thermal
conductivity up to 400 °C. A linear decrease from 21 to 800 °Cwas used for the numerical simulations (see
Fig. 2.8a), considering these observations. Notably, running the model with both evolutions suggested
in the literature led to nearly identical temperature results.

The specific heat of fired clay increases slightly with increasing temperature [1], whereby a significant
peak is considered around 100 °C (see Fig. 2.8b). Using this relation, we followed the suggestions in 

the EN 1996-1-2 [47] standard, and the modeling strategies adopted by Nguyen et al. [113] for clay 

blocks as well as Prakash et al. [124] for concrete blocks (see Fig. 2.8b). The corresponding increase,Δ𝑐peak𝑝 ,𝑐 = 2825 J/(kg ⋅ K), results from the evaporation of water bound in the pores of the brick and is
obtained from the brick’s water content 𝜔c = 1.25 % as [113]:Δ𝑐peak𝑝 ,𝑐 = 

2 ⋅ 𝜔c ⋅ 𝐻vapΔ𝑇peak (2.3)

with the latent heat of vaporisation of water, 𝐻vap = 2260 kJ/kg, and with Δ𝑇peak = 20 K as the 

temperature interval for the peak. This way, the heat capacity at 100 °C is approximately four times
higher than the initial value (see Fig. 2.8b).
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Fig. 2.8: Temperature-dependent thermal properties of fired clay used in the finite-element model: 

(a) thermal conductivity from a combination of results from [1], and [113], (b) specific heat
according to [113].

Tab. 2.2: Thermo-mechanical properties of air, fired clay, and mortar at 𝑇ref = 21 ◦C.
Air temp.-dep. Reference

Mass density 𝜌a 1.2 kg/m3 ✔ Fig. 2.10e, [146] 

Specific heat 𝑐p,a 1007 J/(kg ⋅ K) ✔ Fig. 2.10d, [146] 

Thermal cond. 𝜆a 0.024 W/(m ⋅ K) ✔ Fig. 2.10c, [146] 

Kin. viscosity 𝜈a 1.59 × 10−5m2/s ✔ Fig. 2.10a, [146] 

Dyn. viscosity 𝜂a 1.82 × 10−5 kg/(m ⋅ s) ✔ Fig. 2.10b, [146]
Fired clay temp.-dep. Reference

Mass density 𝜌c 1575 kg/m3 × - 

Specific heat 𝑐p,c 876 J/(kg ⋅ K) ✔ Fig. 2.8b, [113] 

Thermal cond. 𝜆c 0.42 W/(m ⋅ K) ✔ Fig. 2.8a, [1, 113] 

Emissivity 𝜀c 0.9 × [82, 112] 

CTE 𝛼𝑇 ,c 8 × 10−6 T−1 ✔ Fig. 2.15b, [6] 

Young’s mod. 𝐸c 10 220 MPa ✔ Fig. 2.15a, [76, 113] 

Poisson’s ratio 𝜈c 0.2 × [76] 

Tensile strength 𝜎f,t,c 7.5 MPa × Fig. 2.13a, [76, 145] 

Comp. strength 𝜎f,c,c 27.6 MPa × Fig. 2.13b, [76]
Mortar temp. -dep. Reference

Young’s mod. 𝐸m 5000 MPa × [76] 

Poisson’s ratio 𝜈m 0.1 × [76]
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2.3.3.3 Heat transfer in the cavities – Conduction, convection, and radiation

Heat transfer is driven by three mechanisms: conduction, convection, and radiation. While conduction
dominates in solids, convection and radiation are decisive in gases.

Neither convective nor radiant heat transfer in the air cavities was modeled directly. Instead, we
considered convection and radiation through an effective conductivity, 𝜆eff,rad and 𝜆eff,conv respectively,
as this is often done when calculating the thermal resistance of ventilated air-spaces behind façades
[125]. Adding these quantities to the thermal conductivity 𝜆a leads to an overall effective conductivity𝜆eff, 𝜆eff = 𝜆a + 𝜆eff,rad + 𝜆eff,conv, (2.4)

which was used in Abaqus within a purely conductive transient heat transfer simulation based on 

Eq. (2.2). This strategy comes with an inaccuracy compared to the “real” problem. However, we also
wanted the same model to be fit for simulating clay block masonry with insulation-filled cavities. In a
comparative analysis, the temperature distributions only varied by a maximum of 20 °C

The effective radiant heat transfer is dealt with first. Since the heat flow in the given problem is 

nearly one-dimensional (i. e. in 𝑦-direction), only the surfaces parallel to the wall were considered
when calculating the effective conductivity. Radiation of transversal webs was neglected (see Fig. 2.9).
The radiant heat flow 𝑞rad between two surfaces, which dimensions are significantly larger than their
distance, follows from the Stefan-Boltzmann law as (Willems [152, p. 25])𝑞rad = 𝜎1𝜀1 + 1𝜀2 − 1 ⋅ (𝑇1 

4 − 𝑇2 

4) . (2.5)

Hereby, 𝜎 is the Stefan-Boltzmann constant (5.67 × 10−8W/(m2K4)), 𝜀𝑖 is the emissivity of surface 𝑖, and𝑇𝑖 is the surface temperature of surface 𝑖. The surfaces are denoted 1 and 2, as shown in Fig. 2.9. The
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transversal web

surface 1

surface 2

𝑇1 > 𝑇2

𝑑

Fig. 2.9: Horizontal section of vertically perforated brick: Governing paths of radiant heat transfer. The
thermal interaction of the transversal webs due to radiation (dashed paths) was neglected.
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emissivity was set to 0.9 for both surfaces [82, 112]. The corresponding one-dimensional conductive
heat flow within the air void follows from Fourier’s law of heat conduction in the form𝑞eff,rad = 𝜆eff,rad𝑑 ⋅ (𝑇1 − 𝑇2) , (2.6)

where 𝜆eff,rad is the effective radiant thermal conductivity and 𝑑 is the layer’s thickness. Equating
Eqs. (2.5) and (2.6) allows for the determination of the sought effective conductivity of the voids, reading
as 𝜆eff,rad = 𝜎 ⋅ 𝑑1𝜀1 + 1𝜀2 − 1 ⋅ 𝑇1 

4 − 𝑇2 

4𝑇1 − 𝑇2 . (2.7)

Convective heat flow depends on the thermal conductivity of the gas, 𝜆a, and the so-called Nusselt
number 𝑁 𝑢, which describes the ratio of the amount of heat transported in a flowing medium, compared
to a static one: 𝜆eff,conv = 𝑁 𝑢 ⋅ 𝜆a. (2.8)

For calculating the Nusselt number, the cavities were considered as vertical shafts, which are heated
from one side. The VDI Heat Atlas pp. 681–682 [146], provides the following equation for this case:

𝑁 𝑢 = ⎛ ⎜ ⎜ ⎝ 

(0.08333 ⋅ 𝑅 𝑎 ⋅ 𝑑𝐻 )− 32 +(0.61 ⋅ (𝑅 𝑎 ⋅ 𝑑𝐻 ) 14)− 32 ⎞ ⎟ ⎟ ⎠
− 23 . (2.9)

Hereby, 𝑑 and 𝐻 are the cavity’s thickness and height, respectively. The Rayleigh number 𝑅 𝑎 is defined
by 𝑅 𝑎 = 𝑔 ⋅ (𝑇1 − 𝑇m) ⋅ 𝑑3𝑇m ⋅ 𝜈a2 ⋅ 𝑃 𝑟 with the Prandtl number 𝑃 𝑟 = 𝜂a ⋅ 𝑐p,a𝜆a , (2.10)

with the gravitational constant 𝑔 (9.81 m/s2), the mean temperature of the air in the cavity, 𝑇m, and
the distance between the cavity surfaces, 𝑑. 𝜈a, 𝜂a, 𝑐p,a, and 𝜆a are the kinematic viscosity, the dynamic
viscosity, the heat capacity, and the thermal conductivity of air, respectively. The aforementioned
properties were obtained for temperatures from 0 °C to 1000 °C according to the VDI Heat Atlas pp. 302–393 [146] (see Fig. 2.10 and Table 2.2).

For calculating the effective thermal conductivity according to Eqs. (2.4), (2.7) and (2.10), the cavities
were sorted into four groups, considering their thickness 𝑑 (6 mm, 8 mm, 14 mm, and 38 mm). The height
of the cavities amounts to 𝐻 = 3.0 m, assuming that they form a connected shaft from the bottom to
the top of the wall. Fig. 2.11a shows the calculated effective thermal conductivity for the cavity groups.
Since the heat transfer at higher temperatures is governed by radiation and the distance of the surfaces
has nearly no impact on the radiant heat transfer, the effective conductivity increases significantly with
increasing thickness (e. g. Group 2, which contains the cavities in the middle with the largest thickness).
For  the  smaller  cavities,  which  are  outnumbering  the  larger  ones,  the  effective  thermal  conductivity 𝜆eff
exceeds the value of fired clay around 200 °C–300 °C.

The temperature-dependent mass density of air, 𝜌a was also taken from the VDI Heat Atlas pp. 302–393 [146]. A significant decrease in mass density with increasing temperature can be observed (see
Fig. 2.10e).

Since the effective conductivity depends on the surface temperatures in the cavities, and these surface
temperatures, in turn, depend on the effective conductivity, an iteration process seems to be necessary.
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Fig. 2.10: Temperature-dependent thermal properties of air used in the finite-element model: (a) kine- 

matic viscosity 𝜈a, (b) dynamic viscosity 𝜂a, (c) thermal conductivity 𝜆a, (d) specific heat 𝑐p,a,
and (e) mass density 𝜌a [146].
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Fig. 2.11: (a) Effective thermal conductivity of the cavities, 𝜆eff, subdivided into four groups, depending
on the cavity thickness: 14 mm (Group 1), 38 mm (Group 2), 6 mm (Group 3), and 8 mm
(Group 4). The values were derived using Eqs. (2.4) and (2.10). (b) Case study for estimating
the impact of temperature difference Δ𝑇 = 𝑇1−𝑇2 ( with 𝑑 = 25 mm) and distance between the
cavity surfaces 𝑑 (with Δ𝑇 = 10 ◦C) on the effective thermal conductivity 𝜆eff of the cavities.

However, evaluating Eqs. (2.8) and (2.10) for different temperature differences and different cavity sizes
showed that the influence of the temperature difference between the surfaces is insignificant. In contrast,
the distance between the surfaces has a significant impact (see Fig. 2.11b). Hence, the heat transfer was
calculated without iteration using a fixed temperature difference of 50 °C.
2.3.4 Two-dimensional mechanical finite-element model

2.3.4.1 Strategy, mesh, and boundary conditions

By analogy to the thermal model discussed before, geometrically identical two-dimensional mechanical
finite-element models (see Fig. 2.12) were created for each of the experimental phases (see Fig. 2.4). These
models were used to evaluate the stress fields resulting from the temperature fields calculated with the
thermal model and to predict the sequential spalling of the longitudinal webs. The models consist of3885 to 6336 three-node and four-node linear plane stress elements (CPS3 and CPS4, respectively). A
plane stress model with vanishing vertical stresses 𝜎𝑧 𝑧 = 0 was considered since the dead weight was
neglected, and the vertical load was only considered in the three-dimensional model. In contrast to the
thermal models, elements in the cavities were not needed, and the mesh was only refined in the first
two longitudinal webs to shorten computation times.

Periodic boundary conditions (PBC) were considered to couple the displacements on the West and East
boundary of the unit-cell (see Fig. 2.5). In contrast, North and South boundaries may deform freely.
This way, a periodic (in longitudinal 𝑥 direction) structure is modeled, which is comparable to the tested
wall, given that the wall length is more than one order of magnitude larger than the wall thickness.

The linear equations, which couple the displacements of the East and West, were derived as described
next. The displacements 𝑢𝑥 and 𝑢𝑦 of each point on the East boundary can then be defined by the
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Fig. 2.12: The two-dimensional mechanical finite-element model for the first experimental phase (all
webs intact) with the imposed boundary conditions. The dashed lines indicate where the
geometry was cut for later phases and, therefore, where the fire temperature was applied.

displacements of the vertex nodes on this boundary (NE, SE, NW or SW, see Fig. 2.5), the length of the
model in 𝑦-direction, 𝑙𝑦 , and the location of the point:

(𝑢E𝑥(𝑦)𝑢E𝑦(𝑦)) = (𝑢SE𝑥𝑢SE𝑦 ) + 𝑦𝑙𝑦 ⋅ (𝑢NE𝑥 − 𝑢SE𝑥𝑢NE𝑦 − 𝑢SE𝑦 ) . (2.11) 

The same relation applies on the West boundary:

(𝑢W𝑥(𝑦)𝑢W𝑦(𝑦)) = (𝑢SW𝑥𝑢SW𝑦 ) + 𝑦𝑙𝑦 ⋅ (𝑢NW𝑥 − 𝑢SW𝑥𝑢NW𝑦 − 𝑢SW𝑦 ) . (2.12) 

Forming the difference of Eqs. (2.11) and (2.12) results in the coupling of the edges East and West:

(Δ𝑢𝑥Δ𝑢𝑦) = (𝑢E𝑥(𝑦) − 𝑢W𝑥(𝑦)𝑢E𝑦(𝑦) − 𝑢W𝑦(𝑦)) = 𝑙𝑦 − 𝑦𝑙𝑦 ⋅ (𝑢SE𝑥 − 𝑢SW𝑥𝑢SE𝑦 − 𝑢SW𝑦 ) + 𝑦𝑙𝑦 ⋅ (𝑢NE𝑥 − 𝑢SW𝑥𝑢NE𝑦 − 𝑢SW𝑦 ) . (2.13)

The linear equation (2.13) was applied to each pair of corresponding nodes to ensure the geometrical
compatibility of the unit-cell. For applying the PBCs to the model, we developed the free-to-use module
AbaqusUnitCell2D [126] for the scientific programming language Julia (see Bezanson et al. [10]), which
works for Abaqus input files. Notably, a 3D counterpart of these equations can be found in Suda et al.
[142].

Additionally, springs were introduced at the four vertices (labeled NW, NE, SW, SE in Fig. 2.12) to 

consider the stiffening effect, which originates in the offset of the upper and lower block layer. This 

offset leads to a reduction of the horizontal in-plane deformations (𝑥-direction). The spring stiffness
(300 N/m) was chosen in such a way that the estimated spalling time for Modeling Phase 1 corresponded 

with the experimental observations. For the subsequent phases, this value was not changed. Apart from
the kinematic boundary conditions, the temperature field of the associated thermal model was applied
to the whole mechanical model. The boundary conditions can be found in Fig. 2.12.
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2.3.4.2 Constitutive behavior adopted for numerical simulations

The stresses are coupled to the temperatures in the constitutive law (see Mang and Hofstetter [88])𝜎𝑖𝑗 = 𝐸1 + 𝜈 ⋅ (𝜀𝑖𝑗 + 𝜈1 − 2𝜈 ⋅ 𝜀𝑘 𝑘 ⋅ 𝛿𝑖𝑗) − 𝐸1 − 2𝜈 ⋅ 𝛼𝑇 ⋅ (𝑇 − 𝑇0) ⋅ 𝛿𝑖𝑗 (2.14)

with the nine independent components of the stress tensor, 𝜎𝑖𝑗 , the material’s Young’s modulus, Poisson’s
ratio, and thermal expansion coefficient, 𝐸, 𝜈, and 𝛼𝑡 respectively, the nine independent components 

of the strain tensor, 𝜀𝑖𝑗 , the Kronecker delta 𝛿𝑖𝑗 , and the current temperature 𝑇 as well as the initial
temperature 𝑇0. Eq. (2.14) only describes the linear elastic constitutive law; material non-linearities were
considered by implementing Concrete Damaged Plasticity (CDP).

CDP is a plasticity-based smeared-damage model developed for concrete, suitable for use with quasi-
brittle materials. Iuorio and Dauda [71] as well as Silva et al. [140] already succesfully applied CDP
for fired clay. The model considers two main failure mechanisms: cracking under tensile and crushing
under compressive stresses. Two hardening variables control the evolution of the yield surface for
tension and compression separately, 𝜀pl 

t and 𝜀pl 

c respectively. Therefore, it is possible to define different
softening behavior for the tensile and compressive regimes. The yield function implemented in Abaqus
(see Dassault Systèmes [29]) is a function proposed by Lubliner et al. [87] with adaptations made by Lee
and Fenves [83]: 𝐹 = 

11 − 𝛼 (�̄� − 3𝛼 ⋅ �̄� + 𝛽 (�̃�pl) ⋅ ⟨ ̂̄𝜎max⟩ − 𝛾 ⋅ ⟨− ̂̄𝜎max⟩) − �̄�c(𝜀pl 

c ) = 0, (2.15)

with the hydrostatic pressure stress �̄�, the Mises equivalent stress �̄�, and the maximum principal effective
stress ̂̄𝜎max. These stress values are derived from the effective stress tensor �̄�:�̄� = 𝐃el0 ⋅ (𝜺 − 𝜺pl) , (2.16)

with the initial, undamaged elasticity tensor 𝐃el0 , and the total as well as the plastic strain tensor, 𝜺 and𝜺pl respectively. This total strain tensor includes elastic and plastic strains but not temperature-induced
strains. The three variables 𝛼, 𝛽, and 𝛾 are derived from the input parameters as follows:

𝛼 = 𝜎b0/𝜎c0 − 12 ⋅ 𝜎b0/𝜎c0 − 1 , 𝛽 = �̄�c (𝜀pl 

t )�̄�t (𝜀pl 

t ) ⋅ (1 − 𝛼) 

− (1 + 𝛼) , and 𝛾 = 

3 ⋅ (1 − 𝐾c)2 ⋅ 𝐾c − 1 . (2.17)

The parameter 𝐾c controls the shape of the meridional plane of the yield surface and was set to 𝐾c = 2/3
to approximate the yield surface of Mohr-Coulomb’s criterion [29]. The dilation angle 𝜓 amounts to 5◦.
The remaining input parameters, namely the ratio of initial equibiaxial compressive yield stress to initial
uniaxial compressive yield stress, 𝜎b0/𝜎c0, the “eccentricity” of the flow potential, 𝜖, and the viscosity
parameter, 𝜇, take the values 1.16, 0.1, and 0, respectively, according to Silva et al. [140].

The tensile softening for the CDP, �̄�t(𝜀pl 

t ), was defined according to Van der Pluijm [145], who used a
relation proposed by Hordijk and Reinhardt [69] for concrete (see Fig. 2.13a). The peak stress amounts
to 𝜎f,t,c = 7.5 MPa, which is the materials tensile strength discussed in Section 2.3.4.4. The plastic
strain value at reaching the minimal stress was chosen in a way that the mode-I-fracture energy in the
simulation would fit commonly accepted values for fired clay (0.05 J/mm2, see e. g. [12, 41, 63]).
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Since tensile stresses are the most crucial for the failure of vertically perforated fired clay blocks (see
Kiefer et al. [76] and Suda et al. [142], as well as Nguyen and Meftah [111, 112]), the main focus was the
correct depiction of the tensile softening. Thus, for the compressive softening, �̄�c(𝜀pl 

c ), consideration 

of a bilinear stress-strain relation with plateau stress 𝜎f,c,c = 27.6 MPa was sufficient (see Fig. 2.13b
and Table 2.2). The compressive and tensile strengths used for CDP are discussed in more detail in
Section 2.3.4.4.
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Fig. 2.13: Adopted softening behavior for fired clay in the tensile regime (a) [145], [69] and compressive
regime (b).

2.3.4.3 Energy-based spalling criterion and failure of the wall

To complete the modeling of temperature-induced sequential failure of the longitudinal webs in the 

brick wall, as observed experimentally, a criterion for spalling of the longitudinal web closest to the
furnace, as well as a criterion for overall wall failure, were required. For the spalling criterion, we recall
that failure of the connection between the transversal and the longitudinal webs triggers spalling (see
Nguyen and Meftah [111] as well as Nguyen and Meftah [112]). An elastic approach, where the stresses
in these connections are observed, is inadequate since the first cracks in the plastic simulations led to
a redistribution of stresses and not yet to wall collapse. Therefore, we needed a criterion that is able
to find the critical point where a redistribution of the stresses yields spalling of the longitudinal web
exposed to fire. Given the smeared damage approach in the framework of the adopted CDP (see Sec-
tion 2.3.4.2), the model can predict damage localization accompanied by dissipative plastic deformations.
We expect energy to dissipate progressively during the simulations following the progressive increase
of temperature-induced stresses. After some time, we expect the damage to yield an abrupt increase 

in plastic deformations and thus dissipated energy, particularly in the connection of transversal and 

longitudinal webs, accompanied by a drop in elastically stored energy (strain energy). These energy 

changes indicate internal load redistribution, and we assume that spalling is occurring at this point 

in the experiment. After a spalling event, the model geometry is changed accordingly, and the next 

modeling phase is entered. The flowchart in Fig. 2.14 qualitatively shows the implementation of our
energy-based spalling criterion.
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Fig. 2.14: Flow chart for the entire simulation process explaining the spalling and failure criterion.
Spalling of a longitudinal web was predicted considering the evolution of the strain energy
and the dissipated energy due to plastic deformations in the 2D mechanical simulation. The
obtained spalling time was then used for the 2D thermal simulation of the subsequent Phase.
The 3D mechanical simulations were used to identify the failure of the wall.

The overall failure of the wall was found considering the elastic 3D mechanical simulations. In each
phase, the tensile stresses in the transversal webs (see also Fig. 2.20) were compared to the material’s
tensile strength. When these stresses exceeded the tensile strength, we considered the last obtained
spalling time 𝑡𝑖 as the total time at wall failure 𝑡end (see Fig. 2.14).

2.3.4.4 Mechanical properties of fired clay

While EN 1996-1-2 [47] suggests a linear decreasing Young’s modulus with increasing temperature,
experimental observations show a slightly different behavior (e. g. Nguyen et al. [113]). Nguyen et al.
suggest a decrease to approximately 70 % of the initial value between 21 °C and 100 °C, while staying
nearly constant at higher temperatures (see Fig. 2.15a). Between 800 °C and 1000 °C Young’s modulus
decreases again to 15 % of its initial value. This behavior was implemented in the finite-element
simulations.
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Fired clay in extruded clay blocks shows a significant orthotropic behavior originating in the extrusion 

process [17]. Extensive information on the orthotropic microstructure of fired clay and the corresponding
mechanical modeling can be found in the research of Kariem et al. [74, 75] and Buchner et al. [19, 21].
The plate-like shape of the webs causes the clay minerals to be oriented parallel to the web’s surface.
Therefore, Young’s modulus parallel to the web’s surface is approximately 100 %–200 % larger than
orthogonal to it, depending on the composition of the clay material [20]. Unfortunately, using CDP as
plasticity law does not allow anisotropic material stiffness. Since the web length is by 5 to 18 times larger 

than their thickness, the occurring in-plane stresses are significantly larger than the out-of-plane stresses.
Hence, the larger in-plane value of Young’s modulus was used, which amounts to 𝐸c = 13 500 MPa at𝑇ref = 21 ◦C.

The coefficient of thermal expansion (CTE) of the clay mixture was determined in a dilatometric 

analysis. It amounts to 𝛼𝑇 ,c = 8 × 10−6 T−1 at 𝑇ref = 21 ◦C and is nearly constant until approximately400 °C; then it starts to increase sharply, with a peak around 575 °C. This sharp increase occurs due to
the conversion of quartz from 𝛼-quartz to 𝛽-quartz (see e. g. Müller et al. [104]). The phenomenon is
called quartz inversion, and the increase can reach up to 100 %, depending on the amount of quartz in 

the clay. After the quartz inversion, the CTE decreases again, being lower than before in general (see
e. g. [6]). For the simulations, the CTE at 575 °C was chosen to be 70 % higher than the initial value and
nearly 50 % lower than the initial value at higher temperatures (see Fig. 2.15b).
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Fig. 2.15:Mechanical properties of fired clay used in the finite-element model. Young’s modulus [112]
(a) and the thermal expansion coefficient (b) were considered temperature-dependent.

Like the stiffness, the tensile and compressive strengths of extruded fired clay are orthotropic, with
the largest strengths observed in the extrusion direction [76]. The strengths normal to this direction
depend primarily on the orientation of a specific web. In general, the in-plane strengths are larger than
the out-of-plane strengths. Again, the strengths had to be defined as isotropic with CDP as plasticity
behavior. The larger in-plane strengths, 𝜎f,t,c = 7.5 MPa and 𝜎f,c,c = 27.6 MPa, were chosen as tensile
and compressive strength for the finite-element simulations, given the same reasoning as for Young’s
modulus. The material strengths were identified in compressive and three-point bending tests and
were assumed to be temperature-independent in the simulations, although a temperature-dependancy
can be observed in fired clay. In literature, we found two different contrary evolutions of the material
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strengths: EN 1996-1-2 [47] describes a linearly decreasing strength with increasing temperature. In
contrast, Nguyen and Meftah [112] used an increasing strength with temperature, which they obtained
from experiments on different fired clay blocks. A currently running research project revealed a similar
trend as Nguyen and Meftah used, corroborating this evolution. Additionally, the decreasing strength
evolution is not suggested anymore in the new draft of EN 1996-1-2 in 2022. Therefore, we assume the
suggested relation from Nguyen and Meftah to be appropriate.

The temperature-strength-relation Nguyen and Meftah [112] used shows a 10 % increase until 400 °C.
Only above 400 °C the strength increases more rapidly up to 74 % of its initial value at 21 °C. The largest
stresses leading to spalling occurred in the transversal webs behind the longitudinal web exposed 

to fire. The nodal temperatures in these regions were always below 500 °C (see also Fig. 2.16 and 

supplementary material1). Therefore, the strength increase can be expected to be around 10 %. This
inaccuracy was acceptable in our study, considering the strength variations of fired clay due to defects
and the heterogeneous nature of fired clay. Therefore, the simplification of the strength evolution as
temperature-independent seems to be appropriate in this case. Thermal creep effects were not considered,
given the brittle material behavior and the short duration until failure occurs.

2.3.4.5 Numerical aspects

The rapidly increasing temperatures combined with the very brittle material behavior led to a numerical 

problem of high complexity. Therefore, the Step stabilization in Abaqus was used to overcome numerical 

instabilities. This stabilization method introduces an artificial damping factor, which is used to calculate
nodal damping forces for nodes with spontaneously rising nodal velocities (see also Dassault Systèmes
[29]).

2.3.5 Three-dimensional mechanical finite-element model

A three-dimensional model was used to model the stress field due to the vertical loading and to identify
the overall failure of the wall. This model is based on the research of Kiefer et al. [76]. In contrast 

to the two-dimensional models, the mortar joints were also considered. Since the thickness of the
thin-bed mortar joint was less than 1 % of the block height, a simplified micro-modeling approach was
considered, i. e. mortar was modeled as a 2D cohesive surface connecting the bricks rather than a 3D
region (see Lourenço [86]). The models consist of 272 686 to 433 524 eight-node linear brick elements
(C3D8). Analogous to the 2D model, a unit-cell concept with periodic boundary conditions was adopted
to minimize the numerical expenses while maintaining a detailed geometry. With a height of two blocks
and a width of one block, the chosen unit-cell is the smallest possible unit-cell without considering
point and line symmetries (see Fig. 2.6a).

In the three-dimensional formulation of the periodic boundary conditions, not only the East and
West surfaces of the continuum are coupled, but also the top and bottom surfaces. Further details on
the implementation of the periodic boundary conditions can be found in Kiefer et al. [76] as well as
Suda et al. [142].

The vertical loading of the wall was introduced as vertical stress 𝜎𝑧 𝑧(𝑦) on the top and bottom surface
of the unit-cell. Notably, the progressive spalling of the longitudinal webs leads to a progressively
increasing load eccentricity 𝑒 (see Fig. 2.6b), yielding a linear stress distribution in the thickness direction

1The supplementary material can be found in the online version of the published article, which is available under https: 

//doi.org/10.1016/j.firesaf.2022.103729.

https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729


2.3 Numerical modeling 71

of the wall, with larger vertical compression on the unexposed side and smaller vertical compression on
the fire-exposed side. Thus, these phase-specific vertical stresses 𝜎𝑧 𝑧(𝑦) read as𝜎𝑧 𝑧(𝑦) = 𝑁𝐴 + 𝑁 ⋅ 𝑒𝐼𝑥 ⋅ 𝑦 , (2.18)

with the constant vertical load, 𝑁 , the net cross-sectional area 𝐴, the moment of inertia 𝐼𝑥 , and the
coordinate in thickness direction 𝑦, which is related to the phase-specific center of mass of the cross-
section.

The elastic properties of fired clay are described in Section 2.3.4.2, the elastic properties of mortar
were overtaken from previous studies [76, 142], considering findings from Domone and Illston [39] as
well as Sarhosis and Sheng [134]. This way, the orthogonal and tangential interface stiffness for the 

cohesive surface properties amount to 𝐾𝑛𝑛 = 5000 N/mm and 𝐾𝑠 𝑠 = 𝐾𝑡 𝑡 = 2083 N/mm, respectively.
Mortar failure was not considered relevant.
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2.4 Model results, validation, and discussion

2.4.1 Evolution of temperature fields

Fig. 2.16a shows the distribution of nodal temperatures in Phase 4 as a qualitative example for all the
modeling phases. Similar graphs for the other five modeling phases are given in the supplementary
material2. The temperature is around 850 °C at the fire-exposed surface and decreases significantly to
approximately 530 °C on the opposite surface of the first longitudinal web. Interestingly, the surface 

temperature of the second longitudinal web is higher at the center of the cavities compared to the
regions close to transversal webs, demonstrating that the heat transfer resistance through the cavity
is smaller than the one through the fired clay. Already in the third longitudinal web, the temperature
stayed nearly constant. In the cavities, the temperature decrease is less significant, suggesting a smaller
heat transfer resistance there. The wavy appearance of the temperature distribution underlines this
suggestion since the higher temperatures advanced slightly further through the wall directly behind the
air-filled cavities. At the moment of spalling, the large temperature on the South side of the model did
only advance to the second row of cavities. The nodal temperature stayed near the initial value of 21 °C
from the third longitudinal web upwards.

The simulated temperatures were compared to the experimentally measured temperatures inside 

the cavities to validate the thermal model (see Fig. 2.17). Notably, the spalling times required for
differentiating the six phases were not yet calculated from the mechanical simulations but approximated
from the experimental values, as described in Section 2.2. In general, the thermal simulations agree
well with the experiments. The model underestimates the cavity temperature at the beginning of each
phase but slightly overestimates it afterward. Notably, the model also nicely predicts the slowdown
of the temperature increase related to the evaporation of pore water observed in almost all phases at
around 100 °C. In the sixth cavity, the temperature increase in the simulations is significantly larger
than in the experiment. One possible reason for that can be found in the fourth longitudinal web. The
spalling of the fourth web was approximated using the temperature increase in the fifth cavity. However,
spalling is not the only possible reason for a temperature increase. The fourth web could have been
cracked open at another wall location. Then the temperature in the cavity behind might already increase,
although the web is still intact. Since the temperature trend differs significantly from the other curves,
the thermocouples might also have been corrupted. Either way, the temperatures in the sixth cavity
were not that important for the simulation since the last phase of the experiment did not last very long.

The good agreement of simulated and measured temperature evolutions during Phases 1 to 5 underlines 

the validity of the chosen temperature model and motivates the discussion of the heat transfer mechanism.
At the beginning of the simulation, the maximum heat flux could be observed in the transversal webs,
while the heat flux in the cavities was low in comparison (see Fig. 2.18a). Around 250 °C, the distribution
started to shift, and in the end, nearly all the heat was transferred through the cavities (see Fig. 2.18b).
This observation suggests the following conclusion: While the cavities are essential for the high thermal
resistance of the block at ambient temperatures, the drastically increasing part of radiant heat transfer
in the cavities at higher temperatures has a negative impact on the insulation condition (I according to
the classification standard EN 13501-2 [45]).

2The supplementary material can be found in the online version of the published article, which is available under https: 

//doi.org/10.1016/j.firesaf.2022.103729.

https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
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Fig. 2.16: Nodal temperature (a) and maximum principal stresses (b) in Phase 4 right before estimated
spalling time 𝜏4,FE = 0.438. Plastic zones indicated by the maximum principal plastic strain𝜀1,pl ≥ 0.025 (blue regions) right before (c) and after (d) this spalling time. Similar graphics for
the other five modeling phases are provided in the supplementary material.
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Fig. 2.17: Comparison of measured (dashed lines) and predicted (solid lines) evolution of cavity temper-
atures.
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Fig. 2.18: Detail of temperature (top) and heat flux (bottom) in the first three longitudinal webs at 

(a) 𝑡 = 3600 s with firing temperature (at the bottom surface) of 60 °C, showing that heat is
transferred preferably through transversal webs, and (b) 𝑡 = 3600 s with firing temperature800 °C, showing that heat is transferred preferably through cavities.
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2.4.2 Evolution of stress fields and sequential spalling

Fig. 2.16b shows the distribution of the maximum principal stresses in Phase 4 as a qualitative example
for all the modeling phases. The most significant tensile stresses occur in the connection between the
transversal and longitudinal webs (red areas). Since the outermost longitudinal web expands towards
the head joint, the transversal webs closest to the head joint are the most critical. In Phase 4, the fifth
longitudinal web shows tensile stresses, which are increasing to the middle of the block. In the earlier
phases, such tensile stresses occur in the second longitudinal web; see the supplementary material3 for
corresponding graphs. Due to the large cavities in the middle of the block, these tensile stresses are
redistributed to the first longitudinal web behind these large cavities. Compressive stresses occur in the
outermost longitudinal web, counteracting these tensile stresses. Note that these compressive stresses
cannot be seen in Fig. 2.16b, due to the choice of the shown variable.

Besides the negative impact on the insulation condition, the decrease in effective thermal resistance 

at higher temperatures (shown in Fig. 2.18) also has a positive effect on the performance of the wall in
the fire experiment: Large temperature gradients are the reason for large stresses in the block, which
lead to failure of the webs (this affects the parameters R and E in the classification standard EN 13501-2
[45]). A loss in the overall thermal resistance yields a faster decrease of these temperature gradients
and, therefore, smaller stresses.

Next, the identification of the spalling times is discussed. The plastic deformations mainly occur
in the connection between the transversal and longitudinal webs. Nevertheless, the plastic dissipated
energy in these regions dominates the dissipated energy of the whole model. Thus, the evolution of the
total energy, strain energy, and dissipated energy of the whole 2D model are plotted in Fig. 2.19 for each
of the six model phases. Notably, the time values 𝜏ph,𝑖 on the horizontal axis are related to the start of
the corresponding phase rather than the failure of the insulation, as the total time 𝜏 is. Interestingly,
the total energy curves of Phases 1, 4, and 5 increase concavely, which are the models where the first
longitudinal webs are continuous and in contact in the head joint (see the block geometry depicted in
Fig. 2.2). In both phases, where the outermost webs are not in contact at the head joint (Phases 2 and
3), the strain energy decreases before it increases concavely. After some time, the dissipated energy
increases abruptly (revealed by the jump of the red line in Fig. 2.19) while the strain energy decreases in
the same way, at least for Phases 1 to 4. This time was considered the model-predicted spalling time.
The deformations and plastic strains in the model changed at these moments (e. g. Figs. 2.16c and 2.16d
for Phase 4): While just a few transversal webs between the two longitudinal partitions closest to the fire 

showed plastic zones before the derived time, each transversal web in this row showed significant plastic 

strains afterward. Additionally, the longitudinal web closest to the fire buckled, as already demonstrated 

by Nguyen and Meftah [111]. Most notably, the experimentally measured spalling time for Phases 1 to 4 

is remarkably close to the predicted counterpart (see Fig. 2.19), which corroborates the two-dimensional
mechanical model and its underlying assumptions.

While the plastic zones in Phases 1 to 4 concentrate in the outermost transversal webs, they are much
more evenly distributed over the wall thickness in Phases 5 and 6. This observation can be traced back
to the large holes in the middle of the brick (see Fig. 2.2). The web structure is less rigid than in the 

phases before due to the non-continuous longitudinal webs six and seven and the offset transversal
webs. Thus, temperature-induced deformations are less hindered, leading, in turn, to smaller stresses
and a less brittle behavior without pronounced jumps in the evolution of the cumulative dissipated

3The supplementary material can be found in the online version of the published article, which is available https: 

//doi.org/10.1016/j.firesaf.2022.103729.

https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
https://doi.org/10.1016/j.firesaf.2022.103729
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energy. Nevertheless, in Phase 5, two small jumps could be observed (see Fig. 2.19e). The range between
the corresponding time instants (𝜏ph,5 = 0.196 and 𝜏ph,5 = 0.587) was considered as a possible interval
where the longitudinal web spalled. This interval nicely bounds the experimentally determined spalling
time amounting to 0.341. In Phase 6, a small dissipation burst occurs at 𝜏ph,6 = 0.188, but this time
instant is already well after the experimentally determined collapse of the wall. This way, we expect the
stresses due to the already significant eccentric vertical loading to be critical, as analyzed next.

2.4.3 Stresses due to vertical loading and ultimate failure of the wall

Tensile stresses in the transversal webs lead to the failure of vertically perforated clay block masonry
under vertical compression (see Suda et al. [142]). Since the study focuses on the spalling of the 

outermost longitudinal webs, the maximum tensile stresses in the transversal webs right behind the 

first longitudinal web are the most interesting to observe (see Fig. 2.20). These stresses are large in 

the bed joints and rapidly decrease when going vertically to the middle of the block. In the first five
phases, the stresses are below the tensile strength (see Table 2.3). Therefore, the vertical loading alone
would not lead to the failure of the wall in these phases. However, the tensile stress in Phase 5 is 

only insignificantly below the tensile strength. From Phase 5 to Phase 6, the maximum tensile stress 

more than doubles and is well above the tensile strength. The underlying reason for this increase is 

the outermost longitudinal web being non-continuous in Phase 6. Therefore, we consider that the 

wall collapses at the end of Phase 5 when the fifth longitudinal web spalls. The observations in the
experiment support this modeling result since the wall endured only a few seconds after Phase 6 was
reached.
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Fig. 2.20:Maximum principal stresses in the transversal webs of the three-dimensional mechanical
model in Phase 4 due to vertical loading.

Tab. 2.3: Ratio of the largest tensile stresses to the material’s tensile strength in the outermost transversal
webs of the corresponding model phase.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 621.3 % 37.6 % 49.2 % 73.6 % 95.3 % 199.7 %
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Finally, the time until collapse predicted by the model is compared to the experimentally measured
collapse time. Fig. 2.21 shows the overall time of the simulations compared to the experiment. Given
the predicted spalling range in Phase 5 (Fig. 2.19e), two bounds were predicted for the total time until
collapse, see Fig. 2.21. The experimentally measured collapse time nicely falls in between these two
bounds. It is reasonable to be closer to the upper bound because of the implemented unit-cell concept:
The same failure state is assumed over the whole width of the wall since the unit-cell is repeated
periodically. The specimen in the experiment started to fail in the center of the wall, while other regions
stayed intact. Therefore, a shorter overall time in the simulations seems reasonable.

Experiment

Model minimum

Model maximum 0.2 0.4 0.6 0.8 1.0 1.2

1.00
0.67

0 1.03
Phase 1 Phase 2 Phase 3

Phase 4 Phase 5 Phase 6

Fig. 2.21: Comparison of model-predicted and experimentally determined time until the collapse of the
wall, subdivided into the six phases corresponding to the sequential spalling of the outermost
webs; the gray area in the background marks the interval spanned by the two limit cases
predicted by the model.
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2.5 Conclusion

Within this work, a coupled temperature-displacement finite-element model for assessing the perfor-
mance of vertically perforated clay block masonry in a firing test was presented and compared to
novel experimental data. Using an energy-based spalling criterion combined with a unit-cell approach
allowed for modeling only a small region and, thus, saved numerical expenses. Hence, non-linear and
temperature-dependent material behavior and fine meshing could be used, enabling detailed insights
into the distribution and evolution of stresses, strains, and local damage zones. Since the model only
considers a small region of the whole wall, no information about the overall deformation could be gained,
such as obtained in e. g. Nguyen and Meftah [112]. Nevertheless, the presented approach contributes to
a better understanding of the complex mechanisms involved in the behavior of vertically perforated
clay block masonry in fire situations.

The simulation was split into six sequential phases with slightly different geometry, considering 

spalling of the longitudinal webs as the critical mechanism for failure. Spalling of the webs could be 

decoupled from the vertical loading; thus, a two-dimensional modeling approach was sufficient for 

simulating the firing test. Nonetheless, purely elastic three-dimensional mechanical models helped
interpret the results from the two-dimensional models and depict the failure of the entire wall.

The temperatures simulated with the proposed two-dimensional thermal model show good agreement 

with the experiments, even after spalling of the longitudinal webs. Additionally, the thermal simulations
revealed a redistribution of the heat flow from the transversal webs to the air-filled cavities at higher
temperatures. This change in heat transfer is driven by the increasing impact of radiation and convection
at higher temperatures. Therewith, a positive and negative effect of the air-filled cavities on the
performance in the firing test could be derived.

A novel energy-based spalling criterion was presented for predicting the longitudinal webs’ spalling.
By identifying a qualitative decrease in strain energy (and vice versa, an increase of dissipated energy),
this criterion allowed the depiction of spalling for each phase.

Thus, considering the temperatures of the two-dimensional thermal models, the energy evolution of
the two-dimensional mechanical models, and the maximum principal stresses of the three-dimensional
mechanical models for each phase, we were able to predict the performance of a vertically perforated
clay block wall in a firing test. The simulated performance showed good agreement with experimental
measurements, notably without any empirical fitting parameters.

In general, finding an optimum for vertically perforated clay blocks is a hard-to-achieve goal since
there are masses of existing product designs and infinite possible new configurations. Performing a 

parameter study for a specific design seems to be a more reasonable approach. Hence, utilizing the
available computational methods by extending the block design experience by numerical approaches
like the presented model could help to improve the block design process.
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Abstract
As vertically perforated clay block masonry advances into more demanding building categories, knowl-
edge of the effective masonry strength under different loading states becomes crucial. However, ex- 

perimentally identifying macroscopic failure surfaces for such masonry requires a massive effort. In 

this study, we propose a FEM-based simulation concept to predict failure stress states of masonry 

under arbitrary in-plane loading. The proposed concept is validated using seven experiments from
the literature. Subsequently, subjecting the validated model to various load cases allows for deriving a
failure surface comparable to the Rankine-Hill surface. Thus, by applying the presented concept, we can
effectively generate macroscopic failure surfaces for any perforated clay block design.
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3.1 Introduction

Being one of the oldest materials in human history, clay block masonry remains a popular material 

for its low thermal conductivity, durability, fire resistance, and ease of construction, particularly in
residential and low-rise buildings. In recent years, the construction industry has increasingly focused
on reducing its carbon footprint, which has highlighted the challenge of reducing CO2 emissions in the
fabrication process of fired clay blocks. Therefore, new ways to optimize the production process and the
products themselves are being considered [19–21, 23].

Moreover, although masonry offers numerous benefits, it has recently fallen behind other traditional
materials, such as steel and concrete, when it comes to the accessibility and simplicity of structural 

analysis using finite element (FE) software. This is partly due to the challenge of acquiring effective
strength parameters under different loading conditions for the great variety of modern masonry products.
As an increasing number of structural engineers depend on the conveniences provided by modern FE
software, it is crucial to develop new methods for obtaining these strength parameters to calibrate
effective failure surfaces.

Although there are several approaches for defining failure surfaces for masonry, only a few of them
apply to vertically perforated clay block masonry. One of these surfaces was proposed by Ganz [54], 

who analytically defined twelve failure criteria (see Appendix A). Thereby, he considered different
failure mechanisms typically occurring in masonry structures and derived criteria from the geometry
of the blocks and the material properties. Another approach is the Rankine-Hill surface developed by
Lourenço [86], which is one of the most widely used approaches for simulating the behavior of masonry 

structures under different loading conditions (refer to [24, 28, 56, 57, 98, 110, 115, 129]). The Rankine-Hill
surface consists of two parts: a Hill-type criterion for compressive failure and a Rankine-type criterion
for shear and tensile failure (see Appendix B). Both criteria were developed to qualitatively model 

the experimentally observed failure behavior of a masonry wall without considering specific failure
mechanisms.

To calibrate such failure surfaces, macroscopic experiments that characterize the material’s behavior
under different loading conditions are required. This is already a complex task for a few selected loading
states. In addition, the product palette of masonry is becoming increasingly diverse, thus, making an
experimental identification of the failure surfaces impossible. One solution to this challenge is the use
of reliable numerical models to simulate the needed macroscopic experiments for the calibration of
the surfaces. Such accurate simulations of the masonry’s behavior under different loading conditions
provide a more efficient and cost-effective alternative to conducting physical experiments.

Using computational methods for predicting the behavior of masonry is getting more and more
attention [16, 53, 84, 135, 136, 138, 142, 154]. Recently, Kiefer et al. [76] proposed an FE-based approach
to predict the compressive strength of vertically perforated clay block masonry. Using the eXtended
Finite Element Method (XFEM) [7] and the orthotropic Hoffman criterion [67] in combination with a
unit cell approach and periodic boundary conditions, they were able to accurately predict the vertical
compressive strength of eight different block designs. In this study, we enhance this numerical model by
adding additional failure mechanisms to depict the failure under arbitrary in-plane loading scenarios.

For validation of the numerical model, a set of experiments is necessary. Recently, Bitterli and
Salmanpour [11, 133] published a suitable experimental study for vertically perforated clay block masonry,
in which they did seven compressive tests on wall specimens with inclined bed joints. Although the
specimens were loaded uniaxially, changing the incline angle from 0◦–90◦ in steps of 15◦ led to different
combinations of compressive and shear stresses orthogonal to the joint system. In these experiments,
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they identified the key failure mechanisms under combined compressive and shear loads and a relation
between the bed joint incline and the obtainable peak stress. Thus, we used these experiments for the
validation of the presented numerical model.

The outline of the work is as follows: First, we enhanced the numerical model developed by Kiefer
et al. [76] by introducing a failure criterion for the mortar joints. For this, we back-calculated the damage
properties of the mortar joints by simulating shear tests on masonry triplets [11, 133]. Secondly, we
validated the model by simulating the experiments conducted by Bitterli and Salmanpour [11, 133] using 

the FE software Abaqus. The numerically obtained failure stress states matched the experimental results
and the key failure mechanisms could be replicated in our simulations. After proving the validity of the
model, we simulated additional loading combinations on the same model to calibrate the failure surfaces
following Ganz [54] and Lourenço [86]. The obtained failure surfaces showed good agreement with the
simulations used for validation. Therefore, the model has the potential to substitute experiments for
calibrating failure surfaces.

Section 3.2 contains an overview of the applied modeling strategies and the numerical model. The
application of these modeling strategies for simulating the verification experiments is provided in
Section 3.3. Afterward, the results are explained and discussed in Section 3.4, followed by conclusions in
Section 3.5.
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3.2 Modeling Strategies

While solid clay block masonry was already used 5000 years ago, vertically perforated clay blocks 

are nowadays commonly used in Central Europe because of their improved properties and material
efficiency. A pattern of vertical cavities is introduced to the solid clay block, which creates a network of
slender, plate-like webs. These webs are mostly orthogonal and can be categorized by their orientation
(see also Fig. 3.1):

• Longitudinal webs are oriented parallel to the wall surface (𝑥-𝑧-plane),
• Transversal webs are oriented perpendicular to the wall surface (𝑦-𝑧-plane).

𝑧 𝑦
𝑥

Z
T

L

Z
T L

vertical cavity

longitudinal web

transversal web

wall surface

Fig. 3.1: Parts of a vertically perforated clay block and material orientation represented by the L-T-Z
coordinate system (from [127]). While the Z-axis coincides with the 𝑧-axis, the L- and T-axis
follow the orientation of the webs.

In general, masonry is constructed by putting prefabricated blocks together in a regular pattern,
joined by an adhesive material between these blocks, to ensure a sufficient tensile and shear strength
of the resulting structure. Traditionally, mortar was used for this purpose. Nowadays, other materials
like polyurethane glue simplify the production process. Horizontal joints are referred to as bed joints,
vertical ones as head joints. In terms of strength, these joints are a structural weakness; however, they are
necessary for the structure’s ductility, required to withstand cyclic shear loads e.g., during earthquakes.

3.2.1 Utilizing the periodicity of masonry – Unit cell concept

Since vertically perforated clay block masonry is commonly built up in a periodic pattern, the use of
a unit cell approach with periodic boundary conditions is possible. Hence, a unit cell concept was
implemented, which was proposed by Kiefer et al. [76] and applied with minor adaptions in [142]. Using
this concept we can approximate the response of the entire specimen by modeling only a small part of
the structure, the so-called repeating unit cell. Hence, the computation times can be kept short, although
complex non-linear material models are used.

3.2.1.1 Defining a repeating unit cell

For simplifying the definition of the periodic boundary conditions within the FEM framework, a cuboid
unit cell was chosen. The smallest cuboid unit cell found in a masonry wall with an offset of half a
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block’s width is two blocks high and one block wide (see Fig. 3.2). The following convention was used
for referring to the surfaces, edges, and vertices of the unit cell [14]:

• Surfaces are denoted 𝑁 𝑜 𝑟 𝑡 ℎ, 𝑆 𝑜 𝑢𝑡 ℎ, 𝐸 𝑎𝑠 𝑡, 𝑊 𝑒 𝑠 𝑡, 𝑇 𝑜 𝑝, and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚.

• The names of the edges and vertices consist of the first letters of the intersecting surfaces (e. g. NW
and SWB).

The unit cell consists of six parts, which are segments of two full clay blocks. The dimensions of
each part P1 to P6 are shown in Fig. 3.2b. For modeling the mortar joints we decided to use a simplified
micro-modeling approach [86]. Therefore, we modeled the blocks in full detail, while reducing the 

mortar joints to 2D interfaces between those blocks. When reducing the mortar joints to interfaces,
the total dimensions of the unit cell can be kept constant by evenly distributing the thickness of each
joint to the dimensions of the adjacent blocks [86]. Since increasing the web thickness would have a
significant effect on the structural behavior, the thickness of the head joint was evenly distributed to the
length of each cavity. The interaction properties for considering the mortar joints (see Section 3.2.2.2)
were imposed on each surface in contact with another surface.

3.2.1.2 Periodic Boundary Conditions and Homogenization

The repeating unit cell is two-dimensionally periodic, i. e., in 𝑥- and 𝑧-direction, using the same coordinate
system as shown in Fig. 3.1. The vectors 𝒄𝑥 and 𝒄𝑧 describe this periodicity and contain essentially 

the dimension of the unit cell in the given direction. To ensure geometric compatibility between the
neighboring instances of the unit cell in the deformed state, periodic boundary conditions were applied
on the periodic surfaces. These periodic boundary conditions are linear equations, which couple the
displacements of each pair of corresponding points on opposing surfaces to the displacements of the
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Fig. 3.2: Composition and geometry of the chosen repeating unit cell as part of the entire structure (a)
and dimensions of the six fired clay parts (b). The naming convention in (a) is based on the
suggestions from Böhm [14].
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primary nodes of the unit cell. Hence, the displacement of a point 𝐴 on surface 𝑆 𝑜 𝑢𝑡 ℎ is coupled to the
displacement of the opposing point 𝐵 on surface 𝑁 𝑜 𝑟 𝑡 ℎ and the displacements of the primary nodes.
The same applies to each point on surface 𝐸 𝑎𝑠 𝑡 and the opposing point on surface 𝑊 𝑒 𝑠 𝑡. In contrast, the
surfaces 𝑇 𝑜 𝑝 and 𝐵 𝑜 𝑡 𝑡 𝑜 𝑚 may deform freely. A more detailed explanation of the implementation of the
periodic boundary conditions is given in Suda et al. [142].

Using periodic boundary conditions, the deformation difference 𝚫𝒖 between two surfaces is constant
[96]. Hence, for prescribing a deformation-controlled loading on the repeating unit cell, this deformation
difference has to be defined for only two pairs of nodes per periodicity direction: the primary nodes 

(e. g., SWB-NWB and SWT-NWT in 𝑧-direction). By systematically controlling these deformation
differences, we can impose effective in-plane strain states on the unit cell (see Table 3.1). Thus, we can
simulate arbitrary macroscopic in-plane strain states �̄� by combining the load cases in Table 3.1. These
macroscopic strains applied to the FE model enable the identification of strains 𝜺 on microscale. These
micro strains lead to stresses 𝝈 on the microscale, which we homogenize to macroscopic stresses �̄�.

The deformation difference𝑫 𝒆𝒍 𝒕 𝒂 𝒖𝑖 is related to the macroscopic strain state �̄� through the periodicity
vector 𝒄𝑖: Δ𝒖𝑥 = �̄� ⋅ 𝒄𝑥 = ⎛ ⎜ ⎜ ⎜ ⎝

𝜀𝑥 𝑥 ⋅ 𝑙𝑥𝜀𝑥 𝑦 ⋅ 𝑙𝑥𝜀𝑥 𝑧 ⋅ 𝑙𝑥 ⎞ ⎟ ⎟ ⎟ ⎠ and Δ𝒖𝑧 = �̄� ⋅ 𝒄𝑧 = ⎛ ⎜ ⎜ ⎜ ⎝
𝜀𝑥 𝑧 ⋅ 𝑙𝑧𝜀𝑦 𝑧 ⋅ 𝑙𝑧𝜀𝑧 𝑧 ⋅ 𝑙𝑧 ⎞ ⎟ ⎟ ⎟ ⎠ , (3.1)

with the dimensions of the repeating unit cell in 𝑥- and 𝑧-direction, 𝑙𝑥 and 𝑙𝑧 , respectively. Prescribing zero
displacements at primary nodes SWB and SWT allows us to fully prescribe the calculated deformation
difference at the opposing node, which leads to the relations in Table 3.1.

Tab. 3.1: Primary node displacements for imposing effective strain states.

strain state primary node displacement

LC1 [ 𝜀𝑥 𝑥 0 0 0 ] Horizontal uniaxial strain𝑢SEB𝑥 = 𝜀𝑥 𝑥 ⋅ 𝑙𝑥 , 𝑢SET𝑥 = 𝜀𝑥 𝑥 ⋅ 𝑙𝑥
LC2 [ 0 0 0 𝜀𝑧 𝑧 ] Vertical uniaxial strain𝑢NWB𝑧 = 𝜀𝑧 𝑧 ⋅ 𝑙𝑧 , 𝑢NWT𝑧 = 𝜀𝑧 𝑧 ⋅ 𝑙𝑧
LC3 [ 0 𝜀𝑥 𝑧𝜀𝑥 𝑧 0 ] Pure shear strain𝑢SEB𝑧 = 𝜀𝑥 𝑧 ⋅ 𝑙𝑥 , 𝑢SET𝑧 = 𝜀𝑥 𝑧 ⋅ 𝑙𝑥𝑢NWB𝑥 = 𝜀𝑥 𝑧 ⋅𝑙𝑧 , 𝑢NWT𝑥 = 𝜀𝑥 𝑧 ⋅𝑙𝑧
The following primary node displacements were imposed in
each case: 𝑢SWB𝑥 = 𝑢SWB𝑦 = 𝑢SWB𝑧 = 0, 𝑢SWT𝑥 = 𝑢SWT𝑧 = 0,𝑢SEB𝑦 = 0, and 𝑢NWB𝑦 = 0

3.2.1.3 Stress homogenization

The macroscopic stress state is the main result we wanted to obtain from the simulations. In each point
on the surface of the unit cell, multiplying the macroscopic stress tensor �̄� with the surface normal vector𝒏(𝒙) leads to the traction stress vector 𝒕(𝒙). Since the macroscopic stresses are considered constant over
the repeating unit cell, these traction stresses are also constant for points with the same surface normal



3.2 Modeling Strategies 87

vector. Integrating the macroscopic traction stresses 𝒕 over one surface 𝑆𝑖 of the repeating unit cell leads
to the total amount of forces acting on this surface:𝑭 𝑖 = ∫𝑆𝑖 �̄� ⋅ 𝒏𝑖 𝑑 𝑆 = �̄� ⋅ 𝒏𝑖 ⋅ 𝐴𝑖. (3.2)

Since the displacements are only prescribed at the primary nodes, the traction forces for a surface are 

essentially the sum of reaction forces occurring at the primary nodes located on this surface. Evaluating
Eq. (3.2) for surfaces 𝐸 𝑎𝑠 𝑡 with 𝒏 pointing in positive 𝑥-direction, and 𝑁 𝑜 𝑟 𝑡 ℎ with 𝒏 pointing in positive𝑧-direction leads to the following relations:

𝑭𝐸 = 𝑭 SEB + 𝑭 SET = ⎛ ⎜ ⎜ ⎜ ⎝
�̄�𝑥 𝑥�̄�𝑥 𝑦�̄�𝑥 𝑧

⎞ ⎟ ⎟ ⎟ ⎠ ⋅ 𝐴𝐸 and 𝑭𝑁 = 𝑭NWB + 𝑭NWT = ⎛ ⎜ ⎜ ⎜ ⎝
�̄�𝑥 𝑧�̄�𝑦 𝑧�̄�𝑧 𝑧

⎞ ⎟ ⎟ ⎟ ⎠ ⋅ 𝐴𝑁 . (3.3)

Hence, the macroscopic stress tensor can be obtained from the reaction forces at the primary nodes as

�̄� = [ 𝐹SEB𝑥 +𝐹SET𝑥𝐴𝐸 𝐹SEB𝑧 +𝐹SET𝑧𝐴𝐸𝐹NWB𝑥 +𝐹NWT𝑥𝐴𝑁 𝐹NWB𝑧 +𝐹NWT𝑧𝐴𝑁 ] . (3.4)

It is important to note that the unit cell concept and the homogenization procedure require a homoge-
neous stress state across the unit cell’s dimensions. Consequently, the applicability of these methods is
primarily limited to larger masonry walls where this condition can be met. Conversely, when dealing
with smaller structures, it is advisable to consider a more detailed micro-modeling approach.

3.2.2 Failure mechanisms implemented in the finite element model

Both clay block failure and joint failure are relevant for the structural collapse of vertically perforated
clay block masonry under in-plane loading. The clay blocks mostly fail due to tensile cracks in the
transversal or longitudinal webs [76, 85, 142]. For the mortar joints, shear failure or tensile failure (or a
combination of both) can be relevant, depending on the stress component perpendicular to the joint
[25]. Based on these observations, the following failure mechanisms were implemented in the numerical
model.

3.2.2.1 Brittle failure of fired clay

For the brittle failure of the fired-clay blocks a combination of the XFEM [7], the orthotropic Hoffman
criterion [67], and the Virtual Crack Closure Technique (VCCT) [130, 131] was used. This strategy was
proposed by Kiefer et al. [76] and was successfully applied in another study [142]. The XFEM approach
uses special displacement functions at so-called enriched nodes, which allow the modeling of discrete
propagating cracks without re-meshing. For initiating such cracks, the orthotropic Hoffman criterion is
used, which takes into account the material’s tensile, compressive, and shear strengths (see Appendix C).
Using this formulation, the failure criterion cannot capture triaxial compressive failure. Since the webs
can be considered plate-like structures, which are not loaded perpendicular to their surface, the stress
state in the webs is nearly plane. Therefore, triaxial compressive failure is not relevant in this case. 

After a crack is initiated, a crack evolution criterion, in our case the VCCT, depicts the onset of the
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crack. Details on the implementation of XFEM and VCCT in Abaqus can be found in the Abaqus Online
Documentation [30].

Considering orthotropic material behavior is essential for vertically perforated clay blocks, due to the
orthotropic nature of extruded fired clay [17, 23, 51]. This orthotropy originates in the manufacturing
process, where the raw material is extruded and cut into blocks. During the extrusion process, the flat
clay minerals align parallel to the surface of the given part [17], leading to a locally changing coordinate
system (L-T-Z) on the material level (see Fig. 3.1). Hence, the stiffness in T-direction is approximately37 %–60 % of the stiffness in Z-direction (see Buchner et al. [20]). Since the stiffness in L-direction is
only insignificantly below the stiffness in Z-direction, considering the material as transversally isotropic 

is a reasonable approximation, as Buchner et al. [20] showed. Thus, the material’s stiffness and strength
were considered transversally isotropic in this work (see Tables 3.3 and 3.4).

The application of the VCCT is based on linear elastic fracture mechanics, which allows a good
approximation of the brittle failure of fired clay. The main assumption of the VCCT is. that the strain
energy released when opening a crack is equal to the strain energy needed to close the same crack [78].
Based on this assumption, the energy release rate 𝐺 is calculated and compared to a critical value 𝐺c. In
the numerical model, a power law was used to consider all three failure modes:𝑓 = 𝐺𝐺c = ( 𝐺I𝐺I,c)𝑎 +( 𝐺II𝐺II,c)𝑏 +( 𝐺III𝐺III,c)𝑐 = 1. (3.5)

Considering the findings of Bocca et al. [12], Hannawald [63], as well as Eis and Vassilev [41], lower
and upper limits for the mode-I fracture energy are 𝐺min 

I,c = 0.01 J/mm2 and 𝐺max 

I,c = 0.05 J/mm2. Since
mode-I failure is governing, the fracture energies for modes II and III were chosen 20 times larger,
following Kiefer et al. [76]. The superscripts 𝑎, 𝑏, and 𝑐 were all set to 1.
3.2.2.2 Failure of the mortar joints

The shear behavior of mortar joints was thoroughly analyzed by Van der Pluijm [145]. He not only 

published comprehensive testing data on the strengths but also on the post-peak behavior including 

fracture energy values. According to Van der Pluijm [145] the shear strength 𝜏m,f of a mortar joint
follows a Mohr-Coloumb law: 𝜏m,f = 𝜏m,ini − 𝜇m ⋅ 𝜎⟂, (3.6)

with the initial shear strenght 𝜏m,ini, the frictional parameter 𝜇m, and the stress component perpendicular
to the joint, 𝜎⟂. Hence, the shear strength increases with increasing compressive stresses perpendicular
to the joint and decreases vice versa. With increasing tensile stresses the shear strength eventually
reaches zero.

In displacement-controlled shear tests Van der Pluijm [145] observed a damage evolution, which 

can be sufficiently described by an exponential relation. Furthermore, the remaining shear strength
decreases until it reaches a constant residual strength value depending on the stress perpendicular to
the joint.

We modeled the joints as interfaces using a surface-to-surface contact formulation [15, 143]. For
recreating the joint behavior we deployed a cohesive behavior approach in combination with frictional
properties, a quadratic stress interaction damage criterion, and exponential damage evolution. A similar
approach has been previously used by Bolhassani et al. [15] as well as Thamboo and Dhanasekar [143]
for concrete block masonry. In line with Bolhassani et al., we combined the failure mechanisms of both
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the mortar and the interface into a single interface criterion. Consequently, the calibrated interface
damage properties reproduce the decisive failure mechanism. Conversely, Thamboo and Dhanasekar
modeled the mortar joints as three-dimensional continua, employing Concrete Damaged Plasticity for
modeling mortar failure and the cohesive approach solely for considering interface failure. We opted
for the simplified micro-modeling approach for several reasons. Notably, modeling a typical thin-layer
mortar joint with a 1 mm thickness would necessitate an exceedingly fine mesh to maintain viable
element aspect ratios. Additionally, this approach also allows for modeling modern joints bonded with
polyurethane adhesives with minor adaptions.

The stiffness of the mortar joint is defined through the parameters 𝐾𝑛𝑛, 𝐾𝑠 𝑠 , and 𝐾𝑡 𝑡 . These stiffness
parameters control the relationship between the traction stresses 𝑡𝑖 and the separations 𝛿𝑖 between the
surfaces as 𝑡𝑖 = 𝐾𝑖𝑖𝛿𝑖, ∀𝑖 ∈ {𝑛, 𝑠 , 𝑡} . (3.7)

Thereby, 𝑛, 𝑠, and 𝑡 define an orthogonal coordinate system with 𝑛 pointing perpendicular to the
joint. Thus, the 𝑠-𝑡 plane is parallel to the joint. Considering isotropic material behavior, the stiffness
parameters were derived from the Young’s modulus 𝐸m and the shear modulus 𝐺m by multiplication
with the joint thickness 𝑡m:𝐾𝑛𝑛 = 𝐸m ⋅ 𝑡m, and 𝐾𝑠 𝑠 = 𝐾𝑡 𝑡 = 𝐺m ⋅ 𝑡m = 𝐸m2 ⋅ (1 + 𝜈m) ⋅ 𝑡m. (3.8)

Notably, Eq. (3.7) only holds for positive contact clearance (see also the definition in the Abaqus
Documentation [30]). For negative clearance (i. e. mortar deformations under compressive stresses) a
tabular pressure-overclosure formulation was defined (see Fig. 3.3). Until reaching the compressive
strength, tabular definition delivers the same pressure values as with the stiffness parameter 𝐾𝑛𝑛. At the
compressive strength of the mortar, a plateau is modeled. Since compressive mortar failure was only
relevant in some small regions of the model for a limited number of cases, this simplified approach was
sufficient to consider non-linear mortar behavior under compressive loads. An insignificant contact
pressure at zero overclosure was implemented to overcome numerical problems when initiating contact.
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Fig. 3.3: Tabular pressure-overclosure formulation used for modeling the mortar joints in the simulations. 

A small artificial contact pressure at zero overclosure was implemented to overcome numerical
problems when initiating contact.
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Within the framework of cohesive behavior, the following quadratic stress interaction was used as a
damage criterion: ( 

⟨𝑡𝑛⟩𝑡f,𝑛 )2 +( 𝑡𝑠𝑡f,𝑠 )2 +( 𝑡𝑡𝑡f,𝑡 )2 = 1, (3.9)

with the traction stresses 𝑡𝑖 and the traction strengths 𝑡f,𝑖. In compression, only the interaction of the
shear stresses is considered since ⟨𝑡𝑛⟩ is zero for negative tractions 𝑡𝑛. For implementing a similar relation
as depicted by Van der Pluijm [145], we used an additional frictional parameter. With this frictional
parameter the shear strengths in Eq. (3.9) are calculated using a Mohr-Coloumb relation and the contact
pressure, leading to the following equation:

( 

⟨𝑡𝑛⟩𝑡f,𝑜 )2 +( 𝑡𝑠𝑡f,𝑜 − 𝜇m ⋅ 𝑡𝑛)2 +( 𝑡𝑡𝑡f,𝑡 − 𝜇m ⋅ 𝑡𝑛)2 = 1, (3.10) 

which is simplified to ( 

⟨𝜎⟂⟩𝜎f,⟂ )2 + 𝜏2(𝜏m,ini − 𝜇m ⋅ 𝜎⟂)2 = 1, (3.11)

with equal shear strengths 𝑡0𝑠 = 𝑡0𝑡 = 𝜏ini and the total shear stress 𝜏2 = 𝑡2𝑠 + 𝑡2𝑡 . Additionally, the
traction in 𝑛-direction, 𝑡𝑛, and the corresponding strength 𝑡f,𝑛 were replaced by the stress component
perpendicular  to  the  joint, 𝜎⟂, and the tensile strength 𝜎f,⟂. The material parameters used in the
simulations, i. e. peak strengths 𝜏𝑚,𝑖𝑛𝑖 and 𝜎f,⟂ as well as the friction coefficient 𝜇m, were back-calculated
from shear tests and can be found in Section 3.3.

The exponential post-peak behavior observed by Van der Pluijm [145] was modeled by using a 

displacement-type exponential damage evolution within the cohesive-behavior property (see [30]). 

Here, two input parameters are necessary: the maximum displacement 𝛿max𝑚 at which the strength
reaches its minimum and an exponential parameter 𝛼. The maximum displacement was chosen with𝛿max𝑚 = 0.15 mm leading to a fracture energy of 0.088 J/mm2, matching the findings by Van der Pluijm
[145]. The exponential parameter was set to 𝛼 = 5.
3.2.3 Failure Criterion

For identifying peak stresses for an arbitrary macroscopic strain state a two-condition failure criterion
was used. At the macroscopic scale, the stress state before the first significant decrease of a stress
component was considered as macroscopic peak stress state �̄�f. This criterion was relevant, especially
for joint failure, which occurs much more ductile than block failure. Furthermore, a second criterion
considering the first crack within the blocks was defined to capture block failure. This was necessary,
since some of the simulations, where block failure was relevant, did not produce a significant drop in
stresses. Instead, these simulations aborted when the first crack opened. Considering the findings of
Kiefer  et  al.  [76]  and  Suda  et  al.  [142],  this  is  a  good  approximation,  since  there,  the  first  crack  also
occurred just before the peak stress was reached.
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3.3 Experiments and Simulations

3.3.1 Experiments used for Validation

For validating the numerical model we used an experimental study conducted by Bitterli and Salman-
pour [11, 133] (see Fig. 3.4). In the study, they did uniaxial compression tests on seven masonry
specimens with inclined bed joints to investigate the behavior of vertically perforated block masonry
under combined compressive and shear loads. The specimens were 1.20 m high and 1.20 m long (see
Fig. 3.5a); the bed joint incline was varied from 0◦ (vertical compression) to 90◦ (horizontal compression)
in increments of 15◦. Within this study Bitterli and Salmanpour obtained material strength and stiffness
parameters depending on the bed joint incline and also described the changes in failure mechanisms.
Each experiment is referred to by the angle of incline and a preceding “E”, i. e., “E75” refers to the
experiment with 75◦ incline.

Additionally, Bitterli and Salmanpour [11, 133] conducted three shear tests on masonry triplets
according to EN 1052-3 [44]. These tests were performed with three different levels of pre-compression.
Hence, assuming the joint behavior follows a Mohr-Coulomb law, the initial shear strength 𝜏m,ini and
the friction parameter 𝜇m could be obtained from the results.

Typical vertically perforated clay blocks (Swissmodul B15/19) from a Swiss manufacturer were used for 

the experiments (see Fig. 3.5b). These blocks were 290 mm long, 190 mm high, and 150 mm wide, with a
void ratio of 42 %. In compressive tests according to EN 772-1 [48], they obtained a compressive block
strength of 𝑓b = 26.3 MPa. The mortar used (“Weber mur 920 M15”) is a ready-mixed general-purpose
cement mortar. In flexural and compressive tests according to EN 1015-11 [42], Salmanpour [133]
obtained a compressive strength of 𝑓m = 10.5 MPa and a flexural strength of 𝑓mq = 2.8 MPa.

Each specimen was loaded cyclically with displacement-controlled loading phases and force-controlled
unloading phases until the peak stress was reached. The loads were introduced by hydraulic jacks and

Simulation program Experiments by Bitterli and Salmanpour [11, 133]

Simulations for identifying material parameters
• Simulation (Shear FE model) of the shear tests

on masonry triplets for determining the material
properties of the mortar model.

Simulations for validation
• Simulation (unit cell FE model) of the uniaxial

compressive tests with inclined bed joints.
• Incline from 0◦ to 90◦ in 5◦ steps.
• 38 simulations in total.

Additional simulations with the validated model
• Simulation (unit cell FE model) of the load com-

binations proposed by Lourenço for defining the
Rankine-Hill failure surface for the given ma-
sonry.

Identification experiments
• Single-block compressive tests.
• Flexural tests on mortar prisms.
• Compressive tests on mortar prisms.
• Shear tests on masonry triplets.

Verification experiments
• Seven uniaxial compressive tests on specimen

with inclined bed joints.
• Incline from 0◦ to 90◦ in 15◦ steps.

Results
• Numerically obtained in-plane failure surface for

vertically perforated clay block masonry.
• Failure mechanisms for vertically perforated clay

block masonry under in-plane loading.

Identification of
material parameters

Model validation

Fig. 3.4: Overview of the modeling procedure.
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Fig. 3.5: Experiments conducted by Bitterli and Salmanpour [11, 133]: (a) experimental setup for E15
and (b) used clay block Swissmodul B15/19 (Image from [156]).

distributed by two large spreader beams at the top and bottom of the specimen. Gypsum layers were
placed between the spreader beams and the specimen to compensate for surface irregularities. On one
surface of the specimen, digital image correlation (DIC) was used for obtaining strain information. On
the opposite surface, the deformations were captured by five linear variable differential transformers
(LVDTs). The forces used to calculate the resulting stresses were obtained from the testing machine.

The peak stresses obtained by Bitterli and Salmanpour [11, 133] are plotted against the bed joint
incline in Fig. 3.6. The vertical compressive strength 𝑓mz (E00) was 5.35 MPa. With increasing incline,
the compressive strength decreased drastically to 25 % of 𝑓mz at E45, whereafter it stayed nearly constant 

until E75. For E90 the compressive strength increased again to 38 % of the vertical compressive strength.
Hence, the largest peak stresses were obtained with predominant compressive loading perpendicular to
the bed joint, while the smallest values were observed when the shear stresses reach their maximum.

Besides the peak stresses Bitterli and Salmanpour [11, 133] also analyzed the crack patterns, failure
mechanisms and stress-strain-relations. According to their observations, the behavior changed sig- 

nificantly with the bed joint incline. Specimens E00 and E15 failed very brittle, due to cracks in the
transversal webs, leading to spalling of the outermost longitudinal webs. The stress-strain relation in𝑧-direction was linear almost until collapse (see Fig. 3.14). Specimen E30 showed both cracks in the
blocks and the joints and the failure was more ductile. In experiments E45, E60, and E75, joint failure
was triggering collapse, as gliding planes in the bed joints started to form. The failure occurred even
more ductile than for E30 and after the peak stress was reached, large strain values could be observed
before collapse (see Fig. 3.14). Specimen E90 again failed brittly, showing tensile cracks in the transversal
webs.

3.3.2 Simulation Program

For validating the numerical model described in Section 3.2 we modeled each of the experimental setups
described above. While Bitterli and Salmanpour [11, 133] investigated the influence of the bed joint
incline in increments of 15◦, we did simulations in increments of 5◦ (see Fig. 3.4). Additionally, we defined
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Fig. 3.6: Experimentally obtained peak stresses with varying bed joint incline taken from Bitterli and
Salmanpour [11, 133].

upper and lower bounds for the material properties (see Section 3.3.2.3). Hence, a total of 38 simulations
were performed in the FE software Abaqus. Similar to the naming convention of the experiments, we
refer to the simulations with a prefix “S” to the incline angle. Additionally, “-max” or “-min” is appended
to clarify, if the upper or lower bounds of the material properties were used. We derived the geometry,
boundary conditions, and material properties for the numerical models from the experimental study, as
shown next.

3.3.2.1 Geometry and Mesh

The geometric definition of the FE model follows the unit-cell concept described in Section 3.2.1. Hence,
a cuboid part, which is two blocks high and one block wide, was extracted from the specimen (see
Fig. 3.7). The FE model consists of six block parts, with an offset of half a block width. These parts are
connected  with  the  previously  described  interface  properties  in  the  head  joints  and  the  bed  joints  (see
Fig. 3.7). Notably, in the bed joints the transversal webs are mostly not on top of each other due to the
horizontal offset. Thus, the surfaces are only connected, where webs were directly on top of each other,
leading to a total contact ratio of 64 % in the bed joints. In contrast, the surfaces in the head joints are
fully in contact.

The model consists of 107 326 linear eight-node brick elements (C3D8) and 146 646 nodes. In the
framework of the XFEM, cracks were allowed to form anywhere in the model, with one restriction: no
crack was allowed to initiate within a radius of 20 mm from an existing crack tip.

3.3.2.2 Boundary Conditions

Although each simulation has a different bed joint incline, the geometry and the mesh remain constant
for each simulation. Instead of changing the geometry, the boundary conditions were adapted to obtain
the desired macroscopic stress state. Therefore, the loading had to be rotated and split up into its
components parallel and perpendicular to the bed joints.

We defined two coordinate systems to distinguish between two levels of observation: the global 

coordinates 1-2-3, which follow the orthogonal boundaries of the specimen, and the local coordinates𝑥-𝑦-𝑧, which follow the orthogonal system of mortar joints and are already shown in Figs. 3.1 and 3.2
(see Fig. 3.8). In the global coordinate system, the 3-direction is parallel to the uniaxial loading direction
(vertical). The plane spanned by the 1- and 3-axis is parallel to the wall’s surface. Hence, the 2-axis
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Fig. 3.7: Unit cell finite element model used for the validation simulations (see also Fig. 3.4). The middle
layer is colored differently to emphasize the different block layers with mortar interfaces in
between.

is perpendicular to this surface. While the global coordinate system is similar in each specimen, the
local coordinate system depends on the bed joint incline. It is obtained by rotating the global coordinate
system around the 2-axis by the bed joint incline, leading to the 𝑥-axis being parallel to the bed joints,
the 𝑧-axis being parallel to the head joints, and the 𝑦-axis coinciding with the 2-axis.

Considering the experimental setup, in the global coordinate system a uniaxial stress state can be
assumed in the middle of the specimen. This stress state was rotated by the angle of incline to obtain
the equivalent macroscopic stress state in local coordinates:

�̄� local = 𝑹(𝛼) ⋅ �̄�global ⋅ 𝑹T(𝛼) = [cos(𝛼) − sin(𝛼) sin(𝛼) cos(𝛼) ] ⋅ [ 0 0 0 �̄�33] ⋅ [ cos(𝛼) sin(𝛼) − sin(𝛼) cos(𝛼)] , (3.12) 

with the rotation matrix 𝑹.
Knowing the desired local macroscopic stress state, the related local macroscopic strain tensor �̄�local

was calculated according to Hooke’s law as�̄�local = ℂ̄−1local ∶ �̄� local, (3.13)

with the local macroscopic stiffness tensor ℂ̄local. This stiffness tensor was found by a numerical stiffness
homogenization procedure, utilizing the unit cell approach. The five necessary components of the
stiffness tensor could be derived by deliberately eliminating strain components in Hooke’s law. Hence,
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Fig. 3.8: Definition of the local and global coordinate system. Rotating the global coordinate system
around the 𝑦-axis by the angle of incline 𝛼 leads to the local coordinate system. The dashed
line marks the boundaries of the repeating unit cell, which was used for defining the FE model
in Fig. 3.7.

simulating the three strain states LC1–LC3 in Table 3.1 was sufficient for deriving the local macroscopic
stiffness tensor as ℂ̄local = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣

�̄�LC1𝑥 𝑥𝜀LC1𝑥 𝑥 �̄�LC2𝑥 𝑥𝜀LC2𝑧 𝑧 0�̄�LC1𝑧 𝑧𝜀LC1𝑥 𝑥 �̄�LC2𝑧 𝑧𝜀LC2𝑧 𝑧 0 0 0 �̄�LC3𝑥 𝑧𝜀LC3𝑥 𝑧
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (3.14)

After calculating the local macroscopic strain components with Eq. (3.13), the primary node displace-
ments for each simulation could be derived by a linear combination of the three cases in Table 3.1. 

Table 3.2 gives an overview of the calculated components for the seven experiments conducted by
Bitterli and Salmanpour [11, 133].

Tab. 3.2: Prescribed stresses and strains for the simulated experiments.

ID 𝛼 �̄�𝑥 𝑥 �̄�𝑧 𝑧 �̄�𝑥 𝑧 𝜀𝑥 𝑥 𝜀𝑧 𝑧 𝜀𝑥 𝑧
S00 0◦ 0.00 MPa −10.00 MPa 0.00 MPa 0.14 × 10−3 −1.69 × 10−3 0.00
S15 15◦ −0.67 MPa −9.33 MPa −2.50 MPa −0.07 × 10−3 −1.57 × 10−3 −0.83 × 10−3
S30 30◦ −2.50 MPa −7.50 MPa −4.33 MPa −0.63 × 10−3 −1.23 × 10−3 −1.45 × 10−3
S45 45◦ −5.00 MPa −5.00 MPa −5.00 MPa −1.40 × 10−3 −0.78 × 10−3 −1.67 × 10−3
S60 60◦ −7.50 MPa −2.50 MPa −4.33 MPa −2.17 × 10−3 −0.32 × 10−3 −1.45 × 10−3
S75 75◦ −9.33 MPa −0.67 MPa −2.50 MPa −2.74 × 10−3 0.02 × 10−3 −0.83 × 10−3
S90 90◦ −10.00 MPa 0.00 MPa 0.00 MPa −2.94 × 10−3 0.14 × 10−3 0.00
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3.3.2.3 Material parameters

Fired Clay Blocks

For defining the orthotropic stiffness behavior, we used nine independent parameters, given in the 

material orientation L-T-Z: the Young’s moduli 𝐸LL, 𝐸TT, 𝐸ZZ, the Poisson’s ratios 𝜈TZ, 𝜈LZ, 𝜈LT, and 

the shear moduli 𝐺TZ, 𝐺LZ, 𝐺LT (see Table 3.3). The Young’s modulus in Z-direction, 𝐸ZZ, could be 

back-calculated from single-block experiments. With this value as a basis, the other Young’s moduli, 

as well as the shear moduli, were scaled by the ratios obtained from Buchner et al. [20], considering
transversally isotropic material behavior. The Poisson’s ratios were estimated with the experimentally
obtained data from Hannawald [63]. Note, that the parameters refer to the local L-T-Z coordinate system
shown in Fig. 3.1.

The nine strength parameters for defining the Hoffman criterion, the compressive strengths 𝜎c,L,𝜎c,T, 𝜎c,Z, the tensile strengths 𝜎t,L, 𝜎t,T, 𝜎t,Z, and the shear strengths 𝜎s,L, 𝜎s,T, 𝜎s,Z, were found similar
to the stiffness parameters. Salmanpour [133] obtained the compressive strength in Z-direction from
compressive tests on single blocks according to EN 772-1 [48]. Using this parameter as a basis, the other
compressive strengths, as well as the tensile strengths were scaled according to typical ratios for fired
clay provided by Kiefer et al. [76] (see Table 3.4). Considering the standard deviation of the compressive
strength in Z-direction [133], minimum and maximum values were defined. For estimating each shear
strength 𝜏𝑖𝑗 an upper and lower bound was found from the corresponding tensile strengths, 𝜎t,𝑖 and 𝜎t,𝑗 ,
and compressive strengths 𝜎c,𝑖 and 𝜎c,𝑗 [142] as𝜏𝑖𝑗 ,min = 𝜎t,𝑖 + 𝜎t,𝑗2 and 𝜏𝑖𝑗 ,max = 𝜎c,𝑖 + 𝜎c,𝑗4 . (3.15) 

The mean value of these bound values was used as shear strength for the simulations.

Mortar Joints

From experiments on mortar prisms according to EN 1015-11 [42], Salmanpour [133] obtained the 

compressive strength 𝑓m = 10.5 MPa and flexural strength 𝑓mq = 2.8 MPa. Additionally, he found the 

Young’s modulus of the mortar, 𝐸m = 6600 MPa, in non-destructive compression tests. Hence, the 

stiffness parameters for the cohesive behavior approach were calculated as 𝐾𝑛𝑛 = 660 N/mm, and𝐾𝑠 𝑠 = 𝐾𝑡 𝑡 = 275 MPa, using Eq. (3.8) with a joint thickness 𝑡 = 10 mm and Poisson’s ratio 𝜈 = 0.2.
Additionally, the pressure-overclosure formulation in Fig. 3.3 was calibrated with the Young’s modulus
and compressive strength.

The strength parameters for the cohesive surfaces, the initial shear strength 𝜏m,ini and the tensile
strength 𝜎f,⟂, and the friction parameter 𝜇m, were back-calculated from shear tests on masonry triplets
(see Fig. 3.9b) [11, 133] with an additional FE model, as discussed next. Considering the symmetry plane
in the middle of the triplet, the model consisted of one full clay block, one half clay block, and two steel

Tab. 3.3: Transversally isotropic stiffness used for fired clay and interface stiffness used for mortar.

Fired Clay Mortar Joints𝐸LL = 𝐸ZZ 𝐸TT 𝜈TZ = 𝜈LZ = 𝜈LT 𝐺TZ = 𝐺LT 𝐺TZ 𝐾𝑛𝑛 𝐾𝑠 𝑠 = 𝐾𝑡 𝑡13 500 MPa 8738 MPa 0.2 3500 MPa 5500 MPa 660 N/mm 275 N/mm
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Tab. 3.4: Transversally isotropic strength parameters for fired clay inMPa.
Tension Compression Shear𝜎t,L 𝜎t,T 𝜎t,Z 𝜎c,L 𝜎c,T 𝜎c,Z 𝜎s,TZ 𝜎s,LZ 𝜎s,LT% of 𝜎c,Z 29.0 20.0 29.0 100.0 77.0 100.0a 34.4b 39.5b 34.4b

min in (MPa) 7.009 4.834 7.009 24.17 18.61 24.17 8.308 9.547 8.308
max in (MPa) 8.245 5.686 8.245 28.43 21.89 28.43 9.773 11.23 9.773

a Reference value experimentally obtained by Salmanpour [133]. b Calculated according to Eq. (3.15).

plates (see Fig. 3.9a). The lower steel plate was fixed in 𝑥-, 𝑦- and 𝑧-direction along a line parallel to the𝑦-axis, allowing rotations around this direction. Additionally, a displacement symmetry condition was
applied to the surface in the middle block, acting as a symmetry plane. The loads were applied in the
following two steps: In the first step, we applied a pressure perpendicular to the bed joint (𝑧-direction).
In the second step, we fixed this pressure and applied a displacement in 𝑥-direction to the upper steel
plate, eventually leading to a peak shear stress of the joint under the given pressure in 𝑧-direction.

Following this procedure we created four models with different pressure in 𝑧-direction, i. e. 0.0 MPa,0.2 MPa, 0.6 MPa, as well as 1.0 MPa, and optimized the parameters of the interface damage criterion
(Section 3.2.2.2) to obtain peak shear stresses in good agreement with the experiments performed by
Bitterli and Salmanpour [11, 133]. Hence, these parameters were chosen with 𝜇m = 0.3, 𝜎f,⟂ = 0.3 MPa
and 𝜏m,ini = 1.4 MPa, leading to the results in Fig. 3.9c.

Salmanpour [133] also provided a standard deviation of 13.2 % for the flexural strength. This value
was used to define lower and upper bound values for the strength parameters similar to the fired clay
blocks (see Table 3.4) considering a normal distribution.
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Pressure perpendicular
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Displacement-controlled
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Hinged along 𝑦-direction
over entire width.

Lower steel plate

Upper steel plate

Fired clay
blocks

(a)

𝑧 𝑥
(b)

modeled region

0 0.2 0.4 0.6 0.8 1 1.200.2
0.40.6
0.81

compression 𝑝 (MPa)sh
ea

r
st

re
ng

th
𝜏(MPa)

Exp. [11, 133]
Simulations

(c)

Fig. 3.9: The strength parameters for the mortar joints were derived by simulating shear tests on 

masonry triplets [11, 133]. (a) Finite element model, (b) experimental setup (from [11, 133]),
and (c) comparison of numerically and experimentally obtained results.
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3.3.2.4 Computational aspects

For overcoming numerical problems related to the initiation of contact between two surfaces, an
additional step was introduced at the beginning of the calculation. In this step, the displacements of each 

primary node were set to zero. Due to the chosen pressure-overclosure formulation with an insignificant
compressive contact stress at zero distance between the surfaces, contact could be ensured in each
relevant point, before the displacement-controlled loading was applied in the following step.

The simulations were performed on a high-performance computing cluster with 168 CPUs in total.
Using eight CPU cores in parallel, one simulation took approximately 700 minutes on average to finish.
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3.4 Results and Discussion

Using the presented numerical approach we were able to identify not only the peak stresses but also the 

relations between the loading direction and occurring stresses, as well as three key mechanisms leading 

to failure (see Figs. 3.10 to 3.12 and Table 3.5). We begin by describing these results and comparing them
to the experimental observations from Bitterli and Salmanpour [11, 133].

A vertical compressive load leads to vertical compressive stresses in the longitudinal webs, compressive
stresses perpendicular to the bed joint, and tensile horizontal stresses in the transversal webs. The
reason for these horizontal stresses, which are critical for failure, lies in the structural composition of
the blocks and was described in [142]: Due to the offset of the blocks, some of the transversal webs are
positioned not directly on top of each other. Therefore, the vertical compressive stresses are redistributed
to the longitudinal webs, leading to tensile stresses in the transversal webs. Thus, under mainly vertical
compressive loading (S00, S15, and S30), tensile cracks in the transversal webs led to failure (mechanism
I, see Fig. 3.10a). Failure in the corresponding experiments (E00, E15, and E30) was governed by vertical
cracks beginning in the head joints and spalling of the outermost longitudinal webs (see Fig. 3.10b). The
observed spalling can be traced back to the tensile cracks mentioned above, as Kiefer et al. [76] stated.

𝑦 2 𝑧 𝑥13𝛼 = 15◦
(a) Simulation S15

𝑧
𝑥13

𝛼 = 15◦
(b) Experiment E15 [11, 133]

Tensile cracks in
transversal webs lead to
spalling of the outermost

longitudinal web.

Fig. 3.10: Failure mechanism I – Failure under vertical compressive loading was governed by tensile
cracks in the transversal webs and subsequent spalling of the outermost longitudinal webs.

Shear loads lead to shear stresses in the joints as well as the longitudinal webs. Due to the inho-
mogeneous nature of a masonry wall, shear loads additionally lead to a rotation of the blocks within
the wall, introducing bending moments in the joints [101]. These bending moments induce stresses 

perpendicular to the joints, i. e., tension on one side of the block and compression on the other side,
leading again to horizontal stresses in the transversal webs, as described above. In combination with
large vertical compressive loads, the stresses perpendicular to the bed joint are entirely compressive.
In contrast, for smaller vertical compressive loads tensile stresses perpendicular to the bed joints may
be crucial for joint failure. Additionally, the shear strength of the mortar increases with compressive
stresses perpendicular to the joint. Hence, for shear loads, the failure mechanism strongly depends on
the load magnitude in the local 𝑧-direction.

With increasing shear and decreasing vertical compressive stresses (S30, S45, S60, and S75), shear
failure of the bed joints was the governing failure mechanism, manifesting in a sliding deformation along
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the bed joint (mechanism II, see Fig. 3.11a). The same mechanism could be observed in the corresponding
experiments (see Fig. 3.11b). S75 showed a slightly different mechanism from the other simulations: 

Due to the small amount of vertical compressive stresses, tensile stresses introduced damage to the 

mortar joints. This damage led to a reduced contact area between the blocks, which again triggered
shear failure of the joints. Hence, with larger vertical compressive forces, pure shear failure occurred,
while with lower vertical compressive forces a combination of tensile and shear failure was relevant.

y 2

z
x1

3
α = 60◦

(a) Simulation S60

z

x

1

3

α = 60◦

(b) Experiment E60 [11, 133]

Shear failure
of the bed joints.

Fig. 3.11: Failure mechanism II – Failure under shear loads was governed by shear failure of the mortar
joints. The dashed red lines in (b) mark the regions, where shear failure occurred in the
experiments.

Horizontal compressive loads are mostly transferred via horizontal compressive stresses in the
longitudinal webs and horizontal compressive stresses in the head joints. These compressive stresses
lead to deformations in the mortar head joint in local 𝑥-direction, which are larger at the outermost 

longitudinal webs. This deformation difference between the outermost longitudinal webs and their
direct neighbors introduces bending moments in the connecting transversal webs, leading to critical
tensile stresses in the connection between transversal and longitudinal webs. Thus, under horizontal
compressive loading (S90) tensile cracks in the connection between transversal and longitudinal webs
led to failure (mechanism III, see Fig. 3.12a). Again, in the corresponding Experiment (E90) spalling of
the outermost longitudinal web was observed in some areas, indicating detachment of these webs. On
the left and right sides of the specimen, cracks could be found in similar locations as the simulation
predicted (see Fig. 3.12b).

Next, we are going to compare the numerically obtained peak stresses with the experimental results.
Therefore, we rotated the evaluated peak stress state �̄�f,𝛼

local from the local scope back to the global
scope with Eq. (3.12) and the negative value of bed joint incline 𝛼. While, theoretically, only the stress
component �̄�f,𝛼33 should be non-zero after rotation, the non-linearities in the calculations led to other
components also being non-zero. Nevertheless, these components were significantly smaller than the
desired macroscopic global stress in the 3-direction. Hence, for each simulation the component �̄�f,𝛼33 is
compared to the corresponding experimentally obtained peak stress (𝑓m𝛼 in Fig. 3.6) in Fig. 3.13 and
Table 3.5.

While each green circle in Fig. 3.13 denotes the peak stress of one experiment, the grey area represents
the range between the upper and lower boundary of the numerically obtained results. Hence, four out
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Fig. 3.12: Failure mechanism III – Failure under horizontal compressive loads was governed by tensile
cracks in the connection between transversal and longitudinal webs. The image in (b) shows
the side view of the specimen. The red lines mark where cracks occurred.
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Fig. 3.13: Comparison of numerically and experimentally obtained peak stresses. We obtained the lower 

and upper bounds of the simulations by using the minimum and maximum material properties
defined in Sections 3.2.2.1 and 3.3.2.3

of seven experimentally obtained peak stresses (E00, E15, E45, and E60) are within the upper and lower
bounds of the simulation results. E30 delivers a peak stress 13 % below S30-min, which is still acceptably
close to the simulation results.

The simulations exhibit the most significant deviations from the experimental results at S75 and S90, 

with discrepancies of 57 % and 38 %. One possible explanation for this variation is the drying stage that
freshly extruded blocks undergo before firing. During this drying process, the intersections between the
webs require more time to dry due to the reduced ratio of surface area to clay mass. Consequently, the
difference in material shrinkage increases the likelihood of microstructural defects in these intersections
[5], which we did not account for in our analysis.
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Tab. 3.5: Comparison of numerically and experimentally obtained global macroscopic peak stresses �̄�f,𝛼33
and observed failure mechanisms.

Simulations Experiments [11, 133]

peak stress (MPa) failure peak stress failure 

min max mechanism (MPa) mechanism

S00 4.35 5.46 I E00 5.35 I 

S15 3.90 4.90 I E15 4.13 I 

S30 2.53 3.03 I, II E30 2.19 I, II 

S45 1.22 1.54 II E45 1.35 II 

S60 1.16 1.45 II E60 1.22 II 

S75 1.87 2.54 II E75 1.19 II 

S90 2.81 3.61 III E90 2.03 III

I . . . Tensile cracks in the transversal webs leading to spalling of outermost longitudinal webs (Fig. 3.10).
II . . . Shear failure of the bed joints (Fig. 3.11). 

III . . . Tensile cracks in the transversal webs due to bending of these webs (Fig. 3.12).

However, this deviation leads to a less distinct material anisotropy in the simulations compared to the
experimentally obtained peak stresses. This anisotropy can be captured by the ratio of the horizontal
compressive masonry strength to the vertical counterpart, 𝑓m,𝑥/𝑓m,𝑧, which is 0.661 in the simulations and0.379 in the experiments. For different types of vertically perforated block masonry, this value ranges
approximately from 0.25 up to 0.63, depending on the amount and position of cavities in the block 

design [86]. Thus, the model underestimates the material anisotropy for this case and would benefit
from implementing the discussed strength reduction due to the drying process.

Overall, the numerically obtained peak stresses follow a similar trend as the experimental results. 

Notably, the lowest peak stress for shear failure occurs at around 𝛼 = 60◦, although the largest shear 

stress component occurs at 𝛼 = 45◦ (see also Table 3.2). The reason for that is the dependency of the
shear strength on the compressive stresses perpendicular to the bed joints: While the amount of shear
loads is decreasing from S45 to S60, the vertical compressive stresses are also decreasing, leading to a
smaller shear strength.

Last but not least, we compare the numerically obtained stress-strain relations (�̄�33–𝜀33) with the
experimental results (see Fig. 3.14). Thereby, we focus on the results of the three simulations S15, S60,
and S90, each representative of one failure mechanism.

Simulation S15 behaved linearly until the peak stress was reached, followed by an abrupt drop 

in stresses. The corresponding experiment E15 showed a lower stiffness than the simulation in the
beginning, with a gradually increasing gradient afterward. After the gradient increased to a constant
value, the experimentally obtained curve is almost parallel to the numerically obtained curve. Hence,
the effective vertical stiffness of the unit cell is comparable to the real stiffness properties.

Simulation S60 behaved nearly linear until the peak stress, showing a minor decrease of the gradient
starting at 60 % of the peak stress. The stress decrease after the peak stress was reached is less abrupt than
at S15. After a 13.5 % decrease the stress increased again linearly, because of the frictional properties of
the interface and the still increasing stress perpendicular to the bed joint. Compared to the corresponding
experiment E60, the simulation behaved slightly softer before the peak stress was reached and less
ductile afterward.
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Fig. 3.14: Numerically obtained stress-strain relations (solid lines) compared to the experimental results
(dashed lines) for 𝛼 ∈ [15◦, 60◦, 90◦]. The upper bound of the simulation results was used
(max).

Simulation S90 behaved linearly until the peak stress was reached, followed by an abrupt drop in
stresses, similar to simulation S15. The corresponding experiment E90 showed an approximately 23 %
lower stiffness than the simulation and significantly more ductile post-peak behavior.

Notably, our simulations showed markedly fewer pre-peak nonlinearities compared to the experi-
mental results. The root of this discrepancy lies in the inherent nature of the unit cell approach. In an
experimental setting, if damage occurs at one point, the load can be redistributed to the intact portions
of the specimen. However, due to the periodic boundary conditions of the unit cell approach, any
failure-inducing mechanism is subsequently repeated, which contrasts with the resilience observed in
real-world experiments.

Motivated by the good agreement of the failure mechanisms and the peak stresses with the exper-
imental  results,  we  simulated  additional  loading  combinations  to  obtain  enough  results  for  fitting  a
Rankine-Hill surface. Lourenço [86] proposed seven loading combinations for easily defining the failure
surface. Two of these loading combinations, horizontal and vertical uniaxial compression (S90 and 

S00, respectively), are already included in the simulations presented above. Applying the remaining 

five loading combinations on the numerical model and evaluating the peak stresses with the same
failure criterion as above, led to the parameters for the Rankine-Hill surface displayed in Fig. 3.15 (see
also Appendix B). The coefficient of determination of the surface compared to the simulations is 0.76.
Comparing the peak stresses obtained from simulations S00–S90 to the corresponding load combinations
on the Rankine-Hill surface, a good agreement can also be seen (Fig. 3.16a, green circles). Notably, the
first significant decrease of the peak stress occurs earlier and the plateau at a larger joint incline is also
reached earlier. Hence, the smallest peak stress occurs around 𝛼 = 50◦ instead of 𝛼 = 60◦.

While each simulation in the compression regime failed in one of the previously discussed failure 

mechanisms (i. e., I, II, and III), two simulations in the tensile regime showed another mechanism: 

tensile failure perpendicular to the joints. Since none of the experiments conducted by Bitterli and
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Fig. 3.15: Local macroscopic peak stress states for 34 simulations with different in-plane loading (circles
and squares ) compared to a Rankine-Hill surface gained from simulating seven load

combinations (squares ) proposed by Lourenço [86] (see Appendix B). The upper material
limits (max) were used. The stresses are given in local coordinates 𝑥-𝑦-𝑧.

Salmanpour [11, 133] showed a comparable loading or failure mechanism, we were not able to validate
these two results. However, these simulations only have a minor impact on the overall fit of the surface.

The Rankine-Hill surface is capable of qualitatively capturing the failure envelope of masonry in
general [86]. Therefore, the good agreement with the simulations underlines the validity of the obtained
peak stresses with different loading combinations.

In addition to the fitted Rankine-Hill surface, Fig. 3.16 contains further failure surfaces (Fig. 3.16a)
and experiments (Fig. 3.16b) from literature, compared to the simulation results. Another failure surface
beside the Rankine-Hill surface, which is applicable for vertically perforated clay block masonry, is the
surface developed by Ganz [54]. He analytically defined each part of the failure envelope as a function
of geometry and material properties. Calibrated with the block geometry and simulation results (see
Appendix A), the failure surface according to Ganz [54] is also similar to the simulation results (Fig. 3.16a,
orange crosses). Additionally, we approximated the envelope for shear failure of the bed joint as a 

function of the incline angle 𝛼 and the results of the shear tests on masonry triplets (𝜏m,ini and 𝜇m).
Therefore, we calculated the macroscopic shear stress from the incline angle 𝛼 and compared it to the
shear strength, obtained from the shear test results using a Mohr-Coloumb criterion, leading to the
following relation for calculating the peak stress:�̄�f,𝛼33 = 

2 ⋅ 𝜏m,ini ⋅ sin (𝛼) ⋅ cos (𝛼)1 − sin4 (𝛼) + 2 ⋅ 𝜇m ⋅ cos3 (𝛼) ⋅ sin (𝛼) + cos4 (𝛼) . (3.16)

Notably, each of the curves in Fig. 3.16a has the same overall shape, where the first part before the
sudden drop is governed by block failure, the second part from the drop to reaching the plateau is
governed by shear failure, and the third part is again governed by block failure.

The simulation results are compared with three sets of experimental data in Fig. 3.16b. To facilitate a
better comparison, the values of each series were normalized by their global peak stress at 𝛼 = 0◦. Dialer
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Fig. 3.16: Comparison of the numerically obtained peak stresses with other findings: (a) failure surfaces
for the upper bound of material properties, (b) normalized experimental data [11, 26, 34, 118,
133].

[34] and Page [118] performed uniaxial and biaxial tests on solid clay block masonry with different
angles of bed joint incline. Additionally, we found a similar relation for experiments on layered rock
[26]. Although the curves are quite different, they all share the same overall trend: a decreasing peak
stress with increasing bed joint incline, with a minimum between 45◦ and 75◦, followed by an increasing
peak stress.
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3.5 Conclusion and Outlook

This work describes the development of a numerical model for computing the peak stress of vertically
perforated clay block masonry under arbitrary in-plane loads. The previously published model [76, 142]
was extended by introducing a realistic material model for the mortar joints. These modeling strategies
were combined to simulate a series of experiments with different combinations of biaxial compressive
loading and shear loading [133]. The obtained peak stresses were mostly in good agreement with the
experimental results. Solely under horizontal compression, the model yielded larger peak stresses,
resulting in a less distinct anisotropy, compared to the experiments. Additionally, the three main failure
mechanisms observed in the experiments could be realistically replicated with the numerical model. 

While the failure mechanisms under vertical compression and shear were already published in the
literature (e. g. [76, 118, 142, 145]), for the first time the failure under horizontal compressive loading
could be linked to deformation differences in the head joint.

After the validation, a Rankine-Hill surface for the given clay block masonry could be fitted by 

simulating the seven load combinations proposed by Lourenço [86]. This surface nicely matched 

the numerically obtained peak stresses with the loading combinations investigated by Bitterli and 

Salmanpour [11, 133]. Additionally, the failure surface proposed by Ganz [54], a criterion for shear
failure derived from the mortar parameters, and various experimental series showed qualitatively similar
behavior to the numerical results, showcasing their validity.

Thus, the model can be used to generate failure surfaces for different masonry products to be used as
a macroscopic failure criterion within FE software. Another application is a parameter study on different
geometrical features or material properties, to find the most significant parameters for increasing the
macroscopic strength under given boundary conditions. This helps to gain a deeper understanding of
the behavior of clay block masonry under in-plane loading.

Although the presented FE model provided valuable insights, the model would benefit from further
improvements to better capture the anisotropic behavior. One potential enhancement lies in incorporat-
ing reduced strengths in the connection between longitudinal and transversal webs. This adjustment is
particularly relevant as mechanical defects are prone to occur in these regions during the drying process.
Future research should focus on refining the FE model to effectively account for these localized effects
and improve the overall predictive capabilities in this context.

For future studies, another interesting modification of the model would be the adoption of the phase
field method (refer e. g. to Miehe et al. [97]) as an alternative to XFEM. In contrast to XFEM, the phase field 

method offers notable advantages by utilizing a diffusive representation of cracks instead of introducing
sharp discontinuities. This approach is known to be very stable, even for complex crack topologies, as 

e. g. Pech et al. showed for complex wood structures with anisotropic material behavior [120, 121].
Overall, the presented model exhibits great potential for optimizing existing products or developing

new block designs, making it a valuable tool for enhancing structural performance in the field of clay
block masonry.
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3.6 Appendix A: Calibration of the Failure Surface according to Ganz

Ganz [54] proposed a failure surface for masonry with tensile strength, consisting of the following 12
failure criteria: Φ1a = �̄�2𝑥 𝑧 − (𝜔m ⋅ 𝑓m,𝑥 − �̄�𝑥 𝑥) (2𝜔m ⋅ 𝑓m,𝑧 − �̄�𝑧 𝑧) ≤ 0. (3.17)Φ1b = (1 + 𝜔m)2 ⋅ �̄�2𝑥 𝑧 + [𝜔m ⋅ (�̄�𝑧 𝑧 + 𝑓m,𝑧) − �̄�𝑥 𝑥] [�̄�𝑧 𝑧 + 𝑓m,𝑧 − 𝑓m,𝑥 − 𝜔m ⋅ (�̄�𝑥 𝑥 + 𝑓m,𝑥)] ≤ 0. (3.18)Φ1c = (1 + 𝜔m)2 ⋅ �̄�2𝑥 𝑧+ [𝜔m ⋅ (�̄�𝑧 𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 + 𝑓m,𝑥 ⋅ (1 + 𝜔m)) − �̄�𝑥 𝑥] ⋅ ⋅ [�̄�𝑧 𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 − 𝜔m ⋅ 𝑓m,𝑥] ≤ 0. (3.19)Φ2 = �̄�2𝑥 𝑧 − (�̄�𝑥 𝑥 + 𝑓m,𝑥) ⋅ (�̄�𝑧 𝑧 + 𝑓m,𝑧) ≤ 0. (3.20)Φ3ab = �̄�2𝑥 𝑧 + �̄�𝑥 𝑥 ⋅ (�̄�𝑥 𝑥 + 𝑓m,𝑥) ≤ 0. (3.21)Φ3c = �̄�2𝑥 𝑧 + �̄�𝑥 𝑥 ⋅ (�̄�𝑥 𝑥 − 𝜔m ⋅ 𝑓m,𝑥) ≤ 0. (3.22)Φ3d = 4𝜔m ⋅ �̄�2𝑥 𝑧 − [𝜔m ⋅ 𝑓m,𝑥 − �̄�𝑥 𝑥 ⋅ (1 − 𝜔m)]2 ≤ 0. (3.23)Φ4a = �̄�2𝑥 𝑧 − (𝑐 − �̄�𝑧 𝑧 ⋅ tan (𝜑))2 ≤ 0. (3.24)Φ4b = �̄�2𝑥 𝑧 + (�̄�𝑧 𝑧 − 𝑓t,𝑧 + 𝑅b)2 − 𝑅2b ≤ 0. (3.25)Φ4c = �̄�2𝑥 𝑧 + [�̄�𝑧 𝑧 − 𝑓 ′t,𝑧 ⋅ ( �̄�𝑥 𝑥𝜇 ⋅ 𝑓m,𝑥 + 1) + 𝑅c]2 − 𝑅2c ≤ 0. (3.26)

Φ4d = �̄�2𝑥 𝑧 ⋅ (1 + 

2 ⋅ 𝑎L𝑎S ⋅ tan (𝜑))2 −(�̄�𝑧 𝑧 ⋅ tan (𝜑) 

+ �̄�𝑥 𝑥 ⋅ 2 ⋅ 𝑎L𝑎s − 𝑐)2 ≤ 0. (3.27)

Φ4e = (|�̄�𝑥 𝑧 | + 

2𝑎L𝑎S ⋅ �̄�𝑥 𝑥)2 +(�̄�𝑧 𝑧 + |�̄�𝑥 𝑧 | ⋅ 2𝑎L𝑎S − 𝑓t,𝑧 + 𝑅b)2 − 𝑅2b ≤ 0. (3.28)𝑅b = 𝑐 ⋅ tan(𝜋4 

+ 𝜑2) − 𝑓t,𝑧 ⋅ sin (𝜑)1 − sin (𝜑) (3.29)𝑅c = 𝑐 ⋅ tan(𝜋4 

+ 𝜑2) − 𝑓 ′t,𝑧 ⋅ ( �̄�𝑥 𝑥𝜇 ⋅ 𝑓m,𝑥 + 1) ⋅ sin (𝜑)1 − sin (𝜑) (3.30)

Thereby, �̄�𝑥 𝑥 , �̄�𝑧 𝑧 , and �̄�𝑥 𝑧 are the in-plane components of the local macroscopic stress tensor. Note,
that the indices are different than in the original publication. While Ganz [54] refers to the vertical
direction with 𝑥 and the horizontal direction with 𝑦, we use 𝑥 for the horizontal direction and 𝑧 for the
vertical direction, which is consistent with the local coordinate system used within this work.

For calibration of the surface, 10 parameters are needed, i. e. the uniaxial compressive masonry 

strengths, 𝑓m,𝑥 and 𝑓m,𝑧 , the ratio of the tensile strengths to their compressive counterparts, 𝜔m, the
vertical uniaxial tensile masonry strength 𝑓t,𝑧 , the distance of the bed joints, 𝑎L, the distance of the head
joints, 𝑎S, the cohesion shear stress and the frictional angle of the joints, 𝑐 and 𝜑, the tensile strength of
the joints, 𝑓 ′t,𝑥 , and an additional parameter 𝜇. For a detailed description of these properties, we refer 

to the original publication [54]. We derived the strength parameters from the simulation results as𝑓m,𝑥 = 3.61 MPa, 𝑓m,𝑧 = 5.54 MPa, 𝑓t,𝑧 = 0.12 MPa, 𝑓 ′t,𝑧 = 0.12 MPa, and 𝜔m = 0.94. Furthermore, we 

gained 𝑎L = 200 mm and 𝑎S = 300 mm from the block geometry, 𝑐 = 0.26 MPa and 𝜑 = 0.48 from the
simulation of the shear tests, and set the additional parameter to 𝜇 = 1.
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3.7 Appendix B: Calibration of the Rankine-Hill Surface

The Rankine-Hill surface consists of two failure criteria: a Rankine-type criterion and a Hill-type
criterion. The Rankine-type surface is defined in the following manner:

𝑓1 = 

(�̄�𝑥 𝑥 − 𝑓t,𝑥) + (�̄�𝑧 𝑧 − 𝑓t,𝑧)2 

+√( (�̄�𝑥 𝑥 − 𝑓t,𝑥) − (�̄�𝑧 𝑧 − 𝑓t,𝑧)2 )2 + 𝛼 �̄�2𝑥 𝑧 = 0, (3.31)

with the parameter 𝛼, which defines the size of the attainable shear strength for the Rankine-type
surface, the uniaxial tensile strengths 𝑓t,𝑥 and 𝑓t,𝑧 , and the in-plane components of the local macroscopic
stress tensor, �̄�𝑥 𝑥 , �̄�𝑧 𝑧 , and �̄�𝑥 𝑧 . 

The Hill-type surface forms a rotated centered ellipsoid, which reads as𝑓2 = 𝐴 ⋅ �̄�2𝑥 𝑥 + 𝐵 ⋅ �̄�𝑥 𝑥 ⋅ �̄�𝑧 𝑧 + 𝐶 ⋅ �̄�2𝑧 𝑧 + 𝐷 ⋅ �̄�2𝑥 𝑧 − 1 = 0. (3.32)

The four parameters 𝐴, 𝐵, 𝐶, and 𝐷 can be derived from the material’s tensile strengths, 𝑓t,𝑥 and 𝑓t,𝑧 , and
compressive strengths, 𝑓m,𝑥 and 𝑓m,𝑧 , in the following way:𝐴 = 

1(𝑓m,𝑥)2 , 𝐵 = 𝛽𝑓m,𝑥 ⋅ 𝑓m,𝑧 , 𝐶 = 

1(𝑓m,𝑧)2 , and 𝐷 = 𝛾𝑓m,𝑥 ⋅ 𝑓m,𝑧 , (3.33)

with the parameter 𝛽, which defines the interaction of axial stresses �̄�𝑥 𝑥 and �̄�𝑧 𝑧 in the compressive 

regime, and the parameter 𝛾 , which defines the size of the attainable shear strength for the Hill-type
surface.

Thus, seven parameters are needed to fully calibrate the Rankine-Hill surface, i. e. the uniaxial
strengths 𝑓t,𝑥 , 𝑓t,𝑧 , 𝑓m,𝑥 , and 𝑓m,𝑧 , as well as the parameters 𝛼, 𝛽, and 𝛾 . While we obtained the uniaxial
strengths from applying the corresponding uniaxial loading to the FE model, we derived the remaining
parameters from simulating three additional loading combinations proposed by Lourenço [86] (see
Fig. 3.17) using the following equations:𝛼 = 

19 ⋅ (1 + 4𝑓t,𝑥𝑓𝛼 ) ⋅ (1 + 4𝑓t,𝑧𝑓𝛼 ) , (3.34)

𝛽 = [ 1𝑓 2𝛽 − 

1𝑓 2m,𝑥 − 

1𝑓 2m,𝑧 ] ⋅ 𝑓m,𝑥𝑓m,𝑧 , and (3.35)

𝛾 = [16𝑓𝛾 − 9 ⋅ ( 1𝑓 2m,𝑥 + 𝛽𝑓m,𝑥 ⋅ 𝑓m,𝑧 + 

1𝑓 2m,𝑧 )] . (3.36)

Hence, we obtained the following parameters for the Rankine-Hill surface: 𝑓t,𝑥 = 0.34 MPa, 𝑓t,𝑧 = 0.12 MPa, 𝑓m,𝑥 = 3.61 MPa, 𝑓m,𝑧 = 5.46 MPa, 𝛼 = 1.591, 𝛽 = −0.764, and 𝛾 = 6.219.
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Fig. 3.17: Additional loading combinations proposed by Lourenço [86]. The dashed line marks the
boundaries of the repeating unit cell, which was used for defining the FE model in Fig. 3.7.
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3.8 Appendix C: Orthotropic Hoffman criterion

The Hoffman criterion uses all six independent components of the stress tensor and is defined as follows:𝑓 (𝝈) = 𝐶1 ⋅ (𝜎TT − 𝜎ZZ)2 + 𝐶2 ⋅ (𝜎ZZ − 𝜎LL)2 + 𝐶3 ⋅ (𝜎LL − 𝜎TT)2+ 𝐶4 ⋅ 𝜎LL + 𝐶5 ⋅ 𝜎TT + 𝐶6 ⋅ 𝜎ZZ+ 𝐶7 ⋅ (𝜎LT)2 + 𝐶8 ⋅ (𝜎TZ)2 + 𝐶9 ⋅ (𝜎LZ)2, (3.37)

Hereby, 𝜎𝑖𝑗 are the components of the stress tensor given in the material orientation L-T-Z (shown in
Fig. 3.1), and 𝐶1 to 𝐶9 are constants, which are derived from the material’s tensile, compressive, and
shear strengths, 𝜎t,𝑖, 𝜎c,𝑖, and 𝜎s,𝑖𝑗 , respectively:𝐶1 = 

12 [(𝜎t,T ⋅ 𝜎c,T)−1 + (𝜎t,Z ⋅ 𝜎c,Z)−1 − (𝜎t,L ⋅ 𝜎c,L)−1] , (3.38)𝐶2 and 𝐶3 by permutation of indices L, T, Z, 𝐶4 = (𝜎t,L)−1 − (𝜎c,L)−1 , (3.39)𝐶5 and 𝐶6 by permutation of indices L, T, Z, 𝐶7 = (𝜎s,TZ)−2 , (3.40)𝐶8 and 𝐶9 by permutation of indices L, T, Z..
The Hoffman criterion was implemented using a user subroutine, which can be found in the supple-

mentary material1.

1The supplementary material can be found in the online version of the published article, which is available under https: 

//doi.org/10.1016/j.engstruct.2023.116557.

https://doi.org/10.1016/j.engstruct.2023.116557
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Abstract
Finite element software is nowadays an essential part of a structural engineer’s modeling process. The
simulations range from trivial linear elastic models to highly non-linear ones, accounting for contact,
plasticity, viscoelasticity, or fracture. Though fired clay blocks are an excellent and widely used building
material, little effort has been made to extend available failure surfaces simulating vertically perforated
clay block masonry in modern FE Software. Therefore, developing reliable and efficient ways to predict
the effective strength of vertically perforated clay block masonry subjected to different loading states
is critical. In this study, we propose a numerical concept for developing failure surfaces for vertically
perforated clay block masonry under in-plane loading. Using a previously validated unit cell FE model,
we derived the peak stresses from 471 simulations. Subsequently, we compared these results with two
failure surfaces from the literature and identified qualitative differences. Taking these differences into
account, we propose a concept for numerically calibrating the parameters of the Rankine–Hill failure
surface proposed by Lourenço (1996).
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4.1 Introduction

Clay block masonry is one of the oldest building materials in human history and has been used for
many centuries. Especially in Central Europe, it is still a popular building material for its low thermal
conductivity, durability, fire resistance, and ease of construction. Additionally, mainly abundant natural
materials are used for the production of clay blocks, which makes them a sustainable building material
[123]. Today, mostly vertically perforated clay blocks are used for structural clay block masonry. A
typical vertically perforated clay block design consists of a network of slender, plate-like webs, which
are mostly oriented orthogonal to each other (see Fig. 4.1). These webs can be categorized by their
orientation: longitudinal webs are oriented parallel to the wall surface and transversal webs are oriented
perpendicular to the wall surface.

𝑧 𝑦
𝑥

Z
T

L

Z
T L

vertical cavity

longitudinal web

transversal web

wall surface

Fig. 4.1: Parts of a vertically perforated clay block and material orientation represented by the L-T-Z
coordinate system (from [127]).

In the last decades, masonry has fallen behind other building materials like concrete or steel. This has
several reasons: (i) Fired clay fails very brittle and the material properties show large fluctuations since
the raw material is a natural product and the production process is not fully controllable. Additionally,
the combination of clay blocks and mortar results in a heterogeneous material system, which requires
sophisticated homogenization strategies for macroscale simulations. (ii) Block designs, joint types, and
bond types are extremely diverse, which makes it difficult to find a general approach for the calculation
of clay block masonry. (iii) The maximum strength properties of vertically perforated clay block masonry
are typically smaller than those of concrete and steel. Hence, the use of vertically perforated clay block
masonry is out of question for high-rise buildings. (iv) The structural system of clay block masonry 

is very different from the structural systems of other building materials. While steel and concrete
structures, can be deconstructed into beams, pillars, and trusses, clay block masonry structures typically
consist of plates. A structure’s behavior consisting of many plates is harder to grasp than the behavior
of beam-and-pillar structures. Thus, although used for so long, masonry has nowadays a subordinate
role when thinking of larger buildings.

Modern FE software is massively simplifying the calculation of complex buildings and a rapidly
growing number of structural engineers rely on numerical simulations in the design process. In these
numerical simulations, the structural components are considered homogeneous continua with effective
material properties. Therefore, reliable macroscopic failure surfaces are necessary for assessing the
load-bearing capacity of a structure. While failure criteria for concrete and steel are well established in
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FE software, this is not the case for masonry. Thus, the implementation of a reliable failure surface for
masonry is necessary to keep up with other building materials.

In the last five decades, many studies on different macroscopic material models for masonry were
published [2, 34, 50, 54, 62, 65, 66, 86, 89, 100, 118, 137, 139, 148, 149, 155]. Two of these models stand out
for their unique prediction qualities and their applicability for vertically perforated clay block masonry:
the multi-surface criterion developed by Ganz [54] and the Rankine–Hill surface proposed by Lourenço
[86]. Especially the Rankine–Hill surface is well suited for implementation in FE software and some
developers already implemented it into their software (e. g. [37]) Thus, the problem is not the lack of
failure surfaces, but the calibration of these surfaces for a specific masonry product.

Typically, three different experimental series are carried out for deriving the strength parameters of a 

masonry product: uniaxial vertical compression tests on single blocks [95], uniaxial vertical compression
tests on larger wall specimens [95], and shear tests on specimens consisting of two or three blocks
[44]. Since the failure mechanism of a single block under compression is very different from the failure
mechanism of a wall specimen under vertical compression [128, 142], the strength parameters from 

single block tests cannot be used for calibrating macroscopic material properties. Hence, only two
different experimental series are generally available for calibrating a macroscopic failure surface without
doing any additional tests, whereas Lourenço suggests at least seven experiments on wall specimens
(refer to Section 4.2.2). Additionally, uniaxial tensile tests on wall specimens are typically not carried out,
since these tests are difficult to perform (see e. g. Ganz and Thürlimann [55]) and the tensile strength
is very low compared to the compressive strength [119]. Therefore, the tensile strength of masonry is
often neglected, which is a very critical assumption, since it can be crucial under shear loading e. g. in
earthquake regions.

Using computational methods for predicting the behavior of masonry is getting more and more 

attention [16, 53, 84, 135, 136, 138, 142, 154]. Since the computational effort is much lower than for
experimental tests, numerical simulations are a good alternative for calibrating a macroscopic failure
surface. Thus, we developed and validated a numerical model for the simulation of vertically perforated
clay block masonry under arbitrary in-plane loading [128]. Using a unit cell model with periodic 

boundary conditions (PBC) in combination with the eXtended Finite Element Method (XFEM) [7]
and the orthotropic Hoffman criterion [67] we were able to replicate the failure mechanisms of seven
experiments on vertically perforated clay block walls [11, 133].

The main aim of the present work is to qualitatively analyze the failure surface of vertically perforated
clay block masonry for a simplified block design, using the previously validated model. In doing so, we
compare the numerical results to existing failure surfaces to work out similarities, emphasize differences,
and provide a concept for using our numerical approach to generate a failure surface for any vertically
perforated clay block design.

First, we developed a simplified block design, which is still able to replicate the typical failure
mechanisms of vertically perforated clay block masonry. Then, we defined the interface parameters for
three typical head joint types: mortared joints, frictional contact, and no contact. Next, we randomly
generated 150 different loading combinations using Latin Hypercube Sampling (LHS) [91] and simulated
them for each head joint type, using the previously validated numerical model. From each of these
simulations, we obtained a peak stress state and a governing failure mechanism. Combining this data,
we were able to derive a failure surface for each head joint type and define regions with similar failure
mechanisms. Afterwards, we compared the results to the failure surfaces proposed by Ganz [54] and
Lourenço [86]. By doing so, we were able to pinpoint differences between the failure surfaces and
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the numerical results. For assessing these differences, we next applied the approach to two real block
designs. Finally, we gathered the obtained insights to provide a concept for generating a failure surface
for any vertically perforated clay block design using our numerical model.

In Section 4.2, we provide a brief summary of the two most common failure surfaces for fired clay
block masonry. Section 4.3 contains an overview of the applied modeling strategies and the numerical
model. Afterward, we explain and discuss the results in Section 4.4, followed by our conclusions in
Section 4.5.
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4.2 Failure Surfaces for Vertically Perforated Clay Block Masonry

As stated in the introduction, for the simulation of entire masonry buildings in FE software we need 

the homogenized elastic properties of masonry and a homogenized failure surface. We refer to the
homogenized properties of the wall as macroscopic properties. In this manner, we distinguish between
two scales of observation: the macroscale and the microscale. On the microscale both the clay blocks and
the mortar joints are considered separately, while on the macroscale, the masonry wall is considered
as a homogeneous continuum (see Fig. 4.2). Within this work we focus on the in-plane behavior of
masonry, assuming a plane stress state, and considering only axial and shear loading as a simplification.

Macroscopic in-plane failure surfaces describe failure under a given stress state �̄�𝑥 𝑥 , �̄�𝑧 𝑧 , and �̄�𝑥 𝑧 . We
define the 𝑥-axis as horizontal, the 𝑧-axis as vertical, and the 𝑦-axis as perpendicular to the wall surface
(see Fig. 4.1 and Fig. 4.2).

While the failure surface of Ganz [54] consists of twelve criteria (shown in Appendix A), derived
from different failure mechanisms observed in block masonry, the Rankine–Hill surface [86] has only
two criteria (shown in Appendix B), which do not depict any failure mechanisms, but they qualitatively
describe the overall shape of the in-plane failure envelope. To carve out similarities and differences
between these models, they are briefly summarized in the following sections.

4.2.1 Failure surface according to Ganz

Ganz [54] examined three different cases: masonry without tensile strength, reinforced masonry, and
masonry with tensile strength. For transferring shear loads under low vertical compression the tensile

FE model with homogenized walls
macroscale

𝑧 𝑥𝑦 detailed unit cell FE model
microscale

σ̄xx

σ̄zz

macroscopic failure surface,
derived from unit cell FE model

macroscopic stress state

failure

Fig. 4.2:Micro-to-macro homogenization
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strength of the mortar joints is crucial. Thus, to utilize the whole potential of the material and to compete
with modern building materials, we focused on masonry with tensile strength.

Based on mechanical considerations and typical failure mechanisms, Ganz [54] formulated a macro-
scopic failure surface from a combination of microscopic material parameters and geometric parameters
as well as macroscopic material strengths. Considering both block failure and joint failure, Ganz [54]
derived twelve failure criteria, resulting in a complex failure surface with many intersections (see 

Fig. 4.3a). The failure surface is uniquely capable of predicting the governing failure mechanism for
different in-plane stress states, however, the post-peak behavior is not accounted for.

For calibrating the failure surface, the following ten parameters are necessary: the horizontal compres- 

sive masonry strength 𝑓m,𝑥 , the vertical compressive masonry strength 𝑓m,𝑧 , the vertical tensile masonry
strength 𝑓t,𝑧 , the ratio of the fired clay’s tensile strength to its compressive strength 𝜔m, the tensile
mortar strength 𝑓 ′t,𝑧 , a parameter 𝜇 for defining the horizontal uniaxial compressive strength considering 

joint failure, the joint’s cohesion stress 𝑐, the joint’s angle of friction 𝜑, the head joint distance 𝑎S, and the
bed joint distance 𝑎L. For a detailed description of the parameters, we refer to the original publication
[54]. The definition of the failure surface can be found in Appendix A.
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Fig. 4.3:Most commonly used macroscopic in-plane failure surfaces for masonry: (a) Failure Surface
proposed by Ganz [54] and (b) Rankine–Hill surface proposed by Lourenço [86]. The numbers
in (a) refer to the failure criteria in Appendix A.

4.2.2 Rankine–Hill failure surface according to Lourenço

The anisotropic Rankine–Hill failure surface, proposed by Lourenço [86], consists of two different yield
surfaces: a Rankine-type yield surface for tensile failure and a Hill-type yield surface for compressive
failure (see Fig. 4.3b). Instead of deriving failure criteria from failure mechanisms as Ganz [54] did,
Lourenço [86] defined phenomenological surfaces for the in-plane failure envelope of masonry. Thus,
the model is not capable of distinguishing different failure mechanisms. However, it is much easier to
implement into FE software and can account for post-peak behavior. Thereby, an exponential softening
is used for the Rankine-type surface and a combination of a parabolic hardening with an exponential
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softening for the Hill-type surface, which was experimentally shown by Van der Pluijm [145] for tension
and, e. g., Jafari et al. [72] for compression.

In this work, we only focused on computing the peak stress. Thus, while Lourenço often refers to the
equivalent compressive yield stress �̄�c,𝑖 (𝜅c) and the equivalent tensile yield stresses �̄�t,𝑖 (𝜅t), depending
on the compressive and tensile softening parameters 𝜅c and 𝜅t, we substitute these terms with the 

corresponding material strengths 𝑓m,𝑖 and 𝑓t,𝑖, considering the softening parameters to be 𝜅c = 0 and𝜅t = 0. The definition of the Rankine–Hill surface can be found in Appendix B.
The Rankine–Hill surface is calibrated for a specific masonry by the following seven parameters: 

(i) the horizontal tensile masonry strength 𝑓t,𝑥 , (ii) the vertical tensile masonry strength 𝑓t,𝑧 , (iii) the 

horizontal compressive masonry strength 𝑓m,𝑥 , (iv) the vertical compressive masonry strength 𝑓m,𝑧 ,
(v) a parameter 𝛼 for defining the shear strength amount under small axial compressive stresses, (vi) a
parameter 𝛽 for defining the biaxial compressive strength, and (vii) a parameter 𝛾 for defining the
shear strength amount under large axial compressive stresses. Lourenço [86] suggests an ideal set of
seven different loading states (see Fig. 4.4) to obtain the parameter values by a least squares regression.
Additional loading states improve the quality of the fit, especially in regions of transitions between
failure mechanisms.
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Fig. 4.4: Loading states proposed by Lourenço [86]. The red dashed line represents the outline of the
chosen repeating unit cell described in Section 4.3.2.
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4.3 Numerical Model and Simulation Program

This study mainly focuses on an FE simulation-based characterization of a macroscopic in-plane failure
surface for clay block masonry, which also captures the occurring failure mechanisms. This process 

requires simulating a vast amount of different model configurations. Thus, we designed a simplified
but computationally efficient FE model, which can still realistically predict the failure mechanisms and
the ultimate strength of clay block masonry. We derived our numerical model from Kiefer et al. [76] 

and Suda et al. [142] and extended it to account for joint failure. We already used and validated the
model for different in-plane loading combinations in [128]. Using a unit cell approach with PBCs and a
simplified block geometry allowed us to use computationally demanding non-linear models like XFEM
for modeling cracks in the fired clay and a cohesive interface damage model for considering joint failure. 

In the following sections, these modeling strategies are explained in detail, beginning with the geometric
definition of the FE model, followed by a discussion of the chosen material behavior and simulation
techniques.

4.3.1 Simplified Geometry

Since detailed and sophisticated modeling techniques result in long simulation times (for real block
geometries approximately 24 hours per simulation with 8 CPUs), we developed a simplified geometry,
which is still able to reproduce the typical failure mechanisms of vertically perforated clay blocks. The
simplified block geometry consists of two longitudinal as well as two transversal webs (see Figure 4.5)
and has a void ratio of 35 %. Each block is 93 mm long, 75 mm wide, and 100 mm high. Using this design,
the simulation times could be reduced to approximately one-tenth of the larger simulations.

𝑥
𝑦

𝑧 93mm

12mm 69mm 12mm75mm

20mm
35mm

20mm

𝑧
𝑥 𝑦93mm75mm

100mm

(a) (b)

Fig. 4.5: Simplified geometry of a vertically perforated clay block.

4.3.2 Unit Cell Concept

The unit cell concept utilizes repeating patterns in structures, the so-called repeating unit cell. In masonry
with a regular running bond, the smallest possible repeating unit cell, without considering symmetric
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properties, is two blocks high and one block wide with two-dimensional periodicity in 𝑥- and 𝑧-direction
(see Fig. 4.6a). We refer to the surfaces of the repeating unit cell as 𝑁 𝑜 𝑟 𝑡 ℎ, 𝑆 𝑜 𝑢𝑡 ℎ, 𝐸 𝑎𝑠 𝑡, 𝑊 𝑒 𝑠 𝑡, 𝑇 𝑜 𝑝, and𝐵 𝑜 𝑡 𝑡 𝑜 𝑚, and to the eight vertices according to the surfaces intersecting in this corner (e. g., NWB or
SET).

In combination with PBCs, the repeating unit cell behaves as if it was part of an infinitely large wall.
Thus, the unit cell concept drastically reduces the numerical effort, compared to simulating a larger
structure. The PBCs are linear equations, which couple the displacements of each node on a periodic
surface to the displacements of a corresponding node on the opposing surface (i. e., surfaces 𝐸 𝑎𝑠 𝑡–𝑊 𝑒 𝑠 𝑡
and 𝑁 𝑜 𝑟 𝑡 ℎ–𝑆 𝑜 𝑢𝑡 ℎ), and to the displacements of the primary nodes located in the corners of the repeating
unit cell. These equations are shown in detail in [142].

Since each node pair is coupled to the deformation difference of the primary nodes, we can impose
different macroscopic strain states by simply imposing displacements on the primary nodes. We derived
these primary node displacements by superposition of the three load cases in Table 4.1.
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Fig. 4.6: Composition and geometry of the chosen repeating unit cell as part of the entire structure (a)
and the FE model (b). The naming convention in (a) is based on the suggestions from Böhm
[14].

4.3.3 FE Model and Mesh

Now that we have defined the geometric boundary conditions, we will move on to the modeling in
the FE program Abaqus. We used a simplified micro-modeling approach, meaning, that the blocks are
modeled in full detail, while the joints are reduced to an interface with no thickness [86]. Thus, the FE
model only consists of six fired clay parts, which are connected by interface couplings in the head joint
and the bed joint. We distributed the thickness of the mortar joints to the adjacent blocks to maintain
the overall dimensions of the repeating unit cell. The mesh consists of 23 978 nodes and 18 540 C3D8
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Tab. 4.1: Primary node displacements for imposing effective macroscopic strain states (from Reismüller
et al. [128]).

strain state primary node displacement

LC1 [ 𝜀𝑥 𝑥 0 0 0 ] Horizontal uniaxial strain𝑢SEB𝑥 = 𝜀𝑥 𝑥 ⋅ 𝑙𝑥 , 𝑢SET𝑥 = 𝜀𝑥 𝑥 ⋅ 𝑙𝑥
LC2 [ 0 0 0 𝜀𝑧 𝑧 ] Vertical uniaxial strain𝑢NWB𝑧 = 𝜀𝑧 𝑧 ⋅ 𝑙𝑧 , 𝑢NWT𝑧 = 𝜀𝑧 𝑧 ⋅ 𝑙𝑧
LC3 [ 0 𝜀𝑥 𝑧𝜀𝑥 𝑧 0 ] Pure shear strain𝑢SEB𝑧 = 𝜀𝑥 𝑧 ⋅ 𝑙𝑥 , 𝑢SET𝑧 = 𝜀𝑥 𝑧 ⋅ 𝑙𝑥𝑢NWB𝑥 = 𝜀𝑥 𝑧 ⋅𝑙𝑧 , 𝑢NWT𝑥 = 𝜀𝑥 𝑧 ⋅𝑙𝑧
The following primary node displacements were imposed
in each case: 𝑢SWB𝑥 = 𝑢SWB𝑦 = 𝑢SWB𝑧 = 0, 𝑢SWT𝑥 =𝑢SWT𝑧 = 0, 𝑢SEB𝑦 = 0, 𝑢NWB𝑦 = 0

elements and is shown in Fig. 4.6a. We derived the displacement boundary conditions for each loading
combination from the equations in Table 4.1.

4.3.4 Material Properties

We next discuss the material models used for the fired clay and mortar joints, based on the two governing
failure mechanisms in masonry: block failure and joint failure.

Block failure is typically governed by tensile cracks. We discretely modeled these cracks using XFEM,
with a linear elastic material behavior for the solid. The orthotropic material strength of extruded fired
clay was accounted for by using the orthotropic Hoffman criterion [67] for crack initiation. The onset of
a crack was controlled by the Virtual Crack Closure Technique (VCCT). Considering the findings of 

Bocca et al. [12], Eis and Vassilev [41], and Hannawald [63], we chose the mode-I fracture energy as𝐺max 

I,c = 0.025 J/mm2. Following Kiefer et al. [76], we defined the fracture energy for modes II and III as
20 times larger. In the framework of XFEM, cracks were allowed to form anywhere in the model, with 

one restriction: no crack was allowed to initiate within a radius of 20 mm from an existing crack tip.
We used both transversally isotropic stiffness behavior (see Table 4.2) and transversally isotropic

strengths (see Table 4.3), which is a good approximation of the orthotropic behavior of extruded fired
clay according to Buchner et al. [23]. We derived the stiffness parameters and the material strengths
from Kiefer et al. [76] and Suda et al. [142] considering this transversal isotropy. Thereby, the material
direction follows the locally varying 𝐿-𝑇 -𝑍 coordinate system shown in Fig. 4.1.

Joint failure manifests either in tensile or shear failure of the mortar, or tensile or shear failure of
the interface [145]. Since we reduced the mortar joints to an interface with no thickness, both failure
mechanisms were considered in one criterion. Thus, the weaker link (either the interface or the mortar

Tab. 4.2: Transversally isotropic stiffness parameters for fired clay.

Fired Clay𝐸LL = 𝐸ZZ 𝐸TT 𝜈TZ = 𝜈LZ = 𝜈LT 𝐺TZ = 𝐺LT 𝐺TZ13 500 MPa 8738 MPa 0.2 3500 MPa 5500 MPa
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Tab. 4.3: Transversally isotropic strength parameters for fired clay inMPa.
Tension Compression Shear𝜎t,L 𝜎t,T 𝜎t,Z 𝜎c,L 𝜎c,T 𝜎c,Z 𝜎s,TZ 𝜎s,LZ 𝜎s,LT7.009 4.834 7.009 24.17 18.61 24.17 8.308 9.547 8.308

itself) is relevant for failure. For modeling the interface behavior, we used cohesive behavior combined
with a quadratic stress interaction criterion for identifying failure

( 

⟨𝜎⟂⟩𝜎f,⟂ )2 +( 𝜏𝜏m,ini − 𝜇m ⋅ 𝜎⟂)2 = 1, (4.1)

with the stress component perpendicular to the joint 𝜎⟂, the shear stress 𝜏, the tensile strength perpen-
dicular to the joint 𝜎f,⟂, the initial value of the shear strength 𝜏m,ini, and the friction coefficient 𝜇m. Note,
that the stress component perpendicular to the joint is nested within Macauley brackets (i. e., ⟨⋅⟩); thus,
only tensile stresses are considered. Using cohesive behavior for interfaces in Abaqus results in a linear
traction-separation law in tension, but a hard contact in compression (see the Abaqus documentation
[29]). Since the mortar joints also show compressive deformations in reality, we used an additional
tabular pressure-overclosure definition from Reismüller et al. [128]. Using this definition, the coupled
interfaces can overlap, while linearly building up pressure, accounting for the stiffness of the mortar.
Additionally, we allowed for a small compressive stress at zero overclosure to overcome numerical
instabilities at the beginning of the simulations.

The softening behavior of the joint was modeled exponentially on a displacement basis with a 

maximum displacement 𝑢pl = 0.15 mm and an exponent 𝑎 = 5 (for the equations refer to the Abaqus
documentation [29]). We considered the mortar to be isotropic and used the material properties from a
previous study [128], where we derived the material properties by simulating shear tests on masonry
triplets (see Table 4.4).

While we considered one type of bed joint, i. e., a 1 mm thick mortar layer, we wanted to compare
three common types of head joints: a mortared head joint (HJM), frictional contact (HJC) in the head
joint, and no contact in the head joint (HJG). For considering these three types, we altered the interface
properties of the head joint. Table 4.5 shows the interface properties for each specific joint type.

Tab. 4.4: Stiffness and damage properties for the mortar interface.

Interface stiffness Damage properties𝐾𝑛𝑛 𝐾𝑠 𝑠 = 𝐾𝑡 𝑡 𝜎f,⟂ 𝜏m,ini 𝜇m5000 N/mm 2083 N/mm 0.3 MPa 1.4 MPa 0.3
4.3.5 Load Application and Sampling Procedure

As discussed in Section 4.3.2, we can simulate arbitrary macroscopic in-plane strain states via imposing
displacements at the primary nodes of the repeating unit cell. However, for deriving a failure surface,
we require macroscopic stress states. Thus, we used the unit cell concept to calculate the macroscopic
stiffness tensor of the repeating unit cell [3] and derived the macroscopic strains from the macroscopic
stresses via Hooke’s law.
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Tab. 4.5: Head joint interface properties used for each joint type.

HJM HJC HJG 

Mortar Contact Gap

Cohesive Behavior ✔ – – 

Friction ✔ ✔ – 

Interface Damage ✔ – – 

Pressure-Overclosure ✔ – –

For numerically deriving a failure surface, a representative set of loading states needs to be considered. 

This failure surface characterizes the material failure due to interacting axial stresses �̄�𝑥 𝑥 and �̄�𝑧 𝑧 and the
shear stress �̄�𝑥 𝑧 . Expressing this loading state in spherical coordinates, by two angles, �̄� and �̄�, and the
stress resultant �̄�𝑟 (see Figure 4.7a), the load level can be easily controlled for a fixed loading direction.
The stresses can be transformed into cartesian coordinates in the following way:�̄�𝑥 𝑥 = �̄�𝑟 ⋅ cos �̄� ⋅ cos �̄� , (4.2)�̄�𝑧 𝑧 = �̄�𝑟 ⋅ sin �̄� ⋅ cos �̄� and (4.3)�̄�𝑥 𝑧 = �̄�𝑟 ⋅ sin �̄� . (4.4)

The three variables �̄�, �̄�, and �̄�𝑟define the sampling domain for deriving the failure surface. By an 

adaptive load incrementation in the FE simulation, a given orientation (�̄�, �̄�) is assessed for material
failure for all stress resultants. Therefore, we considered only the two angles in the sampling procedure.

The next step was to define a sampling range. While reasonable values for �̄� reach from 0 to 2𝜋,�̄� was sampled from 0 to 𝜋/2, describing a hemisphere. To ensure an even distribution of the samples
over this domain, LHS [91] was used for choosing a reasonable set of loading paths. For 𝑛 samples, the
sample domain is evenly divided into 𝑛 columns and 𝑛 rows. The samples are randomly placed inside
this domain, such that there is exactly one sample in each column and row, leading to a set of samples,
which is evenly distributed over the given domain.
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Fig. 4.7: (a) Spherical coordinates for the stress components and the intersection of the load path with
the failure surface. (b) Example for loading combinations randomly sampled with LHS. The 

sample density in the darker area was chosen five times as large as in the lighter area. Red
capital letters denote the loading regime (C . . .Compression, T . . . Tension).
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Considering the failure surfaces found by Ganz [54] and Lourenço [86], the compressive strengths
are expected to be significantly larger than the tensile strengths. This implies that the failure surface is
further from the coordinate origin in the compressive loading regime. Since the LHS creates samples
evenly distributed over the given domain, the distance between the calculated points on the surface 

is larger in the compressive than in the tensile loading regime. Therefore, the sample density in 

the compressive loading regime was chosen five times as large as in the tensile loading regime (see
Figure 4.7b).

With a stress resultant of 𝑟 = 15 MPa (large enough to cause material failure for any combination of�̄� and �̄�), we randomly generated 150 samples for each head joint type, resulting in 450 simulations (see
also Fig. 4.8). Additionally, we added the seven loading states proposed by Lourenço [86], which are
marked by green triangles in Fig. 4.7b.

Unit cell FE model from
block design with PBC

serving as model template

150 loading states
randomly sampled using
Latin Hypercube Sampling

FE analysis
for each loading state using
Abaqus as solver and Julia
for load boundary condi-
tions and post processing

Peak stress state
for each loading state

Governing failure
mechanism for
each loading state

Numerically obtained
macroscopic failure surface

Load model template
from input file

Calculate primary node
displacements from load-
ing state and write them
to the model template

Solve FE problem using
Abaqus Standard Solver

Apply failure criterion to
obtain peak stress state

• first drop of stress component
• first crack

FE analysis for each loading state

Fig. 4.8: Overview of the simulation procedure.

4.3.6 Computational Aspects

The simulations were performed on a high-performance computing cluster with 168 CPUs in total.
Using eight CPU cores in parallel, one simulation took approximately 144 minutes on average to finish.
For overcoming numerical instabilities related to the initiation of contact between two surfaces, an
additional step was introduced at the beginning of the calculation. In this step, the displacements of each 

primary node were set to zero. Due to the chosen pressure-overclosure formulation with an insignificant
compressive contact stress at zero distance between the surfaces, contact could be ensured in each
relevant point, before the displacement-controlled loading was applied in the following step. To prevent



126 4 Developing failure surfaces using a validated numerical unit cell model

numerical instabilities when solving the interface damage conditions, damage stabilization was used for
the cohesive interfaces.

4.3.7 Postprocessing

After the simulations were completed, we extracted the results by using the postprocessing procedure
described in the following sections (see Fig. 4.8). Two different results were most interesting to us: the
effective stresses and strains on the macroscopic level, which are essential for defining a macroscopic
failure surface, and the failure mechanism on the microscale, which gives insights into the overall
behavior and helps define the exact point of failure.

At first, we derived the macroscopic stresses and strains by homogenizing the stresses and strains on
the microscale over the repeating unit cell. Afterward, we used the macroscopic stress-strain relation
and indicators on the microscale to specify a failure point. These procedures are discussed next.

4.3.7.1 Obtaining macroscopic stresses and strains

For homogenizing the behavior from the micro to the macroscale, we assume that the behavior of the
smallest possible repeating unit cell in the wall is representative for each point in the homogenized 

macroscopic wall. The unit cell concept is well suited for micro-to-macro homogenization since the
displacements and reaction forces of the total structure are concentrated in the primary nodes of the
unit cell. Thus, the stresses and strains can be easily calculated from the extracted reaction forces 𝑅 𝐹𝑖
and displacements 𝑢𝑖 by considering the dimensions 𝑙𝑖 of the repeating unit cell as follows:�̄�𝑥 𝑥 = 𝑅 𝐹𝑥 𝑥𝑙𝑦 ⋅ 𝑙𝑧 , �̄�𝑧 𝑧 = 𝑅 𝐹𝑧 𝑧𝑙𝑥 ⋅ 𝑙𝑦 , and �̄�𝑥 𝑧 = 

12 ⋅ (𝑅 𝐹𝑥 𝑧𝑙𝑦 ⋅ 𝑙𝑧 + 𝑅 𝐹𝑧 𝑥𝑙𝑦 ⋅ 𝑙𝑧 ) as well as (4.5)

𝜀𝑥 𝑥 = 𝑢𝑥 𝑥𝑙𝑥 , 𝜀𝑧 𝑧 = 𝑢𝑧 𝑧𝑙𝑧 , and 𝜀𝑥 𝑧 = 

12 ⋅ (𝑢𝑥 𝑧𝑙𝑥 + 𝑢𝑧 𝑥𝑙𝑧 ) . (4.6)

4.3.7.2 Detecting Failure

For defining the macroscopic failure stress state for each simulation we considered the same two-part
failure criterion as we used in [128]. At the macroscopic scale, the largest stress before the first significant
decrease of a stress component was considered the peak stress. This criterion was relevant, especially
for joint failure, which occurs much more ductile than block failure. Furthermore, a second criterion
considering the first crack within the blocks was defined to capture block failure. This was necessary,
since some of the simulations, where block failure was relevant, did not produce a significant drop in
stresses. Instead, these simulations aborted when the first crack opened. Considering the findings of
Kiefer  et  al.  [76]  and  Suda  et  al.  [142],  this  is  a  good  approximation,  since  there,  the  first  crack  also
occurred just before the peak stress was reached.
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4.4 Results and Discussion

In the following section, the simulation results are presented and discussed. First, failure mechanisms
are identified from the results of the simulations with the simplified geometry. Then, the Rankine–Hill
surface [86] and the failure surface of Ganz [54] are calibrated using the simulation results and compared
to the numerically obtained failure surface. Next, the developed procedure for defining a failure surface
is applied to two real block designs and the results are discussed. Finally, the obtained results are
gathered, to propose a concept for calibrating the Rankine–Hill surface, taking the differences between
the numerically-obtained failure surfaces and the Rankine–Hill surface into account. For the sake of
brevity, only the model with mortared head joints is discussed in detail, while the results for the other 

two models are presented in the supplementary material1.

4.4.1 Numerically obtained failure surface

Fig. 4.9 shows the numerically obtained failure surface for the model with mortared head joints. Each
circle in Fig. 4.9a represents the peak stress state of one simulation. The filled areas in the background
mark regions, where we observed similar failure mechanisms in the simulations. In the following, we
will discuss the peak stresses starting with the tensile regime and then moving clockwise around the
boundary of the failure surface.

In the tensile regime, the maximum vertical macroscopic peak stress was 1.303 MPa, while the
maximum horizontal macroscopic peak stress was 0.818 MPa. On the right side of the failure surface,
the horizontal macroscopic peak stress stayed constant with increasing vertical compression until 

the vertical stress reached −9.157 MPa, which was the maximum vertical compressive peak stress
observed in the simulations. On the bottom side, this maximum vertical compressive peak stress stayed
constant with increasing horizontal compression until the horizontal stress reached −9.023 MPa. On 

the left side, the failure surface showed a parabolic shape with a maximum horizontal compressive

1The supplementary material can be found in the online version of the published article.
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Fig. 4.9: Numerically obtained failure surface for the model with mortared head joints. Each point in (a)
represents the peak stress state of one simulation. The filled areas in (b) mark regions with
similar failure mechanisms.
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peak stress of −10.325 MPa. The top side of the failure surface showed a linear relationship between
the horizontal and the vertical macroscopic stress, with an increasing vertical macroscopic peak stress
for decreasing horizontal compression. The macroscopic peak shear stress was 3.928 MPa occurring at�̄�𝑥 𝑥 = −4.992 MPa and �̄�𝑧 𝑧 = −5.286 MPa.

Vertically perforated clay block masonry is known to show significant strength anisotropies. Typically,
the ratio of the macroscopic peak stress parallel to the bed joints to the macroscopic peak stress
perpendicular to the bed joints is between 0.25 and 0.63, depending on the block design [86]. However,
the maximum horizontal macroscopic peak stress in the simulations was similar to the maximum vertical
macroscopic peak stress, which most likely roots in the given block design. Comparable block designs,
such as typical hollow concrete block masonry, tend to show a less pronounced strength anisotropy
(see, e. g., Lourenço [86]). Nevertheless, the simulations did show a significant anisotropy considering
the failure mechanisms, which we will discuss in the following.

The observed failure mechanisms, labeled 1–7, are assigned to the filled areas in Fig. 4.9b. Note, that
the failure mechanisms are not necessarily unique to the corresponding area, but are the dominating
ones. While surfaces, where block failure was observed, are filled red (2, 3, and 4), surfaces, where joint
failure was observed, are filled blue (1, 5, 6, and 7).

Failure mechanism 1 was observed under governing vertical tensile stresses and is characterized by
tensile failure of the bed joints since the vertical tensile stresses introduce tensile stresses in the bed
joints. With increasing horizontal compression, shear stresses are additionally introduced in the bed
joints, which leads to a decreasing vertical tensile strength of the bed joints (see Eq. (4.1)).

Failure mechanism 2 was observed under governing horizontal compression and is characterized by
tensile cracks in the connection between transversal and longitudinal webs (see Fig. 4.10a). In a previous
numerical study [128], we traced back these cracks to bending moments, introduced to the transversal
webs by deformation differences in the mortar head joints.

Failure mechanism 3 was observed under governing vertical compression and is characterized by
tensile cracks in the transversal webs (see Fig. 4.10b) since large vertical compressive stresses lead to
tensile stresses in the transversal web (see Kiefer et al. [76], Suda et al. [142], and Reismüller et al. [128]). 

Failure mechanism 4 was observed under horizontal tension in combination with vertical compression
and is characterized by tensile cracks in the longitudinal webs (see Fig. 4.10c). With decreasing vertical
compression, the shear strength of the bed joints decreases (see Eq. (4.1)), which leads to a change to

(a)Mechanism 2 (b)Mechanism 3 (c)Mechanism 4

Fig. 4.10: Block failure mechanisms observed in the simulations.
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failure mechanism 7. When the shear strength of the bed joints falls below a certain value, joint failure
occurs before the failure of the longitudinal webs.

Failure mechanism 5 was observed under governing shear stresses in combination with low horizontal
compression and is characterized by a stepped shear failure of the bed joints and head joints. The
inhomogeneous nature of masonry leads to a rotation of the blocks under shear loading [101], introducing
bending moments in the joints. In addition to the shear stresses parallel to the joints, these bending 

moments induce stresses perpendicular to the joints. Depending on the magnitude of the vertical 

and horizontal macroscopic stresses, tensile stresses perpendicular to the joints can occur. Thus,
despite failure mechanism 5 being labeled as shear failure, especially with low vertical compression, a
combination of shear and tensile failure was observed.

In contrast to the previous mechanism, failure mechanism 6, which was observed under governing
shear stresses in combination with large horizontal compression, is characterized by a shear failure
solely of the bed joints. This is because the larger horizontal compression leads to a larger shear strength
of the head joints, which prevents joint failure there.

Failure mechanism 7 was observed in the tensile regime under governing horizontal tension and is
characterized by tensile failure of the head joints and shear failure in the bed joints. This is because the
horizontal tensile stresses introduce tensile stresses in the head joints and shear stresses in the bed joints.
As discussed for failure mechanism 4, the shear strength of the bed joints increases with increasing 

vertical compression. Thus, increasing vertical compression leads to a change in failure mechanism
from joint failure (7) to block failure (4).

Fig. 4.11 shows the peak stresses and failure mechanisms of the models with and without frictional
contact in the head joints. Most of the previously described failure mechanisms were also observed in
these models. However, some noteworthy differences compared to the model with mortar head joints
occurred.

Despite showing similar maximum values for the tensile, compressive, and shear stresses, the failure
surface of the model with frictional contact in the head joints (HJC) shows some differences in the
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Fig. 4.11: Numerically obtained failure surface for (a) the model with frictional contact in the head
joints and (b) the model without any contact in the head joints. Each point represents the peak
stress state of one simulation. The filled areas mark regions with similar failure mechanisms.
The numbers refer to the failure mechanisms in Fig. 4.9b.
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overall shape, compared to the model with mortar head joints (Fig. 4.11a). Most notably, the maximum
vertical compressive peak stress decreases with increasing horizontal compression (bottom side of the
failure surface). Additionally, the maximum shear stress is reached at higher horizontal and vertical
compressive stresses, although showing a similar magnitude. Thus, when moving along the hydrostatic
axis in the compressive regime, the increase of the peak shear stress is less steep in the model with
frictional contact in the head joints.

The failure surface of the model without contact in the head joints (HJG, Fig. 4.11b) shows a sig- 

nificantly different shape compared to both other models. Most notably, failure region 2, which is 

governed by block failure under horizontal compression, nearly vanished. Instead, under horizontal
compression, failure is mainly governed by a shear failure of the bed joints, similar to failure mechanism7 but in the opposite direction (region 8). This is because the horizontal compressive stresses are being
transferred via shear stresses in the bed joints since no contact in the head joints is present. With the
adapted interface condition in the joint interfaces, the horizontal compressive peak stress increases 

with increasing vertical compression in region 8. Hence, the maximum horizontal compressive peak
stress is only 3.0 MPa, which is significantly lower than in the other models. Additionally, the maximum
shear stress 2.5 MPa is 50 % lower. While the maximum tensile peak stresses and the maximum vertical
peak stress are similar to the other models, another noteworthy difference is the increasing vertical
compressive peak stress with increasing horizontal compression in region 3.
4.4.2 Comparison to available failure surfaces

In the following, the numerically obtained failure surface of the model with mortar head joints (HJM) is
compared to the failure surfaces of Ganz [54] and Lourenço [86]. A similar comparison for the models
with frictional contact in the head joints and without any contact in the head joints is given in the
supplementary material2.

4.4.2.1 Failure surface according to Ganz

The failure surface of Ganz [54] was calibrated to the simulations by adjusting the ten parameters of the
failure criteria (see Appendix A) as follows: We obtained the uniaxial compressive masonry strengths𝑓m,𝑥 and 𝑓m,𝑧 , the vertical uniaxial tensile strength 𝑓t,𝑧 , and the ratio of the horizontal tensile masonry
strength to its compressive counterpart, 𝜔m, from the simulation results. The distance of the head 

joints, 𝑎S, and the distance of the bed joints, 𝑎L, are defined by the model’s geometry. The remaining
parameters, the cohesion shear stress 𝑐, the friction angle of the joints, 𝜑, and the additional parameter𝜇, were calibrated to the simulations by minimizing the mean squared error between the numerically
obtained peak stresses and the failure surface. The resulting failure surface and the chosen values for the
parameters are shown in Fig. 4.12a. The mean absolute error (MAE) between the numerically obtained
peak stresses and the calibrated failure surface is 0.708 MPa.

The most noticeable difference between the numerically obtained peak stresses and the calibrated
failure surface can be found under horizontal tension in combination with vertical compression (right
side of the failure surface). Here, the failure surface predicts a decreasing horizontal tensile peak stress
with increasing vertical compression, while staying constant in the simulations. Regarding the shear
behavior, the calibrated failure surface predicts a 23 % larger maximum shear stress than the simulations.

2The supplementary material can be found in the online version of the published article.
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Fig. 4.12: Calibrated failure surfaces using the numerically-obtained peak stresses from the simplified
model with mortared head joint: (a) failure surface after Ganz [54] and (b) Rankine–Hill
surface after Lourenço [86]. The seven peak stress states used for calibrating the Rankine–Hill
surface are marked with squares.

Additionally, this peak occurs at a lower horizontal compression than in the simulations, leading to
significant shear stress deviations in this region compared to the simulations.

4.4.2.2 Rankine–Hill failure surface

Next, we will compare the numerically obtained results to the Rankine–Hill surface [86]. We calibrated
the seven parameters of the Rankine–Hill surface in two different ways: (i) By determining the parameters 

from the seven simulations of ideal loading states and (ii) by minimizing the mean squared error between
the numerically obtained peak stresses and the failure surface (“Opt”).

First, we derived the parameters by simulating the seven loading combinations proposed by Lourenço
[86] (see Fig. 4.4). The resulting failure surface and the chosen values for the parameters are shown in
Fig. 4.12b. Therein, the seven simulations used for the calibration are marked with squares.

Using the seven suggested loading combinations results in significant differences between the Rankine–
Hill surface and the numerically obtained peak stresses, which is reflected by a large MAE of 2.395 MPa.
The Rankine–Hill surface predicts a 49.8 % higher maximum vertical compressive stress and a 46.5 %
lower maximum horizontal compressive stress than the simulations. Given that only seven loading
states were considered, the Rankine-type criterion shows good agreement with the simulations, and the
maximum shear stress has a similar magnitude, as the numerically obtained results.

In the second step, we optimized the parameters of the Rankine–Hill surface by minimizing the mean
squared error between the numerically obtained peak stresses and the failure surface. While Lourenço
suggests the seven loading combinations as a good option for minimizing the effort and maximizing the
accuracy of the calibration, he also states that the mean error optimization is better, if enough data is
available. The resulting failure surface and the chosen values for the parameters are shown in Fig. 4.13.
The MAE between the numerically obtained peak stresses and the calibrated failure surface is 0.832 MPa.
The mean error optimization delivers a significantly better fit than calibration with the seven loading
combinations. However, the Rankine–Hill surface still shows differences compared to the numerically
obtained peak stresses. The vertical uniaxial compressive strength is predicted to be 21.0 % lower than
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Fig. 4.13: Calibrated Rankine–Hill surface for the simplified model with mortared head joints using
mean squared error optimization (Opt). The seven peak stress states used for calibrating the
Rankine–Hill surface in Fig. 4.12b are marked with squares.

in the simulations and the vertical uniaxial tensile strength is predicted to be 62.5 % lower, whereas the
horizontal uniaxial compressive strength is predicted to be 37.3 % higher. Additionally, some simulations
with large horizontal compressive stresses are not captured by the failure surface. Furthermore, the
peak shear stress is predicted to be 17.0 % lower than in the simulations.

The most noticeable differences can be found under vertical tension in combination with horizontal
compression (top part of the failure surface) and under large vertical compression in combination with
horizontal compression (bottom side of the failure surface), where the calibrated Rankine–Hill surface
predicts significantly smaller peak stresses than the simulations. In general, the linearly decreasing 

vertical tensile peak stress with increasing horizontal compression (top part of the simulated peak 

stresses, Failure Mechanism 1) cannot be replicated by the Rankine–Hill surface, since it predicts a
constant vertical tensile peak stress. Furthermore, the Rankine–Hill surface is smooth in the compressive
regime, while the simulation results show a distinct edge, where the failure mechanism changes from
horizontal compressive block failure (Region 2) to vertical compressive block failure (Region 3).

Removing the simulations where failure mechanisms 1 and 3 were governing from the set of peak
stress  states  and  applying  the  mean  squared  error  optimization  leads  to  the  failure  surface  shown  in  

Fig. 4.14.  The  obtained  Rankine–Hill  surface  shows  good  agreement  with  the  simulations  and  the
vertical uniaxial compressive and tensile peak stresses are predicted similarly to the simulations, while
the maximum shear stress is predicted to be 21 % lower than in the simulations. The MAE between
the numerically obtained peak stresses and the calibrated Rankine–Hill surface is 0.867 MPa, which is
only 4.2 % larger than the MAE using all the simulations. This shows that the Rankine–Hill surface can
capture the majority of the simulations. However, we could identify some regions, where the simulations 

show a qualitatively different behavior than the Rankine–Hill surface, suggesting a more complex failure
envelope of vertically perforated clay block masonry than the Rankine–Hill surface can provide. While
the differences in failure region 1 can also be seen, when Lourenço [86] fitted the Rankine–Hill surface
to the experimental data from Page [119], the differences under large vertical compression are most
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Fig. 4.14: Calibrated Rankine–Hill surface for the simplified model with mortared head joints using
mean squared error optimization (Opt) without the simulations where Failure Mechanisms1 and 3 were governing. The seven peak stress states used for calibrating the Rankine–Hill
surface in Fig. 4.12b are marked with squares.

likely a phenomenon of vertically perforated clay block masonry, since the change in failure mechanism
leading to this difference is caused by the perforations.

In conclusion, the mean squared error optimization on all peak stress states leads to a good represen-
tation of the results, assuming that the numerically obtained peak stresses resemble the real behavior of 

vertically perforated clay block masonry. However, the optimization procedure also leads to a significant 

underestimation of the vertical compressive peak stress and the vertical tensile peak stress. Adapting the 

set of peak stress state showed that the Rankine–Hill surface can capture the majority of the simulations,
while still showing some discrepancies. Thus, a slightly more complex failure surface is needed to fully
utilize the strength of the masonry.

4.4.3 Application to real block designs

To further verify our model, we used the developed procedure to calibrate the Rankine–Hill surface
for two different real block designs, the SwissModul 15 [156] used in the experiments from Bitterli and
Salmanpour [11, 133], and an insulation-filled block from Wienerberger [151].

The SwissModul 15 is a vertically perforated clay block with a height of 190 mm, a length of 290 mm,
and a width of 150 mm. The blocks are used in conjunction with 10 mm thick mortar bed joints and 

mortar-filled head joints with similar thickness. For calibrating the failure surfaces, we used the 34
simulations from our previously published study [128]. In that study, we used the numerical unit cell
model to simulate the experiments from Bitterli and Salmanpour [11, 133].

Simulating the loading states suggested by Lourenço [86], we obtained the failure surface shown 

in Fig. 4.15a with an MAE of 0.868 MPa. Using the mean squared error optimization procedure, we
obtained the failure surface shown in Fig. 4.15b. The obtained Rankine–Hill surface is in good agreement
with the simulations. However, a similar discrepancy between the surface and the numerically obtained
peak stresses can be found under vertical compression, when failure mechanism 3 is relevant. In this
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Fig. 4.15: Calibrated Rankine–Hill surfaces for SwissModul 15 with mortared head joints: (a) was
calibrated using the loading states suggested by Lourenço [86] and (b) was calibrated using the
mean squared error optimization procedure. The seven peak stress states used for calibrating
the Rankine–Hill surface in (a) are marked with squares.

region, the calibrated Rankine–Hill surface predicts up to 9.2 % larger peak stresses than obtained in the 

simulations. Considering the second region with discrepancies identified with the simplified model (i. e., 

where Failure Mechanism 1 was governing), we cannot make a statement for this block design, since we
did not simulate enough loading combinations in this region. The MAE of the Rankine–Hill surface
calibrated for the SwissModul 15 is 0.417 MPa using all simulations. Thus, the optimization procedure
leads to a better, yet more conservative fit of the Rankine–Hill surface with the numerically obtained
peak stresses.

The second block design we used for calibrating the Rankine–Hill surface is an insulation-filled block
from Wienerberger [151], which is 248 mm long, 249mm high, and 365 mm wide. It is typically used in
conjunction with 1 mm thin bed mortar joints and dry head joints. Thus, frictional contact was used 

in the head joints in the simulations. We calibrated the Rankine–Hill surface shown in Fig. 4.16 to31 simulations. The model was created using the same modeling strategies as used for the previous
simulations.

Notably, the results of the simulations predict a much more anisotropic behavior than with the
SwissModul 15 and the simplified block design with a ratio of the horizontal compressive peak stress to
the vertical compressive peak stress of 0.35. This is also reflected in the calibrated Rankine–Hill surface,
which is in good agreement with the simulations. Using the loading states suggested by Lourenço [86],
we obtained the failure surface shown in Fig. 4.16a with an MAE of 0.446 MPa. The failure surface
obtained with the optimization procedure is presented in Fig. 4.16b. With this geometry, the optimized
Rankine–Hill surface predicts up to 4.2 % smaller peak stresses than obtained in the simulations in the
region, where failure mechanism 3 is relevant. Additionally, we observed a similar discrepancy under
vertical tension combined with horizontal compression, as identified with the simplified model. The MAE
of the calibrated Rankine–Hill surface is 0.372 MPa using all simulation. Similar to the SwissModul 15,
the optimization procedure yielded a better, yet slightly more conservative fit of the Rankine–Hill
surface.
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Fig. 4.16: Calibrated Rankine–Hill surfaces for the Wienerberger block with contact in the head joints:
(a) was calibrated using the loading states suggested by Lourenço [86] and (b) was calibrated
using the mean squared error optimization procedure. The seven peak stress states used for
calibrating the Rankine–Hill surface in (a) are marked with squares.

4.4.4 Concept for deriving a numerically calibrated failure surface

Considering all the results presented in the previous sections, we propose the following concept for
deriving a numerically calibrated failure surface for masonry. Since the Rankine–Hill surface depicts
the numerically obtained peak stresses very well in most regions and can easily be implemented into FE 

software, we recommend using it for macroscopic simulations of vertically perforated clay block masonry.
Simulating the loading states proposed by Lourenço [86] for the calibration of the Rankine type surface
(i. e. parameters 𝑓t,𝑥 , 𝑓t,𝑧 , and 𝑓𝛼) led to a good agreement with the numerically obtained peak stresses in
each case. Hence, we suggest using these three simulations for the calibration of this part of the surface
(see Fig. 4.17). However, using the suggested loading states for the calibration of the Hill type surface (i. e.
parameters 𝑓m,𝑥 , 𝑓m,𝑧 , 𝑓𝛽 , and 𝑓𝛾 ) did not always lead to a good agreement with the numerically obtained 

peak stresses. While we obtained good agreement for the real block geometries, we observed significant
deviations for the simplified block design. Thus, we suggest simulating seven additional loading states
for the calibration of the Hill-type surface (see Fig. 4.17b). We chose these such that the loading path is
directed towards the regions, where we observed the largest discrepancies between the numerically
obtained peak stresses and the calibrated Hill-type surface. Using these additional peak stresses, we can
derive the parameters for the Hill-type surface using a mean error optimization procedure. Therefore,
the resulting failure surface will underestimate some of the peak stresses in failure region 2, but also
show fewer differences to the simulations in failure region 3.
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Fig. 4.17: Concept for deriving a numerically calibrated Rankine–Hill surface. (a) Calibration with the
loading states suggested by Lourenço [86], and (b) mean error optimization of 𝑓m,𝑥 , 𝑓m,𝑧 , 𝛽,
and 𝛾 using 11 simulations. Peak stresses used for calibration of the Rankine-type surface are
filled green, and those used for calibration of the Hill-type surface are filled red. Simulations
used for mean error optimization are marked with squares.
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4.5 Conclusion and Outlook

Within this work, we presented a new approach to develop failure surfaces for vertically perforated clay
block masonry under in-plane loading using numerical simulations. Using a previously published unit
cell FE model [76, 128] and a simplified block design, we derived the peak stresses from 450 simulations
in total, with 150 arbitrarily generated loading states. Additionally, we investigated the influence of the
head joint, by considering three different types, i. e., a mortared head joint, frictional contact in the head
joint, and no contact in the head joint. Hence, we were able to numerically derive failure surfaces for
the three different head joint types. For each type, we also identified seven different realistic failure
mechanisms and assigned these mechanisms to regions of the failure surface.

After the rigorous discussion of the numerically-obtained failure surfaces, we compared them to the
failure surfaces proposed by Ganz [54] and Lourenço [86], by calibrating the necessary parameters to the 

simulation results. The failure surface of Ganz was found to be in good agreement with the numerically- 

obtained failure surfaces, with the most significant difference under horizontal tension. Additionally, the 

maximum shear stress was found to be 23 % higher than in the numerically-obtained failure surface. The 

quality of the fit of the failure surface after Lourenço depends on the chosen calibration procedure. While
calibrating the failure surface by simulating the seven loading combinations suggested by Lourenço
[86] resulted in a poor agreement with the numerically-obtained peak stresses, a mean squared error
optimization procedure yielded a good agreement. Thereby, two regions with significant differences
were identified, i. e., the region of vertical tension and the region of vertical compression.

To assess this difference in more detail, we used the developed procedure to calibrate the Rankine–
Hill surface for two real block designs. The results showed, that the differences also occur for real 

block designs, although the differences are less significant. Nevertheless, the Rankine–Hill surface
overestimated the peak stress of the numerical model up to 12.8 %, suggesting a more complex failure
surface.

Finally, we proposed a concept to numerically calibrate the parameters of the Rankine–Hill surface,
taking the differences between the numerically-obtained failure surfaces and the Rankine–Hill surface
into account. Therefore, we suggested simulating the seven loading combinations proposed by Lourenço
[86] for calibrating the surface, and to simulate two additional loading combinations with governing
vertical compressive stresses to assess the quality of the fit and to adjust the parameters accordingly.

In future research, we could improve the proposed concept by considering the following aspects: Since
the model is restricted to in-plane loading, the next step would be to extend the model to out-of-plane
loading, like Mojsilović [101] did for the failure surface of Ganz [54]. Additionally, the model is not 

yet reasonably validated for horizontal and vertical tension, since no experimental data is available
for vertically perforated clay block masonry. Thus, an experimental campaign would be necessary to
validate the model for these loading states. Another interesting modification to consider is the use 

of the phase field method (see, e. g., Miehe et al. [97]), as a substitute for the XFEM approach. The
phase field method is known to be very stable, even for complex crack topologies, as, e. g., Pech et al.
[120, 121] showed for wood, and could therefore enable the investigation of the post-peak behavior of
vertically perforated clay block masonry in more detail. Finally, the model could also be validated for
masonry glued with polyurethane adhesive in the bed joints, since this is a rising technology in the field
of masonry construction and could be considered in the presented model with only minor adaptions.
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4.6 Appendix A: Failure Criteria according to Ganz

In the following, the 12 failure criteria developed by Ganz [54] are presented. Note, that the indices are
different than in the origninal publication. While Ganz [54] refers to the vertical direction with 𝑥 and to
the horizontal direction with 𝑦, we use 𝑥 for the horizontal direction and 𝑧 for the vertical direction.

4.6.1 Block Failure Φ1a = 𝜏2𝑥 𝑧 − (𝜔m ⋅ 𝑓m,𝑥 − 𝜎𝑥 𝑥) (2𝜔m ⋅ 𝑓m,𝑧 − 𝜎𝑧 𝑧) ≤ 0. (4.7)Φ1b = (1 + 𝜔m)2 ⋅ 𝜏2𝑥 𝑧 + [𝜔m ⋅ (𝜎𝑧 𝑧 + 𝑓m,𝑧) − 𝜎𝑥 𝑥] [𝜎𝑧 𝑧 + 𝑓m,𝑧 − 𝑓m,𝑥 − 𝜔m ⋅ (𝜎𝑥 𝑥 + 𝑓m,𝑥)] ≤ 0. (4.8)Φ1c = (1 + 𝜔m)2 ⋅ �̄�2𝑥 𝑧+ [𝜔m ⋅ (�̄�𝑧 𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 + 𝑓m,𝑥 ⋅ (1 + 𝜔m)) − �̄�𝑥 𝑥] ⋅ ⋅ [�̄�𝑧 𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 − 𝜔m ⋅ 𝑓m,𝑥] ≤ 0. (4.9)Φ2 = 𝜏2𝑥 𝑧 − (𝜎𝑥 𝑥 + 𝑓m,𝑥) ⋅ (𝜎𝑧 𝑧 + 𝑓m,𝑧) ≤ 0. (4.10)Φ3ab = 𝜏2𝑥 𝑧 + 𝜎𝑥 𝑥 ⋅ (𝜎𝑥 𝑥 + 𝑓m,𝑥) ≤ 0. (4.11)Φ3c = 𝜏2𝑥 𝑧 + (𝜎𝑥 𝑥 − 𝜔m ⋅ 𝑓m,𝑥 + 𝑅a)2 − 𝑅2a ≤ 0. (4.12)𝑅a = 𝑑 ⋅ tan(𝜋4 

− 

tan−1 (𝑘)2 ) − 𝑓m,𝑥 ⋅ 1 − 𝜔m2 where 𝑑 = 𝜔m ⋅ 𝑓m,𝑥2 ⋅ √𝜔m
and 𝑘 = 𝜔m − 12 ⋅ √𝜔m

(4.13)Φ3d = 4𝜔m ⋅ 𝜏2𝑥 𝑧 − [𝜔m ⋅ 𝑓m,𝑥 − 𝜎𝑥 𝑥 ⋅ (1 − 𝜔m)]2 ≤ 0. (4.14)

4.6.2 Mortar Joint Failure Φ4a = 𝜏2𝑥 𝑧 − (𝑐 − 𝜎𝑧 𝑧 ⋅ tan (𝜑))2 ≤ 0. (4.15)Φ4b = 𝜏2𝑥 𝑧 + (𝜎𝑧 𝑧 − 𝑓t,𝑧 + 𝑅b)2 − 𝑅2b ≤ 0. (4.16)Φ4c = 𝜏2𝑥 𝑧 + [𝜎𝑧 𝑧 − 𝑓 ′t,𝑧 ⋅ ( 𝜎𝑥 𝑥𝜇 ⋅ 𝑓m,𝑥 + 1) + 𝑅c]2 − 𝑅2c ≤ 0. (4.17)

Φ4d = 𝜏2𝑥 𝑧 ⋅ (1 + 

2 ⋅ 𝑎L𝑎S ⋅ tan (𝜑))2 −(𝜎𝑧 𝑧 ⋅ tan (𝜑) 

+ 𝜎𝑥 𝑥 ⋅ 2 ⋅ 𝑎L𝑎s − 𝑐)2 ≤ 0. (4.18)

Φ4e = (|𝜏𝑥 𝑧 | + 

2𝑎L𝑎S ⋅ 𝜎𝑥 𝑥)2 +(𝜎𝑧 𝑧 + |𝜏𝑥 𝑧 | ⋅ 2𝑎L𝑎S − 𝑓t,𝑧 + 𝑅b)2 − 𝑅2b ≤ 0. (4.19)𝑅b = 𝑐 ⋅ tan(𝜋4 

+ 𝜑2) − 𝑓t,𝑧 ⋅ sin (𝜑)1 − sin (𝜑) (4.20)𝑅c = 𝑐 ⋅ tan(𝜋4 

+ 𝜑2) − 𝑓 ′t,𝑧 ⋅ ( 𝜎𝑥 𝑥𝜇 ⋅ 𝑓m,𝑥 + 1) ⋅ sin (𝜑)1 − sin (𝜑) (4.21)

Note, that the equation for failure criterion 3c in the original publication seems to be wrong, since it
always indicates failure at 𝜎𝑥 𝑥 ≥ 0, although horizontal tensile stresses should be possible. Using the
verbal description of Ganz [54], a new criterion was defined, assuming the surface to describe a cylinder
(see Eq. (4.12)). The original equation in the publication is the following:Φ3c,o = 𝜏2𝑥 𝑧 + 𝜎𝑥 𝑥 ⋅ (𝜎𝑥 𝑥 − 𝜔m ⋅ 𝑓m,𝑥) ≤ 0. (4.22)
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4.7 Appendix B: Rankine–Hill Surface

The Rankine-type surface is defined in the following manner:

𝑓1 = 

(𝜎𝑥 − 𝑓t,𝑥) + (𝜎𝑧 − 𝑓t,𝑧)2 

+√( (𝜎𝑥 − 𝑓t,𝑥) − (𝜎𝑧 − 𝑓t,𝑧)2 )2 + 𝛼 𝜏2𝑥 𝑧 = 0, (4.23)

with the parameter 𝛼, which is derived from the uniaxial tensile strengths, 𝑓t,𝑥 and 𝑓t,𝑧 , as well as the
pure shear strength of the material, 𝜏u as follows:𝛼 = 𝑓t,𝑥 ⋅ 𝑓t,𝑧𝜏u . (4.24) 

The Hill-type surface forms a rotated centered ellipsoid, which reads as𝑓2 = 𝐴 ⋅ 𝜎2𝑥 + 𝐵 ⋅ 𝜎𝑥 ⋅ 𝜎𝑧 + 𝐶 ⋅ 𝜎2𝑧 + 𝐷 ⋅ 𝜏2𝑥 𝑧 − 1 = 0. (4.25)

The four parameters 𝐴, 𝐵, 𝐶, and 𝐷 can be derived from the material strengths an equivalent yield
stresses in the following way:𝐴 = 

1(𝑓m,𝑥)2 , 𝐵 = 𝛽𝑓m,𝑥 ⋅ 𝑓m,𝑧 , 𝐶 = 

1(𝑓m,𝑧)2 , and 𝐷 = 𝛾𝑓m,𝑥 ⋅ 𝑓m,𝑧 . (4.26)



Conclusion and Perspectives

In the following, the main findings of Publications 1 to 4 are summarized, and future research is discussed.

Main Findings

Publication 1 deals with assessing the impact of bed joint reinforcement on the vertical compressive
strength of vertically perforated clay block masonry. For this purpose, we enhanced the numerical 

unit cell model of Kiefer et al. [76] by a multi-scale homogenization approach to account for the bed
joint reinforcement. Using the developed modeling strategies, we simulated 30 models with randomly
allocated strength values and three different reinforcement ratios. In doing so, we were able to show
that adding bed joint reinforcement could increase the 5 %-quantile of the compressive strength of
vertically perforated clay block masonry by up to 33 %. Furthermore, we could identify two mechanisms
that were responsible for the increase in compressive strength: Firstly, the first crack occurred at a
higher load level, due to the decrease of lateral tensile stresses in the transversal webs, and secondly, the
onset of a crack arose at a higher load level, as the fiber mesh bridged the open crack. Additionally, the
reinforcement prevented the outermost longitudinal web from spalling, after the first crack occurred,
leading to a more ductile behavior of the masonry. Considering the results of the stochastic simulations
without any reinforcement, we were able to evaluate the mean value and standard deviation of the
numerically obtained compressive strength. These values were in good agreement with experimental
results on five wall specimens. Furthermore, these simulations showed, that mostly weaker transversal
webs affect the value of the vertical compressive strength, which is why the fixed-value approach of
Kiefer et al. [76] tended to overestimate the compressive strength. Nevertheless, considering the large
fluctuations of experiments on masonry walls and the effort of the stochastic simulations, the results of
the fixed-value approach are still acceptable. Concludingly, bed joint reinforcement has a large potential
to increase the vertical compressive strength of vertically perforated clay block masonry, especially
since the potential in modifying the block geometry is already exhausted.
Publication 2 addresses the numerical simulation of a firing test on a vertically perforated clay block

masonry wall. Thereby, we used a coupled temperature-displacement finite element model to assess 

the performance of the wall and compared the results to novel experimental data. By using a novel 

energy-based spalling criterion, the spalling of the outermost longitudinal webs could be decoupled
from the vertical loading of the wall. Thus, two-dimensional simulations using unit cell models were
sufficient, which reduced the computational effort significantly. Considering the temperatures gained
from 2D thermal simulations and energy parameters gained from 2D mechanical simulations we were
able to predict the performance of the wall with good agreement to the experimental results, without
any empirical adjustments. Furthermore, the small but detailed model enabled unique insights into 

the thermal and mechanical behavior of the wall. In this way, we could observe the redistribution of
heat flow from the transversal webs to the air-filled cavities at higher temperatures, due to increasing
radiation and convection effects. Additionally, we could show, that the most critical effect on spalling is
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the deformation difference of two adjacent longitudinal webs. This deformation difference is caused by
the thermal expansion and introduces tensile stresses in the transversal webs, which lead to spalling.
Designing block geometries which show less deformation difference without increasing the ocurring
tensile stresses in the transversal webs, e. g. by maximizing contact in the head joints, could be a
promising approach to reduce the risk of spalling.
Publication 3 deals with developing a numerical unit cell model for evaluating the peak stress state

of vertically perforated clay block masonry subjected to arbitrary in-plane loading states. For this
purpose, we extended the unit cell model of Kiefer et al. [76], which was already used in Publication 1, by 

introducing a failure model for the mortar joints. Thereby, we modelled the joints as interfaces between
the blocks and used cohesive behavior with a quadratic stress interaction criterion for considering joint
failure. This extended model was then used to model seven uniaxial compressive experiments on wall
specimens with inclined bed joints, conducted by Bitterli and Salmanpour [11, 133]. The obtained peak
stresses were mostly in good agreement with the experimental results. Only under governing horizontal
compression, the model tended to overestimate the peak stress. Additionally, the failure mechanisms
obtained from the numerical simulations were similar to the experimental observations. Thereby,
for the first time, failure under horizontal compression could be linked to deformation differences of
the longitudinal webs. These deformations differences led to tensile stresses in the transversal webs,
comparable to the observations in Publication 2. After validation of the model, simulating seven loading
states recommended by Lourenço [86] allowed for calibrating the model parameters of a Rankine–Hill
failure surface. The obtained surface showed good agreement with the numerically obtained peak stress 

states of 34 different loading states. Further comparison with the failure surface developed by Ganz [54]
and various experimental studies strengthened the validity of the model. Thus, the developed model
is a sound basis for further investigations on numerically generating macroscopic failure surfaces for
vertically perforated clay block masonry.
Publication 4 contains investigations on numerically developing macroscopic failure surfaces for

vertically perforated clay block masonry, using the unit cell model of Publication 3 as a basis. Using a
simplified block design, we analyzed the peak stress states and failure mechanisms of 450 simulations,
considering 150 arbitrary loading states and three different head joint types. In doing so, we obtained a
dense data set of peak stress states, which were used to develop macroscopic failure surfaces. Additionally, 

we identified seven different failure mechanisms and associated them with regions of the failure surface.
Next, we compared the peak stress states with two failure surfaces: the failure surface developed by
Ganz [54] and the Rankine–Hill failure surface proposed by Lourenço [86]. While the failure surface
from Ganz showed good agreement with the simulations, the fit of the Rankine–Hill failure surface
depended on the calibration procedure. Simulating the seven loading states recommended by Lourenço
led to an unacceptable fit. Nevertheless, using a mean squared error optimization procedure led to a 

good agreement with the numerically obtained peak stress states. Yet, we identified two areas with 

significant differences: (i) failure under governing vertical tension in combination with horizontal 

compression, and (ii) failure under governing vertical compression in combination with horizontal
compression. Simulating various loading states for real block designs showed that these differences were 

less pronounced but still present. However, considering the large fluctuations of experiments on masonry
walls and the overall good agreement of the Rankine–Hill surface, a more complex failure surface is
probably not worth the effort. Thus, we proposed a concept for numerically calibrating the Rankine–Hill
surface for vertically perforated clay block masonry using the unit cell model of Publication 3, taking
the identified differences into account.
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Perspectives and Future Research

For the presented unit cell model, there are several possibilities for further research in the fields of
validation, model improvements, and applications. In the following, some of these possibilities are
discussed.

Since the results of Publication 1 are solely based on numerical simulation, they would benefit
from further experimental validation. Thus, conducting a series of vertical compressive tests on wall
specimens with reinforced bed joints would strengthen the findings of Publication 1. Furthermore,
conducting experiments on unreinforced wall specimens under vertical and horizontal tension, as well
as biaxial compression would increase the significance of the model developed in Publication 3 and
Publication 4. Glued masonry using polyurethane adhesives is a relatively new promising technology,
which allows for a more efficient construction process. The developed numerical model could account
for this technology by introducing only minor changes. Thus, the validation of the model for glued
masonry would be interesting for further research.

In addition to the improved validation, the developed unit cell model could be further enhanced by
considering the following aspects: Since the drying and firing process often introduces defects in the
clay blocks, especially in regions where the ratio of raw material to surface area is large, the model
could be improved by considering these defects. This could be incorporated by automatically reducing
the strength of the blocks in these regions. Additionally, it would be interesting to use the phase field
method (see e. g. Miehe et al. [97]) as an alternative to XFEM, since it is known to be very stable, even
for complex crack topologies, as e. g. Pech et al. [120, 121] showed for wood. Thus, it could enable the
simulation of the post-peak behavior of vertically perforated clay block masonry in more detail.

Last but not least, the developed model could be used for various new applications. For example,
the model could be used to conduct parametric studies on the influence of the block geometry on the
macroscopic material properties of vertically perforated clay block masonry. This could be used to
investigate the impact of different parameters, like the web thickness or the block dimensions, on the
thermal and mechanical properties of the masonry. Furthermore, the model could be used to consider
out-of-plane bending, and combinations of bending with the in-plane loading states investigated in
Publications 3 and 4. Since bending moments yield a linear distribution of normal stresses over the wall
thickness, which can be captured by the already implemented failure criteria, this would only require
minor changes to the boundary conditions of the model. To complete the circle, the influence of bed joint
reinforcement on the peak stress state under arbitrary loading states could be investigated. Especially
under shear loads, the reinforcement could have a significant impact on the peak stress state and the
ductility, which would improve the use of masonry in earthquake regions.

Concludingly, utilizing the available computational methods for extending the knowledge on the
thermal and mechanical behavior of the material could lead to a more efficient and sustainable use of
vertically perforated clay block masonry.
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