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PREFACE

SilviLaser 2021 was the 17th conference in a series focused on the applications of LiDAR and 
related technologies for assessing and managing forest ecosystems. The main aim of the 
conference was to bring together research scientists, data providers, device manufacturers, 
and practitioners from around the world to share their experience in the development and 
application of LiDAR to improve our understanding of forest ecosystem functioning and facil-
itate their sustainable management through improved forest assessment and inventory. An 
additional aim of the conference was to discuss alternative methods for three-dimensional 
forest mapping in addition to the different LiDAR systems. Especially in the case of terrestrial 
and UAV-based methods, many new systems have been established in recent years, some of 
which are already suitable for practical use. 

In order to emphasize the practical application of the different methods, we also organized 
an extensive field campaign where a wide range of institutions and equipment manufactur-
ers demonstrated their systems live in the forest. Additionally, the company Riegl supported 
this field campaign by providing an airborne laserscanning flight over the field sites. Finally, 
detailed reference data was collected by the company Umweltdata, BOKU and TU Wien.
The recorded data will soon be freely accessible and thus available to the community for a 
wide variety of scientific work. These unique data sets will also form the basis for an interna-
tional benchmark on the topic of parameter retrieval from different 3D recording methods.

The SilviLaser 2021 was organized by TU Wien in cooperation with the company Umweltda-
ta GmbH and took place in Vienna from 28th to 30th of September 2021. Due to the Covid 
pandemic, the conference was held as hybrid conference. To take into account the different 
time zones of remote and onsite participants, all presentations were recorded and were avail-
able to all conference participants even after the end of the conference via the conference 
platform. This platform also allowed us to communicate with all conference participants and 
sponsors, whether they were present virtually or physically. In this way, we could guarantee 
the best possible interaction of on-site and virtual participants.

In total, 129 high quality extended abstracts were submitted to the SilviLaser conference and 
were reviewed by the scientific committee. After few withdrawals due to pandemic reasons 
(i.e. travel restrictions), 119 contributions, divided in 30 pico and 89 oral presentations, were 
presented during the conference. Additionally, eight excellent keynote presentations were 
given by Juha Hyyppä, Mike Wulder, Amy Neuenschwander, Xinlian Liang, Quinghua Guo, 
Gottfried Mandlburger, Håkan Olsson, and Martin Pfennigbauer, Peter Rieger and Bernhard 
Groiss.

These proceedings contain the extended abstracts of all pico and oral presentations. Selected 
full papers based on these presentations will be published in the special issue “Advances of 
laser scanning in forest science and silviculture” in the International Journal of Applied Earth 
Observation and Geoinformation very soon.

Finally, we would like to thank all the conference participants for their participation and pres-
entations and all the helpers and the local organising team for their tireless efforts.

Markus Hollaus
December 2021
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Characterising understorey Plant Area Index with TLS
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1. Introduction
Leaf Area Index (LAI), measured as one half of the total green leaf area per unit horizontal ground
surface area, is a key metric for estimating biophysical structure and function; as such LAI is listed as
an Essential Climate Variable. LAI can be difficult to quantify, particularly in forest environments,
where e.g. saturation, leaf angle distribution, leaf clumping and the inability to separate leaf and wood
confound accurate estimation. A number of methods have been developed to estimate LAI such as leaf
litter traps, digital hemispherical photography and terrestrial laser scanning (TLS) (Woodgate et al.
2015) .

The understorey vegetation layer in forests plays an important role in overall forest function, for
example providing habitat for small mammals. The understorey layer is also dynamic and can respond
rapidly to changes in light environment e.g. caused by tree fall or in response to defoliating pathogens.
Quantifying understorey LAI can be difficult owing to measurement difficulty and for this reason is
often overlooked.

Here we present methods (and preliminary results) that use TLS to estimate understorey Plant
Area Index (PAI) - no distinction is made between wood and leaf material - that is applied across
fifteen plots in Wytham Woods, UK. PAI estimates were computed by modifying the “hinge angle”
method of Jupp et al. (2008); further, to increase the sampled area, the TLS instrument was mounted
on a pneumatic mast.

2. Methods
A multi-year project has been established in Wytham Woods, UK, to monitor the woodland response
to canopy decline as a result of ash dieback. Fifteen 40 m x 40 m plots were installed through the
forest; 5 plots are ash dominant where the ash trees have been girdled to simulate a rapid decline in the
tree canopy (winter 2020/21), 5 plots are ash dominant control and 5 plots are non-ash dominant
control (predominantly Acer pseudoplatanus and Fagus sylvatica).

TLS has so far been conducted twice at the fifteen plots (summer and winter); further acquisitions
are planned for 2023. Scanning was done with a RIEGL VZ-400 (Horn, Austria) where scans were
performed with an angular resolution of 0.04 degrees in an upright position. Scan positions were
located along the 4 edges of the plot (to avoid disturbing understorey vegetation and other
experimental equipment) and in the centre (Figure 1). The scanner was mounted on a pneumatic mast
and pumped to heights of 2 m, 3 m, 4 m and additionally at 6 m in the plot centre (Figure 1); this was
done to capture different portions of the plot as well as to reduce operator bias i.e. locating the scanner
in an open area. Considering only the 120° - 125° zenith ring (see below), and scanning as in Figure 1,
resulted in ~15% of the total plot area being captured. If only a 2 m tripod had been used <2% of the
plot would have been captured.

To compute estimates of PAI, the “hinge angle” method of Jupp et al. (2008) was modified. First
vertically resolved angular dependent gap probability Pgap was derived:

(1)𝑃
𝑔𝑎𝑝

(Θ,  𝑧) = 1 −
∑𝑤

𝑖
(𝑤

𝑖
< 𝑧, Θ)

𝑁(Θ)

where z is height below the scanner, is the zenith ring interval, w is a weighting dependent upon theΘ
number of targets intercepted by each outgoing pulse and N is the total number of outgoing pulses. PAI
as a function of height can then be derived as:
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(2)𝑃𝐴𝐼(𝑧) ≈ − 1. 1𝑙𝑜𝑔(𝑃
𝑔𝑎𝑝

(Θ))

To approximate the hinge angle of 57.5° Jupp et al. (2008) analysed Θ = [55°, 60°]. Here, to
estimate PAI below the scanner, the polar opposite zenith ring where Θ = [120°, 125°] was extracted.
To not conflate vegetation and the ground surface in undulating terrain, a digital elevation model
(DEM) with a resolution of 0.5 m was created from all data (i.e. not limited to a zenith ring) from all
scan heights at a single scan position. This also allows for a more accurate estimate of vegetation
height to be computed.

Figure 1. Pneumatic mast extended to 6 m with RIEGL VZ-400 mounted on top (left) and location of
scan positions in a plot with area scanned by zenith ring [120°, 125°] at different heights.

3. Results and Discussions
Vertically resolved PAI are presented in Figure 2 where profiles have been truncated between 0.1 - 2 m
above ground. Maximum plot-level understorey PAI was 2.02 recorded at Plot 1B in summer, a
minimum value of 0.09 was recorded in winter for Plot 1C. There is a clear distinction between ash
dominant and non-ash plots where the former has a dense understorey. It is suggested that this is a
result of ash canopies being less dense (evident in full canopy PAI curves), therefore allowing more
light to penetrate to the understorey below that result in abundant bramble thickets. PAI was on
average ~50% of summer PAI in winter and the understorey layer was noticeably lower in height,
particularly in the bramble dominated ash plots (e.g. ash (control) plot 3 in Figure 2).

The benefits of using the mast is an open question. Preliminary results would suggest that PAI
values do not differ between scans captured at different heights owing to the homogeneity of the plots.
The additional time and expense of mast hire and deployment therefore may not be worthwhile;
however, if only scanning from 2 m, care must be taken to not bias the sample by scanning in a clear
area and ensure scanning is conducted on, or inside, the plot boundary.

Other methods for measuring understorey PAI have not been trialled so far in this experiment.
Leaf litter traps are also installed but are at a height of 1 m above ground level; installing litter traps at
ground level could be problematic e.g. damage due to animal activity. PAR sensors are installed at
heights of 0.3 m and 3 m on weather stations at the plot centres and could be used as a reference data
set; larger samples (at different heights) could be gathered using an LAI sensor such as LiCOR
LAI-2200. However, TLS is not dependent on light conditions and has been shown to be more precise
than other methods in forest environments (Calders et al. 2018).
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Figure 2. Vertically resolved PAI curves for each scan captured. Profiles have been truncated between
0.1 - 2 m and normalised so that PAI is 0 at 2 m. Values in red and blue are mean (standard deviation)

PAI for summer and winter respectively.

Conclusions
This paper presents results from TLS scanning of forest understorey conducted in Wytham Woods,
UK. A modified version of the “hinge angle” approach of Jupp et al. (2008) appears to be successful
for characterising vertically resolved understorey PAI. Further scanning of the plots will allow an
analysis of the impacts of changing light conditions on understorey vegetation following ash dieback.
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1. Introduction

Wild berries are the most utilized non-wood forest products by Nordic people (e.g. Kardell 

1980, Turtiainen 2015) and essential nutriment of many animal species. Predicting and mapping non-

wood forest products has been challenging because of the characteristics of non-wood products like 

small size, seasonality, rarity, difficult location, etc. In addition collecting field data for modelling is 

laborious and expensive. In the earlier studies field measurements of bilberries and accurate description 

of tree stock and site type have been used to model berry yields (Miina et al. 2009, Turtiainen 2015). 

However the general drawback of field measurements based approaches is that accurate field data 

is typically not available for the applications of the elaborated models.  

Since 2003 worldwide unique berry yield data has been collected annually in the Swedish National 

forest inventory (NFI) (Fridman et al. 2014). The number of bilberries and cowberries are counted in 

small vegetation plots, inside the NFI plots and the annual berry yields of ripen berries kg ha-1 are 

estimated to national and to county level. This unique time series of bilberry and cowberry 

data also offers high possibilities for spatial and temporal studies of berry yields in Sweden. That data 

combined with wall-to-wall remote sensing data (e.g. McRoberts et al. 2010), such as airborne laser 

scanning (ALS) data describing the forest structure and terrain variables and satellite and aerial images 

describing the forest types and tree species, offers possibilities to improve the forecasting of berry yields 

and maps in landscape level, of high interest to many users.   

In this study we combined bilberry data from Swedish NFI with nationwide ALS data to predict 

bilberry yields. The specific aims were 1) to develop general prediction model for bilberry yield based 

on ALS data and other existing wall-to-wall data and 2) to identify laser based structural features of 

forest that can be linked to locations of the highest yield, highly interesting by the berry pickers. This 

information can be used for multi-objective forest planning, developing the next generation berry yield 

forecasting applications and mapping berry yields in forest landscape.   

2. Data and methods

We used bilberry yield data from the Swedish NFI from 2007 to 2016 covering whole Sweden. Detailed 

berry inventory was done in two 0.25m2 circular berry plots inside the NFI plot and the sum of flowers 

and berries of two berry plots was calculated. The final number of plots used for modelling was 13 715 

and varied between years and geographical locations of laser scanning.  

The number of flowers and berries is depended on the inventory day of the growing season.  The 

time difference between middle of July (bilberries expected to be ready for picking) and Julian day of 

field data collection was used as one predictor variables in the models. This variable indicated the change 

in berry amount (% per day) over the season.  

We used ALS data from Swedish National Land Survey from 2009 to 2014. All ALS based and 

other wall-to-wall metrics calculated were extracted from the 7 m buffer around the center of the NFI 

field plots (corresponds the size of temporary NFI plots). ALS point cloud data were extracted from 

each NFI plot and point cloud metrics were calculated using the FUSION software (McGaughey 2021). 

Percentage of first echoes above height limit of 2 meter called “canopy cover”, Elev.P95 (height, where 

95 % of the first echoes are accumulated) called “tree height” and “shrub cover” from first echo data 
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((percentage of echoes below 2 meter – percentage of echoes below 0.5 m)/(percentage of echoes below 

2 meter), %), were selected to identify the critical structural differences in presence/absence data (high 

berry yield/no berries) to locate the highest bilberry yields.  Other auxiliary data used on models 

included e.g. ALS based terrain variables, bioclimatic variables (worldclim.com), tree species variables 

from SLU forest map, Corine-land cover map, and soiltype and soildepth maps. The mean and standard 

deviation of raster cells (continues variables) or the maximum (categorical variables) were extracted 

from each plot to represent the predictor variables for the models.  

Models were created for bilberry yields (number of berries) using generalized linear mixed effect 

models. Models for bilberry counts were expressed by the log-link function with Poisson response. The 

hierarchy and unbalanced structure of the data was taken account by random effects at different levels 

(county, laser-block, cluster). Mixed effect models were fitted using glmmPQL function of the R-

software (https://www.r-project.org/) and bias-correction was applied in prediction for new dataset.  

The structural differences of commonly used ALS based variables were demonstrated in histograms 

of presence/absence (high bilberry yield /no berries) data. Only bilberry plots with ripen berries were 

included. Five percent of the plots with the highest berry amount was selected to represent the high 

bilberry yield.  

3. Results

The ALS based canopy cover was found to be important variable in bilberry model. Other significant 

variables were e.g. ALS based height variance, shrub cover, height above sea, slope, soil wetness and 

terrain ruggedness, satellite based species specific volume and percentage, seasonality of temperature 

and precipitation and annual precipitation, inventory year, soil type and land use class. The time 

difference between Julian day when berries were expected to be ripen and inventory day was also 

significant predictor variable and this variable showed 1,5 % decrease for bilberry per day during the 

season. R2 was 0.4 for the full bilberry model and 0.08 for the fixed part and there was high variation 

between plots in the prediction accuracy. Model underestimated especially the higher berry yields.  

Based on our study the highest bilberry yield was identified in forests with canopy cover of 50 % 

(Figure 1, left), the canopy height of 15 meter and the shrub cover close to zero. Even thought our model 

could not give very accurate estimates for the berry yields, the model can be used as an effective tool 

for predicting the most potential locations for the berry yields in forest landscape. To demonstrate this 

we predicted the most potential locations of bilberry yields in small study area (Figure 1, right).  

Figure 1: Density distribution of ALS based canopy cover in plots with high bilberry yield and no 

berries (left) and predicted potential locations of bilberry yields in forest landscape (right). 

4. Discussion and conclusions

This is the first study where ALS and other wall-to-wall remote sensing variables were used to model 

bilberry yields and also first berry yield models done in Sweden. Here we also obtained valuable 

information about suitable remote sensing based variables for predicting bilberry yields and about the 

ALS based structural features which are reflecting the locations of the highest bilberry yield. Our maps 
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of potential berry yields are much needed as input for e.g. land-use planning at landscape level (e.g. 

European Commission 2016). For local berry pickers, the berry yield maps makes it easier to find the 

berries in the forest landscape.  

Our results are supporting the earlier findings, which have showed that best bilberry yield can be 

found in mature stands with conifer dominance which are not too dense (e.g. Raatikainen et al. 1984, 

Miina et al. 2009, Turtiainen 2015). In addition more important than e.g. tree species is the light reaching 

bilberry stand. It has been found that the crown density of 10–50 % allows bilberry to flower and produce 

berries optimally (e.g. Raatikainen et al. 1984). This supports especially the usability of ALS based 

canopy cover in prediction of bilberry yields. 

Our study also supports the earlier findings that accurate prediction of berry yields is difficult 

because of the complexity of berry yield production; variables used in the models can not catch the 

spatial and temporal variation of berry yields for accurate berry yield modelling. But models can be used 

as an effective tool for predicting the most potential locations for the berry yields.  

More accurate wall-to-wall prediction of berry yields would demand more accurate information 

about tree species and especially site fertility, which has been critical variable in earlier berry yield 

models (e.g. Miina et al. 2009, Turtiainen 2015), but not accurately available in wall-to-wall data yet. 

To improve the yearly prognoses of berry yields more accurate temporal and spatial data, such as 

weather, pollination, site type and operational history data together with localized observations of berry 

yield developments could improve estimates.  

Despite the difficulties of modelling bilberry yields, our model could be imported to the forest 

planning system, like Heureka in Sweden (Wikström et al. 2011) and then the stand level prognosis of 

bilberry yield development under different forest management alternatives could be produced (e.g. 

Turtiainen  2015). This would support the forest owners growing interest for integrating multiple aspects 

of forest in management planning. So far no berry yield models have been integrated in forest planning 

systems in Sweden. 
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1. Introduction
Forest structural complexity is related to various ecological processes and ecosystem services (e.g. 
Pommerening 2002, Neill & Puettmann 2013, Hardiman et al. 2013). It can also improve the forests’ ability 
to adapt to environmental changes. In order to implement the management for complexity and to estimate 
its functionality, the level of structural complexity must be defined.  

Structural complexity can be described mathematically by fractal analysis (Mandelbrot 1977). Fractal 
dimension describes how complex a self-similar object is (Camarretta et al. 2020), and a box dimension is 
a method for estimating the fractal dimension of an object that is not exactly self-similar but fractal-like 
(Feldman 2012, Seidel 2018). In forestry applications, the box dimension has been used to measure the 
complexity of individual trees (e.g. Seidel et al. 2019a, b, Saarinen et al. 2021). The box dimension reflects 
simultaneously a number of different structural attributes (Seidel et al. 2019b) and has been associated, for 
example, with tree species, availability of light (Seidel 2018), type and strength of competition (Seidel 2018, 
Dorji et al. 2019), and tree growth (Seidel et al. 2019a, Saarinen et al. 2021).  

This study compares the structural complexity of Scots pine (Pinus sylvestris, L.) trees measured by two 
remote sensing techniques, namely, terrestrial laser scanning (TLS) and aerial imagery acquired with 
unmanned aerial vehicle (UAV). The premise is that TLS provides the best available information on 
structural complexity as the point density in TLS point clouds is larger than in UAV, and as TLS is able to 
penetrate vegetation. Research question are: 1) do TLS and UAV measured structural complexity differ 
significantly from each other, 2) what explains the possible divergence between the structural complexity, 
and 3) does the forest structure affect the divergence between TLS and UAV measured structural complexity 
of individual Scots pine trees? 

2. Data and Methods
The Scots pine tree dominated study area is located in southern Finland, site biome is southern boreal forest 
zone, and the fertility is mesic heath (Saarinen et al. 2021). During the 2000s, the study area was exposed 
to six different thinning treatments plus one control group with no treatment. Thinning treatments included 
two levels of thinning intensity (moderate, intensive) and three thinning types (from below, from above, 
systematic from above).  

The study area was field measured during 2018–2019 (Saarinen et al. 2021). Both TLS and UAV 
measurements were implemented in the fall of 2018. TLS point clouds were acquired using Trimble TX5 
3D phase-shift laser scanner, and UAV imagery was acquired using Gryphon Dynamics quadcopter 
equipped with two Sony A7R II digital cameras. TLS produced point clouds directly whereas aerial imagery 
was converted into point clouds with structure from motion (SfM) technology.  
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Box dimension (Db) values for each Scots pine tree (n=2065) were calculated from TLS and UAV 
measured 3D point clouds. Db-values were calculated with the natural logarithms of boxes needed (N) and 
the edge length of each box divided by the initial box size (r). The slope of the trend line determined the Db-
value. Welch’s t-test was used to compare the means of TLS and UAV measured Db-values. The dispersions 
of Db-values, tree heights and point clouds were examined with standard deviations, and the distribution of 
TLS and UAV measured points was examined by dividing trees longitudinally into two equal parts and 
calculating the proportion of points below and above. The differences between the ranges of TLS and UAV 
measured x-, y- and z-axes were examined by subtracting UAV ranges from TLS ranges. Simple linear 
regression was used to examine whether the number of TLS and UAV measured points explained the 
variation in Db-values and whether the number of the smallest boxes explained the variation in Db-values. 
Linear mixed-effect model was used to examine whether different thinning treatments affected TLS and 
UAV measured Db-values. Tukey’s honest significant test was used to scrutinise between which thinning 
treatments there was a statistically significant difference in Db-values. The correlations between different 
variables were tested with Pearson correlation test. 

3. Results
TLS and UAV measured Db-values differed significantly from each other (p-value<0.001) and did not 
provide comparable information on the structural complexity of the individual Scots pine trees. On average, 
UAV measured Db-values were 5% larger than TLS measured values. The divergence between the TLS and 
UAV measured Db-values was explained by the differences in the number and distribution of the points in 
the point clouds and by the differences in the estimated tree heights and number of boxes in the box 
dimension method.  

TLS measured 15 times more points than UAV. On average, 65% of TLS measured points were placed 
below and 35% above the midpoint of the tree height. With UAV, the percentages were 22% below and 
78% above. The standard deviations of the points with respect to all axes were bigger in UAV measurements 
compared to TLS. High correlation occurred between TLS and UAV measured Db-values (75%) and 
between the number of UAV measured points and Db-values (71%). The enhancement in the amount of 
UAV measured points did not erase the divergence between TLS and UAV. Compared to field 
measurements, UAV underestimated the tree heights more than TLS, and the number of the smallest boxes 
was on average 64% bigger in UAV than in TLS. The number of the smallest boxes affected the variation 
in TLS and UAV measured Db-values (R2= 0.79, 0.68, respectively). 

Forest structure significantly affected the variation of both TLS and UAV measured Db-values (p-values 
<0.001), but the divergence between TLS and UAV measured Db-values remained in all the treatments. 
Plots with no treatment differed from all other thinning treatments except from the moderate systematic 
thinning. Db-values were the largest with intensive thinning treatments and the smallest on plots with no 
treatment. The largest point densities were found on plots with intensive thinning from below and the lowest 
on control plots. In terms of the individual tree detection, the number of obtained points in the point cloud, 
and the distribution of these points, UAV measurements were better in sparse compared to dense forest 
structure. 

4. Discussion
The standard deviations of the points were larger in UAV measurements compared to TLS since TLS 
measured points were more closely clustered near the stem, whereas with UAV, the outer edges of the crown 
affected more. With UAV, more points were obtained from the upper part of the tree but at the same time, 
the ground vegetation was not properly excluded, which increased the standard deviation of the points. The 
smaller ranges UAV measured points is explained by the fact that UAV method was not able to observe the 
extreme points as well as TLS and was averaging the treetops and sides. In general, the more the tree height 
is underestimated, the smaller the initial box size in Db-calculations is, and the smaller the boxes, the more 
of them are needed to cover trees. Because a larger number of scattered boxes yields a higher Db-value, the 
UAV measured Db-values were higher than TLS measured.  
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The competitive pressure has been confirmed to reduce Db-values (Juchheim et al. 2017, Dorji et al. 
2019, Seidel et al. 2019a, Saarinen et al. 2021). In this study, the thinning intensity was observed to affect 
more than the thinning type. Largest Db-values were reached on the plots with intensive thinnings (less 
competition and more space to grow). On the control plots, the Db-values were smaller and also the standard 
deviations of the points were smaller. That is, the trees were structurally less complex and more similar to 
each other when compared to trees on the other plots.  

5. Conclusions
Photogrammetric point clouds generated from UAV imagery did not result in comparable structural 
complexity information to TLS. UAV measurements were better in forests with intensive thinning indicating 
the method’s better suitability in sparse forest conditions. Future research should study whether TLS and 
UAV can be used as complementary techniques to provide more accurate and holistic view of the structural 
complexity in the perspective of both tree- and stand-level. UAV-LiDAR data should be studied also as it 
may better characterize crown and stem.  
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1. Introduction
Deforestation and forest degradation account for about 12% of global anthropogenic carbon emissions, 
which is second only to fossil fuel combustion (Le Quéré et al., 2009). This estimate is highly uncertain 
due to inadequate estimates of forest carbon stocks and is expected to range from 6 to 17% (van der 
Werf et al., 2009). Carbon emissions are partly compensated for by carbon uptake from the regrowth of 
secondary forests and the rebuilding of soil carbon pools following afforestation. However, the global 
distribution of terrestrial carbon sinks and sources is highly uncertain. Constraining the inaccuracy of 
these carbon estimates is essential to quantify benefits of avoided deforestation, return on investment in 
forest management and to support effective future climate mitigation actions (Pan et al., 2011). The 
debate concerning a possible Amazon forest die-back, i.e catastrophic losses of forest cover and 
biomass, illustrates the growing concern that terrestrial ecosystems (and tropical forests in particular) 
might not be able to maintain uptake of anthropogenic emissions at the current rate (Huntingford et al., 
2013). A better understanding of forest growth dynamics will improve our understanding of the carbon 
cycle and mechanisms responsible for terrestrial sources and sinks of carbon, reducing their 
uncertainties of magnitude and distribution (Pan et al., 2011). 
Our current knowledge about forest growth is limited, mainly due to challenges in accurately measuring 
tree structure, e.g. tree height and aboveground biomass (AGB), repeatedly and objectively. Diameter 
at breast height (DBH) is often used to indirectly estimate height or AGB through empirical relationships 
(i.e. allometric models), or to quantify forest growth (Ellsworth et al., 2017) as it is relatively easy to 
measure. However, due to the difficulty and high cost of destructively sampling trees, the measurements 
that underpin those allometric models are based on a limited sample size, which is also heavily biased 
towards smaller trees.  

Figure 1: Illustrations of the free-air CO2 enrichment experiment EucFACE. 
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Novel techniques using 3D terrestrial LiDAR (also referred to as terrestrial laser scanning, TLS) 
can provide us with a more accurate way to estimate the structure of trees (Calders et al., 2015a). TLS 
can objectively measure the canopy structure in 3D with high detail and accuracy, and recent work on 
characterising forest structure using TLS showed (a) a much better agreement with destructively 
harvested reference measurements compared to traditional techniques (Calders et al., 2015a); and (b) 
superiority and stability of TLS measurements in the context of repeatable measurements (Calders et 
al., 2015b). 

2. Measuring forest growth in a free-air CO2 enrichment experiment
EucFACE is a free-air CO2 enrichment experiment that consists of six circular 25 m rings in a mature 

broadleaved evergreen forest (Figure 1). The main species is Eucalyptus tereticornis, which has a 
distribution through sub-tropical and temperate zones in Australia. Three rings have been exposed to a 
CO2 increment of +150 parts per million (i.e. the projected global atmospheric CO2 concentration for 
2050) compared to ambient concentrations since 2012, with the other three rings serving as control plots. 
TLS data has been collected at EucFACE rings in 2012, 2015, 2018 and 2020 using a RIEGL VZ-400. 
Figure 2 shows a cross section through the TLS data of one of the rings in 2012. The objective of this 
work is to test the hypothesis that “elevated CO2 concentration levels have an effect on forest growth?”. 
Here, we will show results from estimating tree growth explicitly through 3D TLS data over an eight-
year period, taking into account the full structure of the tree, and link this to elevated CO2 concentration 
levels. We will show results from both (a) gap fraction analysis and (b) the extraction of tree point clouds 
from within each EucFACE ring. We will then show the time progression of stand structural dynamics 
of plant area index, as well as individual tree parameter dynamics including DBH, tree height and crown 
area. 

Figure 2: Terrestrial laser scanning 2012 data cross section of ring 1 of the EucFACE experiment. 
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1. Introduction

Terrestrial ecosystems provide a very wide range of essential ecosystem services, but these services are 

under increased levels of stress due to climate change. An increase in global temperature is leading to 

more extreme events, such as forest fires and droughts. Drought is one of the most important potential 

threats to tropical forests, and can result in forest die-back, i.e catastrophic losses of forest cover and 

biomass. This illustrates the growing concern that terrestrial ecosystems (and tropical forests in 

particular) might not be able to maintain uptake of anthropogenic emissions at the current rate 

(Huntingford et al., 2013; Verbesselt et al., 2016).  

Ecosystem structure and climate are closely-linked: changes in climate lead directly to physical 

changes in ecosystem structure and vice versa (Grimm et al., 2013). Different global change factors, 

such as fire, nutrient deposition and drought, could have an impact on forest structure. Feedbacks 

between canopy structure and seasonal droughts, for example, suggests that tree phenological and 

hydrological strategies are linked in tropical forests, which could determine which tree species will 

survive under shifting precipitation regimes (Smith et al., 2019). To improve our understanding of these 

mechanisms and ecosystem resilience, we require information of the fine-scale structural heterogeneity 

between individual trees, as well as forest structural differences at larger spatial scales. This will be key 

for effective forest management and to support climate mitigation actions appropriately (Houghton et 

al., 2009; Pan et al., 2011).  

Drought experiments simulate drought conditions by excluding rainfall from a given zone, and local 

consequences on soil, tree or ecosystem functioning are monitored. These drought experiments bring 

highly valuable information on the mechanisms involved in the response of ecosystems to drought 

(Bonal et al., 2016). Inducing plot-level droughts is logistically and financially difficult, but it is 

important to operate at a relatively large scale because many adult trees have laterally extensive root 

systems (Laurance 2015).  

Novel techniques using 3D laser scanning (LiDAR – Light Detection and Ranging) can provide us 

with a new way to estimate the structure of individual trees (Calders et al., 2015; Raumonen et al., 2013; 

Hackenberg et al., 2015). Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with 

high detail, and several algorithms have recently been developed to produce full 3D models of trees 

down to fine (cm) scale. Terryn et al. (2020) calculated 17 different structural tree metrics in the context 

of tree species identification.  

Within this study we explore the same structural metrics to determine if induced drought affects 

tropical tree structure on a time-span of 3 years using TLS. 

2. Data and Methods

2.1 Study site 

The Daintree drought experiment is a through-fall drought experiment which has been maintained 

continuously since 2015 in a lowland rainforest at the Daintree Rainforest Observatory near Cape 

Tribulation, in north Queensland, Australia (detailed in Laurance, 2015, Tng et al., 2018). The 

experiment comprises one 0.6 ha control plot with no drought infrastructure and a 0.4 ha drought plot. 

The site is characterised by a mean annual rainfall of 5143 mm/year and a mean temperature of 24.4°C. 
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2.2 Laser scanning data collection 

TLS data were collected in August 2018 (during the dry season) from the Daintree drought experiment 

plot (Figure 1). TLS was collected using a RIEGL VZ-400 terrestrial laser scanner (RIEGL 

LaserMeasurement Systems, Horn, Austria), which provides multiple returns for a single outgoing laser 

pulse. The control part of the plot was scanned in a 10 m by 10 m regular grid and at each scan location 

an additional scan was acquired with the instrument tilted at 90° from the vertical to sample a full 

hemisphere. The drought experiment part of the plot was scanned under the drought panels as well as a 

few scans in the gutters between the panels (Figure 1). Reflective targets were used to co-register all the 

scan locations to a single point cloud using RIEGL’s RiSCAN PRO software package. The co-

registration of the scan positions was further optimized with the Multi-Station Adjustment (MSA) 

algorithm, within the RiSCAN PRO software package. The MSA algorithm modifies the orientation and 

position of each scan in several iterations to calculate the best overall fit. 

Figure 1 Illustration of the drought experiment and the RIEGL VZ-400 terrestrial laser scanner. 

2.3 Expected tree structure quantification 

Individual trees from the control as well as the experiment will be automatically extracted from TLS 

using a novel individual tree segmentation routine based on shortest-path calculations (Raumonen et al., 

2021). Next, tree structure will be modelled through Quantitative Structural Models (QSM) built with 

TreeQSM (Raumonen et al., 2013). From these QSMs different structural tree metrics relating to 

branching structure and, crown and tree dimensions will be obtained (Terryn et al., 2020). The process 

from TLS point cloud to individual tree structural features is illustrated in Figure 2. 

Figure 2 Illustration of the feature extraction process. 

3. Expected outcomes

Tng et al. (2018) showed that species‐specific systematic variation in hydraulic‐related wood anatomy 

and leaf traits was a response to 24 months of drought stress in the Daintree drought experiment. They 

showed that relative to controls, drought‐affected individuals variously exhibited trait measures 

consistent with increasing hydraulic safety (e.g. narrower or less vessels, reduced vessel groupings, 
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lower theoretical water conductivities, less water storage tissue and more abundant fiber in their wood, 

and more occluded vessels) (Tng et al., 2018). These responses could in their turn result in changes in 

the 3D structure of the drought-affected trees. We expect that some structural traits might take longer to 

respond to stress, and some others (e.g. leaf and branching angles) to show responses. 
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1. Introduction

Traditionally, the studies on vegetation dynamics have used spectral sensors, but they have some 

limitations such as the inability to penetrate forest canopies (Keane et al 2001). LiDAR technology has 

proven to be a reliable tool to measure forest structure parameters (Botallico et al 2017) and it is able to 

overcome that drawback. In this study, forest vertical structure has been associated to the seven different 

fuel types of the Prometheus classification system (Prometheus S.V 1999). 

The purpose of this study is to present a cost-effective methodology to provide a fuel type classification 

and dynamics of the vegetation based on conditional rules and according to the Prometheus classification 

system. 

2. Data and Methods

2.1 Study area 

The study area was located in La Rioja (Spain) and it was a tile with a side of two Km with south-west 

corner coordinates in UTM: 504,000; 4,660,000 (Figure 1). 

2.2 LiDAR data 

The discrete LiDAR data used in this study was open-access and provided by the Spanish Geographic 

Institute (IGN). Two different datasets were used in order to compare the vegetation structure: the 2010 

dataset, with a scan density of 0.5 pulses · m-2 and the 2016 dataset, that had a scan density of 2 

pulses · m-2. The LiDAR data was processed, and the metrics were extracted for a 20 x 20 m spatial 

resolution grid, using FUSION software v.4.10 and RStudio v.1.3.1093. 

2.3 Fuel type Classification 

In order to assign a fuel type (FT) to each cell, the rules shown in Table 1 were followed: 

Figure 1. Location of the study area (García-Cimarras et al 2021) 
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Table 1. Fuel type classification system used for the LiDAR data. Mode: the stratum with the highest 

number of returns, 2nd Mode is the second height interval with more returns. 3rd Mode: the third height 

interval with more returns. Max.Elev: maximum elevation (García-Cimarras et al 2021)  

2.4 Data validation 

For the data validation, 15 cells (when available) per fuel type and dataset were randomly selected. 

Then, a fuel type was assigned to each validation cell by observing the point cloud displayed in FUSION 

LDV and contrasted with the conditional classification showed in Table 1. The accuracy assessment was 

performed with a confusion matrix and summarized using overall accuracy and user’s accuracy, 

weighted producer’s accuracy (Olofsson 2013, Stehman 1996), and Kappa coefficient.  

3. Results and Discussion

The overall accuracy was nearly identical for the 2010 and 2016 datasets (80.72% and 81.26%, 

respectively). User’s and producer’s accuracies were generally high (from 0.60), but most of the error 

was found in forest with vertical continuity (FT7; 0.18 in the 2010 dataset), forest with shrubs (FT6; 

0.19 in the 2016 dataset) and low shrubs (FT2; 0.09 in the 2010 dataset). The Kappa coefficient was 

0.73 for both datasets. Figure 2 shows the classification results for both datasets.  

It can be seen that in 2016, low shrubs (FT2) had an even lower presence compared to 2010 dataset. 

Also, the area that was classified as forest with shrubs (FT6) in 2016 in the north-east of Figure 1 a), 

was classified in 2016 as forest without shrubs (FT5). Some potentially hazardous transitions from fuel 

Ground 

(%) 

Cover 

(%) 

Mode 

(m) 

2nd Mode 

(m) 

3rd Mode 

(m) 

Max.Elev 

(m) 
Description Fuel Type 

 >60 Pastures FT1 

≤60 

<50 

0.0-0.3 Pastures FT1 

0.3-0.6 Low shrubs FT2 

0.6-2.0 Medium shrubs FT3 

2.0-4.0 High shrubs FT4 

>4.0 

0.0-0.3 Pastures FT1 

0.3-0.6 Low shrubs FT2 

0.6-2.0 Medium shrubs FT3 

2.0-4.0 High shrubs FT4 

≥50 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

2.0-4.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

>4.0 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

2.0-4.0 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 
Forest with vertical 

continuity 
FT7 
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types without forest (FT5) or forest with shrubs (FT6) to forest with vertical continuity (FT7) were 

detected, especially in the south-west area.  

Figure 2. Classification results for the 2010 (a) and 2016 (b) LiDAR datasets. Borders of vegetation 

cover types (grey lines) from the Spanish National Forest Map are shown for reference (García-

Cimarras et al 2021) 

4. Conclusions

We present an inexpensive, simple, and accurate methodology to detect areas where of vegetation 

changes and growth, especially the understory layer, which can lead to an increase in fire hazard. It can 

save resources, especially where the difficult access makes impossible or too expensive the collection 

of field data. Additionally, it can be helpful to improve the management and the decision-making 

process. LiDAR data has proven to be able to provide vital information with an adequate accuracy of 

the fuel type transitions that occurred. 
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1. Introduction

During the past two decades, the potential of Light Detection and Ranging (LiDAR) in forest 

applications has been revealed by both scientific research and commercial products. One major 

application of LiDAR is estimation of forest parameters at a single-tree level, e.g. individual tree height, 

diameter at breast height (DBH), crown diameter, stem, and crown volume. Accurate estimates of these 

forest parameters can be achieved using different scanning platforms, including airborne laser scanning 

(ALS), terrestrial laser scanning (TLS), and mobile terrestrial laser scanning (MLS). Attention has been 

focused on the dominant and subdominant trees; fewer algorithms have focused on low vegetation 

(Ferraz et al., 2012; Harikumar et al., 2019; Paris et al., 2016), especially the small trees below the top 

canopy. In this study, we propose an individual tree segmentation (ITS) method, based on the 

symmetrical structure of trees (SSD). The SSD algorithm aims at segmenting point clouds of dominant 

trees and low vegetation accurately, which would be crucial for identifying low vegetation in the future. 

2. Data and Methods

2.1 Data 

The study area, Krycklan (64°14′N, 19°50′E), is located in the north of Sweden, within boreal forest. 

The common tree species are Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birch 

(Betula pendula and Betula pubescens). A field inventory of 80 m square plots was conducted in 2016. 

Each 80 m × 80 m plot was divided into 16 subplots of 20 m. For each tree, the positions and DBH were 

measured and the tree height was calculated from allometric relationships between height and DBH 

from sampling trees. In total, 251 subplots from 23 plots were used in the study, with exclusion of the 

subplots with selective cuts during the period from the field inventory to the laser scanning. 

Subsequently, “plot” refers to the 20 × 20 m subplots. Plot data are presented according to density level 

(Table 1). 

Table 1. Attributes of the study plots. 

Category 
Density 

class 

Threshold 

[stems] 

Number 

of plots 

Stem density 

[stems/ha] 

DBH 

[cm] 

Tree height 

[m] 

Mean Std Mean Std Mean Std 

D-1 Low ≤700 71 637 241 20.2 3.4 16.0 1.5 

D-2 Medium 700–1100 28 704 306 23.4 5.4 17.5 3.2 

D-3 High >1100 18 1383 732 14.7 3.1 12.0 1.9 

Multispectral ALS data were acquired on June 28, 2019, with a RIEGL VQ-1560i-DW. This 

resulted in a scan width of 582 m and a measurement density of 24 pulses per m2 and channel in each 

flight strip. TLS data were collected in 2016 using a Trimble TX8 from 4 × 4 scanning stations. The 

TLS point clouds were co-registered to ALS using the Iterative Closest Point (ICP) algorithm 

implemented in MATLAB. Then ALS and TLS point cloud for each plot was merged. 

2.2 Methods 

For this algorithm, the detection and segmentation of dominant trees were based on the symmetrical 

structure of individual trees. Pine and spruce, the most common tree species in Sweden, usually have 
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symmetrical tree shapes: conical tree crowns and cylinder stems. In this study, points of dominant trees 

(Pdominant) were identified by creating cylinder spaces for individual dominant trees. The upper cylinder 

A was designed for tree crowns, with the CR identified as the radius of the cylinder. The lower cylinder 

B was designed for stems, with the detected CBH as the height of the cylinder. To obtain a proper space 

for Pdominant, the key parameters were CR and CBH. 

Step 1 Definition of target point clouds for individual trees. We generated seed points from local 

maximum heights (LMH) detected from the nDSM smoothed by Gaussian filtering. We defined the 

target point clouds for individual trees as the points within 3 m horizontal distance to the seed points.  

Step 2 Plotting the symmetry curve. The coordinates of the target point cloud were transformed 

from(𝑥, 𝑦, 𝑧) to (ℎ, r, 𝑞) using the method proposed by Huo and Zhang (2019), where h is the voxel 

height, r is the hornizatol voxel distance to the orgin, and q is the borizontal angle. Let 𝑉 = {𝑣𝑐}𝑐=1
𝐶  be

the set of voxels with coordinates ℎ = 𝐻𝑖 and 𝑟 = 𝑅𝑗, with 𝐻𝑖 being the height of the voxels and 𝑅𝑗 the

distance to the centre of the voxels. If more than 
3

4
 voxels in Set 𝑉 were occupied by laser returns, we 

determined that a symmetrical structure existed at (𝑅𝑗, 𝐻𝑖). The curve was plotted for (𝑅𝐽, 𝐻𝑖), as in

Figure 1 (a-1, b-1). 

Step 4. Determination of true/false treetops. We determined a seed as true treetops if (1) there 

was less than 50% R among the upper 1/3 tree height are zero (designed for pines); or (2) there was 

less than 50% 𝑅 among the lower 1/2 tree height are zero (designed for spruces). 

Step 5 Detection of CR and CBH from symmetry curves. The symmetry curves were first 

smoothed, and from the curves, CR was determined as the point (𝑅𝑢, 𝐻𝑢), and CBH as (𝑅𝑙 , 𝐻𝑙)
(Figure 1 a-2, b-2). The value of (𝑅𝑢, 𝐻𝑢) was set to the first point from the top when R no longer

increased more than 0.25 m from 𝐻𝑖 to 𝐻𝑖+1. 𝑅𝑢 represented the radius of the symmetrical crown.

Point (𝑅𝑙 , 𝐻𝑙) was at the lower part of the curve, indicating the lower edge of a tree crown with a

height of 𝐻𝑙 and a radius of 𝑅𝑙. Detection continues from 𝐻𝑢 to a lower H, until the first local

minimum R emerges, with the value (𝑅𝑙 , 𝐻𝑙).
Step 1.6 Creation of the clipping space. For each treetop, a clipping curve (Figure 1 a-e, b-e) 

was created to include the space for the individual tree according to the (𝑅𝑢, 𝐻𝑢) and (𝑅𝑙 , 𝐻𝑙) values.

Laser points inside the clipped space were classified as Pdominant (Figure 1).  

Figure 1. Two examples of the symmetry curve. (a-1, b-1) An unsmoothed symmetry curve, and (a-2, 

b-2) a smoothed symmetry curve, with (𝑅𝑢, 𝐻𝑢) (upper red stars) and (𝑅𝑙 , 𝐻𝑙) (lower red stars). (a) An

example of a pine with a funnel space. (b) An example of a spruce with a cylindrical space. 

Detection results were validated by matching with the field data. The detection rate (DR), recall 

(R), precision (P), and F-scores (F) were calculated. 

3. Results and Discussion

When averaging all the plots, the SSD algorithm achieved a value of 0.86 for DR (Table 2). Similar to 

other ITC segmentation algorithms, the detection rates decreased for plots with higher densities. Figure 

2 shows two examples of the SSD segmentation. 

By testing the symmetrical structure of trees, the SSD algorithm segments point clouds of the 

dominant trees and low vegetation. The next potential use of the SSD algorithm could be the 

identification and analysis of low vegetation, by removing the point clouds of dominant trees from a 

plot and keeping the point clouds of low vegetation.  
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Table 2. Detection accuracy of SSD algorithm 

Attribute Category* DR R P F 

Density 

D-1 0.93 0.93 0.83 0.88 

D-2 0.87 0.88 0.89 0.89 

D-3 0.78 0.80 0.93 0.86 

All plots 0.86 0.87 0.83 0.84 

Figure 2. Two examples of classifying Pdominant. (a) Point clouds of a pine. (b) Point clouds of a spruce. 

(1 – 3) Side view of the Ptarget, Pdominant and the rest of the points, respectively. (4 – 6) Top view of the 

Ptarget, Pdominant and the rest of the points, respectively. 

4. Conclusions

In this study, we proposed an algorithm of ITS by testing the symmetrical structure of individual trees. 

The crown radius and crown base height were estimated from a vertical symmetry curve of a tree. By 

creating cylinder spaces of the dominant trees, laser points were segmented into dominant trees and low 

vegetation. The SSD algorithm achieved 0.87 detection rate and 0.84 F-scale when matching the 

detected trees with the field records. Segmenting point clouds of dominant trees and low vegetation 

accurately could potentially contribute to the identification of low vegetation. 
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1. Introduction

Forests cover 31% of the global land area, and monitoring forest resources are therefore critical for 

understanding earth’s ecosystems. The NASA’s Global Ecosystem Dynamics Investigation (GEDI) 

mission uses a full-waveform lidar system to measure forest structure from space (Dubayah, R., et al., 

2020). However, lidar observations are impacted by cloud cover and haze in tropical forests. Synthetic 

Aperture Radar (SAR) can penetrate clouds. In addition, the long-wavelength SAR system such as P-

band can record backscattered signal under the canopy. As the first P-band SAR satellite in the world, 

ESA’s BIOMASS satellite is planned to launch in 2022 (Le Toan, T., et al., 2011). During its SAR 

tomography (TomoSAR) phase, multi-pass SAR images with different elevation angles will be 

processed to retrieve the reflectivity profiles of forests. TomoSAR profiles show some similarities with 

lidar waveforms because they are continuous indicators of the vertical structure of forests. Therefore, 

the difference in wavelength, imaging geometry and operating spatial coverage between GEDI on the 

International Space Station and BIOMASS in a polar orbit create the potential for forests measuring and 

monitoring at a global scale in temperate and tropical ecosystems. Here, we compare full-waveform 

lidar observations from GEDI and airborne systems with TomoSAR images in P-band as acquired by 

the AfriSAR2016 campaign over Lopé, Gabon.  

2. Data and Methods

2.1 Data 

Our research area is located in Lopé National Park (Figure 1), where is mainly covered by savanna (0 

to 15 m in height) and forests (30 to 50 m), with tree canopy cover ranging from 0 to 0.99. The maximum 

terrain slope can reach 20o. In order to exclude the influence from background solar illumination, we 

only use GEDI data acquired at night. The GEDI L1B Version 1 product (Dubayah, R., et al., 2020) and 

GEDI L2A Version 1 product (Dubayah, R., et al., 2020) are filtered according to quality and degrade 

flags. GEDI and LVIS can achieve 1 m vertical accuracy, determined by the 15 ns and 11 ns bandwidth. 

The airborne lidar data and airborne P-band SAR data were acquired by NASA’s Land, Vegetation and 

Ice Sensor (LVIS) team (Blair, J. B., et al., 2018) and by DLR’s F-SAR system, during AfriSAR2016 

campaign (Hajnsek, I., et al., 2011). Some key parameters of the data are listed in Table 1.  

Table 1. Key parameters of the data. 

Sensor Platform Wavelength Acquisition 

time 

Resolution Reference 

ellipsoid 

Geolocation 

accuracy 

GEDI Spaceborne 1064 nm 14.08.2019 25 m WGS-84 10-20 m 

LVIS Airborne 1064 nm 02.03.2016 18 m WGS-84 1 m 

FSAR Airborne 69 cm 10.02.2016 2 × 3.84 m WGS-84 0.15 m 

2.2 SAR Tomography 

SAR Tomography (TomoSAR) assumes the recorded complex value in each azimuth-range cell is the 

integration of backscattered signal along cross range direction. The multitrack SAR images acquired at 

different positions can then be used to estimate reflectivity profile, which indicates the volumetric 

information of imaging objects. For our forests scenario, a 20 m × 20 m multilook window was used to 

generate covariance matrix from 10 Single Look Complex (SLC) images at HV polarization.  
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We applied the popular Capon method (Lombardini, F., et al., 2003) and then transform retrieved 

profiles from SAR geometry to a geographic coordinate system (Pardini, M., et al., 2018). The vertical 

Rayleigh resolution of TomoSAR changes from 8 m (near range) to 40 m (far range) along slant range 

direction, which is determined by the imaging geometry and wavelength. However, Capon can achieve 

better vertical resolution (Cazcarra-Bes, V., et al., 2019). Considering the similarity with lidar waveform, 

we use the term “waveform” to describe these derived profiles as well. Based on the local maxima above 

0.1 in normalized TomoSAR waveform, we estimated the relative height (RH) metrics. 

Figure 1: Lopé. From Google basemap to top: LVIS DTM, P-band Pauli SLC and GEDI footprints. 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 2: (a)-(c): Slice of RH0 to RH100. (d)-(e): Slice of RH50 and RH100. 

3. Results and Discussion

In Figure 2 (a)-(c), we plot the RH0-100 along a full power beam BEAM1000 (i.e., red points in Figure 

1). The coverage beam and full power beam are two beam patterns of GEDI, and full power beam has a 

design specification to detect the ground through 98% canopy cover. Note RH0-100 from GEDI L2A 

Version 1 product and TomoSAR are sampled with 1% while only RH in step of 5% is available for 

LVIS. In the overlapped area (1500~10500m), these three sensors present similar forest top height. The 

distribution of GEDI RH metrics is more consistent with LVIS than TomoSAR, especially in the hilly 

area from 8000 m to 10000 m (see Figure 1). As we can see from Figure 2 (d)-(e), TomoSAR RH50 and 

RH100 both generally matches well with lidar. It means, besides forest top height, there is also similarity 

in the vertical distribution of waveforms as well as corresponding forest structure. 

We also analysed the RH50 and RH100 from LVIS and TomoSAR with all GEDI data processed 

using two different algorithms, i.e., a1 (default) and a5, to figure out the influence of ground detection 

algorithms in dense forests. The main difference between a1 and a5 is the threshold and smoothing 

settings used to interpret the received waveform. LVIS metrics are highly related with TomoSAR for 

both RH50 and RH100 (Figure 3). However, the GEDI metrics derived with a5 and selected with 

minimum sensitivity of 0.96 show significantly improved relation with LVIS and TomoSAR.  
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(a) RH50 (b) RH100 

Figure 3: (a): RH50 with GEDI_a1 and a5. (b): RH100 with GEDI_a1 and a5. (upper triangle) Pearson 

correlation, (diagonal) variable distribution, and (lower triangle) scatterplots of each pair are showed.   

4. Conclusions

In this abstract, we compared the relative height (RH) metrics from GEDI, LVIS and airborne P-band 

TomoSAR. Both GEDI and TomoSAR show some consistency with LVIS data. The agreement between 

GEDI and the BIOMASS TomoSAR RH metrics may be affected by coarser resolution and the three-

year time lag between both observations. Nevertheless, the continuous spatial and temporal coverage of 

SAR data provides us an opportunity to measure and monitor forest vertical structure at a larger scale 

than lidar. The retrieved vertical profiles can then be converted to biomass profiles (Caicoya, A., et al.). 

Thus, the use of GEDI products as reference points in forests without airborne lidar or in-situ plots is 

likely to be a fruitful avenue for the development of 3-dimensional forest biomass products from future 

BIOMASS TomoSAR observations. 

Acknowledgements 

The authors would like to thank ESA, LVIS team and GEDI team for providing SAR, LVIS and GEDI 

data. This work was supported by China Scholarship Council (CSC).  

References 

Dubayah, Ralph, et al. "The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the 

Earth’s forests and topography." Science of remote sensing 1 (2020): 100002.  

Le Toan, Thuy, et al. "The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial 

carbon cycle." Remote sensing of environment 115.11 (2011): 2850-2860. 

Dubayah, R., et al. (2020). GEDI L1B Geolocated Waveform Data Global Footprint Level V001 [Data set]. NASA 

EOSDIS Land Processes DAAC. Accessed 2021-04-16 from https://doi.org/10.5067/GEDI/GEDI01_B.001. 

Dubayah, R., Hofton, M., Blair, J. B., Armston, J., Tang, H., Luthcke, S. (2020). GEDI L2A Elevation and Height 

Metrics Data Global Footprint Level V001 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 

2021-04-16 from https://doi.org/10.5067/GEDI/GEDI02_A.001. 

Hajnsek, I., et al., “Technical assistance for the development of airborne SAR and geophysical measurements 

during the AfriSAR campaign,” Eur. Space Agency, Paris, France, Final Tech. Rep. 4000114293/15/NL/CT, 

2011. [Online]. Available: https://earth.esa.int/documents/10174/134665/AfriSAR-Final-Report.  

Blair, J. B. and Hofton, M. 2018. AfriSAR LVIS L1B Geolocated Return Energy Waveforms, Version 1. [Indicate 

subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive 

Center. doi: https://doi.org/10.5067/ED5IYGVTB50Z. [Date Accessed]. 

Lombardini, Fabrizio, and Andreas Reigber. "Adaptive spectral estimation for multibaseline SAR tomography 

with airborne L-band data." IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing 

Symposium. Proceedings (IEEE Cat. No. 03CH37477). Vol. 3. IEEE, 2003.  

Pardini, M., et al. "L-and P-band 3-D SAR reflectivity profiles versus lidar waveforms: The AfriSAR case." IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11.10 (2018): 3386-3401. 

Cazcarra-Bes, Victor, et al. "Comparison of tomographic SAR reflectivity reconstruction algorithms for forest 

applications at L-band." IEEE Transactions on Geoscience and Remote Sensing 58.1 (2019): 147-164. 

Caicoya, Astor Toraño, et al. "Forest above-ground biomass estimation from vertical reflectivity profiles at L-

band." IEEE Geoscience and Remote Sensing Letters 12.12 (2015): 2379-2383. 

30



Estimating Timber Volume using Harvester Data and Airborne Laser 
Scanner Data from Multiple Acquisitions 

L. Noordermeer, E. Næsset, T. Gobakken 

Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, 

NO-1432 Ås, Norway 

Email: {lennart.noordermeer; erik.naesset; terje.gobakken}@nmbu.no 

1. Introduction

Airborne laser scanning (ALS) data have played a central role in the field of forest inventory over 

the last decades (White et al. 2016). Forest attributes are commonly estimated from ALS data by linking 

field reference data to ALS metrics in statistical models (Næsset 2002). Herein, accurately 

georeferenced field data are essential, and remain a main cost component in operational forest 

inventories (Gobakken and Næsset 2008). 

In the context of cost saving, data recorded by forest harvesters are emerging as a potential 

supplement to, or replacement for, traditional field measurements in operational forest inventories 

(Lindroos et al. 2015). Cut-to-length harvesters measure and store large amounts of data on the 

dimensions and characteristics of harvested logs. In addition, harvesters are commonly equipped with 

Global Navigation Satellite System (GNSS) receivers which provide a spatial reference and time stamp 

for each harvested tree (Olivera 2016).  

Newly developed harvester positioning systems enable georeferencing of individual trees with 

submeter accuracy (Hauglin et al. 2017; Noordermeer et al. 2021). Previous studies have shown that 

accurately georeferenced harvester data can be linked to ALS data to estimate timber volume (Hauglin 

et al. 2018) and stem diameter distributions (Maltamo et al. 2019). The mentioned studies used ALS 

data from a single acquisition, and experimentally installed sensors to monitor the position of the 

harvester head relative to the machine. Recently developed technology in cut-to-length harvesters of 

several manufacturers allows for measuring and recording coordinates of harvested trees automatically 

with standardized sensor hardware (Westerberg 2014; Bhuiyan et al. 2016; La Hera and Morales 2019), 

enabling extensive and automatic georeferenced tree-level data collection. These data may prove 

beneficial to a range of inventory applications that fall outside the scope of periodic forest inventories, 

such as short-term planning of timber harvesting within a region in which a harvester operates. It is 

therefore important to assess the suitability of data collected by harvesters equipped with industry 

standard positioning systems for volume estimation, using ALS datasets acquired with different scanners 

and over multiple years. 

The aim of this study was to assess the accuracy of timber volume estimated from harvester data 

obtained using industry standardized crane sensor systems and differential GNSS positioning, and ALS 

data acquired over multiple years. 

2. Data and Methods

2.1 Harvester data 

Harvester data were collected from 33 logging operations between March 2019 and June 2021 using 

a single-grip Komatsu 931XC harvester. The operations were located in Innlandet county in 

southeastern Norway. As optional equipment supplied by the manufacturer, a sensor was mounted on 

the crane which measured the angle between the inner and outer boom (Bhuiyan et al. 2016), enabling 

improved crane tip positioning. In addition, we replaced the harvester’s standard GNSS with a real-time 

kinematic Septentrio AsteRx-U GNSS receiver, with which tree positions were georeferenced with 

submeter accuracy (Noordermeer et al. 2021). Harvester production report (HPR) files were exported in 

StanFord 2010 format (Arlinger et al. 2012) which, among other things, included log volumes and 

coordinates of crane tip positions during fellings. We summed log volumes for each harvested stem and 

linked the volumes to the corresponding crane tip positions. 
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2.2 ALS Data 

ALS data were acquired in the years 2013, 2016, 2017, 2019 and 2020 (Table 1) covering different 

areas which in some cases overlapped. Therefore, the delay between ALS and harvester data acquisition 

varied from one to eight years. For each logging site, we clipped the most recently acquired ALS data 

from within the spatial extent of the site, and classified the laser echoes as ground or non-ground. We 

then normalized the ALS data, i.e., the height above ground was calculated for all echoes classified as 

non-ground. 

Table 1. Airborne laser scanning acquisition parameters. 

Year Instrument Time 

period 

Pulserate 

(kHz) 

Scan rate 

(Hz) 

Flying 

altitude (m) 

Echo density 

(m-2) 

2013 TopEye S/N 444 May-July 200 92 1500 7.7 

2016 Riegl LMS Q-1560 September 400 100 2900 3.2 

2017 Riegl VQ-1560 I July 700 240 2300 6.8 

2019 Leica ALS70-HP August 495 69 1150 5.9 

2020 Riegl VQ-1560 II June 749 158 1100 10.4 

2.3 Enhanced area approach 

We generated hexagonal grids by tessellating the logging sites into 200 m2 cells, and segmented 

individual trees within the logging sites from the ALS data using the itcSegment package in R (Dalponte 

2016). We used the obtained crown segments to adjust grid cell borders as proposed by Packalen et al. 

(2015) to improve correspondence between harvester and ALS data (Figure 1). In contrast to the 

mentioned study, however, we labelled trees as “in” or “out” based on the proportion of tree crown area 

overlapping the sampling area, and not the position of the detected tree apex falling in- or outside the 

sampling area boundary. We then extracted harvester stem volume data from within the adjusted grid 

cells, and calculated cell-level volumes as the sum of timber volumes recorded by the harvester, scaled 

to a per ha unit. From the laser echoes that fell within the spatial extent of the adjusted grid cells, we 

computed canopy metrics from echoes of all categories (first, intermediate and last) with a height > 2 m 

above the ground. The canopy metrics included the heights at the 10th, 20th, … and 90th percentile of 

echo height distributions, and the mean height, standard deviation, skewness and coefficient of variation 

of echo heights. We also computed canopy density metrics by dividing the height range between 2 m 

and the 95th percentile into 10 fractions of equal height, and computing the proportion of echoes between 

the lower limit of each fraction to the total number of echoes.  

Figure 1. The enhanced area based approach used in this study. A hexagonal sampling grid overlaid 

with tree crowns segmented from the ALS data (left) and grid cells adjusted for segmented trees 

crowns (right).  

32



2.4 Timber Volume Estimation 

We estimated the mean timber volume per ha for the 33 logging operations in a leave-one-operation-

out fashion. We removed one operation from the dataset, and fitted a random forest model with data 

from the remaining operations. We used the model to predict timber volume for grid cells within the 

testing operation, and repeated the procedure until all grid cells obtained predictions. We estimated the 

mean timber volume per ha for each operation as the mean of volume predictions, and compared these 

values to the mean timber per ha recorded by the harvester. To assess the accuracy of timber volume 

estimates, we computed the root mean square error between harvester and ALS estimates relative to the 

mean recorded by the harvester (RMSE%). Finally, we tested whether the year of ALS data acquisition 

had a statistically significant effect on the prediction errors using an analysis of variance (ANOVA) test. 

3. Results and Discussion

Figure 2 shows mean timber volumes recorded by the harvester plotted against corresponding values

estimated from the ALS data for the 33 logging operations. The leave-one-operation-out cross validation 

procedure revealed a RMSE% of 11.4. This level of accuracy was comparable to the results obtained by 

Packalén and Maltamo (2007), who estimated timber volume at stand level by using manually measured 

field plots and ALS data from a single acquisition, and obtained a RMSE% of 10.4. We obtained better 

accuracies than Saukkola et al. (2019) who estimated timber volume at stand level by using harvester 

data georeferenced with an autonomous GNSS, i.e., without differential GNSS positioning, and ALS 

data from a single acquisition, and obtained a RMSE% of 25.9.  

Even though data from five different ALS acquisitions were used, and the number of years between 

ALS acquisition and harvesting varied considerably from one to eight years, the ANOVA test showed 

that the year of ALS acquisition did not have a statistically significant effect on prediction errors 

obtained for grid cells (p = 0.37). Thus, a single random forest model fitted with data from all years 

provided a practical solution for predicting and subsequently estimating timber volume.  

The proposed approach can be used for updating operational forest inventories in situations where 

field data are not available, and timely data is needed for short-term operational planning. Harvester and 

ALS data may prove particularly useful for operational planning, where volume estimates are typically 

needed within a short time frame, for example for the selection of stands for harvesting in the near future. 

Such decisions typically require data with greater spatial and temporal resolution than those provided 

by periodic forest management inventories, which are commonly only carried out every 10-15 years. 

Acknowledgements 

This research was funded by the Research Council of Norway (Project No. 309671). The harvester data 

were provided by Valdres Skog AS and the ALS data were provided by the Norwegian mapping 

authority Kartverket. 

Figure 2: Timber volume recorded by the harvester plotted against timber volume estimated from 

airborne laser scanner data for the 33 logging operations. 
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1. Introduction

There is a significant history of using LiDAR point cloud data for determining various forest parameters. 

Although there are some general rules-of-thumb for parameters such as off-nadir angle and laser 

footprint size when trying to maximize penetration through tree cover, there are more variables that can 

contribute to effective foliage penetration.  This study will evaluate the use of several flight and system 

parameters that can now be varied with the introduction of newer megahertz-pulse-rate LiDAR systems.  

As a precursor to developing conclusions from the tests, several metrics for analyzing foliage 

penetration are compared, and one metric chosen for the remaining analysis. 

The operation variables that can be manipulated in the system allow trade-offs between such 

things as pulse energy and pulse rate in an effort to maximize the number of “hits” one the forest floor 

and thus obtain more detailed DEMs from which to evaluate forest parameters such as tree height.  

Results based on recent testing by PASCO using Leica TerrainMapper will be compared to results from 

earlier-generation systems to reveal if the “conventional wisdom” still applies, or whether operational 

parameters should indeed be adjusted to further maximize foliage penetration.   

Although the study is performed on a specific type of LiDAR system, the results can be applied 

to other system types in the current generation of high-pulse-rate linear-mode LiDAR systems.  

Furthermore, a discussion of the parallels to, and implications for further development of, single-photon 

LiDAR systems will be made. 

2. Data and Methods

Airborne data were collected from two sites.  A comparison of the two sites is given in Table 1 below: 

Table 1. Test Flight comparison. 

Parameter Flight 1 Flight 2 

Area 10 km2 

Terrain Relief 100 m 

Dates Mid October 2018 Late January 2019 

Variables tested Pulse energy (low, med, high) 

Off-nadir angle (10, 20 degrees) 

Pulse energy (low, med, high) 

Scan pattern (planar sine, circle) 

Detector threshold (two steps below 

default) 

The initial flight seeks to verify the conclusions from the 2004 study by Roth and Marsh, in 

particular the relationship between off-nadir angle and relative penetration.   

The second flight seeks to expand on the test to include a comparison of planar scanning (similar 

to that used in the 2004 test) and the circular scan pattern normally used in the test system.  It should be 

noted that the planar scanning tests perform in 2004 were performed at maximum off-nadir angles of 

27.5 degrees, where the more recent tests were limited to a maximum 40-degree FOV.  One difference 
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between planar and circular scan patterns is that the circular pattern results in a constant off-nadir angle, 

whereas off-nadir angle varies across the planar-canned FOV. 

In addition to varying the scan pattern, the second flight provided variations in both pulse energy 

and detector threshold. 

3. Results and Discussion

As expected, increasing laser pulse energy (and thus SNR), increases the probability that any given laser 

pulse will result in one or more valid returns.  While multiple returns are beneficial, many types of 

classification algorithms used to derive tree height depend on a significantly dense bare earth DEM. 

Three metrics were compared for evaluation of the propensity of the laser pulse to result in valid 

returns below the top of the canopy: 

(1) Forest Penetration Factor (FPF) = total returns/total laser shots 

(2) Ground Return Factor (GRF) = total ground returns/total laser shots 

(3) Ground Fill Factor (GFF) = total cells with at least one ground return/total cell in AOI 

The first two metrics provide some indication of the ability to characterize the quality of forest capture, 

and the portion of laser shots resulting in successful ground detection.  However, GFF provides a better 

picture of the “completeness” of the forest floor capture and was therefore used for to judge the effect 

of varying different acquisition parameters.  In addition to getting additional returns from the edges of 

larger (i.e., already detected) canopy openings, an increase in GFF indicates that returns are also received 

from smaller canopy opening is different locations that were not previously detected.  For the purposes 

of the study, a 1m grid size was used. 

In the first flight, increases in SNR were beneficial, providing a roughly 10% increase in GFF 

when measured with a 1m grid size.  Reducing the FOV from 40 to 20 degrees provided an average 8% 

increase in GFF.  Changing both variable together produced a compounding effect. 

In addition to varying SNR, variations in the second flight allowed measurement of the effect 

of scan pattern (sine versus circular) as well as detection threshold.  This second flight confirmed the 

trends of the first flight, with a roughly 10% increase in GFF over the range of SNRs tested.   

Data from sine and circular scan patterns at the same FOV of 40 degrees showed that GFF was 

approximately 5% better for the particular cypress forest sample plot.  This may not be entirely 

conclusive and may vary by vegetation type.   

The effect of reducing detection threshold predictably produced some benefit, with approximately 

7% increase in GFF by lowering the detection threshold slightly from the default setting.  Further 

reductions, while likely producing additional forest floor measurements, predictably increased the 

occurrence of noise points (false returns).   These noise points will require additional processing time 

both in the generation of the raw point cloud and in subsequent filtering steps.  Therefore, users would 

be advised to take care when considering changing the detection threshold value, as there was no 

detectable increase in GFF between the two lower threshold settings. 

A comparison between a typical linear-mode LiDAR design and that of a single-photon LiDAR 

system (Leica SPL100) shows some potential in this alternative technology.  The very small laser 

divergence (<0.1 mr) of each “beamlet” in the SPL100 potentially provides a better concentration of 

laser energy through small canopy openings.  Furthermore, the current SPL100 scanner design produces 

the same circular pattern that showed advantages on the linear-mode test system.  Some study of foliage 

penetration of single-photon LiDAR in comparison to linear-mode has been undertaken previously by 

Sinclair, but the results are based on GRF as opposed to GFF.   Therefore, further study is needed. 

4. Conclusions

Evaluation of sample data from the linear-mode LiDAR system shows that, of the three metrics proposed 

as a measure of foliage penetration, Ground Fill Factor is the most informative.  

Conventional wisdom of limiting the maximum off-nadir angle to approximately 20 degrees (i.e., 

40 degree FOV) appears to hold, as some increase in GFF has been seen in data even between 20- and 

10-degree off-nadir angles.   
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From the flight data, it is clear that increasing SNR setting as a flight planning or design parameter 

has significant benefit.  However, from a commercial standpoint, it is preferable that this increase in 

SNR not be at the expense of lower effective pulse rate, an effect which would be typical and expected. 

Therefore, other methods for increasing the amount of laser energy making it through upper levels of 

the canopy are required.  

From the tests performed using linear-mode LiDAR, the implication is that minimizing laser 

output divergence is one key to obtaining higher SNR, given limited size “holes” in the forest canopy.  

This has the greatest benefit in “closed canopy” situations, where the openings in the canopy are limited 

both in number and in size.  In more open canopy situations (e.g., lodgepole pine forest in the western 

US), the benefit would not be so pronounced. 

Another possibility for increasing SNR lies in a reduction in laser pulse width.  Provided adequate 

detector response times, reducing laser pulse width (within the limits of the particular laser type used) 

proportionally increases the peak power in each laser pulse.  It should be noted that the optoelectronic 

design of the receiver is critical in this respect, as excessive reduction of laser pulse width can result in 

a reduction in the effective response of the detector.  When optimized, a reduced pulse width presents a 

good balance between increased peak pulse power and detector/electronic roll-off.  This can allow both 

increases in GFF as well as increased detail in forest canopy. 

An additional benefit to shorter pulse widths is the potential for reductions in minimum pulse 

separation.  As with reduced divergence, reducing minimum pulse separation can allow return 

reflections to be differentiated in vertical layers of canopy that are closer together.  In addition to 

hardware design, this minimum return separation is also affected by the processing software, particularly 

that used for separation of random noise from legitimate target returns.  

While providing some benefit, reducing detection threshold should not be taken to an extreme, as 

the result will be additional noise points being processed and then having to be filtered out. 

Single-photon LiDAR holds the promise of an enabling technology, with high efficiency at any 

given point density, and can potentially make nation-wide forest inventory at individual tree levels 

practical.  Current single-photon systems have the low beam divergence mentioned above, giving great 

potential for forest applications as well as the preferred circular scan pattern.  The main areas of further 

development of the single-photon technique lie more on the software side with improvements to reduce 

the aggressiveness of noise filters so that legitimate points are not removed. 
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1. Introduction

The launching of two novel spaceborne lidar sensors back in 2018 provided scientists with new data 

sources for global monitoring of forest above-ground biomass (AGB). The GEDI (Global Ecosystem 

Dynamic Investigation) sensor was mounted on the international space station and does not acquire data 

from the boreal forest zone above 52°N (Dubayah et al. 2020). However, the ICESat-2 (Ice, Cloud and 

land Elevation Satellite 2) is in polar orbit and thus provides plenty of data from boreal forests (Markus 

et al. 2017). The ICESat-2 ATLAS (Advanced Topographic Laser Altimeter System) is a profiling lidar 

sensor that provides strip samples of terrain height measurements using multiple beams. Despite being 

primarily designed for snow and ice monitoring, ICESat-2 can also provide relatively accurate canopy 

height observations (Neuenschwander et al. 2020) that can be used to predict forest biomass (Narine et 

al. 2020).  

Construction of ICESat-2 based AGB models for boreal forests requires consideration of several 

effects that may influence the observed accuracy. The ATLAS is a photon-counting lidar that operates 

at 532 nm wavelength and is therefore subject to solar noise photons that must be omitted by filtering 

(Popescu et al. 2018). Data collected in sunlit conditions inherently has more noise photons than night 

data, which could hamper their simultaneous use. The ATLAS has three strong and three weak lidar 

beams, and the weak beams may have a considerably poorer capability to observe canopy heights than 

the strong beams (Neuenschwander et al. 2020). In addition, boreal forests have snow cover during the 

winter. Snow on the forest floor and trees increases the reflectance at the 532 nm wavelength compared 

to summer conditions. If there is plenty of snow, the allometries between AGB and observed canopy 

heights could also be different, if the ground elevation is estimated from the ATLAS data.  

Our objective is to investigate how the effects of time of day, beam strength and snow cover should 

be considered when constructing models for boreal forest AGB estimation using ICESat-2 data. 

2. Data and methods

Our study site is a 60 × 50 km forest area located in Eastern Finland. The dominant tree species are 

Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birches (Betula spp.). The snowy season 

typically lasts from late November to late April.  

We used airborne laser scanning (ALS) data and field plots acquired for an operational forest 

inventory in 2019. A total of 797 field plots with AGB ≥ 5 t ha-1 were measured and used as training 

data. The ground AGBs were predicted by tree level allometric models that used diameter and height as 

inputs (Repola 2008, Repola 2009). The ALS data were collected 7 June ‒ 9 July 2019 using a Leica 

ALS 80HP scanner at 1700 m above ground level, which resulted in a nominal pulse density of 5 m-2. 

The publicly distributed data was however resampled to 0.5 pulses m-2, which was still sufficient for 

AGB modelling using the area-based approach. The public ALS data were used to compute a set of 
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canopy height distribution variables for the field plots. We also extracted a set of spectral variables from 

an atmospherically corrected Sentinel-2 satellite image obtained 14 June 2019. These data were used to 

construct a model that was applied to predict reference AGBs for the ICESat-2 tracks in the study area. 

The model was constructed using regression analysis, and its predictors were selected using optimization 

by simulated annealing (Packalen et al. 2012). The final model included four predictor variables (two 

ALS, two Sentinel-2) and its relative root mean square error (RMSE) was 20.2%. 

We used a total of five ICESat-2 passes from 2019 (2 and 22 February, 22 June, 18 and 22 August) 

to obtain a set of predictor variables representing day and night conditions with and without snow. We 

used ATL03 geolocated photon product (version 3), but the noise photons were removed based on the 

ATL08 land and vegetation product. A set of 15 x 90 m segments were placed at the ICESat-2 ground 

tracks. Each segment consisted of four 15 x 15 m cells, for which the reference AGBs were predicted 

using the ALS and Sentinel-2 data. The predicted AGBs were aggregated for the segments, and the 

segment AGBs were further used as reference values in ICESat-2 based AGB modelling.  

The noise-filtered ATL03 photons located within the segments were used to compute a set of canopy 

height distribution variables based on normalized photon heights. The processing chain was similar to 

the ALS data. The variables included average height (avg), average square height (qav), standard 

deviation of height (std,) canopy height percentiles (p1, p5,…, p99), and canopy density percentiles (d1, 

d5, …, d99). Based on these variables, we constructed separate regression models for each of the eight 

ATL03 subsets (day/night, weak/strong beam, snow/no-snow), as well as a combined model where the 

time of day (night), beam strength (strong) and snow cover (snow) were included as dummies. In 

addition to the canopy height distribution variables listed above, sun elevation (sunelev), snow depth 

(snowdepth) and photon count (count) within the segment were used as additional predictors.  

3. Results and discussion

In terms of RMSE (Table 1), winter models (RMSE 27‒35%) showed smaller errors than summer 

models (34‒61%). In winter conditions also the weak beam data were useful in AGB estimation, as the 

respective RMSEs were only 1‒2 percent points larger than the strong beam RMSEs. With winter data, 

the day models also showed smaller RMSEs (27‒28%) than night models (33‒36%). However, the 

current winter results only represent the snow and weather conditions during the two ICESat-2 passes 

in February 2019. Weather could explain the observed differences, as the winter night data set had 20% 

of the photons removed as noise, which was above average for night conditions. 

Table 1. The AGB models constructed for the different subsets based on the ATL03 data in the order 

of increasing RMSE. 

Season Time 

of day 

Beam n Model R2 RMSE 

Winter Day Strong 1150 √AGB= 6.27 - 3.69E-3 √count + 0.13 

p99 + 2.62 √avg 

0.79 27% 

Winter Day Weak 198 √AGB = 23.99 + 0.14 p99 - 1.31 √count 0.73 28% 

Winter Night Strong 901 √AGB = 40.65 - 0.22 √count + 4.10

√avg - 4.60 √snowdepth

0.82 33% 

Summer Night Strong 2728 √AGB = 0.76 + 4.21 √avg - 0.22 √qav 0.77 34% 

Winter Night Weak 874 √AGB = -110.26 - 3.04 sunelev - 0.34

p60 - 0.57 √count + 3.93 √avg 

0.75 35% 

All All All 7158 √AGB = 2.62 - 1.42 night - 0.67 strong 

+ 2.08 snow + 3.54 √avg 

0.68 41% 

Summer Day Strong 312 √AGB = -21.65 + 3.78 sunelev + 0.84

std + 0.26 p90 + 0.16 √count 

0.77 50% 

Summer Night Weak 433 √AGB = 1.69 + 3.02 √avg 0.61 56% 

Summer Day Weak 177 √AGB = -55.50 + 10.73 sunelev +

0.026 p99 + 0.61 b95 - 5.88 √b80 

0.39 61% 

Without snow, only the strong beam night data provided an RMSE that was comparable to winter 

models (34%). Strong beam day data also performed well if measured by R2 (0.77), but its RMSE was 
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large (50%) as the sampled forest area had a small average AGB. Weak beam summer models had the 

poorest relative RMSEs (56‒61%). The model that combined all data sets had larger RMSE than most 

of the individual models (41%) despite having time of day, snow cover and beam strength as statistically 

significant dummy variables.  

4. Conclusions

The effects of snow cover and beam strength should be considered when constructing ICESat-2 based 

models for boreal forest AGB. It is better to construct separate models for different beams and snow 

conditions instead of merging everything into a single model. ATL03 data from snowy forests is well 

suited for AGB modelling, probably because of the increased reflectance at 532 nm, which makes weak 

beam data also usable. Time of day only had a clear effect on weak beam data without snow, where the 

night data provided a considerably smaller RMSE. In other cases, it could be possible to utilize both day 

and night data in a single model without compromising accuracy, at least if time of day is included as a 

predictor variable. The noise photon classification contained in the ATL08 product seemed sufficient 

for AGB modelling, although alternative noise filtering algorithms should also be tested in the future. 
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1. Introduction

Estimating the structure of vegetation is a crucial first step for many environmental and ecological 

applications (Daubenmire 1956). In particular, pasture land management requires estimating the 

occupancy of the different vegetation strata within agricultural parcels. This is a time-consuming 

undertaking, often performed with in situ ocular approximate measurements. Nowadays, airborne 

platforms allow public and private actors to gather high accuracy geometric and radiometric data over 

large areas (Chen 2007). Bolstered by the compelling improvements (Guo et al., 2020) and increased 

accessibility of deep learning for 3D point clouds, we propose a 3D deep learning method to estimate 

the occupancy of different vegetation strata from airborne LiDAR and camera sensors. 

Our method predicts raster occupancy maps for three vegetation strata (lower, medium, and higher) 

from 3D point clouds. Our training scheme allows our network to only be supervised with aggregated 

occupancy values at the plot level, which are easier to produce than point or pixel-level annotations. We 

also propose to use priors on the stratum elevation and the occupancy maps to improve the legibility and 

interpretability of the resulting maps. 

2. Data and Methods

We present a new open-access dataset allowing for training and evaluating stratum occupancy regression 

methods from 3D LiDAR data. We then propose our network architecture along a training scheme for 

inferring raster occupancy maps while only training with aggregated values. 

2.1 Dataset Composition 

Our proposed dataset comprises 199 cylindrical plots of 10 m radius corresponding to typical 

pasture land parcels in South-Eastern France. Each plot contains between 3000 and 17000 3D points, 

and each point is attributed with a total of 9 features: (i) absolute 3D coordinates, (ii) RGB and Near-

InfraRed reflectance obtained with aerial cameras, (iii) uncalibrated 

laser intensity and return number provided by the aerial LiDAR.  
Data normalization. The z-value of each point is normalized by 

subtracting the z-value of the lowest point in a 0.5 m-cylindrical 

neighborhood. Moreover, all values are normalized between 0 and 1 

over the entire dataset. 
Annotations. Each plot has been annotated by a human expert in 

situ providing the lower, medium, and higher stratum occupancy ratio, 

(ô� , ô�, ô�) ∈ 	0,1� respectively (Figure 1). The occupancy value ô�
characterizes the proportion of the ground surface occupied by grass or 

low vegetation, as opposed to rocks, soil, or sand. ô� characterizes the

proportion of the surface of the plot occupied by the footprint of medium 

vegetation located between 0.5 and 1.5 m. This type of vegetation, 

typically bush-like, is the most accessible by pasture animals. Finally, 

the higher stratum occupancy ô�  is defined as the ratio of the plot

surface occupied by the footprint of the canopy of trees over 1.5 m. Note 

Figure 1: Objective. Our 

method aims to predict the 

vegetation occupancy of three 

strata from a point cloud. 
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that the trunks of trees  over 1.5 m do not contribute to the medium occupancy. We argue that regressing 

the occupancy maps is intrinsically a semantic-constrained endeavor, and we thus opt for a neural 

network-based machine learning method. 

2.2 Methodology 

Given the attributed 3D point cloud corresponding to a study plot (see Figure 1), we aim to produce the 

vegetation occupancy maps for each vegetation stratum (lower, medium and higher level). We first 

compute a soft prediction for each point among four different classes: bare soil, low vegetation, medium 

vegetation, and high vegetation. We then project the resulting probabilistic point prediction onto the 

rasterized disks corresponding to the three target strata. The occupancy ratio at plot level is then obtained 

by averaging the prediction in each stratum. We propose a weakly-supervised scheme which allows the 

network to predict a class for each 3D point as well as vegetation occupancy rasters while only using 

aggregated occupancies, corresponding to 3 values for each plot. 
Pointwise prediction. Given the relative geometric simplicity of single plots, we use an architecture 

inspired by the PointNet network of Charles et al. (2017) to compute the pointwise predictions. We 

denote the predicted probabilities for a point � ∈ 	1, 2, … , �� as follows:  (��,�) for bare soil, (��,�) for

lower, (��,�) for medium and (��,�) for high vegetation respectively (Figure 2).

Point projection. The pointwise predictions are used to compute occupancy maps for each stratum, 

as shown in Figure 2. We consider three rasters of � � � pixels aligned with the projection of the

cylindrical plot on the horizontal axes, and corresponding to the lower, medium, and higher vegetation 

strata. We associate the pixel � of stratum � ∈ ��, �, �� with the set of 3D points �  whose vertical

projection falls in the pixel's extent. We define the pixel occupancy !"   as the maximum for all points

of �  of the probability of belonging to the vegetation stratum �:

!"  # max� ∈'(
��,"  . (1)

Finally, the stratum occupancy ratios !� , !� , !�  are defined as the average of the pixels’ occupancies in

the corresponding stratum:  

!" # 1
�* + !"  

  ∈,�,
 . (2)

Elevation modeling. The model described above does not explicitly model the distribution of 

elevations within each stratum. In theory, points that are several meters above the ground can contribute 

to the lower stratum as long as the stratum-wise aggregated values are in agreement with the ground 

truth. We propose to explicitly model the elevation of points within each stratum in an automated way 

with the goal of making the occupancy maps more interpretable, and increasing generalizability. 
We model the normalized elevation of all points of all clouds with a mixture of two Gamma 

distributions corresponding to the lower stratum, and to the medium and higher strata respectively. The 

distribution parameters can be efficiently estimated with the expectation–conditional–maximization 

algorithm, as detailed by Young et al. (2019). Using the Bayes theorem, this allows us to compute the 

likelihood of the elevation of each point given its stratum prediction. 
Loss functions. The model is trained using three loss functions: (i) the mean absolute error between 

the predicted and ground truth plot occupancy, (ii) the average entropy of each pixel occupancy value, 

(iii) the average negative log-likelihood of points’ elevation conditioned by their pointwise predictions: 
- # -./0/ 1 2-3405678 1 9-:�;3:�<66.  (3)

Figure 2: Neural Architecture. Our network performs the semantic segmentation of a 3D point cloud 

within four different classes. The resulting probabilities are projected onto rasters corresponding to 

different strata. Finally, the occupancies map are aggregated into the stratum vegetation ratio. 
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with α and λ regularization strengths, set to 0.2 and 1 respectively during all experiments. We chose to 

regularize with the entropy of pixel occupancy to implement the prior that most pixels should be either 

empty (no vegetation) or full (completely covered). 

Our network is implemented in PyTorch and trained with ADAM optimizer and a batch size of 20 

and with raster size � # 32. Our code, the data, as well as the precise configuration of all layers can be

accessed at the following URL: https://github.com/ekalinicheva/plot_vegetation_coverage. 

3. Results

To assess the performance of our model, we implemented a handcrafted approach and a simple deep 

learning baseline. The handcrafted approach classifies points among the different strata with a decision 

tree algorithm based on colors and elevation, while the rest of our pipeline is unchanged. The deep 

learning baseline directly predicts the stratum occupancy: !� , !� , !� from the raw 3D point cloud with

a simple PointNet network. 

The qualitative results of our method and concurrent approaches are presented in Table 1. Our 

method outperforms the baselines, at the cost of added computation time compared to the simple deep 

baseline. Moreover, as seen in Figure 3, our method also allows visualizing the stratum occupancies. 

Table 1. Quantitative Results. We report the accuracy of the predicted aggregated plot occupancy, 

along with the inference speed. 

Method 

stratum 

Absolute error, % Inference 

time, plots/s lower medium higher average 

Handcrafted 21.9 20.7 10.3 17.6 20 

PointNet Baseline 17.4 13.5 7.7 12.8 400 

Ours 15.5 13.6 7.5 12.2 125 

4. Conclusion

In this paper, we presented a 3D deep learning method for predicting occupancy across vegetation strata. 

Using only three aggregated values per example plot, our model is able to perform a pointwise 

classification and to produce vegetation occupancy rasters with a high precision and a small 

computational cost.  We also release the first deep learning-dataset to train and evaluate such methods. 
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Figure 3: Qualitative Results. Our method predicts aggregated stratum occupancy along with the 

corresponding rasterized occupancy maps. Here, the pixels are colored according to the value of the 

predicted occupancy: shades of green, blue, and red indicate pixels with high-predicted vegetation 

coverage for the lower, medium, and higher strata respectively, while brown corresponds to bare soil. 
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1. Introduction

Terrestrial laser scanning (TLS) is a consistent technique for the 3D digitization of landscapes, which is 

enabling the quantification of landscape components with unprecedented level of details and accuracy. 

This effective, precise and non-invasive technology is ideal for assessing tree form and stand structure, 

as well as monitoring temporal dynamics of forests and agroforestry systems. 

An established methodology is to scan trees from multiple positions, followed by the extraction 

of individual tree point clouds, and the reconstruction of tree structures with cylinder-fitting algorithms 

(e.g. TreeQSM, Raumonen et al. 2013). The retrieved tree structures are often called quantitative 

structure models (QSMs). These contain essential topological, geometrical and volumetric information 

related to functional properties of the scanned tree. The QSMs present the opportunity to measure and 

manipulate tree structures in order to study manifold ecological issues, e.g. the light availability at 

ground level under. Initial work by Rosskopf et al. (2017), and Bohn Reckziegel et al. (2021), has 

demonstrated the potential of combining QSMs with the inclusion of virtual leaves to assess the shading 

effects of trees. Furthermore, the selection of targeted branches is possible by retrieving QSM-cylinders 

matching specific database queries. 

In this study, we aim to quantify the changes in insolation reduction caused by tree structures 

reshaped by pruning treatments. We use field-tested pruning approaches as guidance for our computer-

based pruning simulations to the QSMs. The application of analogous tree structures for creating 

multiple pruning and shading scenarios is innovative. Finally, virtual pruning of tree structures can 

support the design and selection of adequate tending operations to control light distribution in 

agroforestry systems. 

2. Data and Methods

We selected four wild cherry trees (Prunus avium L.) belonging to a widely spaced tree plantation 

located in the proximity of Breisach, southwest Germany (48°4’24’’N; 7°35’26’’E, 182 m a.s.l.). Trees 

were digitized from a minimum of four scan positions with a terrestrial laser scanner Z+F IMAGER ® 

5010 (Zoller+Fröhlich GmbH, Wangen, Germany), under leaf-off conditions. The 3D structures of the 

four trees were retrieved with the MATLAB implementation of TreeQSM version 2.3 using the 

segmented tree point clouds.  

We defined pruning treatments according to Springmann et al. (2011) including low and high 

intensity variants: removal of complete whorls as a conventional approach (p5w and p3w), and; removal 

of branches according to branch collar diameter and/or angle in relation to the stem, as a selective 

approach (p3d and p2d). The pruning treatments were implemented as algorithms written as independent 

functions in the open source language R version 3.5.3 (R Core Team 2019), to retrieve QSM-cylinders 

matching the specific database queries. 

The resulting 20 tree structures were fed into a shadow model (Bohn Reckziegel et al. 2021) with 

fine spatiotemporal resolution to simulate the shade cast over a twelve months period (October 2013 

until September 2014), and to estimate the insolation reduction on the ground. Shade projections were 

simulated for a quarter of a hectare with a grid-cell size of 10 cm x 10 cm, and time steps of 10 min, 

while factual solar radiance data from a nearby weather station were added to the model.  
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3. Results

The four trees differed in terms of total wood volume and crown characteristics, hence the simulated 

pruning interventions removed from 32% up to 59% of the tree’s total volume. Low intensity pruning 

regimes varied for each tree both in relative and absolute terms, with an absolute difference ranging 

from 1.2 litres to a maximum difference of 5.5 litres. In between the high intensity approaches, selective 

pruning was less invasive than the conventional pruning. Total leaf area of the retrieved tree structures 

stayed below 50% of unpruned trees. 

Figure 1 – Example of unpruned (N) and pruned variants of the same tree: left, conventional pruning; right, 

selective pruning; in yellow, low intensity pruning variants (p5w, p3d); in orange, high intensity pruning variants 

(p3w, p2d). 

The control trees had the greatest shading effects; these were greater in area and in insolation 

reduction than any of the pruned variants (Table 1). Although shaded area varied throughout trees and 

treatments, selectively pruned trees had greater insolation reduction than conventional pruning.  

Table 1 - Shading effects of unpruned and pruned structures of tree T1 for the simulation period of 

October 2013 to September 2014. 

Tree 
Shaded Area 

Total 

Insolation 

Reduction 

Mean 

Insolation 

Reduction 

Mean Daily 

Insolation 

Mean Daily Insolation 

Reduction   

m² MJ MJ m-2 MJ m-2 day-1 MJ m-2 day-1 

T1N 333.5 54,346 162.9 11.67 0.45 

T1p3d 262.4 37,864 144.3 11.72 0.40 

T1p2d 227.6 30,125 132.4 11.75 0.36 

T1p5w 220.7 23,499 106.5 11.82 0.29 

T1p3w 136.8 13,148 96.1 11.85 0.26 
* Yearly insolation under "full light conditions" of 4,422 MJ m-2 yearly and 12.11 MJ m-2 day-1 for the simulated period.

The spatial distribution of the annual shading effects of the unpruned and pruned T1 are shown 

in Figure 2. We found similar arrangement and trends for the shading effects of the trees. Overall, we 

noticed a smooth reduction in insolation spreading more than 20 m largely to the north of the sample 

tree. In a zoomed viewpoint, the grid-cells with more intensive insolation reduction can be seen. The 

control treatment showed a highly shaded centre, with a centralized higher insolation reduction four to 

eight meters from the tree position towards the north. Selectively pruned trees displayed similar patterns 

than the control treatment, although with reduced shaded area and less intense shading at the core. 

Conventional pruning softened the shading effects of all trees, with exception of a condensed semicircle 

arc spreading approximately four meters away from tree trunk, which is a clear manifestation of the 

resultant crown shape. 
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4. Discussion

High intensity pruning simulations suggested a removal of up to 60% of total tree volume, which could 

make these treatments too severe to be applied in reality. The low intensity treatments had a more 

appropriate removal of woody biomass (≈40% of tree volume). A change in the parameterisation of the 

pruning functions could be required for applying these same treatments to other tree species. The 

assessment of the annual insolation reduction showed that selective pruning is an option to attenuate the 

shading effect of tree structures, while conventional pruning radically minimizes shading. In areas where 

shading is relevant for crop production, or for the attenuation of climatic extremes, pre-designed 

selective pruning interventions are to be prioritized. 

Figure 2 – Shading effects of tree T1 and from its analogous pruned tree structures for the twelve months period. 

5. Conclusions

Pruning is a silvicultural intervention capable of influencing the light regime at ground level. Thus, the 

combined approach presented in this study is a way to facilitate management of the light resource at an 

individual tree level. It supports decisions about and demystifies the presence of trees in agricultural 

systems. Besides, virtual pruning of QSMs has the potential to become a tool for investigating, assessing 

and planning, alternatives to woody biomass production, management of ladder fuels, provision of 

ecosystem services, and the aesthetic view of landscapes. 
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1. Introduction
Tree crown variables are relevant in a number of contexts: they are not only “engines” of tree growth
(Li et al 2017, Pretzsch et al 2015), but contribute – amongst others - filtering pollutants from the air,
increasing storm resistance, shadowing of lower layers (and of houses in case of urban trees), offering
habitat for various taxa, etc. Crown projection area has been long used as a major variable to describe
crowns and their extension. One may ask whether the crown projection area alone does for all
purposes sufficiently exhaustively characterize tree crowns, as, for example, for one and the same
crown projection area, tree crowns may have very different 3D crown shapes, volumes and densities.

In this study, we introduce a new 3D crown variable named tree green crown volume (TGCvol). We
use TLS-based (Terrestrial Laser Scanning-based) k-means clustering as a proxy for the assessment of
this complex variable: TGCvol is one of those crown variables that are difficult to define and difficult
to assess; and research needs to resort to proxies to make empirical studies feasible. To the best
knowledge of the authors, TGCvol has so far not been introduced nor assessment approaches presented.
The goal of this study is to introduce this concept, to develop and evaluate a TLS-based approach to
assess the TGCvol, to describe its scale dependency and to discuss challenges regarding definitions,
measurements and analyses.

2. Material and Methods

2.1 Definition
While the basic idea behind TGCVol is easily described as “the sum of spaces in the crown filled with
leaves” – it turns out to be difficult to come up with an unambiguous definition that may form the basis
for a likewise unambiguous measurement protocol. Many crown variables bring the same challenge with
respect to direct measurement: their observation is, therefore, based on the assessment of meaningful
proxies. For example, leaf area density (LAD) is often proxied by TLS scans with 3D voxelization
(Béland et al 2014). Following the basic idea, TGCVol is proxied in this study by k-means convex hull
clustering: we use the green TLS hits identified by the RGB information to recognize “leaf clusters”.
TGCVol is then defined as the sum of all the volumes of envelopes of “leaf clusters”.

2.2 Data collection
We selected 26 sample trees within the city of Göttingen, Germany. Per tree, field measurements as
dbh, crown base height and tree height were taken and the tree was scanned from 6 positions to
guarantee a detailed 3D representation of outer and inner parts of the crowns.

2.3 Determining tree green crown volume
Our approach to assess TGCvol went in three steps: (1) woody elements removal, (2) k-means clustering,
and (3) convex hull wrapping. The woody elements (stem and branches) were removed from the point
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cloud of the single tree; the remaining points were considered as leaf hits. The k-means clustering
approach (MacQueen 1967) was then applied to cluster groups of nearby leaf hits. k is the initial
parameter that represents the total number of clusters to be produced. We started always with k = 1.
The convex hull of this one single cluster is wrapping the total crown volume CVol (see Figure 1a).
We increased k so that more and smaller clusters were generated separating more and more the green
and empty spaces within the crown (Figure 1). Around each cluster of hits, a convex hull was wrapped.
The value for TGCvol is calculated by summing up all the volumes of all these convex hulls. We
increased k stepwise up to the value of k=1400. For each value of k, the sum of the wrapped clusters
constitutes the TGCvol at this particular spatial resolution. A suitable or even optimal value of k will
depend on the specific subject-matter objective of a study and was not a focus of this research.

To make the values comparable between trees of different sizes, we developed the tree green
crown volume index TGCVI which is the percentage of tree green crown volume TGCvol within the
total crown volume CVol (k=1): TGCVI=TGCvol/CVol. TGCVI tends towards a value of 1 when
leaves occur uniformly all over the crown at a minimum density.

Figure 1. Illustration of the k-means clustering approach to generate hulls of green volume within the
crown (sample trees 21 and 18): convex hulls were wrapped around: (a) k=1 cluster (wrapping the
total crown volume); (b) k=200 clusters; and (c) k=1000. “Leaf clusters” can be seen more evenly

distributed in the crown of Tree18 than of Tree21.

3. Results and Discussion
When refining the separation of green and empty spaces by increasing the number of clusters k, the
green crown volume decreases. This describes the scale dependency of determining TGCvol. For our
sample trees, TGCvol decreased rapidly and then levelled out for values of k beyond 200-300 (see also
Figure 2).

TGCvol is not evenly distributed within the crown but comes in a clustered pattern: it is obvious
that determining TGCvol is scale-dependent. This is clearly illustrated in Figure 2 when plotting
TGCvol over the number of clusters: the finer the separation between green and empty spaces, the
smaller the overall TGCvol. The scale is here derived from the number of clusters, which implicitly
defines how fine the clustering is.

Our study is a pilot study to further develop measurement and analysis approaches towards a
better description of tree green crown volume. The limited number of 26 sample trees in one single
environment (urban trees) and without considering many different crown shapes does not allow further
inferences about factors that determine amount and pattern of TGCvol; rather, our study was to

(a) (b) (c)
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introduce the concept of TGCvol to better describe the foliage distribution in tree crowns and present a
first case study for its assessment, identifying remaining methodological challenges.

Figure 2. TGCVI over number of clusters k. As to be expected: the more clusters are formed, the finer
is the separation of green and empty spaces within the crown which leads to decreasing values of

TGCVI. The axis y is the normalized TGCVI. Tree 21 and tree 18 are highlighted by the bold line with
markers.

4. Conclusions
We see various useful applications of TGCvol in particular in the context of trees outside the forest, for
example in modelling of urban trees for habitat suitability and heat mitigation: a lower green volume
will probably result in a lower heat mitigation and also influence the habitat quality for different taxa;
but we also acknowledge (and addressed it in this paper) that there are numerous methodological
challenges that wait to be resolved.
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1. Introduction

Correcting for clumping of needles into shoots has become a standard procedure in radiative transfer 

analyses of conifer forests. Clumping needs to be corrected due to the near-ubiquitous assumption of 

the Poisson canopy, i.e. the random distribution of plant elements throughout the canopy. While there 

are many ways to quantify clumping, the silhouette to total area ratio (STAR) has become the standard 

procedure for correction the clumping of conifer needles into shoots. STAR is the ratio of the orthogonal 

projection area of a body, averaged over all directions of the sphere, to its total surface area. A simple, 

convex body always has a STAR of ¼, whereas a composite body, such as a conifer shoot, has a STAR 

less than ¼. The concept of STAR originates from one of Augustin-Louis Cauchy’s theorems, which 

was adapted for use in radiative transfer modeling of plant stands by Lang (1991). 

STAR as a clumping quantifier was proven essential in accurately modeling reflectance of conifer 

stands (Rautiainen and Stenberg 2005). Within the concept of photon recollision probability 

(Knyazikhin et al. 1998, Stenberg et al. 2016), STAR can be used to quantify the photon recollision 

probability in a hierarchy of canopy elements, such as shoots, crowns, and stands (da Silva 2008). 

However, the hierarchical STAR remained a theoretical concept applicable only to simulation data due 

to a lack of measurement methods. 

With the increasingly wide-spread use of terrestrial laser scanning (TLS) and the development of 

preprocessing and estimation routines for forest ecology, we have the necessary tools to develop a 

measurement method for STAR at the crown and stand level. 

In this presentation, we present a method that is capable to estimate STAR from point cloud at any 

hierarchical level. We empirically validated our method with data from destructive leaf area 

measurements, and photogrammetric silhouette area measurements in small spruce trees. 

2. Data and Methods

2.1 Estimating STAR from point cloud data 

We scanned 14 spruce trees (Picea abies (L.) H. Karst.) from Southern Finland with a Leica P40 scanner 

at resolutions of 0.15 and 0.32 mrad in 2018. The scans were performed from six positions, 10 m from 

the tree and spread evenly across azimuth directions. We used five 4.5” Leica B&W co-registration 

targets for the co-registration of the point clouds. The point clouds were preprocessed in Leica Cyclone, 

and the point clouds were exported with the individual scan positions retained in the data to allow 

conversion into rays. 

The point cloud data was then used to estimate the attenuation coefficient in a voxel grid covering 

the crowns’ volumes. We used the unbiased estimator developed by Pimont et al. (2018), which is based 

on the modified contact frequency and accounts for biases introduced by the finite number of beams 

entering a voxel, and the finite size of the plant elements. The one-sided leaf area density within a voxel 

can then be estimated through dividing the attenuation coefficient by G, the average projection area of 

unit leaf area. Multiplication by the voxel volume, summing over all voxels, and doubling then yields 

the total (two-sided) leaf area of the tree. 

The second part of STAR is the silhouette area, which we estimated from the attenuation coefficient 

by ray tracing, using the Beer-Lambert law to calculate attenuation as the rays traveled through each 

voxel. The set of all rays formed a synthetic image, where each pixel corresponded to the fraction of 

Published in: Markus Hollaus, Norbert Pfeifer (Eds.): Proceedings of the SilviLaser Conference 2021, Vienna, Austria, 28–30 September 2021.  
Technische Universität Wien, 2021. DOI: 10.34726/wim.1861
This paper was peer-reviewed. DOI of this paper: 10.34726/wim.1912

50



transmitted radiation in an orthogonal projection. The sum over the synthetic image, multiplied by the 

squared beam spacing (i.e. the pixel area) yields the silhouette area. The silhouette area was averaged 

over 72 directions to approximate a spherical integral. 

Both above steps, estimating of attenuation coefficient (and leaf area density) and silhouette area, 

were carried out with voxel sizes between 5 cm and 90 cm. The measurements are described in more 

detail in Schraik et al. 2019. 

2.2 Reference data 

The total leaf area of each tree was determined destructively. We measured the trees’ biomass of needles 

and branches up to a diameter of 2 cm. For a sample of 20 shoots per tree, we determined the leaf area, 

the leaf weight, and the twig weight. The fraction of leaves of the tree biomass, multiplied by the leaf 

area per leaf mass, yielded the total leaf area. 

The directional silhouette area was determined at six directions coincident with the TLS scan 

locations. We used a Sony A7R camera with a 28mm lens to take photos of the trees. The photographs 

were taken with a white background, and were converted into binary images. Given the pixel size of the 

camera sensor, and the average distance between the camera and the tree crown (estimated from the 

point clouds), we calculated the silhouette area as the sum of the image covered by the tree. 

3. Results and Discussion

Estimates for crown-level STAR were highly dependent on voxel size, and ranged from about 0.075 to 

0.25. Generally, STAR estimates increased with increasing voxel size. At 90 cm voxel size, STAR was 

about 0.25, which can be explained simply by most trees being covered in 1 to 4 voxels, at which point 

the crown clumping is incorporated already into the leaf area estimates, and the resulting voxel structure 

can be seen as a turbid medium approximation. There seemed to be an optimal voxel size that depends 

on the spatial structure of the tree crown. It should be fine enough to resolve the empty space between 

branches, but also large enough to ensure a high number of beams inside each voxel. In our data, this 

voxel size seemed to be around 10 to 20 cm. 

The dependence of voxel size was similar in leaf area estimates, but the trend was negative. The 90 

cm voxel size resulted in estimates closest to the destructive measurements (less than 2% 

overestimation), whereas the 10 cm voxels overestimated leaf area by about 67%. The silhouette area 

estimates were less sensitive to voxel size, but exhibited a positive trend with increasing voxel size. In 

10 cm voxels, silhouette area was overestimated by about 22%, while in 90 cm voxels the bias increased 

to about 28%. 

However, it is premature to conclude that larger voxel sizes work better in leaf area estimation, 

because there are a number of factors at play. Soma et al. (2018) found a similar bias for small voxel 

sizes, but a significantly larger error in large voxels already at 70 cm in oak and pine branches. We 

suspect that the modified contact frequency may have a tendency to overestimate leaf area, particularly 

in conifer trees because the TLS footprint is too large to resolve the fine shoot structure, therefore 

potentially introducing a bias into estimates that is independent of the voxel size. In addition, since plant 

elements inside a voxel are assumed to be randomly distributed, clumping at scales smaller than the 

voxel size may cause a negative bias on leaf area estimates that depends on the voxel size. Together, 

these two biases may cancel each other out at certain voxel sizes, as we suspect was the case at 90 cm 

voxel size in our validation experiment. 

4. Conclusions

We presented a method to quantify the silhouette to total area ratio from TLS point clouds. Our method 

relies on voxel-based estimates of leaf area density, which are orthogonally projected to obtain their 

silhouette area. As such, our method relies on the accuracy of leaf area density estimates, which is a 

subject of ongoing research. We validated our method using small spruce trees, which showed that the 

voxel size plays a crucial role in quantifying STAR as well as leaf area density. Based on our findings, 
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we suspect that using voxel sizes between 10 and 20 cm appear to provide a reasonable trade-off between 

fine-scale detail and computational feasibility. 
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1. Introduction

Terrestrial laser scanning (TLS) has been successfully applied in the context of manifold forestry 

applications and enables a fast and automatic acquisition of the forest structure (Fardusi et al. 2017). A 

major challenge of TLS applications in forestry is occlusion (Abegg et al. 2017), because the laser is 

often obstructed by other trees or understory vegetation. In order to obtain a complete point cloud, the 

multi scan mode is preferably used in most studies (Ritter et al. 2020). However, systematic studies 

regarding efficiency of different scanner position layouts and size or shape of sample plots are still rare. 

Recently, Ritter et al. (2020) developed a methodology to model the detection probability of multi-scan 

TLS, by extending the traditional distance sampling framework (Buckland et al. 2001) to account for 

multiple scan positions. Data from single scans was sufficient to parameterize the underlying detection 

model, making the model easily adoptable to different forest types and sighting conditions. By 

comparing the model results to real world data of circular sample plots with different radii and scanner 

position layouts (Gollob et al. 2019), it was shown that beside a minor discretization bias associated 

with small sample sizes, the model was able to accurately predict the detection probability of TLS on 

these plots (Ritter et al. 2020). 

In this research, the methodology proposed by Ritter et al. (2020) is used to model the detection 

probability of TLS for rectangular sample plots of different size and aspect ratio and for different scanner 

position layouts. In total, 54 Variants are compared regarding their detection rate and sampling effort. 

2. Data and Methods

The distance sampling framework (Buckland et al. 2001) is based on the assumption that the 

detectability of objects typically decreases with increasing distance 𝑟 between the observer (i.e. the laser 

scanner in our application) and the object of interest (i.e. a tree) and can be modelled by a distance-

depending detection function 𝑔(𝑟). For single scan applications, the mean detection probability 

(detection rate) within a circular sample plot of area 𝑎 and radius 𝜔 can be estimated by 

�̂�𝑎 =  
2

𝜔2
∫ 𝑟 × 𝑔(𝑟)𝑑𝑟

𝜔

0

 (1) 

(Astrup et al. 2014). 

Ritter et al. (2020) extended the framework to multi scan applications with I scanner positions, 

assuming that the probability of detecting an arbitrary tree located at position 𝑗 in a distance of 𝑟𝑖𝑗 from

the scanner position 𝑖 is independent from the probability to detect the same tree from any other scanner 

position 𝑖′ ≠ 𝑖  for 𝑖′, 𝑖 ∈ {1, … , 𝐼}. This probability can then be estimated by 𝑔(𝑟𝑖𝑗), so that the

probability to detect a tree located at location 𝑗 becomes 

𝑃𝑗 = 1 − ∏ (1 − 𝑔(𝑟𝑖𝑗))
𝐼

𝑖=1
(2) 

An arbitrary sized and shaped sample plot can be described by a set of J raster cells. For every raster 

cell centroid, Eq. 2 can be applied to predict the probability to detect a tree located within the cell. Thus, 

the mean detection probability (detection rate) 𝑃𝑎 per sample plot can be estimated as the arithmetic

mean of all raster cell estimates 𝑃𝑗 within the plot (Eq. 3)
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𝑃�̂� =
1

𝐽
∑ (1 − ∏ (1 − 𝑔(𝑟𝑖𝑗))

𝐼

𝑖=1
)

𝐽

𝑗=1

 (3) 

(𝑟𝑖𝑗) can be parameterized from single scan reference data (Ritter et al. 2020).

In the following, we use the extended hazard rate type detection function 

(Ritter et al. 2020) with parameter estimates obtained by fitting the function to freely available single 

scan data from Lower Austria (Gollob et al. 2020). The detection probability of trees having a diameter 

at breast height (dbh) of 20cm or more, was modeled for the algorithms of (Gollob et al. 2019) on 

rectangular sample plots with different size and aspect ratio (Table 1) and with different scanner position 

layouts (Figure 1).  

3. Results and Discussion

The modelled detection probabilities 𝑃𝑗 for the cells of a 0.1m × 0.1m raster obtained with the different

multi scan layouts are depicted in Fig. 1. The detection rate 𝑃�̂� for different rectangular sample plots,

centered at the origin of the local coordinate system are presented in Table 1. 

Figure 1. Modelled detection probability 𝑃𝑗 for different scan variants. The black triangles

symbolize scanner positions. 
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The scanner position layout strongly influences the detection rate. As an example, scan variant 

5 on a 30m×30m sample plot yields a detection rate of 65.22% with a total of 5 scans, while scan variant 

9 yields a detection rate of 93.06% with the same sampling effort (Table 1). The aspect ratio of the 

sample plot is another crucial factor, having two 900m² sample plots, one being 60m×15m, the other 

one being 30m×30m, detection rates obtained by the same scan variant differ remarkably, e.g., 86.85% 

vs. 93.06% for scan variant 9. 

Table 1. Detection rate estimates for different scanner position layouts and sample plot sizes 

Scan variant 

Sample plot size 

60m×60m 

(=3600m²) 

60m×30m 

(=1800m²) 

60m×15m 

(=900m²) 

30m×30m 

(=900m²) 

30m×15m 

(=450m²) 

15m×15m 

(=225m²) 

1 (25 scan positions) 96.49% 96.50% 96.50% 96.51% 96.51% 96.51% 

2 (15 scan positions) 88.56% 88.56% 92.25% 88.82% 92.65% 92.65% 

3 (10 scan positions) 87.08% 88.56% 84.86% 88.82% 84.99% 94.99% 

4 (  5 scan positions) 67.51% 85.54% 91.75% 86.55% 92.48% 92.48% 

5 (  5 scan positions) 54.81% 55.17% 57.37% 65.22% 71.17% 78.27% 

6 (  9 scan positions) 81.88% 82.76% 81.02% 88.26% 88.63% 90.12% 

7 (  5 scan positions) 75.19% 80.83% 79.73% 88.16% 88.62% 90.12% 

8 (  9 scan positions) 81.90% 90.27% 93.64% 93.78% 95.28% 96.04% 

9 (  5 scan positions) 72.02% 83.28% 86.85% 93.06% 94.96% 96.04% 

The modelled detection rates for the scanner position layouts and sample plot shapes presented 

in this research were not compared to real world data. However, the methodology used for modelling 

was already intensively tested with several other sample plot shapes and scanner position layouts and 

proved to yield accurate results (Ritter et al. 2020). Thus, we are confident that the provided estimates 

are reliable. 

The detection function was fitted to single scan reference data from lower Austria, making the 

results valid only for stands with comparable structure and sighting conditions. However, fitting the 

detection function to different reference data is straightforward and associated with a comparatively low 

effort (Ritter et al. 2020). 

4. Conclusion

The methodology by Ritter et al. (2020) allows a model-based comparison of the detection rates with 

different scanning position layouts, sample plot-sizes and -shapes. The benefits from a well-planned 

multi-scan layout justify the necessary extra effort, especially in larger sampling campaigns 

References 

Abegg, M., Kükenbrink, D., Zell, J., Schaepman, M., Morsdorf, F., Abegg, M., Kükenbrink, D., Zell, J., 

Schaepman, M.E., and Morsdorf, F. 2017. Terrestrial Laser Scanning for Forest Inventories—Tree Diameter 

Distribution and Scanner Location Impact on Occlusion. Forests 8(6): 184. doi:10.3390/f8060184. 

Astrup, R., Ducey, M.J., Granhus, A., Ritter, T., and von Lüpke, N. 2014. Approaches for estimating stand-level 

volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 44(6): 666–676. 

doi:10.1139/cjfr-2013-0535. 

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., and Thomas, L. 2001. Introduction 

to distance sampling: Estimating abundance of biological populations. Oxford Univ. Press. 

Fardusi, M.J., Fardusi, M.J., Chianucci, F., and Barbati, A. 2017. Concept to Practice of Geospatial-Information 

Tools to Assist Forest Management and Planning under Precision Forestry Framework: a review. Ann. 

Silvic. Res. 41(1): 3–14. doi:10.12899/asr-1354. 

Gollob, C., Ritter, T., and Nothdurft, A. 2020. Comparison of 3D point clouds obtained by terrestrial laser scanning 

and personal laser scanning on forest inventory sample plots. Data 5(4): 1–13. doi:10.3390/data5040103. 

Gollob, C., Ritter, T., Wassermann, C., and Nothdurft, A. 2019. Influence of Scanner Position and Plot Size on 

the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest 

Inventory Plots. Remote Sens. 11(13): 1602. doi:10.3390/RS11131602. 

Ritter, T., Gollob, C., and Nothdurft, A. 2020. Towards an optimization of sample plot size and scanner position 

layout for terrestrial laser scanning in multi‐scan mode. Forests 11(10): 1–23. doi:10.3390/f11101099. 

55



Correcting TLS Estimation for Shading by Other Trees 
Using a Horvitz-Thompson-like Estimator  

K. Kansanen2, P. Packalen2, M. Maltamo2 and L. Mehtätalo1 

1Natural Resources Institute Finland (Luke), Yliopistokatu 6, 80100 Joensuu, Finland 
Email: lauri.mehtatalo@luke.fi 

2 University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland 
Email: kasperkansanen@gmail.com, petteri.packalen@uef.fi, matti.maltamo@uef.fi. 

1. Introduction
In circular plot sampling, a sample plot is defined by the plot location, and trees within a given distance 
(called plot radius) from that point constitute a sample. However, not all trees may be visible to the 
center point of the plot because they are hidden by the other tree stems or other obstacles (such as rocks) 
that may be present on the sample plot. In traditional field inventories, this is not a problem because the 
field crew can temporarily move from the plot center to see all trees. However, that is not the case if a 
terrestrial laser scanner is used for data collection using single scan from the plot center. For example, 
Seidel and Ammer (2014) reported that approximately 2.5-7.5% of the plot area may be not sampled 
due to this shadowing effect. Therefore, there is a need for methods to adjust the estimators of 
populations totals from TLS sampling for this non-detection.   

We are not the first authors to tackle this problem. Lovell et al. (2011) outlined a method based on 
a gap probability in a Poisson forest. Duncanson et al (2014) and Astrup et al (2014) have proposed 
methods based on classical distance sampling. Seidel and Ammer (2014) determined a correction factor 
based on the shadowed area. Olofsson and Olsson (2018) proposed an estimator that is based on using 
the area visible to the scanner as a sampling window. Their method was further extended by Kuronen et 
al (2019) to allow different correction factors for different detection conditions for the observed trees. 
That is, the estimator can take into account how big proportion of a tree stem should be visible to make 
the tree observable to the laser scanner. In the method of Kuronen et al. (2019), the plot edge is partially 
at the applied maximum radius of the plot or at edges of the observed tree stems. Therefore, the estimator 
is biased because the realized tree locations determine the plot size, and there are lot of trees that are 
located on the plot border, in similar ways as in the point-to-object sampling (see e.g. Ducey 2018).  

Figure 1. Illustration of the proposed estimation approach when the condition for detectability is 
visibility of the center point of the tree to the scanner for tree number 17 on a plot delineated by the 
dashed line (Kansanen et al 2020). 
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In this paper, we discuss a new estimator (Kansanen et al 2020) that is based on the ordering of the 
trees according to their distance from the plot center. The estimator is unbiased under the assumption of 
complete spatial randomness (CSR) of tree locations in the hidden part of the plot. The estimation is 
based on CSR, but it is conditioned on the observed tree locations. In practice, it means that the model 
assumptions affect the estimation only in the hidden parts of the sample plot. An estimator for the 
variance of the estimator is also presented and used for constructing 95% confidence intervals for 
estimated stand density. 

Figure 2. Illustration of the proposed estimation approach when the condition for detectability is full 
visibility (left) and visibility of any part of the tree the tree (right) to the scanner for tree number 17 on 
a plot delineated by the dashed line (Kansanen et al 2020). 

2. Data and methods
Consider trees observed by a TLS device on a fixed plot and order them according to their distance from 
the plot center. We refer closer trees here as “earlier” in such an ordered sequence. The first tree of the 
sequence is observed for sure, because there are no trees behind which to hide. Let us then consider the 
second tree, and condition on its distance r2 from the plot center. Assuming that a tree remains 
unobserved if its center point is hidden behind the earlier trees, the second tree would have been 
unobserved if it were located on such part of the perimeter of a r2-radius disc that is hidden behind the 
earlier trees. This provides an estimated detection probability for the tree as a ratio of the visible part 
and the total perimeter length of the r2-radius circle centered at the origin. In the same way, we can 
compute the detection probabilities for the other trees as well. For example, the red line in Figure 1 
illustrates those sections of perimeter of a r17-radius circle where the 17th tree of a would be hidden. In 
Figure 1, a tree is assumed to be detectable when the center point of the stem is visible to the scanner 
(detection condition “center”). Figure 2 illustrates the two other detection conditions, called “any” and 
“full”.  

After the detection probabilities have been estimated, tree characteristics can then be estimated using 
a Horvitz-Thompson-like estimator 

𝑇 =
𝑡
𝜋ො

where 𝑇 is the estimator of the population total T, 𝑡 is the total of observed tree i, and 𝜋ො is the detection 
probability of tree i. The estimator is called Horvitz-Thompson-like estimator because the detectability 
is an estimate of the inclusion probability of sampling unit i, not a known true inclusion probability. 
When stand density (trees per plot) is estimated, 𝑡=1 for all trees i. Therefore, the estimator essentially 

includes for each observed tree a number 𝑛 =
ଵ

గෝ
> 1, which gives the estimated number of trees similar 
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to the observed tree 𝑖. The later the tree is in the ordered sequence, the larger is 𝑛. An R-implementation 
of the estimator is available in function HTest_cps of R-package lmfor (Mehtätalo 2019).  

The proposed estimator is evaluated using simulated forests where the spatial pattern varies from 
strong regularity to strong clustering. In addition, a data set of 111 square 30 by 30 meter mapped forest 
plots from Eastern Finland are used to evaluate the estimator, by simulating circular, 10-meter radius 
TLS plots on them.  The spatial pattern of tree locations on these plots is slightly regular.  

3. Results and discussion
We show that the estimator is unbiased if the tree locations follow the assumption of complete spatial 
randomness and present an estimator for its variance. The performance of the estimator is illustrated in 
plots of simulated forests of different spatial patterns as well as on real mapped forests. The empirical 
results showed better or similar performance than the estimator of Kuronen et al (2019) and Olofsson 
and Olsson (2019). In the field plots, the relative RMSE of our estimator on 10-meter plots was 4.6, 6.2 
and 8% for the number of stems under the “any”, “center” and “full” detection conditions, respectively,  
and the mean errors were 0.4, 2.1 and 4.1%. The constructed confidence intervals under the nominal 
95% level of confidence covered the true number of trees in 96.5-97.5% of the cases, which indicates 
that the variance estimator is slightly biased but the bias happens to a safe, conservative direction under 
regular pattern of tree locations. Under simulated plots with complete spatial randomness, the observed 
coverage probabilities were very close to the nominal ones.    

We also discuss, from a statistical point of view, the question of using single scans from multiple 
plots or multiple scans from a smaller number of plots in practical inventories. Application of similar 
ideas in individual tree detection based on aerial inventories are also discussed. 
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1. Introduction
As forests undergo succession there is a directional change in tree species composition and three-
dimensional structure over time (Packham and Harding 1982). Across the landscape of Cambridgeshire, 
United Kingdom (UK) are many small woods undergoing succession embedded in a broader agricultural 
context. Within this dynamic environment occur bird species with variable habitat needs. Blue Tit 
(Cyanistes caeruleus) and Chaffinch (Fringilla coelebs) are habitat generalists, though preferences for 
woodland (Redhead et al. 2013) and hedgerow (Fuller et al. 1997) habitats have been noted, respectively. 
Chiffchaff (Phylloscopus collybita) and Willow Warbler (Phylloscopus trochilus) are habitat specialists, 
respectively favouring mature (Hinsley et al. 1996) and early successional (Bellamy et al. 2009) forests. 
The aim of this study is to characterize the habitat used by these species within a successional context 
using airborne laser scanning (ALS) data. ALS is suitable for describing forest structure (Lim et al. 
2003), including successional contexts (van Ewijk et al. 2011), and is appropriate for characterizing bird 
habitat as birds use structural cues to select habitat (MacArthur et al. 1962). 

2. Data
This study uses ALS data acquired in 2000, 2005, 2012 and 2015, and bird survey data from those same 
and two subsequent years. ALS were acquired during the leaf-on period and the characteristics are 
included in Table 1. Bird data were collected along transects across multiple revisits during spring and 
early summer mornings using a spot mapping method based on the Common Birds Census of the British 
Trust for Ornithology (Marchant 1983). Woods used in this study include Gamsey (4.9 ha), Lady’s (8.4 
ha), Raveley (7.2 ha), Riddy (9.4 ha), and two areas adjacent to Monks Wood National Nature Reserve 
previously used as farmland which were abandoned in 1996 (New Wilderness: 2.1 ha) and 1961 (Old 
Wilderness: 3.9 ha). These woods are populated by Common Ash (Fraxinus excelsior), English Oak 
(Quercus robur), Field Maple (Acer campestre) and Elm (Ulmus spp.), and shrub species including 
Common Hazel (Corylus avellana), Hawthorn (Crataegus spp.) and Blackthorn (Prunus spinosa). 

Table 1. ALS acquisitions characteristics for all years. 
ALS year Scanner Flight date Returns per pulse Returns per 

square metre 
2000 Optech ALTM 1210 2000-06-10 2 0.27 
2005 Optech ALTM 3033 2005-06-26 2 0.45 
2012 Leica ALS50-II 2012-09-15 4 10.54 
2015 Leica ALS50-II 2015-06-22 4 2.1 

3. Methods
Terrain-normalized ALS structural variables describing the full vertical profile (e.g., ground level to top 
of canopy) and three strata (hereby S1, S2 and S3) were extracted from a circular plot with a 15 m radius 
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at locations where the target bird species were present. The three strata correspond to actual levels of 
vegetation within the canopy (i.e., S1: shrub, <2 m; S2: understorey, 2-8 m; and S3: overstorey: >8 m). 
Structural variables describing the full profile and for each stratum include skewness, kurtosis, standard 
deviation, mean, and maximum height. Canopy closure and foliage height diversity metrics were also 
extracted. Global habitat models for each species were developed using random forest, a machine 
learning algorithm that generates a collection of decision trees to perform a classification (Breiman 
2001), with data across all six woods and all studied years. Random forest output includes variable 
importance and a measure of out-of-bag (OOB) error (Breiman 2001). The area under the receiver 
operating characteristic curve (AUROC) was also calculated as a measure of the predictive performance 
(Fielding and Bell 1997). 

4. Results
All four bird species were well modelled and the results are summarized in Table 2, which also includes 
the range of values characterizing the habitat occupied by each species. Willow Warbler had the lowest 
OOB error, followed by Blue Tit, Chaffinch, and Chiffchaff. Error associated with presence/absence 
differed in their magnitude for each species. For Blue Tit, error was relatively even for presence (17.1 %) 
and absence (16.7 %). Error associated with absence was lower for Chaffinch (16.6 %, versus 19.3 %) 
and Willow Warbler (7.8 %, versus 12.4 %). For Chiffchaff, error was lower for presence (24.2 %) than 
absence (33.8 %). AUROC values followed a similar pattern to OOB error, from highest to lowest: 
Willow Warbler, Blue Tit, Chaffinch and Chiffchaff. Maximum height of the full profile was important 
to all bird species. Chiffchaff was also associated with structural variables in S3 (maximum height and 
standard deviation). Willow warbler was associated with S1 (standard deviation and kurtosis). For Blue 
tit, foliage height diversity and S3 standard deviation were important. The most important variables for 
Chaffinch were canopy closure and the mean height of the full profile. 

Table 2. Top three variables for each species identified by random forest, with model accuracy. 
Species Variable 1 

& range 
Variable 2 
& range 

Variable 3 
& range 

OOB Error AUROC 

Chiffchaff Maximum 
height 

12.5-18.6 m 

S3 maximum 
height 

12.8-18.8 m 

S3 standard 
deviation 
1.1-2.4 m 

29.0 % 0.79 

Willow Warbler S1 standard 
deviation 
0.5-0.7 m 

S1 kurtosis 
1.7-3.2 

Maximum 
height 

4.6-9.6 m 

10.1 % 0.95 

Blue Tit Foliage height 
diversity 
0.8-0.9 

Maximum 
height 

11.3-17.6 m 

S3 standard 
deviation 
1.1-2.3 m 

16.9 % 0.90 

Chaffinch Canopy closure 
4-38 % 

Mean height 
3.5-9.5 m 

Maximum 
height 

10.1-16.7 m 

18.0 % 0.90 

5. Discussion
The ability of ALS-derived variables to describe three-dimensional habitat structure has been shown in 
previous studies (Bakx et al. 2019; Bradbury et al. 2005; Goetz et al. 2007; Zellweger et al. 2013). Our 
study demonstrates that there are structural components to the habitat used by Chiffchaff, Willow 
Warbler, Blue Tit, and Chaffinch that can be quantified with ALS. Our results support ecological 
descriptors of habitat preferences. For instance, characteristics of the overstorey strata were significant 
to Chiffchaff whereas it is the shrub strata that is important to Willow Warbler, which is aligned with 
mature and early successional forest structures. In contrast, we found that Blue Tit and Chaffinch, 
considered habitat generalists, are not using space equally across the full vertical profile but are 
discriminating within specific height intervals. Our results also show that species are more specific in 
the structural components that they are either using (i.e., Chiffchaff) or not using (i.e., Chaffinch and 
Willow Warbler), suggesting that structural components can act as a deterrent or as an attractor. ALS 
data provides valuable information regarding the structure of bird habitat and ALS data availability is 
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increasing. Using ecological knowledge of the habitat structure (i.e., distinct strata), forest succession 
(i.e., changes over time), and bird species (i.e., habitat preference) to derive meaningful variables aids 
in result interpretability, and is useful for management and conservation applications. 

6. Conclusions
This study uses ecologically informed ALS-derived structural variables to quantify Chiffchaff, Willow 
Warbler, Blue Tit, and Chaffinch habitat across six woods in Cambridgeshire, UK. All species were 
accurately modelled and their habitat could be characterized with random forest. Our results support 
ecological studies examining structural aspects of the habitat used by these bird species (e.g., Fuller et 
al. 2001), and remote sensing studies using ALS (e.g., Bellamy et al., 2009). A future study will build 
on these results to identify and quantify habitat across space and over time for each species. 
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1. Introduction
Tropical forests play a role in climate mitigation and ecosystem services. For that, international funding 
has been set up to support forest monitoring, specifically in developing countries through Reducing 
emissions from deforestation and forest degradation (REDD+) (Nesha et al. 2021). Countries (like in 
this study Guyana and Suriname) who are establishing a REDD+ program, need to design and 
implement a national Measurement, Reporting and Verification (MRV) system as part of their REDD+ 
program. Within the MRV systems, aboveground biomass (AGB) estimations are mostly calculated 
using allometric models, which are largely dependent on the data used, producing uncertainties and 
systematic errors of tree AGB estimations when applied to other species, size, structure, or geographical 
conditions (Lau et al. 2019). 

Terrestrial Light Detection and Ranging (LiDAR) along with quantitative structure models 
(Raumonen et al. 2013) have been proven to be a valuable tool to assess the woody structure of trees 
(Brede et al. 2017) and to estimate tree AGB (Burt et al. 2021) regardless of the tree species, size, 
structure, or geographical conditions. Lau et al. (2019) proved the feasibility to develop country-specific 
TLS-derived allometric models and it is of interest now to explore the inclusion of more validation trees; 
for that, the aim of this study is to develop allometric models from TLS-derived parameters which 
estimates AGB of trees in Guyana and Suriname in a reliable and accurate way. 

2. Data and Methods

2.1 Study area 
Four forest types were used in this study which aimed to increase the representativity of trees in Guyana 
and Suriname. One study area was located in Guyana, with a mixture of white sand plateau and mixed 
forest, with a dominance of evergreen trees (Guyana Lands and Surveys Commission 2013). The other 
three areas were located in Suriname; a moist ever green forest, a high and low swamp forest and a 
periodic swamp forest (Atmopawiro 2016). 

2.2 TLS-derived attributes and QSM-derived aboveground biomass 
Terrestrial LiDAR datasets were collected with a RIEGL VZ-400 3D terrestrial laser scanner (RIEGL 
Laser Measurement Systems GmbH, Horn, Austria). We scanned a total of 155 tropical trees (Guyana 
n = 72 and Suriname n = 83) following TLS data acquisition and plot design described in Lau et al. 
(2019). Trees were identified and manually isolated from the pointcloud. These trees were field 
inventoried and diameter at breast height (D), total tree height (H), and crown diameter (CD) were 
estimated directly on the standing tree. Tree species specific wood density (WD) was matched using the 
recorded WD from the fieldwork and the Global Wood Density Database – GWDD (Zanne et al. 2009). 

Likewise, D, H, CD were estimated directly on the individual pointcloud. Finally, aboveground 
biomass was estimated from volume using quantitative structure model TreeQSM (Raumonen et al. 
2013) and their respective wood density from GWDD. 
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2.3 Tree Inventory and fresh mass sampling 
A total of fifty-one trees (Guyana n = 23 and Suriname n = 28) were chosen as validation data. Those 
trees were destructively sampled and weighed. Fresh mass was measured directly in the field while the 
larger branches and parts were measured through volume estimation. Moreover, we collected wood 
samples to estimate water content and were weighed in the field. 

2.4 TLS-derived and pantropical allometric models 
We developed two model forms based on the work in Lau et al. (2019). For that, we used TLS-derived 
attributes (D, H and CD) and WD to evaluate the accuracy of AGB estimation by only using TLS-
derived parameters. The first model uses diameter at breast height, tree height, wood density, and crown 
diameter (hence, D.WD.H.CD), while for the second one, we removed tree height (D.WD.CD). The 
allometric models were based on data transformed to the natural logarithm and built using least-squares 
linear regression. In addition, we estimated AGB using pantropical allometric models from Chave et al. 
(2005) as seen in Table 1. 

Table 1. Pantropical models from Chave et al. (2005), including diameter at breast height (D), species 
specific wood density values according to the GWDD (WD), and total tree height (H) to estimate 

aboveground biomass (AGB). 
Model Form AGB = 
Ch05.II.3 𝑊𝑊𝑊𝑊 ∙ 𝑒𝑒(−1499 + 2.1481 ∙ ln(𝐷𝐷) + 0.207 ∙  ln(𝐷𝐷) 2 − 0.0281 ∙ ln(𝐷𝐷) 3) 
Ch05.I.5 0.0509 ∙ 𝑊𝑊𝑊𝑊 ∙ 𝑊𝑊2 ∙ 𝐻𝐻 

2.5 Model assessment 
Finally, we assessed how well the TLS-derived allometric models predict AGB using R-square (R2), 
root means square error (RMSE), and concordance correlation coefficient (CCC). For comparing with 
the allometric models in Table 1, our assessment included the estimation of the model error (in Mg, 1) 
and the standard deviation (SD) of error. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (𝑀𝑀𝑀𝑀)  =  𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒  −  𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑟𝑟 (1) 

3. Results and Discussion
TLS-derived allometric models D.WD.H.CD and D.WD.CD were able to estimate AGB with high 
accuracy (R2 = 0.94, RMSE = 1.39 Mg, CCC=0.96 and R2 = 0.95, RMSE = 1.25 Mg, CCC=0.97, 
respectively, see Figure 1a and Figure 1b). On the other hand, pantropical model Ch05.II.3 and Ch05.I.5 
also performed with high accuracy (R2 = 0.92, RMSE = 1.54 Mg, CCC=0.96 and R2 = 0.88, RMSE = 
1.88 Mg, CCC=0.94, respectively, see Figure 1c and Figure 1d); although slightly lower than the TLS-
derived allometric models. 

Figure 1: Relationships between AGB from harvested trees (X-axis) and AGB from allometric 
models (Y-axis). TLS-derived models with D, WD, H and CD (a), and without H (b), pantropical 

model Ch05.II.3 (c), and Ch05.I.5 (d). Black solid line is 1:1 relationship; dashed lines depict linear 
fit; and dotted lines indicate 95% confidence interval for the linear fit. 
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TLS-derived allometric models have a mean model error of -0.22 Mg (slight underestimation), while 
pantropical model Ch05.II.3 and Ch05.I.5 have a mean model error of -0.05 Mg and -0.24 Mg (slight 
underestimation), respectively. Regarding SD of error, TLS-derived allometric model D.WD.H.CD and 
D.WD.CD showed an SD of error of 1.38 Mg and 1.24 Mg, respectively, and pantropical model 
Ch05.II.3 and Ch05.I.5 showed and SD of error of 1.56 Mg and 1.88 Mg, respectively. 

The slightly underestimation of the TLS-derived allometric models in this study might be due to the 
limited number of samples used (n = 155) as opposed as the hundreds (or even thousands) of samples 
used to calibrate these pantropical models. With the advances on tree segmentation and semi-
automatization of tree modelling, a larger sample size can be used to update and calibrate TLS-derived 
allometric models. TLS helps to increase the sample size of without increase the destructive sampling 
of tropical trees. 

4. Conclusions
TLS-derived allometric models were developed for Guyana and Suriname which estimate aboveground 
biomass of trees in a reliable and accurate way. As mentioned in Lau et al. (2019), pantropical model 
Ch05.II.3 provides a good AGB estimate using only WD and D. With the advances of tree segmentation 
and semi-automatization of tree modelling, we can increase our sample size without the need of 
destructive sampling. Finally, more research needs to be done to provide robust local TLS-derived 
allometric models which allow the reduction of uncertainties and increase efficiency of MRV system in 
REDD+ countries.  
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1. Introduction

Given certain site conditions, growth of individual trees and consequent spatiotemporal dynamics of 

forest stands depend principally on inter-tree competition for light as well as other potentially limiting 

resources (Caplat et al. 2008, Kolobov and Frisman 2016). Various models have been developed to 

predict tree growth, but most of them are relatively simplistic: trees are conceptualized as vertically 

oriented and stationary objects defined primarily by their stem diameter, and competition between them 

is determined as a result of tree sizes and stand-level characteristics. These models are applicable for 

providing reasonably accurate estimates of tree growth over various conditions, but too naïve to cover 

the whole range of actual variation. 

To narrow down the gap between the model outputs and the underlying complex determinants of 

tree growth, both spatial and structural parameters have been added to the models. Spatially explicit 

models have been developed to improve competition assessment by using the locations of single trees, 

which conventionally are measured as x,y coordinates of the breast height or the tree base. While the 

spatially explicit dependencies and related causalities can improve our understanding of forest structure, 

the use of actual tree locations instead of distance-independent approaches had seemed to add little 

additional value when predicting tree growth and mortality, even in structurally complex forests 

(Kuehne et al. 2019). In terms of structural characteristics, the primary focus has been on the crown, 

given that aboveground interactions between trees are mediated by the size, shape, and relative position 

of their crown elements (Davies and Pommerening 2008). Inclusion of crown dimensions has been 

mostly limited to simple and easily measurable parameters such as height of the crown base or living 

crown ratio, which can be considered as indicators of the past competition experienced by the tree (e.g. 

Hasenauer et al. 2006). 

The approaches described so far are however not taking full advantage of all the crown-related 

structural parameters. Crown radius, area or volume are important characteristics in terms of the 

photosynthetic capacity of a tree, to either substitute or complement the crown length. Furthermore, tree 

crowns are characterized by a high degree of plasticity which is affected by microscale competition on 

the available resources (Davies and Pommerening 2008), and trees have potential to lean towards less 

contested spaces as a result of phototrophism (Strigul et al. 2008). These dynamics may be a partial 

reason for the low performance of spatially explicit models, which base only on stem coordinates (García 

2014a). Lee & Garcia (2016), for example, found that accounting for tree plasticity reduced the 

importance of the stand spatial structure in a tree growth model for mixed-species stands. 

The practical complication with crown-related structural parameters has been the inability to extract 

them by conventional field measurement tools, but modern technologies such as terrestrial laser 

scanning (TLS) enable capturing this information from standing trees in their natural environment 

(Seidel et al. 2011, Krůček et al. 2019). In our study, we take advantage of TLS data collected from 

various locations in Finland, reflecting a range of site conditions in boreal forests. We focus on Scots 

pines (Pinus sylvestris L.) and Norway Spruces (Picea abies (L.) Karst.) in pure and mixed stands by 

measuring various advanced crown-related parameters. We link this information to the location and 

characteristics of the neighbouring trees, intending to quantify the effects of inter-individual competition 

and consequent plasticity of the tree crowns in 3D space. Finally, we aim at estimating models to predict 

the extracted crown parameters with subsequent potential to improve individual tree growth models. 
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2. Data and Methods

TLS data applied in this study was acquired in 2017–18 as a part of large plot-wise data collection plan. 

Of altogether over 250 plots with manual tree measurements (r = 9.00 m), 12 pine-dominated and 12 

spruce-dominated stands were selected for this study (Figure 1). These plots represented mature forests 

with different site characteristics and tree densities, located in southern and middle Finland where 

competition on light was expected to be limiting tree growth, and were visually assessed as feasible for 

the extraction of individual tree clouds. The selected 24 plots had 255 manually measured tally trees, 

which had been determined using a relascope-based sampling strategy. The tally trees included 128 

Scots pines, 103 Norway spruces and 24 trees of other species, which had diameters at breast height 

(DBH) between 73 and 425 mm and tree heights between 5.7 and 29.1 m, respectively. 

Figure 1: Location of the study plots. Some of the plots are closely located, and therefore overlapping 

on the applied map scale. Background map: © EuroGeographics for the administrative boundaries. 

Each plot was scanned using Leica P40 terrestrial laser scanner from 4-5 stations. Distinct scans 

were then co-registered and processed through automated analyses to locate the trees. First, a digital 

terrain model was created to indicate the ground level, and thereafter the trees were detected based on 

point concentrations organized as near-vertical planes. Breast height coordinates and diameters were 

predicted using a further developed version of slice-based circle fitting method as presented by Pitkänen 

et al. (2019), and stem directions were estimated using the lowest part of the stem. TLS points of all the 

tally trees were semi-automatically extracted from the plot-wise clouds by first assigning connected 

point clusters in the vicinity of the tree to the candidate single-tree cloud, and then manually cleaning 

the remaining parts of the neighbouring trees. All the plots also included a number of other trees without 

field measurements. They were not extracted as individual TLS point clouds due to the high workload 

of data processing but recognized as competitor trees in the analyses based on their location and DBH. 

All the crown parts of the tally trees were then extracted, and their extents were modelled using 3-

D convex hulls. They were then calculated crown base height (from the tree base), crown height, width, 

volume, and surface area. Various indices regarding to the crown shape and symmetricity were 

calculated as well, and coordinates of the crown centroid and treetop (i.e. the highest TLS point) were 

extracted to measure their potential shift from the breast height coordinates. Further, competition 

between the trees was assessed using size ratios of the various earlier calculated features, weighted by 

subject-to-competitor distances (Pommerening and Maleki 2014). Then, all the crown-related 

parameters were correlated to tree, stand and competition characteristics with a generalized linear mixed 

modelling (GLMM) framework to identify the dependencies and potential drivers of these features. 

Further, we considered the crown extent as the tree assimilation zone as defined in Garcia (2014a, 

2014b), and assumed similar dynamics to also occur underground for the root system. Using the package 

siplab (Garcia, 2014b) of R Statistical software (R Core Team, 2021), species-specific functions for 

predicting the centroid of the assimilation zone (i.e of the crown) were fitted. A default uniform resource 

spatial distribution was used, and then the parameters of the influence function, allotment and resource 

efficiency were fitted to the observed data. 
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3. Results and Discussion

The GLMM models will reveal the significance of the stand characteristics, spatial arrangement of the 

trees and competition between the individuals for the observed crown characteristics and their plasticity. 

Further, the assimilation zone, predicted using the siplab framework, will provide a starting point for 

enhancing individual tree growth models. Part of the associated outcomes, however, will be further 

elaborated in the forthcoming studies. 

4. Conclusions

TLS technology can provide important eco-physiological information on trees and forests, which is 

based on non-destructive point cloud measurements at a millimetre level accuracy. This study applies 

TLS-derived information to identify species-specific drivers and dynamics related to resource 

competition, which is reflected by the morphological plasticity of trees. Further, preliminary simulation 

of assimilation zones is expected to have linkages with growth modelling of individual trees, therefore 

providing potential for further research according to the key findings. 
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1. Introduction
Upcoming satellite missions targeting the estimation of forest Above-Ground Biomass (AGB) require 
an expansion of calibration and validation capabilities (Duncanson et al., 2019). In this context, forest 
inventories in combination with Allometric Scaling Model (ASM) represent a traditional and well-
understood tool. However, ASMs are often based on a small number of harvested trees only, which are 
typically easier to harvest small trees, resulting in biases in the ASMs (Duncanson et al., 2019).  

Terrestrial Laser Scanning (TLS) has been demonstrated to be an unbiased estimation tool for single 
tree wood volume and AGB, especially in large trees (Calders et al., 2015). However, TLS field data 
acquisition is labour-intensive and time consuming with a typical productivity of 3-7 days per ha for 
structurally complex forests (Wilkes et al., 2017). In recent years, Unoccupied Aerial Vehicle Laser 
Scanning (UAV-LS) has evolved into a mature technique for the collection of point clouds on hectare 
scales. Pilot studies have already shown the use of UAV-LS for estimation of individual tree metrics 
(Wallace et al., 2014). A recurring challenge is the accurate automatic segmentation, which is required 
to allow UAV-LS to be used across large scales. Additionally, structurally complex evergreen tropical 
forests have not been extensively targeted yet.  

In this context, the aim of this study was to explore the potential of individual tree metrics derived 
from automatically segmented UAV-LS point clouds to estimate tree wood volume across a range of 
forest sites with varying structural complexity. 

2. Data and Methods

2.1 Study Sites 
In total, four sites were selected in this study that represent a structural complexity gradient. Speulderbos 
(The Netherlands) is a temperate mixed forest site containing European beech and oak, as well as 
Norway spruce, Giant fir and Douglas fir. The Paracou site (French Guiana) is a lowland wet, old-
growth tropical forest with more than 750 woody species. Robson Creek (Australia) is a simple 
notophyll vine forest in the wet tropical NE Queensland. Litchfield (Australia) is a savanna site with a 
sparse canopy and affected by wild fires.  

2.2 TLS and QSM-based Wood Volume Reference 
At all sites, TLS data were collected in regular grid patterns with RIEGL VZ-400 scanners, and 10 to 
20 m spacing and linking positions with retro-reflective targets following good practice guidelines for 
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TLS forest plot surveys (Wilkes et al., 2017). Subsequently, the single scan positions were registered to 
form a co-registered point cloud per site. In total 200, 204, 200 and 489 individual trees were manually 
segmented from these point clouds for Speulderbos, Paracou, Robson Creek and Litchfield, respectively. 
Finally, Quantitative Structural Models (QSM) were built with TreeQSM (Raumonen et al., 2013) and 
tree wood volume was estimated based on the QSM cylinder volumes. 

2.3 UAV-LS Segmentation and Metrics 
UAV-LS data were collected with a RIEGL RICOPTER with VUX-1UAV. After processing the data 
into point clouds for each site following recommended procedures (Brede et al., 2017), the point clouds 
were automatically segmented using a novel individual tree segmentation routine based on shortest-path 
calculations and adapted to high density UAV-LS data (Raumonen et al., 2021). For each TLS reference 
tree, the best overlapping UAV-LS tree was identified as the one with the highest Jaccard index or 
Intersection-over-Union metric based on the voxelised individual tree point clouds. Finally, individual 
tree metrics were derived from the UAV-LS point clouds: tree heights (H100/H95/H50: difference 
between highest point/95%/50% percentiles and DTM), crown dimensions (CA: crown area in, CD: 
crown diameter, CP: crown perimeter), volume based on alpha-hull (V), graph based metrics based on 
graph-representation of the tree as a side product of the segmentation (GN: number of nodes in the 
graph, GEL: total edge length in the graph), and compound variables (HCD: H100 times CD, GELCD: 
GEL times CD). 

3. Results and Discussion
UAV-LS metrics displayed different capabilities for explaining the variation in wood volume at each 
site (Figure 1, Table 1). In particular, H100 and CD behaved asymptotically across sites, effectively 
limiting capabilities to predict large tree volume with a single structural parameter. On the other hand, 
CA, V, and GEL were linearly related with wood volume across sites. 

Figure 1: UAV metrics correlation with TLS QSM derived individual tree wood volume. UAV 
metrics and QSM volumes were normalised to facilitate comparison between sites. Sites: NL = 
Speulderbos (NL), FG = Paracou (F), RC = Robson Creek (AUS), LF = Litchfield (AUS). UAV 

metrics were normalised. Metrics: H100 = tree heights, CA = crown area, CD = crown diameter, V 
volume based on alpha-hull, and GEL = total edge length. Blue lines indicate linear trends. IoU refers 

to Intersection-over-Union of UAV automatic segmented tree compared to TLS reference tree. 
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Table 1: Explained variation (R2) of UAV metric for TLS reference tree volumes. 
Group Metric NL FG RC LF 
Height H100 0.23 0.30 0.27 0.62 

H95 0.23 0.34 0.19 0.58 
H50 0.25 0.38 0.22 0.53 

Crown CA 0.88 0.64 0.22 0.77 
CD 0.78 0.48 0.16 0.67 
CP 0.78 0.48 0.17 0.69 

Volume V 0.86 0.48 0.29 0.82 
Graph GN 0.87 0.50 0.31 0.81 

GEL 0.87 0.58 0.39 0.82 
Compound HCD 0.73 0.53 0.29 0.76 

GELCD 0.84 0.63 0.40 0.76 

4. Conclusions
This study explored a range of UAV-LS derived metrics for individual tree wood volume estimation, 
both well used metrics as well as newly derived metrics possible with the high density UAV-LS. In 
particular, CA and a graph-based metric showed linear relationships with wood volume, making them 
suitable to build prediction models and scale estimation across UAV-LS covered areas. 
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1. Introduction

In forest inventories as well as in the process of building models, obtaining an efficient sample is a 

central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, 

Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots 

sample must cover adequately the variability of the considered forest attributes in order to minimise 

prediction error. Different strategies have been proposed to efficiently distribute the field sampling units 

in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). 

Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling 

(Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot 

selection strategies in order to optimise models precision.  

Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest 

structures by the field calibration sampling units, since large prediction errors could be associated with 

model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex 

hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain 

and estimated bias associated to the linear model predictions on an ALS case study.  

2. Data and Methods

The study area is based on an ALS flight performed in February 2019 in Northeastern France, which 

covers a forested area of 18,646 ha, with a pulse emission density of 16 points per m². Within this area, 

a set of 487 systematic field plots were carried out in the Mouterhouse forest (5,324 ha) during the winter 

of 2019-2020 (Figure 1). The Mouterhouse forest consisted of broadleaved, mixed and coniferous stands 

(respectively 43%, 23% and 34% on an area basis) and is representative of the whole ALS area. The 

main species are Scots pine, sessile oak, beech, Douglas fir and Norway spruce. Diameter and tree 

species were measured in these calibration plots of 15-meter radius spaced at every ~300 meters. An 

independent set of 56 plots, located in the same forest area was used for validation. 

In order to evaluate the effect of different sampling efforts, the systematic plots grid was thinned 

by half successively to obtain coarser grids, up to a remaining minimum of 8 plots. The resulting grid 

sizes obtained were then respectively of 487, 247, 115, 56, 25, 11 and 8 plots. 

Figure 1: The ALS flight area in orange, with the Mouterhouse forest in green (left) and for 

illustration, its initial systematic grid (487 plots in black) (middle) and thinned once (247 plots in red) 

(right). 

For 71% of the ALS acquisition area (in orange in Figure 1), no plots were available, giving the 

opportunity to examine the impact of model application out of its calibration area. Standard area-based 

metrics were computed from the ALS tiles using the R package lidR (Roussel and Auty 2021). A simple 

linear model was built to estimate basal area (G), quadratic mean diameter (Dg) and plot density (N). It 
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included 3 independent variables: mean and standard deviation of all pulse heights and the average slope 

of the pixels (or of the field plots), computed from the digital terrain model (DTM) (Bouvier et al. 2015). 

From these independent variables, convex hulls were computed for all calibration 

configurations using the geometry package (Habel et al. 2019). It yielded points of the convex hulls and 

a function allowing to know if a pixel to be predicted belong to the inside or outside space of the hull. 

The proportion of extrapolated pixels and their distance to the proximal point inside the hull were 

computed for all pixels of the Mouterhouse forest, as well as for the extended ALS area. Using the 

validation dataset, it was then possible to compute prediction bias and their distance to the most proximal 

calibration plot.    

3. Results and Discussion

The conventional way to evaluate precision gain associated with sampling efforts is to examine 

validation RMSEs. In Figure 2, this indicator appears to reach a plateau around 50 calibration plots. 

With this number of plots however, the proportion of extrapolated pixels in our area of interest (AOI) 

has not reach a plateau and remains relatively high (ca. 40%). The extrapolation plateau seems rather to 

occur in the range of 200-300 plots (14-22% extrapolation). Figure 2 also shows a minor difference in 

the proportion of extrapolated pixels between the two AOI examined. Extrapolation tends to be slightly 

higher (by ~3%) within the extended AOI, where no calibration plots were present. With a lower amount 

of calibration plots, the extrapolation distance also tends to increase (Figure 2). 

Figure 2: Impact of sampling effort on root means squared errors (RMSE) of validation plots for the 

different forest attributes examined (left) and on the proportion of pixels located outside the convex 

hull according to the area of interest (whole ALS or only Moutherhouse) (middle). Boxplots of the 

distances to the hull are also presented (right). 

As large prediction errors might be associated with model extrapolation, Figure 3 presents for 

each forest attributes examined, the bias obtained with the validation datasets as a function of their 

distance to to the most proximal calibration plot. Large positive and negative bias were observed (from 

-303% to +161%). However, a negative trend appears to occur as a function of distance (a distant 

position being associated with an overestimation of the model). This trend appears to be low for Dg, but 

high for G and N. This result indicates that it is not only possible to identify pixels that are extrapolated, 

but also suggest the possibility to correct this result based on the relationship between bias and 

extrapolation distance.  

In this study, we used a simple model, but a preliminary work also showed that more complex 

models are generating larger proportion of extrapolated pixels. This is certainly associated to the curse 

of dimensionality. Therefore, the approach used in this study could be considered as an interesting tool 

to compare competing ALS models.  

Figure 3: Relative bias for the different forest attributes examined associated to the extrapolated 

validation plots as function of their distance to to the most proximal calibration plot. (Attributes are 

basal area (left), quadratic mean diameter (middle), and plot density (right.) 

72



Extrapolated pixels are easily identified using this approach and can then be mapped. Therefore, 

the spatial distribution of these extrapolated pixels (mapped) could provide additional information that 

require further attention. This information could reveal important aspects for forest managers, indicating 

areas where model predictions are out of the calibration domain.  

Finally, as Knn is frequently used with ALS, the use of convex hull could also be considered as 

an interesting tool for further investigations, since this modelling method is also known to be sensitive 

to extrapolation. 

4. Conclusions

The study showed the possibility to identify (and afterward map) pixels that are extrapolated using a 

convex hull approach. It also showed that prediction bias tends to increase with distance to the 

calibration domain and that low amount of calibration plots tend to increase these distances. Convex 

hull is certainly an interesting tool to evaluate model “representativeness” over an AOI and could then 

serve to compare models in a phase of model selection. It could also serve at the stage of sampling effort 

determination. Further studies are nevertheless required to evaluate this tool to correct extrapolation 

bias. 
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1. Introduction

3D reconstruction of tree models is useful for a wide range of fields and a number of methods have been 
proposed using terrestrial laser scanning (TLS) data to generate visually realistic results, but the results 
vary among different methods and parameters settings.  

To quantitatively validate the reconstructed models, one way is to use synthetic point clouds 
simulated from tree models with known architecture, but the reference models are not real trees which 
cannot represent evaluation in real nature environments. Another common approach is to compare 
model estimations with manually measured data obtained from harvested trees or segmented branches. 
Destructive sampling is a reliable way to provide real ground-truth reference, but the process of manual 
measurements is time-consuming and laborious, resulting in small size of datasets with simple structure 
in existing literatures.  

When it comes to specific assessment metrics, a number of global indices are summarized to 
evaluate geometry reconstruction, for example, average distance between the input points and the 
generated model (Du et al., 2019), absolute and relative error of tree parameters such as branch length, 
diameter and volume (Lau et al., 2018). Although these indices provide a general assessment of 
geometry quality, there is a possibility of getting the right answer in a wrong way. On the other hand, 
topology reconstruction is more difficult to validate. To assess the accuracy of branch order, Lau et al. 
(2018) visually paired each manually measured branch to the model counterpart, and used a confusion 
matrix to reveal the accuracy, but they only considered branches that could find a pair in modelled results, 
so the overall accuracy was high up to 99%. Boudon et al. (2014) proposed an evaluation framework 
that detects similarity of topological structure between two skeleton models, but it only applies to 
skeleton-based reconstruction methods and needs experienced researchers to manually define tree 
skeletons for reference. Therefore, a universal and comparative method to validate 3D tree models is 
still lacking, especially regarding topology, while the correct topological connection is the prerequisite 
for retrieving accurate tree structure parameters. 

This work validates two widely used reconstruction methods, TreeQSM (Raumonen et al., 2013) 
and SimpleTree (Hackenberg et al., 2015), using simulated point clouds based on TLS-measured forest 
structure. The evaluation demonstrates that the simulation approach based on TLS-measured tree 
structure can be an alternative way to assess QSM reconstructions, but further studies are needed for 
both geometry and topology assessment. 

2. Data and Methods

2.1 Simulated TLS Point Clouds 

A Monte-Carlo ray tracing library, librat (Disney et al., 2006), was used to simulate 1 ha plot of tree 
models from leaf-off Wytham Woods 3D models (Calders et al., 2018). Scans were simulated with the 
same parameter settings as the real TLS scanning described in Calders et al. (2018). Then the simulated 
point clouds were downsampled and individual trees were extracted (Figure 1). We selected five trees 
with a range of sizes from three species for further tree reconstruction and validation. 
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Figure 1 Simulated point clouds of 3D trees measured in Wytham Woods (coloured by individual 
tree). Left: top view. Right: Front view. 

Table 1 Characteristics of five tree models used in simulation. (X and Y coordinates 
denote the trees’ location in the simulated plot.) 

Tree ID X (m) Y (m) Height (m) DBH (cm) Species (Common name) 

ww_60 42.1 170.8 21.5 66.1 Acer pseudoplatanus (Sycamore) 

ww_81 133.1 162.3 22.5 99.7 Quercus robur (Oak) 

ww_446 86.7 110.9 30.5 146 Acer pseudoplatanus (Sycamore) 

ww_827 103.2 136.8 24.5 28.9 Acer pseudoplatanus (Sycamore) 

ww_1361 126.9 120.4 23.4 21.8 Fraxinus excelsior (Ash) 

2.2 Reconstruction and Validation of 3D Tree Models 

The reconstruction methods compared here are TreeQSM and SimpleTree. As TreeQSM has been 
constantly updated over the years but many research had been conducted using version 2.0.0, so we 
compared both the old version (v2.0.0) and a newer one (v2.3.1). For each tree point cloud, the 
candidates of input parameter sets were selected by an open-source software optqsm (Burt, 2019), and 
hundreds of quantitative structure models (QSMs) were generated from all combinations of input 
candidates. The optimal QSM is selected based on the metric of ‘all_mean_dis’, i.e., minimizing the 
mean of point to cylinder distance from all cylinders. In SimpleTree software, we used the plug-in ‘QSM 
spherefollowing method – advanced for plot’ which does not require input parameters from users.  

To evaluate the model results, common tree parameters that can be obtained from both methods are 
compared with the reference values from original tree models. 

3. Results and Discussion

The comparison results of three tree parameters are presented in Figure 2. Both methods showed the 
capability to retrieve highly accurate tree height (bias less than 1%), whereas for DBH estimates, 
SimpleTree models had 10% underestimation on average, and the possible reason for this is the under-
fitting phenomenon in the main trunk of the large trees in this test (Figure 3). In terms of volume, models 
reconstructed from SimpleTree tended to overestimate the crown and resulted in an overall 38% 
overestimation in total volume among these five trees. On the contrary, both versions of TreeQSM mis- 
or under-fitted twigs, so the total volume estimates are slightly lower than the reference values. 
Compared between two versions, the newer one had less underestimation in total volume, which is 
mainly attributed to reconstructing more small branches that the older version did not fit. Further 
quantitative comparison using more trees and more metrics in both geometry and topology will be 
conducted. Preliminary results would suggest that for applications focusing on volume aspect, e.g., non-
destructive estimation in above-ground biomass through TLS-QSM method, TreeQSM v2.3.1 is a better 
choice, but for applications beyond volume, we recommend examining other metrics as well. 

Figure 2 Comparison between reference values and model estimations from two versions of TreeQSM 
(TQ v2.3.1 and TQ v2.0.0) and SimpleTree (ST). 
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Figure 3 Simulated point clouds (grey) of five tested trees and their corresponding reconstructed 
QSMs from SimpleTree (blue), TreeQSM v2.3.1 (green) and TreeQSM v2.0.0 (red). The Trees ID 

from left to right are ww_60, ww_81, ww_446, ww_827 and ww_1361, respectively. 

4. Conclusions

A universal and comparative method to validate 3D tree reconstruction methods is still lacking, 
especially regarding topology. One of the challenges is to obtain a good benchmark dataset of point 
clouds with comprehensive manual measurements of the reference trees. We evaluated two versions of 
TreeQSM and SimpleTree models with simulated data based on TLS-measured forest structure, and the 
results show that the newer version of TreeQSM retrieved better results in volume aspect. Further studies 
are needed for both geometry and topology assessment, which will benefit optimal model selection and 
promote the development of methods to reconstruct more complete and authentic tree models that can 
advance understanding of tree structure and function. 
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1. Introduction
Advances in terrestrial laser-scanning technology (TLS) and associated data processing algorithms 

now allow for comprehensive measurements of the structural complexity of trees. Point cloud data 
generated by TLS can be processed by Quantitative Structural Models (QSMs) to allow for estimation 
of total surface areas and volumes of trees, by creating a network of connected cylinders approximating 
the stem and branch network of the trees (Raumonen et al. 2013).  One of the challenges for computing 
the woody surface area of trees is the presence of leaves, because leaves occlude woody parts from being 
seen by the laser and QSMs may interpret leaves as woody structures (Burt et al. 2021). Another issue 
is that foliage cannot be represented by cylinders (Stovall et al. 2017). It is not always possible to scan 
trees during the leaf-off period and evergreen trees are never in a leaf-off condition, unless dead. So, 
investigators sometimes use QSMs on trees in the leaf-on condition, assuming that, underestimation of 
woody surface area and volume from occlusion and overestimation from counting leaves as woody parts, 
cancel out. Here, we tested that assumption for broadleaved, deciduous trees, using needleleaf 
evergreens as a control. We also used the leaf-removal algorithm of Vicari et al. (2019) to see how 
artificial leaf removal might pre-process a leaf-on point cloud before estimating wood surface area with 
a QSM to simulate estimation in a leaf-off condition. 

2. Data and Methods

Thirteen trees of two broadleaf, deciduous species (8 Quercus rubra and 5 A. rubrum) and ten needleleaf 
evergreens of two species (5 Tsuga canadensis and 5 Pinus strobus) were scanned during the early 
spring (April) of 2017, when the deciduous trees were in the leaf-off condition, and then again in the 
summer (July), in the deciduous leaf-on condition, with a RIEGL® VZ-400, at Harvard Forest 
(Petersham, MA, USA), to produce point clouds of each tree in both periods. Additionally, leaves of the 
deciduous species were virtually removed from the summer-scanned point clouds with the tlseparation 
algorithm of Vicari et al. (2019), to examine how similar a leaf-removed condition is to leaf-off. QSMs 
were produced from the three types of point-clouds, using the TreeQSM algorithm (Raumonen et al 
2013), generating cylinders outlining all woody parts of the stem and branches; the sum of all of these 
was the total surface area of woody parts (woody surface area, WSA, m2) of each tree. After scanning, 
trees were felled and measured in detail, including total-tree one-sided leaf area (LA, m2)- leaves were 
collected and weighed from throughout the crowns of the felled trees and sub-samples were weighed 
and had their surface area scanned on a flatbed scanner. Leaf area per unit leaf mass was then 
extrapolated to the tree’s total estimated leaf mass. this enabled estimation of the total LA of each tree. 
The trees ranged in size from 8 to 50 cm, stem diameter at breast height, and 8 to 25 m in height.  Data 
were error-checked and imported into the R statistical software environment and analysed with custom 
code to determine the influence of leaves on tree surface area estimation. 

3. Results
The results showed a strong, positive correlation between woody surface area with leaves on (WSAon) 
and off (WSAoff) for broad-leaved deciduous trees, but with a positive bias, such that WSAon was 
significantly higher than WSAoff (Fig. 1).  There was also a strong, positive correlation between 
WSAspring and WSAsummer for needleleaf evergreens, but the relationship was more variable and showed 
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a slightly negative bias (Fig. 1). The leaf removal algorithm removed a significant amount of woody 
material from the point cloud when trying to separate leaves from the leaf-on point clouds of the 
deciduous trees (Fig. 2A), resulting in a positive difference between WSAoff – WSAremoved, which 
increased as the total leaf area of the tree increased (Fig. 2B).  

Figure 1. Total woody surface area of trees computed from a QSM with leaves on and leaves off for 
deciduous trees and summer versus spring scans for the evergreen species.  

Figure 2: (A) Total woody surface area of deciduous trees with leaves removed from leaf-on scans with an 
algorithm, prior to processing with a QSM, plotted against the same trees with woody surface area computed 
from a QSM from leaf-off scans. (B) The difference between woody surface area computed with leaves off 

versus woody surface area with artificial leaf removal from leaf-on scans, plotted against the measured total tree 
leaf area from destructive sampling. 

4. Discussion
The results of this study show that possible overestimation and underestimation biases in estimates of 
tree woody surface area, when applying a QSM to a tree in the leaf-on condition, do not strictly cancel 
each other out, in agreement with the findings of Calders et al. (2018). The net result was an 
overestimation bias for deciduous trees, that apparently comes from adding leaves to the surface area of 
smaller branches at the periphery of the crown. When needle-leaved evergreens, scanned in a leaf-on 
condition at two different times of year (spring and summer) were used as a control, there were 
differences in the estimated woody surface area, with a slight trend toward lower woody surface area 
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estimated in the summertime. This may be due to greater occlusion of the stem by more full fascicles of 
needles during the summer. Evergreens regularly shed older needles, though they retain multiple 
cohorts, thus always maintaining leaves, with their maximum leaf area in summer. The whorled 
branching architecture and the way that needles directly attach to shoots may also make it more difficult 
to see woody parts in summer, but follow-up studies are needed, perhaps with deciduous conifers.   

When the leaf-separation algorithm was applied to the point clouds of deciduous trees with their leaves-
on, the algorithm turned a bias of overestimation of woody surface area into a negative bias, which 
suggests that smaller branches in the periphery of the crowns were miss-classified as leaves.  So, the 
algorithm overcompensated for the positive bias mentioned above. The fact that the bias increased as 
the actual surface area of the leaves of the trees increased, indicates that the algorithm would be most 
effective when trees have relatively low leaf areas. Larger trees with larger leaf areas likely have more 
complex point clouds, resulting in greater confusion of leaves and branches, which should affect the 
performance of the leaf-separation algorithm (Vicari et al. 2019, Wang et al. 2019). Significant total tree 
volume underestimation has been previously found after artificial leaf-removal (Wang et al. 2019), 
however, Burt et al. (2021) showed that the leaf-removal significantly reduced bias in total tree above-
ground biomass from TLS data compared to biomass estimates based on leaf-on point-clouds. In general, 
leaf-separation algorithms may be necessary for estimating woody surfaces areas of evergreen trees or 
trees in the leaf-on condition, but the algorithms will need improvement to produce reliable estimates. 

5. Conclusion
Applying a QSM to broadleaf, deciduous trees in the leaf-on condition resulted in an overestimation 
bias for estimates of the woody surface area underneath the leaves. Scanning evergreens both in spring 
and in summer showed the possibility for seasonal differences, and here, lower woody surface area in 
summer, possibly due to occlusion of, or confusion with, woody parts and dense fascicles of needle-
leaves. Leaf removal algorithms should be applied with caution, as they may simply reverse the direction 
of bias in estimation of woody surface area. 
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1. Introduction

A novel approach was developed to reduce labor costs associated with traditional measurements in forest 

inventory and to predict the growing stock timber volume for smaller spatial entities. Forest inventory 

field work was completely conducted with a portable laser scanning system (PLS). The approach was 

tested in a case study to predict the storm-felled growing stock in the upper Gailtal valley in Carinthia, 

Austria in consequence of the cyclone “Adrian” in October 2018. 

2. Data and Methods

Field measurements on 62 randomly selected circular sample plots with 20 m radius were performed 

using a GeoSLAM ZEB HORIZON (GeoSLAM Ltd., Nottingham, UK) portable laser scanning system. 

Tree position finding and diameter at breast height (DBH) measurement were accomplished using fully 

automated routines described in Ritter et al. (2017) and in Gollob et al. (2019, 2020). For both the sample 

plots, and the windthrow target areas, a broad set of auxiliary variables was derived from fine-resolution 

pixelated canopy height data that stemmed from an airborne laser scanning (ALS) campaign. 

A hierarchical Bayesian spatially varying coefficients model was constructed to model the relationship 

between the auxiliary variables from the sample plots and their counterparts that were computed for 

equally sized grid cells within the target units. Spatially structured errors on the model coefficients were 

represented by Matérn correlation functions for the continuously indexed geolocations of the grid cell 

and the sample plots centroids. Spatial predictions of the storm-felled timber volume were provided for 

different spatial scales (windthrow area, sub-region, complete study area) through MCMC composition 

sampling from the joint posterior predictive distribution using methodology implemented in the R-

package spBayes (Finley et al., 2007, 2015). 

3. Results

Leave-on-out (LOO) cross-validations showed that the coverage rate of 95% posterior predictive 

distribution credible intervals were close to the nominal level. For the 212 ha sum of the windthrow 

areas, the total prediction of the storm damages was 133,775 m3 and the 95% credible interval ranged 

from 122,935 m3 to 144,308 m3. The average coefficient of variation (CV) of the per-area predictions 

was 25%. Predictions for larger windthrow areas with relevant storm damages were more precise. 
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Figure 1: posterior predictive distribution mean, total, and coefficient of variation of the growing stock 

volume for the windthrow damages in the Frohn sub-region. 

4. Discussion

A broad set of auxiliary variables from the ALS derived canopy height model was tested, but only the 

average canopy height was a meaningful regressor variable. Similar findings were made in Breidenbach 

& Astrup (2012) and in Magnussen et al. (2014).  

Prior forest inventory data was not available for the study region. However, the terrestrial measurement 

with the portable laser scanning system was highly efficient. The work capacity was up to 25 plots per 

day, despite the alpine terrain. 

Prior independent tests with data representing manifold forest structural conditions revealed that the 

automated routines in Ritter et al. (2017,) and in Gollob et al. (2019, 2020) achieved average detection 

rates of 99% for trees with dbh ≥ 10 cm and false positive rates of around 1%. By using these methods, 

the RMSE of the automated dbh measurement was below 3 cm, and the bias was below 0.5 cm. Hence, 

it was no longer considered as necessary to collect additional reference data on the study site sample 

plots using traditional measurement instruments, and the forest inventory was exclusively conducted 

with the portable laser scanner. 

5. Conclusion

A cost-saving approach was elaborated for the inventory and the mapping of the growing stock timber 

resources in forest landscapes. The approach is highly automized using portable laser scans from field 

plots and ALS data to support the hierarchical Bayesian spatial prediction methodology. 
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1. Introduction

Assessing regeneration state is essential for forests sustainable management. However, field surveys to 

collect data on regeneration are time consuming and difficult to implement. Remote sensing could 

therefore be an effective way to characterize regeneration.  

Only few studies focused on forest regeneration characterisation using ALS data: understory 

coverage estimation (Latifi et al. 2017, Venier et al. 2019), post-fire vegetation characterization (Martin-

Alcon et al. 2015), regeneration stems density and height estimation (Debouk et al. 2013, Imangholiloo 

et al. 2020). 

Regeneration dynamic depends on the characteristics of canopy gaps. They increase availability of 

understory light, which is beneficial for regeneration development, especially for less shade-tolerant 

species (Ligot et al. 2014). Moreover, the regeneration that develops within canopy gaps is not 

overtopped by dominant trees and is therefore favourable to the production of high value wood. Some 

studies focus on the identification of understory types in canopy gaps (Vehmas et al. 2011). Another 

method was developed to distinct non-regenerating gaps from regenerated ones (Sénécal et al. 2018). 

The height growth of regeneration saplings within canopy gaps was also estimated using ALS time 

series (Vepakomma et al. 2008). 

Using ALS data, the study’s objectives were (i) to detect and map canopy gaps, (ii) to characterize 

and delineate four regeneration development stages within these canopy gaps and (iii) to differentiate 

ligneous stems from herbaceous and soil for the first development stage (height < 1.5 m).  

2. Data and Methods

2.1 Study area 

The study area was a forest of 1,708 ha located in Wallonia (southern Belgium) (Figure 1A). The mean 

annual rainfall was 1170 mm year-1. The mean annual temperature was 8.7 °C. The altitude ranged from 

263 to 478 m. The mean terrain slope was 7.8°. Mixed uneven-aged deciduous stands corresponded to 

51% of the study area. Oak (Quercus robur L. and Quercus petraea (Mattuschka) Liebl.) corresponded 

to 35% of the total basal area, and beech (Fagus sylvatica L.), to 55%. The regeneration (i.e. from 

seedlings to established saplings) was composed of 83% of beech, 10% of spruce (Picea abies (L.) 

Karst.), 2% of sycamore maple (Acer pseudoplatanus L.), and 2% of oak. 

2.2 ALS data 

ALS data were acquired using the Teledyne-Optech Titan dual-wavelength sensor between the 6th and 

9th May 2018 (leaf-on). The sensor allows the acquisition of both topographic and bathymetric point 

clouds (wavelengths equal to 1064 nm and 532 nm, respectively). The mean flight altitude was 684 m 

above sea level. The resulting recorded topographic and bathymetric point clouds density were 56 pts/m² 

and 48 pts/m², respectively. The raw point cloud was classified into ground and above-ground hits. A 

CHM at a spatial resolution of 0.5 m was generated. 

2.3 Mapping of canopy gaps  

Canopy gaps were detected and mapped using a thresholding method (Bonnet et al. 2015). The canopy 

gaps mapping was implemented using the CHM for uneven-aged stands. 
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Coniferous plantations representing 42 % of the forest area were discarded. A canopy gap was defined 

as a forest area with a maximum vegetation height of 10 m, a minimum surface area of 50 m² and a 

minimum width of 4 m. A fourth criterion (slope, calculated on the CHM, lower than 80°) was also 

applied to discard areas corresponding to low branches of neighbouring trees around gaps. All the 

threshold values were defined based on the literature, forest management inventories or field 

observations. 

2.4 Mapping of regeneration development stages 

Four regeneration development stages were defined based on vegetation height using CHM within 

canopy gaps (Table 1). It was assumed, and verified in the field, that there were no non-ligneous 

elements higher than 1.5 m. The first stage (s1) included seedlings, young saplings, herbaceous 

vegetation, litter and soil. The other stages (1.5 ≤ height < 10 m) corresponded to older established 

saplings but not recruited trees.  

Table 1. Height thresholds of regeneration development stages. 

Development stage Definition 

First stage (s1) CHM < 1.50 m 

Second stage (s2) 1.5 ≤ CHM < 3 

Third stage (s3) 3 ≤ CHM < 6 

Fourth stage (s4) 6 ≤ CHM < 10 m 

2.5 Modelling ligneous stems cover for the first development stage 

The ligneous stems cover (%) within the first stage was modelled using random forest and ALS data. 

The data used was collected in the field: 103 circular plots with a 2 m radius were set up on transects. 

Each plot was positioned with a high precision using an Emlid Reach RS+ GPS and the ligneous stems 

cover (%) was estimated visually.  

A series of 86 ALS metrics was calculated considering point height, topographic and bathymetric 

intensities within plots (Latifi et al. 2017, Imangholiloo et al. 2020). Using VSURF (Genuer et al. 2015), 

the 11 metrics with the highest explanatory power (e.g. the mean, standard deviation and kurtosis of 

ALS point height) were selected and a random forest model was trained using the whole field dataset. 

This global model was assessed considering R², RMSE and bias.  

A simple cross-validation was also applied to evaluate the model’s accuracy: 100 iterations with 

80% of the field data plots for training and 20% for validating. For each iteration, R², RMSE and bias 

were calculated.  

After validation, the global model was used to predict the ligneous stems cover for the first 

development stage class on the entire study area using a regular grid. 

3. Results and Discussion

Canopy gaps were detected and mapped using the thresholding method, and development stages were 

characterized and delineated within canopy gaps (Figure 1B).  

The R², RMSE, and bias of the ligneous stems cover model (random forest) were 0.92, 0.09 and 

0.00, respectively. The R², RMSE and bias of the cross-validation were 0.49 (± 0.17), 0.21 (± 0.04) and 

0.01 (± 0.05), respectively. The ligneous stems cover for the first development stage class was predicted 

on the entire study area (Figure 1C). 

A straightforward method was developed to detect canopy gaps and map regeneration development 

stages located within these gaps using ALS data. The method was applied to the entire forest area 

excluding coniferous plantations. The random forest model satisfactory predicted the ligneous stems 

cover within the first development stage. Accuracy values were comparable to those of other similar 

studies (Latifi et al. 2017, Venier et al. 2019).  
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Figure 1. Study area location and maps. Panel A: Study area located in Belgium and study area’s 

CHM. Panel B: Map of development stages within canopy gaps. Panel C: Map of ligneous stems cover 

for the first development stage. 

5. Conclusion

The proposed method using ALS data is straightforward. It allowed to identify canopy gaps and map 

four regeneration development stages within these gaps at high spatial resolution (GSD = 0.5 m). The 

method also differentiates ligneous stems from herbaceous for the first development stage. This detailed 

regeneration mapping is really promising for forest management. 
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1. Introduction

The estimation of stand- and individual tree information is one of the major goals of forest inventory. 

Conventionally, field data in forest inventory are collected at tree level on sample plots by means of 

manual measurements (e.g., caliper, tape). This is labor-intensive, time-consuming and prone to 

manifold measurement errors (Liang et al. 2016, 2018; Ritter et al. 2017). In recent years, modern 

laser-supported sensors and automatic routines for feature extraction were increasingly used instead of 

the traditional forest inventory methods. Nevertheless, most forest inventories still rely on manually 

collected tree information. The rationale is the sometimes time-consuming and incomplete data 

acquisition and the high purchase costs for terrestrial and personal laser scanners (TLS/PLS). In 2020, 

Apple (Apple Inc. Cupertino, California, USA) implemented a LiDAR (Light Detection and Ranging) 

sensor in the new 4th Generation of Apple iPad Pro. Consequently, LiDAR-generated 3D point clouds 

can nowadays be recorded with consumer-level devices for the first time. 

The goal of the present study was to assess the accuracy of forest inventory variable estimates 

obtained by Apple iPad Pro under various stand and terrain conditions. The results of the iPad data 

were compared with PLS results on the same forest inventory plots, using the same algorithms for 

automatic tree detection and dbh modelling. Manual measurements on the sample plots served as 

reference data.  

2. Data and Methods

A sample of 21 forest inventory plots was scanned in December 2020 using an iPad and a GeoSLAM 

ZEB Horizon (GeoSLAM Ltd. Nottingham, UK) PLS. The plots were selected in such a way that a 

broad variation in forest type (broadleaved, coniferous, and mixed), forest structure (one- or two-

layered), and terrain property (flat to steep) was represented. On the iPad, multiple scanning apps were 

evaluated in a forest environment during a preliminary testing before settling on 3D Scanner App 

(https://www.3dscannerapp.com/) (Laan Labs, New York, US), Polycam (https://poly.cam/) (Polycam 

Inc., San Francisco, US) and SiteScape (https://www.sitescape.ai/) (SiteScape Inc., Waltham, US). 

Data acquisition with iPad and PLS started in the sample plot center. The sample plot radius was set to 

7 m with a 0.5-1 m buffer zone for the scan survey. The recording of the entire sample plots consumed 

approximately 5–10 minutes for iPad and 3-7 minutes for PLS, depending on the possible walking 

speed. Using iPad, every individual tree was circled on the sample plot, while with PLS, only the 

whole sample plot was circumvented and crossed once. Screen shots from scanning with the iPad with 

all three apps can be found in Figure 1. 

Following the field data collection, further point cloud processing and analysis was performed 

using statistical computing language R with the algorithms for tree detection and dbh estimation, 

presented in Gollob et al. (2020). The diameter modelling was carried out with five different 

approaches (2 GAMs, 2 circles, 1 ellipse), whereby these diameters were referred to as 𝑑𝑔𝑎𝑚, 𝑑𝑡𝑒𝑔𝑎𝑚,

𝑑𝑐𝑖𝑟𝑐, 𝑑𝑐𝑖𝑟𝑐2 and 𝑑𝑒𝑙𝑙. The accuracy of tree detection was evaluated in terms of two measures:

detection rate 𝑑𝑟(%) and commission error 𝑐(%). The accuracy and precision of dbh estimation were

assessed by means of root mean square error (RMSE) and bias.  
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(a) (b) (c) 

Figure 1: iPad data acquisition with (a) 3D Scanner App, (b) Polycam and (c) SiteScape. 

3. Results and Discussion

The analysis of the 21 sample plots showed that the detection rate dr(%) strongly depended on the

lower dbh threshold (Table 1). Furthermore, iPad scans (3D Scanner App, Polycam and SiteScape) 

generally had lower detection rates than PLS scans. The average detection rates for 3D Scanner App, 

Polycam and SiteScape over all 21 sample plots and dbh thresholds ranged from 84.49% to 98.06%, 

from 76.67% to 94.68% and from 81.41% to 97.26%, respectively. The corresponding average 

detection rates for PLS ranged from 98.10% to 100%. The commission error c(%) increased slightly 

with increasing lower dbh threshold. In general, the average of the commission errors was smaller 

with all iPad apps than with PLS. Commission errors were below 4% across all technologies and 

thresholds. 

Table 1. Detection rates and commission errors for PLS/iPad and lower dbh thresholds. 

Detection Rate 𝒅𝒓(%) Commission Error 𝒄 (%) 

dbh PLS 

3D 

Scanner 

App 

Polycam SiteScape PLS 

3D 

Scanner 

App 

Polycam SiteScape 

≥5 cm 98.10 84.49 76.67 81.41 2.11 2.47 0.53 1.35 

≥10 cm 99.52 97.33 90.65 95.06 2.58 2.55 0.60 1.40 

≥15 cm 100.00 98.06 94.68 97.26 3.10 2.80 0.68 1.87 

The performance of automatic dbh estimation for iPad and PLS is outlined in Table 2. The average 

RMSE for 3D Scanner App, Polycam and SiteScape over all 21 sample plots, dbh thresholds and 

fitting methods ranged from 3.10 cm to 3.40 cm, from 3.05 cm to 4.70 cm and from 3.18 cm to 3.48 

cm, respectively. The corresponding average RMSE for PLS ranged from 1.50 cm to 1.92 cm. The 

average bias for 3D Scanner App, Polycam and SiteScape over all 21 sample plots, dbh thresholds and 

fitting methods ranged from -1.56 cm to -0.39 cm, from -0.92 cm to 0.58 cm and from -1.38 cm to -

0.83 cm, respectively. The corresponding average bias for PLS ranged from -1.32 cm to -0.04 cm. 
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Table 2. RMSE and bias of dbh estimation for PLS/iPad and lower dbh thresholds. 

RMSE (cm) bias (cm) 

dbh method PLS 

3D 

Scanner 

App 

Polycam 
Site-

Scape 
PLS 

3D 

Scanner 

App 

Polycam 
Site-

Scape 

≥5 cm 

gam 1.85 3.12 4.08 3.20 -0.51 -1.01 0.39 -1.31 

tegam 1.78 3.10 4.70 3.18 -0.21 -1.06 0.58 -1.20 

circ 1.64 3.11 3.85 3.39 -0.73 -0.39 0.44 -0.90 

circ2 1.73 3.19 4.05 3.21 -0.54 -1.04 0.36 -1.17 

ell 1.92 3.11 4.20 3.20 -0.04 -1.03 0.28 -1.03 

≥10 cm 

gam 1.65 3.18 3.84 3.20 -1.05 -1.17 0.08 -1.28 

tegam 1.50 3.17 3.80 3.21 -0.73 -1.18 0.04 -1.17 

circ 1.65 3.18 3.55 3.41 -1.13 -0.52 0.12 -0.83 

circ2 1.64 3.24 3.80 3.22 -1.01 -1.20 0.05 -1.16 

ell 1.52 3.18 3.96 3.20 -0.66 -1.15 0.01 -1.03 

≥15 cm 

gam 1.78 3.38 3.09 3.26 -1.28 -1.52 -0.87 -1.38 

tegam 1.56 3.36 3.14 3.28 -1.00 -1.52 -0.83 -1.28 

circ 1.77 3.37 2.88 3.48 -1.32 -0.79 -0.80 -0.89 

circ2 1.77 3.40 3.05 3.28 -1.24 -1.56 -0.90 -1.26 

ell 1.60 3.36 3.29 3.21 -0.98 -1.46 -0.92 -1.08 

One of the major advantages of applying mobile or personal laserscanning systems is rapid data 

acquisition on forest sample plots. Although the development of LiDAR devices is proceeding rapidly, 

it can be stated that the relatively high price of the devices often hinders a wider application at the 

level of forest practitioners. The PLS (GeoSLAM ZEB HORIZON) used in this study costs around 

€ 50,000. Apple iPad pro costs around € 1,000 and thus easily provides access to LiDAR technology. 

While the used PLS with a maximum range of 100 m is well suited for capturing upper diameters, tree 

heights or canopy shapes, iPad measures the distance to surrounding objects only up to 5 meters. Thus, 

a disadvantage of the iPad method is that it is not capable of acquiring upper tree parameters. 

However, the technology of these consumer-level devices will also develop further quickly, which 

means that significantly higher ranges could then be achieved. 

3. Conclusion

The LiDAR Sensor of the new iPad is capable for efficient data collection. A large proportion of the 

trees could be automatically detected, and dbh estimates showed sufficient accuracy, even with 

existing algorithms. With a further development of hardware and software, the iPad or similar 

consumer-level devices could provide a feasible, sufficiently accurate, and cost-effective solution for 

various measurements in near future. This would also mean another important step towards the 

practical use of digital forest inventory. 
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Abstract 

Quantifying three dimensional structure of individual tree canopy is proven to be critical 

for precision tree cultivation and sustainable forest management. Hyperspectral imagery has 

been used in species classification, biomass estimation, and bio-chemical traits measuring. 

However, due to the limitations of the hyperspectral instrument and the lack of fusion algorithm 

considering sensor imaging mechanism within vegetation community, combining the three 

dimensional structure and hyperspectral data to explore the spatially variations of bio-chemical 

traits in the tree canopy is sparse. Therefore, with the 3D distribution of bio-chemical traits to 

provide supports for physiological activity monitoring and nutrition diagnosis have attached 

little attention. In this study, high-density LiDAR point cloud and high-spatial resolution 

hyperspectral imagery from unmanned aerial system (UAS) platforms were used in 

combination, to quantify and analyze the three dimensional distribution of bio-chemical traits 

in individual tree canopy. A DSM based fusion method considering attenuation effect in 

radiative transfer process was developed to integrate the three dimensional LiDAR point cloud 

with hyperspectral imagery. A radiative transfer model was used to estimate the bio-chemical 

traits hierarchically. The horizontal and vertical distributions of bio-chemical traits in individual 

tree canopy were quantified using ANOVA analysis and Duncan’s multiple comparison post 

hoc tests. Three dimensional distribution of bio-chemical traits in individual tree canopy were 

accessed and their correlation with accumulated solar radiation were analyzed. We found that 

the radiative transfer model had a strong ability to estimate bio-chemical traits, and most of the 

canopy structural had little effect on the accuracy of estimation. Horizontally, the portion of 

canopy that received solar radiation directly had a slightly lower bio-chemical traits, which 

means that the southern canopy portion has a lower bio-chemical traits for the individual tree 

located in the northern hemisphere. Vertically, the bio-chemical traits gradient was negatively 

correlated with the increase of tree height, because of being affected by shadows from the 

canopy of oneself and neighboring trees. This study explored the three dimensional bio-

chemical traits distribution of individual tree canopy on the basis of mechanistic fusion of high-

density LiDAR point cloud and high-spatial hyperspectral imagery. The methods and findings 

indicate a great potential of deep fused LiDAR point cloud and hyperspectral imagery in 

investigating solar-induced physiological activities, as well as nutrition diagnosis and 

productivity enhancement, which have wide application for precision forestry and ecology. 
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1. Introduction

Key of LiDAR based forest inventory is the availability of suitable software to extract essential tree 

features (Calders et al 2020). Most relevant tasks of the computer algorithms are the automatic 

detection of stem positions, the segmentation of the complete 3D point cloud into single tree crowns, 

the precise measurement of tree height and stem diameter, and the reliable modelling of the crown 

morphology. These tasks can become challenging, especially in dense forest canopies with 

overlapping crowns. To overcome these issues, Gollob et al. (2020) proposed a tree detection 

algorithm based on density clustering applied to multiple horizontal layers that produces reliable 

results even in dense stands. Personal Laser Scanning (PLS) has several advantages compared to the 

stationary Terrestrial Laser Scanning (TLS) (Bienert et al. 2018). Most relevant is that the crowns are 

scanned from various angles, because the scan positions are not fixed with PLS. In this study, a novel 

algorithm is presented for the automatic segmentation of the single tree stems and crowns. 

Additionally, the accuracy of automatically derived crown features is evaluated by means of reference 

measurements collected in field and manual on-screen segmentations of the 3D point cloud.  

Figure 1: Segmenting the complete point clous into single tree files to be measured subsequently. 

2. Data and Methods

The ZEB HORIZON (GeoSLAM Ltd.) used for this research has an acquisition speed of 300.000 

points/sec and a maximum beam range of 100 m, the average point density of the point clouds was 

45k points per m². A single scan with the PLS system required one person approximately 30 minutes 

to fully capture one plot area of approximately 4.000 m² each. Sample plots were scanned around 

Maissau, Lower Austria (48° 34’ 25”N and 15° 48’ 45” E), the forests were single layered with 

medium density (average 870 trees per ha). The dominating tree species were Scots pine (Pinus 

sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.), which were complemented by 

admixture of Norway spruce (Picea abies (L.) H. Karst.), European larch (Larix decidua Mill.), black 

pine (Pinus nigra J. F. Arnold), European yew (Taxus baccata L.), douglas fir (Pseudotsuga menziesii 

(Mirbel) Franco) and wild cherry (Prunus avium L.). The field reference data for all trees on the 

sample plots were comprised of the relative stem location, tree species, DBH, tree height, and crown 

base height.  

The routines to perform the individual tree detection, the automatic crown segmentation, and the 

parameter calculation were programmed in R software (R Foundation for Statistical Computing). The 

routines also used functionalities of existing R packages (mainly lidR, TreeLS and dbscan). Output 

tree files were stored in the “las” file-format (American Society for Photogrammetry and Remote 
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Sensing ASPRS). To assess the quality of the crown separation algorithm, 235 crowns were randomly 

selected throughout the stands for a manual on-screen segmentation using the CloudCompare program 

(Girardeau-Montaut 2017). The manually segmented point clouds were merged with the output files of 

the automatic crown segmentation to calculate performance measures in terms of the detection rate 

(number of correctly matched points divided by total number of manually segmented points), the 

commission error (number of surplus detected points divided by total automatically segmented points), 

and the overall accuracy (detection rate minus commission error). 

3. Results and Discussion

By merging the manual and automatic derived crown files (as seen in Figure 2) the accuracy measures 

were calculated (average values and standard deviations crowns are given in Table 1). The average 

detection rate was 94 %, i.e. 6 % of the reference crown voxels (cubes of 2x2x2 cm) were not 

correctly assigned by the automatic segmentation. The average commission error was 14 %. The 

number of assigned surplus points was higher than the number of missed points, this can be explained 

by the inclusion of points in the upper crown section from neighbouring trees and of the understorey 

vegetation close to the stems that has been included in the automatic tree detection but was removed in 

the manually segmented trees.  

Table 1. Congruence measures of the automatic segmented and manual reference crowns. 

n = 235 mean st.dev. 

detection rate 93.81 % 9.64 % 

commission error 13.58 % 15.14 % 

accuracy 80.23 % 16.89 % 

When analysing single trees there is a considerable amount of commission in the upper crown regions 

that was mostly caused by shading effects in the point cloud due to interlocked crowns. Some of the 

misallocations were also caused by branches from distant trees that were found tangent to other tree 

stems.  

Figure 2: Matching manually clipped tree (pink) with automatic segmented crown (yellow), correctly 

assigned points black, (dr = detection rate, c.er = commission error, acc = accuracy).  

Table 2 shows the differences between automatically measured individual tree parameters and field 

reference data. The automatically measured DBH and tree height showed only small deviations from 

the reference data. Please note that the exact definition of the DBH is often challenging in practice 

using traditional measurement instruments, especially for non-circular stem cross-sections. In fact, the 

manual DBH measurements can have large variation depending on the orientation of the calliper. In 

contrast, the automatic measurement is derived by fitting a natural cubic spline to the circumference of 

the local laser point cloud. Tree height was estimated with less precision than DBH, because the 

density of the point clouds was often reduced in the upper crown regions. The crown base height was 

underestimated on average 3.95 m. This bias mainly resulted from the automatic decision rule for the 

crown base height detection.  

Further geometrical measures, such as the extent, the projection area, and the volume of the crown 

(see Figure 3) were measured with relative high accuracy and precision. The average crown extent 

(mean of x- and y-extent) and the projection area were only slightly overestimated and the average 

crown volume was slightly underestimated. Distant points, that might increase the volume, matter less 
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than missing parts within and especially in the upper crown sections. This phenomenon would suggest 

further improvements of the crown segmentation algorithm to mitigate a possible “overgrowing” into 

adjacent trees.  

Table 2. Comparing the automatic measurements with field reference data. 

n=235 mean.ref RMSD RMSD.pct bias bias.pct 

DBH 26.8 cm 3.94 14.7% -0.67 -2.5% 

height 20.0 m 2.25 11.2% -0.92 -4.6% 

crown base 11.5 m 5.61 48.8% -3.95 -34.3% 

crown dimension
1
 4.6 m 0.65 14.1% 0.15 3.2% 

crown projection area
1
 13.8 m² 2.83 20.5% 0.19 1.4% 

crown volume
1
 19.0 m³ 4.65 24.5% -0.51 -2.7% 

1 
comparing automatic segmentation with manually clipped reference crowns. 

Figure 3: Automatic measurement of crown parameters for oak (left: crown base detection, middle: 

crown volume alpha hull, right: crown projection area and dimensions).  

Precise crown segmentation is regarded as an essential functionality of automated 3D point cloud 

analysis to obtain geometrical crown features. The proposed automatic routine was successfully 

approved in comprehensive evaluations and showed only minor misallocations, mainly occurring in 

the upper crown sections. However, it was demonstrated that these few upper-crown discrepancies had 

only a negligibly small effect on the precision of the crown variable measurements, as the RMSD of 

the crown volume and crown projection area estimates were less than 5 %. Further research and 

software development is required to improve the automatic crown base detection and to find proper 

approximations of the crown volume using the manual field measurements, such that the latter could 

serve as reference data for further evaluations.  

4. Conclusions

The proposed automatic crown segmentation algorithm provides accurate and precise crown measures 

of the single tree crown morphology. Hence, a detailed analysis of the spatial crown allocation 

patterns can be now performed in greater detail and on a larger scale than with traditional 

measurement techniques. These novel techniques will also facilitate a precise quantification of the 

inter-tree competition in the crown layer that will be useful for future analyses of individual tree 

growth patterns.  
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1. Introduction

Information about forest resources is essential for sustainable forest management and development of 

forest policies. Forest inventories, which are used as a means of estimating these resources, are 

continuously influenced by the technological development of remote sensing for data acquisition. 

Proximal sensing (PS) techniques, in which sensors capture information from short distances, have a 

strong potential to complement and enhance forest inventories (White et al., 2016). Moreover, the 

measurement approach of some of these techniques in fixed-point sampling makes them suitable for 

implementation in conventional forest inventories. 

Although several PS devices are available, most are based on optical and LiDAR technologies. As 

an example of the former, ForeStereo is a passive optical sensor composed of two fish-eye cameras 

optimized for forestry use (Montes et al., 2019). The main advantages of optical sensors are their low 

weight and energy consumption, high efficiency in fieldwork and the option of using the image 

information to retrieve the species or health status of the trees. Terrestrial Laser Scanning (TLS) 

(LiDAR-based) devices have generated great interest in forest inventories in recent years (Liang et al., 

2016). These devices have a well known capacity to generate high density 3-dimensional point clouds 

with millimetre spatial resolution, making them particularly valuable for enhancing forest inventories 

(White et al., 2016). In addition, free applications for processing and analysing TLS data have increasing 

become available in recent years. For example, the recently developed R package FORTLS (Molina-

Valero et al., 2021) is useful for extracting forest attributes at stand level based on a single-scan 

approach. Here, we assessed the performance of the ForeStereo sensor and the FORTLS package for 

estimating the following conventional forest inventory variables: density (N, trees ha-1), basal area (G, 

m2 ha-1), mean diameter at breast height (�̅�, cm) and the diameter distribution.

2. Data and Methods

The data analysed correspond to 130 subjectively selected sample plots located in mature forest stands 

dominated (at least 90% of the G represented by the main tree species) by beech (Fagus sylvatica L.), 

maritime pine (Pinus pinaster ssp. atlantica Villar), Scots pine (Pinus sylvestris L.) and silver fir (Abies 

alba Mill.). These stands represent different European forest types: Nemoral and Mediterranean Scots 

pine forest (38 plots); Southwestern European mountainous beech forest, for both beech (38 plots) and 

beech-fir (11 plots) dominated communities; Atlantic Maritime pine forest (32 plots) and Mountainous 

Silver fir (11 plots) forest. These forest types cover a large area of the forest land in Spain. All plots 

were located in fully stocked stands with no evidence of recent disturbance or logging. Sampling was 

conducted between 2017 and 2019 and was implemented using a circular nested plot design, with 2 

levels of nested plots. All live trees of diameter at breast height (dbh, measured at 1.3 m from the ground) 

greater than 7.5 cm in the first level (radius 5 m) and greater than 12.5 cm in the second level (radius 

25 m) were measured with conventional inventory techniques. The plots were then also scanned from 

the plot centre with ForeStereo and TLS devices. Data were analysed with ForeStereo software and the 
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R package FORTLS (Molina-Valero et al., 2021) developed for ForeStereo and TLS devices, 

respectively. Analysis of stereo pairs of hemispherical images acquired by ForeStereo is based on image 

segmentation and region-based matching of stems, followed by fitting taper equations for dbh 

estimation. TLS point cloud analysis uses density-based cluster detection on the horizontal projection 

of points extracted from one or several slices at approximately 1.3 m height and dbh, and tree position 

is estimated by minimizing radius variance. 

We assessed the performance of TLS and ForeStereo devices for estimating N, G, �̅� and diameter 

distribution. With this aim, we compared estimates based on field data with those obtained with 

ForeStereo and FORTLS for circular fixed area plots of 10 and 15 m radius. We also considered the 

occlusion correction methodology based on correcting the shadowing effect (Seidel and Ammer 2014), 

which is implemented in both ForeStereo and FORTLS. According to this correction, the effective 

reference sampling area is reduced by excluding the unsampled areas shadowed by trees. The 

performance of variable estimates was assessed by means of different statistics: relative RMSE (%), 

relative bias (%) and the Pearson correlation coefficient. Diameter distributions were assessed using the 

quadratic form distance: 𝑑(𝐻𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ, 𝐻𝐹) = √(𝐻𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ −𝐻𝐹)
𝑇𝐴(𝐻𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ −𝐻𝐹),

where 𝐻𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ is the matrix of histogram bin values as derived from calliper measurements and

𝐻𝐹 is the matrix of histogram bin values derived from ForeStereo and TLS data. 𝐴 is a similarity matrix,

with [aij] denoting the similarity between histogram bins i and j, calculated as 𝑎𝑖𝑗 =

1 − |𝑖 − 𝑗| max(|𝑖 − 𝑗|)⁄ . Lower values of the quadratic-form distance indicate greater similarity 

between histogram distributions. 

3. Results and Discussion

In general, TLS data processed with FORTLS yielded lower RMSE and bias values and higher 

correlations than ForeStereo (Table 1). However, ForeStereo provided better estimates of N in P. 

pinaster stands of 10 m radius. This may be due to difficulties in distinguishing trees from shrub 

vegetation, which is especially dense in these stands. In these cases, FORTLS may have performed 

poorly because trees were detected at 1-1.6 m above ground level, in contrast to ForeStereo, which 

detected trees by matching the visible part of the stem. For almost all species and variables, FORTLS 

exhibited higher precision, accuracy and correlations for 15 m radius plots. Nevertheless, we did not 

observe any trends in the accuracy in estimates due to plot size with ForeStereo, even within the same 

species. 

The estimates of N were most accurate with FORTLS for plots of 15 m radius (≈4% on relative 

bias) for all species except P. pinaster, for which ForeStereo yielded the lowest absolute value of relative 

bias with -5%. Although FORTLS tended to overestimate N for the 10 m radius plots, probably due to 

interception by branches or foliage, ForeStereo tended to underestimate N for 15 m radius plots as in a 

study case in mixed stands of P. sylvestris and F. sylvatica located in the Spanish Pyrenees (Montes et 

al., 2019), due to the increase in occlusions. The highest correlations corresponded to FORTLS 

estimates, with values of 0.89 for P. sylvestris and and 0.85 for F. sylvatica. Estimates of G yielded the 

lowest relative bias with FORTLS for 10 m radius plots of P. pinaster and P. sylvestris (3 and -1%),and 

15 m radius plots of F. sylvatica and A. alba (0 and 6 %), lower than the 8% reported by Seidel and 

Ammer (2014) for dense poplar SRF stands. In those cases, the occlusion correction methodology based 

on correcting the shadowing effect was also applied. Again, the highest correlations corresponded to 

FORTLS, with a particularly high value of 0.85 obtained for P. sylvestris, and the poorest correlations 

were attained with both PS techniques for mixed A. alba-F. sylvatica stands. The G estimates produced 

by ForeStereo for the mature stands analysed in this study showed greater bias and lower correlations 

than those reported by Montes et al. (2019) for young P. sylvestris-F. sylvatica stands, for which the 

best results were attained with 8 m radius plots. Regarding �̅�, lower values of relative bias were yielded

by ForeStereo, i.e. -2% for F. sylvativa and -11% P. pinaster stands, and by FORTLS, i.e. 0% for A. 

alba and -8% for P. sylvestris stands. The values  were always lower than the -16% reported by Seidel 

and Ammer (2014) for TLS data obtained in densely stocked poplar short rotation stands. As in previous 

studies (Seidel and Ammer 2014), �̅� was generally underestimated, probably due to systematic 

underestimation of dbh in small trees. The highest correlations were again yielded by FORTLS for A. 

alba (0.88) and P. sylvestris (0.89). 
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Quadratic-form distances (QFD) between diameter distributions retrieved from field data and PS 

techniques were lower considering plots of 15 m radius, especially when derived from ForeStereo, and 

they were always lower for TLS than for ForeStereo. The poorer performance of ForeStereo for 10 m 

radius plots may be due to the small sample of trees used for taper equation fitting. The best results were 

obtained for P. sylvestris with both PS techniques.  

Table 2. Statistics calculated to assess accuracy in variable estimates. 

N G �̅� 

Bias  REMC r Bias  REMC  r Bias  REMC r QFD 

Silver fir / beech-fir 

Fore- 

Stereo 

10 m -23 53 0.31 16 91 0.18 10 30 0.36 427 

15 m -49 62 0.20 -9 69 0.32 20 36 0.53 245 

FOR 

TLS 

10 m 16 37 0.64 27 54 0.22 0 13 0.75 202 

15 m 5 23 0.77 6 32 0.40 -2 9 0.88 170 

Beech 

Fore- 

Stereo 

10 m 23 49 0.61 8 46 0.27 -11 27 0.31 297 

15 m -15 37 0.49 -13 35 0.48 -2 22 0.22 180 

FOR 

TLS 

10 m 11 26 0.83 6 29 0.59 -4 20 0.55 124 

15 m 3 19 0.85 0 25 0.60 -4 13 0.61 122 

Maritime pine 

Fore- 

Stereo 

10 m -5 42 0.37 -14 39 0.45 -13 20 0.51 379 

15 m -32 50 0.11 -35 44 0.47 -11 19 0.48 207 

FOR 

TLS 

10 m 33 77 0.38 3 32 0.67 -14 20 0.62 185 

15 m 17 51 0.51 -5 25 0.73 -12 16 0.71 131 

Scots pine 

Fore- 

Stereo 

10 m 12 59 0.46 -10 42 0.58 -16 26 0.55 351 

15 m -20 51 0.49 -33 47 0.57 -14 23 0.62 162 

FOR 

TLS 

10 m 14 31 0.89 -1 23 0.80 -8 14 0.89 113 

15 m 4 25 0.89 -8 20 0.85 -8 13 0.86 106 

4. Conclusions

FORTLS produced better results than ForeStereo for estimating G in mixed A. alba- F. sylvatica stands 

and in pure F. sylvatica, P. pinaster and P. sylvestris stands and for estimating N and �̅� in mature mixed 

F. sylvatica and P. sylvestris stands, always yielding the highest correlations and lowest quadratic-form 

distances for 15 m radius plots. Nevertheless, ForeStereo performed better for estimating N and �̅� in P. 

pinaster stands, where dense understory intercepts LiDAR at 1.30 m height. The best results were 

achieved for 15 m radius plots in P. sylvestris stands. Nonetheless, differences between forest types or 

sites in plot radii that yielded improved estimates depended on forest structure and other factors 

influencing stand visibility. Future research should focus on exploiting the upper slices of the point 

cloud with TLS to prevent the understorey effect, increasing the range of detection with ForeStereo and 

combining both techniques to improve the precision provided by LiDAR and produce additional 

information for species classification or foliage health status monitoring from images.  
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1. Introduction
Airborne laser scanning-based (ALS) forest inventories that utilize the so-called area based approach 
(ABA) are of great practical importance. While ABA can be considered a mature problem, with many 
well-established approaches to predict the forest attributes, there is still be room for improved 
prediction methods. 

Gaussian process regression (GPR) (e.g. Rasmussen and Williams 2006) is a popular machine 
learning method related to kriging that is based on modelling the forest attributes and the ALS 
predictors jointly as a Gaussian process. The main advantages of GPR are the capability to accurately 
represent highly nonlinear relations with a modest number of tuneable parameters, ability to 
effectively use large number of predictors, and that it produces uncertainty estimates for the 
predictions.  

GPR has shown promise in providing slightly better prediction accuracy than established methods 
(Varvia 2019). However, the previous results on GPR were limited by 1) using data from only one 
study area, 2) using cross-validation instead of a separate test set. The aim of this work is to rectify 
these limitations and additionally test automatic tuning of GPR parameters. 

To benchmark the GPR performance, random forests (RF) were chosen as a reference method. RF 
was chosen because it has produced excellent results in ABA (Cosenza et al. 2021) and it can also 
handle large number of predictors. 

2. Data and Methods

2.1 Materials 

The data consist of field measurements from three sites in Finland, Nummi-Pusula, Kurikka-Seinäjoki, 
and Pokka and corresponding ALS data produced by Finnish Forest Center in 2019. The study sites 
represent forests from Southern, Western, and Northern Finland, respectively. ALS data are openly 
available on the download service of the National Land Survey of Finland. 

The field data consist of 1125, 830, and 763 circular field plots with a radius of either 9 m or 12.62 
m in Nummi-Pusula, Kurikka-Seinäjoki, and Pokka, respectively. To evaluate the performance of the 
two prediction methods rigorously, each data set was randomly split to separate training, validation, 
and test sets in a 40%/20%/40% fashion. Of these, the validation set was used to choose optimal 
model parameters and only the test set to evaluate final prediction performance.  

The corresponding ALS data had a nominal pulse density of 0.8 m-2. After height normalization 
using ground echoes, large number of predictors, including height quantiles, other height metrics and 
canopy densities were computed separately from first of many and only echoes, and last of many and 
only echoes. Intensity metrics were also calculated. Predictors that did not show appreciable variation 
between plots were removed. Final set contained 45 predictor variables, with same variables in every 
site. No further variable selection was done. 
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2.2 Methods 

In this study, the total stem volume is predicted in the ABA framework. Gaussian process regression 
was implemented using an R package under development by the authors. In GPR, the choice of the so-
called covariance function or kernel is one of the principal aspects that affects the predictions. As in 
our previous studies, isotropic Matérn 3/2 covariance function was used with Euclidean distance 
metric. This results in three tuneable parameters: length scale l, kernel variance σk

2, and error variance 
σe

2. The separate validation set was the used to choose the optimal values for these parameters by 
minimizing the sum of squared prediction errors in the validation set. The optimization was done using 
simulated annealing with the R optimization package. 

As a reference method, random forest (RF) was used. For RF, we used the popular implementation 
in the R randomForest package. While it is common practice to use the default values for RF 
parameters, such as the number of decision trees, to facilitate honest comparison, the number of 
predictor candidates per split (i.e. mtry) and the number of trees were optimized using the validation 
set as in GPR. 

3. Results and Discussion
The RMSE and bias of the total volume predictions evaluated using the separate test set for the three 
study sites are presented in Table 1.In all three sites, GPR produced slightly more accurate predictions, 
with relative RMSE being consistently better by 0.3-0.9 percentage points. Both methods showed 
small negative bias in the predictions, with GPR being slightly less biased in Nummi-Pusula and 
Kurikka-Seinäjoki, while RF is slightly better in Pokka. 

Table 1. Prediction performance in the test set. Units are in m3/ha, 
 relative metrics are shown inside parentheses. 

RMSE (%) Bias (%) 
Nummi-Pusula ntest=450 
GPR 42.3 (21.4%) -2.4 (-1.2%) 
RF 42.9 (21.7%) -4.3 (-2.2%) 
Kurikka-Seinäjoki ntest=332 
GPR 33.1 (20.8%) -1.0 (-0.6%) 
RF 34.5 (21.7%) -2.4 (-1.5%) 
Pokka ntest=305 
GPR 21.3 (24.2%) -0.6 (-0.7%) 
RF 22.1 (25.1%) -0.4 (-0.5%) 

Model parameters were optimized by simulated annealing using the validation set are shown in 
Table 2. Both the GPR and RF variables show large variability by study site. Parameter selection 
problems are generally difficult to optimize, due to usually having multiple local minima. Simulated 
annealing was chosen to mitigate this, but as a method it gives no guarantee that the converged 
solution is the global optimum. Given the small number of parameters, grid search would be still 
feasible and guarantee an optimal solution. In RF, the default parameters (mtry=33%, n=500) are 
commonly used. The optimized values here were compared to the predictions using the default values 
and the difference in RMSE was negligible, supporting the common practice. 

Table 2. Optimized parameter values by study area, σv
2 is the sample 

 variance of total stem volume in the training set. 
GPR RF 

Nummi-Pusula l=25.6, σk
2=2.7σv

2, σe
2=0.51σv

2 mtry=42%, n=494 
Kurikka-Seinäjoki l=29.6, σk

2=1.1σv
2, σe

2=0.03σv
2 mtry=17%, n=487 

Pokka l=16.3, σk
2=2.3σv

2, σe
2=0.17σv

2 mtry=29%, n=225 
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GPR also produces prediction variances from which credible intervals can be computed. The 95% 
credible intervals (CI) covered 99.8% of the field measured volumes in Nummi-Pusula, 82.5% in 
Kurikka-Seinäjoki, and 99.0% in Pokka. The values imply that the variances were severely 
overestimated in Nummi-Pusula and Pokka, and underestimated in Kurikka-Seinäjoki. The variance 
estimation aspect could be potentially improved by incorporating CI coverage in the cost function used 
to find optimal parameter values. 

Figure 1. Scatter plots of the predictions. Identity line shown in red. 

4. Conclusions
In this work, Gaussian process regression was rigorously validated at three study sites representing 
boreal forest in Southern, Western, and Northern Finland. The prediction performance of GPR was 
compared with RF. The performance of the two methods was quite similar, although GPR produced 
consistently slightly lower RMSEs. Compared to RF, GPR has the additional capability to also 
simultaneously produce variance/interval estimates for the predictions. In conclusion, the results 
support the previous studies on the potential of GPR as a prediction method in the area-based 
approach. 
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1. Introduction

The use of technologies such as Terrestrial Laser Scanning (TLS) has increased the efficiency and 

quality of forest inventories compared to traditional methods. Despite large innovations TLS is still 

considered labour-intensive and ineffective for large scale data acquisition. However, many of these 

shortcomings can be mitigated by applying a Personal Laser Scanner (PLS), a device applied to 

Simultaneous Localisation and Mapping (SLAM) technology. Gollob et al. (2020) examined this kind 

of device to estimate tree position and diameter and demonstrated its accuracy. However, to our 

knowledge the PLS has not yet been applied to the measurement of felled industrial roundwood. The 

log scaling process involves measuring the length of the logs and midpoint-diameters, the top-diameter 

or the diameters at both ends and then applying a determined formula (Edwards, 1998). This lengthy 

process does not ensure any reliable estimation of the log’s volume, since the estimated volume is 

derived from empirical formulas based on analogue and manual measurements. The accumulated 

measured volume error when acquiring roundwood can lead to considerable economic losses for the 

roundwood purchaser since as stated by Fonseca (2005), approximately 60 - 85% of costs of producing 

wood products can lie in this initial purchase. Therefore, accuracy in the log scaling process is critically 

important. Likewise, process transparency and stakeholder trust in the roundwood supply chain can be 

keys to sustainable commercial success. This can be achieved since when using the PLS, the files 

containing the point clouds of the scanned roundwood are saved and can become accessible immediately 

allowing all stakeholders to access records of the roundwood purchased and recalculate its volume at 

any time. In this paper both methods, the PLS measurement of roundwood and its digitized procurement 

and transparent supply chain, are presented. The present study aims to examine the accuracy of the use 

of the PLS applied to SLAM technology in measuring log volume, to assess its reliability when 

measuring roundwood volume during the roundwood acquisition stage. 

2. Data and Methods

In this study, fifty logs of Norway Spruce (Picea abies L.) were scanned and analysed. The logs were 

felled in the forestry district of Chorin (52° 53’ 22’’ N, 13° 52’ 06’’ E), located in Brandenburg, 

Germany. These logs belonged to the assortment industrial wood, with an average length of 2.53 m, 

ranging from 2.46 m to 2.65 m, and with an average midpoint diameter of 19.97 cm, ranging from 

14.45 cm to 28.55 cm. Firstly, the logs were numbered with forest crayons then top, butt and midpoint 

diameters as well as the length of the log were measured manually, using the method explained by de 

Miguel-Diez et al. (2021). This step was carried out to recognise the logs later once the data were 

processed, and the logs were reproduced as point clouds. Afterwards, the volume of every log was 

measured using a xylometer and the resulting volumes were taken as reference values. Finally, each log 

was scanned digitally using a GeoSLAM ZEB HORIZON personal mobile laser scanner. The technical 

characteristics of this device are comprehensively presented by Gollob et al. (2020). After scanning, the 

files were converted into a point cloud with a *.LAZ format using the software GeoSLAM HUB 6.0.0.. 

These LAZ files were analysed using the software Cloud Compare (version 2.10.2., Cloud Compare, 

2021). Here, the logs were segmented manually using the segmentation tool in Cloud Compare. The 

noise was removed using the low pass filter of Cloud Compare’s “Filter noise” tool. In doing so, six 

neighbours around each point were extracted inputting a relative maximum error of 1.0 and removing 

all isolated points. Subsequently, the normals were computed using a plane local surface mode, as 

recommended for noisy samples by Girardeau-Montaut, in 2015 with a minimum spanning tree, 

considering twenty nearest neighbours to build the tree. Afterwards a mesh was generated using the 
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“Poisson” surface reconstruction method, which is suitable for surface reconstruction of noise affected 

samples (Kazdhan et al., 2006) and provided as plugin in Cloud Compare (see Figure 1). Twenty 

neighbouring sample points per node were considered for the log reconstruction with a centre point 

weight of 2. The Neumann constraint was chosen as boundary condition, as it is proven robust to missing 

data, e.g., on the bottom side of the logs (Kazdhan and Hoppe, 2013). Instead of using an octree depth, 

the target resolution was defined with 0.1 m. Once all the volumes were calculated, they were compared 

with each other by fitting a linear regression with the volumes measured using the xylometer and the 

volumes calculated in Cloud Compare from the PLS sample. In addition, paired t-tests were conducted 

in order to prove if the difference between the samples was statistically significant. The results were 

analysed using the programme RStudio (version 1.3.1093, RStudio Team, 2021). For the visualisation 

of the simulation results the R package ggplot 2 was used (Wickham, 2009).  

Figure 1: Real log (left) and mesh generated virtually from the PLS sample (right). 

3. Results and discussion

The mean volume of all measured logs with xylometer was 81.4 dm3, ranging from 47.3 dm3 to 

167.3 dm3, and  the mean volume calculated in Cloud Compare resulted in 81.5 dm3, ranging from 

46.7 dm3 to 166.2 dm3. When comparing the results using both methods, the adjusted R2 obtained was 

very close to 1 (see figure 2). This can be interpreted as a marginal deviation from a linear relation.  

Figure 2: Linear regression concerning both measurement methods (A) and relative deviation of the 

volume estimated in Cloud Compare from the volume measured with the xylometer (%) (B). 

The difference between all samples is normally distributed (Shapiro-Wilks, Sig = 0.134). The mean 

difference of the samples of 0.107 dm³ (or 0.13%) (Std. Dev 2.913 dm³, 95%-Confidence Interval 

[- 0.720 dm³; 0.935 dm³]) is not statistically significant (paired t-test; t(49) = 0.260, 
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Sig(2 - tailed) = 0.796). In addition, as depicted in Figure 2B the relative deviation (Dev%) becomes 

smaller when the log’s volume increases which means that the estimation is more accurate for bigger 

logs (Dev% (Vol < 75 dm³) = ± 8%; Dev% (Vol > 150 dm) ≤ 3%).  

According to the device´s product specifications the operational temperature ranges from 0 to 50 ° C 

(GeoSLAM Ltd., 2018).  In addition, the product specifications indicates that the device´s protection 

class is IP 54 (GeoSLAM Ltd., 2018). This implies that the use of this device  is constrained by weather 

conditions, eg., heavy precipitations or freezing temperatures. Another important limitation of PLS in 

forest applications and timber-logging measurements is its susceptibility to airborne dust. In this study, 

the logs were scanned near to a sandy terrain in which the air was quite dusty, which was later observable 

in the point cloud. In particular, the dust in the air created salt-and-pepper noise which requires 

additional filtering prior to the digital measurement process. Under such conditions the samples result 

in unsharp surfaces of the scanned object which hinders object extraction, log modelling and any further 

analyses.  Nevertheless, the Cloud Compare software provides several tools such as the “local surface 

model” or “number of samples per node” to solve this problem in most cases, allowing for log volume 

to be estimated accurately.  

4. Conclusions

Concluding the analyses and results of this study, the use of PLS applied to SLAM technology provides 

accurate results when estimating the volume of the logs under realistic timber logging conditions. Errors 

in the point cloud, resulting from dusty air when taking the samples can be solved using filters and 

robust algorithms to reconstruct the log surfaces virtually. 
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Abstract 

Forest structural diversity is an important dimension of biodiversity, affecting light availability, tree 

survival and growth, ecosystem functioning and habitat for forest-dwelling organisms. With increasing 

forest biodiversity loss, it is important to monitor forest structure efficiently. Compared to traditional 

field sampling, airborne light detection and ranging (LiDAR) provides an effective and consistent way 

to monitor the three-dimensional structure of forests at different spatial units, typically in the form of 

pixels or individual tree crowns (ITCs). However, few studies have explored the differences between 

the ITC- and pixel-based approaches to mapping functional traits and diversity by remote sensing of 

forest vegetation. In this study, we used the two approaches to assess structural diversity in a subtropical 

forest. We firstly retrieved three morphological traits — 95th quantile height (H95), leaf area index 

(LAI) and foliage height diversity (FHD) from ITCs and pixels based on airborne LiDAR data. Then 

we compared trait distributions, trait–trait relationships and functional diversity patterns derived from 

ITCs and similarly-sized pixels. In addition, we investigated how much variability in morphological 

traits would be lost with increasing pixel size. We found that H95 derived from 3m pixels were highly 

correlated with the ITC-based H95 (Pearson r = 0.95), while the consistencies of ITC- and 3m pixel-

based LAI and FHD were lower. The pixel-based retrieval tended to yield higher H95 and FHD and 

lower LAI values than ITC-based measures. These differences increased with pixel size, and the 

distributions tended to become more clustered. The between-unit variation in morphological traits at 

different pixel sizes indicated that less relative variability in traits could be explained by larger pixels. 

The spatial patterns of ITC- and pixel-based structural diversity were similar, but the scale-dependency 

analysis showed that ITC-based functional richness increased faster with area at small neighborhood 

scales, indicating that increased within-community diversity could be better captured by the ITC-based 

approach. It should be noticed that the choice of spatial unit and retrieval approach might change the 

semantics and interpretation of the derived morphological traits. These in-depth comparisons will help 

to increase our understanding of the scaling between local-ground, regional-airborne and global-

spaceborne observations of forest structural diversity. 
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1. Introduction

The 3D Terrestrial laser scanner (TLS) information play a key role in monitoring and understanding 

forest dynamics. The monitoring of structural changes in tree crowns can be used as a basis to understand 

their growth dynamics and overall canopy interactions in forests. Canopy structure and spatial 

distribution of leaves are major factors that affect the efficiency of energy and mass exchange processes 

of water vapor, photosynthetic activity and carbon assimilation between forest and the atmosphere 

(Hatfield and Dold 2019). Precise canopy change detection is a difficult task due to the non-static 

behavior and non-symmetric shape. At present, many questions about tree canopy dynamics remain 

unanswered, such as when and how tree canopy grows. Previous work has shown that TLS can overcome 

several of the methodological problems inherent to conventional canopy analysis with passive optical 

methods (Seidel et al. 2012), such as varying lighting conditions and occlusion. However, traditional 

TLS data acquisition surveys are laborious, which limits the number of works focusing in long term and 

high temporal resolution monitoring of tree canopy dynamics with TLS. To address this challenge, a 

permanent TLS measurement station with high spatial and temporal resolution was built in Hyytiälä 

forest research station, in southern Finland (Campos et al. 2021). The permanent TLS measurement 

station has been fully operational since April 2020 and it provides a TLS time-series with high spatial 

(0.006° angular resolution) and temporal resolution (1 scan per hour). Here, we present a data assessment 

of the measurement station point clouds with an aim to demonstrate the potential of long-term TLS time-

series to provide new insights about structural changes in tree crowns over time. Our results show that 

long-term TLS time-series enable the accurate detection of the sprouting and growing of new leaves 

during the spring growth season of 2020 and in the beginning of 2021. 

2. Long-term TLS time-series Dataset

The 13-month long TLS time-series data assessment was performed with the focus on detecting visual 

and quantitative crown changes (point cloud density and reflectance response) of a single deciduous 

Silver birch (Betula pendula). The Silver birch tree is located about 6 m away from the tower, with a19m 

height and DBH of 173mm. The point cloud time-series of the Silver birch was collected with the 

permanent TLS measurement station over the entire growing season of 2020 till beginning of 2021-

spring. More details about the TLS measurement station setting and output data can be found in Campos 

et al. (2021). 72 point clouds were selected and pre-processed to assess the potential of the measurement 

station data to detect changes in tree crowns. All selected scans were acquired in windless conditions 

during the night varying from 8 P.M to 2 A.M. The time-series used in the change assessment covered 

a time period from April 2020 to May 2021 with a temporal resolution of 5 days (~1 week). The data 

processing framework to detect changes in the Silver birch canopy from the time-series consisted of 

three main steps. These were i) tree segmentation from the full point cloud, ii) point cloud filtering, and 

iii) point cloud georeferencing in to ETRS89-TM35FIN frame (EPSG: 3067).

3. Results

Figure 1 presents the median reflectance response and the upper canopy height variation (90th percentile) 

of the birch tree crown over the observation period with the zero date set to 1 January 2020 (e.g. 2021 

starts in day of the year 366). The reflectance response along the time-series can detect the first signal 

of the spring. In 2020, the reflectance values start to significantly increase after May 23 and decrease 

around September 22, which can be associated to the spring sprout of new green leaves and their falling 

in autumn. The dashed red and blue vertical lines in Figure 1 represent the time of solstices and 

equinoxes. In 2021, the reflectance values start to increase again around May 1st, manifesting the 
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beginning of a new growing season. The increase in the point cloud density can also confirm the leaf 

sprout and green biomass changes in the birch crown during this period. For instance, the point cloud 

density increased 13.4% in 2020, from 4.7 million points in April 16 to 5.3 million points in May 25 

and 17% in 2021, from 5.2 million points in April 15 to 6.1 million points in May 25. Figure 1 illustrates 

a closely synchronized behaviour between changes in reflectance response and in the 90th height 

percentile variation. The 90th height percentile correspond to the height at which 90% of the points of 

the whole cloud are below it. This approach enables a reliable timing of change events in the crown. 

However, the height percentile information alone cannot quantify where in the crown growth happens. 

In this regard, changes in TLS reflectance response, point density and canopy area of the birch crown 

are further explored in Figure 2, Figure 3 and Table 1, respectively. 

Figure 1: Polygonal fit of median reflectance response (green) and height percentile variation (black) of a Silver 

birch tree from April 2020 to May 2021. Red and blue dash lines are the solstices (summer, winter) and 

equinoxes (spring, autumn) days, respectively. Black line represents the begging of 2021. 

To visualize the state and reflectance response of the Silver birch crown during the spring growing 

season, a top view of eight georeferenced point clouds from early-spring of 2020 (Day of the years -

107, 126, 137 and 146) and 2021 (Day of the years in Figure 1-470, 490, 500, 509) is presented in Figure 

2. The point clouds coordinates (E, N) were converted to polar coordinates and presented according to

the azimuth direction and distance from the tree stem centre position, ranging from 0 to 3m. The point 

clouds were colorized with respect to the reflectance parameter values, ranging from 0 to 2.  

Figure 2: Seasonal variation in a Silver birch crown during the spring growth season of 2020 and 2021. The 

color scale presents individual laser point reflectance in logarithmic scale (0–2).The black triangle shows the 

direction to the permanent TLS measurement station. 
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For more accurate volumetric change assessment, point cloud density variation can be associated to 

volumetric dynamics on the tree crown using methods such as point cloud voxelization. A 2D point 

cloud voxelization is presented in Figure 3, in which a voxel size of 5×5 cm dimensions was used to 

detect the birch crown changes at 2021(DoY- 470, 490, 500, 509). The tree crown changes can be 

observed comparing the point density in each voxel element at different times of the 2021 growing 

season. From mid-April to late-May, the density of points increase in the voxel of the centre of the 

crown. The number of point also increase in minor magnitude at tree edges, which can be associated to 

tree crown area growth. Table 1 present quantitative results of the tree crown change from the estimation 

of canopy area via alpha shape algorithm (Edelsbrunner and Mücke 1994). As show in Figure 3, the 

birch tree canopy area increases especially after Early-May. The estimated area increased 5% in 2020 

and 12% in 2021 from mid-April to late-May. The response of the birch tree to the spring have started 

earlier in 2021 than 2020 (Figure 1), which can justify the difference in the percentage of increased area. 

Figure 3: Seasonal variation in a Silver birch crown in the 2D voxel space between Mid-April and Late-May. 

The color scale presents the number of points per 2D voxel. 

Table 1. Birch Tree canopy area in spring 2020 and 2021 computed with alpha shape. 

Year Mid/April Early/May Mid/May Late/May 

2020 10.01 m2 9.93 m2 10.01 m2 10.44 m2 

2021 10.41 m2 10.50 m2 11.20 m2 11.67 m2 

4. Conclusions

Our first results show that long-term TLS time-series can support the detection of structural changes in 

individual tree crowns. Reflectance detection enables the accurate timing of the sprouting and falling of 

leaves during the spring growth season of 2020 and in the beginning of season 2021. Correlation and 

regression analysis of reflectance, temperature, and other environmental factors relevant to tree life 

cycles will be performed in future to determine the exact sequence of events that drive tree sprouting 

and fall. High temporal resolution of the time-series allow canopy growth monitoring and quantification 

with several different methods, such as height percentile and voxel point densities. We demonstrate the 

potential of high-density TLS time-series as a plot scale measurement tool that captures accurate 

temporal snapshots of the actual state of the forest. These dense time-series information enable forest 

structure analyses on level that have not been achievable with earlier techniques. In future, our work 

will focus on expanding the present analysis to cover all high visibility trees in the monitoring area to 

quantify, time, and analyze their phenological events and the overall forest dynamics. 
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1. Introduction

Airborne laser scanning (ALS) from low flight altitudes will produce high-resolution data but is not 
efficient for large area mapping. ALS data can therefore be collected in strips to enable an accurate 
inventory of larger areas. High-resolution data from ALS can provide estimates of tree positions, tree 
height, and tree species, but reference data are commonly needed from field inventories for estimation 
of stem attributes. In this study, we apply ALS strip sampling as first phase in forest stands, and use 
sample trees from a second phase using terrestrial laser scanning (TLS). The TLS measures were used 
instead of manual field inventories to build regression functions, which were used to predict stem 
volume of all detected trees in the strips (first phase). The estimated volumes with respect to the number 
of strips in each forest stand was evaluated.  

2. Material

2.1 Study area 

The study area is located at 62.9°N 16.9°E in middle Sweden. A subset consisting of ten boreal forest 
stands covering 207 ha were used in this study. The forest was dominated by Norway spruce (Picea 
abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula spp.)., where pine (50%) and 
spruce (44%) constituted 94% of the growing stock and birch 6%. The stands had an average VOL of 
235 m3/ha and the stand ages were between 98 and 150 years.  

2.2 Harvester data 

Two forest harvesters were used to harvest the ten forest stands in 2020, after ALS scanning. The 
harvester registered the tree species and measured the stem diameter along the trunk. We estimated the 
stem volume based on the DBH and height, using regional valid functions. The harvested areas were 
flown with a drone after harvest, carrying an optical camera. Ortho-photographs with 4 cm pixel 
resolution could be generated, which enabled us to delineate the harvested forest areas accurately.  

2.3 Laser scanning data 

The ALS system Riegl LMS-Q680i was acquiring data from a helicopter. The nominal flight speed 20 
km/h, and the altitude 70 m above ground level. The nominal swath width was 90 m and the nominal 
point density ranged from 490 points/m2 to 654 points/m2, with an average of 593 points/m2. The laser 
scanning of the 10 forest stands was performed 3 November 2019.  

Terrestrial Laser Scanning (TLS) was conducted at the location of the field plot centers. The Trimble 
TX 8 instrument scanned in a hemispherical pattern with a point spacing of 11.3 mm at 30 m distance. 
The wavelength was 1.5 micrometer. The tree stem properties was estimated using the TLS data and an 
algorithm by Olofsson and Holmgren (2016). 

3. Methods

3.1 Processing of ALS data 

For automatic delineation of tree crowns, we used an algorithm based on density models of tree crown 
(Holmgren and Lindberg 2019). It first uses a canopy height model (CHM) to obtain an approximate 
height of potential tree height positions, at 0.25 m gridding. Template matching was then applied to 

Published in: Markus Hollaus, Norbert Pfeifer (Eds.): Proceedings of the SilviLaser Conference 2021, Vienna, Austria, 28–30 September 2021.  
Technische Universität Wien, 2021. DOI: 10.34726/wim.1861
This paper was peer-reviewed. DOI of this paper: 10.34726/wim.1932

108



create a model similarity surface that was used as input in a watershed segmentation to generate an 
automatic delineation of all tree crowns.  

3.2 Processing of TLS data 

The algorithm used to estimate the stem profiles and VOL of the trees from a 3D point cloud was 
presented in Olofsson and Holmgren (2016). The volume of the stems were estimated as truncated cones 
connecting the centers of the modeled stem cylinders (Olofsson and Holmgren 2017). The top part of 
the tree (where the singletree detection algorithm was unable to detect the stem cylinder), was modeled 
as a complete cone reaching the highest registered laser point of the canopy. 

3.3 Two-phase hybrid inference 

The first phase consisted of ALS strips across the stands. These were selected to cover the systematically 
distributed TLS scan locations in phase two. Depending on the stand geometry, the number of strips 
varied between 3 and 5, but for some stands perpendicular flight lines of nearby stands made even more 
strips available. The strips (used in the results below) were randomly selected. All trees that were 
identified in both the TLS and ALS data within the strips were used to estimate model parameters with 
robust multiple linear regression, using the R-package MASS and the default Huber variance estimator 
(Huber 1981). The regression model was used to predict the VOL, 𝑦𝑦� , on all segmented trees, and the 
model had the form of:  

𝑙𝑙𝑙𝑙(VOL) = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋1 +⋯+ 𝛼𝛼𝑝𝑝𝑋𝑋𝑝𝑝 (1) 
where the parameters �𝛼𝛼0,𝛼𝛼𝑝𝑝� for the 𝑝𝑝 attributes 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ [1,𝑝𝑝] were the following statistical metrics 
computed from the ALS point clouds for the single tree segments: height percentile 10, 80, 95, and 
crown width. Since the dependent variable VOL was transformed using the natural logarithm, a 
correction for logarithmic bias was applied, by adding 𝑠𝑠2/2  to (1) before taking the inverse transform 
of the prediction, 𝑠𝑠2 being the residual variance from (1) (Finney 1941).  

The population (stand) means (�̂�𝜇𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉) were estimated with a ratio-to-size estimator, as the size of 
the strips varied depending on the stand shape. The total volume 𝑇𝑇𝑘𝑘 for each strip k was calculated by 
summing up the volumes 𝑦𝑦�𝑗𝑗 predicted with the linear regression function for all trees 𝑀𝑀𝑘𝑘 in the strip: 

𝑇𝑇�𝑘𝑘 = ∑ 𝑦𝑦�𝑗𝑗
𝑀𝑀𝑘𝑘
𝑗𝑗=1   (2) 

Then, the mean (�̂�𝜇𝑌𝑌 𝑉𝑉𝑉𝑉𝑉𝑉) was estimated as 

�̂�𝜇𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 =
∑ 𝑇𝑇�𝑘𝑘
𝑀𝑀𝑐𝑐
𝑘𝑘=1

∑ 𝑎𝑎�𝑘𝑘
𝑀𝑀𝑐𝑐
𝑘𝑘=1

   (3) 

where 𝑎𝑎�𝑘𝑘 denotes the total area of strip k, and 𝑀𝑀𝑐𝑐 denotes the total number of strips in the stand. 
An approximated variance (Ståhl et al. 2011) of the estimators in (3) and (5) is 

𝑉𝑉𝑎𝑎𝑉𝑉� ��̂�𝜇𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉� = 𝑠𝑠𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉
2 + ∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶� (𝛼𝛼�𝑑𝑑,𝛼𝛼�𝑒𝑒)𝑝𝑝

𝑒𝑒=1
𝑝𝑝
𝑑𝑑=1 𝑇𝑇��𝑑𝑑′𝑇𝑇��𝑒𝑒′ (4) 

where the first term represents the variability due to the first-phase sampling and the second term 
represents the model error due to the uncertainty of the parameter estimates. p is the number of model 
parameters, 𝐶𝐶𝐶𝐶𝐶𝐶� (𝛼𝛼�𝑑𝑑 ,𝛼𝛼�𝑒𝑒) is the estimated covariance between the model parameter estimates, and 𝑇𝑇��𝑑𝑑′𝑇𝑇��𝑒𝑒′
are the estimated average values of the first order partial derivatives of the function used to estimate the 
target variable. The first-phase sampling variability was estimated as: 

𝑠𝑠𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉
2 = �1 − 𝑎𝑎

𝐴𝐴
�
∑ �𝑇𝑇�𝑘𝑘−𝜇𝜇�𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎�𝑘𝑘�

2𝑀𝑀𝑐𝑐
𝑘𝑘=1

𝑀𝑀𝑐𝑐𝑎𝑎��2(𝑀𝑀𝑐𝑐−1) (5) 
where a represents the area covered by the strips, A represent the total area of the population (stand), 
and 𝑎𝑎�� is the mean strip area.  

To provide an estimate of mean bias, the estimated stand means (�̂�𝜇𝑌𝑌𝑙𝑙) were compared with the 
reference values 𝜇𝜇𝑌𝑌from the harvester, and the mean population bias for all 𝑀𝑀𝑑𝑑 stands was estimated as 

𝐵𝐵� = 1
𝑀𝑀𝑑𝑑
∑ ( �̂�𝜇𝑌𝑌𝑙𝑙 − 𝜇𝜇𝑌𝑌𝑙𝑙)

 𝑀𝑀𝑑𝑑
𝑙𝑙=1 (6) 

The RMSE was used as accuracy measure for all stands, and it was estimated as 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸� = � 1
𝑀𝑀𝑑𝑑
∑ (�̂�𝜇𝑌𝑌𝑙𝑙 − 𝜇𝜇𝑌𝑌𝑙𝑙)2
𝑀𝑀𝑑𝑑
𝑙𝑙=1   (7) 

using the same notations as earlier. The standard error was calculated as the square root of the variance: 
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𝑅𝑅𝐸𝐸� = �𝑉𝑉𝑎𝑎𝑉𝑉� (�̂�𝜇𝑌𝑌)). (8) 

4. Results

The results showed that an increasing number of strips lowered the RMSE, both in absolute and relative 
terms (Table 1), and the bias showed a similar trend. The trend can also be seen in the scatter plots 
(Figure 1). The proportion sampled area increased with more strips from n=1 until n=3, where it 
plateaued. The proportion corresponded to about 30%, but higher n decreased the RMSE further, without 
sampling a larger proportion of the stands. This indicates that it would be more cost efficient to collect 
more, shorter strips, rather than fewer but larger strips. The standard error was rather stable in the range 
of 9% to 17%, but without correlation to the number of strips. Since the variance estimator depends on 
the covered proportion, larger differences and repeated simulations would be needed to investigate this 
further.  

Figure 1: Estimated vs. reference VOL for different number of flight lines. 

Table 1. Accuracies results 
n RMSE Bias Standard Error Proportion of Tot Area Stands 
1 77.7 (34.2%) 19.6 (8.64%) - 10.6% 8 
2 45.0 (19.0%) 16.1 (6.82%) 36.2 (15.3%) 21.6% 10 
3 45.1 (19.1%) 12.3 (5.18%) 21.4 (9.06%) 32.5% 10 
4 33.7 (12.9%) 13.3 (5.09%) 35.2 (13.5%) 29.3% 8 
5 17.3 (6.73%) 4.12 (1.60%) 45.0 (17.5%) 30.1% 6 
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1 Introduction
Uncertainties in vegetation volume and biomass account for a large part of the uncertainty of terrestrial
carbon cycle models (Bloom et al., 2016). Biomass is frequently calculated with allometric equations
using the tree diameter (Asner et al., 2013; Paul et al., 2013), meaning that errors in the tree diameter
propagate into quantities used in environmental modelling. Terrestrial laser scanning (TLS) with geo
metrical tree reconstruction is a useful technology to measure vegetation volume and biomass, thus it is
important to quantify the uncertainty of tree diameter estimation using TLS data.

Studies have shown that uncertainties in the laser scanning data andmethodologies applied to it result
in errors in the properties derived with it (Boehler et al., 2003; Lichti et al., 2005). Additionally, studies
have been performed that assess the uncertainty of results obtained with TLS data of trees (Disney et al.,
2018; Wang et al., 2019), however the consideration of uncertainty for the reconstruction of trees is rare.
Furthermore, to the authors' best knowledge no study exists that quantifies this uncertainty and accounts
for it prior to the determination of tree properties, i.e. during data processing and the reconstruction of
tree geometry.

The uncertainty in the detected hit location comes primarily from the finite laser beam width which
widens with range and beam divergence angle, as well as the incidence angle of the beam with the object
(Hartzell et al., 2015). It is thus affected by the scanner's specifications, the object's surface and the
locations of the scanner. This study views the point cloud not as discrete locations, but instead as a set
of continuous probability distributions centred on their reported hit locations. In particular, this means
that it is possible to rigorously account for points from separate scanning positions with significantly
different uncertainties.

The uncertainty is propagated to the diameter estimate through Monte Carlo sampling, where with
each iteration the point cloud is shifted randomly according to the computed probability distributions
of each point. Moreover, a maximum likelihood based circle fitting method that uses the distribution
information directly is presented.

2 Data & Methods
For this paper simulated laser scanning data are used, enabling a sensitivity analysis of the uncertainty
and the algorithm's performance with changing scanning parameters. The simulated data are generated
by creating a deterministic point cloud which assumes there is no uncertainty, after which they are ran
domly shifted in their respective radial and propagation (range) directions according to their respective
probability distributions (Hartzell et al., 2015). The resulting stochastic point cloud is used for the re
mainder of the algorithm, and the true hit locations and geometry are assumed to be unknown.

The uncertainty of the tree stem  or branch  centre and diameter is determined throughMonte Carlo
sampling, akin to (Shapiro & Philpott, 2007). A schematic overview of the method is given in Figure 1.
The sampling revolves around the same principle as the creation of the synthetic point cloud, however
without prior knowledge of the geometry. The point cloud uncertainty estimated from the initial shape fit
is used to shift the original point cloud randomly for each Monte Carlo iteration. The uncertainty of the
shape parameters is computed by taking the α and 1− α quantiles of the resulting series of geometrical
parameters.

Initial geometry and uncertainty Monte Carlo sampling loop

Initial
shape fitting

Uncertainty
computation

Random point
sampling

Shape fitting
algorithm

Point
cloud

Circle
geometry

Initial
point cloud
uncertainty

Sampled
point cloud

Geometry
distribution

• average
• conf. interval

Figure 1: Overview of the method used to determine the tree stem shape parameters and their
uncertainty.
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The sampled point cloud is used as the basis for shape fitting, however to compute the probability
distribution around each point the geometry of the object has to be assumed. To reduce the effect of
errors in the initial geometry estimate, initial shape fitting is performed for each Monte Carlo iteration
as well. Next, the optimal shape parameters are determined by maximising the likelihood of the circle,
given the point cloud's probability distributions computed according to the initial shape fit. An example
of this is shown in Figure 2a. This enables the shape fitting algorithm to more effectively use points
originating from different scanners or striking the object with a higher incidence angle, as it considers
the differences in their uncertainty. A schematic example of this is given in Figure 2b. It should be
noted that these probability distributions are not changed by the optimiser's estimates, to prevent the
optimiser from changing the geometry to alter the uncertainty rather than to more accurately resemble
the underlying shape.

x

p

r

(a) The blue and green lines are the closest and
highest likelihood intersections with the yellow

circle estimate respectively.

(b) The green and red points have different
uncertainty magnitudes and directions.

Figure 2: Schematic overview of the probability distribution of a single point (a) and the point
clouds from two scanners (b).

If the initial geometry estimate is poor, points that are further away have a negligible and near
constant likelihood, and are thus ignored by the optimiser. As such, the second objective of the shape
fitting algorithm is to minimise the expected squared distance of the points to the circle, given their
respective probability distributions. This second objective is intentionally affected by points that are
distant to the estimated geometry, which necessitates outlier filtering before shape fitting.

3 Results & Discussion
The method proposed above has been tested on a scanning setup akin to Figure 2b, where the left and
bottom scanners are at 100 and 50metres distance from a 0.1metre diameter tree stem. The specifications
of the Faro Focus (FARO, 2020) were used, with both the normal (0.30 mrad) and double (0.60 mrad) the
beam divergence δ, to show the effect of greater uncertainty. The results of 100 Monte Carlo iterations
are shown in Table 1 for linear least squares (LS), linear least squares weighted by the inverse distance
between scanner and tree stem (WLS), and the maximum likelihood method (ML).

The estimate from the maximum likelihood method is closest to the true solution, with least squares
having the greatest error. The performance difference between maximum likelihood and (weighted)
linear least squares increases with uncertainty. The ML method is thus able to estimate geometry with
lower quality data, however the performance benefit is small if the data quality is high. ML further has
the thinnest confidence intervals, aside from the radius estimate with greater uncertainty where WLS
outperforms it.
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Table 1: The results for two beam divergence angles δ and three shape fitting methods. The
errors of the estimated radius and centroid location, as well as the width of the 95% confidence

interval (CI), are relative to the true radius.

δ [mrad] Method Radius Centroid
Error [%] CI width [%] Error [%] CI width [%]

0.30
LS 11.2 27.5 7.9 46.0
WLS 9.1 23.0 6.3 37.2
ML 4.2 22.0 2.5 28.3

0.60
LS 27.3 80.2 18.5 159.0
WLS 23.1 58.4 16.3 117.3
ML 7.6 69.6 2.7 88.0

4 Conclusion
Key tree parameters can be computed using geometrical tree models reconstructed from TLS data. The
data and geometry derived from TLS data can contain significant uncertainty however, which this paper
quantifies for diameter estimation and utilises to reconstruct the diameter more accurately.

The input data uncertainty is quantified through analytical computations of the laser beam properties,
after which the circle is fitted to maximise the likelihood taking the probability distribution of each point
into account. This enables the shape fittingmethod to distinguish between points that come from different
scanners and have different directions and magnitudes of uncertainty.

A comparison was performed between the maximum likelihood method and (distance weighted)
linear least squares for two scenarios of different uncertainty. The maximum likelihood had the low
est errors in radius (4.2 and 7.6%) and location of the centroid (2.5 and 2.7%), with the performance
difference to the least squares approaches increasing with higher uncertainty.

Further research is planned to extend the presented methodology to the 3rd dimension by fitting
cylinders to 3dimensional point clouds. Additionally, the robustness of the method to surface rough
ness and noncircular crosssections will be analysed.
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1. Introduction
In individual tree detection (ITD), trees are delineated from a pre-processed ALS point cloud. A problem 
in ITD is that all trees are not visible when forest is seen from above. Here we focus on estimation of 
the hidden trees. Mehtätalo (2006) proposed a Horvitz-Thompson-like estimator for stand density (N, 
trees per ha) in ITD. The estimator was based on a sequential construction of the detected crown discs. 
The crown discs are ordered with respect to their diameter from the largest to the smallest. The largest 
tree is observed for sure. The other trees are observed from above only if they are not hidden below the 
crows of the larger trees. Therefore, the probability to detect the i:th largest detected tree with radius 𝑟 
was computed by using the union of larger crown segments. Especially, it was assumed that the tree is 
not detected if the center point of the crown is within the union of larger tree crowns.  

Kansanen et al. (2016, 2019) generalized the detection condition by defining a set 𝐴, which was 
obtained by removing a buffer of width 𝛼𝑟 from the union of larger crown segments. Here α is a tuning 
parameter that can be estimated either based on the properties of the applied ITD algorithm or 
empirically by using error of stand density as a criterion. If tree locations follow complete spatial 
randomness, the detection probability for tree i can be approximated as the proportion of the whole plot 
area that was not covered by 𝐴,  

πపෝ = 1 −
|∩ௐ|

|ௐ|
, (1) 

where 𝑊 is the sample plot of interest. After computing the detection probabilities, stand density (trees 
per plot) was estimated using a Horvitz-Thompson-like estimator 

𝑁 = ∑
ଵ

గෝ
= 𝑁ୢୣ୲ୣୡ୲ୣୢ + ∑ቀ

ଵ

ෝ
− 1ቁ, (2) 

where the summation runs from 1 to the detected tree count. The latter form explicitly shows that the 

estimator is a sum of detected tree count 𝑁ୢୣ୲ୣୡ୲ୣୢ and an estimated hidden tree count ∑ቀ
ଵ

ෝ
− 1ቁ. 

An implicit assumption in the above constructions is that the density of trees of a given size in the 
parts that are not visible to the scanner is similar to the density in the visible parts. This assumption may 
not be realistic because the parts that are hidden provide worse growing conditions for small trees than 
the visible parts. This problem is implicitly taken into account if the tuning parameter 𝛼 is estimated 
empirically so that the estimated stand densities match with the field measurements. However, a better 
solution might be to model the variability in stand density explicitly.  

A finite sequential spatial point process model (SSPP) was recently proposed for forest data in Yazigi 
et al (2021). A similar model has been previously applied with eye movement data (Penttinen and Ylitalo 
2016). In SSPP, the points are ordered according to the time and the locations of the latter points are 
affected by the earlier points. In the forestry context, it is realistic to assume that the order in terms of 
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tree age is well approximated by the order of trees in terms of size. The model is based on an accept-
reject construction as follows. The first tree location is generated uniformly at random. For each of the 
latter trees, a uniform location is proposed. The proposal is accepted with probability 𝜃,  (0 < 𝜃 < 1) 
if the proposed location is within a 𝑟-radius neighbourhood of at least one of the previous locations, and 
with probability 1 − 𝜃 if the proposed location is not within any neighbourhood. The acceptance 
probability 𝜃 and interaction radius 𝑟 are parameters of the model, which were estimated using 
maximum likelihood. The model allows a wide range of spatial point patterns. Especially  𝜃 = 1/2, 
leads to complete spatial randomness, 𝜃 < 1/2 a regular tree pattern and 𝜃 > 1/2 a clustered pattern.  

If the parameter r is selected so that it corresponds to the applied detection condition, the ratio 
ఏ

ଵିఏ

describes the ratio of stand densities in the hidden and visible parts of the forest in the estimation method 
of Kansanen et al (2016, 2019). However, application of the model requires an estimate of 𝜃 be available. 
It might be possible to model parameter 𝜃  empirically using such predictors based on the ALS data 
which include information of the spatial pattern of tree locations, see Häbel et al. (2021). 

In this paper, we apply the model of Yazigi et al. (2021) in the context of the method of Kansanen et 
al. (2016) to allow different stand densities in the hidden and visible parts of the plot. The developed 
model is evaluated with empirical data and compared with the previous methods. 

2. Data and methods
A data set of 111 square fixed-area plots of size 30 by 30 meters from Liperi, North Carelia, Finland is 
used. The number of stems, quadratic mean diameter and basal area of the plots varied within 211-3900 
trees per ha, 8.2-37.2 cm, and 7.84-46.19 m2/ha, respectively. 39% of the plots were dominated by Scots 
pine, 43% by Norway spruce, and 18% by birch species. All trees were measured for location, diameter 
(DBH) and height. ALS data were acquired using an Optech Titan instrument on July 2-10, 2016. 
Although this scanner operates in three wavelengths, we used only the 1064 nm channel in this study. 
The scanning altitude was 850 meters, the scanning half angle 20 degrees, pulse repetition frequency 
250 kHz and sampling density 4.8 pulses per m2. 

We assume that a tree is detected if the center point of the crown is not within the union of larger 
tree crowns so that the detectability is given by Equation (1) where 𝐴 = ⋃ 𝐶

ିଵ
ୀଵ  and 𝐶 is the crown 

disc of tree j. However, we assume that for each tree i, the density in the hidden part relative to the 

density in the visible part is 
ఏ

ଵିఏ
. Therefore, we propose here the following new estimator for the stand 

density: 

𝑁 = 𝑁ୢୣ୲ୣୡ୲ୣୢ +
ఏ

ଵିఏ
∑ቀ

ଵ

గෝ
− 1ቁ. (3) 

Notice that the estimator provides weights for every tree, so extension to estimation of other population 
characteristics (such as basal area) is straightforward.   

The estimator was evaluated by using an analysis with the following steps: 
1. Individual tree detection was conducted using a method that provided estimates of tree locations

and (maximum) tree crown radius (Lähivaara et al. 2014). 
2. The detected trees were matched with field-measured trees with a manual procedure. A linear

mixed-effect model (see e.g. Mehtätalo and Lappi 2020) was fitted to model the crown width (based 
on ALS) on the field-measured tree DBH. The model was used to predict crown radius for all field-
measured trees. 

3. Using the predicted crown radii from step (2) as a known interaction radii, the “true” value of 𝜃 of
in the SSPP model (Yazigi et al. 2021) was estimated separately for each plot. 

4. The estimate of 𝜃 was modeled using different plot-level characteristics proposed by Häbel et al.
(2021). Prediction based on that model was used in step 5.  

5. Stand density was estimated for each plot using the estimator (3).
For comparison, the estimator of Kansanen et al. (2016) was also implemented. The tuning parameter 

𝛼 was estimated by finding for each sample plot such a value of α that provided minimum difference 
between the field-measured N and ALS-estimated N. The estimates were modeled using the same 
predictors as used in step 4 above and predicted for all plots for a procedure comparable with steps 4 
and 5 above. Estimation using 𝛼 = 0 based on Mehtätalo (2006) was also implemented.  
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3. Results and discussion
From among the variables proposed by Häbel et al 
(2021) the total number of distinct patches in the 
CHM at 80% height of the total height and integrated 
deviation of the F-function from the theoretical 
reference were the best predictors of both 𝜃 and 𝛼. 
The R-square was 16% in the model of  𝜃 and 10% in 
the model of 𝛼.  

Table 1 shows the relative bias and RMSE of the 
new method. The new method was comparable with that of Kansanen (2016) with respect to bias, but 
slightly worse in terms of RMSE. Figure 1 shows the plot-specific estimates of different methods against 
the true stand density.  

The presented results are only tentative. For example, a leave-one-out cross-validation should be 
implemented to confirm the findings. In addition, the applied correction method uses either 𝜃 or 𝛼 in 
estimation, but also a method that utilizes both of them is possible and of interest. Furthermore,  instead 
of the MLE of 𝜃 in step 4, an estimate based on similar N-matching could be used as we used for 𝛼. 
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Method bias, % RMSE, % 
uncorrected -35 48.8 
Mehtatalo 57 80.9 
Kansanen -3.5 20.0 
New 3.5 22.5 

Figure 1. The estimated stand density using 
the four applied methods against field 
measurement 

Table 1. The relative bias and RMSE of the four 
applied methods.  
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1. Introduction

Trees adapt to their growing conditions by regulating size of their parts and their relationships. For 

example, removal or death of adjacent trees increases the amount of light to the remaining trees and 
their crown can expand. Trees of different species require differing amount of growing space; for 

example, Scots pine (Pinus sylvestris L.) is more demanding for space than Norway spruce (Picea abies 

(H. Karst) L.) (Aaltonen 1925). 

In dense forests, lower branches die due to the limited amount of light (Heikinheimo 1953, Flower-
Ellis et al. 1976, Kellomäki 1980). Live-crown ratio (proportion of live crown from tree height) is used 

in assessing vitality of trees. Removal or death of trees enhances the light regime and photosynthesis for 

the remaining trees, and this is particularly evident in near the lowest limit of live crown where changes 
in the amount of light increases considerably more compared to the top of a tree. 

There is also a relationship between tree size and growing conditions that can be assessed through 

the light regime. Removal or death of trees increases the light for various parts of and below crown of 
remaining trees. According to Oker-Blom & Kellomäki (1982), self-shading is greater for large trees 

compared to medium or small trees. 

Thinning is aimed at improving growing conditions of remaining trees and maximize their economic 

value. Thinning decreases the shadowing leaf mass, increases the amount of light, and thus enhances 
the growth of the remaining trees (White 1980). Thinning intensity affects the number of removed trees, 

whereas thinning type defines what kind of trees are removed, and thus left to grow. Intermediate and 

suppressed as well as overgrown trees are removed with thinning from below, whereas dominant and 
overgrown trees are removed with thinning from below. 

Although, forest growth and yield research have a long history in studying effects of forest 

management, measuring tree crown has mainly been limited to live-crown proportion that can easily be 

measured together with tree height. Terrestrial laser scanning (TLS) offers a means for characterizing 
individual trees with a detail (Calders et al. 2020, Liang et al. 2018). 

Thus, the aim of the study was to investigate how crown size and shape of individual Scots pine trees 

generated from TLS data differed between thinning intensity and type. Furthermore, we studied how 
thinning affected crown size and shape of dominant trees (i.e., the 100 thickest trees per hectare) only. 

2. Data and Methods

2.1 Study area and data acquisition 

The study area is located in southern boreal forest zone in Finland and consists of three study sites with 
relatively flat terrain (elevation above sea level ~137 m±17 m) in mesic heath forest dominated by Scots 

pine. The study sites were established in 2005 and 2006 when nine rectangular sample plots (sized 1000-

1200 m2) were placed on each study site (27 plots in total). At the same time, first in situ measurements 

were carried out and the plots were also thinned according to the experimental study design that included 
two levels of thinning intensity (i.e., moderate and intensive) and three thinning types (i.e., from below, 
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from above, and systematic) resulting in six different thinning treatments: moderate thinning from below 

(3 plots), moderate thinning from above (4 plots), moderate systematic thinning (5 plots), intensive 

thinning from below (3 plots), intensive thinning from above (5 plots), and intensive systematic thinning 
(5 plots). 

One plot at each study site was left as a control plot where no thinning has been carried out since the 

establishment of the sites. Suppressed and co-dominant trees were removed with thinning from below, 
whereas dominant trees were mainly removed with thinning from above. Additionally, unsound and 

damaged trees (e.g., crooked, forked) were removed. With intensive thinning, the remaining basal area 

was ~50% lower compared to moderate thinning. Stem density per hectare varied between 1160 and 
1390 before thinning and between 290 and 1030 after thinning (see more information on plot structure 

before and after thinning in Saarinen et al. 2020). 

TLS data acquisition was carried out with Trimble TX5 3D laser scanner between September and 

October 2018. Eights scans were acquired from each plot, and they were co-registered into a single, 
aligned coordinate system with mean distance error of 2.9±1.2 mm (more description in Saarinen et al. 

2020). 

Points originated from a crown of individual Scots pine trees with diameter at breast height varying 
between 7.6 cm and 36.4 cm were identified by utilizing a fully automatic method developed by 

Yrttimaa et al. (2019, 2020). The methodology includes point cloud normalization, tree segmentation, 

and point cloud classification. Points representing planar, vertical, and cylindrical surfaces were 
assumed to have originated from stem and rest of the tree-level points were classified as crown points. 

Table 1. Crown attributes. 
Attribute Definition/calculation 

Crown volume Volume of the 3D convex hull 

Surface area Surface area of the 3D convex hull 

Maximum diameter 
Crown points were divided in height percentiles (i.e., slices) of 10% starting from 

the lowest part and their diameter was calculated using 2D convex hull -> maximum 

Projection area Area of the maximum crown diameter 

Live crown base height Height of the maximum crown diameter; Defined from the crown slices 

Mean diameter Mean diameter of the crown slices 

Live-crown ratio 
Proportion of live crown (i.e., length between live crown base height and tree height) 
from the tree height 

2.2 Crown attributes and statistical analyses 

Attributes characterizing tree crowns were generated from the classified point originated from individual 

tree crown. A 3D convex hull was fitted to envelope the crown points of each tree of which crown 

volume and surface area were derived (Table 1). Crown points were divided in slices based on height 

by utilizing 10% percentiles and a 2D convex hull was fitted to all these slices to obtain maximum and 
mean crown diameter. Crown projection area was defined at the height of the maximum crown diameter. 

Similarly, the height of the maximum crown diameter was defined as the live crown base height, which 

was used, together with tree height, to define live-crown ratio.  
A nested- two-level linear mixed-effects model was utilized to find possible statistically significant 

differences in crown attributes between different thinning treatments (including the control plots). The 

analyses were carried out with i) all Scots pines within the sample plots (n=1919), and ii) with dominant 

trees only (n=290). Dominant trees from each sample plot were defined based on their diameter at breast 
height, in other words the trees representing the 100 thickest trees per hectare that would have been used 

for calculating top height.  

3. Results and Discussion

When all Scots pine trees were considered, crown volume, projection area, maximum and mean 
diameter, live-crown ratio, and diameter at 10-80 crown height percentiles were statistically 

significantly larger (p<0.05) due to intensive thinning from below compared with moderate thinning 

from below. Between moderate and intensive thinning from above, live crown base height, live-crown 
ratio, and diameter at 10-30 crown height percentiles increased significantly (p < 0.05). Crown volume, 

surface area, projection area, and maximum diameter increased when thinning from below was 
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compared with other thinning types, however, there was statistically significant difference (p<0.05) only 

within intensive thinnings. 

When only dominant trees were included in the analyses, crown volume, projection area, maximum 
diameter, and diameter of 10-70 crown height percentiles increased statistically significantly (p<0.05) 

between moderate and intensive thinning from below. With thinning from above, only diameter of 10-

20 crown percentile heights of the dominant trees increased statistically significantly between moderate 
and intensive thinning. Similarly to all Scots pine trees, crown volume and surface area of dominant 

trees were statistically significantly larger between thinning from below and other thinning types, but 

only within intensive thinnings.  
The crown attributes generated here from TLS have been challenging to obtain with traditional 

means. Here, diameter of crown height percentiles, for example, that characterize crown shape has not 

been possible to measure before the utilizations of TLS. Only maximum diameter has been measured, 

when needed, with a measuring tape on the ground underneath a tree crown. Thus, it is challenging to 
assess the accuracy of the presented crown attributes based on TLS. 

There are no studies on the effects of thinning on conifers but there is an increasing body of 

literature studying European beech (Fagus sylvestris) trees. Juchheim et al. (2017), for example, found 
that increasing thinning intensity increased crown surface area and crown length. 

This study contributed to understanding how Scots pine trees adapt to their increased growing space 

due to management activities by investigating their crown shape and size. 

4. Conclusions

Thinning intensity increased crown shape and size of individual Scots pine trees, whereas thinning 

type mainly increased crown size. The results were similar when the largest trees by their diameter at 

breast height (i.e., dominant trees) were considered. Thus, it can be concluded that thinning intensity 

increased both crown shape and size of Scots pine trees of different sizes. 
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1. Introduction
Coastal seascapes (seagrasses, mangroves, coral reefs, tidal flats) support the livelihoods of 
over 3 billion people in 100+ countries and billions in revenue; offer protection from extreme 
weather events; provide 25% of the oceanic carbon pool and support 25% of global 
biodiversity. Despite this, the extent of coastal benthic ecosystems, such as seagrasses, are 
poorly quantified (Macreadie et al. 2019). The is particularly pertinent in tropical and developing 
nations and so called “Big Ocean States” (or Small Island Nations) which do not have the 
financial capacity to conduct extensive bathymetric surveys but depend upon coastal resources, 
to sustain their economies (Burke et al. 2001). Furthermore, the distribution of mangrove forest 
height is well known, but is derived from often static and outdated elevation data, particularly 
at the global level. With the increased availability of global elevation data (eg. TanDEM-X) 
ICESat-2 lidar data provides a means for measuring and calibrating estimates of canopy height. 

2. Methods
Our aim was to evaluate the ability of ICESat-2 to characterize ecosystem structure in coastal 
environments. We used ICESat-2 to retrieve estimates of i) mangrove forest canopy height and 
aboveground structure and ii) bathymetry in shallow water environments. This utilized currently 
available ICESat-2 ATL08 and ATL03 data.  

2.1 Coastal Forest Structure 
We used existing accurate elevation datasets to assess the performance of ICESat-2 to estimate 
mangrove canopy height. Specifically, in Everglades National Park, Florida, 5 m  NASA GLiHT CHMs 
and DTMs were compared against ICESat-2 ATL08 canopy height and terrain heigh, respectively. 
GLiHT height was extracted for each ICESat-2 ATL08 segment, as well as dominant mangrove type 
using an existing species map. Regression analysis was used to measure the agreement between the two 
height estimates. Furthermore, species data was used to assess the impact of variable mangrove structure 
on the accuracy of the canopy and ground height estimations. 

2.2 Benthic Surface Retrieval 
ICESat-2 ATL03 geolocated photon data were used to target sub-aquatic surfaces and were used to train 
3 Sentinel-2 SDB models in the Google Earth engine cloud computing environment. The models of 
Stumpf et al. (2003) (CBS), Lyzenga et al. (2006) (CBL) and a Support Vector Machine (SVM) were 
trialed in Bermuda, Biscayne Bay in Florida and Gulf of Chania in Crete.  Sentinel-2 composites were 
generated, using the 20th percentile of the composite data cube to remove effects, such as glint and 
waves. Sub-aquatic surface depths were calibrated following Parrish et al. (2019) to account for the 
refraction of the photons at the water surface.  
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To validate these depth estimates we used a locally sourced NOAA bathymetric DEM, single 
beam sonar (SBS) data and independent ICESat-2 depths, dependent on availability at each location. 
The use of independent ICESat-2 data was used to demonstrate a wholly spaceborne approach for 
mapping nearshore coastal bathymetry.  

3. Results
3.1. Coastal Forest Structure 
We measured a strong agreement (r2:0.94; Figure 1) between ICESat-2 ATL08 and GLiHT canopy 
height at everglades National Park, Florida. Mangrove trees were correctly characterized as taller 
mangrove types than scrub and shrub type mangroves. Less agreement was found between terrain height 
estimates, with mangrove types with increased aboveground structural complexity driving this 
disagreement. 

Figure 1. Left: Strong agreement between ICESat-2 ATL08 and NASA GLiHT CHMs, with 
forest type mangroves proving to be taller than shrub and scrub types. Right: Disagreement 
between ICESat-2 and GLiHT terrain heights, with mangrove forest types driving greater 
uncertainty. 

3.1. Benthic Surface Retrieval 
ICESat-2 ATL03 geolocated photon data was successfully used to train 3 Sentinel-2 SDB models at 
each of the study site locations, improving the spatial resolution (10 m) and detail over openly existing 
available data (Figure 2). The CBL method produced the most reliable SDB estimates at all sites. RMSE 
values of 2.62 m, 0.83 m, and 2.19 m, and MAE of 2 m, 0.65 m, and 2.02 m were calculated for Bermuda, 
Biscayne Bay, and Crete, respectively. The RMSEs of the CBL were approximately 10% of the 
maximum depth for the Bermuda (26 m) and Crete (22 m) models, but 17% for the Biscayne Bay model 
where the maximum depth was much lower (5 m). The R2 of the models for Bermuda, Biscayne Bay, 
and Crete were 0.68, 0.79, and 0.83, respectively. The reference and the modeled depths of Bermuda 
were in good agreement between the depths of 11-17 m, whereas for the shallower Biscayne Bay it was 
between the depths of 1.2-3 m.  

3.1. Discussion and Conclusion 
In this study, we have demonstrated that ICEsat-2 is able to accurately characterize mangrove forest 
canopy height in a mixed species mangrove forest in Florida, validating its wider use in studies of 
mangrove structure and its potential use in biomass estimation. However, terrain height was found to be 
more variable, with mangrove type driving increased disagreement between the two measurements. This 
is interpreted to be due to the increased sub-canopy complexity of taller mangrove trees which may lead 
to false ground detections. 

We also demonstrate the unique fusion of openly available ICESat-2 and Sentinel-2 data for 
retrieving openly available shallow water bathymetry DEMs, from coastline to island nation scales. We 
developed adaptive bathymetry estimation methods derived solely from space-borne observations over 
coastal waters in Bermuda, Biscayne Bay, and Crete at high-resolution and with low error. The high 
resolution of Sentinel-2 and ICESat-2 data allows us to map benthic variability in detail, improving upon 
freely available bathymetry maps. Our demonstrated method could enable the development of a global 
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map of coastal submerged ecosystems, which continues to be a critical need of the Blue Economy 
community. This would be the foundation of global habitat accounting for currently poorly mapped sub-
aquatic ecosystems as seabed morphology is a usual and helpful parameter in aiding underwater coastal 
habitat monitoring.  

Figure 2. (a, b, c) Sentinel-2 RGB synthesis. (a) Bermuda: 53 L2A Surface Reflectance tiles, 597 km2

(March 28, 2017 – April 20, 2020); (b) Biscayne Bay: 583 L1C Top-Of-Atmosphere tiles, 689 km2

(January 1, 2015 – December 31,2019); (c) Crete: L1C 403L1C Top-Of-Atmosphere, 61 km2 (January
1, 2015 – December 31,2019). (d, e, f) CBL Bathymetry SDB at Bermuda, Biscayne Bay and Crete. (g, 
h, i) NOAA DEM at Bermuda and Biscayne Bay and EMODnet at Crete, j, k, l) SDB-ICESat-2 depth 
comparison at Bermuda, Biscayne Bay and Crete.  
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1. Introduction

Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) collect 3D point cloud data that 

have been related to destructive harvest plot measures of surface fuel densities using regression models 

(Hudak et al. 2016, Rowell et al. 2020). Higher resolution makes TLS data well suited for characterizing 

surface fuel components at plot scale, whereas synoptic coverage makes ALS data well suited for surface 

fuel density mapping at landscape scale. We tested a two-tiered modelling approach, where surface fuel 

density was estimated with TLS metrics in large plots; these estimates were in turn used to train a second 

model to map fuel density from ALS metrics across an ~1000 ha area in the 102,716 ha Blackwater 

River State Forest (BRSF) in the Florida panhandle, USA. There, 362 ha was burned on 30 August 2019, 

in coordination with the NOAA/NASA Fire Influence on Regional to Global Environments and Air 

Quality (FIREX-AQ) campaign to measure smoke emissions from a DC-8 aircraft that flew multiple 

transects through the smoke plume. Our larger goal for this paper and in support of FIREX-AQ was to 

accurately characterize fuels on the ground, to help constrain the two largest sources of uncertainty in 

emissions estimates:  fuel load and fuel consumption. This analysis focused on fuel load. 

2. Methods

TLS data was collected across six large plots ranging in size from 39-351.5 m2 that were comprised 

primarily of three surface fuel components: shrubs, wiregrass, and litter. Bulk densities of these 

components were measured in 3D destructive harvest plots, following the methods of Hawley et al. 

(2018). These component fuel density estimates were used as the response variables to predict fuel 

densities from height, surface area, volume, and porosity metrics derived from TLS, following Rowell 

et al. (2020). In turn, these TLS estimates were used as the response variables to predict component fuel 

densities from ALS-derived canopy height and density metrics, per Hudak et al. (2016). The predictive 

ALS models were subsequently applied to the same selected ALS metrics to generate surface fuel 

density maps of each fuel component. The mapped surface fuel estimates were subsequently adjusted 

upwards in proportion to overstory canopy cover to correct for overstory occlusion of the ALS signal 

(Hudak et al. 2016). Multiple linear regression was used for all models, and only two variables were 

selected per model due to the small sample size of only six plots. Total fuel densities were calculated as 

the sum of the shrub, grass, and litter fuel density estimates at all three levels (i.e., field measures, TLS 

estimates, and ALS estimates). 

3. Results and Discussion

TLS and ALS metrics selected as predictors in the models are shown in Table 1. Although not all 

predictors were significant, the models predicting shrub, grass, and litter fuel densities were all 
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significant, for both TLS (Figure 1) and ALS (Figure 2). Based on the relatively low RMSE for the 

models at each step, the two-tiered approach appears to have worked well for mapping densities of 

surface fuel components at the BRSF burn, despite having only six sample plots. We believe that the 

large size of the six training plots was highly conducive to both TLS and ALS characterization, as 

evidenced by the high Adj. R2 statistics (Figure 2). 

Table 1. Linear regression models predicting shrub, grass, and litter fuel density (g/m3) from A) TLS 

and B) ALS metrics. Models were limited to two predictors given that there were only six field plots. 
Sensor Fuel 

Component 
Selected Metric Estimate Std. Error t value Pr(>|t|) Significance 

A) TLS 

Shrub 

(Intercept) 20.8800 6.7640 3.087 0.00314 ** 

Surface area sum 1.04E-05 3.02E-06 3.456 0.00105 ** 

Porosity mean -21.0300 6.8290 -3.079 0.00321 ** 

Grass 

(Intercept) -5.9570 5.0890 -1.171 0.2523 

Surface area sum 5.73E-06 1.22E-05 0.472 0.6411 

Vertical plant area density 0.3183 0.1170 2.72 0.0115 * 

Litter 
(Intercept) 11.7570 57.7820 0.203 0.842 

Porosity standard deviation  365.0640 205.9290 1.773 0.102 

Horizontal plant area density 2.9720 2.1390 1.389 0.19 

B) ALS
Shrub 

(Intercept) 127.2032 21.7838 5.839 0.01001 * 

Understory height 90th percentile -164.5434 27.7899 -5.921 0.00962 ** 

Understory density, 0-15 cm 1.5737 0.5817 2.705 0.07344 . 
Grass 

(Intercept) 200.1723 6.1741 32.421 6.45E-05 *** 

Understory density, 15-50 cm -5.7682 0.3455 -16.695 0.000468 *** 

Canopy skewness -10.4343 1.1893 -8.773 0.003119 ** 

Litter 
(Intercept) 440.8075 17.3401 25.421 0.000133 *** 

Understory density, 15-50 cm -7.8391 1.1797 -6.645 0.006945 ** 

Canopy density, 0-15 cm -1.9054 0.9672 -1.97 0.143444 

Figure 1: Linear regression models predicting destructive harvest plot measurements of a) shrub, 

b) grass, and c) litter fuel density (g/m3) from two TLS metrics (Table 1a), and d) total surface

fuel density, calculated as the sum of the shrub, grass, and litter components. Plot symbols in a) 

and b) legends indicate the midpoints of 10 cm interval height strata above the ground. 
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4. Conclusion and Ongoing Work

These ALS-derived surface fuel density maps, trained with TLS data that serves to bridge the scaling 

gap between ALS and locally collected destructive harvest plot datasets, provide more refined estimates 

of surface fuel component densities than can be estimated by any other current method. We are currently 

validating these maps with independent estimates of fuel loads and consumption collected pre- and post-

fire at 25 paired sample plots within the burn area. These data will be used to assess biases and constrain 

the uncertainties in estimating smoke emissions measured with instruments on board the DC-8. Lessons 

learned at this BRSF burn, which was well characterized from both a fuels and emissions standpoint, 

will help guide analyses on other FIREX-AQ fires sampled in 2019. 
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1. Introduction

Planning of forest management operations in boreal forests requires assessment of the biodiversity 

potential of the forest stands to determine if they can be harvested or should be set aside due to high 

conservation values, and to identify patches with high conservation values for retention of biodiversity. 

The latter includes the preservation of deadwood and trees with high conservation values, often of 

uncommon species (Gustafsson et al. 2020). There is currently no way to acquire this information 

automatically and objectively for large areas. 

Information relevant for habitat studies that can be derived from airborne laser scanning (ALS) data 

includes canopy openness and foliage height diversity as well as the height and species of individual 

trees (Müller and Vierling 2014). Dense ALS data have the potential to provide information about 

structures in the forest relevant for biodiversity such as standing and downed deadwood and trees with 

high conservation values (i.e., biodiversity indicators). The full 3D representation of the forest from 

laser scanning data provides insights into ecologically relevant features of the forest (Onojeghuo and 

Onojeghuo 2017).  

The amount of deadwood is important for the maintenance of biodiversity since hundreds of 

Fennoscandian forest-dwelling species depend on deadwood (ArtDatabanken 2020). Deadwood has 

been the focus of many studies of retention forestry (Gustafsson et al. 2020). Downed deadwood has 

been detected from ALS data with 3D reconstruction methods (Lindberg et al. 2013; Mücke et al. 2013) 

as well as with statistical methods based on the canopy structure (Tanhuanpaa et al. 2015). 

This study presents a new method to detect downed deadwood from dense ALS data. The results 

from the method are compared with biodiversity indicators that have been assessed in the field. The 

method for detecting dead wood is planned to be a part of a processing chain to estimate the amount of 

structures relevant for biodiversity that can be used for creating maps of biodiversity indicators for laser-

scanned forest stands to determine if a forest stand should be harvested or set aside for conservation and 

to guide retention in the forest stand in connection to forest management operations. 

2. Data and Methods

2.1 Data 

The study area Siljansfors is located in mid-Sweden (Lat. 60.9° N, Long. 14.3° E). Most of the area is 

covered with managed hemi-boreal forest. The most common tree species are Scots pine (Pinus 

sylvestris), Norway spruce (Picea abies), and birch (Betula spp.). 

During the summer of 2019, a field inventory was done to assess the forest biodiversity potential in 

19 forest stands in the study area. The inventory was done in 1 ha field plots according to the 

methodology developed by Skogsbiologerna AB (Drakenberg and Lindhe 2001). The assessment is 

based on a field form with eighty questions in different categories: site, dynamics, habitats, trees, 

structure and deadwood. The scores from the questions are then combined into site score and stand score, 

and the total biodiversity potential score is calculated as the sum of them for each field plot. 

ALS data were collected on June 28, 2019, with a Riegl VQ 1560i-DW (Riegl, 2020) scanner at 800 

m above the ground. The scanner records two channels (CH): CH1 with 532 nm (Green) and CH2 with 

1064 nm (near infrared (NIR)). The average density of first returns was 26.5 m-2.  

2.2 Methods 

Downed deadwood trunks were detected using a template matching algorithm. The steps were as 

follows. 
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Step 1. Rasterization. Point clouds were sliced into [0.2, 0.5], [0.4 – 0.7], [0.6 – 0.9] and [0.2 – 1.0] 

m height intervals, and rasterized with 0.25 m resolution.  

Step 2. Creation of templates. Linear filters with 0.25 m resolution were designed with 6 m length 

and 0.25 m or 0.50 m width. The filters have 0 – π horizontal angle with 0.01 π intervals (Denoted as 

directions of templates, examples in Figure 1). 

Figure 1. Examples of the linear filters (templates). The templates have 0.25 m width (first line) and 

0.50 m width (second line). The pixel values are 1, -1, and 0 for the white, black, and grey pixels. 

Step 3. Template matching. The rasters of the sliced point clouds were convoluted using the 

templates. After the convolution, all the pixels with values larger than Th were marked as potential 

positions (denoted as Set A) of the deadwood, and the directions of the templates were recorded for the 

next step (Set A {(x, y, α)}, where x and y were the relative coordination and α was the direction of the 

templates which resulted in a convoluted pixel value larger than Th). Th was set to 0.4 times the length 

× width (24 × 1 or 2 pixel) of the templates.  

Step 4. Determination of the deadwood positions. After Step 3, Set A included the positions from 

the downed deadwood (denoted as Set A1), and other linear objects on the ground such as bushes (Set 

A2). We observed that Set A1 usually contained positions with the same x and y and similar α, while Set 

A2 usually contained isolated positions. We set a standard to separate Set A2 from Set A1, e.g. the 

isolated positions within 1 m radius circular range with α differences no larger than 0.02 π. Then we 

merged elements in Set A1 which belong to the same deadwood trunk. We used the Mean Shift 

Clustering algorithm on Set A1, which clustered the elements with similar x, y, and α. The average x, y 

of each cluster were determined as the positions of the deadwood. 

(a) (b) (c) (d) (e) (f) 

Figure 2. Process of detecting downed dead wood. (a - d) Detection from rasters of [0.2, 0.5], [0.4 – 

0.7], [0.6 – 0.9] and [0.2 – 1.0] height intervals. (e) The potential positions from all rasters (Set A). (f) 

Final positions of the dead wood. 

3. Results and discussions

Among the 19 plots, 228 deadwood trunks were recorded from the field measurement, with 219 trunks 

detected by the algorithm. The detection yielded 1.55 RMSE (12.9%) on estimating the number of 

deadwood trunks, with underestimation for the plots with large numbers of deadwood trunks (Figure 

(a)).  

The number of deadwood trunks was used to classify plots with high and low conservation values. 

Based on the field observation, a threshold of 8 trunks was used for the classification, e.g. plots with ≥ 

8 deadwood trunks were classified as high conservation value plots (CV ≥ 15), and plots with < 8 

deadwood trunks were classified as low conservation value plots (CV < 15). Based on the criteria, six 

out of 19 plots in the study area have high conservation value. By using the detected number of 

deadwood trunks from laser data, seven plots were classified as high conservation value. The overall 

classification accuracy was 0.89 (Table 1), and the Kappa coefficient was 0.78. 
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(a) (b) (c) 

Figure 3. (a) Inventoried and detected number of deadwood trunks. (b) Detected number of deadwood 

trunks from each plot and the CVs. (c) Inventoried number of deadwood trunks from each plot and the 

CVs 

Table 1. The classification accuracy of estimation of the conservation values. 

Actual class User’s 

accuracy Low CV (<15) High CV (≥15) Total 

Predicted 

class 

Low CV (<15) 11 0 11 1.00 

High CV (≥15) 2 6 8 0.75 

Total 13 6 Overall accuracy 

0.89 Producer’s accuracy 0.85 1.00 

4. Conclusions

This study used a template matching method to detect downed dead wood from ALS data. It obtained a 

1.55 RMSE (12.9%) on estimating the number of deadwood trunks for each plot. The results illustrated 

the potential of ALS data for deadwood recognition. The number of deadwood trunks was used as a 

feature to classify forest stands with high and low conservation values, with 0.94 overall classification 

accuracy and 0.88 kappa coefficient. We conclude that the amount of deadwood is a crucial indicator of 

habitat quality in boreal forests, and ALS data is an efficient tool to estimate the conservation value. The 

proposed method could be used to map the forest conservation value in large areas in the future. 
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1. Introduction

Forest edges represent approximately 20% of the global forested area, and the total area of 
forest edges continues to increase due to forest fragmentation (Haddad et al., 2015). Forest 
edges have different communities than forest interiors and provide suitable habitats for a variety 
of animals (Honnay et al., 2002). Forest edges and the forest core are structurally different, yet 
there is relatively limited description of forest edge structural variation and its drivers, 
especially at large spatial scales (Meeussen et al., 2020). Quantifying structural variation using 
traditional inventory techniques, such as measuring the variation of tree height and canopy 
cover, are laborious, time consuming and hard to scale up to larger areas. Meeussen et al. (2020) 
used terrestrial laser scanning (TLS) to study structural variation of forest edges across Europe, 
this was the first study on forest edge structure at the continental scale. Representative sampling 
of forest edges across forest types and regions using TLS alone remains a challenge, therefore 
extending the sampling of forest edge types and locations could improve our knowledge on 
forest edge structure. NASA’s Global Ecosystem Dynamics Investigation (GEDI) is designed 
for the measurement of forest structure and has the potential to address this challenge (e.g., 
Spracklen, B., 2021). GEDI produces high resolution laser ranging observations of the vertical 
structure of the Earth tropical and temperate forests, with elevation and height metrics available 
from the GEDI L2A data product and canopy cover and vertical profile metrics from the GEDI 
L2B data product (Dubayah et al., 2020).  

2. Objectives

In this work, we investigate structural variation of forest edges in different regions of Europe, 
determining whether this variation is related to different regions and how structure changes 
from the forest edge to the forest core. We use 60 edge-to-core transects that are distributed 
across 9 different countries and regions in Europe. They were designed along latitudinal, 
elevational and management gradients across Europe and TLS data was collected in each 
transect in 2018. We used a RIEGL VZ-400 instrument (see Figure 1 for a cross-section through 
two transects). In these 60 transects, 36 of them are covered by GEDI. We calculated GEDI-
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related structural metrics such as plant area index (PAI), fraction of vegetation cover (FVC) 
and foliage height diversity (FHD). We will subsequently use our detailed TLS data to validate 
equivalent metrics derived from GEDI data. Our results will show the potential of exploring 
the structural variation of forest edges from space, and highlights the potential of monitoring 
structural diversity gradients at a continental scale. 

Figure 1: Cross section through the TLS data of two edge-to-core transects (approx. 100 m) 
in Belgium. The top transect illustrates a more open forest, the bottom transect represents a 
rather dense forest. 
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1. Introduction

The preservation and protection as well as the improvement of the environment are stated as essential 

objectives of general interest. This includes the conservation of natural habitats of wild fauna and flora 

(European Commission 1992). The European Union’s Habitats Directive (HD) and the Natura 2000 

network provide a framework for classification and monitoring of different habitat types (Requena-

Mullor et al. 2018). By date, these HD classifications are mainly expert-based investigations in the field. 

Within the presented study, a data-driven approach based on airborne laser scanning (ALS) data for HD 

classification in forest landscapes is tested. The aim is to reproduce the latest available HD classification 

for two study sites in the municipality of Vienna using supervised classification. Habitat types are 

basically defined by the occurring vegetation, terrain and soil characteristics. Previous studies show the 

potential of airborne ALS data for deriving forest structure (Hollaus et al. 2006, Lindberg et al. 2012) 

and species classification (Hollaus et al. 2009, Koenig and Höfle 2016). Furthermore, the suitability of 

ALS data for detailed terrain modelling, in particular in forested areas, is shown by Kraus and Pfeifer 

(1998). ALS data for different approaches of habitat classification or biodiversity monitoring are used 

e.g. in Räsänen et al. (2014), Coops et al. (2016) and Guo et al. (2017). For the HD classification, 

different features describing terrain, location and vegetation structure are derived from ALS point cloud 

data and rasterized to a 1 m grid. The features are examined with regard to their discriminant power for 

different HD classes and usability for random forest classification on 1 m pixel scale. 

2. Data and Methods

2.1 Habitats Directive Classification 

The HD classification scheme differentiates nine major habitat groups with a total of 229 habitat types 

(European Commission 2006). Within the two study sites, 22 different habitat out of five major habitat 

groups occur. The mapping of the HD classification of the green areas within the municipality of Vienna 

is provided as open data (Stadt Wien – https://data.wien.gv.at, 2020). After excluding ten habitat types 

due to low incidence, twelve habitat types out of three major habitat groups (freshwater habitats, natural 

and semi-natural grassland formations and forests) are considered. For this study, the habitat types were 

further limited to forests. Table 1 shows a summary and description of the considered habitat types.  

2.2 Study Sites 

Two different areas representing the two main green landscapes in Vienna are chosen for investigation: 

(A) hilly, primary forested areas in the west of Vienna and (B) river meadows and riparian forests along 

the Danube River. Study site A, located in the Vienna Woods and part of the Wienerwald Biosphere 

Reserve, covers 21.8 km². The altitude of study site A varies between 214 m and 515 m a.s.l., is hilly 

and cut by three major valleys. Study site B is located in the southeast of Vienna, along the riparian 

forests of the Danube River. The 10.3 km² of study site B cover the Viennese part of the Donau-Auen 

National Park. The mainly flat area stretches from 147 m to 163 m a.s.l. and shows incidences of a 

former dominant and now partly regulated braided river system and a floodplain landscape. The detailed 

distribution of the habitat types within the two study sites is shown in Table 1. 
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2.3 ALS data and feature extraction 

The ALS data for the whole municipality of Vienna was acquired between November 9th and November 

24th 2015 under leaf-off conditions. Two different sensors providing full waveform analysis were used: 

a Riegl LMS-Q680i and a Riegl LMS-Q560 (RIEGL Laser Measurement Systems, Horn, Austria). The 

acquisition resulted in a point density of > 16 echoes/m² for 97% of the whole city area. 

The ALS features derived from the point cloud are grouped in terrain features, structure features, 

insolation features and full waveform features. In total, 22 features were derived on a 1 m grid. 

2.4 Exploratory statistics and classification 

Primarily, the distributions of the feature values grouped by the different habitat types were analysed 

for each study site. For the assessment of the feature performance for classification, a random forest 

model with recursive feature elimination was trained and a 10 fold spatial cross validation (CV) was 

performed to classify the whole study areas.  

3. Results and Discussion

Chosen distributions of the feature values amongst the different habitat types are shown in Figure 1. 

Exemplarily, the horizontal distance to the closest water surface shows clear differences between some 

forest groups. The median TWI shows varies between the classes 9170 and 9180, which show similar 

distributions most other features. The first visual interpretation indicates potential of the derived features 

for classification of the different forest habitat types. The leave-off condition of the data acquisition 

limits the direct species determination of the trees to examination of the branch structures. Leave-on 

data could add valuable information about crown and canopy. Random forest classification with a 

mapping unit of 1 m² using samples of max. 2500 pixels per HD type and recursive feature selection 

results in OOB errors of 19.5% (study site A) and 16.7% (study site B). The overall accuracies 

determined by the predictions of the 10 fold spatial CV are 66% (study site A) and 80% (study site B).  

4. Conclusion and Outlook

The current study shows that features derived from ALS point cloud data have high potential for 

classification of different habitat types of the European Union’s Habitats Directive in forest landscapes. 

Chosen features, like horizontal distance to closest water surface, are useful for classification of different 

forest habitat types. Integration of further data sets with high temporal resolution for identification of 

phenological characteristics as well as sprectral information (Sentinel-1 and Sentinel-2) and point clouds 

from image matching are subject of ongoing investigations. 
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Figure 1. Boxplots of the distribution of chosen features of different HD types (Natura 2000 Code, 

see Table 1) for both study sites A and B. 

Table 1. HD types occurring in the study sites within the municipality of Vienna, according to 

European Commission (2006). The sign * prior to the name indicates priority habitat types. 

Habitat 

group 

NATURA 

2000 Code 

Covering 

study site 
Description 

Forests 

9110 A (1%) Luzulo-Fagetum beech forests 

9130 A (31.3%) Asperulo-Fagetum beech forests 

9170 A (62.7%) Galio-Carpinetum oak-hornbeam forests 

9180 A (0.8%) * Tilio-Acerion forests of slopes, screes and ravines 

91E0 
A (2.4%) 

B (10%) 

* Alluvial forests with Alnus glutinosa and Fraxinus excelsior

(Alno-Padion, Alnion incanae, Salicion albae) 

91F0 B (90%) 

Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus 

minor, Fraxinus excelsior or Fraxinus angustifolia, along the great 

rivers (Ulmenion minoris) 

91G0 A (1.8%) *Pannonic woods with Quercus petraea and Carpinus betulus 
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Figure 1: Boxplots of the distribution of chosen features of different HD types (Natura 2000 Code, see 

Table 1) for both study sites A and B and in combination. 
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1. Introduction
National Forest Inventories (NFIs) play an important role in understanding the state of forests at the 
national and regional levels. Forest inventory for small territorial areas, such as municipalities, is also 
important for decision-makers. However, information is relatively limited at this level. As a result, 
developing small area estimation (SAE) approaches has gained increasing popularity in the field of 
forest inventory. It enables prediction of forest attributes for sub-populations using regression models 
based on auxiliary data commonly derived from remote sensing techniques over an area of interest (AOI). 
It has been reported that SAE can improve the precision of forest inventory without increasing costs 
(Mandallaz, Breschan and Hill 2013) and may produce reliable predictions of forest attributes locally, 
even when field plots are not available (Rao 2014).  

Tomppo (2006) is a pioneer in the use of auxiliary data for multi-source forest inventory. Previously, 
common sources of auxiliary data often came from satellite-based imagery (McRoberts et al. 2007), 
digital aerial photogrammetry (Breidenbach et al. 2018), and airborne laser scanning (Magnussen et al. 
2014). NASA’s newly-launched Global Ecosystem Dynamics Investigation (GEDI) is a full waveform 
LiDAR instrument aboard the International Space Station (ISS). Its products consist of footprint 
measurements projected to cover 4% of the global land surface by the end of its mission (Dubayah et al. 
2020). This will provide an unprecedented opportunity to systematically collect samples of forest 
information that can be used in SAE on a large scale. 

The objective of this study is to explore the possibility of using GEDI auxiliary data to improve the 
accuracy of forest inventory for a large natural area in central France (Sologne), as well as for smaller 
sub-areas defined by French administrative boundaries (departments). The results will then be compared 
against estimates obtained from simple random sampling (SRS), to assess the efficiency of the auxiliary 
data.  

2. Data and Methods

2.1 Study Area 
Our study is based in Sologne, central France, which covers an area of approximately 6000km2. The 
topography is mostly flat, with most elevations within the range of 110–250m, except the south-eastern 
part, where undulating terrain reaches 400m. Forests cover approximately 48% of the area and are 
dominated by pure broadleaved species (75.3%). Conifer and mixed stands account for 15.5% and 9.2% 
of the forest areas respectively. The climate is temperate Atlantic, with mean annual temperature and 
precipitation of 11°C and 725mm.  

2.2 NFI Data 
For the study area, 902 permanent NFI plots, surveyed between 2015 and 2019, were available. This 
five-year timeframe is routinely used in official French NFI statistics. Each plot contains detailed 
inventory information, including density (trees/ha), quadratic mean diameter (cm), basal area (m2/ha), 
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dominant height (m), and volume (m3/ha). However, this paper focuses solely on the aspect of forest 
volume estimations. Details of inventory schemes and methods can be found in Hervé et al. (2014).  

2.3 Auxiliary Data Sources and Processing 
GEDI Level 2A products, acquired between 2019-04-22 and 2020-04-14, were used as auxiliary data. 
Each footprint is of 25-meter diameter and has the information of beam types (i.e., full or half power), 
sensitivity, geo-located elevation and height metrics.  

Figure 1:  Location of the Study Area (departments have different colours) and availability of 
GEDI footprints over the AOI. 

Only the best quality footprint data were retained based on the following filtering criteria: Firstly, 
we only kept footprints whose quality flag is 1, degrade flag is 0, and sensitivity is ≥ 0.9. This is a 
standard filtering criterion applied to select suitable GEDI footprints, which also ensures that the beam 
power is strong enough to penetrate the canopy and reach the ground with 90% probability (Hancock et 
al. 2019). Next, we followed the definition of forest from FAO, which states that “trees in a forest reach 
a minimum height of 2-5 m at maturity” (FAO 2021). Therefore, we used an average height of 3m as 
threshold and removed those footprints whose RH100 values were smaller than 3 and thus did not qualify 
as forest. As a result, a total number of 112,569 footprints were included for further analysis. In addition, 
the footprints were intersected with forest masks to determine in which types of forest they were located. 
Height metrics and forest types were then extracted from the footprints and formed the auxiliary data 
frame.  

Lastly, seven nearest neighbouring GEDI footprints around individual NFI plots were identified 
based on their Euclidean distances. We set an additional distance threshold of 200m to filter out those 
NFI plots that had neighbouring footprints located farther than the threshold and thus may misrepresent 
the plot information. Based on the identified shot numbers, the remaining 105 NFI plots were then joined 
with one of the seven neighbouring footprints that shared the closest forest height, as defined by the 
smallest value of |NFI dominant height – RH100|. This formed the calibration data frame.  

2.4 Unit-level Small Area Estimation 
Unit-level SAE was performed using the two-phase estimation procedure provided in R package 
“forestinventory” and described in Hill, Massey and Mandallaz (2021). The first phase of auxiliary 
GEDI information was used to generate model predictions based on linear regression using the method 
of ordinary least square. The second phase contains the targeted NFI plot attributes, i.e., forest volume 
alone in this case, that is used to generate model coefficients and correct bias.  

3. Results and Discussion
A total of 101 auxiliary GEDI variables (100 height metrics and one forest type) were available and 
tested to predict forest volumes. Variable selection was done using an exhaustive search with the help 
of “randomForestSRC” R-package (Ishwaran and Kogalur 2021). The most relevant variables were 
manually verified to yield the best model fit and a low variance inflation factor (< 5). The final linear 
model retained was:   

Ŷ = 𝛽0 + 𝛽1 * RH100 + 𝛽2 * RH20 + 𝛽3 * Forest Type (1) 

Loir-et-Cher Loiret Cher

Departments	in	Sologne
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Where Ŷ is the predicted volume, 𝛽0 is the intercept, 𝛽1, 𝛽2 and 𝛽3 represent coefficients. RH100 and 
RH20 represent respectively the relative heights at which the maximum and the 20th percentile of 
waveform energy above the ground peak are reached.  

Based on this model formulation, SAE of forest volume was performed at the Sologne and sub-area 
levels. Results showed that GEDI auxiliary information significantly improved estimate accuracy 
compared with results obtained without this auxiliary information (Table 1). At the whole AOI level, 
the variance was significantly reduced and an increase in relative efficiency by a factor of 2.6 was 
obtained. In each sub-area, similar results were achieved, with reduced variance and an increase in 
relative efficiency by factors varying between 1.6 and 2.6. However, the mean forest volume was 
somehow underestimated using SAE estimation with the help of GEDI auxiliary data at both AOI and 
sub-area levels. We further calibrated the model and discovered that this was likely caused by model 
extrapolation, as a considerable number (16%) of predicted forest volumes fell outside the model 
calibration domain. 

Table 1. Volume estimations of SAE and SRS at both AOI and department levels 

Area Plot N SRS 
Estimation 

SRS 
Variance 

SAE 
Estimation 

SAE 
Variance 

Relative 
Efficiency 

Overall AOI 105 192.0 ± 25.6 164.3 170.2 ± 15.8 62.4 2.6 
Cher 20 198.0 ± 51.1 653.0 185.3 ± 40.2 404.0 1.6 
Loiret 46 224.1 ± 43.6 475.5 181.7 ± 27.2 224.1 2.6 

Loir-et-Cher 39 151.1 ± 34.8 302.2 150.6 ± 22.0 120.4 2.5 

4. Conclusions
This paper performed unit-level small area estimation using GEDI Level 2A as auxiliary data. We 
associated GEDI auxiliary information with NFI plots based on Euclidean distance to assess forest 
volume estimation. It is shown that GEDI auxiliary information can help improve forest volume 
estimation significantly when compared to simple random sampling alone. The fact that GEDI data are 
open-access and cover the entire country makes it a particularly attractive tool for improving forest 
inventory at regional and local levels.  
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1. Introduction
There is a gap in knowledge regarding the outcomes of different forest restoration strategies and the 

processes that occur within these new forests to effectively implement restoration strategies (Crouzeilles 

et al., 2016). To bridge this gap, it is important to identify the different forest typologies at a landscape 

scale, and subsequently to monitor restoration outcomes, such as forest composition, health, and 

functioning (Almeida et al., 2019a).  

LiDAR is receiving much attention as an effective tool for forest monitoring due to its ability to 

capture forest structure efficiently (Almeida et al., 2019a). Due to recent technical advances, 

Unoccupied Aerial Vehicle (UAV)-LiDAR has become more available for forest monitoring. These 

systems are lightweight, field-portable, have a relatively low cost, can acquire data at fine spatial and 

temporal resolutions, and are more flexible in use than other LiDAR systems (Zahawi et al., 2015). In 

this way UAV-LiDAR could replace costly and time intensive field inventories (Almeida et al., 2019c). 

Nevertheless, little is known of the potential of UAV-LiDAR in a forest restoration context, or their 

ability to distinguish structural attributes in mixed-species plantations (Almeida et al., 2019b). The 

objective of this study was to explore the potential of UAV-LiDAR to distinguish tropical forest 

typologies at a plot level with classification, and to identify the most effective metrics for classification. 

2. Data and Methods
The sample sites were 150 forest plots of 800-900 m2 in the Atlantic Forest of Brazil of six forest 

typologies. The typologies were monoculture plantation (N = 56), abandoned monoculture (N = 25), 

and mixed plantation (N = 8) – which were simplified as ‘plantation’; forest remnant (N = 7), natural 

regeneration (N = 24), and restoration plantation (N = 30) – simplified as ‘natural’. LiDAR data was 

acquired with the GatorEye system in August 2019 with a Velodyne VLP-16 dual-return sensor 
(Almeida et al., 2019c). The pulse density was 216.14 ± 94.3 points m-2. 

Thirty-three metrics in total were extracted per forest plot point cloud. Mean CHM, CHM rugosity, 
and gap fraction were extracted from canopy height models (CHM). CHM contain the absolute 

vegetation height above ground. Twenty five metrics were extracted from the normalised point clouds: 

height percentile cloud metrics hp.nmean and hp.nSD, where n = [5,10,25,50,75,90]; cloud return 

density above quantile metrics dq.imean and dq.iSD, where i = [20,40,60,80]; minimum return height 

Cminmean and CminSD; maximum return height Cmaxmean and CmaxSD; and Gini coefficient (GC). The 

height percentile metrics represent the distribution of vegetation through the canopy, specifically at 

which height a proportion of vegetation is concentrated. Five metrics were extracted from three-

dimensional voxel matrices: leaf area index (LAI) mean, LAI SD, LAI understory, Leaf Area Height 

Volume (LAHV), and Foliage Height Diversity (FHD).  Voxel matrices, which represent square units 

of canopy volume, were computed per normalised height point cloud with the LeafR package (Almeida, 

2019). Then Leaf Area Density (LAD) profiles were calculated, which are vertical distributions of the 

leaf area in voxels. LAI understory was computed as the sum of LAD at all heights below five metres 
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(Almeida et al., 2019a). LAHV was calculated as the sum of vegetation volume over all heights, where 

z is the height in the canopy (z = 1, 2, 3,  ...,max z) and LADz is the mean LAD at that height. FHD was 

calculated with Shannon’s index applied to the plot mean LAD profile. 

To distinguish the six non-simplified typologies, and the two simplified typologies, random forest 

was used to build supervised classification models. The models were tuned by iteratively removing the 

metric with the lowest importance until stabilisation of the accuracy was reached. The two random forest 

models were validated with Leave-one-out-cross-validation and their performance was assessed with 

confusion matrices. The importance of UAV-LiDAR metrics was assessed with their mean increase in 

MDA per standard deviation.  

3.Results 
3.1 Performance assessment of classification models 
The six-typology classification model performed with a kappa statistic of 0.46 and overall accuracy 

(OA) of 58.7% (Table 1). Monoculture plantation and restoration plantation were most accurately 

classified, and mixed planation was never correctly classified (Table 1). Forest remnant, natural 

regeneration, and restoration plantation were most difficult to distinguish from each other. 48% of the 

abandoned monoculture plots were mis-classified as monoculture plantation. The simplified 

classification model performed better with a kappa statistic of 0.78 and OA of 90.0% (Table 2). 

3.2 Analysis of metric importance 
The metrics included in the final non-simplified typologies model (in order of importance) were (LAI) 

understory, hp.50SD, dq.40SD, and CHM rugosity. LAI understory and hp.50SD were the two metrics 

Table 1. Confusion matrix for classification of non-simplified typologies with User’s Accuracy (UA), 

Producer’s Accuracy (PA), and overall accuracy. The correctly classified plots are in bold. 

Table 2. Confusion matrix for classification of the simplified typologies. 
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used in the simplified classification model. LAI understory showed most variation between all 

typologies, and hp.50SD clearly distinguished the natural- from the plantation typologies. 

4. Discussion
The successful classification of the simplified natural and plantation typologies is important, because in 

large scale restoration initiatives or forest assessments this distinction is often not made and forest cover 

is the primary indicator used (Chazdon et al, 2016). LAI understory and hp.50SD were able to capture 

the difference in active removal of undergrowth and regular planting structure of plantations from the 

natural typology growth forms. The overall lower accuracy in the non-simplified typology classification 

was due to low sample sizes, broad variation of growth forms within typologies, the difference in forest 

structure of early succession and later successional stages, and similarity of all typologies in an early 

successional stage. Nevertheless, the LAI understory metric showed potential for distinction of similar 

types. Furthermore, understory vegetation is used as an ecological indicator for forest health, 

biodiversity, and regeneration potential, but is laborious to measure in the field and inaccurate with low 

LiDAR point densities (Campbell et al., 2018). Therefore, UAV-LiDAR has potential for measuring 

understory vegetation as a useful restoration outcome indicator. For further distinction of similar 

typologies, and avoiding noise from different successional stages, future research should explore LiDAR 

fusion with optical sensors.  

5. Conclusions
Plantation typologies were successfully discerned from natural typologies, but other non-structural 

features may be needed to separate similar typologies. The metric LAI understory showed the most 

potential as a unique feature to distinguish typologies, and it should be further explored. Overall, UAV-

LiDAR can be used to identify structural differences in a broad range of forest restoration sites and can 

be of good use for existing and future forest restoration projects. 
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1. Introduction

LiDAR is becoming an important technique for forest monitoring. The 3D representation through 

LiDAR scans can give valuable insight in to forest functioning and changes there in (Calders et al., 

2020) or give us individual tree biomass (Gonzalez de Tanago et al., 2018).  

LiDAR can be used to derive forestry parameters in different setups. Terrestrial Laser Scanning 

(TLS) has been used to measure and monitor forests for many years, and is especially valued for the 

high accuracy of TLS measurements and derived parameters. Unoccupied Aerial Vehicle laser scanning 

(UAV-LS) has become available over the last years and has shown to be an effective system to 

investigate forests that cannot be entered by foot, or facilitates covering larger areas in a shorter time. 

Mobile laser scanning (MLS) is one of the techniques to acquire forest understory 3D data (Liu et al., 

2021). The technique uses the simultaneous localization and mapping (SLAM) algorithm to efficiently 

create 3D point clouds.  

Mobile LiDAR scanners could prove very useful in circumstances where traditional TLS systems 

face difficulty, and where UAV-LS is prohibited or too costly. However, the precision of MLS in 

comparison to TLS and UAV-LS dictates the usefulness of the mobile systems to measure and monitor 

trees in forests and urban environments. Further testing is required to show the applicability of MLS in 

forests (Calders et al., 2020). 

Different platforms all have their pros and cons, where mainly the acquisition speed is a point of 

interest. The practical problem is that for subsequent sampling (e.g. for forest monitoring), TLS is too 

slow and labour intensive. UAV-LS could partly fill this gap, but the operation is complicated and costly 

in comparison to MLS. A UAV-LS vs TLS comparison was done by Brede et al. (2017), who showed 

that both techniques have the potential to derive tree metrics, like tree height and diameter breast height 

(DBH). Previously, MLS and TLS were compared by Bauwens et al. (2016), but the MLS technique has 

further developed, which has resulted in increased measurement range and point densities.  

The objective of this paper is to benchmark the performance of a backpack MLS system against 

TLS and UAV-LS for the estimation of some common tree parameters. This is done in two case studies: 

the MLS vs UAV-LS comparison is done for a small forest area, while a comparison of MLS and TLS 

is done for trees in an urban area.  

2. Data and Methods

The data for the MLS vs UAV-LS comparison has been acquired in the Oostereng, a forest in the Veluwe 

area, the Netherlands. The trees in the investigated forest plot are of the species Douglas fir (Pseudotsuga 

menziezii), and all data has been acquired in February 2021. MLS data were collected with the 

Greenvalley LiBackpack DGC-50, a dual LiDAR backpack system, composed of two Velodyne VLP-

16 scanners, Inertial Measurement Unit, GNSS, 360 degree camera and processing unit. Initial data 

processing through SLAM is done on the processing unit itself, but integration of GNSS data and data 

point coloring is done during post-processing. UAV-LS data were acquired on the same day using a 

Riegl Ricopter with a VUX-1UAV scanning system. Flights were conducted at 90 m above ground level 

and processing to a geo-rectified pointcloud was done following the procedures described in Brede et 

al. (2017). A 25 m x 25 m subset of the forest plot was selected for further analysis, where 12 trees were 

visually identified and manually segmented using CloudCompare (Cloudcompare, 2020). Tree height 

was calculated by subtracting the minimal z value from the maximal z value for each of the tree 

segments. The DBH was calculated with ordinary least squares circle fitting implemented in the 
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lsfit.circle function from the R package “circular”. The DBH was calculated at 1.3 m above ground, with 

a 5 cm buffer. The subsets were visually inspected to filter out points that were not situated around the 

trunk of the trees. Two trees needed adjustments to create a correct subset of the trunk at DBH height. 

Data for the MLS vs TLS comparison were collected in January 2021 on the Wageningen University 

and Research campus in Wageningen, The Netherlands. The 22 selected deciduous trees, growing next 

to a road, were scanned with the Riegl VZ-400. Ten scan locations were chosen and for co-registration 

of the individual scans, six reflectors were installed on both sides of the road. MLS data of the same 

area were acquired using the Greenvalley LiBackpack DGC-50 system. Extraction of individual tree 

point clouds was done with Cloud Compare software in a manner similar to Lau et al. (2018). Tree 

height was deduced by taking the distance between the top and bottom point. Crown diameter was 

calculated the average of the the largest lengths of the crown in the North-South and East-West 

directions.  

For both cases the different point clouds were first coarse registered by manually selecting 

corresponding points and performing a rigid body transformation. Fine registration was done with the 

Iterative Closest Point algorithm in CloudCompare.  

3. Results and Discussion

In the forest plot the MLS measured tree height of most trees is within 0.5 m of the UAV-LS tree height 

(Figure 1). However, when the canopy is denser the MLS system has difficulties to reach the top of the 

canopy, which is shown by a lower tree height measured with MLS compared to UAV-LS. For the 12 

trees in the subplot this results in an RMSE for the tree height of 1.61 m, which is almost solely a result 

of the 4 trees of which the upper canopy was not properly sampled.  

The DBH calculated from the UAV-LS point clouds is generally larger than for the MLS data, which 

is summarized in an RMSE of 9 cm between both acquisition methods. This is largely the result of one 

tree where the DBH estimates had a great deviation. .  

Differences between calculated tree height and DBH of MLS and UAV-LS datasets were 

statistically analysed using linear regression and paired t-tests. The calculated tree height was 

significantly larger for a tree from the UAV-LS dataset compared to the MLS dataset (t = 2.254, df = 

11, p = 0.0456) . The same pattern was observed for DBH (t = 3.619, df = 11, p = 0.0040). 

For the campus site the tree height and crown diameter were compared, and MLS and TLS give very 

comparable results in this case (Figure 2). Since all trees are free standing and relatively low there is 

very low occlusion, and as a result the estimated height of the trees is almost identical (RMSE = 0.01 

m). Also the crown dimensions are comparable between the systems.   

Figure 1: scatterplots of MLS vs UAV-LS derived individual tree height (left) and DBH (right). The 

dashed black line indicates the 1:1 line and the dashed red lines show the 1:1 line +/- 0.5m or 0.05m 

respectively. 
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Figure 2: scatterplots of MLS vs TLS derived individual crown diameter (left) and tree height (right). 

The dashed black line indicates the 1:1 line and the dashed red lines show the 1:1 line +/- 0.5 m or 

0.05 m respectively. 

In terms of acquisition time, the LiBackPack DGC-50 MLS system outperforms both other 

systems. The point cloud quality of the TLS is  better, but for the derived tree parameters it does not 

make a large difference. MLS shows to be an acceptable alternative to UAV-LS in forested areas, but 

with dense canopies data are to be treated with care. An improvement of the measurement strategy 

could still lead to better sampling of the upper parts of the canopy.  

4. Conclusions

In a more open environment, the MLS and TLS tree height and crown diameter  are comparable, but for 

a more dense canopy MLS tends to miss the treetops regularly, when compared to UAV-LS. For DBH 

differences are observed between systems, but evaluation against ground truth measurements has to 

show which is more accurate. The MLS system shows much potential in terms of usability. The scans 

made with the Greenvalley LiBackpack DGC-50 were made more quickly and with more ease than 

those made with the Riegl VZ-400 and the Riegl Ricopter. 

References 

Bauwens, S., H. Bartholomeus, K. Calders, and P. Lejeune (2016). Forest inventory with terrestrial LiDAR: A 

comparison of static and hand-held mobile laser scanning. Forests 7(6). 

Brede, B., Lau, A., Bartholomeus, H.M., & Kooistra, L. (2017). Comparing RIEGL RiCOPTER UAV LiDAR 

derived canopy height and DBH with terrestrial LiDAR. Sensors, 17, 2371 

Calders, K., J. Adams, J. Armston, H. Bartholomeus, S. Bauwens, L. P. Bentley, J. Chave, F. M.Danson, M. 

Demol, M. Disney, R. Gaulton, S. M. Krishna Moorthy, S. R. Levick, N. Saarinen, C. Schaaf, A. Stovall, L. 

Terryn, P. Wilkes, and H. Verbeeck (2020). Terrestrial laser scanning in forest ecology: Expanding the 

horizon. Remote Sensing of Environment 251, 112102. 

CloudCompare (version 2.11.3) [GPL software]. (2020). Retrieved from http://www.cloudcompare.org/ 

Fernández-Sarría, A., L. Martínez, B. Velázquez-Martí, M. Sajdak, J. Estornell, and J. A. Recio (2013). Different 

methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a 

comparison with classical dendrometric measurements. Computers and Electronics in Agriculture 90, 176–

185. 

Gonzalez de Tanago, J., A. Lau,, H. Bartholomeus, M. Herold, V. Avitabile, P. Raumonen, C. Martius, R.C. 

Goodman, M. Disney, S. Manuri, A. Burt, K. Calders (2018). Estimation of Above-Ground biomass of Large 

tropical trees with terrestrial LiDAR. Methods in Ecology and Evaluation 9-2, 223-234.  

Lau, A., L. P. Bentley, C. Martius, A. Shenkin, H. Bartholomeus, P. Raumonen, Y. Malhi, T. Jackson, and M. 

Herold (2018). Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. 

Trees - Structure and Function 32(5), 1219–1231. 

Liu, L.L., Zhang, A.W., Xiao, S., Hu, S.X., He, N.P., Pang, H.Y., Zhang, X.Z., & Yang, S.K. 

(2021). Single Tree Segmentation and Diameter at Breast Height Estimation With Mobile LiDAR. IEEE 

Access, 9, 24314-24325 

144



Understanding phenological changes of coniferous forests 
in Cyprus using time-series of SAR data from 2015 till 2020 

M. Miltiadou1,2, C. Theocharidis1,2, V. Karathanassi3, A. Agapiou1,2, M. Nikolaidis1,2, C. Danezis1,2 

1 Department of Civil Engineering and Geomatics, Faculty of Engineering and Technology, Cyprus University of Technology, 3036 

Lemesos, Cyprus 

2Eratosthenes Centre of Excellence, 3036 Lemesos, Cyprus 

3School of Rural and Surveying Engineering, National Technical University of Athens, Athens, Greece 

1. Introduction

Recent reports stressed the vulnerability of the forest ecosystem in the European Union (EU), especially 

to the south [1] [2]. Climate change alters our environment by shifting weather conditions, rising sea 
levels, increasing flood risks and threatening food production. Shoukri and Zachariadis, 2012, 

highlighted that Mediterranean Europe is expected to experience the most adverse climate change effects 

compared to other European regions [3]. Furthermore, Cleland et al., 2017 showed that climate change 

confers shifts to blooming time [4]. According to Wolkovich et al., 2012, the phenological responses 
(i.e., alternations in blooming timing) of plants to warmer conditions are unpredicted [5]. According to 

the US committee on phenology, phenology is "the study of the timing of recurring biological events, 

the causes of their timing with regard to biotic and abiotic forces and the interactions among phases of 
the same or different species"[6]. This includes structural changes – e.g., relating to how leaves of trees 

change seasonally – that can be identified by observing the backscattered coefficient of SAR data.  The 

overarching aim of this study is to understand the phenological changes of a coniferous forest over time 

in Cyprus by analysing time series of SAR data.  

2. Study Area

The study area is a coniferous state forest dominated by Pinus Brutia. It is located on the Troodos 
mountains range in Cyprus; it covers the Paphos forest and its surrounding forested areas. Cyprus is 
an island in the north-eastern end of the Mediterranean Sea [7]. While according to the literature, 
18.7% was covered by forests in 2008 [8], ancient statements reveal that the entire inland including its 

plains used to be covered by forests [9]. In Cyprus, the summers start in mid-May and last till mid-

September and they are dry and warm. Winters start in mid-November and end in mid-March and are 
mild [10].  

Figure 1. Study Area on the west-north end of Troodos Mountains range. 
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3. Data

The study interprets Sentinel-1 data from the timeframe Oct 2014 till Dec 2020. A total number of 304 
images were downloaded but after filtering images acquired during high rainfall, 252 images remained 
for interpretation. This corresponds to an average of 42 images per year.  

4. Methods

Pre-processing was done in SNAP ESA tool, while the extraction of the phenological graphs was 
automated in Python with specialised implemented tools for extracting the average backscattered 

coefficient from a given mask defining the area of interest. The tools then gather the average 

backscattered coefficients, clean the data from noise and create the phenological graphs. There is work 
in progress for generating forecasting and predicting models that will be trained by extracting feature 

(e.g., peak backscattered coefficient amplitude that represents peak structural blooming timing). 

Evaluation will be done using four years (2015-2018) as the training dataset and the other 2-years (2019-

2020) as the testing dataset.  

5. Preliminary Results, Discussion and Conclusions

Figure 2 shows a time-series of the normalised Backscattered coefficient (σ0) of the VH and VV 
polarizations of Sentinel-1. It shows that the phenological cycle of the coniferous forest starts in 
November each year and contains on average two peaks: one in January and one in July. The first one 
correlates with the rainy season, and it should, therefore, relate to increased Leaf Area Index. The 2nd 
peak comes a couple of months after the blossoming time of the Pines during the cone growing period. 
It seems that monitoring both peaks by SAR could contribute into identifying forest degradation and 
its ability to regenerate itself as its regeneration depends on seeds. This is extremely important 
considering that in recent survey research 65.65% of Cypriot participants stated that they observed 
moderate to very much forest degradation including difficulty of regeneration [11] . 

Figure 2. Normalised Backscattered Coefficients of VV and VH polarizations 
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1. Introduction
Evaluation of the state and dynamics of forest ecosystems requires accurate, repeated and robust 
measurements of important forest biophysical parameters. Such measurements and forest assessments 
are traditionally performed within the framework of National Forest Inventories (NFI), where 
established field measurement methodologies are often time-consuming and sometimes subject to 
observer bias. New methodologies for accurate and quantitative, wall-to-wall acquisitions of different 
forest parameters could potentially advance the way NFIs are performed. With the recent developments 
in the field of terrestrial, mobile and drone-based laser scanning (TLS, MLS, UAVLS) as well as new 
advances in terrestrial and aerial structure from motion (SfM) applications, close-range remote sensing 
could play an important role in supporting traditional NFIs. However, in order to include these 
technologies within the framework of an operational NFI, its robustness and applicability needs to be 
assessed and evaluated. 

In this contribution, we evaluate multiple close-range remote sensing technologies for the potential 
to support NFIs. We evaluate the performance to extract important forest inventory parameters such as 
tree position and diameter at breast height (DBH) and analyse the coverage and completeness of 
acquired datasets in respect to three 50x50 m2 plots within a Swiss temperate mixed forest. 

2. Data and Methods
The study area is located in a temperate mixed forest close to Zurich, Switzerland. For a 1 ha large plot, 
tree positions and DBH of all trees with a DBH >= 7 cm as well as a TLS campaign under leaf-off 
conditions using a FARO Focus3D scanner were acquired. Within the 1 ha plot, three 50x50 m2 plots 
were defined, following the plot size definition of the Swiss NFI. These three plots were used to test 
multiple sensors with varying characteristics and acquisition patterns. The three plots showed varying 
tree densities (340, 440, and 564 trees/ha with DBH >=7cm) with varying species compositions and 
structural complexity (e.g. dense understorey vegetation). A set of TLS, MLS, UAVLS sensors as well 
as a terrestrial structure from motion (SfM) image acquisition was tested on these three plots, which are 
summarized in Table 1. All datasets were analysed regarding their point density distribution within the 
canopy, the coverage of the 50x50 m2 plots and the extraction of the digital terrain model, where the 
DTM derived from the FARO TLS scan served as the reference. Tree positions and DBH were also 
extracted from all datasets and compared to reference acquisitions using a tachymeter and a calliper. We 
restricted the tree position and DBH comparison to trees with DBH >=12 cm, following the 
methodology of the Swiss NFI. Tree positions and DBH were extracted using the R-package TreeLS 
(De Conto et al. 2017). Tree detection and DBH extraction performance was evaluated regarding their 
correctness (fraction of matched trees to number of detected trees), completeness (fraction of matched 
trees to number of reference trees), and the BIAS and RMSE of the DBH extraction. A detected tree 
was labelled as matched if a reference tree was found within 2 m from the detected position and the 
estimated DBH did not deviate more than 20% from the reference. 

3. Results and Discussion
The analysed 3D point-cloud datasets differ substantially in terms of point density as well as point 
density distribution (Table 2 and Figure 1). Table 2 summarises the results from the dataset comparison. 
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Table 1: Acquired dataset specifications. Acquisition times refer to the 50x50 m2 interpretation area 
unless otherwise stated (i.e. UAVLS and FARO acquisitions). Approximate distance between scan 
positions for TLS acquisition are specified with ∆d. 

Sensor Sensor Type Acquisition Date Acquisition 
Pattern 

Acquisition 
Time 

FARO Focus3D Phase Shift TLS January 2020 
(Leaf-Off) 

Regular grid 
∆d ≈ 10 m 

6 days 
(for 1 ha) 

Leica  
BLK 360 

Time of flight 
TLS 

September 2020 
(Leaf-On) 

Regular grid 
∆d ≈ 5 m 

6 hours 

Riegl  
VUX1-UAV 

UAVLS March 2020 
(Leaf-Off) 

Regular grid ≈2 hours 
(for 52 ha) 

Riegl miniVUX2 UAVLS September 2020 
(Leaf-On) 

Regular grid 20 minutes 
(for 1 ha) 

ZebRevo MLS October 2020 
(Leaf-On) 

Snake pattern ≈20 minutes 

GoPro Hero 8 Black 
(12MP) 

Terrestrial SfM September 2020 
(Leaf-On) 

Circular 
Pattern 

≈20 minutes 

The average over all three plots is given, however the DTM accuracy as well as the tree detection and 
DBH extraction performance is highly dependent on the structural complexity of the plots. The two 
denser plots show multiple patches of very dense undergrowth, making data acquisition and the 
extraction of terrain and tree parameters in these areas difficult. Compared to the reference datasets, the 
leaf-on acquired BLK360 TLS acquisition performed best. However, the faster acquired and processed 
ZebRevo point-cloud performs similarly as the BLK360, even with the lower precision of the 
instrument. However, some trees were missed by the ZebRevo. The GoPro camera was able to detect 
more than 50% of the reference trees, however, it also only covered in average 80% of the entire plot 
area. Nevertheless, the estimated DBH of the detected trees show quite accurate results, even 
outperforming those extracted from the BLK360 acquisitions. However, further investigations are 
needed to fully evaluate the performance of each approach. The quality of extracted point-clouds from 
SfM acquisitions is highly dependent on the acquisition pattern, structural complexity (undergrowth 
vegetation) as well as the conditions during the acquisitions (light, wind). Further investigations are 
needed to analyse the robustness of such acquisitions for the use within NFIs. 

UAVLS acquisitions, especially under leaf-on conditions (miniVUX2), showed some difficulties in 
accurately extracting terrain and tree information. The often dense overstorey vegetation resulted in 
substantially occluded areas in the lower canopy regions as also depicted in Figure 1. Further analysis 
on best acquisition patterns (e.g. Bruggisser et al., 2020) to acquire data or the possibilities to use within 
canopy UAVLS flights (e.g. Hyyppä et al., 2020) could possibly help in this regard. 

Table 2: Summary of extracted point-cloud acquisitions and the performance for DTM extraction and 
tree detection and DBH extraction from the different point-clouds. The average over all three analysed 
plots is given for all metrics. 
Sensor Point 

Density 
[pts/m2] 

DTM 
Coverage [%], 
Mean [m], std [m] 

Tree detection 
[Correctness, 
Completeness] 

DBH Difference  
Bias, RMSE [cm] 

FARO 869’862 Reference 0.91/0.83 0.13/2.42 
BLK 360 1’203’548 100/0.03/0.11 0.76/0.77 1.45/4.43 
VUX1-UAV 4’372 100/-0.12/0.12 0.75/0.43 1.67/3.7 
miniVUX2 1’888 100/0.18/0.92 0.44/0.14 -2.94/4.45 
ZebRevo 15’777 100/-0.06/0.13 0.73/0.59 0.5/3.92 
GoPro8 29’523 80.3/0.3/1.5 0.87/0.51 0.5/2.59 
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Figure 1: Vertical point density distribution and transects through point-clouds for BLK360 (A), GoPro 
8 (B), miniVUX2 (C) and ZebRevo (D) acquisitions.BLK360 and GoPro point-clouds colored based on 
RGB camera information, miniVUX2 and ZebRevo point-clouds colored according to height above 
ground. 

4. Conclusions
Close range remote sensing technologies are increasingly investigated regarding their potential for an 
operational application within NFIs. TLS reign as the high standard for acquiring high detailed 3D 
information at the single tree level. However, long and complicated acquisition procedures often neglect 
an operational inclusion within NFIs. Technologies allowing for faster data acquisition, however often 
at the price of a loss in precision and accuracy, such as MLS, UAVLS or even terrestrial or UAV SfM, 
therefore become increasingly more popular. In this study we analysed multiple sensor and acquisition 
approaches to extract terrain and tree information in three plots of varying complexity. Further analysis 
is needed to analyse the robustness of each approach in terms of applicability within a national forest 
inventory. Nevertheless, close range remote sensing shows high potential for forest structure assessment 
within the framework of a NFI. 
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1. Introduction
The variation in structure and form of trees is critical in linking leaf and tree physiology to tree
function and to coordinate constraints on tree growth and mortality. Measurement of tree architecture
is being revolutionized by ground-based 3D terrestrial laser scanning (TLS) in combination with new
theoretical frameworks.

Here we present preliminary results from a project that has captured TLS data from forest plots
spanning the tropics; from Peruvian cloud forest, to Ghanaian savanna, to Malaysian dipterocarp
upland. Following leaf and wood trait campaigns previously conducted across a bottom-up forest
carbon cycling network (GEM, Malhi et al. 2021), our goal is to understand the functional role of tree
architecture in tree and forest demographics, resilience, and growth and reproduction strategy. This is
crucial for predicting forest response to climate change.

We have so far constructed 3D tree models from 19 plots and ~250 species. Linking tree
architecture with leaf and wood traits has resulted in an unprecedented database of tree 3D structural,
demographic, and functional trait data.

2. Methods
A leaf traits campaign was conducted (see Asner et al. 2016) where a suite of physiological traits were
measured for a subsample of trees (Shenkin et al. 2021). Plots cover a range of forest types and
conditions spanning the tropics (Table 1 and Figure 1). For the same subsample of trees TLAdata were
captured with a RIEGL VZ-400 (UCL, WU and Ghent) or VZ-400i (University of Helsinki) on a
regular grid. (Wilkes et al. 2017). Each trait tree was tagged with a qrDAR code
(https://github.com/philwilkes/qrdar) to enable post-scan identification.

Trees were automatically extracted in post processing and manually “cleaned” to remove
neighbouring trees or add missing canopy sections. TLSeparation (Vicari et al. 2018) was run to
remove leaf points; the remaining wood points were then enclosed using TreeQSM v.2.3 which
produces a 3D, topologically coherent volume model for each tree. Analysis of tree structure was
performed on QSMs using treestruct (https://github.com/ashenkin/treestruct).
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Figure 1. 1 m slices through TLS data for a
subset of plots highlighting differences in

forest structure and terrain.

Figure 2. Tree height vs. volume for N=730 trees

3. Results and Discussions
So far, across the 19 plots, over 730 trees from
250 species have been extracted, modelled and
linked with the trait database. This represents
the largest architecture-trait database currently
compiled spanning the tropics. Trees range in
height from 2 - 100 m, including the tallest
tropical tree yet discovered (Shenkin et al.
2019), and volume from 0.01 - 48.7 m3 (Figure
2).

Initial analysis indicates that the finer
structures in tree crowns play a significant role
in tree function, especially where surface area
(as opposed to volume) is the critical scalar.
We also find that tree and branch architecture
lie on orthogonal axes suggesting that the
former is determined by life-history and the
latter by phylogeny. Finally, we find that
wind, rather than gravitational stability, is
likely a controlling determinant of tree height.

Branches were also harvested and
modelled for a subsample of trees (Wilkes et
al. in review). Early results suggest that
branch architecture and tree shape comprise
orthogonal axes in trait ordination analyse.
New tools are required to analyse these smaller
branch structures, due to the inherent
limitations of TLS data and QSM
reconstruction at these scales.

4. Conclusions
This project represents a coordinated
collaboration between a number of institutions
across the globe spanning nearly a decade of
functional trait and TLS campaigns. The
results coming from these coordinated efforts
underscore the importance of collaboration and
continuous funding streams. Furthermore,
while these campaigns benefit science, they
have also served to strengthen institutional ties
across counties. We endeavour to offer these
campaigns as models for those seeking to
generate large, deep, and connected datasets
across disparate ecosystems.
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Table 1. List of plots. ISO country codes used. Team codes; WU Wageningen University, UCL
University College London and UoH University of Helsinki. N trees is trees extracted so far.
Plot Country Year Lat Lon Area (ha) Grid (m) Angular step Team N trees

ESP-01 PE 2014 -13.175 -71.595 1 20 0.06 WU 26

ANK-01 GH 2016 5.268 -2.694 1 10 0.04 UCL/WU 96

KOG-02 GH 2016 7.262 -1.150 1 20 0.04 WU 73

KOG-04 GH 2016 7.303 -1.180 1 20 0.04 WU 74

KOG-05 GH 2016 7.305 -1.165 1 20 0.04 WU 121

TAM-05 PE 2017 -12.831 -69.271 1 10 0.04 UCL 38

TAM-06 PE 2017 -12.839 -69.296 1 10 0.04 UCL 24

AEP-02 AU 2018 -17.147 145.587 0.5 10 0.04 UCL 27

AEP-09 AU 2018 17.121 145.634 1 10 0.04 Ghent 57

AEP-33 AU 2018 -17.285 145.571 0.5 10 0.04 UCL 27

AEP-41 AU 2018 -16.136 145.441 0.5 10 0.04 Ghent 32

MLA-01 MY 2018 4.747 116.970 1 10 0.04 UCL 48

SAF-03 MY 2018 4.691 117.588 0.5 10 0.04 UCL 35

SAF-05 MY 2018 4.716 117.610 0.5 10 0.04 UCL 10

CBN-01 MY 2019 4.951 117.792 1 10 0.04 UoH 43

CRP-01 BR 2019 -14.712 -52.352 0.25 10 0.04 UoH 5

CRP-02 BR 2019 -14.712 -52.352 0.25 10 0.04 UoH 7

NXV-01 BR 2019 -14.423 -52.210 1 10 0.04 UCL 60

VCR-02 BR 2019 -14.832 -52.168 1 10 0.04 UCL 14
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1. Introduction

The use of Mobile Laser Scanners (MLSs) has been studied in the last decades as an alternative to 

traditional forest inventory, providing accurate measurements of stem profiles and diameter at breast 

height (DBH) at tree level in relatively short time (Hyyppä et al., 2020; Liu et al., 2021; Puliti et al., 

2020). 

There are only a few studies assessing the accuracy to measure forest structure for car- or vehicle- 

mounted MLS. For instance, Forsman, Holmgren, and Olofsson (2016) proposed an algorithm to detect 

stem points in an MLS point cloud acquired from a car, yielding an RMSE (Root Mean Squared Error) 

of 3.7 cm for DBH estimations. Later, Čerňava et al. (2019) tested the performance of a MLS mounted 

on a tractor used under heavy canopy conditions. They reported an RMSE of 3.06 cm for DBH estimates. 

Both studies suggest that vehicle-mounted MLSs could be used to conduct forest measurements. 

However, car-mounted MLSs might be restricted to the road or skid networks and cannot cover 

areas inside the forest. Before such MLSs could be used at large scale, it is important to understand the 

limitations. The main objective of this study is to assess the suitability of a car-mounted MLS to retrieve 

field reference data from the forest roads. In this study, we refer to distance to the road to express the 

distance from a specific tree or plot to the sensor´s trajectory. The specific objectives are: (1) to propose 

an algorithm for ITD (Individual Tree Detection) with MLS data and (2) to assess the influence of the 

distance to the roadside on ITD. 

2. Data and Methods

2.1 Study area and MLS system 

The algorithm was validated on the Remningstorp test site, in southern Sweden (lat. 58°N, lon. 

13°E). In total, we measured the position and DBH of the trees in 18 circular plots with 10 m radius, 

organized in 6 groups. In each group, three plot centers were aligned perpendicular to the road. In order 

to evaluate the effect of the distance from the road on the proposed method´s accuracy, we divided the 

plots in 3 groups: the first group with the plots closer to the road, from 0 – 20 m, the intermediate group 

with the plots from 20 – 40 m from the road and last group, from 40 – 60 m. The plots had around 600 

trees/ha (80% Norway spruce, 15% pine and 5% broadleaved) and a mean DBH of 27.5 cm. 

The MLS data were collected with a car-mounted Riegl VUX-1LR sensor. The car operated with a 

speed of 5 km/h and the sensor was leaning 30 degrees from the horizontal plane. The sensor emitted 

near infrared pulses (1550 nm) at a repetition frequency of 820 Hz. The footprint was 5 cm at 100 m 

from the sensor. This setup yields point clouds with high resolution within scan lines (angular step width 

of 0.0066 degrees), but large distances between two consecutive scan lines (at least 10 cm). The point 

density varied according to the distance from the road, as in Figure 1. 

2.2 Individual Tree Detection 

The proposed ITD algorithm assumes that points belonging to the same stem appear in the point 

cloud as arcs, and identifies point clusters with a circular shape within scanlines, as in Forsman et al. 

(2016). Next, we fit circles to the identified arcs in order to eliminate point clusters that do not have a 

circular shape, using the modified version of Random Sample Consensus (RANSAC) algorithm 

described by Olofsson et al. (2014). Finally, since the trees were detected independently in each scan 

line, we needed to vertically aggregate the arcs in order to build individual tree stems. Thus, in the stem 

segmentation, we associated several arcs to a single stem from the circle center locations obtained in the 
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previous step, using an adaptation of the tree stem segmentation proposed by Holmgren et al. (2019). 

Once the arcs were segmented into stems, we recorded the position of the lowest arc as being the position 

of the stem. 

Figure 1: Representation of 3D point cloud, where the point density varies according to the distance 

from the sensor. The left side is closer to the sensor than the right side and has more points in the 

canopy and stem than the trees in the right side of the figure. 

2.3 Accuracy Assessment 

The accuracy of the ITD was assessed zone-wise by matching the MLS-detected trees with the field-

recorded tree positions by conducting a search on the surroundings of each MLS-detected tree using a 

30 cm radius. If an MLS-detected tree corresponded to a field-recorded one, the tree was considered a 

true positive. If it did not correspond to any field-recorded tree, it was considered as a false positive. 

Finally, we considered omission when a field-recorded tree position did not have any correspondence 

with the MLS-detected individuals. To better understand the performance of the ITD of trees with 

different size, they were grouped in three DBH classes: DBH < 15 cm, 15 cm <= DBH < 30 cm and 

DBH >= 30 cm. In each DBH class, we computed the precision (1) and sensitivity (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑓𝑜𝑢𝑛𝑑
 , (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
 . (2) 

3. Results

Table 1. Individual tree detection´s (ITD) accuracy according to the distance range from the road.

Zone 
0 – 15 cm 15 – 30 cm  >= 30 cm  

Precision Sensitivity Precision Sensitivity Precision Sensitivity 

First (0 – 20 m) 0.0% 0.0% 92.2% 93.7% 85.0% 85.8% 

Intermediate (20 – 40 m) - 0.0% 98.1% 91.2% 93.3% 100% 

Last (40 – 60 m) - 0.0% 100% 71.9% 100% 87.0% 

The ITD performance varied according to the tree´s distance to the road and DBH class. No trees 

with DBH < 15 cm were detected correctly, regardless of the zone. We noticed the lowest precision in 

the study (Table 1) in the first zone, from 0 – 20 m, where more than 10% of the trees with DBH >= 30 

cm were false positives. The high number of heavy branches and the proximity to the sensor, which 

makes branches close to the road have a high point density, appears as the main reason for the observed 

false positives from 0 – 20 m.  

The best overall ITD performance was obtained from 20 – 40 m, where the branches were smaller 

when compared to the ones in first zone, thus, being more easily separated from stems. In the 

intermediate zone, the point density was not as high as in the first zone, causing less false positives 

amongst the found trees with DBH >= 15 cm (Table 1).  

Finally, in the third zone, from 40 – 60 m, no false positives were noticed (Table 1). However, the 

sensitivity in the area was the lowest in the study: 71.9% on trees with DBH between 15 – 30 cm. This 
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may be explained by the fact that the point density decreases significantly in areas further from the road, 

consequently, it is more likely to have fewer returns from the trees in the last zone. However, the 

sensitivity increased to 87.0% for trees with DBH >= 30 cm, which implies that trees with larger DBHs 

are found more easily at 40 – 60 m from the road. 

4. Discussion

A benchmark of different MLS systems used for forest inventory was reported by Hyyppä et al. 

(2020), where backpack, handheld and under-canopy MLSs were compared. The authors obtained 100% 

precision with all the systems. Depending on the forest conditions and the sensor used, the sensitivity 

ranged from 79.0% to 95.2% with the backpack MLS, 76.7% to 92.9% with a handheld MLS and 81.4% 

to 92.9% with an under-canopy ULS (Unmanned aerial vehicle Laser Scanner). Our method yielded 

comparable sensitivities in the first and intermediate zones when considering trees with DBH >= 15 cm. 

For small trees (DBH < 15 cm), the branches often occluded the stems, especially for Norway spruce 

trees which was the dominant species. The occlusion combined with the distance from the sensor 

prevented the detection of stems with DBH < 15 cm.The method we propose can be used at an optimal 

distance range in which the system is able to detect trees with good accuracy.  

MLS systems have been studied for more than one decade as alternatives to manual forest 

inventories, but still they are not operationally used. The MLS system we tested can be used for 

automatic large-scale forest assessments, since it can take advantage of the forest roads and skid trails 

to make measurements on the go during field visits. In terms of autonomy, a vehicle-mounted MLS can 

operate for a longer time than, e.g., an ULS. Future studies may explore the potential of such system to 

obtain more measurements of the tree stems, capturing DBH, stem profile and volume. In addition, other 

methods to improve the ITD´s precision in the first zone may be developed. 

5. Conclusions

In this study, we proposed a method capable of identifying tree stems from car-mounted MLS point 

clouds, collected from the roadside. We could detect trees with a sensitivity and precision comparable 

with other MLSs that were located in the forest. We observed that the accuracy of ITD decreased as the 

distance from the trees to the road increased. We recommend establishing an optimal distance range 

where it is possible to obtain the highest precision and sensitivity. 
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1. Introduction

Canopy cover is a fundamental vegetation structural parameter that is used to define a forest and support 

a range of vegetation applications, including habitat mapping (Lerman et al. 2014), modeling forest 

aboveground biomass (Narine et al. 2020) and assessing forest degradation (McCarley et al. 2017). 

NASA’s Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission offers an extraordinary capability 

to capture up-to-date information about forest ecosystems with data acquired by its Advanced 

Topographic Laser Altimeter System (ATLAS) since 2018. The capability of a spaceborne lidar to 

contribute to estimating biophysical forest parameters has been proven with ICESat-2’s predecessor, 

ICESat, which operated from 2003 to 2009. For example, observations from ICESat’s Geoscience Laser 

Altimeter System (GLAS) were used to map global canopy heights (Lefsky, 2010; Simard et al., 2011) 

and AGB (Hu et al. 2016), and characterize forest volume (Pourrahmati et al. 2015), and canopy cover 

(Tang et al. 2016). With the enhanced capability to provide greater spatial coverage and observations at 

higher spatial resolutions with ICESat-2, there are exceptional opportunities to derive up-to-date 

vegetation information as well as spatially comprehensive products through synergistic approaches with 

data from longstanding space-based programs like Landsat. As a first step to generating a wall-to-wall 

canopy cover product, the overall goal of this study was to examine ICESat-2’s vegetation product data, 

ATL08, and custom-processed geolocated photon data, ATL03, for characterizing canopy cover. For 

this study, comparisons with reference canopy cover were made at the 100-m segment level (ATL08) 

and canopy parameters were examined for the development of predictive models. Relationships were 

also examined at the 30-m pixel scale, consistent with Landsat imagery and National Land Cover 

Database (NLCD) products (Homer et al. 2015).   

2. Data and Methods

2.1. Study area 

Data over a study site located in southeast Texas in the Sam Houston National Forest (SHNF) (30˚ 42’ 

N, 95˚ 21’W) were examined for this study. The area exhibits vegetation conditions that are typical for 

the southeastern United States, consisting primarily of longleaf pine (Pinus palustris) stands, stands of 

loblolly pine (Pinus taeda), slash pine (Pinus elliottii), bottomland hardwoods, mixed hardwoods and 

pine hardwoods. This site was used for an initial aboveground biomass mapping study with ICESat-2 

and pre-launch investigations with simulated ICESat-2 data. 

2.2. Airborne lidar 

Airborne lidar data acquired in 2018-2019 from USGS 3D Elevation program (3DEP) were used. Point 

clouds were clipped based on ICESat-2 tracks, processed to derive aboveground level heights 

(vegetation) and to calculate canopy cover as the proportion of returns above 4.6 m (USDA Forest 

Service 2014) for each matching ATL08 segment (Narine et al. 2019). For pixel-level comparisons, the 

normalized point clouds were clipped to match selected 30-m NLCD pixels and canopy cover was 

computed at this scale.  

2.3. ICESat-2 data and processing 

ICESat-2 ATL08 and corresponding ATL03 data from release 003 were downloaded from the National 

Snow and Ice Data Center (NSIDC). The ATL03 granule examined for this study was 
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ATL03_20181203072948_10030106_003_01. Using data from one strong beam (gt3r), custom noise 

filtering and photon classification algorithms (Popescu et al. 2018) were applied and ATL08 data were 

used to extract segments. Classified photons (noise, ground, canopy and top-of-canopy) in the ATL08 

product were traced back to ATL03 and processed to compute canopy cover as the percentage of photons 

above 4.6 m withing a segment. Similarly canopy cover was computed from the custom-processed data 

and combined with corresponding ATL08 variables (Neuenschwander and Pitts 2019). To explore 

canopy cover at the 30 m pixel level, where ICESat-2 track lengths were at least 30 m across a pixel, 

photons from ATL08 and custom-processed data were used to compute canopy cover for those 30 m 

cells and were combined with reference estimates.   

2.4. Data analysis 

Canopy cover extracted from the custom processed ATL03 and ATL08 segments were compared with 

airborne lidar-derived canopy cover (reference) and the coefficient of determination (R²) and RMSE 

values were used to assess the relationships. To understand the application of canopy parameters, linear 

regression models were used to relate canopy metrics (ATL08 and custom-processed ATL03) with 

reference canopy cover at the segment scale; 111 segments were used for model building and remaining 

55 segments, for model evaluation. Comparisons at the 30-m scale were made with reference airborne 

lidar-derived canopy cover and NLCD canopy cover.  

3. Results and Discussion

Segment-level comparisons between ICESat-2 derived canopy cover and reference airborne lidar 

estimates for the SHNF site, are shown in Figure 1.  

Figure 1: Airborne-lidar derived canopy cover versus ATL08 and custom-processed ATL03 canopy 

cover for segments over SHNF, Texas. 

Canopy cover estimation using relative canopy height metrics from custom-processed dataset resulted 

in a model containing canopy cover (> 4.6 m) and maximum height (p-values < 0.001), which 

explained 70% variance of the airborne lidar-derived canopy cover (RMSE = 12%) with the test set 

(Figure 2). Similarly, ATL08 maximum height and canopy cover remained in the final canopy cover 

and yielded a R² and RMSE of 0.69 and 10% respectively (Table 1) (p-values < 0.001).  

Table 1. Linear regression results for estimating canopy cover 

Dataset RMSE R² Model 

Training Test Training Test 

ATL08 9.17% 11.67% 0.80 0.70 -1.34 + 1.65*maximum height + 

0.41*canopy cover 

Custom-

processed 

12.05% 10.07% 0.77 0.69 6.51 + 1.37*maximum height + 

0.50*canopy cover 
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Considering the full range of canopy cover computed at the pixel scale, ICESat-2-derived values were 

less correlated with reference airborne lidar estimates and weaker relationships were observed with 

NLCD canopy cover (2016 product) (Figure 2).  

(a)                            (b)                                        (c)                 (d) 

Figure 2: Airborne-lidar derived canopy cover versus ATL08 (a) and custom-processed ATL03 

canopy cover (b); NLCD canopy cover versus ATL08 (a) and custom-processed ATL03 canopy cover 

(b) (n = 339). 

4. Conclusions

While further investigations are needed to develop canopy cover characterizations with ICESat-2, 

current results for temperate forest conditions in the southern US highlight good agreements between 

ICESat-2-derived canopy cover from segments and reference airborne lidar estimates. Ongoing research 

serves to develop approaches for computing canopy cover over vegetated sites in the southern US and 

an examination of methods for developing a 30-m wall-to-wall product. 
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1. Introduction

Conservationists and forest managers rely on the precise mapping of individual trees from remote 

sensing data to efficiently derive forest attributes. In recent years, the additional quantification of 

deadwood in particular has attracted interest. However, tree-level approaches using segmented 

individual trees are still limited in their accuracy and their application is therefore mostly restricted to 

research studies. Furthermore, the combined classification of pre-segmented individual trees in terms of 

tree species and health status is important for practice, but has been insufficiently investigated so far. 

In addition, the application of Deep Learning (DL)-based methods for the classification of pre-

segmented individual trees based on lidar data has hardly been investigated so far. Hamraz et al. (2019) 

used a convolutional neural network (CNN) to classify coniferous and deciduous trees in a natural forest 

(330 stems/ha). By generating images from airborne laser scanning (ALS) point clouds (50 points/m²), 

a classification accuracy of 92% for conifers and 87% for deciduous trees was achieved. In a tropical 

wetland in southern China, Sun et al. (2019b) developed a patch-based classification algorithm for seven 

classes, including six individual tree classes (1,388 training samples, 362 test samples). Their most 

effective model classified image patches with an OA of 90%. In the same research area, Sun et al. 

(2019a) mapped 18 tree species using ALS data and high-resolution RGB imagery and achieved an 

overall accuracy (OA) of 73% at the individual tree level. Recently, Briechle et al. (2020) classified 

three tree species (pine, birch and alder) and standing dead pine trees with crowns using PointNet++ 

together with drone-based lidar data and multispectral (MS) imagery. In addition to 3D geometry, laser 

intensity values and MS features were also integrated into the classification process. Overall, their DL-

based method (OA = 90%) was successful using raw 3D data and superior to a baseline method using 

an RF classifier and hand-crafted features (OA = 85%). 

In this work, we introduce Silvi-Net, a dual CNN-based approach fusing airborne lidar data and MS 

images for 3D object classification. 

2. Data and Methods

In our studies, we analysed the performance of Silvi-Net using data collected in two study areas, the 

Chernobyl Exclusion Zone (ChEZ) and the Bavarian Forest National Park (BFNP). For both study areas, 

the lidar point density was about 55 points/m² and the ground sampling distance values of the true 

orthophotos were 10 cm (ChEZ) and 20 cm (BFNP). 

Using an interactive tool, single tree segments were manually labeled based on visual interpretation. 

In order to make our classification results independent of the segmentation quality, incorrect segments 

were generally not considered in the labeling process. In detail, the trees in the ChEZ were manually 

subdivided into the classes “pine”, “birch”, “alder”, and “dead tree”. In the BFNP, we labeled the trees 

with the categories “coniferous” (mostly spruce), “deciduous” (mostly beech and larch), “snag”, and 

“dead tree”. Here, “snag” refers to a partly or completely dead tree missing a crown or most of the 

smaller branches, whereas trees labeled “dead tree” are dead trees with crowns. The distinction between 

“snag” and “dead tree” was based on the subjective perception of three different research assistants. 

Finally, the labeled samples were randomly sorted into training, validation, and test datasets (Tables 1 

and 2). Note that we also included class balancing for both training and validation data. 
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Table 1: Number of samples for study area 

ChEZ; train/val/test split: 56%/14%/30%. 

Table 2: Number of samples for study area 

BFNP; train/val/test split: 51%/22%/27%. 

The methodology (Figure 1) is as follows: Initially, individual 3D trees are segmented from the lidar 

point cloud, and 12 silhouette-like side views are rendered and enriched with calibrated laser echo 

characteristics. Then, the projected outlines of the segmented trees are used to mask the MS orthomosaic 

and generate one image patch per tree. Next, two independent ResNet-18 networks are trained to learn 

relevant features from both datasets. This optimisation process is based on pre-trained CNN weights and 

recursive retraining of the model parameters. Subsequently, the extracted features are fused and fed to 

the final classification step. Here, we use a standard multi-layer perceptron that outputs 12 predictions 

per tree. Finally, we utilize majority voting to outvote individual misclassifications. 

Figure 1: Outline of the proposed method, Silvi-Net. 

3. Results and Discussion

In general, the trained models showed a high generalisation capacity on independent test data and 

achieved an OA of 96.1 % for the classification of pines, birches, alders and dead trees in the ChEZ and 

91.5 % for conifers, deciduous trees, snags and dead trees in the BFNP (Figure 2). Interestingly, lidar-

based imaging increased OA by 2.5 % (ChEZ) and 5.9 % (BFNP) compared to experiments using MS 

images only. Furthermore, Silvi-Net showed 11.3 % (ChEZ) and 2.2 % (BFNP) better OA compared to 

the baseline method PointNet++. 

It should be noted that the datasets differ in terms of forest types and sensor models as well as 

geometric and spectral resolution. Both the ground resolution and the number of spectral channels of 

the MS images are clearly higher in the ChEZ. Thus, the MS images in this study area contain more 

extractable information for tree classification which mainly explains the superior results in the ChEZ. 

Overall, Silvi-Net enables a convenient fusion of 2D and 3D data acquired by different sensor types. 

This allows information from the object geometry, laser intensity and reflection in the visible and NIR 

spectrum to be combined. Crucial here is the automatic extraction of meaningful features from 

previously generated 2D representations. The technique of transfer learning with pre-trained weights 

also enables fast model convergence, even with relatively small data sets. 

Nevertheless, we want to make clear that a well-functioning upstream segmentation of single trees 

is mandatory for Silvi-Net to work well. In our study, we used almost perfectly delineated single trees. 

These were generated by the normalised cut segmentation algorithm by manually labelling optimal 

segments. This minimised the effect of under- or over-segmentation. From a practical point of view, 
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however, many tree segmentation methods will cause problems in forests with even higher stand density 

and more canopy complexity. 

Figure 2: F1 scores per class for Silvi-Net in the ChEZ (left) and in the BFNP (right), using different 

feature sets. 

4. Conclusions

In this paper, we presented Silvi-Net, a dual CNN-based approach for the combined classification of 

pre-segmented 3D tree objects, especially with respect to tree species and deadwood. The innovative 

contribution of our study is the fusion of MS image patches and multiple side views rendered from 3D 

lidar data in a CNN-based approach. Using the transfer learning technique, Silvi-Net enables fast model 

convergence, even for datasets with a reduced number of samples. 

The effectiveness of our approach has been demonstrated using 2D and 3D datasets from two natural 

forest areas (400-530 trees/ha) collected with different sensor models and different geometric and 

spectral resolution. Consequently, users can produce reliable maps, which are of great importance for 

applications such as automated inventory and monitoring projects. 

In future work, the challenge will be to reliably classify ten or more individual tree species and 

structurally complex forests. This objective can be supported by improved optical sensors providing 

high-quality lidar point clouds and high-resolution multi-channel images. In addition, off-the-shelf 

CNNs and transfer learning can be applied to the specific task of tree species classification, even for 

relatively small datasets. 
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1. Introduction

Cork oak (Quercus suber L.) woodlands are important ecosystems in Mediterranean countries. They 

provide wood and non-wood materials, regulate water quality, prevent soil erosion, and provide cultural 

services for the community (Bugalho et al. 2011). This ecosystem is particularly valuable for Iberian 

economies, where 80% of global cork are produced (50% in Portugal, and 30% in Spain, APCOR 2019). 

Such importance made Portugal implement rigid protection laws to control exploitation of the cork oaks. 

The felling of cork oaks might be punishable by a fine, and authorized cuts (e.g., for road construction) 

must be compensated by the plantation of trees in an area 1.25 times larger than the intervened area. 

However, cork oak trees are frequently mixed with stone pines (Pinus pinea L.), which are used for cone 

and pine kernel production. The spatial heterogeneity of both species in the stands creates difficulties to 

traditional forest inventory. An alternative is using remote sensing techniques to collect tree-level data. 

In this case, individual tree detection (ITD) using remote sensing must be used along with species 

classification algorithms.  

Airborne laser scanning (ALS) and ITD data are widely applied for tree species classification 

(Fassnacht et al. 2016). The process involves isolating trees in the point clouds and computing metrics 

to be used as predictors in classification models. Different approaches can be used for supervised 

classification, namely the linear discriminant analysis (LDA), k-nearest neighbors (kNN), random forest 

(RF), artificial neural networks (ANN), and support vector machines (SVM) – see Korpela et al. (2010) 

and Deng et al. (2016). Most research compared these approaches for the case of boreal and temperate 

forests. However, to the best of our knowledge, there is still limited information regarding their 

effectiveness in Iberian woodlands. Thus, this study aims to benchmark different classification 

approaches to distinguish between cork oak and stone pine trees in pure and mixed stands. We tested 

LDA, kNN, RF, ANN, and SVM assessing for classification accuracy with different training data sizes. 

2. Methods

The study area was in the Alentejo region, in mid-south Portugal. The forest stands were in powerline 

wayleaves (Figure 1a). High-density ALS data (>45 returns m-2) were collected using a helicopter flying 

at low altitude. ALS data analysis was conducted using lidR package (Roussel et al. 2020), so please see 

the package documentation for further details about ALS data processing. Trees were segmented based 

on Silva et al. (2016) algorithm. Visual inspection was conducted to select 1000 cork oaks and 1000 

stone pines trees to build the training data (Figure 1b).  Packalén et al. (2012) simulated annealing 

algorithm was used to select 15 predictor metrics (Table 1). The selections were based on the Kappa 

coefficient, where Kappa=(po-pe)/(1-pe), po is the relative observed agreement, and pe is the probability 

of chance agreement. LDA was trained using the MASS package (Venables and Ripley 2002), kNN with 

yaImpute (Crookston and Finley 2008), RF with randomForest (Liaw and Wiener 2002), ANN with 

nnet (Venables and Ripley 2002), and SVM with e1071 (Meyer et al. 2020). kNN was trained using 

k=5, inverse distance weighting, and distance metric computed using Euclidean distance (kNN_Euc), 

Mahalanobis (kNN_Mah), most similar neighbor (kNN_MSN), and random forest (kNN_RF). ANN 

was trained using a single hidden layer with 10 neurons. All other model hyperparameters were set to 

package default. 

Random and balanced samples of the original dataset were used to compare models. We tested 

training data sizes of 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 600, 800, 1000, 1500, and 2000 

trees. The models were compared using the Kappa statistic and overall accuracy (i.e., percentage of 

agreement) computed by 10-fold cross-validation repeated 100 times for each training data size.  
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Figure 1: a) Images of the area; b) Examples of cork oak (top row) and stone pine (bottom row) trees. 

Table 1. ALS metrics used in the models. 

Type Metrics* 

LDA h35, h45, h60, h80, h95, hd3, hd8, hsmean, hmax, hsd, hkurt, idq90, isd, curv, line 

kNN_Euc h20, h45, h55, h85, h90, hd4, hd6, hsd, hamean, hsmean, hcmean, hskew, imax, idq90, plan 

kNN_Mah h10, h45, h75, h85, h90, hd1, hd4, hd6, hd7, hd8, ha2m, idq30, imean, iskew, sphe 

kNN_MSN hd5, hd7, hd8, hd9, hmean, hamean, hcmean, hsd, ha2m, imean, isd, iskew, λm, line, sphe 

kNN_RF h5, h15, h60, h85, hd2, hd3, hmax, ha2m, idq10, ikurt, imean, isd, line, sphe, hori 

RNA h5, h10, h20, h40, h75, hd1, hd2, hd6, hd7, hd9, hdq70, isd, iskew, hori, plan 

RF h30, h40, h85, h90, hd2, hd6, hd7, hmean, isd, hcv, idq10, idq90, ikurt, isd, line 

SVM h30, h35, h50, h60, h65, h85, hd8, hskew, imax, isd, idq10, λl, line, sphe, anis 
*Prefixes h and i indicate return height and intensity metrics and subscripts indicate the following statistics: x-th percentile (x), maximum 

(max), mean (mean), square mean (smean), cubic mean (cmean), kurtosis (kurt), skewness (skew), standard deviation (sd), coefficient of 

variation (cv), interquartile distance range (iqr), percentage below the x-th height fraction (dx) in a total of 10 fractions, percentage of returns 

above 2 m (pa2m), percentage or returns above mean (amean), percentage below the x-th height percentile (qx); vertical complexity index 
(vci); eigen-based metrics: (λs), medium (λm), and largest (λl) eigen values, anisotropy (aniso), curvature (curv), horizontality (horiz), linearity 

(line), planarity (plan), and sphericity (spher). 

3. Results and discussion

Each approach had similar patterns for Kappa and overall accuracy (Figure 2). kNN_RF performed the 

best but comparable to RF and SVM. ANN had an intermediary performance. LDA, kNN_Mah, and 

kNN_MSN had poor and similar performances, while kNN_Euc performed the poorest. All approaches 

improved performance rapidly when more training data were used, but marginal improvements were 

noted after 400-600 training trees. For instance, when using >600 trees kNN_RF, RF, and SVM had 

Kappa values between 0.70-0.75 and 85-87% of accuracy, ANN had between 0.65-0.70 for Kappa and 

82-84% of accuracy, and the others between 0.48-0.58 and 74-79%.  

Figure 2: Kappa coefficient (left) and overall accuracy (right) for different training data sizes. 

kNN_RF has been successfully used to classify tree species in boreal forests (Vauhkonen et al. 

2010), and SVM, RNA, and RF in temperate forests (Deng et al. 2016). The advantage of RF and 

kNN_RF is their ability to handle high-dimensional datasets. However, Åkerblom et al. (2017) obtained 

better results with kNN_Euc distance than with SVM. Differently from Åkerblom et al. (2017), we did 

not tune the model hyperparameters, which might explain our poor performance for kNN_Euc. The 

minimal training data size was in line with the literature, where Korpela et al. (2010) found accuracies 

around 87% using kNN_MSN and just 300 training trees in boreal forests. Other factors might affect 
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the accuracy of the classification algorithms, such as the point density, ALS metrics, and forest structure. 

Our analysis involved only two classes, so it is likely that less effective results are achieved if more 

species are included. The effect of the ITD algorithm was also not considered, but the experience 

suggests this would not be significant if well-calibrated algorithms are used. Furthermore, our study 

involves sparse broad leave and conifer trees, so it is possible that analyses based on satellite images 

also provide satisfactory results for a more cost-effective inventory. All these topics must be addressed 

in further studies for the case of woodlands and mixed stands of cork oak and other species. 

4. Conclusion

kNN_RF, RF, and SVM were the best models to distinguish cork oak from stone pine trees using ALS 

and ITD. Balanced training data of 400 trees allowed training models with Kappa ≥0.7 and overall 

accuracy >83%. 
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Abstract 

The use of lidar in operational forest inventories continues to proliferate. For the current forest inventory 

cycle, the province of Ontario, Canada has committed to the acquisition of single photon lidar (SPL) for 

approximately 550,000 km2 of forest area over the next decade. We report on recent and ongoing 

investigations that explore the capacity of SPL to provide data that can effectively support area-based 

forest inventories and provide quality digital elevation products. We share results of our assessments of 

both forest inventory outputs and digital elevation models, informed by comprehensive independent 

reference data, and provide insights on lessons learned for large area implementation and opportunities 

for innovations to address other forest inventory information needs with the SPL data. 
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1. Introduction
NASA's ICESat-2 was launched in the fall of 2018 and is collecting a huge amount of data globally.  
One of ICESat-2 Level-2 products, ATL03, provides time, latitude, longitude, and ellipsoidal height for 
each photon downlinked from Advanced Topographic Laser Altimeter System (ATLAS) (Neumann et 
al., 2021). However, noise could seriously affect the observation results, accurate classification of 
photons is the basis of subsequent study. Some photon classification algorithms have been proposed in 
the past. Zhang's algorithm based on DBSCAN (2014) and Zhu's algorithm based on OPTICS (2021) 
use density clustering to distinguish photons. Their methods are affected by parameters and need to be 
verified in large-scale study area. ATL08, one of ICESat-2 products, is using the Differential, Regressive, 
and Gaussian Adaptive Nearest Neighbor (DRAGANN) filtering technique by adaptive neighborhood 
search to identify and remove noise photons (Neuenschwander et al., 2021). According to the distribution 
features of photons, Chen modified Local Outlier Factor (LOF) algorithm by defining the ellipse search 
area to filter the noise (Chen et al., 2019a).  

Based on Chen's research, we proposed some methods to adapt the algorithm for large scale ATLAS 
data processing. Using ATL03 data in our study area, we classified photons by our improved algorithm. 
Then we used signal photons to predict heights of canopy. Results show that our improved algorithm 
could effectively remove noise photons. 

2. Data and Methods
Our study area is located in the Saihanba Forest Farm, Hebei Province, north of China. We used the 
ATL03 data acquired at the night of June, 2019 by strong beam in this area as the original data for 
photon classification. The data of airborne lidar was used as reference data (Pang et al., 2021), and the 
acquisition time of airborne lidar data was the summer of 2018. The location of our study area is shown 
in Figure 1 (a). 

(a) The location of our study area. (b) The classification result of our algorithm. 

Figure 1: The location of our study area and the classification result of our algorithm. 
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Firstly, based on LOF with Ellipse Searching Area, our methods proposed to adapt the algorithm 
for large scale ATLAS data processing are as followed:  

(1) Coarse Denoising by LOF with Horizontal Ellipse Searching Area. After the signal interval is 
determined by the elevation histogram, coarse denoising is carried out. The purpose of this method is to 
use the algorithm to find ground photons, so as to filter out noise photons far away from ground surface. 
Because the density of ground photons is usually larger than others, and ground photons is always 
distributed in the lower part of signal photons, it is not hard to extract coarse ground photons by LOF 
algorithm. Then we can get coarse terrain in the area. In order to avoid local dense photons affecting the 
extraction of ground photons, the number of domain members can be selected larger in LOF algorithm.  

(2) Accurate Denoising by LOF with Rotating Ellipse Searching Area. The purpose of this method 
is to reduce the influence of terrain slope on LOF algorithm by ellipse searching area adapted to terrain. 
Photons after coarse denoising are divided into several intervals along the track. We calculate the terrain 
slope by coarse ground photons in the interval. In each interval, rotating angle of ellipse searching area 
is equal to the terrain slope. Then, we calculate LOF scores for photons in the interval to classify signal 
photons and noise. In order to avoid the influence of boundaries on LOF, we set buffers on the left and 
right sides. Finally, according to the spatial distribution, the signal photons are classified as Top of 
Canopy photons, Canopy photons and Ground photons.  

Secondly, we used airborne lidar data as the reference to analyze accuracy of our algorithm in 
different scales. We generated DTM and CHM with 1m resolution by airborne data, then extracted 
corresponding region by UTM coordinates of photons. The length of this region is the same as that of 
track about 10000 m, and the width is 17m, which is similar to the diameter of footprints. In this region, 
we calculated mean terrain height per meter along the track in DTM as the reference terrain height, and 
calculated the canopy heights of ATL data. CHM was used to compute canopy heights from airborne 
lidar data. Referring to the work by Neuenschwander et al. (2020), we regarded the 98th percentile  of 
the reference heights (RH98) as evaluation metric, and set up nine different scales ranging 20 m to 100 
m. ATL_RH98 means 98th percentile of signal photon heights, and ALS_RH98 means 98th percentile of
all return heights. 

3. Results and Discussion
According to the methods mentioned above, the result of classification of our algorithm is shown in 
Figure 1 (b). We could find that most signal photons can be classified correctly, and our method can 
adapt to terrain changes and accurately extract signal photons in steep terrain areas. A small number of 
signal photons close to the ground (higher than the ground) would be misclassified as noise due to their 
lower local density. 

The results of canopy heights comparison are shown in Table 1 and Figure 2. The results show that 
canopy heights calculated from classified photons have good consistency with airborne lidar data, and 
we get the minimal Root Mean Squared Error and the maximal R-square at 70 m. When research scale 
goes beyond 50 m, canopy heights from classified photons are in better consistency with ALS data. At 
the same scale, canopy heights have smaller RMSE, which shows that our improved algorithm can 
effectively remove part of noise photons which are difficult to be removed by the original algorithm in 
Chen’s research (Chen et al., 2019b). 

The goal of this study is to verify the accuracy of photon classification algorithm by canopy heights. 
The following two reasons might contribute to those points with large errors of canopy height. Firstly, 
the noise with large local density are hard to be filtered by our methods and are misclassified as signal 
photons, resulting in the errors of canopy height. Secondly, the ATL03 data contains photons from land 
buildings, while the ALS data filters the data of land buildings. This difference will lead to errors. In 
future study, we will further improve our methods and reduce the errors caused by inconsistent data. 

Table 1. The evaluation in the RH98 between our algorithm and airborne lidar data for different scales. 
Scales 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 100 m 

R2 0.74 0.80 0.80 0.84 0.83 0.92 0.81 0.85 0.84 
RMSE (m) 2.76 2.30 2.22 1.84 1.88 1.18 1.89 1.65 1.54 
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(a) 20 m (b) 30 m (c) 40 m 

(d) 50 m (e) 60 m (f) 70 m 

(g) 80 m (h) 90 m (i) 100 m 
Figure 2: The comparison results in the RH98 between our algorithm and airborne lidar data for 

different scales. 

4. Conclusions
In this study, we made some improvements to adapt the algorithm for large scale ATLAS data 
processing. We classified photons as Noise, Top of Canopy photons, Canopy photons and Ground 
photons in ATL03 data and by comparing canopy heights calculated by classified photons with that 
calculated by ALS data, the results indicate that our method can effectively separate signal photons and 
noise in different terrain. 

Acknowledgements 
This study was funded by the Natural Science Foundation of China (41871278) and National Key 
Research and Development Program of China (2017YFD0600404). 

References 
Chen B W, Pang Y, Li Z Y, et al, 2019a. Ground and Top of Canopy Extraction From Photon-Counting LiDAR 

Data Using Local Outlier Factor With Ellipse Searching Area. IEEE Geoscience and Remote Sensing Letters, 
16(9):1447-1451. 

Chen B W, Pang Y, Li Z Y, et al, 2019b. Potential of Forest Parameter Estimation Using Metrics from Photon 
Counting LiDAR Data in Howland Research Forest. Remote Sensing, 11(7):856-877. 

Neuenschwander A, Guenther E, White J C, et al, 2020. Validation of ICESat-2 terrain and canopy heights in 
boreal forests. Remote Sensing of Environment, 251 (2020) 112110. 

Neuenschwander A, Pitts K, Jelley B, et al, 2021. Ice, Cloud, and Land Elevation 1 Satellite 2 (ICESat-2) 
Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08). 
National Aeronautics and Space Administration, Goddard Space Flight Center. 

Neumann T, Brenner A, Hancock D, et al, 2021. Ice, Cloud, and Land Elevation Satellite–2 (ICESat-2) Project: 
Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03). National 
Aeronautics and Space Administration, Goddard Space Flight Center. 

Pang Y, Liang X J, Jia W, et al, 2021. The comprehensive airborne remote sensing experiment in Saihanba forest 
farm. National Remote Sensing Bulletin, 25(4):904-917. 

Zhang J, Kerekes J, Csatho B, et al, 2014. A clustering approach for detection of ground in micropulse photon-
counting lidar altimeter data. 2014 IEEE Geoscience and Remote Sensing Symposium. 

Zhu X X, Nie S, Wang C, et al, 2021. A noise removal algorithm based on OPTICS for photon-counting LiDAR 
data. IEEE Geoscience and Remote Sensing Letters, 18(8):1471-1475. 

169



GEDI data evaluation and canopy height change analysis--a 
case study in the Northeast of China 

Xiaojun Liang1,2, Yong Pang1,2*, Zengyuan Li1,2 

1Institute of Forest Resource Information Technique, Chinese Academy of Forestry, Beijing 100091, China; 
2Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland, Beijing 100091, China 

Email: Stanfordlxj@163.com; pangy@ifrit.ac.cn 

Highlight: 

In order to evaluate the effectiveness and accuracy of Global Ecosystem Dynamics Investigation (GEDI) 

in canopy height measurement, a set of rules was designed to filter the GEDI L2A version 2 data and 

compare the consistency with airborne observation data. Then, the airborne data of two periods were 

combined to evaluate canopy height growth. 

Key words: GEDI, canopy height, data filter, Change of tree growth 

1. Introduction

A new generation of satellite mission of LiDAR observations Global Ecosystem Dynamics Investigation 

(GEDI) has launched and a member of data has released publicly (Dubayah et al., 2020), in which the 

Relative Height(RH) energy metrics were used to calculate canopy height. We conducted experiments 

to evaluate the effectiveness of GEDI canopy height inversion in low slope topography in the northern 

forest region of China. The 99th quantile height (H99) of airborne laser scanning (ALS) data was used 

to evaluate the accuracy of RH, and the changes in canopy height of larch forest were evaluated based 

on RH index combined with ALS data of two periods. 

2. Content

First, GEDI data was filtered based on the method of the latest research results (Dorado-Roda et al., 2021; 

Guerra-Hernández et al., 2021; Rishmawi et al., 2021; Potapov et al., 2021). In addition, under the 

premise of satisfying the filter rules, it should be synchronized with ALS observation time as much as 

possible. 

The screening rules are as follows: (1) Footprints located in the forest area, no forest management 

activities; (2)Value of quality flag was 1, do not affected by clouds and rain; (3) Different types of beams 

effectively covered the ALS observation area; (4) GEDI RH99 was greater than 2 m; (5) The 

subcompartment was buffered inward by 25 m to reduce the impact of positioning errors and stand edge 

effects. 

The distribution of footprints filtered is shown in Figure 1, and the data collection time of GEDI and 

ALS is shown in Table 1. 

Figure 1: Distribution of filtered GEDI footprint for canopy height assessment 
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Table 1. Data acquisition description. 

Data Time(YYYY.M.D H) Description 

GEDI L2A 2020.5.2 2 Chinese time 

Used for canopy height 

assessment 

2020.5.6 1 

2020.7.26 17 

2019.7.4 2 Used to assess canopy 

height changes 2019.5.11 23 

ALS data 2017.6 Used to assess canopy 

height changes 

2020.9 Used to evaluate the 

inversion and change of 

canopy height 

Secondly, we used the method in the literature (Potapov et al., 2021) to calculate the H99 in the 

footprint level based on ALS data, and combined with the forest types in the footprint level covered area 

marked by hyperspectral image (HSI). 

Then, we evaluated the GEDI canopy height based on the data of the filtered and marked. Based on 

the data usage instructions published by NASA LPDAAC (Dubayah et al., 2020), the difference of night 

and day acquisition time of GEDI L2A data on the data accuracy were analysed firstly. Then the full 

power beam and the "cover" beam were analysed. Secondly, based on the above analysis results, the 

inversion results were analysed by forest types. The analysis results based on determination coefficient 

R2 were shown in Figure 2 below. 

The footprint during the 

day; n=303 

The Cover beam during the 

night; n=333 

The broadleaved forest full 

power footprint during the 

night; n=249 

The evergreen coniferous 

forest full power footprint 

during the night; n=85 

The footprint during the 

night; n=752 
The full power beam 

during the night; n=419 
The coniferous forest full 

power footprint during the 

night; n=170 

The deciduous coniferous 

forest full power footprint 

during the night; n=85 

Fig. 2. Effectiveness and accuracy evaluation of canopy height inversion using GEDI RH index 

According to the analysis results above, the footprints of full power beam during the night have the 

best inversion capability for the canopy height of deciduous coniferous forest. In further study, the 

results showed that the R2 of 75th  percentile height (usually used to describe mean canopy height) 

between ALS and GEDI were 0.8196 and 0.8165 for evergreen and deciduous forests, respectively. 

Finally, the GEDI data in 2019 were filtered based on the above filtered rules, and the canopy height 

change analysis was made by combining the ALS point cloud data in 2017 and 2020. As shown in Fig.3, 

the change value from 2017 ALS to 2019 GEDI was 2.394m, and 1.298m from 2017 ALS to 2020 ALS, 

among all selected larch forest canopy height changes at footprint level. 
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Fig. 3 Distribution of canopy height change in footprint level 

As the results shown in Figure 3, GEDI overestimated coniferous forest change. However, the mean 

canopy height (calculated by H75 of ALS and RH75 of GEDI, respectively) was underestimated. 
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1. Introduction

Leaf area is a key variable of forest ecosystems functioning, as it controls energy, water and carbon 

exchanges between canopy and atmosphere. Quantifying and understanding these fluxes require a fine 

scale 3D description of vegetation structure, including the spatial distribution of leaf area density. 

Leaf Area Densities (LAD, m2/m3) are the one-sided areas of leaves per unit of volume. Their 

vertical integration provides leaf areas per unit of ground surface, i.e. the Leaf Area Index (LAI, m2/m2), 

which is key variable for parametrization of ecophysiological and 3D radiative transfer models in 

forests. Yet, measuring LAD manually is complex and time-consuming and hemispherical photos 

methods are limited by vegetation clumping and are not designed for 3D estimations. 

LiDAR technology has the potential to capture at high-throughput the required level of details for 

3D description of canopy structure. While space-based or aerial LiDAR cover large areas, the size of 

their footprints and occlusion of signal limit the fine quantification of 3D spatial distribution of canopy 

components, in particular in medium to low vegetation. Terrestrial LIDAR operates from the ground 

level and provides high-density point clouds. This sensor has been widely used to assess wood volumes 

in forest inventories, generally relying on a discrete reconstruction of trunks and large branches. 

The use of terrestrial LiDAR to quantify leaf area is limited by significant bottlenecks. First, the 

appropriate choice of variables and statistics of interest for relating point cloud to LAD is still debated. 

Second, beam divergence affects the sampling of heterogeneous surfaces (Béland et al., 2011), while 

interactions between impulsions and canopy elements depend on laser characteristics and vegetation 

material properties, involving complex physical processes. Third, a low number of sampling beams can 

bias LAD estimators, and may even preclude providing estimations in some areas of the scene (Pimont 

et al., 2018). The present work aimed at disentangling these various sources of biases and errors, and 

proposed unbiased methods for LAD estimations in forest plots from terrestrial LiDAR point clouds. 

2. Methods and data

We relied on a statistical approach relating metrics from TLS point-clouds and attenuation coefficient 

of vegetation within elementary volumes called ‘voxels’. Our work characterised and limited the 

sensitivity of this approach to statistical biases, vegetation structure and sensor properties. 

2.1 Theoretical estimation of LAD 

The first step focussed on the evaluation and correction of statistical biases inherent to the various 

inversion methods of transmittance described in the literature. We relied on a theoretical framework to 

control vegetation properties and sampling with numerical references for LAD (Pimont et al., 2019). 

Such simulations allowed testing promising variables, and formalizing biases in order to rigorously 

develop and compare unbiased estimators. A specific effort was put in making use of all geometric 

information available from TLS data, i.e. free path explored by beams within voxels before interception. 
A maximum likelihood for the coefficient of attenuation within a given voxel was rigorously 

retrieved and corrections for both low sampling configurations and size of leaf elements were 

implemented (Pimont et al., 2018). Confidence intervals associated with this unbiased estimator were 

also provided. 
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2.2 Test of LAD estimators on actual tree branches 

Theoretically unbiased estimators were tested at branch scale in laboratory conditions under various 

scanning conditions and compared with destructive references (Soma et al., 2018).  

Three tree species of distinct leaf morphology were selected to evaluate the quality of LAD 

estimators in a range of structural diversity. Branches were scanned with two LiDAR instruments relying 

on two different technologies, namely phase-shift and time-of-flight instruments. Scans were performed 

from distances ranging from 2.5 m to 20 m. Series of scans were conducted on fully foliated branches, 

half-foliated and defoliated branches in order to extent the range of sampled LAD.  

Leaves were manually harvested, weighted and 2D flat-scanned after each step to retrieve reference 

biomass and area of leaves for each branch. This step allowed testing robustness of LAD estimators 

regarding biases related with actual vegetation structure (clumping effect/voxel size, leaf size and 

morphology) and with instrument limitations (sampling variations, beam divergence and noise). An 

empirical correction factor 𝐻 was estimated to account for these effects in the various tested 

configuration, resulting in the LAD estimate 𝐿𝐴�̃�:

𝐿𝐴�̃� =
𝐻

𝐺
�̃� =

𝐻

𝐺 ∑𝑧𝑒
(Ni −

∑ 𝑧𝑒ℎ𝑖𝑡𝑠

∑𝑧𝑒
) (1) 

with 𝑧𝑒 the effective free path of beams within a voxel, ∑ 𝑧𝑒ℎ𝑖𝑡𝑠  the sum of  𝑧𝑒 for intercepted beams

only,  and 𝐺 the effective area of interception of leaves, generally assumed to be equal to 0.5. 

2.3 Field estimation of LAD at tree scale 

The developed LAD estimators were applied to 15 isolated trees, scanned from 6 viewpoints. 

We used LAD unbiased estimators and calibrations developed in previous steps to estimate total 

tree leaf areas and LAD profiles. Absolute references were obtained from manual harvest. This field 

campaign allowed evaluating our method, test the robustness of the approach and identify its limits.  

2.4 Influence of sampling and estimations in occluded volumes with kriging 

Further analyses were conducted with a virtual scene representative of a forest plot in which the 

reference 3D distribution of LAD is known -contrary to field experiments (Soma et al., 2021).  

First, the aim of this numerical experiment was to evaluate the magnitude of biases and errors 

resulting from vegetation heterogeneity and sampling limitations at plot scale. Regarding references and 

confidence intervals, we disentangled the role of number of scans and voxel size on LAD estimations. 

Second, we used this scene to develop a specific kriging method to provide an unbiased estimator 

for LAD estimation in poorly sampled and occluded areas (Soma et al., 2020).  

3. Results and discussion

3.1 A theoretically unbiased LAD estimator 

The numerical framework allowed the comparison of several LAD estimators regarding their potential 

biases and variances (Pimont et al., 2018). They are valid under several major assumptions, in particular 

a random sampling with infinitely thin beams. The newly proposed formulations are robust in a wider 

range of LAD values, elements size and number of beams than the usually used LAD estimators.  

We recommend using the LAD estimator relying on the maximum likelihood approach because it 

was the less sensitive to the various sources of bias. 

3.2 Voxel size and distance effects 

Branch scale experiment revealed higher underestimations of LAD when voxel size increased whatever 

the type of vegetation or instrument. Such effect might result from heterogeneity of vegetation 

distribution within a given voxel. Additionally, with the phase shift instrument, raising the distance 

between the sensor and the measured branch yielded large overestimations, which might be related to 

beam divergence, which affects the effective footprint of the instrument. 

Correction factors for these effects were provided for the studied species and according to voxel 

size. After theses corrections, we obtained LAD estimations with 20% errors compared to actual 

vegetation using the recommended estimator with the tested instruments (Soma et al., 2018). 
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3.3 Tree scale estimation 

Application of the method to individual trees showed that corrections developed in previous steps 

produced reliable estimations providing the canopy is appropriately sampled (Fig. 1).  

Figure 1. A) Comparison of LiDAR estimations of total tree leaf areas versus references for 3 species 

and 2 voxel sizes. B) Comparison of LAD profiles obtained from LiDAR with 0.1 m and 0.5 m voxels 

versus references. C) 3D distribution of leaf areas with 0.1 m voxel size. 

3.4 Sampling limitations at plot-scale 

At stand scale, the oversampling of voxels containing few vegetation compared to dense voxel 

negatively biased the computation of mean LAD profile. The magnitude of this bias depends on height 

in canopy, vegetation structure, scan design and voxel size. We found that using 0.5 m voxels was more 

appropriate because it eased corrections of other biases. 

The developed LAD kriging method provided correct estimations in occluded voxels, and yielded 

better results at stand level than ignoring these areas. This method was validated in an actual forest plot. 

4. Conclusions

The combination of theoretical analyses, field experiments and numerical experiments allowed to get a 

comprehensive understanding of processes involved in remote sensing of LAD with terrestrial LiDAR. 

In this study, the different sources of bias in LAD assessment were disentangled and ranked. Solutions 

to correct those biases at different scales, from branch to forest plots, have also been suggested. 
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 1. Introduction
Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. It
is known that the growth of trees is affected by the availability of growth resources such as
temperature, nutrients, water and sunlight as well as competition between trees (e.g. Tomé and
Burkhart 1989; Ericsson et al. 1996). With limited growth resources, a tree aims to reach its living
crown upwards for enhanced lighting conditions before allocating growth to its supporting structures
(Oliver and Larson 1996). Therefore the allometric relationship between primary and secondary
growth of trees has been considered as an indicator of trees’ adaptation to the environment (King et al.
2006; Bartholomé et al. 2013).

Observing changes in tree characteristics has conventionally required either retrospective
measurements of destructively sampled trees or modeling (Weiskittel et al. 2011; Kershaw et al. 2016).
The use of close-range sensing techniques such as terrestrial laser scanning (TLS) have today enabled
non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree
communities in space and time (e.g. Dassot et al. 2011; Liang et al. 2016). Prior studies have shown
that the characteristics of both stem (e.g. Liang et al. 2013; Olofsson and Holmgren 2016; Saarinen et
al. 2017) and crown (e.g. Henning and Radke 2006; Seidel et al. 2011, 2015; Metz et al. 2014) can be
characterized using point cloud-based methods. Changes in the structure of trees and tree communities
can then be analysed when the point cloud acquisition campaign is repeated to cover a few years
monitoring period (e.g. Luoma et al. 2019, 2021; Yrttimaa et al. 2020a).

This study aims at improving the understanding of tree allometry in general and the relationship
between tree stem and crown dynamics in particular using bitemporal TLS point clouds. As presented
in prior studies (e.g. Seidel et al. 2015; Pretzsch 2021), tree growth is seemingly affected by stem and
crown structure that can be accessed using point cloud-based methods. The objective of this study was
thus to investigate how tree crown structure and its dynamics reflect changes in stem characteristics.
We hypothesize that the growth of attributes characterizing tree stem dimensions (i.e., basal area and
stem volume) is related to the attributes characterizing tree crown structure and its changes (i.e.,
projection area, perimeter, surface area, volume, length, center of mass). The findings of this study are
assumed to be beneficial in justifying upscaling applications where detailed ground-sampled
information from the target tree characteristics of interest is generalized at the entire forest landscape
level by making use of the allometric relationship between the target characteristics and features
obtained from airborne remote sensing techniques.

 2. Materials and methods
The experimental design of this study consists of 37 circular sample plots (r = 11 m) and 1280 trees
and is located in Evo, southern Finland (61°19.6′ N 25°10.8′ E). The study site encompasses diverse
southern boreal forest structures including both managed and single-layered as well as unmanaged and
multi-layered forests. A multi-scan TLS campaign was first carried out in the spring/summer of 2014
(T1) and repeated in the autumn of 2019 (T2) to capture at least a five-year monitoring period in
between the observations (for more details, see Yrttimaa et al. 2020a). A point cloud classification
procedure presented in Yrttimaa et al. (2020b) was applied to detect trees and to separate points
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originating from tree stem (i.e. stem points) from points originating from branches and foliage (i.e.,
non-stem points). The stem points and a point cloud processing method developed in Yrttimaa et al.
(2019) were used to derive stem attributes such as basal area and stem volume at T1 and T2. Attributes
characterizing crown structure were obtained by enveloping the non-stem points with a 2D/3D-convex
hull object for which a set of features, such as projection area, perimeter, surface area, volume, length,
and center of mass, were derived. Changes in the examined stem and crown attributes were computed
by subtracting the T1-attributes from the T2-attributes (see Figure 1). Correlation coefficient (r) was
utilized in assessing the relationship between the stem and crown attributes.

Figure 1. Illustration of the tree characteristics derived from the classified point clouds.

 3. Results and discussion
A total of 736 trees could be detected from the point clouds at both time points with their stem and
crown characteristics derived using the point cloud-based methods. Investigations of the relationships
between stem growth and crown dynamics revealed that basal area increment and stem volume
increment were best correlated with attributes characterizing the crown dimensions at T1 and T2.
Correlation coefficient of 0.37-0.46 was obtained depending on the crown attribute in question (see
Table 1). The relationship was noticed to be stronger (r = 0.65-0.77) for trees in managed sample plots
with sparse and even canopy structure. This finding is in line with that reported by Seidel et al. (2015)
that the physical dimensions of a tree crown are closely related with radial tree growth. However,
seemingly lower correlations were recorded between stem growth and changes in the crown
characteristics (Table 1). Changes in the center of mass of the crown as well as crown length were the
most correlating crown characteristics with r = 0.17-0.23. This can be explained by the fact that, in
general, tree growth is affected by competition between trees that can be captured through the
structural status of a tree crown (Metz et al. 2013; Seidel et al. 2015). Here, the monitoring period
covered a relatively short period of time with respect to the lifespan of trees in boreal forests. As per
the general knowledge, a tree prioritizes reaching its living crown upwards for enhanced lighting
conditions before allocating growth to its supporting structures (Oliver and Larson 1996). Thus,
changed growing conditions first affect the dynamics of crown structure with stem growth following
with a delay. More prediction power for estimating stem growth through the structure of tree crown is
assumed to be gained by taking neighbourhood competition into account (see e.g. Metz et al. 2013).

Table 1. Correlation coefficient (r) indicating the relationship between increments in stem dimensions
(basal area and volume) and crown characteristics derived at T1/T2 and their change (in parenthesis).

Crown characteristics Basal area increment Stem volume increment
Projection area 0.45 (0.05) 0.38 (0.10)

Perimeter 0.46 (0.04) 0.37 (0.09)
Surface area 0.46 (0.11) 0.40 (0.25)

Volume 0.45 (0.06) 0.42 (0.25)
Center of mass 0.40 (0.19) 0.36 (0.23)

Length 0.33 (0.17) 0.30 (0.23)
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1. Introduction

In 2018, NASA launched the Global Ecosystem Dynamics Investigation (GEDI) mission, a high 

resolution lidar system installed onboard the International Space Station (ISS). It is producing high 

quality 3D observations of the Earth surface structure, which are highly relevant to study forest 

ecosystems at a global scale (Qi et al. 2019). GEDI data is composed of 25 m diameter circular footprints 

for which the waveform of the received energy intensity returned by the ground is recorded. Each GEDI 

footprint is georeferenced and its positioning accuracy (for version 1 releases) is estimated at 15-20 m 

in planimetry with a systematic component of 8-10 m and a noise of the order of 8 m (1). A final 

horizontal geolocation accuracy of 8 m is expected after further processing in the final version (Dubayah 

et al. 2020).  

Compared to most other spatial satellites the ISS is much closer to earth, causing more variations in 

its orientation and altitude. Therefore, geolocating data acquired by ISS sensors is more diffucult than 

geolocating data aquired by satellites (Dou et al. 2014). An improved geolocation of GEDI data is 

mandatory to evaluate their quality, by comparison with other earth observation data or field 

measurements, and to further facilitate their integration in ecosystem monitoring approaches. We 

propose a method to improve the georeferencing of GEDI footprints using a precise Digital Terrain 

Model (DTM). 

2. Data and Methods

2.1 Data 

The study site is located in south-western France and includes the Landes forest, the largest metropolitan 

French forest. All GEDI data of the study site has been downloaded from NASA’s archive center. 

However, for this study, we will focus on version 1 of the level 2A product of the orbit N°3709, acquired 

during daytime on August 8th 2019. The area intersected by this orbit is mainly agricultural with several 

small tree patches. To avoid issues with ground elevation estimation, only high quality and full power 

data are used (Duncanson et al. 2020). The latitude, longitude and elevation of the lowest mode (i.e. 

ground peak) are respectively assimilated to the footprint centre coordinates and the mean ground 

elevation within the area covered by the footprint. The height of the highest canopy return (i.e. RH 100) 

is also extracted. 

The reference DTM used is a 1 m resolution DTM (RGE Alti©) of the National Institute of 

Geographic and Forest Information (IGN) derived from both airbone lidar data and airbone stereoscopic 

images. The vertical accuracy (Root Mean Square Erreur, RMSE) is either 30 cm or 70 cm, depending 

on the data source. To allow comparison with GEDI, a moving window algorithm was applied to the 

DTM, by computing for each pixel the average DTM value in a 25 m circular window. The resulting 

1 m resolution focal DTM was referred to as DTMref.  

A photogrammetric digital surface model (DSM) derived from aerial photographs (1 m resolution) 

acquired in summer 2018 was also provided by IGN. As for the DTM, a DSMref is created using the 

same moving window algorithm and the maximum focal statistic. For each 1 m grid cell, the maximum 
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height value of the surrounding 25 m diameter circle of the DSM is assigned, which is assumed to be 

comparable to the elevation of the highest canopy return of a GEDI footprint. 

2.2 Methods 

The geolocation adjustment method assumes that, 1) errors between GEDI ground elevations and 

DTMref are minimal when the footprints are shifted by a distance in latitude (Y) and longitude (X) 

corresponding to the effective geolocation of the GEDI footprints and 2) the shift remains optimal for a 

subset of contiguous footprints acquired within a time period and despite possible abrupt changes in ISS 

orientation and altitude; the maximum length of such subset needs to be defined. 

The optimal shift is obtained by testing all possibilities (by 2 m steps) within a range of shifts of 

±50 m in X and Y, and identifying the position which minimizes the difference between DTMref and 

GEDI elevations. Considering all potential shifts, leads to 2601 vectors of N elevation differences, N 

being the number of footprints of the considered orbit segment. For each vector, two statistic indictors 

were tested, the RMSE and the Mean Absolute Error (MAE), and were used to produce the 

corresponding error maps of the search area. 

An accumulation flow algorithm is then applied to the error maps. A simple divergent flow 

algorithm, called FD8 (Freeman 1991), commonly used for watershed computations, is used. Thus, the 

lowest grid values should have the highest flow accumulation values (see Figure 1). 

Figure 1: Example of error map showing the MAE for each tested shift (left) and the flow 

accumulation results applied to the error map (right). 

Next, two approaches were tested. The first consists in defining the maximum value in the 

accumulation grid, as the optimal adjustment, i.e. the shift in Y and X that has to be applied to the GEDI 

footprint coordinates to improve their geolocation. The second approach is to keep the 1% of the highest 

accumulation values in the accumulation grid, and to calculate a weighted average of the coordinates to 

define the final optimal shift. This barycentre method is assumed to be less sensitive to outliers. In total, 

four methods were tested: maximum flow accumulation on RMSE and MAE error maps, and barycentre 

of maximum flow accumulation on RMSE and MAE error maps. 

The number of footprints taken into account for the statistic indicator can be modulated. All 

footprints of an orbit that are within the study area can be used to find one global optimal shift. To take 

better account of ISS instability, one optimal shift can also be computed for each footprint individually, 

using a certain number of neighbouring footprints, which are selected based on GPS time and for a time 

interval centred on the single given footprint. In this study, a time interval of 0.215 seconds was chosen, 

resulting in about 200 neighbouring footprints, covering a zone of 3 by 2 km². 

To evaluate our results the final RMSE and MAE before and after shifting are compared. An 

independent method is also used by applying the shifts to the DSMref and comparing the vegetation 

heights before and after applying the shifts. 

3. Results and Discussions

When calculating a shift for each footprint individually, an important variability is observed. For the 

studied orbit, all shifts are positive, from 4 to 34 m for X and from 4 to 26 m for Y. The improved GEDI 

geolocations are oriented north-eastern from the original positions. There are gradual variations as well 

as abrupt changes. 
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As quick changes in the shift values are observed, computing only one shift for all data of an orbit 

seems less appropriate. Nevertheless it could be considered if a rough geolocation is sufficient. 

The four methods give very similar results when looking at the overall RMSE (2.50 before and 

2.10 m after adjustment) and MAE (1.45 before and 1.07 m after adjustment). Considering only ground 

elevation data, it is difficult to evaluate which method adjusts best the geolocation of the GEDI data. 

When GEDI vegetation height (RH100) and the photogrammetric DSMref were compared with and 

without shifts, the MAE barycentre method was found to perform better. Before correction, the RMSE 

was 5.55 m and the MAE was 3.82 m. After correction, it respectively passed to 3.81 m and 2.66 m. 

The geolocation adjustment considerably improved the vegetation elevation estimation of GEDI (see 

Figure 2).  

Figure 2: GEDI and DSM elevation without (left) and with the geolocation correction (right).

4. Conclusions

GEDI data provide information about forest structure at large scale and with a high sampling density, 

but their lack of georeferencing accuracy can be detrimental to their use in building models on forest 

attributes. The proposed method proved successful to improve footprint geolocation based on an orbit, 

but has to be further evaluated on more orbits and over more forests. Although the next generation of 

GEDI releases should have improved geolocation, the presented method, which can be performed in 

areas having high resolution DTM, could still be used to further improve footprint positioning.  

Preliminary results show that the methodology provides corrections in the same direction than GEDI 

v2, but with lower RMSE and MAE values. The method will be applied on GEDI v2 and ICESat-2 data 

and in more complex environment (vegetation and topography) to assess the impact of elevation 

heterogeneity on lidar products and on the performance of the algorithm. 
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1. Introduction
Stem volume is a key variable in forest inventory that is useful in the assessment of forest 

productivity. Accurate estimation of stem volume is therefore critical to support sound economic 
applications such as timber production (Radtke et al. 2017). Airborne LiDAR data are increasingly being 
applied for the quantification of forest resource volumes (Wulder et al. 2012). Measures derived from 
airborne lidar data such as tree heights and crown diameters together with relevant indirectly derived 
parameters such as diameter at breast height (DBH) are used to estimate stem volumes at tree or stand 
level based on published allometric equations or using regression analyses (Oono and Tsuyuki 2018). 
Increasingly, estimates of forest stem volumes are needed over large areas for resource managers to 
evaluate expected amount of timber from a woodshed for timber marketing and management planning. 
Airborne lidar, although effective for such a purpose, is usually not available over large areas. With the 
goal of developing wall to wall stem volume product, this study evaluated regression models relating 
lidar-based stem volume estimates and multitemporal Landsat 8 image data and ancillary existing 
vegetation height (EVH) datasets from the LANDFIRE program (Rollins 2009) in Loblolly pine (Pinus 
spp.) forests in eastern Texas. We developed reference stem volume estimates by applying published 
stem volume allometric equations to lidar derived individual tree measurements, which were then 
aggregated to 30 m Landsat spatial resolution. XGBoost (Chen et al. 2015) regression models were then 
set up between reference stem volume, as dependent variable, and Landsat data and ancillary EVH data, 
as predictors. We tested the performance of the regression models against test data at three Landsat 
image dates and assessed the benefit of combining multitemporal Landsat data in improving the 
accuracy of the developed models. 

2. Data and Methods

2.1 Study site and data 
Our study site (centered on Latitude 30° 27' 14.77'' N, Longitude 94° 35' 54.54'' W) is in south-

eastern Texas covering the area between the Texas-Louisiana border on one side and the Sam Houston 
National Forest on the other side. Several datasets were collected to support the development and 
evaluation of models for estimating volume including airborne lidar, Landsat, land cover and 
disturbance data. Airborne lidar data acquired in 2016 under the 3DEP program (Thatcher, Lukas and 
Stoker 2020) were obtained from OpenTography.com. These data did not cover the entire study site but 
provided the needed near-ground truth data for estimating individual tree attributes including tree height 
and crown width. Landsat 8 surface reflectance data acquired on 03 Jan 2018, 24 May 2017 and 29 
September 2017 were obtained from the USGS Earth Explorer website and enabled the development 
and scaling up of stem volume models to the entire study area. We also obtained 2016 LANDFIRE EVH 
to provide height information. EVH represents the average height of the dominant vegetation for a 30-
m cell and is estimated by combining existing airborne lidar measurements and Landsat data (Rollins 
2009). The National Land Cover Dataset (NLCD) was also used to provide species cover data, which 
enabled development of separate volume models for pines species. Forest cover disturbance data were 
generated over the study site using the LandTrendr algorithm (Kennedy et al. 2018) as implemented in 
the Google Earth Engine to facilitate exclusion of changed areas from the analysis. 

2.2 Processing airborne lidar data 
For adequate processing 100 330 m by 330 m sites in Pine forested areas were randomly selected. 

Airborne lidar data in each of these sites were processed to remove noise and normalized to aboveground 
level to enable the estimation of individual tree heights. The aboveground level data were then used for 
individual tree detection and crown segmentation using automated routines implemented in the lidR 
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package (Roussel et al. 2020). Local Variable Filtering method (Popescu and Wynne 2004) was applied 
for individual tree segmentation while a method developed by Silva et al (2016) was used for tree crown 
segmentation.  

2.3 Generating reference volume data 
Published allometric equations were used to estimate tree attributes not directly estimable from 

airborne lidar and tree-level stem volume. A critical attribute to estimating tree-level stem volume is 
tree diameter. An allometric equation for Loblolly Pines developed by Popescu (2007) was applied to 
estimate diameter and breast height (DBH). Given the crown diameter (CD) and tree height both in 
meters, DBH was calculate per tree according to (1) as: 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑐𝑐) =  0.16 + 𝐶𝐶𝐷𝐷 +  1.22𝐷𝐷 (1) 
Having determined DBH for each tree, stem volume was calculated based on allometric equations in 
Radke et (2017), which we do not list here due to space limitation. All stem volume estimates at a tree 
level were then aggregated at the Landsat scale to facilitate retrieval of matching Landsat and EVH data. 

2.4 Stem volume modelling using XGBoost 
In our preliminary analyses, we evaluated several regression methods approaches including multiple 
linear regression, machine learning algorithms such as Random Forests, XGBoost and neural networks 
for predicting stem volume. XGBoost showed better performance and was adopted for this study. 
XGBoost, for Extreme Gradient Boosting, is an optimized distributed gradient boosting library which 
provides a parallel tree boosting to solve many data science problems in a fast and accurate way (Chen 
et al. 2015). Unlike Random Forests which builds independent trees, XGBoost builds trees sequentially, 
which provides opportunities for accuracy improvement. To facilitate model building, stem volume data 
from the 100 sites together with corresponding Landsat and EVH data were combined into one dataset. 
Non-pine and disturbed samples were removed prior to fitting models. To assess the benefit of 
multitemporal Landsat data, separate regression models were built using reference stem volume, as 
dependent variable, and each of the three Landsat images and EVH, as independent variables. A fourth 
model was built that combined all the Landsat 8 data and EVH. For both models, hyper-parameter tuning 
was carried out using a grid search approach to select optimal values for the learning rate, number of 
estimates and the maximum depth of the trees. For each of the models, 85% of the data was used for 
training and 15% for testing the accuracy of the prediction. The performance of the models was 
evaluated based on coefficients of variation (R2), mean absolute error (MAE) and mean absolute percent 
error (MAPE). 

3. Results and Discussion
The total number of samples collected from the 100 sites was 8454. Of this, 7186 were used for training 
the models and 1268 for testing. Table 1 summarizes the performance of the four regression models 
trained for predicting stem volume. Model performance varied by Landsat 8 date with the model II 
trained with data acquired on 05/24/2017 showing the best performance among separate models in terms 
of R2 and MAE values. R2 values ranged from 0.71 to 0.77 and MAE values ranged from 71.4 cubic feet 
(cu.ft.) to 81.7 cu.ft. estimates. Model performance improved when combined Landsat data were used. 
All model predictions were within 24 -29% of corresponding reference stem volume. 

Table 1: Summary of model performance 
Model Landsat 8 data R2 MAE (cu.ft.) MAPE (%) 
1 3-Jan-18 0.71 81.7 29.79 
11 24-May-17 0.74 74.5 26.36 

111 29-Sep-17 0.72 79.3 28.19 
1V Combined data 0.77 71.4 24.44 

In terms of variable importance, the EVH variable was overwhelming significant in all models. 
However, the variable importance for individual Landsat bands fluctuated with time which is indicative 
of impact of seasonal changes on forest structure.  
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Figure 1: Combined Regression Model Performance. a) Scatter plot of predicted vs reference stem 
volume values, b) Variable importance for combined model. B indicates Landsat bands, suffixes _01, 
_05 and _09 indicate the respect image dates (Jan, May and September) 

4. Conclusion
Results from this study show that there is a high potential for developing wall to wall product by 
leveraging available airborne lidar and multitemporal image data. The improved performance of the 
developed stem volume models indicates that there is a benefit in applying multitemporal image data, 
though the gain was not that large in our case.  While promising results were obtained in this study, it is 
expected that even better performance could be achieved by extraction of more features from the EVH 
and Landsat data such as spectral indices, principal components and other transformations. 
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1. Introduction
Three-dimensional characterization of trees and their structure plays a pivotal role in forestry-related 
applications. It facilitates the estimation of biomass, monitoring of forest inventory, and helps to assess 
forest-fire risks (Vicari et al., 2019; Terryn et al., 2020). For tree-specific studies, e.g., phenotyping-
related or orchard yield measurement, localized acquisition by terrestrial laser scans (TLS) is a common 
choice (Ferrara et al., 2018; Li and Liu, 2019). However, such data acquisition source is inefficient and 
related analyses are challenged by the volume of data as well as the non-uniform shape of trees.  

It is customary to approach point-cloud based tree-modeling by reconstructing their shape and then 
applying geometric completion steps through predefined rules and heuristics (Livny et al., 2010). 
However, some have identified the separation of leaves from branches as the preparatory step that 
precedes such reconstruction (Danson et al., 2014; Chaudhury and Godin, 2020). Though the separation 
of that kind has been approached by classifying the intensity channel (Danson et al., 2014), it is common 
to use local geometric cues, such as normal similarity, point density, and arrangement to facilitate this 
task (Vicari  et al., 2019; Krishna Moorthy et al., 2020; Wang, 2020). When considering reconstruction, 
the scanned trees would generally appear bare of leaves leaving the focus to its structure.   Capitulating 
on its cylindrical form, local fitting has seen some popularity (e.g., Burt et al., 2019), while others have 
attempted to identify a skeletal form by using node connectivity approaches, with the aid of octree- or 
voxel-based structures (Bucksch and Lindenbergh, 2008; Zhao et al., 2015). As they encode 
sophisticated logic, they may exhibit sensitivity to varying point densities. Alternative approaches 
iteratively converge to the skeletal form, where a Laplacian-based contraction has been applied by Cao 
et al. (2010), and L1-median skeleton form by Wang et al. (2016); Mei et al. (2017). 

Figure 1: Tree related point-clouds, (left) TLS data acquired ∼50 m from object, (middle) handheld 
scanner (GEO-SLAM ZEB Revo RT), acquired 2 m from object; (right) bird view of the collected 

data, colored by elevation. 

Most approaches utilize TLS data as their source, suggesting that the point clouds they process are 
dense and that the noise level is limited. When considering actual tree modeling on a larger scale, the 
use of stationary TLS is cumbersome and nonscalable. Instead, we consider in this paper a model that 
is driven by handheld scanning devices, which offer greater flexibility yet come at a cost of decreased 
resolution and accuracy (Figure. 1). Such characteristics limit the ability to perform leaf-wood 
separation in a simple manner and to identify the tree directly from the point cloud. They also require a 
greater focus on density-related effects and the impact of noise on the reconstruction. 
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2. Data and Methods
For our evaluation handheld scanning data of an almond orchard was collected (Figure 1). For the 
modelling, our proposed approach is structure-based where due to the noisy data, we consider the L1-
median curve extraction (Equation 1) as our framework. 

Given a pointset Q, our aim is to identify a set of characteristic skeleton points X subject to: 
𝑎𝑟𝑔𝑚𝑖𝑛 ห𝑥 െ 𝑞ห𝜃൫ห𝑥 െ 𝑞ห൯  𝑅ሺ𝑋ሻ (1) 

where 𝜃ሺ𝑟ሻ ൌ exp ቀെ
మ

మቁ is a weight function and ℎ is a density related term, 𝑞 ∈ 𝑄 is a point in the 
original set 𝑄 and 𝑅ሺ𝑋ሻ is regularization term (Huang et al., 2013). In evaluating affecting factors on 
the reconstruction, we demonstrate in Figure (2) how a direct application of a size-adaptive version of 
this form, where the value of ℎ is increased between cycles, exhibits sensitivity in the presence of clutter. 
To filter the foliage, we evaluate leaf-removal models, particularly the recent one by Wang (2020), where 
local normal and proximity are considered as differentiating attributes. Figure (3) shows that because of 
the high-level of noise, results are partial, even when the normal similarity criterion is relaxed. Realizing 
these limiting factors when considering sparser and noisy data than that provided by TLS, our proposed 
approach places greater focus on robust measures and functions when quantifying features, while 
limiting the effect of derivatives in our evaluation. For that, we derive a shape-preserving model to 
attenuate the noise. Then, we show have a focus on neighborhood definition allows to robustify the 
feature computation for the presence of noise, clutter, and shape variation. In addition, and under the 
realization that the wood-leaf separation is a binary clustering form, we cast this problem as a graph-
cuts formulation, demonstrating how it allows us to yield an optimal form. Using content aware 
modeling of both the overall tree point-cloud and then of its geometry, we provide a computationally 
efficient and reliable characterization of the sought form. 

3. Results and Discussion
The application of our model is demonstrated in Figure (4) where we show how the trunk and branches 
are separated from the rest of the data and eliminate the clutter from the pointset. Additionally, in 
adapting the L1-median form, we demonstrate the application of a regularization form that encourages 
compliance with the overall trend of the surrounding neighborhood points. This facilitates convergence 
to the skeletal form within a small number of iterations. 

Figure 2: Skeleton extraction from the raw data using L1-median approach, a) seed points, b) 
intermediate results showing lack of convergence, c) extracted skeleton. 

Figure 3. Wood-Leaf separation using Wang (2020). Thresholds are given according to the 
optimized configuration (0.1-0.2). Leaves and wood points are colored green and brown, 
respectively. 
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Figure 4. Our approach – (a-c) Wood-Leaf separation (leaves – green, trunk – black), (d-e) 
skeletonization results. 
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1. Introduction

Individual tree species identification is a key information in precision forest inventories and forest 

management. Multispectral airborne laser scanners (MALS) offer the opportunity to improve species 

identification compared to monospectral ALS, by opening the possibility of computing intensity 

features from two channels, each having different spectral information. Intensity features like ratios of 

channels or normalised differences (ND) are potentially less variable for a given species than the 

single channel absolute intensities, i.e., less prone to variations caused by external factors, such as scan 

angle, or variations in tree characteristics, such as tree height. The multispectral lidar Titan of 

Teledyne Optech Inc. incorporates three lasers (channels C1, C2, C3) that scan with different 

wavelengths (respectively 1550, 1064 and 532 nm), different scanning plane tilt angles (respectively 

3.5°, 0° and 7°) and different beam divergence (0.35 mrad in C1 and C2, 0.7 mrad in C3). The 

objectives are 1) to analyse the variability of NDs calculated from multispectral lidar due to viewing 

geometry, 2) to evaluate the effect of intensity normalisation on ND values as well as on single tree 

species identification accuracy using ND features, 3) to evaluate the variability of ND related to tree 

characteristics such as the tree height.  

2. Data and Methods

The multispectral lidar data were acquired in July 2015 in the York Regional Forest (YRF), Ontario, 

Canada using the Titan system. The flight height was about 800 m above ground, with 10 first returns 

m-2 for all three channels within each single flight line, and a mean of 20 first returns m-2 for 

overlapping flight lines. The data were captured with a maximum mirror lateral scan angle of 15 

degrees. This resulted in a maximum net scan angle of 20 degrees due to the combination of the 

scanning plane tilt and the lateral scan angles. Reference data were acquired for six needleleaf tree 

species through field identification and photointerpretation of high-resolution images. Manual 

delineation of the sampled crowns was performed on the canopy height model. A large number of 

point cloud 3D features were calculated from normalized return heights. Moreover, intensity features 

were computed from the raw as well as from the range-normalized intensities of returns (Budei et al. 

2018, Budei and St-Onge 2018). We here focus on ND intensity features that are calculated as 

combinations of two channels: NDG1 as (C2+C3)/(C2-C3); NDG2 as (C1+C3)/(C1-C3) and NDIR as 

(C1+C2)/(C1-C2). Several ND versions were calculated from different statistics (50th, 75th, 90th, 95th 

percentiles of the intensity distribution or mean of return intensities in each channel) applied on 

selections of return types (all returns, single returns or first returns). These were computed for the 

returns falling within 60% of the upper crown length. Random forest classification was used for tree 

species identification.  

Because of the variations in viewing geometry caused by differences in net scan angles and beam 

divergence, the multispectral lidar NDs do not meet the assumptions generally accepted for indices 
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calculated from optical satellite images, where spectral values of the same pixel (e.g., the red and near 

infrared values of a given pixel) have the same footprint, the same resolution and the same viewing 

angle. Increase in scan angle causes a decrease in return intensity, a change in return distribution and a 

decrease in number of returns per pulse. These scan angle effects might concern ND values. For each 

of the three ND types, a mean scan angle was calculated between the averages of scan angle values of 

returns in corresponding channels for each tree crown. For the first objective, we computed ND values 

from individual flight lines and evaluated their correlation with corresponding mean scan angles. We 

trained a random forest algorithm with all trees and then compared the identification accuracy for 

three classes of mean scan angle values. For the second objective, we computed ND values from 

individual flight lines using first the raw intensities and second the normalized intensities. We 

compared the change in correlation values of NDs with mean scan angles between NDs using raw and 

normalized intensities. Moreover, after species identification, we compared identification results 

obtained respectively with raw and normalized intensities. For the third objective, ND values vary 

with intra-specific properties affected by age, such as tree size and shape. We therefore calculated the 

correlation of ND, computed from returns from all flight lines, with tree height and then evaluated 

whether this correlation influences identification accuracy.  

3. Results

A scan angle below 20 degrees (and in the case of a topography having only small variations) had a 

low influence on ND values, with correlations remaining below |±0.2|. Figure 1 presents results of 

species identification with different feature selections from individual channels and pairs of channels 

(including ND and channel ratios). Results are given by scan angle class. 

Figure 1: Random forest species identification accuracy by scan angle class: 1 = small scan angles 

near nadir, 2 = middle class scan angles, 3 = large scan angles. The classifications related to C1, C2, 

C3 used features from single channels, while those related to C1_C2, C1_C3, C2_C3 used NDs and 

ratios of intensity. C321 used 3D features with returns from all channels. 

There is no significant difference between ND values computed from raw intensities compared to 

normalized intensities, and consequently, between identification accuracy using only NDs and channel 

ratios from raw and normalized intensities. By contrast, range normalization improved the accuracy of 

tree species identification by 8% when only single channel intensity features were used. 

Even if ND features presented high correlation to tree height (Figure 2), these features are selected by 

the random forest model as within the best features for species identification.  
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Figure 2: Variation of the feature I_NDG2_si_mn by height classes of 5 m. I_NDG2_si_mn represents 

the ND calculated between the mean (mn) intensity of the single (si) returns of middle IR (C1) and the 

green (C3) channels. 

4. Discussion and conclusion

The inherent normalization formula of ND compensated to a certain measure for scan angle variation 

and for the lack of intensity normalization. This finding is useful since the intensity normalization of 

laser returns is often difficult, as necessary range information is lacking in the generally used LAS 

format.  

The ND features presented a high variability as tree height changed. However, in an automatic ranking 

of variables using a random forest algorithm, ND features appeared to be among the most important 

ones for species classification, despite their variation with tree height. Even if random forest handled 

the high variability with tree height, attention must be given to sample representativity in each tree 

height class. 

We conclude that NDs are robust variables that allow for an improvement in tree species identification 

even for a large range of tree heights, while at the same time reducing the need for intensity 

normalization.  
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1. Introduction

The labour cost and the time spent of experts are two main problems performing detailed urban 

forest (UF) inventories. So, different strategies have been adopted to reduce them while keeping or 

improving the data quality to generate information for urban planners and urban forest managers. 

These strategies can be a more sophisticated technique to get faster and precise information using 

Light Detection and Ranging (LiDAR) technology. The most used methods include airborne (ALS), 

terrestrial (TLS), and mobile laser scanning (MLS) to obtain dense 3D point clouds for the analysis of 

vegetation 3D structure (Tanhuanpää et al. 2014; Wężyk et al. 2016; Chen et al., 2019).  

Although methods based on LiDAR are more precise and faster for data acquisition, costs related 

may not be interesting for public administration because its costs are not related only to acquisition 

campaign but also to the costs of software for data processing and specialist (Ciesielski, Sterenczak, 

2019; Li et al., 2019).  

For data acquisition at a tree level, one option to surpass the costs of a traditional laser scanner 

technology could be the use of mobile applications available for tablets or smartphones equipped with 

a scanner.  

The first mobile applications based on built-in laser scanner (LiDAR sensor) and image matching 

approach appeared in 2020 with the new model of iPad Pro 2020 and iPhone 12 Pro (iOS). The LiDAR 

sensor allows 3D precise scanning of objects located up to 5.0 m from the device and works by 

measuring the travel time of laser light photons sent from the device and reflected from the object 

(Narain, 2020). 

Our main goal was to test the applicability and preciseness of the iPad Pro 2020 to acquire data for 

tree DBH and distances compared to a traditional terrestrial laser scanner used in urban forest inventory. 

2. Materials and Methods

We measured the DBH and distance among 100 trees of different species at Park Lotników Polskich, 

in Kraków, Poland (Figure 1A). This park is one of the main green infrastructures of the city, important 

for delivering ecosystem services and promoting leisure and social recreation. 

Tree trunks of ten different groups of trees were market at DBH height (1.30 m) with a white line, 

to better promote the visualization of DBH slice and its point clouds, while processing data from iPad 

Pro and TLS scanner (Figure 1B and 1C). 

We used an iPad Pro 2020 (12.4”) and Capture app. to collect the inventory data. While scanning 

tree trunks, we kept approximately 2.0 m distance between the trunk and iPad Pro cameras, as this device 

has a limitation to scan objects up to 5.0 m. During scanning the device was kept at 1.40 m high in an 

upright position. 

A terrestrial laser scanner - FARO FOCUS 3D 130 was used to scan the same groups of trees from 

5 TLS stations per group of 10 trees scanned. We kept < 12.0 m distance from scanner to targets (spheres 

7.5 cm radius) used as objects for single scans matching. 
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Point clouds acquired with iPad Pro and TLS FARO were processed in Microstation V8i (Bentley) 

and TerraScan (Terrasolid) software aiming to measure the distance among tree trunks and to extract 

the point clouds from each DBH slice. Point clouds extracted were analyzed in QGIS software by means 

of the Convex Hull algorithm to get the value of the perimeter at breast height (PBH) that was converted 

in the mean DBH value for each tree scanned. Tree distances were measured from the middle of the 

bottom of each tree trunk to the exact position of the other three trees. 

We performed the Fligner-Kileen test for equal coefficients of variation and linear regression to 

describe the relationship between iPad Pro and TLS FARO data and their RMSE values from groups of 

DBH data and distance 

3. Results and discussion

Among groups of species scanned, DBH varied between 15.01 and 72.57 cm for iPad Pro and from 

17.34 cm and 73.40 cm for TLS FARO, due to different tree species, sizes and ages. Distances between 

trees varied from 2.70 m and 20.52 m for iPad Pro and from 2.66 m and 20.17 m in case of  TLS FARO. 

We found no significant difference between data collected with iPad Pro and TLS FARO, nor for 

DBH nor distances (p > 0.05). At a 95% level, confidence intervals varied it the same manner (Table 1), 

and coefficients of variation varied from 39.63% to 37.78% and from 43.85% to 43.94%, respectively 

for DBH and distance values measured. 

Table 1. Confidence intervals (CI) for each variable measured with iPad Pro and TLS FARO, with 

indication of the number of observations (N) and p-values. 

Variable N CI (iPad Pro) CI (TLS 

FARO) 

p-value 

DBH 100 36.19 – 43.91 34.41 – 41.86 0.3584 

Distance 300 4.01 – 4.74 4.03 – 4.77 0.9198 

Figure 1: Distribution of groups of trees scanned in Park Lotników Polskich (A), marks made on 

trees at DBH level (B), iPad Pro screen after scanning a tree (C), point cloud of scanned tree at 

DBH level displayed in TerraScan (Terrasolid) software (D). 
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Regressions fitted have shown that iPad Pro can deliver precise data for distance among trees and 

quite good ones for DBH measurements, as RMSE kept under low values (Figure 2). When comparing 

the RMSE values with those from forest inventories based on TLS cloud points, we noticed that we can 

achieve not different values from the ones obtained in forest conditions with varying TLS devices 

accuracies and scanning methods (Pueschel et al., 2013; Ryding et al., 2015). So, iPad Pro can be useful 

for calculating tree registration in urban forest inventories, mainly where GNSS signals can be lost or 

weakened due to canopy cover or multipath issues caused by thick trunks or buildings. 

4. Conclusions

For UF inventories regarding DBH measurements and distance among trees for positioning them, 

iPad Pro seems to be a reliable device to gather data quickly and cheaper, which  can help small 

communities and improve public engagement in this activity. 

References 

Chen, Y, Wang, S, Li, J, Ma, L, Wu, R, Luo, Z, Wang, C, 2019, Rapid Urban Roadside Tree Inventory Using a 

Mobile Laser Scanning System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 12(9):3690-3700. 

Ciesielski, M, Sterenczak, K, 2019, Accuracy of determining specific parameters of the urban forest using remote 

sensing. iForest,12:498-510. 

Li, Q, Yuan, P, Liu, X, Zhou, H, 2020, Street tree segmentation from mobile laser scanning data. International 

Journal of Remote Sensing, 41(18):7145-7162. 

Narain, A, 2020, Apple’s LiDAR Scanner a game-changer in scanning technology? Geospatial world, URL: 

https://www.geospatialworld.net/blogs/apples-lidar-scanner/ (Accessed 18.12.2020). 

Pueschel, P, Newnham, G, Rock, G, Udelhoven, T, Werner, W, Hill, J, 2013, The influence of scan mode and 

circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS 

Journal of Photogrammetry and Remote Sensing, 77:44–56. 

Ryding, J, Williams, E, Smith, M J, Eichhorn, M P, 2015, Assessing Handheld Mobile Laser Scanners for Forest 

Surveys. Remote Sensing., 7:1095-1111. 

Tanhuanpää, T, Vastaranta, M, Kankare, V, Holopainen, M, Hyppä, J, Hyppä, H, Alho, P, Raisio, J, 2014, Mapping 

of urban roadside trees - A case study in the tree register update process in Helsinki city. Urban Forestry and 

Urban Greening, 13:562-570. 

Wężyk P, Hawryło P, Szostak M, 2016, Determination of the number of trees in the Bory Tucholskie National 

Park using crown delineation of the canopy height models derived from aerial photos matching and airborne 

laser scanning data. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 28:137-156. 

Figure 2: Regressions fitted for DBH (A) and distance values (B) between iPad Pro and TLS 

FARO 3D data, with RMSE values (cm) for DBH and distance (m). 
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By 2050, nearly 70% of the entire population will live in urban areas. Therefore cities must be 

appropriately shaped to be as resident-friendly as possible, paying particular attention to urban 

vegetation, which is an essential component of the suitable quality of life. So far, research often relied 

on two-dimensional (2D) mapping of urban vegetation using remote sensing imageries and vegetation 

indicators, where the greenery was evenly distributed, regardless of the cubature. In reality, the spatial 

and vertical structure of vegetation varies, and the layers often overlap. As novelty, we propose in this 

paper a 3D approach that explores: Vegetation 3D Density (V3DI) and Vegetation Volume to Building 

Volume (VV2BV) indices in Luxembourg City. The goal of the study was to investigate the relationship 

between the volume of vegetation and buildings in a rapidly developed Luxembourg City. The 

vegetation volume was calculated using airborne laser scanning point clouds (ALS LiDAR) processed 

into voxels (0.5 m). The volume of the buildings was calculated based on the results of 3D ALS LiDAR 

point cloud modeling.  

We used ALS LiDAR point clouds from airborne mission obtained in February 2019 for entire 

Luxembourg City with mean point density: 25 points/m2.  

These indices have been estimated for districts, cadastral parcels, in a cell grid of 100 m and for 

each building individually, with a 100 m buffer. We found that in 2019 in Luxembourg City, the urban 

forests covered 1689 ha, which makes 33% of the entire administrative area. The 3D analyzes showed 

that the total volume of vegetation (> 1.0 m above ground) is about 40 million m3, indicating 328 m3 of 

greenery per resident. The V3DI was 0.77 m3/m2. The overall VV2BV(%) index for Luxembourg 

showed 41.6%, and only in four districts of Luxembourg showed a high value of VV2BV index > 67%, 

which indicates areas with high levels of green infrastructure to contribute to the health and better quality 

of life. 
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1. Introduction

Alluvial forests constitute an important and ecologically sensitive habitat. Diseases of endemic tree 

species like ashes have increased the amount of dead wood in alluvial forests in Austria in the recent 

past (Kessler et al. 2012). During seasonal flood peaks, the increased discharge carries deadwood stems 

into the active river channels, where they are floating downstream until either natural or artificial barriers 

(river bends, bridge piers, hydropower stations, etc.) stop their movement. On the one side, stranded 

driftwood plays an important role in aquatic ecosystems, e.g. as shelter for juvenile fish stages, but on 

the other side, it can cause severe problems like log jams potentially resulting in flooding of residential 

areas. For these reasons, monitoring of the volume and distribution of driftwood within rivers and lake 

outlets is an important topic from both an ecologic and socio-economic point of view. 

In the recent past, airborne topo-bathymetric LiDAR (Light Detection And Ranging) has gained 

increased importance for mapping the littoral zone of both coastal and inland water areas. Bathymetric 

LiDAR uses short laser pulses in the green domain of the electro-magnetic spectrum for measuring 

objects above and below the water table. One of the main issues in bathymetric LiDAR is eye safety, as 

the green radiation also penetrates the human eye potentially causing severe injuries. For this reason, a 

larger beam divergence is used in bathymetric LiDAR resulting in typical footprint diameters in the 

range of about 50 cm for data acquisition from manned platforms. This, however, hampers the 

detectability of submerged tree stems and branches, especially for stem diameters < 30 cm. The advent 

of UAV-borne topo-bathymetric LiDAR sensors has changed this situation fundamentally, as these 

systems provide small laser footprint diameters of around 10 cm and a high laser pulse density of > 200 

points/m2. 

In this case study we present early results of using 3D point clouds acquired with a survey-grade topo-

bathymetric laser scanner for detecting and modelling submerged driftwood. We demonstrate that stems 

and even branches are well recognizable in the point cloud and that the achieved point density and 

measurement precision allows derivation of the driftwood skeleton parameters like tree length and 

diameter. This enables quantitative analysis of submerged biomass.  

2. Study area and data sets

The flight campaign took place on March 9, 2021 at the Pielach River, a pre-Alpine, right hand tributary 

of the Danube river in Lower Austria (48° 12’ 50”N, 15° 22’ 30”E) with a lightweight RIEGL VQ-840-

G topo-bathymetric laser scanning system mounted on an octocopter UAV platform. The sensor 

operates at pulse repetition rates (PRR) of 50-200 kHz and enables arbitrary choice of the laser beam 

divergence within a range of 1-6 mrad (Mandlburger et al. 2020). This allows balancing the achievable 

depth penetration and spatial resolution. The employed sensor provides a maximum depth penetration 

of 1-2 times the Secchi depth (Effler 1998) and a laser footprint diameter of 5-30 cm for a typical flying 

altitude of 50 m above ground level (agl) (Mandlburger et al. 2020). To test the detection and modelling 

of driftwood, a 750 m long section of the meandering river course was captured with 17 short strips 

(cf. Figure 1) in two separate flights using the flight mission parameters reported in Table 1. Because of 
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the green wavelength, the canopy of the alluvial forest, ground below it, and the mid-storey were 

captured, as well as water surface, riverbed, and reflections in the water column in between.  

 

Table 1. UAV flight mission parameters. 

PRR Flying altitude Beam divergence Footprint diameter Laser pulse density 

50 kHz 50 m agl 2 mrad 10 cm 200 points/m2 

200 kHz 60 m agl 1 mrad 6 cm 600 points/m2 

3. Methods

After alignment and georeferencing of the laser strips, a standard quality assessment was performed to 

evaluate the achieved precision (< 3 cm) and point density (> 200 points/m2). After modelling the water 

surface and refraction and run-time correction of the raw laser measurements, a Digital Elevation Model 

(bare ground + submerged bottom) was derived using hierarchical robust interpolation (Pfeifer and 

Mandlburger 2018). In a subsequent processing step, the volumetric point density of all submerged 

points within the water column (i.e., points classified neither as riverbed nor as water surface) was 

calculated. Points meeting a certain minimum 3D point density were classified as underwater vegetation. 

Visual analysis revealed that there are two categories of submerged vegetation: (i) single broad tree 

stems, and (ii) bunches of smaller branches. Especially for the prior, the high point density enabled semi-

automatic estimation of stem diameters using the approach of Wieser et al. (2019). 

4. Results and discussions

Figure 2 shows 3D point clouds of submerged driftwood in perspective views. Figure 2a exhibits a 

large individual stem colored by RGB and Figure 2b features many thin branches of an entire willow 

tree colored by class ID (red=submerged vegetation). While the trunk of the larger stem in Figure 2a is 

already buried into the riverbed gravel, the small willow tree just recently broke off the steep bank side 

and is not anchored in the ground. Both examples prove the feasibility of (i) detecting and (ii) 

automatically classifying underwater vegetation from UAV-borne topo-bathymetric point clouds. For 

Figure 1: Study area Pielach river: superposition of shaded and color coded DSM map, image 

background: basemap.at (terrain); UAV flight trajectory (black framed dots), Coordinate 

Reference System: ETRS89/UTM33 (EPSG:25833); lower left: location of study area within 

Austria.
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larger stem, semi-automatic width estimation resulted in a stem diameter of 33 cm. In addition, a length 

of 7.54 m was derived via manual digitization in a 3D viewer. In contrast to deadwood detection in dry 

forests (Mücke et al. 2013, Lindberg et al. 2013), submerged driftwood is often sparser and the absence 

of understorey facilitates detection. On the other hand, forward scattering of the laser signal underwater 

leads to blurring of the points clouds, which complicates (i) automatic detection of dense small structures 

(branches) and (ii) precise estimation of stem widths due to progressive broadening of submerged 

driftwood point clouds with increasing water depth. 

5. Conclusions and outlook

In this study, we demonstrated that UAV-borne topo-bathymetric LiDAR is a suitable tool for detecting 

submerged driftwood. The automatically classified 3D points enabled the quantification of relevant stem 

parameters like length and width via either semi-automatic analysis or manual digitization. With these 

promising early results, ongoing research focuses on (i) improving the classification of driftwood, (ii) 

automatic segmentation of individual stems, and (iii) further automation of parameter retrieval, and (iv) 

accuracy assessment of the derived metrics w.r.t. reference data with special emphasis on unbiased stem 

width estimation. 
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1. Introduction

Forest inventories deliver information on forest area, the amount and change of forest resources, the 

development of the biotope forest in general and the carbon balance of a country. Single tree volume is 

the basis for many estimates provided by forest inventories and is not directly measurable in the field 

up to now. In the Swiss National Forest Inventory (NFI), wood volume and changes in wood volume 

are estimated based on the stem volume of individual trees using various models. For a sub-sample of 

tally trees, single stem volume is estimated by allometric models using three measured tree dimensions: 

diameter at breast height (DBH), upper diameter at 7 m height (d7) and tree height. Based on these three 

variables the volume of the stem, which usually is of a conical shape, can be calculated with a very high 

precision (R2 > 98.7) (Herold et al. 2019). On the other hand, total tree volume, needed e.g., for biomass 

estimation, is far more complex to model, making the prediction of branch wood more prone to 

unexplained variation. Moreover, these allometric models for total tree volume (including branches) are 

based on destructively sampled trees from experimental sites and are currently not completely 

representative for the whole country. 

Close range remote sensing technologies such as terrestrial laser scanning (TLS), present a 

possibility to address the need for more direct measurements. Currently, no operational application 

exists for TLS in forest inventories, due to open questions concerning precision and accuracy. 

Nevertheless, many TLS-based approaches contributing to individual tree volume or above-ground 

biomass estimation have been proposed and developed. A straightforward application is to retrieve 

simple tree structure metrics, such as stem and crown diameters, from point clouds instead of manual 

measurements (Holopainen et al. 2011). Tree volume can also be approximated by the voxel 

representation of an individual tree point cloud (Vonderach et al. 2012). The most detailed volume 

estimation is commonly achieved by quantitative structure models (QSM) (e.g. Raumonen et al. 2013) 

which estimate tree volume based on a real morphological structure model of a specific tree. However, 

in the context of a large-scale or national inventory, computing a QSM for every sampled tree still 

remains less effective than traditional inventory methods due to demands on point cloud quality and cost 

of data acquisition. Instead, QSMs have been proposed as non-destructive reference data for training 

(traditional) allometric models (Stovall et al. 2018). Another possible way of integrating TLS into forest 

inventories is to extend allometric models by including TLS-derived variables, such as crown diameter 

(Lau et al. 2019). 

In order to assess these possibilities, the objectives of this study include (1) to evaluate the 

explanatory power of TLS-derived tree metrics regarding tree volume and biomass (total, coarse wood 

and fine wood), and (2) incorporating them into preliminary allometric models based on 60 sample trees. 

(3) Additionally, we will compare the estimated volumes to operational allometric models and to 

quantitative structure models. 

2. Data and Methods

The study area consists of two managed mixed temperate forest sites located on the Swiss Plateau. The 

main tree species on site 1 are: Fagus sylvatica, Picea abies, Acer pseudoplatanus and Fraxinus 
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excelsior, while the following species are present on site 2: Fagus sylvatica, Fraxinus excelsior, Acer 

pseudoplatanus, Pinus sylvestris, Pinus nigra and Larix decidua. From each site, approximately 30 

sample trees were chosen, aiming to represent the respective species range and height distribution. DBH, 

d7, tree height and crown parameters were measured on the standing trees following inventory 

procedure. After harvesting, trees were weighed using a crane scale. The total weight was further divided 

into coarse wood (trunk and branches with diameter >7 cm) and fine wood (branches and twigs with 

diameter <7 cm). Wood disc samples were taken every 2 m along each stem to determine wood density, 

which was then used to convert tree weight to biomass and volume. 

The TLS data were collected in winter 2020/2021 using a Leica BLK360 terrestrial laser scanner 

(Leica Geosystems, Heerbrugg, Switzerland), while distributing scan positions across the site so that 

every tree of interest was included in at least three different scans from different directions. The raw 

point clouds from different scan positions were co-registered using Cyclone REGISTER 360 (Leica 

Geosystems, Heerbrugg, Switzerland). Individual trees were segmented from the point cloud using the 

CompuTree software (Othmani et al. 2011), including manual filtering as the last step. 

A set of tree structure metrics was then extracted from each individual tree point cloud. Besides 

DBH and crown diameter, multiple stem diameter values were taken between 2 m and 10 m and at 25%, 

50% and 75% of tree height. To serve as metrics describing crown structure, crown projected area and 

volumes of different convex and concave hulls (alpha shapes) around both the crown and the whole tree 

were also calculated. Additionally, wood volume per compartment (diameter >7 cm and diameter ≤7 

cm), was derived following the QSM approach as implemented in the TreeQSM tool (Raumonen et al. 

2013). 

Linear regression and correlation coefficients relating reference total, coarse and fine wood 

volume to the TLS-enabled tree metrics are subsequently used as a first indication of their respective 

explanatory power. In order to find effective combinations of the most relevant of these metrics, 

allometric models are then built and tested, along the lines of existing NFI stem volume models. 

3. Results and Discussion

Regarding the power to predict tree volume, we observe that stem diameters up to approximately 10 m 

or 50% of tree height correlate well with total and coarse wood volume. TLS-based crown diameters on 

the other hand show lower values of correlation with total volume (R2 = 0.25 - 0.52). We observe the 

various crown hulls to correlate with fine wood volume as derived by QSMs (R2 = 0.8 - 0.92) but less 

so with total volume from QSMs and destructively measured volume (R2 = 0.2 - 0.5). A possible reason 

for this is that TLS-based descriptors of crown shape can be heavily influenced by point cloud filtering 

and segmentation methods. Also, the accuracy of reference measurements needs to be considered, as 

some crowns were damaged during felling and weighing operations. Despite this, crown characteristics 

are a promising addition for allometric equations because they provide valuable information on branch 

volume and are also known to be sensitive to stand structure (Forrester et al. 2017).  

As a next step, we will analyse interactions between the presented tree metrics as well as evaluate 

the feasibility of additive allometric models for coarse wood and fine wood. We expect coarse wood 

volume to be estimated reasonably well by a combination of “distance metrics” (tree height and various 

stem and crown diameters). Crown hulls in combination with echo density metrics could serve as a 

possible approximation for the volume of fine branches. 

4. Conclusions

As the new allometric equations are fitted on a limited sample containing various species, they are not 

expected to be suitable for use outside the respective test sites (Duncanson et al. 2015). Rather, they 

provide an indication as to which parameter combinations should be further investigated and which 

metrics would be suitable to include in future inventories.  
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1. Introduction

Large area stem volume information, one of the most important parameters in forestry, can be derived 

from various types of remote sensing data, such as microwave remote sensing, satellite-based optical 

data or airborne acquired optical data, including Airborne Laserscanning (ALS). Currently the highest 

accuracy combined with the highest spatial resolution of the derived stem volume maps are obtained 

from ALS data. Furthermore, ALS data have the advantage that they are not influenced by topographic 

shadows which is a limiting factor in complex topographic environments for the majority of the remote 

sensing methods. One limiting factor of ALS is the reduced temporal resolution of country-wide data 

sets, e.g. currently in Austria time steps of ≥6 years.  

To estimate stem volume from ALS data for large areas (e.g. >1000 km²), area-based approaches are 

commonly applied. In the majority, these approaches are based on regression models using in-situ forest 

inventory (FI) data, i.e. on plot level, as ground reference for calibration purposes. Especially for large 

scale applications there is normally a time gap between the ALS data acquisitions and the in-situ FI 

measurements. This leads to deviations with respect to harvested trees and forest growth between the 

date of ALS and FI data acquisitions. On the other hand, multiple epochs of ALS data are in the 

meantime available for many forested regions.  

The aim of this study is to investigate the potential of country-wide, multi-temporal stem volume 

estimations based on ALS and national forest inventory (NFI) data. The study is done for the federal 

state of Vorarlberg, Austria. Three ALS data sets, acquired in the framework of country-wide ALS 

campaigns and NFI data are used for this study. 

2. Study area and data

The study area is located in the western part of Austria and covers the federal state of Vorarlberg with 

an area of 2601 km². The altitude varies between 396 m a.s.l. at the Lake Constance and 3312 m a.s.l. 

at the Piz Buin in the Silvretta mountains. In addition to the large Rhine Valley the area is characterized 

by several smaller valleys forming a complex mountainous landscape. Forests cover ~37% (970 km²) 

of the total area and consist of 82.8% coniferous and 17.8% deciduous tree species. The dominant 

coniferous tree species are spruce (Picea abies) with ~60.0% and fir (Abies alba) with 20.4% of the 

standing volume (BFW, 2021). 

The ALS data were acquired within operational country-wide ALS campaigns in the years 2002-2006, 

2011, and 2017. In the following, the ALS data sets are named ALS_2004, ALS_2011 and ALS_2017, 

respectively. The point densities vary in the range of 4-20 echoes per m² for ALS_2004, 7-40 echoes 

per m² for ALS_2011 and 15-80 echoes per m² for ALS_2017. From the ALS_2017 data a detailed 

digital terrain model (DTM) with a spatial resolution of 0.5x0.5 m² was derived. This DTM was used as 

reference for all three ALS data sets. Additionally, a high resolution (1x1 m²) forest mask generated by 

the BFW (www.bfw.ac.at) from aerial images and ALS data was used. 

To calibrate the stem volume models, data from the Austrian NFI was used as reference. The NFI data 

are extracted from the operational NFI periods 2000-02, 2007-09 and 2016-21. For each sample plot, 

information about sample tree positions, diameters at breast height (DBH), tree species, tree heights and 

stem volumes are available. Further details about the NFI data can be found in Gschwantner et al. (2016). 

Published in: Markus Hollaus, Norbert Pfeifer (Eds.): Proceedings of the SilviLaser Conference 2021, Vienna, Austria, 28–30 September 2021.  
Technische Universität Wien, 2021. DOI: 10.34726/wim.1861
This paper was peer-reviewed. DOI of this paper: 10.34726/wim.1981

201

http://www.bfw.ac.at/


3. Methods

For each ALS data set a digital surface model (DSM) was calculated based on the land cover dependent 

approach described in Hollaus et al. (2010). This approach uses for rough surfaces the DSM calculated 

from the highest 3D point per raster cell and for smooth surfaces and for data gaps the DSM based on 

moving least squares interpolation of a local point cloud. Finally, the normalized digital surface model 

(nDSM) was calculated by subtracting the DTM from the DSM. The derived DSM and nDSM models 

have a spatial resolution of 1x1 m. 

To use the NFI data as ground reference for ALS based regression models, the geolocation accuracy 

between ALS and NFI data has to be checked in a first step. This was done manually in a GIS 

environment by overlaying the nDSM with the NFI sample tree positions including the measured tree 

heights. As shown in Figure 1 the NFI sample tree positions were moved to the local maximas of the 

nDSM, which can be assumed as tree positions. Furthermore, Figure 1 shows that three sample trees 

were harvested in the time between ALS and NFI data 

acquisition. All harvested trees were excluded from the 

calibration procedure. To consider the mentioned time 

gap between ALS and NFI data acquisition a tree 

growth model (Ledermann, 2006; Ledermann et al., 

2017; Monserud und Sterba, 1996) was used to model 

tree height and stem volume for the date of ALS data 

acquisition. The stem volume for each sample tree was 

calculated based on the volume functions described in 

Braun (1969), Pollanschütz (1974), and Schieler 

(1988). 

Adapted from the plot-based approach presented in 

Hollaus et al. (2009) it is assumed that the single tree 

stem volume can be correlated to the mean canopy 

surface height above the ground level derived from the 

ALS data. Crown area was estimated for each sample tree (NFI) using 

an empirical function depending on tree species (NFI), tree height 

(ALS), and altitude (ALS). The estimated crown area was used as 

spatial reference for extracting the average nDSM value, which 

corresponds to the average crown height. These derived crown heights 

were used as explanatory variable in a polynomial function.  

Finally, the derived stem volume model was applied to each ALS data 

set for the entire forest area of Vorarlberg. The derived stem volume 

maps with a spatial resolution of 5x5 m² were used to assess the amount 

of harvested areas and their corresponding stem volume amount as well 

as the increase of stem volume due to tree growth. The processing of 

the ALS data was done with the OPALS software (Pfeifer et al., 2014). 

4. Results and discussion

Based on the described co-registration approach 1146, 

857, and 222 sample trees respectively were useable 

for calibrating the polynomial model. The reason for 

the low number of sample trees for ALS_2017 is that 

this inventory is still ongoing and not all NFI plots are 

surveyed yet. Figure 3 shows the correlation between 

the NFI derived sample tree stem volumes and the ALS 

derived mean nDSM heights. As visible in Figure 3 

there is no statistically significant difference of the 

correlations between the three ALS data sets. 

Therefore, only one polynomial model was calibrated 

for assessing the multi-temporal stem volume maps. 

The calibrated stem volume model was applied for all 

Figure 1: nDSM overlaid with NFI sample tree positions. 

The green diamonds represent the locations of the 

original positions and the red one the adjusted positions. 

Figure 2: nDSM overlaid with 

adjusted NFI sample tree positions 

and the estimated crown areas. 

Figure 3: Scatterplots for stem volume and average 

crown height (nDSM). The three different colors 

represent the three ALS data sets. The red dashed line 

shows the fitted polynomial stem volume model. 
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three ALS data sets. In Figure 4 the changes of the 

stem volumes between ALS_2004 and 

ALS_2011, and ALS_2011 and ALS_2017 are 

shown. In total 3,36 Mio m³ stem volume was 

harvested between ALS_2004 and ALS_2011 and 

2,50 Mio m³ between ALS_2011 and ALS_2017. 

In the same time periods the stem volumes 

increased by 4,42 Mio m³ and 5,56 Mio m³ 

respectively. The quantified changes are in good 

agreement with the federal state wide NFI 

statistics. The benefit of the ALS derived stem 

volumes map is the high spatial resolution of 

5x5 m² and thus demonstrate the high potential of 

ALS data for large- as well as small-scale 

operational stem volume estimation. 

5. Conclusion

This study shows the high potential of multi-temporal stem volume estimation based on country-wide 

ALS and NFI data. The derived stem volume maps allow detailed quantification of harvested forests as 

well as of stem volume increase with high spatial resolution. In further investigations the influence of 

different tree species and forest management practices (i.e. forest thinnings) will be investigated. 

Furthermore, the integration of image matching data to increase the temporal resolution will be studied. 
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1. Introduction

The estimation of forest state and change is crucial for the assessment of the changes in the carbon stocks 

which are necessary as per the requirements of the Kyoto Protocol (UNFCCC 2021). The estimation of 

the dynamics of forest aboveground biomass (AGB) is also important to study the impact of forest 

management towards climate change mitigation (e.g., Eggleston et al. 2006; Puliti and Astrup 2020). 

The field data from the National Forest Inventories (NFIs) are commonly used to estimate the state and 

change of forest attributes such as AGB and growing stock volume for countries and regions within 

countries (e.g., Tomppo et al. 2010). However the collection of the data is expensive, time consuming 

and sometimes also impossible in inaccessible areas (e.g., Saarela et al. 2020). To improve cost-

efficiency of the forest attribute estimation, remotely sensed (RS) data are incorporated along with the 

field data. The use of RS data enables mapping of parameters across the landscape it covers as well as 

estimation of the target population mean and total (e.g., Saarela et al. 2020). Previous studies have been 

conducted combining field data with Light Detection and Ranging (LiDAR) data that proved to be 

efficient in monitoring AGB changes (e.g., Dubayah et al. 2010, Bollandsås et al. 2013, Næsset et al. 

2013, Skowronski et al. 2014, McRoberts et al. 2015, Magnussen et al. 2015, Hopkinson et al. 2016, 

Ene et al. 2017, Puliti and Astrup 2020). Hudak et al. (2012) estimated the change in above ground 

biomass (∆AGB, where ∆ represents the change) through direct and indirect approaches from the 

changes in the predictor variables retrieved from the airborne laser scanning (ALS) data. McRoberts et 

al. (2015) presented direct and indirect estimation methods for ∆AGB using ALS data along with forest 

inventory data for a boreal forest in Våler Municipality, Norway. 

Categorical variables have been implemented for the estimation of AGB using RS data and field 

inventory data in a number of studies (e.g., Ou et al. 2019, Li et al. 2019 and 2020). In Li et al. (2019) 

and Li et al. (2020) the categorical variables were formed based on the available field data and Landsat 

8 data for different classes of forest crown densities. The categorical variables were used in the 

parametric models for the estimation of AGB. A comparative analysis between the models with and 

without categorical variables was performed proving the efficiency of the inclusion of categorical 

variables in modelling. In Ou et al. (2019), a comparative analysis of parametric models (linear model 

(LM) and LM with combined variables) and non-parametric methods (random forest (RF) and artificial 

neural network (ANN)) was conducted based on the inclusion of categorical variables for different age 

classes of Pinus densata forests. The models included categorical variables were observed to improve 

the overall accuracy of estimation by 14-42% and 32-44% for the training and testing plots based on the 

root mean-squared error (RMSE) values. 

The objective of this study was to incorporate parametric models (LMs) and non-parametric (RF) 

methods along with categorical variables and using NFI field data and auxiliary LiDAR data for the 

estimation of ∆AGB. The study is mainly focused to observe the ability of LiDAR for ∆AGB estimation 

when different management practices of the forests are taken into account. The categorical variables 

were grouped based on the management practices such as, thinning and felling operations conducted in 

the plots. 

Published in: Markus Hollaus, Norbert Pfeifer (Eds.): Proceedings of the SilviLaser Conference 2021, Vienna, Austria, 28–30 September 2021.  
Technische Universität Wien, 2021. DOI: 10.34726/wim.1861
This paper was peer-reviewed. DOI of this paper: 10.34726/wim.1982

205



2. Material and Methods

The study area is located in south of Sweden with a forest cover of 332171.8 ha and species composition 

with proportions such as, 24.6% Pine (Pinus sylvestris), 53.8% Spruce (Picea abies), 11.1% Birch 

(Betula spp.) and 24.5% of other broadleaved tree species. The Swedish NFI field data were available 

for 218 plots for two time periods, 2010-2014 and 2015-2019. The plots were circular with 10m radius 

sampled using the systematic cluster sampling method. 

For each corresponding field plot the LiDAR metrics were retrieved using the Fusion software 

(McGaughey 2020). Laser returns above 1.5m height were retained in order to eliminate the non-

vegetation returns. The LiDAR metrics used for the regression modelling were 80% height percentile 

(hp80) and the vegetation ratio (vr) based on the previous studies (Nilsson et al. 2017, Saarela et al. 2020). 

The ∆AGB was estimated directly from the plot-level NFI data available for time period 2 (2015-

2019) and 1 (2010-2014). The data were grouped based on the silvicultural operations into three 

categories namely, plots with thinning operation, plots with clear felling operations and plots with no 

activity. The plot-level values for ∆AGB and the change in LiDAR metrics (∆LiDAR metrics) were 

used for developing the relationship between the response variable (∆AGB) and the predictor variables 

(∆hp80 and ∆vr) along with the categorical variables (indicators I1 and I2). I1 and I2 represent the categories 

of plots with no activity and with thinning operation, respectively. Figure 1 presents an overview of the 

modelling workflow.  

For the parametric modelling, the LMs with and without accounting for heteroscedasticity were 

used along with the LiDAR metrics and categorical variables. For the model accounting for 

heteroscedasticity the nlme package in R was used (Pinheiro et al. 2021). The first model selected for 

the study was the LM with no intercept and with the LiDAR metrics and the categorical variables 

assuming that the random errors are homoscedastic. The second parametric model accounted for 

heteroscedasticity in random errors. To calculate weights, the variance function with the exponential 

form of the random error variance was selected from the nlme package in R (Pinheiro et al. 2021). The 

selection was based on the Akaike information criterion (AIC). The models have been represented in 

Table 1. 

Table 1. The model forms of the parametric LMs, where, β and γ represent the coefficients and ɛ represents the 
random error for the first model. α and δ represent the coefficients and ʋ represents the random error for the 
second model. And, I1 and I2 represent the first and the second group of the categorical variables. 

Model type Model form 

LM (no account for 

heteroscedasticity) 
∆𝐴𝐺𝐵 = 𝛽1∆ℎ𝑝80 +  𝛽2∆𝑣𝑟 +  𝛾1(∆ℎ𝑝80 ∙ 𝐼1) +  𝛾2(∆𝑣𝑟 ∙ 𝐼1)

+ 𝛾3(∆ℎ𝑝80 ∙ 𝐼2) +  𝛾4(∆𝑣𝑟 ∙ 𝐼2) +  ɛ

LM (account for 

heteroscedasticity) 
∆𝐴𝐺𝐵 = 𝛼1∆ℎ𝑝80 + 𝛼2∆𝑣𝑟 + 𝛿1(∆ℎ𝑝80 ∙ 𝐼1) + 𝛿2(∆𝑣𝑟 ∙ 𝐼1)

+ 𝛿3(∆ℎ𝑝80 ∙ 𝐼2) +  𝛿4(∆𝑣𝑟 ∙ 𝐼2) +  ʋ

For the non-parametric modelling, the RF method with and without categorical variables were used. 

The RF methods were formed using the randomForest package in R (Liaw and Wiener 2002). For this 

study, the default value of ‘ntree’ = 500 trees was used and the same dataset was used to fit the parametric 

models and the non-parametric methods for ∆AGB prediction. 

Figure 1: The methodological overview of this study. 

Plot-level data

(Time-1 (2010-14))

Direct Change Estimation:

1) ∆AGB

2) ∆LiDAR metrics

Categorical Variables

(3 categories of silvicultural

operations)

AGB-LiDAR models:

1. Parametric (LM)

2. Non-parametric (RF)
Prediction of ∆AGB

Plot-level data

(Time-2 (2015-19))
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3. Results and Discussion

The predicted ∆AGBs versus the field ∆AGBs were plotted for the four models, as seen in Figure 2. In 

case of the parametric models the under estimation of ∆AGB values for the plots for category 1 (plots 

with no activity) is higher compared to that of the non-parametric models where the underestimation is 

observed to be mostly in the positive range of the predicted ∆AGB values. The overestimation of the 

∆AGB values for category 1 is observed to be clustered around 0 in case of the parametric models 

whereas, the RF model with categorical variables has a lower range of overestimated ∆AGB values. For 

category 2 (plots with thinning operation) the range of overestimation of ∆AGB values is observed to 

be lower and more spread out in case of the RF model with categorical variables compared to the other 

three models. The RMSE values of the four models have been listed in Table 2. The models with 

interactions with categorical variables have lower RMSE values. Out of the three models with 

categorical variable interactions, the LM model (with no account of heteroscedasticity) is observed to 

have a wider range of predicted ∆AGB values and the lowest RMSE value of 32.269 Mgha-1 followed 

by the RF method with RMSE value of 34.608 Mgha-1. 

The ∆AGB values can be predicted for the entire study area on the availability of the raster maps 

for the categorical variables based on the silvicultural operations conducted. From the trend in the above 

plots it can be expected to have a more heterogeneous map of predicted values of ∆AGB in case of the 

non-parametric RF method as the overestimation and underestimation of the smaller and larger ∆AGB 

values, respectively, is lesser compared to that of the parametric models.  

Table 2. The models with their respective RMSE values in Mgha-1. 

Model/ Method RMSE (Mgha-1) 

LM (no account for heteroscedasticity) 32.269 

LM (account for heteroscedasticity) 35.882 

RF (without categorical variables) 43.708 

RF (with categorical variables) 34.608 

4. Conclusions

In this study, we incorporated the parametric and non-parametric models with categorical variables 

based on the different silvicultural operations conducted in the sample plots. The incorporation of the 

categorical variables along with LiDAR metrics was seen to improve the accuracy of ∆AGB prediction. 

It was observed from this study that the models with interactions with categorical variables perform 

better, out of which the LM assuming the random errors are homoscedastic was observed to perform the 

best in terms of yielding the lowest RMSE value of 32.269 Mgha-1. And, also the overestimation of 

lower ∆AGB values and underestimation of higher ∆AGB values was seen to improve in case of the 

non-parametric RF model along with the grouped factor of silvicultural operations. 

Figure 2: Predicted ∆AGB versus measured ∆AGB for: (a) LM without account for heteroscedasticity, (b) LM with 
account for heteroscedasticity, (c) RF without categorical variables, and, (d) RF with categorical variables. 

207



Acknowledgements 

Funding was provided by grants from the Swedish Research Council for Sustainable Development 

(FORMAS: FR-2019/0007), the Swedish Kempe Foundation (Kempestiftelserna: SMK-1847) and the 

Swedish National Space Agency (SNSA-171/19). We acknowledge the Swedish NFI for providing the 

field data used in the study. 

References 

 Bollandsås O M, Gregoire T G, Næsset E and Øyen B H, 2013, Detection of Biomass Change in a Norwegian 

Mountain Forest Area Using Small Footprint Airborne Laser Scanner Data. Statistical Methods and 

Applications, 22(1):113–29. doi: 10.1007/s10260-012-0220-5. 

Dubayah R O, Sheldon S L, Clark D B, Hofton M A, Blair J B, Hurtt G C and Chazdon R L, 2010, Estimation of 

Tropical Forest Height and Biomass Dynamics Using Lidar Remote Sensing at La Selva, Costa Rica. Journal 

of Geophysical Research: Biogeosciences, 115(G2):n/a-n/a. doi: 10.1029/2009JG000933. 

Eggleston H S, Buendia L, Miwa K, Ngara T and Tanabe K, 2006, 2006 IPCC Guidelines for National Greenhouse 

Gas Inventories. Institute for Global Environmental Strategies (IGES), Hayama, Japan. 

Ene L T, Næsset E, Gobakken T, Bollandsås O M, Mauya E W and Zahabu E, 2017, Large-Scale Estimation of 

Change in Aboveground Biomass in Miombo Woodlands Using Airborne Laser Scanning and National 

Forest Inventory Data. Remote Sensing of Environment, 188:106–17. doi: 10.1016/j.rse.2016.10.046. 

Hopkinson C, Chasmer L, Barr A G, Kljun N, Black T A and McCaughey J H, 2016, Monitoring Boreal Forest 

Biomass and Carbon Storage Change by Integrating Airborne Laser Scanning, Biometry and Eddy 

Covariance Data. Remote Sensing of Environment, 181:82–95. doi: 10.1016/j.rse.2016.04.010. 

Hudak A T, Strand E K, Vierling L A, Byrne J C, Eitel J U H, Martinuzzi S and Falkowski M J, 2012, Quantifying 

Aboveground Forest Carbon Pools and Fluxes from Repeat LiDAR Surveys. Remote Sensing of 

Environment, 123:25–40. doi: 10.1016/j.rse.2012.02.023. 

Li C, Li M and Li Y, 2020, Improving Estimation of Forest Aboveground Biomass Using Landsat 8 Imagery by 

Incorporating Forest Crown Density as a Dummy Variable. Canadian Journal of Forest Research, 

50(4):390–98. doi: 10.1139/cjfr-2019-0216. 

Li C, Li Y and Li M, 2019, Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown 

Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. 

Forests, 10(2):104. doi: 10.3390/f10020104. 

Liaw A and Wiener M, 2002, Classification and Regression by RandomForest. Vol. 2. 

Magnussen S, Næsset E and Gobakken T, 2015, Lidar-Supported Estimation of Change in Forest Biomass with 

Time-Invariant Regression Models. Canadian Journal of Forest Research, 45(11):1514–23. doi: 

10.1139/cjfr-2015-0084. 

McGaughey B, 2020, FUSION/LDV LIDAR Analysis and Visualization Software. Pacific Northwest Research 

Station USDA Forest Service, Retrieved May 14, 2021. 

(http://forsys.cfr.washington.edu/fusion/fusion_overview.html). 

McRoberts R E, Næsset E, Gobakken T and Bollandsås O M, 2015, Indirect and Direct Estimation of Forest 

Biomass Change Using Forest Inventory and Airborne Laser Scanning Data. Remote Sensing of 

Environment, 164:36–42. doi: 10.1016/j.rse.2015.02.018. 

Næsset E, Bollandsås O M, Gobakken T, Gregoire T G and Ståhl G, 2013, Model-Assisted Estimation of Change 

in Forest Biomass over an 11year Period in a Sample Survey Supported by Airborne LiDAR: A Case Study 

with Post-Stratification to Provide ‘Activity Data. Remote Sensing of Environment, 128:299–314. doi: 

10.1016/j.rse.2012.10.008. 

Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, 

Eriksson J and Olsson H, 2017, A Nationwide Forest Attribute Map of Sweden Predicted Using Airborne 

Laser Scanning Data and Field Data from the National Forest Inventory. Remote Sensing of Environment, 

194:447–54. doi: 10.1016/j.rse.2016.10.022. 

Ou G, Li C, Lv Y, Wei A, Xiong H, Xu H and Wang G, 2019, Improving Aboveground Biomass Estimation of 

Pinus Densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and 

Method Comparison. Remote Sensing, 11(7):738. doi: 10.3390/rs11070738. 

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Willigen B V and Ranke J, 2021, Package “nlme” 

Linear and Nonlinear Mixed Effects Models. 

Puliti S and Astrup T F B, 2020, Above-Ground Biomass Change Estimation Using National Forest Inventory 

Data with Sentinel-2 and Landsat 8. 

Saarela S, Wästlund A, Holmström E, Mensah A A, Holm S, Nilsson M, Fridman J and Ståhl G, 2020, Mapping 

Aboveground Biomass and Its Prediction Uncertainty Using LiDAR and Field Data, Accounting for Tree-

Level Allometric and LiDAR Model Errors. Forest Ecosystems, 7(1). doi: 10.1186/s40663-020-00245-0. 

Skowronski N S, Clark K L, Gallagher M, Birdsey R A and Hom J L, 2014, Airborne Laser Scanner-Assisted 

208



Estimation of Aboveground Biomass Change in a Temperate Oak-Pine Forest. Remote Sensing of 

Environment. doi: 10.1016/j.rse.2013.12.015. 

Tomppo E, Schadauer K, McRoberts R E, Gschwantner T, Gabler K and Ståhl G, 2010, National Forest 

Inventories. Springer, Netherlands. 

UNFCCC, 2021, Kyoto Protocol - Targets for the First Commitment Period | UNFCCC. Retrieved May 12, 2021. 

(https://unfccc.int/process-and-meetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-

targets-for-the-first-commitment-period). 

209



Terrestrial laser scanning reveals consistent dependencies between
mean wood density and tree crown architecture

V. Kankare1, N. Saarinen1, J. Pyörälä2, T. Yrttimaa1, S. Huuskonen3, J. Hynynen3, M. Vastaranta1

1School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
Email: ville.kankare@uef.fi, ninni.saarinen@uef.fi, tuomas.yrttimaa@uef.fi, mikko.vastaranta@uef.fi

2Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland
Email: jiri.pyorala@helsinki.fi

3Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
Email: saija.huuskonen@luke.fi, jari.hynynen@luke.fi

1. Introduction
Wood density is an important quality characteristic determining the suitability of raw material for a
specific end use. In addition, the interest in wood density has considerably increased in recent years due to
its importance in estimating forest biomass and carbon storage (Clough et al. 2017, Nam et al. 2018).
Wood density of a tree species is widely expressed as a value from basic wood-density tables existing in
scientific literature. However, it is known to be a site-specific parameter that can significantly vary within
and between trees due to each individual tree adapting to its growing environment (Saranpää 2003). This
has created a need to obtain wood density information over varying tree communities but there has not
been a viable technological or methodological solution to characterize tree architecture (especially crown
characteristics) sufficiently. Recently, the methodological development of terrestrial laser scanning (TLS)
has reached a point where characterization of tree crown and branch properties is possible (e.g. Pyörälä et
al. 2019). Therefore, the aim of this study was to evaluate the relationship between crown characteristics
(shape and size) and wood density variation of Scots pine (Pinus sylvestris L.) trees in three different
study sites. The main research questions were: (1) Are the dependencies between tree crown architecture
and mean wood density consistent between different study sites? (2) What are the most influential crown
characteristics explaining the wood density variation?

2. Data and Methods
The three study sites consist of even-aged (approximately 50 years) Scots pine dominated forests that are
maintained by Natural Resources Institute Finland (detailed description in Saarinen et al. 2020). During
the establishment, six different thinnings were conducted in addition to a control (i.e. no treatment).
Treatments included three thinning types (thinning from below, above and systematic thinning) with two
different thinning intensities (moderate and intensive). Wood density samples were collected using
increment borer at fixed stem height of 1.3 m in March-April 2019 from 135 trees. Sample trees were
selected based on the diameter distribution to represent different tree and stand characteristics. Bored
samples were then analyzed with X-ray microdensitometry (Peltola et al. 2007) and following attributes
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were calculated: ring basal area weighted mean values for wood density (WDg) and mean ring width
(RWmean).

TLS data was collected with Trimble TX5 3D laser scanner (Trimble Navigation Limited, USA) with
multiple scan setup to achieve best possible point coverage (see details Saarinen et al. 2020). The
descriptive crown characteristics were derived from the point cloud data using algorithms originally
developed by Yrttimaa et al. (2019, 2020) and Pyörälä et al. (2018). Derived characteristics included:
crown height (CrownH), area (CrownA), volume (CrownV), width (CrownW), length (CrownL), mean
branch diameter (BranchD), and mean whorl-to-whorl distance (WhorlD).

The relationship between the crown characteristics, WDg and RWmean in the tree study sites were first
investigated based on Pearson's correlation matrices. Then, a linear mixed effects model (LME) in
package nlme (Pinheiro et al. 2016) of the R-software (R Core Team, 2019) was fitted and the analysis of
variance was applied in testing the statistical significance of each crown attribute.

3. Results
Analysis showed that no strong (i.e. > 0.6) or statistically significant (p-value < 0.05) correlations
between WDg and crown characteristics were found in the three study sites. The highest correlation was
found for BranchD (0.24). However, when evaluating correlations within thinning treatment wise, slightly
higher correlations were visible. The highest correlations were found between CrownH (0.53) and
BranchD (-0.53) from intensive thinning from below and control plots, respectively but overall the
correlations were low. In contrast, when evaluating the correlations between crown characteristics and
RWmean, strong (i.e. > 0.6) and statistically significant (p-value < 0.05) correlations were observed for
CrownA, CrownV and CrownW. Observed correlations were at similar levels between different study sites.
The highest correlation (0.67) was observed between CrownV and RWmean.

LME modelling showed that none of the crown characteristics had a statistically significant (p-values
> 0.05) effect on WDg in any of the tree study sites. In contrast, LME modelling showed that almost all of
the crown characteristics had statistically significant effects (p-values < 0.05) on RWmean. Only exceptions
were BranchD and WhorlD.

4. Discussion and conclusion
Results showed that the dependencies between crown characteristics and WDg and RWmean within the
three study sites are consistent. Even though no strong correlations or statistical significant effects were
observed between WDg and evaluated TLS derived crown characteristics, the resulting correlations were
similar between the study sites. Similar results have been reported previously and for example Jaakkola et
al. (2005) concluded that intensive thinning is required to have considerable effect on WDg. Results
showed that the short timeframe since the establishment (approximately 15 years) affected more on crown
characteristics than on wood density attributes. This indicates that the overall change in crown
characteristic is faster compared to wood density attributes.

However, results showed that the crown characteristics tended to have a more significant effect and
higher correlations on RWmean than WDg. The most influential characteristics were CrownW, CrownA and
CrownV. These characteristics also had a statistically significant effect on RWmean based on LME
modelling. This result supports the fact that the increasing size of the tree crown causes trees to allocate
their growth to stem size to increase the structural carrying capacity. Therefore, the future research should
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focus on evaluating the development (i.e. growth) of crown characteristic in relation to mean density
variation.
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1. Introduction
Two new NASA spaceborne Light Detection and Ranging (LiDAR) missions launched in late 2018 - the 
Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) and the Global Ecosystem Dynamics Investigation 
(GEDI) - produce a new set of three-dimensional data of Earth’s land surface. In this study we assessed 
the accuracy and precision of terrain and canopy height estimates from these two new LiDAR missions 
by examining the ICESat-2 ATL08 land and vegetation product, version 3 (Neuenschwander and Pitts 
2019; Neuenschwander et al. 2020) and the GEDI L2A footprint elevation and canopy height metrics, 
version 1 (Dubayah et al. 2020a, Dubayah et al. 2020b). We conducted our analysis over temperate 
broadleaved and needleleaved forests as well as tropical rainforest. For assessment of terrain and canopy 
height estimates from spaceborne LiDAR data we used high-resolution airborne LiDAR (ALS) as 
reference data. 

2. Methods and material
We investigated the accuracy of both sensors at three different study sites. The first two test sites are 
located in central Germany and covered by temperate broadleaved and needleleaved forests. The 
Amazon tropical forest site is a 2° x 2° region transected by the middle reaches of the Juruá river, a 
major tributary of the Amazon river in western Brazil. About 80% of the region consists of upland ("terra 
firme") hills, terraces, and interfluvial flats with the remainder occupied by seasonally inundated, largely 
forested floodplains.  

As reference data we used small-footprint discrete-return airborne LiDAR data. The mean point 
density is around 4-20 returns per m². Terrain elevation, slope, canopy height and density estimates at a 
spatial resolution of 1 m were calculated with the LAStools software (version 200304).  

For the accuracy assessment of ICESat-2 data we used the ATL08 product version 3 
(Neuenschwander et al. 2020) acquired between October 2018 and July 2020. GEDI L2A version 1 data 
(Dubayah et al. 2020b) acquired between April 2019 and April 2020 over our study regions were used 
for the accuracy assessment of terrain and canopy height estimates. 

Since the elevations in the ALS data are orthometric heights referenced to local geoids, a conversion 
to the WGS84 ellipsoid vertical reference as in GEDI and ICESat-2 data was applied. The Earth 
Gravitational Model (EGM) 2008 (Pavlis et al. 2012) geoid heights are provided in the GEDI L1B and 
ICESat-2 ATL03 products as auxiliary information. From the reference CHM we excluded those areas 
that are located outside forested areas. For this, we used a CHM threshold of 5 m for temperate and 
tropical forests (FRA 2015).  

For terrain elevation comparison, we calculated a median value from reference data over GEDI and 
ICESat-2 footprints. For canopy height assessment, we extracted 95th percentile from CHM reference 
data over GEDI and ICESat-2 footprints. For statistical assessment of terrain and canopy height 
estimates, the following statistical metrics between spaceborne and reference data were calculated: R², 
mean error (ME), root mean square error (RMSE), median absolute deviation (MAD), linear error 90% 
(LE90).  
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3. Results and discussion
Our results show that both GEDI and ICESat-2 provide accurate terrain elevation estimates in three 
different biomes (broadleaved and needleleaved temperate forests, and tropical forest) (Figure 1). With 
the exception of ICESat-2 in tropical forests (with a small sample size though and one outlier), in all 
regions ME is lower than 1 m and R² is higher than 0.9 compared to the reference data. 

ICESat-2 provides more precise estimates, e.g., LE90 from ICESat-2 is smaller than that from 
GEDI. The reason for this might be partly caused by a strong filtering (e.g., cloud, outlier removals) of 
ICESat-2 ATL08 data. On the other hand, there are many more GEDI samples (e.g., Figure 1), although 
only 12 months of GEDI data were used here (while ICESat 2 acquisition dates spanned 21 months).  

The six GEDI algorithm setting groups perform differently in the three biomes. The default 
algorithm 1 is somewhat similar to the other four algorithms (2, 3, 4 and 6) and yielded one of the best 
results in temperate broadleaved and needleleaved forests. As expected, tropical forests represent the 
most challenging environment for both sensors to estimate terrain elevation. The number of reference 
samples in tropical forests is, however, much lower than in the other two environments, resulting in less 
robust statistics (Figure 1). Dense canopies with multiple vegetation layers cause a weak return from the 
ground, which complicates an accurate classification of the terrain. However, as shown here, GEDI 
terrain estimates from the algorithm 5 are quite accurate except for the areas over flooded forests. A 
lower signal end threshold helps to detect the ground more accurately below tropical forests with dense 
understory vegetation. 

Figure 1: Terrain elevation estimates in temperate broadleaved (A, D), needleleaved (B, E) and 
tropical forests (C, F) from GEDI (upper figures) and ICESat-2 (bottom figures) vs. ALS DTM. 

Canopy height estimates show much lower accuracy for both GEDI and ICESat-2 in all three biomes 
(Figure 2). Factors contributing to lower accuracy are 1) the canopy height estimate depends directly on 
the accuracy of terrain height; 2) vegetation canopies are much rougher than terrain, and are thus 
strongly influenced by the geolocation accuracy of spaceborne data.  

In temperate forests the accuracies of the six GEDI algorithms for canopy height estimates differ in 
terms of R² and RMSE, with the most accurate algorithms 2 and 6. In this biome, algorithm 5 is the least 
accurate, due to underestimation of terrain elevation, which leads to an overestimation of canopy 
heights. The overestimation of GEDI and ICESat-2 canopy heights in temperate needleleaved forest can 
be partly caused by vegetation growth between the ALS and spaceborne acquisition dates. Finally, since 
current GEDI horizontal geolocation is around 10-20 m, it is difficult to conclude which algorithm 
performs best in temperate forests.  

 In contrast to the temperate forests, in the tropical forest area GEDI algorithm 5 provides the most 
accurate results compared to the ALS data, again thanks to more accurate estimation of terrain elevation. 
The other five GEDI algorithms underestimate canopy height with ME lower than 6 m. While the first 
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return might be detected correctly, an overestimation of terrain elevation leads to an underestimation of 
vegetation height. 

The best results for canopy height estimation from ICESat-2 were found in temperate forests, with 
R² between 0.6-0.7 compared to the ALS CHM. In general, green lasers have a higher background solar 
noise and lower reflectance from vegetation as opposed to the near-infrared. Thus, a green laser might 
have problems when a canopy is dense and a low number of photons is collected (Swatantran et al. 
2016), as it can be the case in tropical forests. In our temperate forests ICESat-2 canopy height estimates 
perform better than GEDI canopy height estimates, which can be caused by a strong filter of the 
ICESat-2 ATL08 product and a higher horizontal geolocation accuracy (5 m for ICESat-2 
(Neuenschwander & Magruder 2019) and 10-20 m for GEDI (Dubayah et al. 2020a). 

Figure 2: Canopy height estimates in temperate broadleaved (A, D), needleleaved (B, E) and tropical 
forests (C, F) from GEDI (upper figures) and ICESat-2 (bottom figures) vs. ALS CHM estimates. 
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1. Introduction

Forest stands are fundamental to forestry management. Forest stands are defined as large forested areas 

of homogeneous tree attributes and are traditionally delineated by operators through visual analysis of 

very high-resolution images, which is tedious and highly time-consuming. Therefore, this task could be 

automated for scalability and efficient updating purposes (Haara et al 2002). 

With respect to existing methods, it appears that there are few studies focused on automatic 

delineation of forest stands based on multi-source remote sensing data. Also, tree species information 

with high accuracy is not fully used in recent methods. In this paper, a method based on the fusion of 

airborne LiDAR and hyperspectral data was proposed. The hyperspectral data give access to the 

dominant tree species of the forest stands while CHM derived from airborne LiDAR data provides 

geometric information of forest stands such as mean tree height and canopy closure.  

2. Data and Methods

2.1 Study area 

The study area is in Mengjiagang Forest Farm, Heilongjiang Province, China. The geographical 

coordinates are 130°32’-130°52’E and 46°20’-46°30’N. The major tree species of this farm include 

Korean pine (Pinus koraiensis), Spruce (Picea asperata), Mongolian pine (Pinus sylvestris), and larch 

(Larix olgensis), which approximately account for 80% of the forest area. 

2.2 Data 

The airborne data were collected in 2017 by LiCHy airborne observation system (Pang et al., 2016). The 

canopy height model (CHM) was obtained from the LiDAR point cloud data with 1 m spatial resolution. 

The tree species map was obtained by classification of hyperspectral images, with an overall accuracy 

of 91.28% and Kappa of 0.88. (Li et al., 2018). 

2.3 Methods 

There are three main steps of the stand delineating 

method: (i) the 1 m resolution CHM was down-

sampled to 5 m, filtered by Minimum Variance 

Filter and over-segmented to get large amounts of 

segments smaller than the forest stand size; (ii) the 

attributes of segments were calculated, including 

mean canopy height, canopy closure, dominant tree 

species, the proportion of dominant tree species 

and so on; (iii) Two rules (merging homogeneous 

segments and eliminating small segments) were 

used to merge segments toward final forest stands. 

The workflow was presented in Figure 1. 

Figure 1: The flowchart of automatic delineation 

of forest stands based on CHM and tree species. 
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To reduce the noise in homogeneous forest stands. The CHM was down-sampled to 3m, 5m, 7m, 

10m respectively and filtered by several edge-remaining smoothing filters in different window sizes. 

Then the MVF filter was selected. The result was segmented by object-oriented multi-resolution 

segmentation with eCognition developer software. 

Six attributes were derived from the CHM and the tree species map, which were mean tree height, 

canopy closure, dominant tree species, the proportion of dominant tree species, stand area, and length 

of common edge. 

In the first merging step, a threshold of the maximum stand area was used to evaluate the sum of 

each segment and its neighbors. Then each pair of segments and neighbors would be judged whether 

they have the same dominant tree species, whether the difference of the two tree proportions was less 

than TP1 (Tree proportion threshold), the difference between their canopy closure was less than 0.2 and 

the difference between their CHM values was less than SH1 (Stand height threshold). The satisfactory 

segments were merged to their most suitable neighbors.  

After that, there were still some segments that did not have any acceptable adjacent segment. A 

threshold value of minimum stand area was applied, and all of those smaller than the fixed threshold 

would be merged to one of their adjacent segments. Three attributes were used in this rule to ensure 

there was no repetition and no omission, including tree species, tree proportion, stand height, and length 

of common side.  

The delineating results were verified in two ways for accuracy. The manual forest stands, the logging 

forest stands and the forest stands delineated based on DOM of 0.1 m spatial resolution were used as 

reference data. The intersection over union ratio (IoU) (Nowozin et al., 2014) was introduced to compare 

the overlapping between automatically delineated forest stands and reference forest stands. The 

explained variance of mean DBH, mean tree height and mean canopy height of 5 m×5 m cells were used 

to evaluate the homogeneity of each forest stand and the heterogeneity between different forest stands 

(Pukkala et al., 2019a, 2019b; Jia et al., 2020). The closer the interpretable variance is to 1, the higher 

the forest stands’ consistency are and the greater the variability among different forest stands are. 

3. Results and Discussion

The delineating results of different scales were shown in Figure 2. The final automatically delineated 

forest stands were compared with the manual 

forest stands in Figure 3. The proportions of 

the final forest stands with IoU greater than 0.7 

were 24%, 48%, and 64% for manual, logging 

and DOM mapping forest stands and 41%, 

67%, and 82% for automatic forest stands with 

IoU greater than 0.5, respectively. The 

explained variances of mean DBH and mean 

height of the final forest stands were 97% and 

98%, the same as manual forest stands. Our 

method explained 81.8% of the variation in 

mean canopy height in 5 m×5 m cells, which 

was 7.31% higher than the manual forest 

stands, 2.31% higher than the multiresolution 

segmentation results. 

Figure 2: Segments, merged segments and 

final forest stands. 

(a)Segments on CHM, (b)The merged 

segments on CHM, (c)The final forest stands 

on CHM, (d)Segments on tree species map, 

(e)The merged segments on tree species map 

(f) The final forest stands on tree species map. 
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Figure 3: The final forest stands and manual forest stands. 

(a)The final and manual forest stands on CHM, (b)The final and manual forest stands on tree 

species map. 

4. Conclusions

It turned out that our results were generally similar to the manual forest stands. The forest stands 

automatically delineated by multiresolution segmentation method with CHM and tree species 

information derived from hyperspectral image have obvious advantages in terms of internal consistency, 

boundary accuracy and were more consistent with the distribution of trees at the boundaries. This 

method is timesaving and increases the accuracy of forest stand delineation, which can support fine 

forest management planning. 

Acknowledgements 

This study was supported by National Key Research and Development Program (2017YFD0600404 & 

2020YFE0200800). 

References 

Dechesne, C., C. Mallet, A. Le Bris and V. Gouet-Brunet,2017, Semantic segmentation of forest stands of pure 

species combining airborne lidar data and very high resolution multispectral imagery. ISPRS Journal of 

Photogrammetry and Remote Sensing 126: 129-145. 

Haara A, Haarala M, 2002, Tree species classification using semi-automatic delineation of trees on aerial images. 

Scandinavian Journal of Forest Research, 17(6): 556-565. 

Koch, B., C. Straub, M. Dees, Y. Wang and H. Weinacker, 2009, "Airborne laser data for stand delineation and 

information extraction." International Journal Of Remote Sensing 30(4): 935-963. 

Leppänen, V., T. Tokola, M. Maltamo, L. Mehtätalo, T. Pusa and J. Mustonen, 2008, Automatic delineation of 

forest stands from lidar data. GEOBIA: 05-08. 

Li J, Pang Y, Li Z, et al. Tree Species Classification of Airborne Hyperspectral Image in Cloud Shadow Area, 

International Symposium of Space Optical Instrument and Application. Springer, Cham, 2018: 389-398. 

Mora, B., M. A. Wulder and J. C. White, 2010, Segment-constrained regression tree estimation of forest stand 

height from very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing 

Of Environment 114(11): 2474-2484. 

Mustonen, J., P. Packalen and A. Kangas, 2008, "Automatic segmentation of forest stands using a canopy height 

model and aerial photography." Scandinavian Journal of Forest Research 23(6): 534-545. 

Pang Y, Li Z, Ju H, et al, 2016, LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation 

system[J]. Remote Sensing, 8(5): 398. 

Pukkala, T., 2019a, Optimized cellular automaton for stand delineation. Journal of Forestry Research 30(1): 107-

119. 

Pukkala, T., 2019b, Using ALS raster data in forest planning. Journal of Forestry Research 30(5): 1581-1593. 

Pukkala, T., 2020, Delineating forest stands from grid data. Forest Ecosystems 7(1): 1-14. 

Wu, Z., V. Heikkinen, M. Hauta-Kasari, J. Parkkinen and T. Tokola, 2014, ALS data based forest stand delineation 

with a coarse-to-fine segmentation approach. 2014 7th International Congress on Image and Signal Processing, 

IEEE. 

Wulder, M. A., J. C. White, G. J. Hay and G. Castilla, 2008, Towards automated segmentation of forest inventory 

polygons on high spatial resolution satellite imagery. Forestry Chronicle 84(2): 221-230. 

218



High Resolution Mapping of Forest Resources and Prediction 
Uncertainty using Multisource Inventory Approach 

Ankit Sagar
1, 2, 3

, Cédric Vega
2
, Christian Piédallu

3
, Olivier Bouriaud

2
, Jean-Pierre Renaud

2,4

1
 Université de Lorraine, faculté des Sciences et Technologies - Campus Aiguillettes, 54506 Vandœuvre Les Nancy, France 

ankitsagar240893@gmail.com 

2
Laboratoire d’Inventaire Forestier, Université de Lorraine, ENSG, IGN, INRA, 54000 Nancy, France 

{Cedric.Vega; Olivier.Bouriaud }@ign.fr 

3
 UMR SILVA INRA-AgroParisTech-Université de Lorraine, 54000 Nancy, France 

christian.piedallu@agroparistech.fr 

4
Office National des Forêts, Pôle Recherche Développement Innovation, 54600 Villers-lès-Nancy, France 

jean-pierre.renaud-02@onf.fr 

1. Introduction

National forest inventory (NFI) provides precise forest resource estimates at national up to regional 

scale but could not support local estimates with high precision because of inadequate number of field 

plots. The forest managers and stakeholders prefer local estimates at fine spatial resolution (Chirici et 
al. 2020). Multi source-national forest inventory (MS-NFI) opens the possibility for wall-to-wall 

mapping of forest attributes with good precision at high spatial resolution. MS-NFI rely on the 

combination of NFI data with auxiliary data (remote sensing data, thematic map, etc.), and in many 

cases, this combination is modelled through a non-parametric k-nearest neighbour (k-NN) approach. 
k-NN is capable in predicting several attributes in a single model with a low prediction bias. The 

major drawbacks of k-NN are its inability to predict beyond the range of training data (Magnussen et 

al. 2010), the lack of well-established variance estimator (McRoberts et al. 2011) and its decreasing 
performance with increasing dimensionality.  

The estimation maps for the forest resources are important (Tomppo et al. 2008; Chirici et al., 

2020), but their prediction uncertainties have also to be taken into consideration. Methods have been 
proposed recently to map the prediction uncertainty (Esteban et al, 2019) and these maps have been 

included into an inferential framework (Saarela et al, 2020). In this study we propose a method 

building upon bootstrap model-based estimator (McRoberts et al. 2011) to estimate forest attributes of 

interest at pixel level and address the problem of extrapolation and precision of estimation by 
providing maps for both at high spatial resolution. For sake of concision, results were presented for 

growing stock volume (GSV) only. 

2. Data and Methods

The study was conducted in oak-dominated French broadleaved forests of Sologne and Orleans (~ 
7500 km2) in central France. NFI field data (819 plots) were collected from circular plots of 15-meter 

radius for a period of 5 year (2010 – 2014). The auxiliary data from ALS (2 point per m
2
) were 

acquired in winter of 2014 and three Level 2A Landsat 8 images were obtained during the summer of 
2014. Forest map from National Institute of Geographic and Forest Information (IGN) was used to 

extract forest type information and for discarding pixels shared among forest and non-forest areas. A 

total of 56 metrics have been derived from these auxiliary data sources. 

The k-NN model was built using Euclidean distance metrics with 5 nearest neighbours. Prior to 
modelling, an iterative feature deletion variable selection algorithm (Crookston and Finley 2008) had 

been used and the following 7 predictors had been selected: forest type from the forest map; mean and 

standard deviation of heights, canopy closure ratio (ratio between canopy and ground cover), 
percentage of returns above mean height, and 7th cumulative percentage of return from ALS data; and 

green band from the Landsat data. 

The precision of each pixel estimation was assessed using 100 bootstraps. The prediction error 
was evaluated through the computation of relative Root Mean Square Error (RMSE%) and bias for 

both training and testing sets. The prediction of each pixel was computed by taking mean of the boots. 
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The mean coefficient of variation (CV) of the boots were computed and used to classify pixels in three 

precision classes. The precision was considered high when the CV values were below the training 

RMSE%, intermediate in between the training and testing RMSE% and low otherwise. The uncertainty 
of the pixel prediction was assessed through the method of extrapolation, in which a convex hull 

(Barber et al. 1996) was built around the predictors from plot dataset and identifying pixels falling 

outside of the hull from population dataset as extrapolated pixels. The point to point distance of the 
extrapolated pixels to the calibration domain of the convex hull was also computed. 

3. Results and Discussion

The mean plot level GSV used to train k-NN model was 160.6 (± 7.8) m
3
ha

-1
. The RMSE% of the

model was 26.6% and 52% for training and testing sets, respectively. The model bias for the testing set 

was -2.7 m
3
ha

-1
. 

Table 1: Proportion of overall and extrapolated pixels partitioned into three precision classes, and the mean Euclidean 
distance of the extrapolated pixels from the convex hull. Numbers in parenthesis are standard deviation (SD) of the distance. 

Pixel Type Number of Pixels High precision Intermediate precision Low precision 

All 3,592,156 (100%) 77.3% 20.8% 1.8% 

 Extrapolated 1,337,000 (37%) 68.6% 27.5% 3.9% 

Mean extrapolation distance and SD from the hull 1.15 (0.43) 1.41 (0.68) 2.06 (1) 

Table 1 shows the bootstrap assessment of the GSV at pixel level. The study site constitutes ~3.6 

million of forested pixels of 30-meter resolution. Based on the model RMSE%, the pixels were 

classified into three precision classes: 77.3% of the pixels were classified in high (bootstrapped CV ≤ 
26.6%), 20.8% in intermediate (26.6% < bootstrapped CV < 52%) and 1.8% in low (bootstrapped CV 

≥ 52%) precision classes. Overall, 37% of the pixels (~1.34 million) were found to be extrapolated of 

which 68.6%, 27.5% and 3.9% of these extrapolated pixels fall in high, intermediate and low precision 

classes, respectively. 
It is observed from Table 1 that, as the distance of the extrapolated pixel to the convex hull 

increases, the pixel precision decreases. Figure 1 represents map products for a contrasted small subset 

of the study area. Overall, the map shows that low to intermediate precisions are often associated with 
extrapolation. In low volumes, such a combination is driven by the high variability in auxiliary data 

and the lack of measurements of small tree diameters on the field. Large volumes show some 

saturation (result not shown) which is masked by high precision, caused by the least variability in 
auxiliary data. In those values, extrapolation is the dominating factor. The Google imagery (Figure 1) 

further shows that extrapolation highlight transitions between forest and non-forest areas, forest stand 

limits, which are not fully covered in the field sample. 

4. Conclusions

We provided a pixel level approach to map extrapolation and precision of k-NN predictions of GSV. 

The method will be extended to consider potential bias correction as a function of distances to the 

calibration domain of the extrapolated pixels. The map products will be further connected with the 

model-based bootstrap estimator (McRoberts et al. 2011) for inferring population mean and variances 
for either administrative or management units. Those map products could help stakeholders in their 

decision-making process. 
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Figure 1: Map products for GSV: Google satellite image (top left), mean predicted volume (top right), precision class (bottom 
left) and extrapolation (bottom right). 
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Abstract
Objects:

Agroforestry is a sustainable land management mode to solve the current problems of
resource depletion and land use contradiction through planting mixed-forest. Mixed-forestry
management can directly change the forest stand structure by adjusting the management allocation
per unit area, and it has the multi-level characteristics composed by various vegetation types to
achieve the corresponding management objectives. With the support of active remote sensing
technology, three-dimensional point cloud scanned by TLS（Terrestrial laser scanning）can be
quantitatively monitored in agroforestry environment.

Method:
This research took the Chinese fir mixed-forest in Gaofeng Forest Farm of Guangxi Province,

South China as the research object, including four planting species: Cunninghamia lanceolata
(Lamb.) Hook.，Phoebe bournei (Hemsl.) Yang，Manglietiastrum sinicum，Sarcandra glabra
（Thunb.） Nakai., with three mixed management: LP(Cunninghamia lanceolata (Lamb.) Hook. -
Phoebe bournei (Hemsl.) Yang), LM(Cunninghamia lanceolata (Lamb.) Hook. - Manglietiastrum
sinicum), and LS (Cunninghamia lanceolata (Lamb.) Hook. - Sarcandra glabra（Thunb.）Nakai.)
A series of the height-related characteristic parameters were extracted from the scanned points of
each tree stems, including a proposed new parameter and the height cumulative percentage (Hz%).

Then the differences of growth, stem shape, yield and height cumulative percentage (Hz)
inflection point of Chinese fir under three mixed-forest modes were compared, and the stem taper
equation and yield table of different mixed-forest modes were established.

Results:
1）The upper diameter accuracy obtained by multi-station scanning is high, and the

correlation coefficient with manually measured data is 0.9864. The modified five - parameter
schumacher equation is the best stem form equation in this study. With R2 0.963,0.896,0.919 for
each mixed-forest.

2）Mixed management with Manglietiastrum sinicum shows more conducive to the growth
of Chinese fir. The average diameter at breast height (DBH), tree height (H) and volume (V) of
LM were the largest within the three mixed-forest, which were 25.7714cm, 20.3257m and
0.5195m3. And the cumulative length and volume of large timber, mid-length timber and short
timber in the LM plot shows largest output, which were 28.18m, 92.69m and 259.20m, 1.93m3,
2.60 m3 and 2.67 m3.

3）The point cloud characteristic parameters (height cumulative percentage Hz) can reflect
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the differences of each mixed-forest modes. The Hz curve of LM is higher than others. The
cumulative height percentage curves of LM and LP shows significantly different after H15. The
diameter at the height corresponding to the mutation point of LM remains the largest.

Conclusion:
Under different mixed-forest management, the three elements for forest mensuration (DBH,

tree height, stem form fact) of standing trees have corresponding differences, and the status of
living standing trees can be reflected through the high-precision point cloud data of TLS.
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1. Introduction

High resolution unmanned aerial vehicle laser based scanning (UAV-LS) data allows the identification 

of individual trees and has shown promising results in providing accurate key forestry variables 

comparable to in-situ observations. New and improved approaches for analyzing UAV-LS point clouds 

have to be developed to transform the vast and growing amounts of data from UAV-LS into actionable 

insights for decision making also advancing the derivation of essential biodiversity variables (e.g. 

Pereira et al. 2013). 

The use of UAV-LS data for deriving single-tree measurements is a rapidly increasing field of 

research, and several studies investigated the possibility to obtain measurements of tree biophysical 

properties such as height (Brede et al. 2017, Hartley et al. 2020), crown dimensions (Wallace, Lucieer, 

and Watson, 2014), tree density (Sankey et al. 2017), diameter at breast height (Jaakkola et al. 2017, 

Wieser et al. 2017, Dalla Corte et al. 2020) and above ground biomass (AGB) or volume (Brede et al. 

2019, Liang et al. 2019, Wang et al. 2019, Puliti, Breidenbach, and Astrup 2020). Despite the 

considerable efforts dedicated to developing automated ways to process UAV-LS data into useful data, 

current methods tend to be tailored to small datasets, and it remains challenging to evaluate the 

performance of different algorithms based on a consistent validation dataset. Furthermore, with the 

increased availability of deep-learning methods to segment and parse forest point clouds (Windrim and 

Bryson 2020, Krisanski et al 2021), there is an increasing need to develop large databases of annotated 

trees in dense point clouds. To fill this knowledge gap and to further advance our ability to measure 

forests from UAV-LS data, we present a new benchmarking dataset.  

2. Data

2.1 Input data 

This benchmark is designed to provide the best quality aerial laser scanning data on the use of survey-

grade UAV-LS data collected using RIEGL scanners of the VUX and mini-VUX series. Amongst the 

various UAV-LS sensors available today, the RIEGLones, when combined with high precision Inertial 

Measurement Units (IMUs), represent the state-of-the-art as they allow scanning at high frequency and 

the laser pulses are characterized by narrow beam divergence (i.e. small footprints) enabling the 

acquisition of very dense point clouds (1 – 10 k pts/m²) with larger canopy penetration rates and larger 

measurement accuracy compared to consumer-grade sensors (e.g. Velodyne VLP16).  
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To date, the available UAV-LS data for this benchmark covers different forest types across the 

world, including boreal coniferous forests, temperate deciduous and coniferous forests, savanna type of 

vegetation, and production forest plantations. 

Figure 1. Geographical overview of the currently available drone laser scanning data 

2.2. Manual annotation 

A sample of the available point clouds were manually annotated into single-trees and in different 

components of the tree, namely stems, branches, and leaves/needles (see Figure 2). The point clouds 

were annotated with particular attention to segmenting all tree size classes including co-dominant and 

suppressed trees.  
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Figure 2. Structure of the annotation in the benchmark data with information regarding single trees, different tree 

parts, and tree species. 

2.3 Field data 

Field measurements were conducted in each of the sites included in the benchmark. The diameter at 

breast height (DBH) was measured for all the annotated trees. In addition, when available, other 

measurements such as tree species, height, and volume are included. 

3. Scope of the benchmark

The main aim of this benchmark is to provide a solid 

base for further advancing our ability to characterize 

forest structures and obtain in-situ measurements 

from very dense airborne laser scanning data. Future 

possibilities to utilize these data consist of: 

• Benchmarking of algorithms for tree

detection, segmentation, and parsing (Figure 3). By 

providing a consistent and independent validation 

data source this benchmark will allow ranking of 

different algorithms based on their performance 

across various forest types.  

• Development of deep-learning models to

automatically segment single trees and tree parts. The 

annotated data is particularly suitable for training 

deep learning models for semantic and instance 

segmentation of forest point clouds. 

• Development of methods for direct

measurement of tree (DBH, volume, tree species) and 

forest biophysical properties (DBH distributions, 

volume, stem density). 

4. Open data

The UAV-LS data annotated as part of this 

benchmark will be publicly released for scientific 

purposes. 

Figure 3. Workflow for benchmarking tree detection, 

segmentation and parsing algorithms. 
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1. Introduction

Aboveground biomass (AGB) and its quantification play an important role in understanding the global 
carbon cycle as well as carbon budget at the regional and national levels (Houghton et al., 2009; Narine 
et al., 2019; Quegan et al., 2019). The Kyoto Protocol is an international agreement linked to United 
Nations Framework Convention on Climate Change (UNFCCC). It promotes sustainable forest 
management and measures, enables the mitigation of climate change by conservation and enhancement 
of forests as sinks and reservoirs of greenhouse gases, and recognises the significance of forests in 
carbon sequestration (Kuh et al., 2018). Intergovernmental Panel on Climate Change (IPCC), - the 
international body to regular assessments of the scientific basis of climate change, its impacts, future 
risks and mitigation, - demands the member countries to generate national-level estimates of carbon 
stocks and exchanges (IPCC, 2007; IPCC, 2018). Indian forests can significantly contribute to climate 
change mitigation by carbon sequestration. Forest Survey of India (FSI) is an organisation under the 
Ministry of Environments and Forests, Government of India. It conducts surveys of forest resources, 
including national forest inventory (NFI), in the country and it has been regularly estimating growing 
stocks in Indian forests. The primary objective of NFI is to assess growing stock of trees, number of 
trees, bamboo, soil carbon, invasive species and other parameters depicting forest health and growth 
using a grid-based sampling. FSI estimates carbon stock in different pools at the national and state level 
using the NFI data following the methodology of Good Practices Guidance (GPG) developed by IPCC 
(FSI, 2019). Over 57% of the total forest cover constitute mainly very dense and moderately dense 
forests (FSI, 2019). There is a need for regional assessment of forest biomass and carbon stocks, due to 
the diverse forest ecosystems along with highly variable climatic and geographic features. (Salunkhe et 
al., 2018). 

NASA’s Global Ecosystem Dynamics Investigation (GEDI) launched on December 5, 2018, is the 
first spaceborne LiDAR designed for producing high resolution laser ranging observations of 3D 
structure for Earth’s tropical and temperate forests. Quantifying the effects of vegetation disturbance 
and recovery on carbon storage, distribution of AGB, the potential of forests to sequester carbon and 
quantifying the spatio-temporal distribution of canopy structure and its influence on habitat and 
biodiversity are the main scientific objectives of GEDI (Dubayah et al., 2020). GEDI data products 
include footprint and gridded data, which are publicly available with lower-level products (L1 and L2) 
from NASA’s Land Product Distributed Active Archive Centre (LPDAAC) and higher-level products 
(L3 and L4) from Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 
The L4A products are footprint-level predictions of aboveground biomass density (AGBD) obtained by 
parametric models that describe the relationship between L2A relative height metrics with field plot 
estimates of AGBD. Model calibration using simulated GEDI waveforms and a cross validation 
framework is developed to ensure geographic transferability (Hancock et al., 2019; Dubayah et al., 2020; 
Duncanson et al., in review). 

European Space Agency’s Sentinel-2 launched on June 23, 2015, is a wide-swath, high resolution, 
multispectral imaging mission (Drusch et al., 2012). Sentinel-2 data with high revisit frequency and 
systematic coverage have been tested to have potential applications in estimating forest biophysical 
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variables including tree cover (e.g., Godinho et al., 2017), AGB (e.g., Majasalmi and Rautiainen,2016; 
Pandit et al., 2018; Puliti et al., 2019), growing stock volume (e.g., Chrysafis et al., 2017; Mura et al., 
2018), and classifying highly diverse forest species in challenging mountainous environments (e.g., 
Grabska et al., 2019) and in riparian vegetation at regional scales (Daryaei et al., 2020). Mensah et al., 
(2020) studied the potential use of Sentinel-2 imagery in modelling tree growth and forest canopy 
dynamics by using heterogeneity indices.  

Hierarchical model-based (HMB) inference is a novel inferential mode for environmental surveys 
using a combination of several sources of remotely sensed (RS) data including wall-to-wall multispectral 
optical data (e.g., Landsat, Sentinel) and LiDAR (e.g., airborne, spaceborne) data sets and field data. 
Typically, in HMB inference, the first source of information is RS data available wall-to-wall across the 
study region. The intermediate information source is sampled RS data, assumed to be more strongly 
correlated with the target variable than the wall-to-wall RS data. The third source of information is field 
data. Since two types of RS data are involved in the prediction of the target variable, two modelling 
steps are involved, one linking the target variable with sampled RS data and the other linking the 
expectation of the target variable with RS data available wall-to-wall. The method provides a theoretical 
approach for uncertainty assessment accounting for uncertainties due to the two modelling steps. The 
concept was first introduced by Saarela et al. (2016) for ordinary least squares (OLS) regression models, 
then it was elaborated for generalized least squares (GLS) regression models (Saarela et al., 2018) and 
nonlinear GLS (Saarela et al., 2020). In Saarela et al. (in review), the advantages and disadvantages, as 
well as under what conditions the novel inferential framework can outperform other estimation methods 
were outlined and discussed. The HMB inference can accommodate both the estimation of the target 
population parameters such as population mean or total and corresponding uncertainties over large areas, 
and the mapping of the variable of interest complementing with a map of uncertainties (e.g., Saarela et 
al. 2020). 

The main objective of this study is to estimate the AGB and corresponding uncertainty and produce 
AGB maps over three large areas in India: Mudumalai (90 km2), Betul (50 km2 )and Araku (120 km2), 
using a combination of sampled GEDI data and wall-to-wall Sentinel-2 data within the HMB inferential 
framework. The study explores the possibility to identify whether GEDI data can be used alone or in a 
combination with Sentinel-2 data, for the accurate AGB estimation in Indian forests. 

2. Material and Method

The selected study area consists of the three protected forest ecosystems: Mudumalai forest in the which 
is a part of Western Ghats, Betul forest in the central part of India, and Araku forest, a part of Eastern 
Ghats (Figure 1). The Western Ghats includes a diversity of ecosystems ranging from tropical wet 
evergreen forests to montane grasslands containing numerous medicinal plants with unique shola 
ecosystem with evergreen forest patches. The Eastern Ghats geologically older than the Western Ghats 
supports a diverse array of tropical forests and has great conservation significance. The Eastern Ghats 
has tropical wet evergreen, semi evergreen, moist deciduous, dry deciduous, dry evergreen and thorn 
forests (Reddy et al., 2008; Reddy et al., 2014). Field data were collected by the sampling procedure 
from FSI and AGB were estimated using the volume and specific density of tree species present in each 
sampling plot (FSI, 1996).  

Sentinel-2 data of December 2019 are used in the study. Using SNAP tools, Sentinel-2 imagery 
were subsetted for the corresponding study areas based on the bounding coordinates. Resampling and 
cloud masking were done as part of the preprocessing of Sentinel-2 imagery using the SNAP software 
(ESA, 2021; Zuhlke et al., 2015; Nuthammachot et al., 2018). Spectral bands Short Wave Infrared 
SWIR-1 (B11), Near Infrared (B8) and Blue (B2) of the imagery required for the study are selected, 
extracted and are resampled to 30m spatial resolution corresponding to the size of the sampling plot. 
The band combinations B11, B8 and B2 are suitable to monitor and highlight dense vegetation (Wang 
et al., 2019; Huete et al., 2002; Pandit et al., 2020). The variables in the L4A footprint data files are the 
AGDB prediction, associated uncertainty metrics, quality flags identifying the most useful L2 data for 
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biomass predictions and simplifying the predictions selection, and the scaled and transformed GEDI 
L2A relative height metrics. The data are available to download from ORNL DAAC.  

The estimation of the target population mean follows the HMB inference. We define two 
superpopulation models, the first model describes a relationship between AGB and GEDI data. The 
model information, such as estimated model coefficients and their estimated variance-covariance 
matrices, estimated R-squared and RMSE, are provided with the GEDI L4A product (Duncanson et al., 
in review). Then, we train a second model, linking L4A AGB with Sentinel-2 variables. The latter model 
is then used to predict AGB over our study areas using Sentinel-2 wall-to-wall data. It contains elements 
of uncertainty from each of two modelling steps, thus the variance-covariance matrix of estimated model 
parameters in the model is decomposed in two parts: one due to the conditional uncertainty related to 
the Sentinel-2 model fitting, and the second part is a propagated uncertainty due the GEDI L4A model 
fit. 

 For the mapping of AGB across our study areas, the Sentinel-based prediction model is applied at 
the Sentinel-2 pixel-level, and a complementary map of uncertainties is produced following the HMB 
theory (Saarela et al., 2020). The results will be compared with estimates obtained from a survey using 
a combination of field data and Sentinel-2 data within the model-based inferential framework (e.g., 
McRoberts, 2010). 

3. Expected Results and Discussion

The methodology proposed in the study for the AGB estimation and the uncertainty measurements of 
AGB by utilizing GEDI L4A and Sentinel-2 can significantly contribute to quantifying the amount of 
carbon stored in the Indian forests thereby can help to calculate the carbon sequestration potential of 
forests under future climate and land-use scenarios. The resultant AGB uncertainty measurements and 
the AGB maps from the study can support intergovernmental policy initiatives such as REDD, UNFCCC 
and Kyoto Protocol in which India is involved in Clean Development mechanism (CDM) by giving 
information for climate adaptation and mitigation, sustainable land use and conservation of biodiversity. 
The combination of GEDI data with wall-to-wall Sentinel-2 data within the HMB inferential framework 
can predict the future response of forest carbon to climate change and land management decisions which 
is of high societal relevance and potential to simplify the reporting to IPCC. GEDI can reduce the 
uncertainty in the measurements of carbon loss and carbon gain by measuring the current biomass of 
forests globally thereby giving the net impact of forest disturbance and subsequent regrowth. Thus, 
information on the missing sink of carbon and carbon balance can be obtained which is the potential 
data needed for IPCC which can be used for the alternative conservation and development strategies.  

Figure 1: Study areas’ locations (color composite of Bands B11, B8 and B2 of Sentinel-2 images were used for 
study area representation). 
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1. Introduction
Spatially representative maps of forest biodiversity are directly limited by a lack of suitable in-situ 
representations and drivers of ecosystem structure. Biota interact with ecosystems in three dimensions, 
yet structural indicators of biodiversity are typically only captured with one- (e.g. tree height) or two-
dimensional (e.g. canopy cover) measures. More complex and objective measures of habitat structure 
or, what we call structural biodiversity traits (SBTs; e.g. volume, crown dimensions, tree-level leaf area, 
branching architecture) that are more compatible with remotely sensed measurements would refine 
floral and faunal biodiversity mapping efforts, but we currently lack a consistent, spatially representative 
global dataset of SBTs for testing scaling predictions.  
Terrestrial Laser Scanning (TLS) is a ground-based LiDAR technology that directly addresses a lack of 
SBTs by enabling collection of unprecedented 3D measurements of tree- and plot-level structure, 
revolutionizing how we characterize forests (Calders et al., 2020; Disney, 2019). Now, we are able to 
capture detailed 3D tree measurements with TLS - from branching angle and crown architecture to tree 
volume and biomass - directly capturing the fundamental elements of structural biodiversity and habitat 
structure (Verbeeck et al., 2019). The measurements capable with TLS make it the single most promising 
technology for moving from traditional plot-based measures to next-generation 3D characterization of 
forests (Disney et al., 2019; Stovall & Shugart, 2018).  

Here, we provide an overview of a recently funded project that will bring together thousands of TLS 
plot locations from the laser scanning community to develop a first of its kind global database of SBTs 
(Figure 1). With this database this project will enable hypothesis testing of unprecedented ecological 
questions.  

Figure 1: Current global TLS database of >1000 forest plots covering 10 biomes. 
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2. Methods
TLS is already collected at forest sites around the globe (Figure 1). Sites with processed tree-level 

data (triangles) span a large proportion of our database. Our preliminary assessment also highlights data 
gaps for future contributions and field campaigns planned in South Africa. 

We will derive a standardized set of tree-level metrics from TLS data (See Table 1; Calders et al., 
2015a; Krishna Moorthy et al., 2019; Raumonen et al., 2013; Verbeeck et al., 2019; Walter et al., 2021). 
In addition, we will derive plot-level estimates of cover, plant area index, plant area vegetation density, 
and leaf angle distribution (Calders et al., 2014; Stovall et al., 2021). 

3. Outlook and Impact
The key deliverable from this work will be a global database of 3D structural biodiversity traits 

(SBTs) that will refine our understanding of scaling relationships and can be leveraged for improved 
biodiversity mapping. Our work will provide a first-of-its-kind global analysis of the drivers of SBTs, 
directly improving predictions of aboveground structure in forests. Indeed, the results gleaned from this 
global-scale analysis of the controls on scaling relationships will inform functional ecosystem modeling 
efforts and remote sensing of biodiversity. A database of SBTs is a critical step towards informing a 
global remote sensing-based approach to mapping and monitoring the habitat structure and biodiversity, 
directly supporting conservation efforts. 
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1. Introduction

Individual tree detection and delineation of trees in dense laser point clouds provides significant 

information and tree parameters such as location of the stems, density and as species classification (Ke 

& Quackenbush, 2011). Wearable Laser Scanner (WLS) makes the point cloud acquisition viable and 

efficient with the help of the inertial measurement units (IMU). WLS results provide point cloud 

accuracy at a centimetre level. Further, it simplifies the preparation processes and decreases the 

processing time compared to stationary terrestrial laser scanner (Cabo C, 2018). Especially, the 

development of the simultaneous localization and mapping (SLAM) technology and the robotic 

operative system (ROS) allows to on-the-fly registration of point clouds and trajectories and the 

processing of 3D map without external positioning systems (Cabo C, 2018). 

In this study, we compared three raster-based and two point-cloud-based algorithms, that were 

developed for the segmentation of LiDAR point clouds with the aim of individual trees detection and 

segmentation in data products captured with a WLS using SLAM technology. 

2. Data and Methods

2.1 Equipment for Scanning 

In this research, we’ve applied a GeoSLAM Zeb Horizon. This WLS scanner provides flexibility in 

field scans with its 100m range, lightweight, and user-friendly design (Solutions: ZEB Horizon, 2021). 

2.2 Study Areas and data acquisition 

We scanned 10 small scale plots (30m x 30m) in the arboretum near the forest campus of Eberswalde 

University which allowed collecting samples of different forest types and tree densities with different 

tree species and mixtures. 

Table 1. Investigation Plots and Ground Truth Data 

Plot Tree Species Latitude (N) Longitude (E) Trees 

per plot 

Trees 

per ha 

1st Plot Pseudotsuga menziesii, Fagus 

sylvatica 

52.825672 13.812616 34 378 

2nd Plot Pinus sylvestris, Fagus sylvatica 52.823815 13.812666 36 400 

3rd Plot Thuja plicata, Quercus petraea, 

Fagus sylvatica 

52.820535 13.810163 49 544 

4th Plot Picea abies 52.819896 13.810939 45 500 

5th Plot Pinus sylvestris 52.819757 13.808905 78 867 

6th Plot Betula pendula 52.819337 13.809003 40 444 

7th Plot Larix decidua 52.818644 13.808513 60 667 

8th Plot Pinus sylvestris, mature stand 52.819285 13.806982 61 678 

9th Plot Pinus, sylvestris, Pseudotsuga 

menziesii, Quercus petraea, 

Fagus sylvatica 

52.824366 13.802977 38 422 

10th Plot Pinus sylvestris, pole stand 52.823008 13.799991 123 1367 
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2.3 Data pre-processing and preparation 

Discrete Laser point data from the WLS scanner was processed to a point cloud using the GEOSlam 

HUB and afterwards clipped to the sample size of 30m x 30m. All point clouds of sample plots were 

classified into ground and off-ground points by applying the Progressive Morphological Filter (PMF) 

method (Zhang, et al., 2003). We generated a Digital Terrain Model (DTM) from ground points 

previously classified using the Inverse Distance Weighting (IDW) interpolation algorithm. Then, we 

normalized the DTM to generate the terrain normalization according (Liu, Skidmore, Heurich, & 

Wang, 2017). After terrain normalization, we separated only non-ground points for the further 

processing and individual tree segmentation. 

2.4 Tree segmentation methods applied 

After pre-processing and preparation of each point cloud data set mentioned above, we applied several 

algorithms for individual tree object segmentation algorithms and compared the number of detected 

trees. The different tree segmentation algorithms are briefly described in the following: 

Watershed segmentation (WSS) (Canopy Maxima Model): First, the complement of the canopy 

maxima model is generated. This model is presumed to be immersed in the water basin. Dividing lines 

are established to prevent the water from going to both trees and to make the distinction for separating 

two neighbouring trees and used to identify each individual tree (Chen, 2006). 

Particle swarming optimization (PSO) (Franceschi, 2018): Each particle of the swarm moves to a 

better position in the model towards its own previous local best, and towards the global best after 

iteration. A fitness function optimized the process. For all particles, a fitness value is calculated each 

time the extraction algorithm is running, and result will influence the direction of movement of 

particles through the rest of the in the following iteration (Franceschi, 2018). 

Tree centric approach (TCA) (Dalponte 2016) is a raster-based segmentation using local maxima 

(treetops) to grow individual crowns within a rasterized canopy height model. Initially, to smooth the 

surface of rasterized CHM and decrease the amount of the local maxima points, a low-pass filter is 

applied. A local maximum is detected when a pixel has values greater than others in a circular moving 

window with a size of 5m. The extracted (identified and first return) four neighbouring pixels from 

CHM after identification and selection of the first return are added to this region if their vertical 

distance from the local maximum is within the limitation of user defined threshold. These iterations 

last for every pixel added and finally, a 2D convex hull is applied to the first returns. The ultimate 

polygons represent the individual segmented trees in the point cloud (Dalponte & Coomes, 2016). 

In contrast to the algorithms introduced previously, the region growth algorithm (RGA) proposed by 

Li (2012) work on the point cloud base. The general rationale for this segmentation is that the 

horizontal gaps between trees are larger at the top than at the bottom. For this reason, segmentation 

starts by finding the global maximum as seed points for the region growth algorithm and processes 

discrete points bottom wards. Points are assigned to the nearest treetop, unless the distance is beyond a 

certain threshold (Li, Guo, Jakubowski, & Kelly, 2012). 

The Adaptive Mean Shift 3D Segmentation (AMS3D) (Ferraz, 2016) has a similar scope and 

approach and generates 3D clusters of the individual tree crowns. It starts by calculating local maxima 

in density and height by using 3D kernels for each point that moves iteratively to denser regions until 

the kernels converge. Then, 3D clusters are computed by collecting the points that are converged to 

the same crown. This non-parametric approach is only depending on the size of the kernels, which are 

adapting to the size of the dense regions using allometric functions (Ferraz, 2016). 

2.4 Evaluation 

The numbers of trees detected with each segmentation algorithms were compared to the ground-truths 

data of each plot collected empirically using conventional forestry measures. Finally, we applied a 

regression analysis to compare the number of detected trees and determine whether the detection rate 

is changing according to the tree density and if so, to what extent. 
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3. Results & Discussion

In general, it can be observed that point cloud based approaches (ASM3D, RGA) outperform the 

raster-based algorithms (WSS, TCA, PSO) (Figure 1) and with a higher tree density, the share of not 

detected trees is rising (Figure 2). 

The ASM3D performed best and, in contrast to other algorithms and more robust to higher tree 

densities of stands. Even in a pole stand with 1250 trees/ha, only 25% of the trees were not detected, 

while other approaches missed out more than 60% of the trees. For mature stands with less than 500 

trees/ha, more than 90% of the trees were detected, but certain number of crowns where segmented in 

several parts, resulting in overestimation of the number of trees (Figure 2). 

The RGA shows performance comparable to the AMS3D for stands with a density lower than 500 

trees/ha. But with higher densities, the performance drops rapidly to detection rates similar of raster-

based approaches (Figure 2). As RGA starts form treetops, it is also weak in detection understanding 

trees and instable processing separation of crowns that are intertwined with each other.  

From the raster-based approaches, the WSA showed slightly better performance than the TCA and the 

PSO, which performed nearly identical. Even in mature stands with densities of less than 500 trees/ha, 

all raster-based approaches missed out more than 20% of the trees and the detection rates are linear 

declining with a rising density. 

4. Conclusions

In our study, we could show the limits of raster-based segmentation approaches for WLS point clouds, 

especially in stands with high density. The same shortcomings were observed for the point-cloud-

based region growth algorithm which is mainly depended on visible treetops. The ASM3D, developed 

for LiDAR point clouds, showed the best performance and was able to detect most trees (>85%) up to 

850 trees/ha and is only falling off slightly afterwards (1250 trees/ha; 75% detection rate). 
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1. Introduction

The FODEX (Forest Degradation Experiment) is a 5-year project that aims to shed new light on the 

status of the world’s tropical forests and how they are changing in response to human activities. Tropical 

forests and woodlands are estimated to contain 300 billion tonnes of carbon (Santoro et al. 2020), 

however we still don’t know with any certainty whether these carbon stocks are increasing, or decreasing 

over time.  This is in part because existing static maps of carbon stocks typically have wide uncertainties 

(±50 %) (Mitchard et al. 2014), which precludes accurate and precise change detection.  Maps of change 

are therefore rare (McNicol et al. 2018), and often not validated, and when they are, often no relationship 

is found between field- and remote sensing-estimated changes (Meyer et al. 2013). The project will 

address this uncertainty by developing new methods for mapping carbon stock change using satellite 

data, allowing us to accurately assess the balance of regrowth and anthropogenic disturbance across 

tropical forests and the status and resilience of the land surface carbon sink.  

2. Methodology and data

1.1 Approach 

This project is based on twin large scale field manipulation 

experiments located in Peru (Madre de Dios) and Gabon (Ivindo) 

where we are collecting Terrestrial Laser Scanning (TLS) data 

alongside traditional forest inventory data before and after 

controlled logging, meaning the change in aboveground tree 

volume and biomass (AGB) can be calculated with minimal error 

and used to train and test models of change.  These data will be 

scaled using LiDAR data collected using a 3.3m wingspan UAV 

(Delair DT26X UAV) equipped with a Riegl miniVUX, and a 24 

MP camera. The UAV has a nominal flight time of 50 - 70 

minutes, and can cover 100 – 120 ha in a single flight, and so is 

capable generating high resolution data that is otherwise 

unobtainable using ground and/or satellite based platforms. From 

this, it is possible to derive large scale measurements of several 

tree biophysical properties such as height, crown dimensions, 

and vertical structure, while in some areas, the resolution and 

detail is such that individual trees can segmented (Puliti et al. 

abstract # 82). Using these data, we aim to generate thousands of 

hectares of biomass change data, which will then act as a basis 

for satellite-based methods to generate estimates across the 

tropics. 

1.2 Data 

The initial data collection (pre-logging) was conducted in 2019, 

and early 2020. At each site, four x 1- ha (100 x 100 m) plots 

were established and all trees >10 cm diameter measured, along with data on x,y position, tree condition, 

and species. Sites were selected to encompass a range of trees suitable for logging to allow a varying 

Figure 1 – The contrasting 

structure of the two sites is a 

central part of the project. Both 

images are taken inside our field 

plots  

(top: Gabon, bottom: Peru) 
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intensity of logging between plots. The initial aim was to extract 10– 50% of the initial AGB, however 

in both areas, the number of trees required to achieve these values greatly exceeded the maximum 

number of trees permitted under FSC rules, meaning we targeted the extraction of  5 – 25% of the initial 

plot AGB, as estimated through the forest inventory data.  The TLS data were collected concomitantly, 

with measurements taken at the intersections of a 10 x 10 m grid laid out across the plot.  The UAV 

flights were also conducted during the same measurement campaign over a period of 7 days at each site, 

with missions performed in perpendicular lines and at a nominal altitude of 100 – 130 m above the 

ground surface with an average flight speed of 17 m/s (61 km/h). This results in a swath width of 100 – 

120 m, with an average flight line spacing of 25 m (based on 70 – 80 % overlap), and a maximum laser 

beam footprint at ground level of 20 – 30 cm, reducing to 10 – 15 cm at the top of the canopy (40 – 50 

m).  The final post processed LiDAR point clouds have densities ranging from 250 – 1000 points m2 in 

Peru, and 220 – 900 points m2 in Gabon.  

a b

c d

Figure 2 – Aboveground biomass stocks measured before and after logging using traditional inventory 

data (a). Terrestrial Laser Scanning will provide an improved basis for estimating the change in tree 

volume/ biomass (b), which will then be scaled using high resolution LiDAR data collected by our 

fixed wing UAV (c, d). The segmented trees in (b) were derived from TLS data collected in Gabon, 

and are 5 trees (of 8) that were logged in a single plot  The image in (c) was taken before take-off in 

Peru, and (d) shows a cross section of a forest patch in Gabon. 

3. Results

Forest structure varies markedly across, and between our two study regions, with tree canopy heights in 

Gabon reaching 35 – 50 m in areas with a tree fractional cover > 50%, compared to 25 – 40 m in Peru, 

based on the UAV-LS data (Figures 1 and 2).    Despite their comparatively low stature, the Peruvian 

forests are structurally more complex, with a clear sub-canopy layer 10 – 15 m in height whereas in 

Gabon, there is typically a single dominant tree layer varying little in height.   

The inventory-based estimates of AGB were broadly consistent between field plots (Figure 2; 

Figure 3), with the %AGB extracted increasing (5 – 30 %) once collateral damage from tree felling and 
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removal was accounted for.   Using a 

combination of the UAV-LS data, the 

forest inventory data, and a variety of 

published field and LiDAR based 

models (Asner and Mascaro et al. 

2014; Knapp et al. 2020), we find wide 

range of biomass values for each plot 

(Figure 3). The TLS data will provide, 

in due course, accurate and precise 

estimates of AGB density and loss in 

each plot, against which changes will 

be compared, and new + existing 

methods validated.  

Figure 3 - Applying different biomass estimation models yields very different results, which will be 

compared to the changes derived from the TLS data 
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Figure 4 – (a) The change in tree canopy height after logging in and around one of the core 1-ha 

inventory plots in Gabon (GC4) where 16% of the initial AGB was removed. 

4. References

Asner, G.P. & Mascaro, J. (2014) Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR 

metric. Remote Sensing of Environment, 140, 614–624. 

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., 

Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W. a, Muller-Landau, H.C., 

Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., 

Ryan, C.M., Saldarriaga, J.G. & Vieilledent, G. (2014) Improved allometric models to estimate the 

aboveground biomass of tropical trees. Global Change Biology, 1–14. 

Knapp, N., Fischer, R., Cazcarra-Bes, V. & Huth, A. (2020) Structure metrics to generalize biomass estimation 

from lidar across forest types from different continents. Remote Sensing of Environment, 237, 111597. 

Mitchard, E.T.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the 

spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 

2013, 8, 10, doi:10.1186/1750-0680-8-10. 

McNicol, I.M.; Ryan, C.M.; Mitchard, E.T.A. Carbon losses from deforestation and widespread degradation offset 

by extensive growth in African woodlands. Nat. Commun. 2018, 1–19, doi:10.1038/s41467-018-05386-z 

Meyer, V.; Saatchi, S.S.; Chave, J.; Dalling, J.W.; Bohlman, S.; Fricker, G.A.; Robinson, C.; Neumann, M.; 

Hubbell, S. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements. 

Biogeosciences 2013, 10, 5421–5438, doi:10.5194/bg-10-5421-2013. 

Puliti, S., Pearse, G., Mitchard, E., McNicol, I., Bremner, M., Rutzinger, M., Surovy, P., Wallace, L., Hollaus, M., 

and Astrup. R. (2021) A New drone laser scanning benchmark dataset for characterisation of single-tree and 

forest biophysical properties. SilviLaser Conference 2021, Abtract 82.  

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., and 30 others (2020) The global forest above-ground 

biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data Discuss., 

2020, 1–38. 

242



Assessing the long-term effect of hurricanes on the 
Caribbean mangrove structure with GEDI L3 data 

C. H. Amaral1,2, B. Poulter2, T. Fatoyinbo2, D. Lagomasino3, P. Taillie4, G. Lizcano5,

R. M. Roman-Cuesta6 

1Universidade Federal de Viçosa, Department of Forest Engineering, Viçosa, MG 36570-900, Brazil 
Email: chamaral@ufv.br 

2NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD 20771, United 

States Email: {benjamin.poulter; lola.fatoyinbo}@nasa.gov

3East Carolina University, Department of Coastal Studies, Greenvile, NC 27858-4353, United States 

Email: lagomasinod19@ecu.edu 

4University of Florida, Department of Wildlife Ecology and Conservation, Gainesville, FL 32611, United States 

Email: paultaillie@gmail.com 

5Climate Scale, Rue Dieudonné Lefèvre, 17, 1020 Brussels, Belgium 
Email: gil.lizcano@climatescale.com 

6Wageningen University & Research, Laboratory of Geo-Information Science and Remote Sensing, 6708PB Wageningen - The Netherlands 

Email: rosa.roman@wur.nl 

1. Introduction

Mangrove forests are a key component of coastal ecosystems and play an essential role in protecting 

local communities from catastrophic storms, sheltering economic activities during hurricane exposure, 

and preventing permanent losses to economic activities (Hochard et al. 2019). Moreover, they are able 

to regulate the climate through carbon sequestration and storage and thus, their dynamics have a 

disproportionate impact on global carbon balance in comparison to other ecosystems (Friess et al. 2020). 

Therefore, increased frequencies and intensities of hurricanes are a major threat to the economic and 

ecologic stability of the Caribbean region (Collymore 2011; Camargo and Wing 2021). We herein aim 

to understand how the cumulative presence of hurricanes in the Caribbean and Gulf of Mexico regions 

(1979-2018) has affected the structure of the mangroves, particularly height, to navigate actions for 

regional coastal ecosystem conservation and restoration. To achieve this, we overlap the hotspots of 

hurricane wind affectation in that period, from the ERA5 reanalysis cumulative maximum winds at 

31km resolution, and the Global Ecosystem Dynamics Investigation (GEDI) Level 3 (L3) gridded data 

at 1km resolution from 2019-2020 (Dubayah et al. 2021). 

2. Data and Methods

2.1 Data 

We used the 2019-2020 Global Ecosystem Dynamics Investigation (GEDI) Level 3 (L3) gridded mean 

canopy height, i.e., averages of the 30-m footprint RH100 metrics within each 1 sq. km cell (Dubayah 

et al. 2021). The Copernicus Climate Change Service (C3S) ERA5 reanalysis data (0.25° of spatial 

resolution and hourly temporal resolution) for maximum 3-second wind at 10 m height from 1979 to 

2018 was used to estimate storm history (Hersbach et al. 2018). We also used 1996 and 2016 mangrove 

distribution data from the Global Mangrove Watch (GMW; Bunting et al. 2018) and data for the bio-

regionalization of coastal and shelf areas (Spalding et al. 2007) for the entire Caribbean region, which 

comprises 25 countries from the southern United States down to Colombia and Venezuela (Figure 1).    
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2.2 Methods 

We first generated grids for the annual maximum sustained wind speed from 1979 to 2018 from the 

ERA5 hourly wind data that summarizes the maximum 3-second wind at 10 m height at every 31 km. 

The annual maximum wind speed values for each grid-cell were calculated from the available hourly 

data and converted to kilometers per hour. From this 40-composite-bands file, we calculated the 40-year 

cumulative sustained wind speed (km/h), the number of times each cell present maximum sustained 

wind speed higher than 119 km/h, which classifies it as a hurricane according to the Saffir-Simpson 

Hurricane Scale, and the time since the last hurricane.   

We then created a mangrove mask based on the intersection between the 1996 and 2016 GMW 

layers (i.e., the current and historical extent combined) and generated random sampling points with 1-

km spacing within this region. For each point we extracted the GEDI canopy height (m) (i), the 40-years 

cumulative sustained wind speed (km/h) (ii), the history of hurricane impact from 1979 to 2018 (iii), 

and the time since the last hurricane (iv). Points with no missing values summed 1,806. We then 

calculated the non-parametric Spearman rank coefficient (r) between (i) and (ii) and (i) and (iv) and 

tested whether heights of mangrove groups (i), which were impacted by zero, one or two hurricanes 

from 1979 to 2018 (iii), originate from the same distribution by means of the Kruskal-Wallis test. We 

analyzed the data for the entire Caribbean region but also by ecoregion. 

3. Results and Discussion

We found that the median canopy height of the Gulf of Mexico and Caribbean mangroves is 5.36m, 

ranging from 1.42 to 21.53m tall (Figure 1).  

Figure 1: Location of sample points (n = 1,806) within the Gulf of Mexico and Caribbean regions 

where mangrove height was extracted using GEDI L3 data for 2019-2020, along a gradient of 

hurricane cumulative presence during the period 1979-2018.  

Our results show a clear inverse relation between cumulative sustained wind speed from 1979 to 

2018, and the height of Caribbean mangroves in 2019-2020 (Figure 1a). This relationship is corroborated 

by Simard et al. (2019) that correlated the global SRTM and ICESat-2/GLAS mangrove height estimates 

with the frequency of tropical cyclones. The tallest mangroves (of about 20 m) are in regions not affected 
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by the strongest wind gusts and that stand out for their lowest cumulative wind speeds, i.e., in the 

Southern and Southwestern Caribbean regions (Figure 1a and 1b). Conversely, mangroves are less 

structurally diverse and shorter than 10 m in regions affected twice by the strongest wind gusts and that 

also present the highest cumulative wind speeds over the studied time range, i.e., in the Bahamian, 

Northern Gulf of Mexico, and in some places of the Western Caribbean region (Figure 1a and 1b). All 

regions presented a tendency of height decrease with rising cumulative wind speeds and the degree of 

correlation between these two variables is moderate for the Southern (r = -0.38) and Southwestern 

Caribbean (-0.33) regions and strong for the Northern Gulf of Mexico (-0.58). 

ERA5 reanalysis appears to underestimate the maximum sustained wind speed, even though it is 

considered consistent to capture wind speed ranges (e.g., Jourdier 2020). Thus, the 119 km/h threshold 

captures higher category wind gusts with ERA5 data, like those observed in the 1995, 1998, 2004, 2005, 

2008, 2015, 2016, and 2017 mega-hurricane seasons (Figure 1c). In general, we did not observe taller 

mangroves where the time since the last hurricane was longer, which suggests there was no regional 

pattern of structural resilience in mangroves hit by strong wind gusts. This expected pattern was seen in 

mangroves from the Greater Antilles (r = 0.42) and from the Northern Gulf of Mexico (0.41) moderately. 

The further exploration of GEDI L1 and L2 data will allow us to better understand the impact of 

hurricanes on the entire mangroves’ vertical profiles. 

4. Conclusions

GEDI L3 gridded data is a powerful dataset for understanding the long-term effect of extreme climate 

events on forest structure across large regions. Our results indicate that the cumulative impact of 

hurricanes seems to compromise the Caribbean mangrove structural diversity and that, in general, they 

appear not being structurally resilient upon hurricane impact.   
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1. Introduction

OPALS1 (Orientation and Processing of Airborne Laser Scanning data) is a modular and efficient point 

cloud processing software (Pfeifer et al., 2015) developed at TU Wien, Department of Geodesy and 

Geoinformation. Although the development is mainly focussed on Airborne Laser Scanning (ALS) data, 

OPALS is well capable of handling huge point clouds from arbitrary sensors, like static and kinematic 

laser scanners, single photo LiDAR (SPL), range cameras, and photogrammetric point clouds computed 

by dense image matching (DIM), etc.  

The strong scientific background of the software is emphasised by detailed documentation of the 

used algorithms and concepts, with many algorithms published additionally in scientific journals. 

Profound processing algorithms are, however, only one pillar of OPALS. Due to the rapid technological 

advances and miniaturisation, modern sensors achieve enormous measurement rates (> 1 Mhz) and point 

densities (>200 points/m2) resulting in huge data sets with billions of points. Hence, efficient processing 

strategies are an absolute necessity for a mature and operational point cloud processing software. For 

this reason, OPALS makes extensive use of today’s multi-core processors. Based on its modular 

structure, it is further possible to distribute processing tasks from multiple independent computers up to 

large high-performance computing facilities. 

OPALS consists of a range of small and well-defined modules for specific tasks. Each module can 

be accessed via command line, Python and C++ in a unified manner. Comprehensive workflows such 

as quality assessment are predefined in OPALS as Python scripts. Nevertheless, the modular and flexible 

structure also allows for establishing individual workflows in the preferred scripting/programming 

environment. Thereby, users can have full access to the individual point attributes as well as to a set of 

spatial queries based on generic neighbourhood definitions (Otepka et al., 2021). 

From an application point of view, OPALS covers a wide range of typical processing tasks for 

vegetation mapping. In this contribution, we demonstrate the versatility of OPALS with three case 

studies covering different applications, sensors, and scales from single tree modelling using TLS to 

country-wide, ALS-based biomass estimation. Additionally, georeferencing and strip adjustment of 

UAV-borne laser scanning (ULS) data is demonstrated as first showcase since it is a prerequisite for 

most LiDAR processing tasks. Proper georeferencing and scan data alignment is of special importance 

whenever the application requires fusion of data from multiple flight strips (ALS/ULS) or scan stations 

(TLS) (e.g., stem diameter estimation) to unlock the full potential of the measured data. 

2. Case studies

2.1. Strip Adjustment of ULS data 

Depending on accuracy requirements and data quality, fine georeferencing for static LS and strip 

adjustment for kinematic LS can get necessary. This goes beyond the direct georeferencing provided by 

inertial and global satellite navigation sensors and/or the use of markers or other tie elements in TLS 

point clouds. It may include refining the calibration of the entire system. To decide where an improved 

georeferencing is necessary, typically a quality control based on differences on smooth areas between 

overlapping strips or TLS scan positions is performed. Statistical measures and visualisations of the 

differences allow assessing, if georeferencing improvements are necessary or not. In case improvement 

of sensor orientation is needed, opalsICP and opalsStripAdjust are the two modules for fine 

georeferencing of static and kinematic data sets. Special emphasis is also laid on precise orientation of 

1 https://opals.geo.tuwien.ac.at 
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very high-resolution datasets from Unmanned Aerial Vehicles (UAV) as they play an important role in 

vegetation studies (Glira et al. 2017 and 2020). After strip adjustment, quality control is repeated to 

double check the remaining height residuals in overlapping areas or compared to external reference data. 

For the ULS dataset of an alluvial forest at the Pielach River in Lower Austria used by Wieser et al. 

(2018) for diameter at breast height (DBH) estimation, Glira et al. (2016) achieved a 25% reduction of 

the height discrapancies from originally 1.8 cm to 1.3 cm after strip adjustment. This can be considered 

the state of the art, and a further improvement of accuracy would require improvement of multiple 

components of ULS. However, “of the shelf” ULS missions often do not reach this accuracy.  

2.2. Single Tree Modelling using TLS 

In recent years, TLS has become the standard method for precise non-destructive three dimensional 

detection of trees. Commonly the data are acquired from multiple scan positions. Based on the co-

registered point clouds different tree parameters can be derived. The most important tree parameters are 

tree height and DBH.  

The opalsDBH module was developed for modelling individual tree stems. It features both 

estimation of DBH and modelling of full stems or branches by progressively robustly fitting cylinders 

or cones along the stem axis. Since the algorithm is fully 3D, opalsDBH can model vertical, slanted or 

even horizontal tree stems (deadwood, driftwood, etc.). Starting from a given approximate 3D location 

and axis direction, the module incrementally follows the tree stem in both directions if needed (Figure 

1). The approximate 3D locations are derived by applying a voxel analysis. As output, the stem 

diameters for defined height intervals are derived as shown in Figure 2. Taper functions can be generated 

based on the stem diameters and the extracted tree heights. The data shown in Figure 1 is part of a 

coniferous dominated plot located in north-east Austria. The TLS acquisition was carried out in May 

2017 using a Riegl VZ-2000 (RIEGL Laser Measurement Systems, Horn, Austria). Details on this data 

set can be found in Bruggisser et al. (2020). The entire processing chain starting with the co-registered 

point cloud and ending with the derived stem diameters along the stem can be carried out fully 

automatically. 

Figure 3: Left: cross section of a stem point cloud overlaid with the search cylinder for selecting the 

points considered for cylinder or cone modelling directly; Middle: trace models with different overlap 

settings; Right: stem diameters derived via cylinder fittings.   

2.3. Country-wide processing of ALS data for deriving forest parameters 

For country-wide applications it is beneficial to do tile based processing. Splitting input data into 

independent data tiles (with or without overlap) is a standard task within OPALS. Tiling limits the 

computational burden if re-computing becomes necessary, e.g., because of failure or crash due to 

network problems or other reasons. Even more importantly, processing can be distributed over multiple 

computers or nodes of a high-performance computing cluster if needed. In this showcase topographic 

models and forest structure parameters are derived for a ~17 000 km² study area in Austria. The ALS 

data was acquired within a district-wide ALS campaign carried out between 2008 and 2012 and consists 

of 6,219 individual ALS flight strips. 
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Starting from the georeferenced point clouds, the ALS data are split into 3,327 tiles with an extent 

of 2.2 x 2.2 km². The overlap between neighbouring tiles was set to 100 m. The digital surface model 

(DSM) was calculated with the opalsDSM module, which calculates the height of a DSM grid cell using 

the highest 3D point per raster cell for rough surface parts and moving least squares interpolation for 

smooth surfaces (Hollaus et al., 2010). The derived DSM delivers good results for canopy surfaces as 

well as for forest gaps. Furthermore, the normalized digital surface model (nDSM) was calculated by 

subtracting the digital terrain model (DTM) from the DSM. All these topographic models were 

processed with a spatial resolution of 1 x 1 m². 

Based on the nDSM, forest gaps were derived by applying a height threshold and morphological 

image operations. Furthermore, the normalized point clouds were used to calculate the fractional cover 

by calculating the ratio between terrain and all points. Finally, parameters describing the vertical forest 

structure were derived from the point cloud by applying a voxel approach. The derived structural layers 

contain information about the availability and density of understorey but also about the vertical 

distribution of the canopy layers. Figure 2 shows exemplary subsets of the derived products.  

Figure 2: from left to right: CIR orthophots, nDSM (black = 0 m, white >50 m); gap map (white = gaps, 

black = no gap); fractional cover (black=0%, white = 100%); vertical layer between 1 and 2 m (green = 

voxel with vegetation filled) overlaid to the NIR orthophoto.   

3. Summary and Outlook

OPALS is a modular and efficient software package for processing 3D point clouds from arbitrary 

sensors. As demonstrated by the three showcases, it contains a variety of tools for forest applications at 

different scales. A detailed list of vegetation related scripts and modules can be found on the opals 

homepage2. Furthermore, OPALS provides advanced tools for fine georeferencing and system 

calibrations at the highest possible accuracy level. 

The modular structure allows distributed processing for optimal processing speed in case of huge 

projects, as e.g. the country-wide ALS showcase was computed on multiple high-end workstations. 

Furthermore, the Linux version of OPALS has successfully been used, to process large projects on the 

Vienna Scientific Cluster 3 (Otepka et al., 2019). 

OPALS is currently developed to reach version 3, which will bring two major improvements: The 

flexibility of spatial neighborhood definitions in point clouds has been largely improved and multi-band 

raster files are now supported to the full extent and in a uniform way. OPALS version 3 will be released 

in summer 2021.  
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1. Introduction

Terrestrial laser scanning is a method of remote sensing with applications to ecological research. A 

relatively young research method, the first literature demonstrating the application of ground-based laser 
scanning technologies to ecology and forestry was published in the early 2000s (Lovell et al. 2003). 

Over the past 20 years, advances in instrument technology and data processing have enabled the 

development of novel measurement approaches and expanded the application of terrestrial laser 
scanning beyond traditional structural metrics. The data generated through terrestrial laser scanning is 

now used, amongst others, to estimate aboveground biomass, model branch architecture, conduct habitat 

assessments, generate vertical profiles of vegetation structure and quantify fuel loads (Beland et al. 2019, 

Calders et al. 2020, Disney 2019). Terrestrial laser scanning also has potential applications to other 
forms of remote sensing measurement systems (Beland et al. 2019) and 3D modelling (Disney 2019). 

Such developments are fostered by working and sharing with colleagues (Laudel 2001).  

International collaborations play an important role in terrestrial laser scanning. The diverse range of 
disciplines and countries that collaborations in terrestrial laser scanning bring together builds not only 

connections between researchers but also encourages the standardisation and sharing of algorithms, data 

and best practices for field work (Beland et al. 2019). However, terrestrial laser scanning research has 
also struggled to attract expertise from across many disciplines, such as remote sensing, physics, 

engineering and computer science, and has instead focused on training forest ecologists to perform these 

functions (Calders et al. 2020). Terrestrial laser scanning is therefore an interesting and unique context 

in which to study international collaborations. 
Terrestrial laser scanning, like all of science, is an increasingly international and collaborative 

endeavor. International collaborations across science are driving research (Adams 2013), with high-

impact research papers increasingly authored by international teams (Adams 2012). Collaborating in 
international research is facilitated by advances in communications technology, which increase the 

interconnectedness of researchers (Wagner and Leydesdorff 2005). International research 

collaborations are however complex and diverse in terms of structure, coordination and purpose  (Katz 
and Martin, 1997). Researchers who collaborate internationally must overcome political, logistical and 

cultural barriers and negotiate a range of challenges, including lack of funding for international research, 

restrictions on material and data sharing and differences in academic standards (Matthews et al. 2020). 

These challenges to collaborative international research are also potentially applicable to terrestrial laser 
scanning. 

This research paper seeks to improve our understanding of the collaborative dynamics in terrestrial 

laser scanning by exploring how researchers experience collaborations involving terrestrial laser 
scanning. In doing so, this research project aims to address the following research questions: How do 

the challenges and barriers identified by Matthews et al. (2020) manifest in terrestrial laser scanning and 

what strategies do researchers employ to overcome them? How does the structure and coordination of 

international collaborations reinforce or mitigate the challenges and barriers? What are the consequences 
of the challenges, barriers and strategies for the scientific output? Ultimately, the results of this research 

will hopefully support terrestrial laser scanning researchers and inform more effective organisation and 

coordination of international research collaborations. 

2. Data and Methods

This study draws on data collected from 17 (at present) semi-structured interviews with researchers 

whose current or previous research activities are associated with terrestrial laser scanning. The 
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interviewees were initially drawn from participants in an international network focused on terrestrial 

laser scanning and expanded through a snowball sampling technique. The interviewees were based in 

11 different countries across Europe, North America and Australia. The interviewees were asked a series 
of questions designed to create data about their own background as well as to provoke stories about their 

experiences in international research collaborations involving terrestrial laser scanning. Particular 

attention was paid to any challenges the interviewees experienced and how these challenges were 
addressed. 

After transcribing the interviews, the language and stories shared by the interviewees were analysed 

and thematically coded according to the research questions using the qualitative analysis software 
Atlas.ti. The initial coding framework was based on the barriers and challenges introduced by Matthews 

et al. (2020) and elaborated on throughout the coding process following an inductive, grounded theory 

approach (Charmaz 2014). The coding framework was judged as complete when no new themes 

emerged from the data. In addition to the interviews, documents from an international network 
associated with terrestrial laser scanning were also coded. The resulting thematic codes were then 

compared and analysed to identify any patterns or trends within the data.  

3. Results and Discussion

Researchers who participate in international collaborations in terrestrial laser scanning tend to fall into 
one of four categories (see Table 1). The categories are not exclusive; it is possible for an individual to 

exist within multiple. Each category of expert offers different skills and has different demands from 

collaborations. The four categories differ in their understanding of the goals and the state of development 
of terrestrial laser scanning. When two or more different categories participate together in a 

collaboration, they must negotiate these sometimes-conflicting perspectives, even when the 

collaboration has a clear, shared goal. 

Table 1: Typology of experts in terrestrial laser scanning. 

Tool Developers Data Gatherers Data Analysers Data Users 

Role: Build the 

equipment 

Operate the 

equipment in the 
field to collect data 

Make sense of the 

data collected in 
the field 

Use the generated 

data for their own 
applications 

Disciplines: Engineers; 
physicists 

Remote sensing 
specialists 

Modellers; 
mathematicians 

Ecologists; Forest 
managers 

See TLS as 

a(n): 

Engineering 

problem 

Research field Research field Tool 

Development 

status: 

Advanced Advanced Intermediate Early days 

Amongst the many reported challenges to international collaborations in terrestrial laser scanning, 

the most common was funding, which echoes the findings of Matthews et al. (2020). Many interviewees 
reference the constraints that available funding has on their ability to engage with international 

collaborations. In general, experts join international research collaborations in terrestrial laser scanning 

for the following seven reasons: data sharing, instrument sharing, networking, learning, obtaining 

funding, conducting fieldwork and bridging expertise. The further goals of this research is to understand 
how these motivations differ across the four expert categories. 

The structure and coordination of the international collaborations can be reduced to four ideal 

collaboration types (Figure 1), based on the degree of formality and number of countries involved. The 
collaboration types differ in terms of funding, pre-existing relationships between members and shared 

research interests. These differences give each type their own set of coordination, organisational and 

management challenges. The preliminary findings suggest that some of the collaboration types are more 

suited for certain goals than others. Moving forward, this research hopes to shed light on how the 
emerging challenges and reasons to collaborate differ across the types of collaborations. 
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Informal 

Bilateral--    

Friends Network 

  Multilateral 

Partners Organisation 

Formal 

Figure 1: Typology of international research collaborations. 

4. Conclusions

Terrestrial laser scanning is a unique case study for investigating the collaborative dynamics of 

international research. International research collaborations in terrestrial laser scanning connect diverse 

researchers and facilitate the standardisation and sharing of algorithms, data and best practices for field 

work. Researchers involved in international collaborations in terrestrial laser scanning can be grouped 

into four categories of experts, which differ in terms of their role, discipline and view of terrestrial laser 

scanning. Researchers participate in these international collaborations for a variety of reasons. 

Participants in international collaborations in terrestrial laser scanning also face a range of challenges, 

the most common being funding. The differences between four categories of terrestrial laser scanning 

experts can cause tensions, which the participants must negotiate. The structure of international 

collaborations can be divided into four basic types, distinguished by formality and number of involved 

countries. Each type has their own advantages and disadvantages. As this research project moves 

forward, it will explore how the reasons for participating, the challenges the participants face and the 

categories of experts differ with the four types of collaborations.  Understanding how the different types 

of collaborations constrain or support researchers in their everyday work is essential to building more 

effective international collaborations in the future. This research is still ongoing and feedback on the 

direction and preliminary findings is extremely helpful. 
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1. Introduction

Forest resource inventory can be done in different ways and scales. In Europe and elsewhere in the 

world, national scale information is obtained through the National Forest Inventory (NFI), while 

surveys of specific stands are carried out to get information in local scale. Typically, forest stand 

surveying is done manually, but this process is time consuming. Time consumption can be reduced by 

using remote sensing technologies such as aerial laser scanning (ALS). Scientific publications indicate 

that there is a high correlation between ALS measurements and actual tree height (McRoberts, 

Andersen, & Næsset, 2014). 

Using ALS data, various forest inventory-related parameters are modeled, such as tree height, 

biomass volume, tree species distribution, and other parameters, but various authors point out that 

statistical models based on single-scanner data cannot be used for areas scanned with different ALS 

scanner settings, because that may introduce systematic errors (Næsset, 2014). The same applies to 

data collected during different growing seasons (Villikka, Packalén, & Maltamo, 2012). This study 

uses ALS data collected nationally for the period 2013-2019 in both leaf-off and leaf-on periods to 

develop statistical models to determine tree height across the country. NFI plots were used as field 

data in the development of the models, while a database of forest parcels was used for validation. 

1. Data and Methods

Latvia is located in the hemiboral zone, where both conifers and deciduous trees are found. The most 

popular tree species are Betula pendula, Pinus sylvestris L. and Picea abies. The acquisition of ALS 

data in the territory of Latvia has been organized by the Latvian Geospatial Information Agency in the 

period from 2013 to 2019 and the work has been performed by various companies. Measurements 

were performed using Leica ALS70, Riegl LMS-Q680i and Riegl LMS-Q780i scanners as shown in 

Figure 1. The flights are performed in both leaf and leafless periods and the minimum point density is 

4 points per square meter. This study uses ALS data obtained in the period from 2013-2018. 

Figure 1: ALS coverage in Latvia 2013-2018 
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NFI data are obtained over a 5-year cycle and in total more than 16,000 permanent plots are 

surveyed on both forest and non-forest land. More information about Latvian NFIs is available at 

Tomppo, Gschwantner, Lawrence, & McRoberts, 2010. 

During this research, tree height models were developed, taking into account the information on 

the composition of tree species and the season. Only a part of the NFI plot centers have coordinates 

determined with a high-resolution GPS sensor, so the models are developed stratified, in one case 

using all plots, while in the other only plots with well-defined coordinates. The accuracy of the 

coordinates of the centers of the NFI plots before the precise measurement was with an average 

deviation of 2 m from the center. Fusion software is used to cut out NFI plot areas from the ALS point 

clouds and to calculate the vertical distribution of points.  

ALS statistical information was compared with NFI measurements with a + - 2 year lag and the 

75th, 80th, 90th, 95th and 99th ALS height percentiles were compared with NFI tree heights. The 

models are stratified by conifers and deciduous trees, different tree species and different seasons. R 

squared and RSE values were compared between different height percentiles and the most accurate 

height prediction models were selected. Tree height models have been developed only for those tree 

species in which at least 30 observations have been recorded. 

1. Results and Discussion

During the research, models were developed to predict the height of trees in the distribution of 

conifers and deciduous trees, as well as different tree species and also seasonally. Isolated tree species 

include species such as Pinus sylvestris L., Picea abies, Betula pendula, Alnus glutinosa, Populus 

tremula and Alnus incana. R squared values range from 0.730 to 0.964 and RSE values range from 

1,508 to 2,812. The lowest values are observed for deciduous tree species leaf-on and in the 

intermediate state between leaf-on and leaf-off. The highest R squared values are for Pinus sylvestris 

L., regardless of the season. 

The Riegl LMS-Q780i scanner showed the highest accuracy among ALS scanners, however, the 

number of observations for the development of individual models for different tree species was too 

small. Riegl LMS-Q680i and Leica ALS70 scanners have been used in large areas of the country and 

tree height models have been developed for all the above-mentioned tree species. The Leica ALS70 

scanner shows on average slightly higher accuracy than the Riegl LMS-Q680i, with R squared values 

averaging 0.904 and 0.873, respectively. 
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1. Introduction

Terrestrial Laserscanning (TLS) has been established as the standard method for detailed 3D scanning 

and reconstruction of trees with millimetre accuracy. The data acquisition is commonly done with multi-

scan acquisitions to minimize occlusions on the stems. Assuming that the co-registration of the 

individual TLS scans have a high accuracy i.e. less than few millimetres, the 3D stem can be 

reconstructed e.g. with quantitative structure models (QSM) or cylinder fittings. Until now, the branch 

detection was not of great importance because for economical purposes mainly the stem volume is of 

interest.  

In this contribution, an operational approach for branch detection and assessment of the branch diameter 

classes based on multi san TLS data is presented. The investigations were carried out for a test area in 

Carinthia, southern Austria.  

2. Study area and data

2.1 Study area and data 

The study area is located in the southern part of Austria, in the federal state of Carinthia. For the spruce 

dominated forest stand a TLS campaign with a Riegl VZ400i was carried out on 5th of November 2020. 

In total 18 scan positions were needed to cover approx. 1.700 m².  

The forest stand is even-aged with tree heights >30m and about 120 years old. The stand obviously has 

grown up with large tree spacing and no pruning: in most cases the dead branches go down the whole 

stem, the living branches start already in 7-10m height. The density in comparison to yield-table 

expectations (“Fichte Hochgebirge”) is about 80%. 

The scan positions were chosen unplanned intuitively between the trees. The distance between 

consecutive scan positions was about 10 steps (5-8 meters). With a scan resolution of 20 x 20 milli-

degrees one single record takes only 3 minutes, so accurate planning of scan-positions was considered 

to be not necessary. The Riegl software RiSCAN PRO is able to co-reference scan-positions without 

artificial tie-points. The whole scanning fieldwork took less than 2 hours. 

3. Methods

TLS pre-processing 

The acquired TLS scans were co-registered with RiSCAN MultiStationAdjustment (MSA2), which 

works without artificial tie-points. The co-registered point cloud was exported as las-file. 

Stem modelling 

Based on the co-registered point cloud a digital terrain model (DTM) was derived using a hierarchic 

robust method implemented in the OPALS software (Pfeifer et al., 2014). In addition to the DTM a 

digital surface model (DSM) was calculated using the landcover-dependent approach described in 

Hollaus et al. (2010). Finally, the normalized digital surface model (nDSM) was computed by 
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subtracting the DTM from the DSM. All of these topographic models have a raster resolution of 

0.2 x 0.2 m². The DTM was further used to normalize the heights of the point cloud, and the nDSM was 

used to assess the tree height. 

To model the stems with cylinders approximate position of the individual stems are needed. Based on a 

voxel approach the stem positions are detected by analysing the point densities in successive layers. 

Finally, the stem is modelled by robust least-square fittings of cylinders to neighbouring points of the 

detected stem positions.  

Branch detection 

The branch detection and branch diameter estimation is done on equirectangular projections (Eysn et 

al., 2013) of branch points. Based on the modelled stem cylinders the branch points are selected within 

a cylindrical shell around the stem (internal radius is cylinder radius plus 5 cm, external radius is cylinder 

radius plus 10 cm). The equirectangular projection is done for each tree separately and uses the cylinder 

angle as x-axis and the height as y-axis. The point density and the distribution of the distances are used 

for detecting the branch positions. The branch diameters are estimated by quantiles based on the 3D 

branch point extends. For this branch diameter estimation only the horizontal range of the classified 

branch points is considered because no points on the upper side of the branches are available due to the 

scanning geometry. 

The branch processing of the TLS data was done with the OPALS software (Pfeifer et al., 2014) and 

Python. 

4. Results and discussion

The automatic detection of individual tree positions has a high degree of completeness. For trees with a 

diameter at breast height (DBH) >0.15 m the completeness is >95%. Also the stem modelling with a 

series of cylinders lead to high completeness and correctness. In average stems could be modelled up to 

two third of the tree height (Figure 1). For the upper parts of the scanned spruce trees occlusions of the 

stems increase dramatically due to the increase of branches, which is why, a reliable direct modelling of 

the stem is no longer possible.  

The applied branch detection approach leads to high degree of completeness and works fully automatic. 

As can be seen in Figure 1e also the diameter classes can be estimated based on the TLS data. 

5. Conclusion and Outlook

The presented workflow shows a robust way of extracting stem and branch information from TLS data. 

The derived 3D stem model can be used for e.g. estimating stem biomass, deriving taber functions, or 

for timber assortment. The branch information can also be used for timber assortment but also as a kind 

of “finger printing” of the individual trees. In future work the potential of using such “branch finger 

printing” in addition to the stem properties (i.e. taber function, deviation from the circular cross section, 

etc.) for certification of stem origin will be investigated. 
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Figure 1: (a) TLS point cloud of an extracted tree, (b) modelled tree stem, (c ,d) point clouds for different 

height slices overlaid with the fitted stem models, (e) subset of the equirectangular map with the detected 

branch positions. The x-axis correspond to the cylinder angle and the y-axis to the height. The colors 

represent the different diameter classes. 

(a)  (b) 

(c) 

(e) 

(d) 

Branch diameter classes: 
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1. Introduction

The background of the contribution is the proposed 3-stage forest inventory (Bronner et al., 2018), 

which involves a third data level between the well-known wall-to-wall airborne laserscanning (ALS) 

data and the similarly well-known terrestrial laser scanning (TLS) data. We call this intermediate data 

layer “low altitude laser scanning” (LALS), as it is acquired from an ultralight airplane at low flying 

altitude and with a tilted sensor to allow a slightly oblique viewing angle. This constellation resulted in 

a point density of 400 points/m². Previous work on similarly high resolution data has reported high 

accuracies (Dersch et al., 2021) in managed forests, while we apply this system in a forest, which is 

currently in transition to a continuous cover forestry (CCF) management system. CCF is a nature-based 

solution (NBS) system, which relies on single tree harvesting and near-natural species and age mixtures 

to pertain a resilient and still productive forest (Burschel und Huss 1997, Schütz 2001, O’Hara and 

Gersonde 2004, Pretzsch 2006). 

The research questions tackled in this study are 

1) How well do existing approaches perform in areas of CCF?

2) How well can different approaches be combined to achieve better accuracies?

3) How can the different information sources be merged to generate added value?

2. Data and Methods

2.1 Data 

The LALS data was acquired at a flying altitude of about 150 m above ground level. The sensor, a Riegl 

VUX240, was tilted backwards at an angle of 20°. Each strip was flown in both directions with 1.8 MHz 

at an average speed of 125 km/h. This led to a point density of approximately 200 pts/m² per overpass 

resulting in a total point density of approximately 400 pts/m². An example of the acquired point cloud 

is shown in Figure 1. The data shows a lot of detail and at the forest edge (Fig. 1) or in open stands, also 

the individual stems are visible.  
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Figure 1: Point cloud of LALS data. 

TLS data was acquired using a Riegl VZ-400i during the vegetation periods in summer 2020 and 2021. 

In 2020, only one scan position per plot was used, in 2021, per sample plot, 10 to 15 scan positions were 

recorded without artificial tie-points. The co-referencing of scan-positions was calculated by RiScan 

Multi-Station-Adjustment. The resolution during scan acquisition was 40x40 mdeg, which produces 

several million points per 360° scan. The point clouds where filtered with regard to the deviation, 

reflectance, range and isolated points. The TLS tree detections of 2020 were done using OPALS 

(https://opals.geo.tuwien.ac.at/). The TLS tree detections for TLS data of 2021 were done by Forest 

Design (www.forestdesign.ro). For reference purposes, 151 trees were measured in the field. The 

measuring was done in 18 plots by measuring the centre point of each plot with GPS and using distance 

and azimuth to calculate the individual tree positions. This procedure resulted in a rather low tree 

location accuracy, which has to be taken into account when evaluating the results. The low number of 

reference trees is a result of the angle count sampling with a k-factor of four, which means that every 

sample tree represents four square metres per hectare. This means, that smaller trees were only 

measured, if they were located very close to the plot centre. Table 1 summarizes the TLS and field 

measured tree locations. 

Table 1. Tree counts used for comparison. 

Source Software No. of plots No. of trees Available infos 

TLS 2020 OPALS 6 683 Position (TLS), DBH 

TLS 2021 Forest Design 1 1884 Position (TLS), DBH, estimated 

height, volume and species 

Field 

work 

- 18 151 Position (GPS center coordinate & 

distance & azimut) 

2.2 Methods 

The methods used in this work consist of both, existing and well-established methods like tree top 

detection from nDSM data (Hirschmugl et al., 2007) as well as of further developments of most recent 

advancements, like the Bird’s Eye View (BEV) method (Windrim and Bryson, 2020) and their 

combination. For eliminations of double-detections, Python-based scripting was used. The overall 

workflow is depicted in Figure 2.  
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Figure 2: Workflow. 

In the first step, an nDSM is calculated from the LALS data and an existing DTM. This nDSM 

at a resolution of 0.5 m is used to detect tree tops. In parallel, the LALS data alone is used to calculate 

the so-called Bird’s Eye View (BEV), which is basically the density of LiDAR returns per spatial entity. 

A regular grid of 10 by 10 cm was used to calculate this density. In previous works, this BEV image 

showed the stems as bright blobs (Windrim and Bryson, 2020), circles or semi-circles due to the high 

density of returns at the stem (Dalla Corte et al., 2020). In the BEV image of our CCF, the stems are not 

well depicted and unfortunately, the BEV image does not show any circle-like objects potentially 

useable for stem detection (compare Figure 3 and Figure 7). However, the BEV image does show the 

crown and main branches as areas of higher density (Figure 3). This higher density can be interpreted 

in the same way as higher nDSM values and can thus be treated with the same approaches. The LOG 

method (Hirschmugl, 2008) was used for this purpose. 
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Figure 3: Comparison of nDSM-based results (blue) and additional BEV-based results (yellow). The 

gray values in the background images (2 – 40) represent height above ground in m (left) and number 

of LiDAR returns per pixel (right) 

In order to avoid multiple detections of the same tree, we decided to retain only those BEV 

detections, which lack an nDSM equivalent. These additional detections and the advantages are shown 

in Figure 3  The BEV method allows detecting individual trees in a patch of deciduous trees, which were 

considered as one tree in the nDSM method due to missing distinct maxima in height (Figure 3A). 

Further, small trees between or under larger trees can be detected by the BEV method (Figure 3 B).  

3. Results and Discussions

The comparison of the results with the field measurements (Figure 4) shows, that the inclusion of 

the BEV data allows detecting trees, previously not found with the nDSM approach alone, such as small, 

understory trees (Figure 4 A) or individual deciduous trees (Figure 4 B). In addition, small trees neither 

captured by the nDSM approach, nor covered in the field measurement (due to the high k-factor), but 

visible in the data, could be detected with the BEV approach (Figure 4 C). All 151 field measured trees 

were detected with the combined nDSM/BEV approach. The assessment of omission and commission 

error is not possible with this ground truth data, as the field measurements are not a full assessment, but 

only a count sampling with k-factor 4.  
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Figure 4: Results of the LALS tree detection approaches (BEV, nDSM) compared to field 

measurements. 

Due to the limitations of the available field measurements, we compared the combined results also to 

TLS measured tree locations. The TLS tree locations were manually adjusted to match the nDSM due 

to the originally inaccurate GPS-based geolocation. The two data sets show a very good agreement for 

all the main trees (see Fehler! Verweisquelle konnte nicht gefunden werden. and Figure 6: stars = 

TLS-based tree locations, points = combined LALS tree locations). There are also LALS detections, 

which have no equivalent in the TLS measurements (Fehler! Verweisquelle konnte nicht gefunden 

werden. A&B). The trees in Fehler! Verweisquelle konnte nicht gefunden werden. (A) may be very 

small trees, which were either not covered with the TLS or could also be commission errors in the LALS 

data. Tree detections marked in Fehler! Verweisquelle konnte nicht gefunden werden. with (B) are 

probably missing in the TLS detections due to occlusion by other trees. This theory is supported by the 

location of to the only scan position. However, there are also some omission errors compared to the TLS 

measurements; see Fehler! Verweisquelle konnte nicht gefunden werden. (C).  

A 

C 

B 
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Figure 5: Results of the LALS tree detection compared to TLS measurements 2020 using OPALS. 

Another comparison was done using results from the second TLS scan campaign done 2021 with 

multiple scan positions and the processing chain from Forest Design (FD, for more details see 

www.forestdesign.ro). This approach detects much more trees, but we could not verify the results in the 

field so far. Figure 6 compares the results of TLS FD with the combined LALS results. There is a general 

good agreement of both data sets in rather open stands (A). In areas marked with (B), there are many 

more stems detected from the TLS data than from the LALS data, which could be correct, especially in 

young forest areas. However, more field work or visual interpretation of the point cloud is needed to 

verify this assumption. 
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Figure 6: Results of the LALS tree detection compared to TLS measurements using FD. 

The next logical step is the combination of TLS and LALS results. This will be further studied, once a 

proper automated geolocation of the TLS data is achieved. The combination will allow combining the 

height information from the nDSM with the DBH measured by the TLS and the derivation of the stem 

axes of the individual trees.  

Aside from the TLS and LALS combination, future work is threefold. The first part covers a better use 

of the BEV images. A segmentation of the BEV image into 2m height intervals, as shown in Figure 7, 

is expected to allow crown base estimation and will be tested in a deep learning approach to further 

improve tree detection. A new field campaign including a full assessment will allow to calculate both 

the commission and omission errors. In the frame of this exercise, we will also look specifically at 

deciduous trees. The third part is to compare and combine the LALS data with standard ALS data to 

work out the mutual benefits and ideal combination possibilities. 
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Figure 7: Vertical distribution of LALS points in 2 m interval from ground level up to 32 m 

5. Conclusions & Outlook

This study shows that LALS data is suitable to detect most major trees confidently. Combining different 

tree detection approaches resulted in the better detection of small, partly understorey trees and individual 

stems in deciduous forests. However, most recent results from TLS data analysis suggest, that still small 

trees are omitted. This needs to be verified in the field. Once, proper geolocation accuracy of the TLS 

measurement is achieved, the automated combination of LALS tree position and TLS data will further 

add to the amount of detected trees and to the number of available forest parameters by providing for 

example the diameter at breast height (DBH) or even species. The next steps include the assessment of 

the crown base from LALS data, the comparison with standard ALS data and the combination of all 

levels (TLS, LALS and ALS) into a complete system. 
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1. Introduction

Forests store a huge amount of carbon and play a critical role in controlling global carbon balancing and 

cycling. However, increased frequency and extent of fires are a growing concern (Cattau et al., 2020; 

Liu and Yang, 2020) and threaten forest health as well as the sustainability of terrestrial ecosystems. 

Fires have become more severe and destructive in response to a warming climate with many examples 

such as the 2018 California wildfire, the 2019 Amazon forest fire, and the 2020 Australia wildfire. These 

extreme fire events emphasize the necessity of fire occurrence monitoring and forecasting over space 

and time. Accurately classifying burned forest is critical for the analysis of fire patterns and carbon 

emissions as well as understanding the effects of climate change on ecosystems.  

NASA’s Ice Cloud and land Elevation Satellite-2 (ICESat-2) mission provides global photon 

counting LiDAR data with a 14 m footprint and the along track sampling distance of 0.7 m, which come 

with three pairs and offer new opportunities for burned forest classification. Each pair contains a strong 

beam and a weak beam distinguished by a designed energy ratio of 4:1. The ICESat-2 mission provides 

datasets like the geolocated photon data (ATL03), which comprises precise latitude, longitude and 

elevation of each photon point where a photon interacts with land surface. By kicking out noises and 

classifying photons, Neuenschwander and Pitts (2019) produced the Land and Vegetation height product 

(ATL08), which comprises estimated terrain and canopy height measurements at 100 m segments along 

tracks. The ATL08 product, with a nominal spatial resolution of 100 m by 14 m, provides various canopy 

and terrain related metrics in each segment such as mean canopy height and max canopy height. Liu et 

al. (2020) leveraged ATL08 data to classify burned forest along ICESat-2 tracks with an overall accuracy 

of up to 83%. However, few studies investigate the effects of segment length on burned forest 

classification when using ICESat-2 data.  

Previous studies were focused on a specific spatial resolution when using LiDAR data in fire 

analysis. It must be noticed that spatial resolution has significant impacts on land cover classification 

(Roth et al., 2015) and canopy structure characterization. However, few studies have fully investigated 

the effects of spatial resolution when classifying burned forest with LiDAR data. In this study, we sought 

to analyse the effects of spatial resolution on burned forest classification based on ICESat-2 photon 

counting data.  

2. Data and methods

2.1 Study area and data 

The Carr fire complex, containing the Carr fire and the Delta fire (Figure 1d), in the temperate forest in 

northern California was employed. In this study, the ATL03 data whose ground track go through the 

burned areas were downloaded from the National Snow & Ice Data Center (NSIDC). To avoid 

interference of regrowth in burned regions, only data collected after fire events and in the same year of 

the fires were selected. Due to cloud obstructions, only one ground track was available (Figure 1d). 

ATL08 data corresponding to the selected ATL03 products were also downloaded to provide 

classification labels (terrain, canopy, and noise). Pre-fire and post-fire Sentinel-2 data (Figure 1a and b) 

were also downloaded as ancillary data. The forest map (Figure 1c) was obtained from ISODATA 

classification using pre-fire Sentinel-2 image, with an overall accuracy of 87% and the kappa of 0.74. 

The fire perimeters were downloaded from the CalFire (https://www.fire.ca.gov/) and rasterized to 10m 

to produce the burn map (Figure 1d).  
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Figure 1. Sentinel-2 data: (a) pre-fire image, (b) post-fire image, (c) forest map and (d) burn map. 

2.2 Segments classification 

ATL03 photon points were summarized at different segment lengths, i.e. 10m, 30m, 60m, 100m, 200m, 

and 250m, producing 26 LiDAR metrics (Figure 2). If over 90% of Sentinel-2 pixels within a segment 

were forest type, this segment would be defined as a forest segment. In the same way, the forest segments 

were overlaid with the corresponding burn map. If over 90% of pixels within a forest segment were 

burned, this forest segment would be defined as a burned forest segment. Conversely, if over 90% of 

pixels were unburned, this forest segment would be labelled as an unburned forest segment. The Random 

Forest classification method was further employed to classify burned segments of ICESat-2 data from 

unburned ones. We chose the Random Forest method because it has no assumptions on data distributions 

(non-parametric) and can process high-dimensional data.  

3. Results and Discussion

In Figure 2, average values of canopy metrics are changing along with spatial resolutions in both burned 

and unburned samples (Figure 2), which means spatial resolutions can influence canopy structures we 

detected. For instance, the maximum canopy height (max) are increasing when spatial resolutions get 

coarser, which is due to biomass consumption and sparser canopy after the fire. The average number of 

canopy photon points (num_cpy) in both burned and unburned samples are also increasing along with 

spatial resolutions. Furthermore, burned samples have lower numbers of canopy photons than the 

unburned ones.  
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Figure 2. The average value of each canopy related metric in the temperate forest in California using 

strong beams, where the error bars are standard errors. 

The classification accuracies of segments from both strong beams and weak beams are increasing 

along with spatial resolutions (Figure 3a) and saturate at 100 m segment length. It is worth noting that, 

samples of weak beams always have lower accuracies than those of strong beams. This is due to lower 

point density since energy in weak beams is only ¼ of that in strong beams. With lower point density, 

it is more difficult to distinguish real ground points, canopy points, and noises, causing more errors in 

metrics calculation and burned forest classification. Figure 3b shows the distribution of burned and 

unburned forest segments at 100m using strong beams, whose classification accuracy is 81.57%. The 

distribution of segments are comparable with the reference burn map.  

Figure 3. Burned forest classification: (a) classification accuracy at different segment lengths and (b) 

distribution of classified segments at 100m length using strong beams.  

4. Conclusions

This study analyses the effects of segment length (spatial resolution) on burned forest classification 

using spaceborne LiDAR data. ICESat-2/ATLAS photon counting data were summarized at different 

segment length, e.g. 10 m, 30 m, 60 m, 100 m, 200 m, and 250 m, to match commonly used spatial 

resolutions. Results show that canopy structure characterization is significantly influenced by segment 

length. The classification accuracies of burned forest are increasing along with coarser spatial 

resolutions and saturate at 100 m segment length. Moreover, accuracies of burned forest classification 

based on strong beams are higher than those of weak beams. These findings demonstrate that spatial 

resolution will influence canopy characterization and fire monitoring. As more spaceborne LiDAR data 

are available and accumulating, e.g. ICESat-2 data and GEDI data, further research can explore more 

applications of LiDAR data in fire management and extend the use of LiDAR data to applications in 

ecological recovery and carbon dynamics.  
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Abstract 

Forests are an essential part of our environment. They produce oxygen, act as carbon sinks and dust 

filters, thereby improving air quality. Climate change, high demand for wood as raw material, and land-

use change will adversely affect forests, requiring more frequent forest inventories to enable strategic 

forest management in the years to come. Remote sensing methods are feasible to acquire this information 

in large areas at a much lower cost. 

Recently, deep learning-based approaches in remote sensing forestry has gained much attention 

because of the prospect of better accuracy. For instance, methods for tree species classification using 

multispectral imagery and lidar have been reported to perform better than 90% in terms of overall 

accuracy. Contrary, single tree segmentation via deep learning is more challenging. So far, only a few 

approaches apply instance segmentation that imbed two-stage object detectors to delineate single trees 

with multispectral imagery. Apparently, these methods show under- and over segmentation in highly 

dense forest areas. In this work, we aim to overcome these effects by using lidar data as well in the 

instance segmentation approach Mask R-CNN. 

Our experiments were conducted near the Kranzberg Roof Project (KROOF) research site, 

which is located at 11°39`42” E, 48°25`12” N, approximately 35 km northeast to Munich. Most of the 

mixed forest is characterized by large groups of beeches surrounded by spruces. Tree heights vary 

between 20 m and 36 m. Data was captured in three flight missions at the end of July 2020 using a DJI 

460 copter equipped with a Riegl miniVUX-1UAV LiDAR scanner and a Micasense RedEdge-MX 

Dual multispectral camera. Flight missions were conducted at an altitude of 90 m above ground with a 

flight speed of 5 m/s. Because of the high overlap (50%), a mean point density of 500-600 pts/m2 was 

achieved. A true orthophoto was generated using the digital surface model (DSM) of the lidar point 

cloud. Moreover, the lidar intensity was calibrated in a data driven approach using the lidar distance. 

Finally, a multilayer data structure was created containing ten multispectral channels, the lidar DSM, 

and several lidar metrics representing the penetration in the forest area. For training, we labelled 230 

trees by visual interpretation and subdivided the dataset into training (80%) and validation (20%). Next, 

we randomly placed the labelled tree segments into new artificial images of size 512x512 pixel. The 

segments, which were randomly rotated and re-scaled by 10%, covered 80% of the image size. 

In the experiments, we trained the Mask R-CNN using the augmented dataset containing 1200 

images in total. The backbone Resnet50 was frozen at the second stage using the pre-trained weights as 

initial weights. The comparison between training loss and validation loss revealed no overfitting of the 

Mask R-CNN model. Future experiments will focus on tests (1) using the RGB channels, (2) using 

multispectral channels (e.g. NIR, NDVI, NDRE), (3) using lidar-based metrics (e.g. DSM, lidar 

intensity, penetration rate), and combinations of (1), (2), and (3). 
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1. Introduction

Cut-to-length harvesters can provide ground-truth data for predicting forest attributes using airborne 

laser scanning (ALS) data (Söderberg et al. 2021). Harvester datasets are, however, not a representative 

sample, which may cause limitations regarding the applicability of the harvester datasets in forest 

inventories. Harvests are typically carried out in actively managed and harvest-ready forests, which 

means that the use of harvester-collected ground-truth data as reference data may lead to systematic 

errors in maps and estimates of forest attributes. It is not fully understood if systematic errors can be of 

relevance in the estimation of forest attributes when training models with harvester data.  

Our objective was to study the applicability of harvester data in the model-assisted (MA) estimation 

(e.g. Räty et al. 2021) of timber volume in a 250,000 ha study area in Norway. We predicted timber 

volume for National Forest Inventory (NFI) plots using harvester and ALS data and evaluated systematic 

errors using correction factors associated with the MA estimates. We also compared the efficiencies of 

the direct (field data-based) and MA estimators. 

2. Data and Methods

2.1 Study area and data 

The 250,000 ha study area is located in the Innlandet county in Norway and comprises seven 

municipalities: Etnedal, Gausdal, Nordre Land, Nordre-Aurdal, Vang, Vestre Slidre, and Øystre-Slidre. 

In the study area, forests cover 215,000 ha of which 65% are dominated by Norway spruce (Picea abies 

[L.] Karst.).  

The NFI data utilized here were collected between 2014 and 2018. We used plots in the lowland 

stratum (Breidenbach et al. 2020) where sample plots are located on a 3×3 km systematic grid. The field 

plots are circular plots (250 m²) and each tree with a DBH ≥ 5 cm was measured. There were 157 spruce-

dominated field plots (248 field plots in forest, 277 field plots in total) within our study area. 

The harvester data used for the fitting of a volume model were collected from spruce-dominated 

clear-cut areas using a Komatsu 931XC harvester in 2020 and 2021. DBH was registered for each 

harvested tree and the tree heights were predicted using taper curves. Treetop volumes missing from 

harvester data were predicted using tree-level volume functions. The harvester registered the XY 

position of the harvester head for each harvested tree with a positioning accuracy of approximately 5–

10 m. The trees were linked to the stand-like segments of Norwegian Forest Resource Map SR16 (Astrup 

et al. 2019). The SR16 segments were further cropped using alpha-shapes (α-shapes) around the XY 

positions of the harvested trees. The resulting segments are called harvested segments.  

The harvested trees were also linked to the SR16 grid cells (256 m²). We omitted grid cells with 

obvious discrepancies between the mean height of harvested trees and the 95% ALS height percentile. 

We also omitted grid cells with less than 66% of cell area in the harvested segments. In total, 166 

harvested segments (minimum 0.1 ha, mean 0.7 ha) and 2,953 grid cells comprising 80,099 harvested 

trees were used for modelling. The mean timber volume associated with the harvested segments and 

grid cells were 220 and 225 m³⸱ha-1. 

Low-density (< 5 pulses per m²) ALS data were collected from the study area between 2011 and 

2017. Standard ALS data processing steps of the area-based approach were carried out, and a set of ALS 

predictor variables (features) like mean height, height percentiles and density metrics were calculated 
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for the harvested segments, harvested SR16 grid cells, and NFI plots. The set of ALS features comprised 

28 features computed from the ALS point cloud. 

2.2 Prediction of volume 

We fitted k nearest neighbour (NN) models (k = 5) using both the harvested SR16 grid cells and the 

harvested segments. Three predictor variables were selected by means of an optimization algorithm. 

2.3 Estimation methodology 

We estimated the mean volume for spruce-dominated forests in the study area from the NFI data (direct 

estimation). The variances were estimated for both direct and MA estimates. In the MA estimation, the 

NN models were applied to the NFI plots, and the prediction residuals associated with the NFI plots 

were utilized in the variance estimation. 

The performances of the MA and direct estimators were compared using the relative efficiency (RE, 

ratio of variances), and the half width of 95 % confidence intervals (CI). Our main interest was on the 

estimates of correction factors (�̂�𝑐𝑜𝑟) that indicate the magnitude of systematic errors in the synthetic 

(“pixel counting”) estimate. The CIs and correction factors are presented as a percentage value in terms 

of direct estimates (Räty et al. 2021). 

3. Results and Discussion

Despite the good performance of the NN models (Figure 1), the non-zero correction factors of MA 

estimates showed that the synthetic (“pixel-counting”) estimate of timber volume resulted in systematic 

errors (Table 1). The NN model fitted using the harvested segments produced a negative correction 

factor (overestimation). This indicates that the NN model was not capable of extrapolating outside the 

training data which was mainly collected from mature forests. The NFI data also comprised plots from 

younger forests for which volume was often overestimated. The NN model fitted using the SR16 grid 

cells as modeling units resulted in a positive correction factor (underestimation). The positioning errors 

of trees were non-negligible and may have negatively affected the predictive performance of the NN 

model fitted using the harvested SR16 grid cells (Figure 1). It is also worth noting that the time lag 

between the ALS data acquisition and NFI data differs from the time lag between the ALS data 

acquisition and harvester data, which can also be a minor source of systematic errors.   

The use of the harvester-based models resulted in a considerable efficiency gain compared with the 

direct estimation regardless of the modeling unit (Table 1). The largest RE of 6.17 was achieved using 

the NN model fitted using harvested segments. The additional use of harvester and ALS data more than 

halved the CI of the estimate. 

Figure 1. Predicted versus observed timber volumes of spruce-dominated National Forest Inventory 

field plots. A: model fit using harvested SR16 grid cells and B: model fit using harvested segments. 
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Table 1. Characteristics associated with the estimation of timber volume for spruce-dominated forests 

of the study area. RE – relative efficiency, MA – model-assisted. 

Modeling 

unit 

Direct 

estimate �̂� 

(m³⸱ha-1) 

Half 95% 

CI �̂�, (%) 

Half 95% 

CI �̂�𝑀𝐴,

(%) 

Correction 

factor 

�̂�𝑐𝑜𝑟, (%)

RE 

Grid cell 
121.17 14.42 

6.65 8.18 4.71 

Segment 5.81 -11.39 6.17 

4. Conclusions

We draw the following conclusions: (1) The use of a model fitted using cut-to-length harvester and ALS 

data results in considerable efficiency gains in the model-assisted estimation of timber volume. (2) 

Harvester data can be valuable for model fitting despite of non-negligible uncertainties in harvester-

recorded stem positions. (3) Synthetic (“pixel-counting”) estimates of harvester-based forest attribute 

maps can result in systematic errors that need to be corrected for to avoid wrong conclusions.  
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Abstract 

The possibilities to capture three-dimensional point clouds of forest ecosystems from the ground 

keep expanding. During the last 20 years, terrestrial laser scanning (TLS) has been the most investigated 

remote sensing approach for acquiring information of forests and individual trees. The results of such 

research showed a high estimation accuracy for tree positions, volume, diameter at breast height (DBH), 

height and other biometric parameters. An alternative approach is mobile laser scanning (MLS) which 

can be placed on a car/train or carried/hold by an operator, with the advantage of being fast and 

convenient data acquisition.  

Currently, an additional approach to conduct mobile laser scanning implements smartphones or 

tablets with embedded LiDAR sensor. The recent iPad Pro and iPhone 12 Pro are equipped with both 

high-resolution RGB cameras and LiDAR sensor. In this study, we compared the performance of such 

a mobile device on eight research plots with 25 m by 25 m dimensions. Altogether, 268 trees were 

included in the analyses (DBH > 7.0 cm). As reference point clouds we have used TLS (FARO). All 

tree positions on research sites were measured traditionally using total station and DBH was measured 

by measuring tape.  

Tree detection rate ranged from 100% to 90.6% for TLS and from 87.5% to 64.5% for iPad Pro. 

DBH estimation root mean square error (RMSE) of TLS and iPad ranged from 1.0 cm to 2.0 cm and 

from 2.6 cm to 3.4 cm, respectively. And relative RMSE ranged from 3.7% to 6.4% and from 8.6% to 

12.9%. The correlation between reference and estimated DBH was r2 = 0.996 for TLS and r2 = 0.973 

for iPad Pro. 

Results showed high potential of iPad Pro equipped in LiDAR sensor for further usage within 

the forest inventory. Currently, the data acquisition was done without using the Simultaneous 

Localization and Mapping (SLAM) algorithm. We believe that the results are going to be even more 

accurate and reliable with implementation of robust SLAM algorithms. 

Published in: Markus Hollaus, Norbert Pfeifer (Eds.): Proceedings of the SilviLaser Conference 2021, Vienna, Austria, 28–30 September 2021.  
Technische Universität Wien, 2021. DOI: 10.34726/wim.1861
This paper was peer-reviewed. DOI of this paper: 10.34726/wim.2007

273



Assessing the potential of adaptive individual tree 
detection to improve accuracy of area-based stand density 

modelling in ALS-assisted forest inventory 

Martín-Alcón, S.1*, Duque-Lazo, J.1, Tomé Morán, J.L.1 

1Agresta S. Coop 
*Email: smalcon@agresta.org

1. Introduction
Airborne Laser Scanning data enables the accurate three-dimensional characterization of vertical 

forest structure, and have proven to be an information-rich asset for forest managers, enabling the 
generation of highly detailed digital elevation models and the estimation of a range of forest inventory 
attributes with high accuracy (Coops et al., 2021; White et al., 2016). The most common LiDAR-derived 
forest attributes in the bibliography are height, volume, above ground biomass, canopy cover and basal 
area. Despite being a variable of great importance for forest management, tree density is not a variable 
frequently estimated from ALS data using area-based approaches. Several studies (Goerndt et al., 2011, 
2010; Hall et al., 2005; Næsset and Bjerknes, 2001) have shown that estimation of tree density using 
area-level LiDAR metrics was difficult because of the lack of correlation between density and canopy 
height characteristics. 

ALS data have also been successfully used to identify individual trees across forest stands, thanks 
to easily accessible and applicable algorithms. The local maxima CHM-based methods are the most 
frequently found in literature to identify the treetops, due to its simplicity and ease of use compared to 
other methods based on full point cloud analysis (Latella et al., 2021; Wu et al., 2016; Zhao et al., 2014). 
The CHM-based approaches have proven to be quite effective in very regular vegetation pattern, 
especially when only one layer of the tree canopy is present, and in coniferous stands. Nevertheless, this 
approach may provide lower-accuracy results when applied under more complex structures (Ene et al., 
2012; Richardson and Moskal, 2011). The accuracy of the CHM-based methods used to identify 
individual trees is known to be highly influenced by the parameter setting. It has been described the 
extreme sensitivity to the size of the cell window that is used to inspect the CHM and detect the height 
maxima. The window size, indeed, represents the main and most critical parameter to achieve 
satisfactory accuracy. A large window smooths the variations of canopy height and drastically reduces 
the detected peaks, whereas a small one can dramatically increase the number of peaks. Although it is 
known that the optimum value of this parameter depends on stand characteristics such as the species 
composition, its height, degree of irregularity, or degree of competition, the literature does not provide 
robust criteria for the window size setting and, therefore, the CHM-methods require site-specific 
measurements and calibration (Latella et al., 2021; Popescu and Wynne, 2004). 

In this paper we analyze the potential for using individual tree detection (ITD) to improve the 
accuracy of tree density estimation in ALS area-based forest inventories. To do that, we use a CHM-
based algorithm for tree detection based on a local maximum filter, with adaptive parametrization of the 
window size based on stand structural attributes. The experiment uses inventory data from even-aged 
Pinus radiata plantation forests, and compares the result of stand density estimation when: (1) modelled 
using only point cloud-derived metrics, (2) modelled using point cloud-derived metrics together with 
the number of trees detected by ITD, (3) calculated from basal area (G) and quadratic mean diameter 
(Dg), both modelled with point cloud-derived metrics, and (4) calculated directly through ITD. 

2. Data and Methods

2.1 Field data 

Field data was acquired from the Spanish National Forest Inventory (northern Atlantic region). We 
used 82 plots measured from November 2017 to March 2018 in the provinces of Gipuzkoa and Bizkaia, 
dominated by Pinus radiata (more than 90% of basal area of this species). Only plots where trees were 
accurately geolocated (manually checked with the help of orthophotos and LiDAR-derived CHM) were 
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included in this sample. Each NFI plot is made up of 4 subplots with a radius of 5, 10, 15 and 25 meters. 
In these four subplots, the trees were measured with DBH greater than 7.5, 12.5, 22.5 and 42.5 cm 
respectively. Consequently, within the 10-meter subplot, all trees with diameter greater than 12.5 were 
measured. We used this subplot for subsequent analysis. 

2.2 ALS data 

ALS data were acquired by Hazi foundation within the LIFE Healthy Forest project (LIFE14 
ENV/ES/000179), cofounded by the Basque government, between March and October 2017, using a 
LEICA ALS70-HP system with a mean density of 2.2 pulse/m2 and RMSEZ < 0.15 meter. Pre-processed 
data is available in 500×500 m tiles, with points already classified as ground, low and high vegetation, 
buildings, outliers and unknown. All point cloud data analyses in this work have been performed with 
the functions of the lidR package for R (Roussel et al., 2020). 

2.3 Data analysis 

We first run tree detection on the area covered by the field plots using the algorithm lmf, 
implemented in the find_trees function of the lidR package for R. We did it iteratively with the parameter 
window size (ws) taking values from 2 to 8 each 0.2 m. The hmin parameter was set to 6 meter to be 
coherent with the minimum diameter of 12.5 cm measured in the 10-meter IFN plots, and the shape 
parameter was set as “circular”, since the natural crown of Pinus radiata tends to this shape. For each 
value of ws and in each plot, we compared the result of tree detection with the trees measured in the 
field. We assessed the quality of the results by calculating the ratio trees detected (CHM) / trees 
measured (field), named as “ratio_det_ifn”. 

We then selected as the optimal ws value for each plot that with the lower error in that ratio, 
computing the error as: abs(1 - ratio_det_ifn). Once we had the optimal ws value for each plot, we 
analysed its relationship with the ALS point-cloud metrics at the plot level, and fitted an Extreme 
Gradient Boosting (XGB) model using the xgboost package for R (Chen and Guestrin, 2016), to predict 
the optimal ws parameter depending on them. 

On the other hand, we fitted predictive models for stem density, basal area and the quadratic mean 
diameter as usual in area-based approach, using ALS point-cloud derived metrics as predictors. To 
process ALS metrics, the point cloud was clipped to the corresponding NFI 10-meter subplot. Models 
were fitted using XGB as well.  

Finally, we used the predicted value for the optimal ws parameter to run ITD within each plot, and 
modelled again stand density adding the resulting number of trees detected by ITD as an additional 
variable to point-cloud derived metrics. In order to compare all possible ways to estimate stem density 
within this workflow, we also compute the stem density from predicted basal area (G) and quadratic 
mean diameter (Dg). 

3. Results and discussion
Our results showed that the optimal value for the ws parameter has a significant relationship with 

certain ALS point-cloud derived metrics. Concretely, the best model to predict ws used standard 
deviation, entropy and interquartile range of height distribution, together with the mean height, as 
predictors, and reported a relative RMSE of 26.837%. Overall, predicted values of ws varied depending 
on mean tree size and tree size inequality, as reflected by the point-cloud metrics selected in the best 
model. 

When we used the predicted ws parameter to detect the number of trees within the plots, and related 
the resulting number of trees with the stand density measured in the NFI field plots, we found that the 
number of detected trees using this methodology is not a good standalone predictor for stand density 
(RMSE: 39.757%). However, its performance improves when used in combination with a selection of 
ALS point-cloud derived metrics, concretely, the 95th percentile of height returns, and the Canopy Relief 
Ratio (i.e., a quantitative descriptor of the relative shape of the canopy from altimetry observation). This 
combination of variables allowed us to reach 19.061% relative RMSE in the estimation of stand density, 
compared to 24.376% obtained when using the best combination of ALS point-cloud derived metrics 
alone. The alternative of calculating the density from the predicted G and Dg reported 23.947% relative 
RMSE.  
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The result of this study shows the potential of this workflow for improving the accuracy in stand 
density estimation based on ALS point-cloud metrics, but is just a promising first step that deserves 
further development with the use of variable radius search windows, as well as the use of alternative 
tree detection methods. 
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1. Introduction

In order to ensure sustainable management of forest resources, the study of the functioning and 

dynamics of forest resources is essential. Multispectral and 3D LiDAR remote sensing data sources 

are valuable tools for understanding the relationship between forest structure, biodiversity and 

microclimate. Remote sensing metrics can be derived either on 3D vegetation structures, biophysical 

variables or on forest species mapping. 

      This study focuses on mapping riparian forest species in the canopy strata using a fusion of 

Airborne LiDAR data and multispectral multi-sources satellite imagery; Sentinel-2 and Pleiades at tree 

level. The idea is to assess the contribution of each data source in the tree species classification at the 

considered level and to have first interpretations on relationships with biodiversity taxons (herbaceous, 

terrestrial invertebrates et vertebrates) which were sampled on each site. Indeed, tree specie 

composition and mapping are known to modify biodiversity responses. 

The fusion was processed at feature-level and decision level. At feature level, LiDAR 2D attributes 

were derived and combined with vegetation indices. At decision level, LiDAR data was used for 3D 

tree crown delimitation providing a unique tree or a group of trees that are used as a support for the 

species classification. Data augmentation techniques were used to increase training samples. 

Best results were obtained by the fusion of Sentinel-2 time series and LiDAR data with a Kappa of 

0.656 thanks to red-edge based indices that better discriminate vegetation species and the temporal 

resolution of Sentinel-2 images that allows monitoring the phenological stages helping discriminate 

the species.  

2. Data and methods

2.1 Study Area 

The study site is located in south western France. Ciron watershed and its riparian forest is an affluent 

of the Garonne known for a climatic refuge for beech, on the warm margin of its European range. This 

riparian forest is made up of an assemblage of species such as Oak, Beech, Locust, Pine, etc. Twenty-

eight sites forming a three-dimensional structure gradient are defined. They are located over thirty 

kilometers along the Ciron and 5 km along an affluent in which the riparian forest is bordered by pine 

forests (maritime pine) in order to homogenize the potential impact of the surrounding landscape on 

the biodiversity of flora and fauna in the riverine forest. 

2.2 Data 

Joint airborne acquisition and in-field observations were conducted in autumnal season with tree 

foliage on 3rd and 4th October 2019. Trees were measured on canopy and shrub strata leading to more 

than 31 unbalanced classes. In this study we only focus on canopy classes that are limited to 5 classes. 

Train and Test data were selected using individual tree crowns generated after the segmentation 

process. They consist of 165 and 73 samples, respectively. 

Complementary data were used exploiting spectral and temporal information (Sentinel-2), very 

high resolution (VHR) imagery (Pleiades) and geometric information from LIDAR data. 11 Sentinel-2 

images were used from January to December 2019, one VHR Pleiades image on the 3
rd

 September 

2019 and 632 tiles of 3D point clouds with 50pts\m² density covering the whole site. 
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2.3 Methodology 

LiDAR and multispectral data were first co-registered manually exploiting the high accuracy of Lidar 

data. Each data source was processed separately and then fused at feature and decision levels [1]. 

First, DSM and DTM were processed at a resolution of 0.25 m. A DHM was then derived leading to a 

map of canopy height as well as 2D attributes such as Intensity, point density, number of echoes and 

height range. 

3D Lidar point clouds were segmented using PyCrown [2] method. It provides a 3D segmentation 

of individual trees besides a raster segmentation. It is based on local maximum search (i.e. tree tops) 

and region growing with regard to user-defined parameters (distance of a crown point from its top and 

point height w.r.t crown average heights). 

11 Sentinel-2 images were used in TOA reflectance. 10 spectral bands of 10-20 m were used and 

resampled to 0.25 m. Besides 7 vegetation indices [3] were derived for each date based on near 

infrared and red edge channels: NDVI, GRVI1, CIre, NDVIre3, NDre2, SAVI, MSAVI2. Soil 

adjusted indices such as SAVI and MSAVI2 were used to better handle non dense tree species. 

Totally, 10 initial bands and 7 vegetation indices were used per date leading to 187 spectral bands. 

Fusion was first processed at feature level by concatenating spectral and geometric LiDAR 

attributes. Different feature combinations were used to assess the importance of spectral, temporal or 

spatial information. At decision-level, segmented LiDAR regions were used to derive spectral 

attributes at an object-level using attributes' mean and standard deviation over each segmented region. 

Due to few training data, data augmentation techniques were used using Gaussian Noise filtering 

increasing the samples per twice. Finally, the classification was processed using a Random Forest 

classifier. Results are evaluated using Overall accuracy, kappa and per class precision and recall. 

3. Results and Discussions
Table 1 resumes the obtained classification accuracies with different fusion configurations and 

measuring data augmentation impact. Table 2 presents the precision and recall values per specie. 

Table 1. Comparison of classification accuracies using different fusion configurations with and 

without data augmentation 

Classification Kappa OA 

Without data 

augmentation 

Sentinel-2 (single date) + LIDAR 0.481 0.594 

Pleiades + LIDAR 0.434 0.548 

Sentinel-2 (multi dates) + LIDAR 0.508 0.607 

Sentinel-2 (single date) + Pléiades 

+ LIDAR 

0.493 0.595 

With data 

augmentation 

Sentinel-2 (mono-date) + LIDAR 0.527 0.620 

Pleiades + LIDAR 0.495 0.598 

Sentinel-2 (multi-dates) + LIDAR 0.656 0.694 

Sentinel-2 (mono-date) + Pléiades 

+ LIDAR 

0.582 0.665 

Table 2. Comparison of precision and recall per specie using data augmentation 

Pedonculate 

Oak 

Tauzin Oak Black Alder Maritime Pine Other 

Precision 0.47 0.91 0.54 0.73 0.85 

Recall 0.56 0.71 0.89 0.8 0.48 

The best results are given with  the combination of multi dates Sentinel-2 images and LiDAR data 

showing the importance of temporal and spectral resolution of Sentinel-2 which contributed the most 

in the classification of forest species.  
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Figure 1: Results on Site 21 : From left to right : Individual Tree Crowns Delineation , Forest  Species 

Classification 

We actually obtained 0.656 as Kappa and 0.694 as Overall Accuracy. Otherwise, the very high 

spatial resolution of Pleiades (2m) caused a decrease in the evaluation metrics. This is probably due to 

detected shadows. 

The data augmentation improved the obtained results as it allowed more training samples. The 

best configuration has also shown that Tauzin Oak, Maritime Pine and the class Other have precision 

values superior to 0.727 which means that at least 72.7% of these species where correctly labeled. 

Otherwise, less than 54.2% of Pedonculate Oak and Black Alder were correctly labeled.  

Results have also shown that the classifier under-estimates the Pedonculate oak and the class 

Other (low recall values compared to other classes) while it over estimates the black alder (high recall 

value 0.88 and low precision value 0.54) 

Figure 1 shows the 2D segmentation result and the corresponding forest species classification using 

the best fusion configuration on Site  21. 

4. Conclusions
This study allowed the evaluation of Airborne LiDAR data and multispectral satellite imagery fusion 

in order to classify riparian forest species. The results revealed the importance of data augmentation, 

temporal and spectral resolution of Sentinel-2 satellite in the process of classification added to the 

importance of LiDAR data in the individual tree crown delineation. The best fusion configuration gave 

respectively 0.656 and 0.694 as kappa and OA values respectively. 

Further work will focus on providing spatial metrics from species patterns and measuring their 

relationships with biodiversity taxons. 
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1. Introduction

Climate-Smart Forestry is a sustainable forest management approach for increasing these positive 

climate impacts on society (Verkerk et al. 2020). In response to climate change, the approach intends to 

reduce greenhouse gas emissions, adapt forest management to create resilient forests, and focus on active 

forest management with the goal of sustainability by increasing productivity while simultaneously 

offering all forest benefits (Nabuurs et al. 2017; Bowditch et al. 2020). 

Nowadays, the availability and affordability of equipment and techniques are continuously 

increasing. LIDAR devices have become more portable, at ever-increasingly affordable prices, along 

with techniques for generating 3D scenes from measurements (Tang et al. 2015). This has enabled the 

building of virtual worlds that reflect the natural landscapes using precision measurements. Particularly, 

terrestrial lidar systems collect large amounts of data varying from tens of thousands to billions of 3D 

points to determine the 3D space surrounding a given point in 3D (Paris et al. 2017) 
Virtual tree measurements are achieved today by using software applications and allometric 

approaches (Yu et al. 2013; Kankare et al. 2015; Liang et al. 2014; Astrup et al. 2014; Newnham et al. 
2015; Tomșa, Curtu, and Niță 2021). However, the quality of results and maturity of these algorithms 
are still low (Tansey et al. 2009; Li et al. 2012). Furthermore, there is no technological group on the 
market that would be able to provide a complete set of solutions to the problem, from the measurements 
in the forest to creating digital twins of each tree (Raumonen et al. 2013). As a platform that responds 
to the realities of the forest, VirtSilv provides industry-specific services in all segments (Forest Design 
2020). VirtSilv is an online platform that uses AI customizable algorithms to produce unique shapes of 
trees as digital support for a fully automated traceability IT circuit between forest management, 
transport, and the wood industry. 

The article aimed to validate the automatic workflow of processing 3D pointclouds to produce 

digital twins for every tree in a specific forest using GeoSLAM mobile LiDAR scanner and VirtSilv AI 

platform. 

2. Materials and Methods

2.1 Study area and data 

Several measurement campaigns were carried out, using mobile LIDAR device and traditional forest 

inventory tools (tape for DBH and vertex logger IV for height), focusing on 3 plots of 1 ha size in 

Carpathian Mountains, Ciucas Massif.  

The plots were scanned using ZEB Horizon, a scanner based on LiDAR technology, and included 

in the category of Terrestrial Laser Scanners (TLS). This is a 3D scanner of high-speed used for 

measurements that require recording of details. ZEB Horizon Scanner uses laser technology, weighing 

1.3 kg it is designed for outdoor applications that require scanning up to 100 m and at an accuracy of 1-

3 cm. The scanner uses a rotating mirror to beam around the area that is scanned. The measurement 

characteristics consist of up to 300,000 repetitions per second. Data acquired using GEOSLAM Horizon 

technology is a point cloud in the form of three-dimensional data compiled using SLAM (simultaneous 

localization and mapping). The scanning time suitable to produce dense pointclouds was on an average 

of approximately 20 minutes/hectare for each plot. 
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2.2 VirtSilv software 

The raw data generated during the scanning process enables the visual identification of 

individual tree structures, but they are not yet quantitatively differentiated. To create individual raw 

material for digital twin, VirtSilv first separates the ground from the trees, and then it reconstructs each 

tree separately. For segmentation the algorithm takes 3 steps to estimate each tree's footprint 

simultaneously. The algorithm begins at a large nucleus of points with high density and then grows by 

accretion until it meets neighbouring trees. The novelty of VirtSilv is that parallelize the computation 

so the average processing time of segmentation for 1 hectare of scanned forest is 30 minutes. 

Figure 1: Raw data processing dashboard. 

When all the individual tree segments are identified, the remaining task is to recognize tree trunks and 

model their numerical dimensions on a simple and flexible basis, thereby giving the potential for the 

digital twinning process. To overcome the limitations of current techniques, VirtSilv algorithms are 

designed around the following principles (figure 2): 

• The trunk shape of segments of sufficiently small height can be approximated very well by 

inclined cone trunks. 

• The vertical projection of the data obtained from segments of sufficiently small height can be 

approximated by a ring of points with relatively high density. 

• Generally, the successive segments in the vertical array are very well aligned, in the sense that 

the angle and bending of each segment, concerning that vertical changes are low. 

Thus, the VirtSilv algorithm is focused on extracting chains of cone trunks as a numerical model 

for trunks. The average time of producing the 3D model of a tree digital twin is less than one minute. 
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a)     b) 

Figure 2: Single tree point classification in a) trunk, branches and leaves+ small branches and 

b) model generated for woody part

3. Conclusion

A number of 1399 trees were scanned with LiDAR to create digital twins and for validation were 

measured with traditional tools such as tape and vertex. The segmentation algorithm developed in the 

platform to extract individual 3D trees an accuracy varying between 95-98% was recorded. This result 

was higher in accuracy than reported by other solutions. When compared to traditional measurements 

the bias for diameter at breast height (DBH) and height was not significant. Digital twinning offers a 

blockchain solution for digitalization and AI platforms are able to provide technological advantage in 

preserving and restoring biodiversity with sustainable forest management. 

Figure 3: The final product dashboard. 

282



References 

Astrup, Rasmus, Mark J. Ducey, Aksel Granhus, Tim Ritter, and Nikolas von Lüpke. 2014. “Approaches 

for Estimating Stand-Level Volume Using Terrestrial Laser Scanning in a Single-Scan Mode.” 

Canadian Journal of Forest Research 44 (6): 666–76. https://doi.org/10.1139/cjfr-2013-0535. 

Bowditch, Euan, Giovanni Santopuoli, Franz Binder, Miren del Río, Nicola La Porta, Tatiana 

Kluvankova, Jerzy Lesinski, et al. 2020. “What Is Climate-Smart Forestry? A Definition from a 

Multinational Collaborative Process Focused on Mountain Regions of Europe.” Ecosystem 

Services 43 (June): 101113. https://doi.org/10.1016/j.ecoser.2020.101113. 

Forest Design. 2020. “VirtSilv: Https://Virtsilv.Com/.” https://virtsilv.com/. 

Kankare, Ville, Xinlian Liang, Mikko Vastaranta, Xiaowei Yu, Markus Holopainen, and Juha Hyyppä. 

2015. “Diameter Distribution Estimation with Laser Scanning Based Multisource Single Tree 

Inventory.” ISPRS Journal of Photogrammetry and Remote Sensing 108 (October): 161–71. 

https://doi.org/10.1016/j.isprsjprs.2015.07.007. 

Li, Wenkai, Qinghua Guo, Marek K. Jakubowski, and Maggi Kelly. 2012. “A New Method for 

Segmenting Individual Trees from the Lidar Point Cloud.” Photogrammetric Engineering and 

Remote Sensing 78 (1): 75–84. https://doi.org/10.14358/PERS.78.1.75. 

Liang, Xinlian, Ville Kankare, Xiaowei Yu, Juha Hyyppä, and Markus Holopainen. 2014. “Automated 

Stem Curve Measurement Using Terrestrial Laser Scanning.” IEEE Transactions on Geoscience 

and Remote Sensing 52 (3): 1739–48. https://doi.org/10.1109/TGRS.2013.2253783. 

Nabuurs, Gert-Jan, Philippe Delacote, David Ellison, Marc Hanewinkel, Lauri Hetemäki, and Marcus 

Lindner. 2017. “By 2050 the Mitigation Effects of EU Forests Could Nearly Double through 

Climate Smart Forestry.” Forests 8 (12). https://doi.org/10.3390/f8120484. 

Newnham, Glenn J., John D. Armston, Kim Calders, Mathias I. Disney, Jenny L. Lovell, Crystal B. 

Schaaf, Alan H. Strahler, and F. Mark Danson. 2015. “Terrestrial Laser Scanning for Plot-Scale 

Forest Measurement.” Current Forestry Reports 1 (4): 239–51. https://doi.org/10.1007/s40725-

015-0025-5. 

Paris, Claudia, David Kelbe, Jan van Aardt, and Lorenzo Bruzzone. 2017. “A Novel Automatic Method 

for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure.” 

IEEE Transactions on Geoscience and Remote Sensing 55 (7): 3679–93. 

https://doi.org/10.1109/TGRS.2017.2675963. 

Raumonen, Pasi, Mikko Kaasalainen, Markku Åkerblom, Sanna Kaasalainen, Harri Kaartinen, Mikko 

Vastaranta, Markus Holopainen, Mathias Disney, and Philip Lewis. 2013. “Fast Automatic 

Precision Tree Models from Terrestrial Laser Scanner Data.” Remote Sensing 5 (2): 491–520. 

https://doi.org/10.3390/rs5020491. 

Tang, Jian, Yuwei Chen, Antero Kukko, Harri Kaartinen, Anttoni Jaakkola, Ehsan Khoramshahi, Teemu 

Hakala, Juha Hyyppä, Markus Holopainen, and Hannu Hyyppä. 2015. “SLAM-Aided Stem 

Mapping for Forest Inventory with Small-Footprint Mobile LiDAR.” Forests 6 (12): 4588–4606. 

https://doi.org/10.3390/f6124390. 

Tansey, K., N. Selmes, A. Anstee, N. J. Tate, and A. Denniss. 2009. “Estimating Tree and Stand 

Variables in a Corsican Pine Woodland from Terrestrial Laser Scanner Data.” International 

Journal of Remote Sensing 30 (19): 5195–5209. https://doi.org/10.1080/01431160902882587. 

Tomșa, Vlăduț Remus, Alexandru Lucian Curtu, and Mihai Daniel Niță. 2021. “Tree Shape Variability 

in a Mixed Oak Forest Using Terrestrial Laser Technology: Implications for Mating System 

Analysis.” Forests 12 (2). https://doi.org/10.3390/f12020253. 

Verkerk, P. J., R. Costanza, L. Hetemäki, I. Kubiszewski, P. Leskinen, G. J. Nabuurs, J. Potočnik, and 

M. Palahí. 2020. “Climate-Smart Forestry: The Missing Link.” Forest Policy and Economics. 

Elsevier B.V. https://doi.org/10.1016/j.forpol.2020.102164. 

Yu, Xiaowei, Xinlian Liang, Juha Hyyppä, Ville Kankare, Mikko Vastaranta, and Markus Holopainen. 

2013. “Stem Biomass Estimation Based on Stem Reconstruction from Terrestrial Laser Scanning 

Point Clouds.” Remote Sensing Letters 4 (4): 344–53. 

https://doi.org/10.1080/2150704X.2012.734931. 

283



Evaluation of the Positional Accuracy of Trees Derived Using SLAM 

J. Chudá1, M. Mokroš2,3, M. Sivák1, R. Kadlečík1 

1Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 

Zvolen, Slovakia; xchudaj@is.tuzvo.sk, xsivakm@is.tuzvo.sk, xkadlecikr@is.tuzvo.sk 
2Department of Forest Harvesting, Logistics and Amelioration, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24,    

960 01 Zvolen, Slovakia; xmokros@is.tuzvo.sk 
3Excellent research EVA4.0, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129,      

165 00 Prague, Czech Republic; mokros@fld.czu.cz 

1. Introduction

It is a known fact that forest stands as sets of objects geomorphologically highly structured in connection 

with variable terrain conditions amplify the influence of specific described factors on positioning 

accuracy and thus reduce it by moving the value of the resulting positioning error far beyond the 

permissible deviation.  

Traditional methods of positioning, Global Navigation Satellite Systems (GNSS) technology in 

cooperation with total stations, provides more than a few advantages, but several pitfalls in more 

complex conditions, too (Keefe et al., 2019). 

The trend in collecting information about the forest is currently focused on the application of 

contactless devices, new technologies and ideally their combinations. The positional accuracy derived 

from the outputs of carried device will be evaluated in this topic. We assume that it is possible to refine 

the estimation of determining the position of objects by thoughtful data collection under the forest 

canopy. The handheld mobile laser scanner ZEB HORIZON which uses simultaneous localization and 

mapping technology will be used for data collection. 

2. Data and Methods

This study was conducted in a managed forest located in Central Slovakia. The forest stand is managed 

by the Forest Enterprise of the Technical University in Zvolen. Two main research plots were developed 

in the areas with slightly different conditions. The age of research area 1 (RA1) is 85 years, with a 

density of 133 trees per hectare, and the age of research area 2 (RA2) is 60 years with a density of 344 

trees per hectare. The dominant tree species at both research areas is beech (Fagus sylvatica L.) (45% - 

RA1, 95% - RA2), at the RA 1 followed by spruce (Picea abies (L.) Karst.) (30%), oak (Quercus petraea) 

(20%), and fir (Abies alba Mill.) (5%) without the understory, and at the RA 2 followed by fir (Abies 

alba Mill.) (2%), spruce (Larix decidua Mill.) (2%), oak (Quercus petraea) (1%) with the understory 

made up by beech (Fagus sylvatica L.) with DBH ≤ 8 centimeters (100%). Every research area was 

divided into two square plots with dimensions 25 x 25 m.  

The positions of 235 trees were measured by the total station on the trunks at the height of 1.3 m 

above the terrain, and the tree axes determination was done by shifting every point about one-half of its 

measured DBH during the office work. The DBH were manually measured at the height of 1.3 m using 

standard steel diameter tape. For each measurement, the 1.3 m height was determined individually by 

measuring tape. Except for tree position, the four reference spheres were placed on all plot’s corners and 

their polar coordinates were measured.  

The experimental data was collected by lightweight handheld mobile scanner ZEB Horizon 

developed by GeoSLAM Ltd. (UK), consist of a laser scanner, a low-cost Inertial Measurement Unite 

(IMU), a camera, a data logger, and accessories (S. Chen et al., 2019; Ryding et al., 2015) works on the 

principles of SLAM. The device was carried by a uniform rectilinear movement over the research area 

according to predefined marked schemes – dense, medium, and thin research area coverage. The 

recording of the plots took approximately from 7 to 18 min. The estimation of tree position was 

connected with the estimation of tree diameter. For this purpose, the DendroCloud software was used 

(Koreň et al., 2017). Detailed information about the workflow used within the software can be found in 

Koreň (2019). 
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3. Results and Discussion

The use of mapping systems based on simultaneous positioning and mapping as a more favorable 

alternative to traditional methods of static mapping in a complicated environment has been described in 

Chen et al. (2018) The work of James & Quinton (2014), Bienert et al. (2006) or Ryding et al. (2015) 

examine the applications of mobile laser scanners and SLAM technology to various industries, not 

exclude forestry.  

The main goal of the presented work was to evaluate the positional accuracy of objects recorded by 

alternative approaches in the field of obtaining positional data in the forest environment and to assess 

the suitability of using technologies in relation to positioning accuracy standards, in relation to a possible 

increase in the efficiency of mapping work in the forest environment, which will be ensured by 

accelerating the whole process of collecting information about the environment with the expected 

achievement of very accurate results. The following is an evaluation of the accuracy of the derived 

position of trees extracted from a SLAM device (Table 1). 

Table 1. Efficiency of field work comparison 

Research 
Line type 

Data 

acquisition 
duration 
[min]

Trees Positional RMSE 

area plot reference derived X Y Z Horizontal Overall 

1 A dense 13 98 96 0.113 0.068 0.501 0.053 0.399 

medium 8 62 0.101 0.051 0.336 0.073 0.337 

thin 7 34 0.042 0.055 0.223 0.093 0.232 

B dense 14 58 48 0.058 0.058 0.311 0.067 0.324 

medium 11 40 0.070 0.090 0.248 0.089 0.262 

thin 12 48 0.064 0.069 0.252 0.086 0.269 

2 F dense 15 24 25 0.043 0.032 0.149 0.126 0.157 

medium 11 25 0.063 0.038 0.150 0.119 0.166 

thin 9 19 0.042 0.084 0.151 0.068 0.177 

G dense 16 55 55 0.024 0.064 0.121 0.082 0.137 

medium 18 48 0.060 0.061 0.117 0.108 0.149 

thin 8 47 0.035 0.079 0.113 0.094 0.141 

Average: 11.8  0.060 0.062 0.223 0.088 0.229 

Considering the positioning error in the direction of the X axes, we were in all cases able to reach 

values lower than 0.12 m, in the direction of the and Y axes lower than 0.09 m and in the direction of Z 

axes 0.13 m. The average horizontal RMSE acquires value 0.088 m, and after taking into account the 

height 0.229 m.  

Many authors explore the possibilities of using SLAM in relation to the forest environment and 

various ecosystems. Nevalainen et al. (2020) in forest work and navigation of logging and transport 

technologies, Hyyppä et al. (2020) compares SLAM with other mobile laser scanning technologies in 

boreal forest conditions, and Ali et al. (2020) examines it in relation to mobile robotics, autonomous 

management research and forestry. 

The time of data acquisition is directly related to the cost of data acquisition. Since the authors use 

different methods for the collection of HMLS equipment, it is appropriate to point out its effectiveness 

by calculating the time for which 1 ha of area can be recorded by the equipment. On the first hand, some 

works performed relatively long time data acquisition e.g. Chen et al. (2019) 333 min/ha per operator 

or Ryding et al. (2015) 200 min/ha per operator, on the other hand, some authors decreased data 

acquisition duration to lower and more effective time period e.g. James & Quinton (2014) 81 min/ha 

per operator or Cabo et al. (2018) 36 min/ha per operator. Our research achieved very effective 

acquisition time at the amount of 19 min/ha per operator. 

4. Conclusions

In this study, a handheld mobile laser scanning (HMLS) device ZEB HORIZON has been used for 

mapping and inventory of forest. The goal of this study was to evaluate the positional accuracy of objects 
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in research areas. Reference data were obtained by the total station. The   

validation of the positional accuracy of the HMLS data was performed by comparing this data with 

reference data.   

Acknowledging the positioning error in the direction of the X-axis, we can achieve values lower 

than 12 cm, in the Y-axis direction lower than 9 cm and in the Z-axis direction lower than 13 cm. The 

average horizontal RMSE reaches a value of 8.8 cm, while taking into account the height of the objects, 

RMSE reaches 22.9 cm. In this study, we achieved a very efficient data collection, and it would be 

possible to scan 1 ha with this method in less than 19 minutes.  

Many authors demonstrated possibilities of the HMLS e. g. Ryding et al. (2015), James & Quinton 

(2014) or Chen et al. (2019). The study results show that the used HMLS technology appears to be 

economical and technical solution for planning some forestry activities that do not require millimeter 

accuracy of measurement. Spatial division of forest stands and objects can help in planning fire-fighting 

measures, creating digital models, planning logging, etc.  

5. References

Ali, I., Durmush, A., Suominen, O., Yli-Hietanen, J., Peltonen, S., Collin, J., & Gotchev, A. (2020). FinnForest 

dataset: A forest landscape for visual SLAM. Robotics and Autonomous Systems, 132, 103610. 

https://doi.org/10.1016/j.robot.2020.103610 

Bienert, A., Maas, H.-G., & Scheller, S. (2006). Analysis of the information content of terrestrial laserscanner 

point clouds for the automatic determination of forest inventory parameters. Workshop on 3D Remote 

Sensing in Forestry, 14 th-15 th. 

Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C., & González-Aguilera, D. (2018). Comparing 

terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. 

Remote Sensing, 10(4). https://doi.org/10.3390/rs10040540 

Chen, S., Liu, H., Feng, Z., Shen, C., & Chen, P. (2019). Applicability of personal laser scanning in forestry 

inventory. PLoS ONE, 14(2), e0211392. https://doi.org/10.1371/journal.pone.0211392 

Chen, Y., Tang, J., Jiang, C., Zhu, L., Lehtomäki, M., Kaartinen, H., Kaijaluoto, R., Wang, Y., Hyyppä, J., Hyyppä, 

H., Zhou, H., Pei, L., & Chen, R. (2018). The accuracy comparison of three simultaneous localization and 

mapping (SLAM)-based indoor mapping technologies. Sensors (Switzerland), 18(10). 

https://doi.org/10.3390/s18103228 

Hyyppä, E., Yu, X., Kaartinen, H., Hakala, T., Kukko, A., Vastaranta, M., & Hyyppä, J. (2020). Comparison of 

backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data 

collection in boreal forests. Remote Sensing, 12(20), 1–31. https://doi.org/10.3390/rs12203327 

James, M. R., & Quinton, J. N. (2014). Ultra-rapid topographic surveying for complex environments: The hand-

held mobile laser scanner (HMLS). Earth Surface Processes and Landforms, 39(1), 138–142. 

https://doi.org/10.1002/esp.3489 

Keefe, R. F., Wempe, A. M., Becker, R. M., Zimbelman, E. G., Nagler, E. S., Gilbert, S. L., & Caudill, C. C. 

(2019). Positioning methods and the use of location and activity data in forests. V Forests (Roč. 10, Číslo 5, 

s. 458). MDPI AG. https://doi.org/10.3390/f10050458

Koreň, M. (2019). DendroCloud User Guide: Version1.49. 

gis.tuzvo.sk/dendrocloud/download/dendrocloud_1_49.pdf 

Koreň, M., Mokroš, M., & Bucha, T. (2017). Accuracy of tree diameter estimation from terrestrial laser scanning 

by circle-fitting methods. International Journal of Applied Earth Observation and Geoinformation, 

63(December), 122–128. https://doi.org/10.1016/j.jag.2017.07.015 

Nevalainen, P., Li, Q., Melkas, T., Riekki, K., Westerlund, T., & Heikkonen, J. (2020). Navigation and mapping 

in forest environment using sparse point clouds. Remote Sensing, 12(24), 1–19. 

https://doi.org/10.3390/rs12244088 

Ryding, J., Williams, E., Smith, M. J., & Eichhorn, M. P. (2015). Assessing handheld mobile laser scanners for 

forest surveys. Remote Sensing, 7(1), 1095–1111. https://doi.org/10.3390/rs70101095 

286



Effect of airborne laser scanning pulse density on accuracy 
in quantifying forest structure using an unmanned aerial 

vehicle. 

Matthew J. Sumnall1, Timothy J. Albaugh1, David R. Carter1, Rachel L. Cook2, Cully Hession3, Otávio C. 

Campoe4,  Rafael A. Rubilar5, Randolph H. Wynne1 and Valerie A. Thomas1. 

1 Virginia Polytechnic Institute and State University, Department of Forest Resources and Environmental Conservation, 228 Cheatham Hall , 

Blacksburg, VA 24061, USA. 
Email: msumnall@vt.edu; talbaugh@vt.edu; davidcarter@vt.edu; wynne@vt.edu; thomasv@vt.edu. 

2 North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette (Campus Box 8008 Dr, Raleigh, NC 

27695. 
Email: rlcook@ncsu.edu 

3  Virginia Polytechnic Institute and State University, Biological Systems Engineering Department, 204 Seitz Hall, Blacksburg, VA 24061, USA. 

Email: chession@vt.edu 
4 Universidade Federal de Lavras, Lavras, MG, BR. 

Email: otavio.campoe@ufla.br 
5 Cooperativa de Productividad Forestal. Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción. Victoria 631, 

Casilla 160-C, Concepción, Chile. 

Email: rafaelrubilar@udec.cl 

1. Introduction

Accurate quantification of forest structure is required for a number of practical applications including 

management, environmental protection, fire behavior analysis, and carbon accounting. Stand structure is 

typically estimated through manual field measurement. This approach is often constrained by site 

accessibility, the availability of effective measurement techniques, management requirements and the cost 

of labor. The development and application of remote sensing technologies have opened new frontiers in 

terms of the scale of data acquisitions and the features that can be measured. In particular, airborne laser 

scanning (ALS) remote sensing for forestry operations has broadened forest mensuration capabilities. These 

tools are being integrated into the mensuration practices of forest industry but questions remain regarding 

the deployment and accuracy of ALS. 

Recent improvements in technology have permitted the use of unmanned aerial vehicles (UAVs) as a 

viable remote sensing platform offering a combination of multi-temporal high-resolution data captured at a 

significantly lower survey cost (Rothmund et al., 2017), but often only at small scales. There is uncertainty 

that high pulse densities will yield better accuracy in the estimation of forest features. Jakubowski et al. 

(2013) state that metrics related to coverage (e.g. canopy cover) were more sensitive to low pulse densities 

(<20 pulses m-2) as opposed to metrics such as tree height, diameter at breast height, shrub height and total 

basal area which were relatively unaffected until pulse density reduced to below 1 pulse m-2. Features of 

interest which are smaller than the plot-level, in particular individual trees, are subject to more uncertainty 

regarding a minimum required pulse density for the specific detection of that feature (e.g. Kamoske et al. 

2019). 

Various light penetration indices have been developed in order to estimate leaf area index (LAI) at the 

field plot level, generally defined as total one-sided leaf surface area per ground surface area (Chen and 

Black, 1992). By their nature, these approaches are highly dependent on the density and structure of 

vegetation in situ and a pulse density high enough to return data from the lower vertical strata of a forest 

plot is required to ensure accuracy. Additional uncertainty comes from transferring these approaches to 

different sites and ALS acquisitions.  

There is a growing volume of research literature concerning the development of increasingly complex 

methods for the delineation of individual tree crowns (ITC). More recently, methods have been developed 

to delineate ITCs directly from ALS point cloud returns that could potentially improve delineations, as stated 

in Kaartinen et al. (2012) and Ferraz et al. (2016). Improving the accuracy of ITC delineations may be 
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possible with new methodologies that include higher pulse densities. Depending on which structural feature 

is being estimated, there are varying degrees of accuracy in their measurement. 

The overall goal of this study was to evaluate the effects of a range of ALS pulse densities, from high 

(>300 pulses m-2) to low (0.25 pulses m-2), have on our ability to delineate individual trees and on the 

accuracy of individual tree estimates of top height and crown width, and plot-level LAI. 

2. Data and Methods

Our study location was an 8-year-old experimental site with varying of individual tree and stand structures 

of loblolly pine (Pinus taeda L.) plantation forest in the North Carolina, USA (34°49′49.63″N, 

78°35′18.52″W). The site contains different three planting densities (low, medium and high densities - 618, 

1236 and 1854 trees per hectare, respectively), six genetics and two levels of silviculture. A total of 108 

field experimental units were established with 63 trees in each (7 rows of 9 trees) (more details can be found 

in Yáñez et al. 2017). Field measurements for individual trees consisted of: (i) GPS locations; (ii) tree top 

height (measured via hypsometer); (iii) crown horizontal extent; and (iv) survival (in year 9). LAI 

measurements using a LI-COR LAI 2200 plant canopy analyzer (LI-COR, 2012).  

Discrete return UAV ALS data was acquired in August 2017 to coincide with peak-leaf area conditions. 

A laser pulse density of >300 pulses m-2 was acquired with up to two returns per laser pulse. Eight pulse 

densities were randomly subsampled for testing purposes, these were: 300, 100, 50, 10, 5, 1, 0.5 and 0.25 

pulses m-2.  

Initial ITCs were delineated by implementing the method outlined in Li et al. (2012). This approach 

functions directly to the point-cloud. A number of modifications to this approach are proposed, which exploit 

3D clustering and distance between clusters to refine the ITC classification. ITCs were then paired with the 

closest field tree via GPS coordinates, unless the distance was over 1 m. LAI was estimated using the 

above/below ratio index (ABRI) as described in Sumnall et al. (2021). In addition to a comparison of 

estimated versus field values, a (generalized) linear mixed-effects model approach was implemented in order 

to state if the difference between the estimates created is significant.  

3. Results and Discussion

The success of the ITC method used in the current research is mainly dependent on stem density, in addition 

to ALS pulse density. Delineation accuracy, when stratifying for the three stem densities tested, was 

relatively consistent in terms of RMSE (±6%) for pulse densities above 5 pulses m-2. The largest proportion 

of delineated ITCs that corresponded to field GPS coordinates were observed within plots that had the lowest 

stem density. Correct ITC delineations accounted for a mean of 85% for low-density, 70% for medium-

density and 55% for high-density plots, as illustrated in Figure 1. No commission error was observed within 

the current research. From this, we conclude that some ITC objects represent a cluster of tree crowns.  

For estimates of tree top height higher pulse densities (≥50 pulses m-2) are more accurate. Stratification 

of results by planting stem density showed differences in terms of root mean square error (RMSE), where 

high-density plots were the poorest. RMSE values ranged from of 0.48 to 1.25 m (300 pulses m-2) to 1.74 to 

1.85 m (0.25 pulses m-2). 

The accuracy of crown diameter estimates decreases relative to decreases in ALS pulse density. RMSE 

values ranged from of 0.98 to 1.78 m (300 pulses m-2) to 2.11 to 3.29 m (0.25 pulses m-2). For pulse density 

greater than or equal to 50 pulses m-2, RMSE for all stem densities tested was relatively consistent (±0.2 m) 

when stratifying by the three stem densities.  

The correspondence between ALS estimates and field measured LAI was relatively similar across all 

pulse densities above 1 pulses m-2. RMSE varied from 0.78 to 1.11. These RMSE values were higher to 

those reported in Sumnall et al. (2021). We must assume this increase in uncertainty was related to the 

method of acquisition. The indirect nature of the field measurement represents an additional source of 

uncertainty. 
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When considering the comparison of pulse density results, only comparisons between higher pulse 

densities (between 300 and 50 pulses m-2) resulted in statistical difference (p > 0.05) for all metrics 

estimated. The implication of which is that features may or may not be present at different pulse densities. 

Figure 1: The detection probability of individual tree crowns relative to pulse density, stratified by stem 

density (low = 618 trees per hectare (TPH), medium = 1236 TPH, high =1854 TPH). 

4. Conclusions

The tradeoff of data quality and coverage against cost when planning new ALS acquisitions is a critical one 

for forest managers. For the plot scale estimates of LAI, estimate accuracy was relatively consistent, and 

only decreased at low pulse densities (≤5 pulses m-2) as observed in other research (e.g. Kamoske et al., 

2019 and Shao et al., 2019). When considering the ITC-scale, however, estimates appeared to be more 

sensitive to pulse density. Where higher pulse densities produced the highest accuracy (i.e. lowest RMSE). 

This implies that the size of the object being studied is an important consideration when designing an ALS 

acquisition with regards to pulse density. One of the main limitations of the method outlined in the current 

research is the success of the ITC delineation. In all cases, 100% of the stems in a plot were not located 

correctly in the current study, implying that some of the ITC delineations were clusters of crowns. 
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1. Introduction

Forests are intrinsically three-dimensional systems with complex vertical structure, much stronger than 

in any non-forest terrestrial ecosystem. Canopy disturbances, tree regeneration, tree growth and 

competition (especially aboveground competition for light) all take place in real 3D space. These 

processes cannot be explicitly represented and understood by two-dimensional forest census/stem-

mapping, as different tree species can have different requirements and growth strategies (species traits) 

including significantly different crown sizes, shapes and plasticity (Krůček at al. 2019). Different 

species also often occupy the canopy space in different height-levels thus forming a species-specific and 

site-specific vertical canopy stratification.  

While traditional tree census (Condit 1998) is still indispensable field-research approach, terrestrial 

laser scanning (TLS) can effectively provide its valuable superstructure and complement the tree base 

coordinates by real three-dimensional description of individual trees (Calders et al. 2018). Such data can 

be easily used for description and quantification of canopy space occupation and vertical canopy 

stratification (Hess et al. 2018), which is due to the historical lack of data for many natural forest types 

still unavailable or based on sparse and imprecise measurement techniques (Apostol et al. 2018). 

Here we introduce computationally straightforward approach for description of canopy space 

occupancy and its vertical stratification at the stand level using TLS data. It has a potential to bring a 

new level of knowledge about occupation of the canopy space by different tree species and tree-

individuals and to answer fundamental questions such as: 

i) What is actual canopy space occupation and its vertical distribution in various forest types?

ii) What is the vertical hierarchy of species and how it varies with site conditions?

iii) What is a frequency and magnitude of inter-specific and intra-specific crown-to-crown

interactions and how it varies with changing observation scale?

2. Data and Methods

2.1 Study Sites and Data 

On each of the three research plots several hectares of the stand have been scanned by terrestrial laser 

scanner Leica ScanStation P20. At each plot data from 1ha have been post-processed up-to tree 

segmentation using the 3DForest software (Trochta et al. 2017). The individual tree clouds have been 

linked to tree census data to get the record of tree status (live/dead, complete/fragmented), field-

measured reference DBH and species. The three sites cover the altitudinal gradient from lowland 

floodplain forest (alluvial hardwood) of Ranšpurk (mean altitude of 153m) through sub-montane beech 

dominated Žofín forest (alt. 780m) to montane spruce-beech forest of Boubín (alt. 1095m). All research 

plots represent natural forests left to spontaneous development, the latter two are original forests with 

no or negligible historical direct human impact (Vrška and Adam 2009). 

2.2 Methods 

In the segmented point cloud the crowns of all individual trees of DBH ≥ 10cm were automatically 

delineated in the 3DForest software. The canopy/crown point cloud was normalized into heights above 

the ground and voxelized in gradually increasing resolutions: 0.25m, 0.5m, 1m. Every voxel was 
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labelled as occupied if included at least one crown point. Along with that a unique tree ID was recorded 

for each occupied voxel. According the tree ID the data from the tree census database were linked to 

individual occupied voxels, so we could analyse co-occupation of voxels by different trees, species, etc. 

All voxels occupied by individual trees were summed to provide canopy occupancy statistics (Table 1). 

For calculation of total percentage of occupied space the 2% of the highest filled voxels were omitted. 

3. Results and Discussion

Volume (and share) of occupied canopy space naturally changes with the voxel size used. In alluvial 

floodplain forest it ranges from 4.7 m3 per m2 for 0.25m voxel size to 14.6 m3 per m2 for 1m voxel size 

(Table 1, Figure 1a). More enlightening thus might be relative comparison between different sites 

observed in the same resolution (Figure 1b,c,d). Somewhat surprisingly, total mean canopy volume in 

the Ranšpurk floodplain forest is quite the same as in the Žofín beech dominated forest - almost 9 m3 

per m2 for 0.5m voxel size (Table 1). However, as the aboveground canopy space in Žofín forest is 

occupied up to higher levels (up to 45m), relative mean occupation of canopy space there is lower than 

in Ranšpurk (Table 1, Figure 1). In other words, in the floodplain forest where tree heights can only 

exceptionally exceed 36m, similar total canopy volume is packed into a smaller space than in 

monodominant beech forest. 

Figure 1: Comparison of vertical distribution of occupied canopy space in all three sites using different 

voxels sizes (a); and canopy space occupation by different tree species observed through 0.5m voxels 

in alluvial hardwood forest of Ranšpurk (b), beech dominated sub-montane Žofín forest (c) and 

montane spruce-beech Boubín forest (d). 

Contrasting tree species richness of the two sites very likely plays an important role in this thanks to 

niche complementarity effect, leading to higher space occupation efficiency (Hess et al. 2018). While 

in Žofín about 90% of occupied forest canopy is formed by European beech, Ranšpurk forest canopy is 

composed of narrow-leaved ash (35%), field maple (34%), and hornbeam, accompanied by other four 

less common tree species (Figure 1b,c). Ash forms the upper canopy layer peaking in about 26m above 

ground, while field maple and hornbeam dominate in the lower canopy layer with the peak between 10 
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and 15m above the ground. All species together however form unimodal vertical canopy space 

occupation, not dissimilar to that of beech dominated Žofín forest. 

Table 1. Canopy volume density and relative canopy space occupation observed at different scales 

(voxel sizes) in the three study sites.  

Study Canopy volume density (m3/m2) Space occupancy (%) 

Site vox. 0.25m vox. 0.5m vox. 1m vox. 0.25m vox. 0.5m vox. 1m 

Ranšpurk 4.7 8.9 14.6 9.2 17.6 28.7 

Žofín 4.6 8.8 14.5 7.7 14.8 24.4 

Boubín 1.4 3.8 7.8 2.4 6.3 12.9 

Effect of higher space occupation efficiency may be observed also at the fine scale of individual 

voxels. Canopy voxels of 0.25m size are in species rich floodplain forest co-occupied by more than one 

tree crown in 1.2% of cases, while in beech-dominated Žofín forest it’s about 0.7% of cases.  

 Somewhat different picture may be observed in the spruce-beech montane forest of Boubín, where 

the canopy volume is formed of three-quarters of beech and one quarter of spruce, both peaking around 

30m above the ground (Figure 1d). Spruce having long crowns spanning from few meters above the 

ground up to 51m. Although beech is about 10m shorter, it also fills mostly the upper half of the canopy 

space. Overall, the canopy volume is less than half of the two other sites (Table 1), due to several reasons 

as higher abundance of spruce, predominance of big trees with less understory, harsher climate and 

thinning effect of 2008 Emma wind disturbance.   

4. Conclusions

Presented method provides direct quantitative and qualitative description of forest canopy occupancy 

and may be used as a standard approach for comparison of forest canopy in different forest types, species 

mixtures, management approaches and/or before/after silviculture measures or natural disturbances. 

Recent advances in processing drone lidar data (Krůček et al. 2020) promise possible up-scaling of the 

approach beyond the level. On the contrary, when focused on individual trees, the approach may be used 

for unprecedented quantification of local “canopy niche” of particular trees/species and their canopy 

interactions.  
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1. Introduction

The Amazon rainforest is the most extensive tropical forest in the world and also the most biodiverse 

(Ter Steege et al. 2013). However, maintaining this biodiversity has been a challenge due to the rising 

deforestation, predatory exploitation and forest fires, which lead to the loss of ecosystems (Silva Júnior 

et al. 2020). Thus, efforts have been made by researchers in the search for new forms of sustainable use 

and monitoring of forest resources (e.g., Paiva et al. 2020). 

The Global Ecosystem Dynamics Investigation (GEDI) mission aims to providing high-quality 

measurements of the vertical structure of tropical and temperate forests around the globe through a huge 

variety of products, including canopy height, canopy coverage and vertical profile, leaf area index (LAI), 

topography and biomass (Dubayah et al., 2020). These freely-available data might aid activities on 

sustainable forest management, such as land cover and use dynamics, distinction of vegetation types 

and definition of permanent preservation areas. Even though there are other Lidar missions (e.g., ICESat 

Geoscience Laser Altimeter System), GEDI is the first orbital system primarily designed for structural 

characterization of forests, with technical features for accurately measuring those with dense and 

continuous upper canopies, like the Amazon rainforest. Thus, we here aim to explore GEDI data to 

assess forest structural patterns at National Forest of Purus (NFP), southwestern Amazon, in order to 

test whether GEDI metrics are a powerful dataset to support actions of sustainable use and conservation. 

2. Data and Methods

2.1. Study Area 

Our study has been caried out in the National Forest of Purus (NFP), a conservation national park for 

sustainable use, which stands out for its 256,000 ha of highly conserved tropical forest in the 

southwestern Amazon (Figure 1). 

2.2. Geo-environments mapping 

We used as an initial basis the NFP geo-environments units that were manually mapped and 

characterized by Brandão et al. (2010). First, we map them and other land use and cover features with 

aid of machine learning algorithm by using the following covariates: nine surface reflectance images 

from the Sentinel 2A Multi Spectral Instrument visible to shortwave infrared bands (with 20 m spatial-

resolution) from 08/15/2019, the calculated Normalized Difference Vegetation Index (NDVI; 20 m), 

and a surface elevation grid from the Shuttle Radar Topography Mission (SRTM; 30 m). Samples for 

model training and validation were manually collected for each class, totaling 549 polygons and 9,225 

pixels. The following geo-environmental units were identified in the study site: i) Dissected Plateaus 

with Terra-firme Forest over Latosols and Argisols (DP); ii) Slopes and Ramps with Forests over 

Argisols (SR); iii) Alluvial Plains with Fluvial Neossols and Gleysols (AP); iv) Anthropized areas with 

traditional land use; v) River beaches; and vi) Water bodies. The Random Forest algorithm was used to 

perform the geo-environments mapping using 70% of the samples for training and the remaining (30%) 

for model validation following Fernandes Filho (2019). 
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Figure 1: Location of the National Forest of Purus (NFP) in southwestern Amazon and coverage of 

GEDI data in the NFP and surroundings. In green is the used high-quality GEDI dataset. 

2.3. GEDI data acquisition and processing 

We obtained the GEDI data from the NASA Earth Data collection and processed the level 2B products 

through the rGEDI package (Silva et al. 2019). Firstly, a selection of the consistent data was carried out 

by using the data quality indicator (i.e., quality_flag = 1). They totalled 141,560 points at the end of 

processing, which corresponds to 27% of the total data covering the study area up to 08/31/2020 (Figure 

1). The GEDI metrics obtained and evaluated in this study were the Canopy height – rh98 (meters) and 

the Plant Area Index – PAI (unitless). Those metrics were extracted from each footprint (point) for each 

mapped geo-environment (DP: 67,248 points; SR: 49,939 points; AP: 24,373 points). To test the 

hypothesis that the GEDI metrics are effective for distinguishing the forest structure, they were analyzed 

for the entire database and by geo-environment. In this sense, the Skewness normality test was 

conducted to verify the distribution of the data and the identity of the different population’s distribution 

function was tested through the Kruskal-Wallis test (α = 0.05) and the Dunn's post-hoc test. 

3. Results and Discussion

DP showed the highest PAI median value (i.e., PAI = 3.19), followed by SR (3.01) and AP (2.23), with 

significant differences between the three geo-environments (Figure 2). This result reveals the potential 

of GEDI-based PAI data to distinguish Amazonian “Terra Firme” (on DP, and SR) from lowland (AP) 

forests structurally. Canopy height is also a good parameter to discriminate those forests, while AP 

forests presented a median height of 22.37 m, SR and DP forests stood out for heights of 23.78 and 

24.02 m respectively. 

Our results indicate an important application of GEDI data for mapping forest structure and diversity 

across the landscape, as they corroborate previous studies in the Amazon region. Some of them 

demonstrate variations in the structure and biomass of upland and lowland forests in the Amazon (e.g., 

Aldana et al., 2017; Bredin et al., 2020). Significant differences in the field-based height of these two 

forest types was found by Bredin et al. (2020) in the region of the Juruá river. They found taller forests 

on the upland than on the floodplain. The same was found by Hill et al. (2011) in the Peruvian Amazon 

from airborne lidar-based estimation. On the other hand, Aldana et al., (2017) found a greater amount 

of biomass in the floodplain areas in relation to the Terra Firme forests, this difference being related to 

the greater fertility of the soils in the floodplains. Further studies exploring the GEDI waveforms and 

other metrics, in addition to soil data, will allow us to better find and understand structural patterns 

across the studied Amazonian forest, supporting actions for sustainable use and conservation. 
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Figure 2: Violin plot of the Plant Area Index - PAI (A) and density plot of the height estimates - rh98 

(B) from the forests on Alluvial Plains (AP), Dissected Plateaus (DP), and on Slopes and Ramps (SR). 

4. Conclusions

The GEDI data applied to the mapped geo-environmental units showed significant differences between 

forests that occur in different portions of the terrain by structurally segregating upland from lowland 

forests mainly. GEDI proved to be a useful tool for assessing the structure of different Amazonian forests 

and supporting their sustainable use and conservation. 
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1. Introduction

The understanding of wildfire dynamics is important to mitigate climate change and guide conservation 

practices in several ecosystems in the world. Savannas are generally fire-adapted but human activities 

have affected fire regimes and the landscape characteristics (Bowman et al. 2013). Presently, the most 

flora-rich savanna in the world, the Brazilian Cerrado, has also experienced those effects (Schmidt et 

al., 2018). 

One of the main factors affecting fire is the amount of biomass available for burning, defined as fuel 

load. Remote sensing technologies are used for local scale fuel load mapping mainly using airborne lidar 

data (Gajardo et al. 2014). However, for large scale fuel load mapping spaceborne data is required. The 

recently launched spaceborne lidar sensor GEDI (Global Ecosystem Dynamics Investigation, Dubayah 

et al. 2020) holds potential to meet this demand. GEDI was developed to penetrate forests with about 

95-98% (daytime and night-time measurements, respectively) of canopy cover to efficiently retrieve the 

vegetation vertical structure. Nonetheless, GEDI potential for fuel load estimation has not been broadly 

investigated yet. 

In this study, we developed a methodological approach using GEDI and field data to train a Random 

Forest (RF) algorithm to estimate fuel load in the Cerrado biome. Our approach allowed us to quantify 

the fuel load of several types of vegetation in the study area. 

2. Data and Methods

We established 50 sample plots of 900 m2 in four Cerrado conservation sites. In the field, we

collected fuel loads of different vegetation layers including surface, herbaceous, shrubs, and woody 

layers. The study sites were surveyed with the GatorEye Gen 1 UAV system (Broadbent et al. 2021) 

with a dual-return lidar to obtain the high-density point clouds. The UAV-lidar 3D point cloud was used 

to build GEDI-like waveforms using the GEDI simulator (Hancock et al. 2019, Silva et al. 2020) that is 

able to reproduce the on-orbit GEDI data characteristics. We calculated waveform metrics of relative 

height at the 98th percentile (m), canopy cover fraction (%), plant area index and foliage height diversity 

using the rGEDI package (Silva et al. 2020). The metrics were used to train a RF algorithm with the 

total field-measured fuel load (TFL) as the response variable. The model’s performance was assessed in 

a 5-fold cross-validation using the coefficient of determination (R2), absolute (Mg ha-1) and relative (%) 

root square mean error (RMSE) and mean difference (MD). Finally, we applied the model to the on-

orbit GEDI footprints over the Cerrado biome and aggregated the estimations into 1-km grid cells. 

3. Results and Discussion

The RF had a relatively good performance to estimate TFL with R2 = 0.71, RMSE = 23.01 Mg ha-1, 

RMSE (%) = 40.78, MD = 0.22 Mg ha-1 and MD (%) = 2.09. This performance is related to the GEDI’s 

potential of better obtaining vegetation structure over previous spaceborne lidar missions. Part of the 

uncertainty may be due to the inclusion of near-surface vegetation layers, such as herbaceous and ground 

fuels, that are commonly not considered but represent an important fuel component. The GEDI footprint 

density varied for different Cerrado regions for which the models were applied to map the total fuel load 

(Figure 1). Most of the data gaps are expected to be filled with upcoming data releases. Alternatively, 

data fusion with other spaceborne sensors can be used to derive wall-to-wall maps and or improve spatial 

resolution of the fuel load map. The presented framework represents a key point for advancing the 

understanding of fuel load accumulation over large areas and its effects on ecosystem functioning and 

carbon emissions. This is especially important in Cerrado where integrated fire management solutions 

that depend on large-scale fuel load characterization are taking place to preserve fire history and 

biodiversity (Schmidt et al., 2018). 
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Figure 1. GEDI footprint density (a) and total fuel load (TFL) estimates (b) at 1km grid cells for the 

entire Cerrado biome. Values within plots represent mean ± standard-deviation of TFL estimates and 

GEDI footprints in (a) and (b), respectively. 

4. Conclusion

We evaluated the potential of using GEDI data to estimate total fuel load in the Cerrado biome. Our 

methodological approach based on GEDI footprints showed relatively high accuracy to estimate total 

fuel load in the study area. Our modeling approach is an advance for large-scale fuel load mapping in 

the Cerrado biome and it shows potential to be applied to other fire-prone ecosystems worldwide. 
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1. Introduction

Within the last decade the rapidly developing technologies such as laser scanning, so called Light 

Detection and Ranging (LiDAR), remote sensing, and machine learning  have tremendously changed 

the face of forest ecology. Laser scanning provides the spatial overview and the precise three-

dimensional object description (Wehr et al., 1999), while remote sensing collects large volumes of 

environmental data, including those from the inaccessible habitats (Pajares et al., 2015). Finally, 

machine learning allows the data to be processed at a deeper level (Jordan et al., 2015).  

The recognition and monitoring of small- and medium-size tree-related microhabitats (TrMs) 

inhabited by fungi, mosses, ivies, mistletoes, etc. (Frey et al., 2020) are important, since they are well-

recognized indicators of tree and whole-forest health. Moreover, TrMs supports the diversity of insects, 

birds, animals and plants, including mistletoes, in forest ecosystems. Mistletoes are taxonomically 

diverse group of aerial hemiparasitic plants from the Loranthaceae, Viscaceae, Santalaceae, 

Amphorogynaceae, and Misodendraceae families (order Santalales), attaching to their hosts by root-like 

structure called the haustorium and being largely dependent on water and nutrient supply from the hosts 

(Nickrent et al., 2010). There are two main mistletoe species in the Czech Republic – deciduous yellow-

berried mistletoe (Loranthus europaeus Jacq.; Loranthaceae) parasitizing mostly European oak 

(Quercus robur L.) hosts and rarely other trees (Danihelka et al., 2012; Krasylenko et al., 2019), and the 

ever-green European mistletoe (Viscum album L.; Santalaceae) with three subspecies – V. album sbsp. 

album with the broad host preferences, V. album sbsp. austriacum specialized on Pinus, and V. album 

sbsp. abietis parazitizing Abies (Wild et al., 2019). 

The early forest remote studies were based on the terrestrial lidar scanning (TLS)-produced data, 

which are presented as dense and precise point clouds with the mm accuracy (Rehush et al., 2018). On 

the other hand, TLS requires a labor-intensive data acquisition and could be used only on the relatively 

small areas. The accuracy and density of TLS data decrease from bottom to the top (Dassot et al., 2011). 

Other approach, an unmanned laser scanning (ULS), as compared to TLS, is significantly more sparse 

and less accurate, but the maximum density and accuracy ULS achieves at the canopy level. The biggest 

advantage, however, is that ULS can provide the data sufficient for the detailed observations from the 

larger territory (Kellner at al., 2019; Krůček et al., 2020). In our studies we focus on misteltoe 

recognition.The population structure and spatial distribution of mistletoes on the host trees make them 

suitable objects for ULS. Furthermore, these parasitic plants are perennial, slowly growing and long-

living (some Viscum specimens can exist for more than 30 years), being clearly visible by the naked 

year in all seasons, and especially well-resolved in fall, winter and early spring. 
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2. Materials and Methods

2.1 Data collection and study sites 

The data was collected using RiCOPTER, a remotely piloted airborne laser scanning system equipped 

with Riegel VUX1 UAV scanner (RIEGL, USA) at the altitude about 60 m above the ground. In March 

2019 two flights with criss-cross flight directions were performed. The remote scanning covered the 

area of circa 20 ha located in the floodplain of the Morava and the Dyje Rivers. In its subsoil are the 

sediments of the Vienna Basin; above them are deposited fluvial gravels, on which sandy flood clays 

lie. The bottomland hardwood forest covers the largest area of the protected area. Dominant species are 

narrow-leaved ash (Fraxinus angustifolia Vahl.), field maple (Acer campestre L.), hornbeam (Carpinus 

betulus L), small-leaved linden (Tilia cordata Mill.), and European oak (Q. robur) (Janik et al., 2008).  

More than twenty Viscum and Loranthus-colonized trees of different species were recorded 

during a field survey on the well-studied and documented part of Ranšpurk National Nature Reserve in 

South Moravian Region characterized by the predominance of T.cordata with a few Q. robur and C. 

betulus individuals. The precise GPS coordinates of each tree in the forest plots parasitized by mistletoes 

were juxtaposed with the point cloud.  

2.2 Data processing 

In the machine learning terms, the mistletoe detection belongs to the object classification issue. The 

whole plot space were divided by the big voxels (2 m*2 m*2 m) using the CloudCompare software 

(https://www.danielgm.net/cc/). Each voxel was classified as “with mistletoe” or “without mistletoe”. 

A key limitation for the machine learning methods efficiency is the  training dataset range, since a larger 

dataset obviously means the higher accuracy of the prediction. To make is large enough, the  data 

augmentation technique was used by adding the slightly modified copies of already existing data or 

newly created synthetic data based  on the primary sample (Bohak et al., 2020). Point cloud segments 

with the mistletoes were cut into numerous voxels of the required sizes at various angles allowing them 

to intercept. The mistletoe-containing areas were cut in the way that the different training voxels had 

different spatial distribution of mistletoe inside different voxels. Moreover, noise, artificial branches and 

twigs were added to increase the training sample range to several hundreds items.  

A few machine and deep learning models will be tested and compared basing on the mistletoe as 

the key organism in these studies. The conventional machine and deep learning approaches require 

different algorithms of the data pre-processing. The deep learning effectively uses the raw data, though 

Random Forest (RF) and Support Vector Machine (SVM)  methods need more compact feature vectors 

(Breiman 2001). The large voxels will be divided into 125 smaller voxels, and for each of the sub-voxels 

the point density will be computed. Altogether, 125 values will form the feature vector. As part of the 

deep learning approach, two extra approaches will be tested: 2D- and 3D-trained convolutional neural 

networks (CNNs). For the volumetric pre-trained networks, the whole point cloud inscribed in the big 

voxel (Maturana et al., 2015) will be used, while for the flat pre-trained networks  the  rasterized 

multiview orthographic projections (MVOPs) (Carlbom et al., 1978) are suitable. 

3. Results and Discussion

Based on general information, we expect that the deep learning approach will be more efficient. 

All methods have hypothetical pros and cons, but the experiment will show the most effective solution 

for a recent case. It is reasonable to assume that the deep learning approach will be the most beneficial 

for the recognition of mistletoes in our experimental plot. However, it is significantly more 

computationally intense (Le Cun et al., 2015). In case the results of classical machine learning models 

will show relatively similar accuracy of prediction, it is worth preferring it for further practical 

applications. The obvious advantage of three-dimensional meshes is that we are exploring 3D objects. 

However, the development of 3D networks lags far behind the development of two-dimensional ones. 

This means that the pre-trained 2D networks were trained on significantly larger sample, which makes 

them more accurate “on average“ (Le Cun et al., 2015). 
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4. Conclusions

The proposed method can be employed both in the forest management by arborists and dendrologists as 

well and in the forest ecology research. For example, the accurate spatial distribution maps of mistletoes 

are very helpful for the evaluation of the degree of the mistletoe infection rate as well as for the host tree 

health and performance. Also, this methodology can be extended to the task of the detection of other 

types of TrMs, such as hollows or bird nests. 

Acknowledgements 

The work was supported by the Inter-Action grant LTAUSA18200 of the Ministry of Education Youth 

and Sports of the Czech Republic.  

References 

Bohak C, Slemenik M, Kordež J, Marolt M, 2020. Aerial LiDAR data augmentation for direct point-cloud 

visualisation. Sensors, 20: 2089. 

Breiman L, 2001. Random forests. Machine Learning, 45(1): 5–32. 

Carlbom I, Paciorek J, 1978. Planar geometric projections and viewing transformations. Computing Surveys, 

10:465—502. 

Danihelka J, Chrtek JJr, Kaplan Z, 2012. Checklist of vascular plants of the Czech Republic. Preslia 84: 647–811 

Dassot M, Constant T, Fournier M. 2011. The use of terrestrial LiDAR technology in forest science: application 

fields, benefits, and challenges. Annals of Forest Science, 68:959–74. 

Janik D, Adam D, Vrska T,Unar P, Kral K, 2011. Field maple and hornbeam populations along a 4-m elevation 

gradient in an alluvial forest. European Journal of Forest Research 130(2): 197–-208. 

Jordan MI, Mitchell TM, 2015. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260. 

Frey J, Asbeck T, Bauhus J, 2020. Predicting tree-related microhabitats by multisensor close-range remote sensing 

structural parameters for the selection of retention elements. Remote Sensing 12, 867. 

Kellner JR, Armston J, Birrer M, Cushman KC, Duncanson L, Eck C, Falleger C, Imbach B, Král K, Krůček M, 

Trochta J, Vrška T, Zgraggen C, 2019. New opportunities for forest remote sensing through ultra-high-density 

drone lidar. Surveys in Geophysics. 40:959–977. 

Krasylenko YA, Gleb RY, Volutsa OD, 2019. Loranthus europaeus (Loranthaceae) in Ukraine: an overview of 

distribution patterns and hosts. Ukrainian Botanical Journal, 76(5): 406–417. 

Krůček M, Král K, Cushman K, Missarov A, Kellner JR, 2020. Supervised segmentation of ultra-high-density 

drone LiDAR for large-area mapping of individual trees. Remote Sensing, 12, 3260. 

LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436–444. 

Maturana D, Scherer S, 2015. Voxnet: A 3D convolutional neural network for real-time object recognition. 

International Conference on Intelligent Robots and Systems.  

Nickrent DL, Malécot V, Vidal-Russell R, Der JP, 2010. A revised classification of Santalales. Taxon, 59(2): 538–

558. 

Pajares G, 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles 

(UAVs). Photogrammetric Engineering and Remote Sensing 81: 281–329. 

Rehush N, Abbeg M, Waser L, Brandli U, 2018. Identifying tree-related microhabitats in TLS point clouds using 

machine learning. Remote Sensing 10, 11. 

Wehr A, Lohr U, 1999. Airborne laser scanning—an introduction and overview. ISPRS Journal of 

Photogrammetry and Remote Sensing 54: 68–82. 

Wild J, Kaplan Z, Danihelka J, Petřík P, Chytrý M, Novotný P, Rohn M, Šulc V, Brůna J, Chobot K, Ekrt L, 

Holubová D, Knollová I, Kocián P, Štech M, Štěpánek J, Zouhar V, 2019. Plant distribution data for the Czech 

Republic integrated in the Pladias database. – Preslia 91: 1–24. 

302



ALS based forest information for forest fire danger 
modelling 

M. Hollaus1, S. Schlaffer1, M. Müller2, H. Vacik2, N. Pfeifer1, W. Dorigo1 

1 TU Wien, Department of Geodesy and Geoinformation, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria 

Email: (markus.hollaus, stefan.schlaffer, norbert.pfeifer, wouter.dorigo)@geo.tuwien.ac.at 
2 BOKU Wien, Institute of Silviculture, Peter-Jordan-Straße 82/II, 1190 Vienna, Austria 

Email: (mortimer.mueller, harald.vacik)@boku.ac.at 

1. Introduction

The worldwide increase in large-scale and intensive wildfires as a result of climate change and human 

activities represents a major challenge for the future (Conedera et al., 2018; Dowdy et al., 2019). The 

central and northern parts of Europe, including the Alpine region, are currently exposed to a 

comparatively low risk. However, a future increase in the number, extent and intensity of forest fires is 

expected here as well. Even though Austria is not commonly regarded as a hotspot of forest fires, dozens 

to hundreds of fires occur each year (Müller et al., 2015). For modelling the risk of forest fires, 

information about forest fuel structure is essential as forest structure influences fire behaviour itself but 

also exerts an impact on fuel moisture, e.g. by shading. However, these components have only been 

inadequately characterized in forest fire danger assessment systems so far (Müller et al., 2020). In recent 

years, several studies have demonstrated the assessment of forest structure information based on 

airborne laser scanning (ALS) data (Hollaus et al., 2012; Leiterer et al., 2013; Lim et al., 2003). Due to 

the country-wide availability of ALS data, the potential of ALS derived forest structure information was 

investigated within the CONFIRM project, which aims at developing a pre-operational integrated forest 

fire danger assessment system at a high spatial resolution of 100 m (Zotta et al., 2020). In this 

contribution, several forest structure variables are derived from ALS data to serve as input for future 

forest fire risk assessments. 

2. Study area and data

The study area comprises the state of Styria, located in southern Austria. Styria is a mountainous, forest-

rich state and comprises a total area of 16,401 km². Forest covers 61.5% of the total area and consists of 

82.5% coniferous trees and 17.5% deciduous trees. The dominant coniferous tree species is spruce 

(Picea abies) with 57.8%, the dominant deciduous tree species is European beech (Fagus sylvatica) with 

7.7% (BFW, 2021). ALS data organised in flight strips were provided by the state administration of 

Styria. Additionally, meta-data, such as month and year of data acquisition, were available. A digital 

terrain model (DTM) with a spatial resolution of 1x1 m, derived from ALS data, was available for the 

entire study area. 

Year of ALS 

acquisition 

Figure 1: Left: ALS acquisition blocks for Styria. Right: Year of ALS data acquisition for the test site Styria. 
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3. Methods

Based on the ALS strips, a digital surface model (DSM) with a spatial resolution of 1x1 m was calculated 

based on the approach described in Hollaus et al. (2010). This approach uses the benefits of different 

algorithms and delivers optimal results for canopy surfaces as well as for forest gaps. In addition to the 

DSM, a normalized digital surface model (nDSM) was calculated by subtracting the DTM from the 

DSM. The nDSM represents the tree heights. From the DTM, slope and exposition maps were 

calculated. The ALS data are available in the UTM projection (zone 33, EPSG:32633). 

Based on the nDSM, forest gaps were derived by applying a height threshold to the nDSM. Every 

nDSM pixel within the forest area with heights < 1 m was classified as forest gap pixel. The forest area 

map was provided by the Austrian Research Centre for Forests (BFW)1 and has a spatial resolution of 

1x1 m. The classified forest gap pixels were used as input for calculating the forest gap fraction at a 

spatial resolution of 10x10 m and 100x100 m. The latter is the target resolution of the pre-operational 

integrated forest fire danger assessment system. The final forest gap maps represent the percentage of 

forest gaps within each 100x100 m pixel.  

Information on solar radiation is important for characterizing the variability of fuel moisture patterns 

over the whole vegetation period. Based on the DSM, the potential incoming solar radiation was 

calculated for every month using SAGA-GIS2. To minimize processing time, the original resolution of 

the DSM of 1x1 m² was aggregated to 2x2 m² via bilinear interpolation. The temporal resolution was 

set to two hours, whereas for each month different start and end times for the modelling were selected. 

The derived total incoming solar radiation serves as an indicator of the drying out of forest gaps. 

Vertical forest structure, e.g. the presence of understory vegetation, is of importance for fire 

propagation and fire intensity as fire ladders can lead to the conversion of surface fires to crown fires. 

To characterize the vertical forest structure, the ALS data were analysed using a voxel approach. It is 

assumed that within the forest area every ALS point (echo) represents a vegetation element. Thus, every 

voxel (1 x 1 x 1 m³) is checked for the occurrence of ALS points. If ALS points are present, the respective 

voxel is classified as a filled vegetation voxel. The derived three-dimensional data layers allow a detailed 

study of the vertical and horizontal forest structure to detect e.g. understory or lower parts of the canopy. 

The ALS data were processed using the OPALS software package (Pfeifer et al., 2014). 

4. Results and discussion

All the described products were derived for the entire area of Styria. As shown in Figure 2, forest gaps 

are clearly visible in the ALS derived products. The modelled potential incoming solar radiation allows 

to identify forest gaps that receive a high incoming solar radiation. The seasonal influence on solar 

radiation is shown in Figure 2 and will be considered in the forest fire risk assessment model. The 

derived nDSM clearly shows forest gaps as well as stands characterised by different tree heights (Figure 

3). The profile through the 3D ALS point cloud, shown in Figure 3, allows identifying differences in the 

vertical forest structure.  

5. Conclusion and Outlook

The study shows that country-scale derivation of forest structure information by ALS data can be 

achieved in an operational way. For the operational use of the model, three maps for the characterization 

of the vegetation on 100 x 100 m should be available: 

- The characterization of the vegetation with respect to the ignition risk considers potential incoming 

solar radiation and tree species. 

- The characterization of vegetation with respect to fire spread considers data on forest gaps and tree 

species. The risk of spread is assigned to fire behaviour. 

- The characterization of the vegetation with respect to fire intensity considers the forest gaps, fire 

ladders, and the map of tree species. The fire intensity is also assigned to fire behaviour. 

The derived products are an essential input for forest fire risk assessment. Within the CONFIRM project, 

the novel forest structure information will be combined with meteorological data, remote sensing-

derived estimates of tree species and fuel moisture, and socio-economic indicators (e.g. population 

1 https://www.bfw.gv.at/hochgenaue-waldkarte-waldinventur/ 
2 http://www.saga-gis.org/saga_tool_doc/2.2.2/ta_lighting_2.html 
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density, land use, infrastructure, tourism indicators) to estimate forest fire danger at a high spatial and 

temporal resolution. The suitability of risk modelling approaches based on expert knowledge as well as 

on machine learning is currently being assessed. 

Figure 2: Examples of total incoming solar radiation based on ALS derived DSM, March (left), June 

(right). Dark pixel values indicate low solar radiation and bright pixel values high solar radiation. 

Figure 3: nDSM derived from ALS data (left), near ground vegetation density derived using a voxel 

approach (right). 
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1. Introduction
Ecological research relies on measurement and mapping of the changing patterns in biochemical and 
structural traits of vegetation regions over time, which enables ecologists to quantify and understand 
carbon cycling processes and its impact on global warming (Zhao et al., 2009). Such measurements are 
obtained using remote sensing, where established relationships between imaging spectroscopy and light 
detection and ranging (LiDAR) signals and plant functional traits like nutrient levels, leaf area index 
(LAI), leaf area angles, etc. already exist. However, little work exists on a definitive assessment of 
especially the linkages between spectral-structural variation. 

Variation in radiometric and LiDAR signals can be attributed to many factors, such as leaf and wood 
optical properties, canopy attributes (LAI, leaf and stem orientation, and foliage clumping), background 
soil reflectance, illumination conditions, and viewing geometry, among others (Asner, 1998; Ollinger, 
2011). Such properties can be directly or indirectly related to both the underlying biochemistry and the 
leaf structural properties (Ollinger, 2011; Baldocchi et al., 2020). For example, some of this variation 
can be mitigated by properly selecting temporal specifics for data collection, and via a better 
understanding of the impacts of structural variation and its impact on spectral response.  

The overarching objective of this project therefore is to better understand the connection between 
plant (forest) structure and traits and thereby improve interpretation of remote sensing data in order to 
better map and monitor ecosystems assess. The specific objective is to assess the impact of forest leaf 
angle distribution (LAD) on both spectral and structural approaches to forest trait assessment. This was 
achieved by constructing a detailed, physics- and biophysics-based virtual scene. 

2. Data and Methods

2.1 Research Site 
The study area is a 500x700m tract located at the Prospect Hill tract within Harvard Forest, a National 
Ecological Observatory Network (NEON) NEON research site, located in Petersham, Massachusetts, 
USA (42°32’19.79”N, 72°10’31.81”W). The area consists of a mix of coniferous and deciduous trees, 
shrubs, and bushes, with prominent species Eastern Hemlock (Tsuga canadensis), Red Maple (Acer 
rubrum), Winter Berry (Ilex verticillata), Yellow Birch (Betula alleghaniensis), Northern Red Oak 
(Quercus rubra) and Mountain laurel (Kalmia latifolia).  

2.2 Simulation Development 
In order to understand the impact of changing leaf angle distribution, we built a virtual 3D model of a 
complex forest, with which we can experiment with leaf angles for each tree. We gathered field data 
from the online Harvard Forest Data Archive (harvardforest1.fas.harvard.edu), which contains 
information about geographic locations, height, and diameter at breast height (DBH) values of all plants. 

3D models of vegetation were obtained from OnyxTREE BROADLEAF (V. 7.0) and OnyxTREE 
CONIFER (V. 7.0), a software suite used for procedural modeling of vegetation (www.onyxtree.com) 
The software requires a number of tree parameters as inputs and outputs facetized triangular meshes of 
the trees (Romanczyk et al., 2013). Multiple model variants for common species were created using 
OnyxTREE and instantiated in the scene at provided positions, so that the species at least matched the 
larger genus. Optical properties (reflectance and transmittance) for each species were obtained from real 
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measurements taken from the online ecological spectral database ECOSIS (ecosis.org). Spectral 
variation was created via PROSPECT (pypi.org/project/prosail), by randomly adjusting leaf parameters. 

We used DIRSIG, a physics-based rendering and simulation tool designed and developed at RIT, 
for virtual image and LiDAR data generation. DIRSIG uses Monte Carlo ray tracing and is capable of 
capturing radiometrically accurate images of virtual scenes with passive illumination (sunlight, skylight, 
moonlight, starlight, and in-scene lights) in the Visible-NIR-SWIR wavelength ranges (Romanczyk et 
al., 2013). We obtained the images for this study using DIRSIG version 5 (2021.19). The spectral 
specifications used for the imager in DIRSIG were: i) wavelengths ranging from 400-1100nm (to 
spectral index derivation), ii) wavelength band centers separated by 5nm, iii) a FWHM bandwidth of 
5nm, and iv) a Gaussian band shape; these parameters were based on the NEON Airborne Observation 
Platform (AOP) near-infrared imaging spectrometer specifications. Spatial specifications used were: i) 
pixel array of 1100 x 800 (virtual hyperspectral 2D spatial array to simplify data collection), ii) a pixel 
size of 22x22um, and iii) an imager placed at the center of the virtual scene at a height of 3km to capture 
the entire plot. The scenes were collected at 10h00 Eastern Standard Time (EST). The LiDAR simulation 
specifications were based on a Gemini ALTM LiDAR system (Table 1). Platform motion was modeled 
based on GPS/IMS data from the 2019 NEON platform and directly input into the DIRSIG platform 
motion file. Simulated data were compared to the 2019 NEON sensor data as three main categories: i) 
visual inspection, ii) spectral signatures/indices, and iii) LiDAR data, in terms of a limited statistical 
analysis of height and structure. 

Table 1. LiDAR simulation specifications, as per the Gemini ALTM LiDAR system. 
Wavelength 1064nm 
Accuracies 5-30cm elevation; 1/ 5,500 x Altitude (m AGL) horizontal 
Effective laser repetition rate 
Scan width (FOV) 

Programmable; 33-167kHz 
Programmable; 0-50° 

Scan frequency Programmable; 0-70Hz 
Beam divergence Dual divergence: 0.25mrad (1/e) and 0.8 mrad (1/e) 
Range/intensity capture Up to four range/intensity measurements, including 1st, 2nd, 3rd, 

and last returns 

3. Results and Discussion
Simulated images from the RGB, imaging spectroscopy (HSI), and LiDAR sensors were successfully 
simulated (Figures 1a-c), for i) a 1024x512 RGB image (3,000 meters above sea level), ii) a 246 band 
HSI image (380-2500nm), and iii) a 40x30m LiDAR discrete point cloud. We observed that the variation 
in canopy color, tree species, and density are clearly visible, thus providing a realistic feel to the scene 
(Figure 1a). Visually the real image looks denser with a high percentage of trees overlapping, even 
though the simulation is geographically accurate. This discrepancy was attributed to OnyxTREE models 
not incorporating crown competition.  

Spectrally the images were expected to be similar since the simulation used signatures from the real 
NEON HSI image. Figure 1b shows this to be mostly true, except for two classes in the simulated plot 
that exhibited almost twice as large values as the other vegetative signatures; this was attributed to the 
outer 100m buffer that surrounds the 3D model.  

Structurally the 3D model heights and DBH values were based on field and sensor data, so the 
expectation was that the simulated values will mirror reality. The only simulated data initially available 
for analysis was a 40x30m discrete LiDAR point cloud (Figure 1c). Next steps will include incorporation 
of planophile and erectophile leaf distributions, and assessing their impact on especially discrete return 
LiDAR metrics (Figure 2 shows an initial spectral comparison).  

4. Conclusions
The validation and extended LAD impact analysis of the 3D DIRSIG model is not complete. We 
presented an initial functionality, where we have developed a spectrally and structurally robust virtual 
scene of an actual forest site from Harvard Forest, USA. We have shown the capability to simulate both 
HSI and LiDAR sensors, as well as vary LAD. Next steps include a more extensive vetting of the actual 
scene, followed by an assessment of how field-observed LAD values, and the variation thereof, impact 
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both spectral and LiDAR metrics associated with forest trait assessment. Additional results for the 
structural analysis will be presented at the conference. 

 
 
Figure 1: a) RGB rendering of the Harvard Forest Scene (1024x512 pixels); b) a comparison of 

spectral profiles (random species); and c) the simulated 40x30m discrete return LiDAR point cloud. 

Figure 2: An initial, qualitative spectral comparison (500x700m) of planophile (left) vs. 
erectophile (right) LAD, as expressed via simplistic normalized difference vegetation index (NDVI) 
images (dark = low, bright = higher). Next steps will involve more explicit LAD definitions and an 

assessment of their impacts on both spectral and structural forest traits.   
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1. Introduction

Networks of permanent field plots have detected an increase in the carbon stored in tropical forests over 

recent decades1. This increase is thought to be driven in part by CO2 fertilization. However, uncertainty 

remains about the scale and frequency of disturbance events, and whether they too are increasing with 

climate change. Recent work has shown that small-scale disturbance events (<0.1 ha) account for the 

majority of biomass turnover in tropical forests2. Airborne Laser Scanning (ALS) provides data at the 

appropriate scale and spatial resolution to study these processes. We use repeat ALS data to measure 

these changes in three ways: 

1. By tracking large trees over time to determine whether their mortality rate is it balanced by

recruitment.

2. Studying changes in the number and size distribution of canopy gaps, which are markers of

disturbance.

3. By measuring the overall change in canopy height and comparing this with repeat field

inventory data.

2. Data and Methods

2.1 Airborne Laser Scanning data and processing 

ALS data was collected for two sites in Malaysia (Sepilok and Danum) and two sites in French Guiana 

(Paracou and Nouragues), covering a total area of 84 km2 (or 8400 ha). ALS data was processed with 

LASTools3 to create a Digital Surface Model (DSM), Digital Terrain Model (DTM) and Canopy Height 

Model (CHM) at 1 m spatial resolution. We cropped the short Kerangas forest in Sepilok out of these 

analyses since it has a distinct forest structure and may bias comparisons between sites. 

Table 1. Overview of study sites, ALS data and canopy gap dynamics. 

Site Country 
Years 

scanned 

Area 

(km2) 

Canopy gaps (# km-2) 

Initial 
Recovered 

(yr-1) 

New 

(yr-1) 

Danum 
Malaysia 

2014 

2020 

23 966 80 47 

Sepilok 25 710 44 48 

Paracou French 

Guiana 

2016 

2019 

10 280 65 53 

Nouragues 26 565 96 62 

2.2 Individual tree growth and mortality rates 

We manually delineated tree crowns using the CHM and RGB images, which were captured alongside 

the ALS data. This manual data set prioritizes large trees (those easily visible from above) which account 
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for the majority of aboveground biomass4. Using this data set we then optimized a watershed-type 

segmentation algorithm (https://github.com/swinersha/UAVforestR) using Bayesian optimisation to 

segment large trees from the CHM. Independently, we trained a convolutional neural network, based on 

a Mask RCNN architecture, to segment trees in the RGB images. We then combined results from these 

two independent segmentation methods to give a dataset of accurately delineated large trees across 

Sepilok Reserve. Finally, we extracted the canopy height for each tree in both years from the ALS data. 

This allowed us to count how many large trees had died between scans and estimate their mortality rate. 

2.4 Canopy gap dynamics 

We defined canopy gaps as contiguous areas in the CHM < 10 m above ground level between 10 m2 and 

10,000 m2 using ForestGapR5. For each site, we matched gaps which overlap in both years to determine 

how many new gaps occurred during the interval between scans, and how many gaps recovered.  

2.3 Canopy height change 

We calculated the change in canopy height (∆𝐻) in two ways: (a) as the difference between the first and 

second CHM and (b) the difference between DSMs. (a) is robust to any vertical misalignment between 

the scans while (b) is robust to any bias in ground detection. We found that low pulse densities caused 

underestimation of canopy height and so confined our analysis to areas with pulse densities greater than 

10 pulses per square metre. In order to reduce noise (from geolocation errors, wind etc) we aggregated 

the ∆𝐻 rasters to 20 m spatial resolution. We calculated slope, aspect and topographic position index 

(TPI) for each site and tested whether spatial patterns in ∆𝐻 were related to topography using multiple 

linear regression.  

3. Results and discussion

3.1 Individual tree analysis 

Figure 1: Watershed tree crown delineation from the canopy height model using UAVforestR (left), 

and instance segmentation of tree crowns from RGB imagery using Mask RCNN (right).  

Large trees were often found growing close together with interlocking crowns. ALS segmentation 

methods rely on structural assumptions (such as crown radius allometry) to segment these difficult cases, 

but allometry data is severely limited for these large trees. We found that differences in colour helped 

distinguish trees, but the exact boundary of the crown was difficult to accurately delineate either 

manually or automatically. Therefore, we have a high level of confidence that each polygon represents 

a single tree, but uncertainty over the exact boundary. This limits our ability to detect lateral growth of 

the tree crowns, which is an important component of tree growth, particularly for large trees. 

From the 861 manually segmented trees in Danum and Sepilok we found that just under 10% (76 trees) 

had died (reduction in height by >5 m) between 2014 and 2020. We found no trend with tree height. 

Ongoing work will dramatically increase this sample size using automatically segmented trees crown.  

3.2 Decrease in the number and size of canopy gaps 

The number of canopy gaps decreased in three out of the four sites (Table 1). In Sepilok there was a 

slight increase in the number of canopy gaps, but a decrease in the total area of gaps. This suggests that, 
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over the interval between scans, recovery outpaced new disturbances in these forests. Further analysis 

will determine whether new gaps were spatially clustered, e.g. near existing gaps or on hilltops. 

3.3 Increase in canopy height 

All sites showed a net increase in canopy height over time. This suggests an increase in carbon storage, 

although field data are needed to confirm this (analysis ongoing). This increase in canopy height was 

robust to variations in pulse density and ground detection accuracy, since a similar increase was 

observed in both the CHMs and DSMs at high pulse densities. Further work is needed to test whether 

this increase is sensitive to other differences in ALS scanning parameters between years. Also, we found 

that these height changes were sensitive to the scale of spatial aggregation, with much lower growth 

rates at 1 m resolution. After accounting for initial canopy height, topographic metrics explained less 

than 10% of the variation in ∆𝐻.  

Figure 2: Left – example canopy height models and height change raster for Sepilok. Right - change in 

canopy height across four tropical forest sites (20 m resolution, > 10 pulses m-2) 

4. Conclusions

Repeat airborne laser scanning data were used to study changes in tropical forests canopy structure over 

time. We found an overall increase in canopy height (although further analysis is needed to confirm this) 

and a decrease in the number of canopy gaps. Ongoing work will determine whether these findings align 

with field data, and whether large trees are growing or dying.   
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1. Introduction

Aboveground biomass is a critical element of the global carbon cycle, both in terms of the 

large magnitudes of carbon stored in aboveground woody material, and the ecological carbon-

climate feedbacks related to disturbances from pests and fire which are particularly important 

for carbon cycling in the boreal system. To date, high resolution biomass maps have been 

largely unavailable across the boreal system due to a dearth of active remote sensing data 

sensitive to forest structure at the spatial scales of boreal forest processes (~30m – 1 ha). 

ICESat-2 has produced forest height products at a 100-m segment resolution through the 

ATL08 product (Fig 1, Neuenschwander & Pitts, 2019), but the mission does not have an 

official biomass requirement or product. This research presents early results from two 

recently funded NASA projects (one through NASA’s ABoVE program, and one through the 

ICESat-2 Science Team). These projects focus on using height data from ICESat-2 to estimate 

and map woody aboveground biomass for the boreal domain.  

We explore the transference of models developed for NASA’s Global Ecosystem Dynamics 

Investigation (GEDI) mission (Dubayah et al., 2020, Duncanson et al., 2020) that translate 

height measurements into estimates of biomass based on a global field and airborne lidar 

campaign, and compare these with models using simulated ICESat-2 over field plots. ATL08 

has been reprocessed to the 30-m segment length and Relative Height (RH) metrics have been 

recomputed including ground photons to be more comparable to GEDI’s RH metrics. We fit 

exhaustive suites of OLS models with different height predictors, and apply the best 

performing model per PFT to 30-m ATL08 for the globe north of 50 degrees latitude, 
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producing estimates of AGBD and associated standard error for each 30-m ATL08 segment 

for the growing season. We then link AGBD from ATL08 to a wall-to-wall covariate stack at 

a 30 m resolution from Landsat and the Copernicus DEM. We fit a random forest model to 

predict AGBD from the covariate stack for each 40 km tile across the study domain. We 

propagate uncertainties from the field to ATL08 models through to the ATL08 to Landsat 

model through bootstrapping both sets of models fits to produce pixel-level estimates of 

uncertainty. The resulting 30-m AGBD and uncertainty products are representative of 

growing season conditions between 2019-2020.  

2. Figures and Tables

2.2 Figures 

Fig 1. Relative Height (RH98) from ICESat-2’s ATL08 product between 45 and 75 N captures height 

gradients by latitude.  Figure 1: The venue of SilviLaser 2021.
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2.3 Tables 

Table 1 The top model for each MODIS Plant Functional Type and region stratum in the 

scenario where RH98 was forced into models and no RH metric lower than RH50 was 

considered. R squared (Rsq), %RMSE, mean residual error (MRE) and Slope were all 

calculated from geographic cross validation. MRE was the absolute mean binned residual 

error, expressed in Mg/ha. 

Strata R2 %Rmse MRE Transform Predictors 

DBT North America 0.77 38.47 7.6 sqrt-sqrt RH60, RH98 

ENT North America 0.77 69.27 13.89 sqrt-sqrt RH60, RH98 

ENT Europe 0.69 52.55 2.04 sqrt-sqrt RH98 

Deciduous Broadleaf Trees 0.73 40.3 9.88 sqrt-sqrt RH60, RH98 

Evergreen Needleleaf Trees 0.69 63.35 5.73 sqrt-sqrt RH98 

Europe 0.67 53.33 4.1 sqrt-sqrt RH98 

North America 0.77 62.47 9.79 sqrt-sqrt RH70, RH98 
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1. Introduction

McArthur and McArthur’s (1961) foliage height diversity (FHD) is widely used for determining 

structural complexity, from LiDAR vertical height (𝐻) profiles (Lefsky et al. 2002, Vierling et al. 2008, 

Simonson et al. 2014). FHD has however largely failed to disentangle the relationships between the 

ecosystem structural diversity and biodiversity, with early reports such as those from Thomas Lovejoy 

(1972) in the Amazon not finding evidences in the light of FHD. It remains unclear whether FHD is the 

most suitable means to determine the structural complexity of ecosystems. 

The calculation of FHD involves layering the vertical profile, which is essentially unnatural to 

describe a continuous variable (𝑋) such as height, and involve subjective steps such as the determination 

of the size of these layers, from which the value of FHD obtained is ultimately dependent upon. This is 

because FHD is based on Shannon’s (1948) entropy index, which was not originally designed to describe 

continuous variables, but meant for abundance data for categorical variables. In Adnan et al. (2021) we 

provided a mathematical framework for determining maximum entropy in 3D remote sensing datasets 

based on Lorenz curves and Gini (1921) coefficients (𝐺𝐶) determined from theoretical continuous 

distributions, intended to replace FHD as entropy measure in vertical profiles of LiDAR heights. This 

framework was developed for 1-dimensional variables (1D; 𝑋) such as tree heights, and 2-dimensional 

variables (2D; 𝑍 ∝ 𝑋2) such as basal areas, and hereby we extend it to 3-dimensional variables (3D,

𝑍 ∝ 𝑋3) such as volumes.

Structural complexity is an essential morphological trait of forest ecosystems, complementary to 

others like vegetation height or cover (Schneider et al. 2017, Fahey et al. 2019, Valbuena et al. 2020). 

But the means to measure the structural complexity of forests lacks consensus (Neumann and Starlinger 

2001, Lexerød and Eid 2006, Valbuena et al. 2012). Two types of approaches, those measuring entropy 

(McArthur and McArthur 1961) versus those measuring variability (Weiner 1990), have effectively been 

merged in the framework presented in Adnan et al. (2021), by by showing how maximum entropy can 

be flagged up from values of a variability measure such as the Gini coefficient. Formal deductive proofs 

for maximum entropy at 𝐺𝐶 = 0.33 for 1-dimensional variables (Adnan et al. 2021), and 𝐺𝐶 = 0.50 

for 2-dimensional variables (Valbuena et al. 2012, 2107), have been presented, which hereby are 

extended toward the value of 𝐺𝐶 = 0.60 for 3-dimensional variables. 

2. Methods

Let E[𝑋] be the expectation a random variable 𝑋 with probability density function (p.d.f.) 𝑓𝑋(𝑥),

cumulative distribution function (c.d.f.) 𝐹𝑋(𝑥), quantile function (inverse of the c.d.f.) 𝐹𝑋
−1(𝑝). The

Lorenz curve 𝐿𝑋(𝑝) specifies the accumulated proportion of the total of X that is attributed to a given

accumulated share of the population ordered by increasing 𝑋:  

𝐿𝑋(𝑝)   =
∫ 𝐹−1(𝑡)

𝑝

0
𝑑𝑡

E[𝑋]
, for  0 ≤ 𝑝 ≤ 1 (1) 
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The Gini coefficient is the twice area between the Lorenz curve and the diagonal line 𝐿𝑋(𝑝) =
𝑝, which is thus assessed with the integral: 

𝐺𝐶𝑋 = 1 − 2 ∫ 𝐿𝑋(𝑝)
1

0
𝑑𝑝 (2)

When considering the distribution LiDAR heights 𝑋 = 𝐻, the Lorenz curve 𝐿𝐻(𝑝) specifies the

proportion of total accumulated ranked heights (usually in decreasing order, but it can be either). If 

considering 2-dimensional variables, such as basal area 𝑋 = 𝐵𝐴 = 𝐷2, then it gives the proportion of

basal area for ranked trees (best in increasing order, to express competitive dominance, following 

Valbuena et al. 2013). We can also be interested in 3-dimensional variables, such as volume 𝑋 = 𝑉 =
𝐻𝐷2. The methods consist in mathematical proofs demonstrating values of Lorenz curves (1) Gini

Coefficient (2) that can be used to characterize maximum entropy from theoretical distributions of 3-

dimensional variables, which can be employed to substitute the use of FHD and avoid its unnatural 

partitioning of continuous variables into layers. 

3. Results

3.1 Maximum Entropy in 3-dimensional variables: volume 

Tree volumes are also calculated from a transformation of other dimensions 𝑉 = 𝑎𝐻𝐷2. Again,

given the scale-invariability property of Lorenz curves, and thus we can consider the Lorenz curve and 

Gini coefficient of transformation 𝑍 = 𝑋3 when 𝑋~𝑈(0, 𝜃).

The c.d.f. and p.d.f of the transformed variable are: 

𝐹𝑋3(𝑧; 𝜃) = {

0, for  𝑧 ≤ 0

√𝑧
3

𝜃
⁄ , for  0 ≤ 𝑧 ≤ 𝜃3

1, for  𝑧 ≥ 𝜃3

(3) 

𝑓𝑋3(𝑧; 𝜃) = {

1

3𝜃 √𝑧
3 , for  0 ≤ 𝑧 ≤ 𝜃3

0, otherwise
(4) 

Thus, the quantile function and expected value of 𝑍 are: 

𝐹𝑋3
−1(𝑝) = 𝜃3𝑝3 (5) 

𝐸[𝑋3] =
𝜃3

4
(6) 

Substituting these in Equation (1), the Lorenz curve becomes (Figure 1): 

𝐿𝑋2(𝑝) =
∫ 𝜃3𝑡3 𝑑𝑡

𝑝

0

𝜃3 4⁄
=

𝜃3𝑝4 4⁄

𝜃3 4⁄
= 𝑝4 (7) 

And thus, substituting in Equation (2), the Gini coefficient of a uniform distribution becomes: 

𝐺𝐶 = 1 − 2 ∫ 𝑝41

0
𝑑𝑝 = 1 −

2

5
=

3

5
(8) 

Hence, for any variable 𝑍 ∝ 𝑋3 that is proportional to the third power of 𝑋, such as of 𝑉, the

𝐺𝐶𝑋3 = 0.60 corresponds to the maximum entropy of 𝑋.

Figure 1: Lorenz curves for 1, 2 and 3-dimensional variables. 
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4. Discussion

In previous contributions we have showed a threshold of interest which flags up maximum 

entropy in forest ecosystems at the Gini Coefficient value of 𝐺𝐶𝑋2 = 0.50 (Valbuena et al. 2012, 2017).

In Adnan et al. (2021) we further deducted that the value 𝐺𝐶𝐻 = 0.33 can be used when interested in

the study of LiDAR height profiles. In this contribution we show how higher order extensions can be 

further deducted, and show the formal proof for the maximum entropy value of 𝐺𝐶𝑋3 = 0.60  applicable

to 3-dimensional variables. In order to achieve these generalized conclusions, we use theoretical 

distribution functions and show how their parameters propagate into Lorenz curves and values of the 

Gini Coefficient directly dependent on those parameters. Further extensions can be similarly deducted 

based on ecological assumptions on ecosystem distributions. 

These threshold allows to compare the entropy of the ecosystem using a statistic of dispersion, 

arguing that for continuous variables it is more correct to use the Gini Coefficient because it avoids the 

factitious binning step required when computing FHD (McArthur and McArthur, 1961). Gini coefficient 

is less computationally demanding than FHD, but in Valbuena et al. (2012) we also showed that it is 

conceptually better.  
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Accurate information on forest resources is fundamental for sustainable forest management. Manual 

aerial photointerpretation is used as a cost-effective source of data for forest inventories; however, the 

process of photointerpretation is inherently subjective and is often undertaken by multiple photointerpreters 

for a given forest management area. In contrast, airborne laser scanning (ALS) data enable characterization 

of forest structure in a systematic fashion with quantifiable levels of accuracy and precision that often 

exceed required targets and standards. However, the gains associated with the use of new technologies for 

forest inventory are difficult to measure because the quality of existing photointepreted inventories have 

rarely been quantified. 

In this study we characterized the uncertainty of the photo-based measures of stand height and canopy 

cover, using airborne laser scanning (ALS) data as reference. By incorporating three study sites located in 

three Canadian jurisdictions we explored the existing photointerpretation standards and then used the ALS 

data to mimic the specific guidelines for determining canopy height and cover.  

The results showed that the agreement between the ALS-based reference values and the 

photointerpreted attributes was not consistent across the jurisdictions. Results indicated that precision was 

greater for photointerpreted estimates of height, with a relative standard deviation ranging from 22–29% 

among our three sites, compared to estimates for canopy cover, with precision ranging from 28%–59%. In 

addition, the relationship between the estimates of height was linear, and non-linear for canopy cover. 

Several factors influenced the precision, including dominant species, stand structure, age, and canopy 

complexity. Most importantly results were not consistent among our three study sites indicating that site-

specific forest conditions and photointerpretation procedures influence the precision of photointerpreted 

estimates.  
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1. Introduction

Continuation of laser altimeter observations of the Earth’s land and ice sheet topography, sea ice 

thickness and vegetation structure, begun by NASA’s ICESat, ICESat-2 and GEDI missions, is crucial 

for monitoring and predicting the response of the Earth’s surface to climate and land cover change over 

decadal scales. We are developing an observing system, consisting of a highly efficient, adaptive lidar 

and a spectrometer, intended for a SmallSat mission later in this decade.  The system could serve as the 
foundation for long-term monitoring of the vertical dimension, composition, and function of the Earth’s 

surface in a series of moderate-cost satellites. The approach addresses three of the Explorer Observables 

recommended in the 2017 Earth Science Decadal Survey (Committee on the Decadal Survey 2017)): 

ice elevation, snow depth and snow water equivalent, and ecosystem structure. It can also serve as a 

pathfinder for global mapping of Surface Topography and Vegetation (STV) and the Planetary 

Boundary Layer (PBL), the two recommended longer-term Incubation Observables. 

1.1 Concurrent Artificially-intelligent Spectrometry and Adaptive Lidar System 

The observing system, the Concurrent Artificially-intelligent Spectrometry and Adaptive Lidar System 

(CASALS), includes a lidar which can rapidly adapt the laser footprint locations across a 7km wide 

swath and a VNIR-SWIR spectrometer with a ≥30km wide swath and 30m pixels. CASALS combines 
lidar and spectral imaging to merge height data with information about composition and function, 

thereby enabling new capabilities for characterizing the physical state of the Earth’s surface and 

processes acting upon it. Real-time data analysis, utilizing deep learning models based on techniques 

such as Long-term Short-term and temporal convolutional networks, will enable autonomous lidar 

targeting. Use of deep learning enhanced tensor completion will enable software-defined compressive 
sensing to optimize the adaptive sampling patterns. We are using very large Goddard Lidar 

Hyperspectral Thermal (G-LiHT) airborne data sets for training and model development. On-board 

processing will also enable reduction of downlink data volume by intelligent data selection, product 

generation and compression optimized for land cover specific science and application objectives. 

2. CASALS Sensors

2.1 Adaptive Lidar 

The block diagram in Figure 1 depicts the high-level functions of the CASALS laser transmitter, 

receiver, and electronics assemblies. All functionality is based on highly efficient, compact, space-

qualifiable components to minimize size, weight, and power to enable a SmallSat implementation. The 

laser transmitter is based on a state-of-the-art, high-efficiency, 1 micron, solid-state, pulsed laser 

operating at up to 120KHz, with a compact, photonic integrated circuit (PIC) seed laser and a Yb fiber 

power amplifier. The laser beam is scanned across a 7km wide swath using a novel passive approach, 
with no need for a mechanism. This is accomplished by wavelength tuning the seed laser at high-speed, 

over the range 1.020 and 1.045 microns, and transmitting the beam through a wavelength-to-angle 

dispersive grating (Figure 1). The receiver telescope will employ free-form optics to reduce its size and 

weight. In a standard ESPA SmallSat bus, the aperture diameter would be 0.4m.  In an ESPA Grande 

SmallSat the aperture could be as large as 0.9m. Because there is no beam splitting, individual laser 
pulses are received sequentially. Filtering before the lidar detector is done to reduce solar background 

noise, rejecting sunlight outside the laser tuning range. Linear-mode, photon-sensitive detection will be 

done using a 2x64 pixel version of a 2x8 state-of-the-art, HgCdTe detector array developed by DRS, 
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Inc. in collaboration with NASA GSFC (Sun et al. 2019). Although the laser operates at rates up to 

120KHz in our concept, each element of the array will only detect pulses at a maximum rate of 8KHz, 

thereby preventing cloud folding and enabling profiling of the entire atmospheric column. Using 

multiple digitizers, the detector’s analog output will be recorded at high speed for surface altimetry 

waveforms and at lower speed for atmospheric cloud and aerosol distributions. 

Figure 1: Block diagram of CASALS subsystems, major components and scanning method. 

An accompanying, look-ahead thermal microbolometer (not shown) at 1km resolution will image a 

wide-swath to identify cloud-free areas day and night over land and ice sheets. Autonomous lidar 

targeting decisions in clear areas will be based on an on-board global land-cover map, spectral image 

analysis, prioritization of science and application objectives, and tasking uploads for critical dynamic 

events such as outlet glacier surges, active volcanoes, or ecosystem-damaging insect infestations.  

Targeting decisions and compressive sensing will be used configure the adaptive beam scanning to best 
serve the objectives for a land cover type or event.  Figure 2 depicts various configuration options. 

Figure 2: Example configurations of CASALS wavelength-tuned, cross-track beam locations, 

depicting 3D swath mapping, ICESat-2 and GEDI profile emulations, and a hybrid configuration. 

Rapidly tuning the wavelength points 10m diameter (1/e2) footprints to any location separated by 6m 
across a 7km wide field-of-view (FOV).  The DRS 2x64 pixel detector array will not be able to image 

the entire swath. Our concept is to image a central swath, up to 1,320m wide onto one array, achieving 

3-D lidar swath mapping from space for the first time. A second array would be fiber coupled to specific 

locations across the receiver FOV, enabling continuity with the profile patterns of ICESat-2, with as 

many as 15 pairs of profiles separated by 90, and GEDI, with as many as 10 profiles separated by 600m. 
ICESat-2 emulation would use single footprint profiles to match that mission’s ~10m footprints, whereas 

GEDI-emulation would use 3 profiles with 6m cross-track spacing to match that mission’s 24m diameter 

footprints (Figure 2). Along-track footprint spacing can be rapidly changed, from overlapping to widely 

spaced by changing pulse-rate, to optimize footprint density depending on target height complexity.  

The expected lidar performance has been predicted using a comprehensive modelling capability that 

extends models done for previous missions at Goddard (Sun et al 2013). The model includes more 

complete treatments of ranging error due to laser speckle, detector timing jitter, finite digitizer sampling 

and solar background noise. It also estimates the relative random error (RRE) of the surface reflectance 

measurement. Baseline modelling is for a laser transmitting 30 wavelengths at a total rate of 53KHz 

with 11W average optical power and a 0.4m receiver telescope, using six design cases developed for the 
ICESat-2 mission (1a: ice sheet interior, 4: outlet glacier, 7a: tropical flat with moderate and very dense 
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canopy covers, 9b: boreal hilly with sparse and dense canopy covers). Key performance factors are the 

number of detected photons and the RMS ranging error for single laser pulses and for 24 overlapping 

pulses, as well as the solar noise photon rate.  The 24 pulses define either a 12m x 72m profile segment 

emulating the ICESat-2 data product or a 24m x 24m area emulating a GEDI footprint.  For cases 1a 

and 4 profile segments, the predicted ranging errors are similar to those predicted pre-launch by the 
ICESat-2 project for that mission’s photon-counting strong beam (0.01 and 0.13m, respectively). The 

very low noise DRS detector array, low solar background and the 500 to 600 predicted signal photons 

for GEDI-emulation vegetation waveforms (cases 7a and 7b), yields SNR levels typical of those 

acquired by high-pulse energy, full-waveform, large-footprint lidars of the type used by GEDI (Sun et 

al 2013).  For ground topography in the vegetation design cases, the predicted single-footprint RMS 

ranging errors fall between the 0.5m threshold and 0.1m aspirational vertical accuracy goals identified 
in a study of the Decadal Survey STV Observable conducted for NASA (STV Study Team 2021), other 

than the very challenging 7a case with 99% canopy closure. 

2.2 Imaging Spectrometer 

Several design factors are being evaluated for the spectrometer.  Those include swath width, wavelength 
range, band width, band sampling (continuous hyperspectral or discrete multispectral), optical design 

(traditional or free-form) and configuration with the lidar (sharing a telescope, separate telescopes on 

one satellite or separate satellites flying close in time on the same orbit path).  The baseline is a 

traditional optical design developed for a GSFC forest-ecosystem SmallSat mission concept with a 30km 

swath and 21 narrow VNIR and SWIR bands optimized for vegetation function indices and atmospheric 
correction.  Several additional bands would be added for characterization of snow and ice properties, 

including grain size, contaminant levels and water concentration.  A more advanced spectrometer in 

development at GSFC is also being considered, with a 90km swath and full VNIR and SWIR spectrum, 

using free-form optics to dramatically reduce size and weight compared to traditional spectrometers. 

3. Development Status

The CASALS lidar technologies are being developed and demonstrated in two steps. We are 
demonstrating the transmitter and receiver functions at 1.5 micron using high-maturity, in-hand 

components, and will range horizontally to calibration and natural targets over distances of about 1km. 

The electronics will use commercial National Instruments PIXe cards. Demonstration of this prototype 

is expected in late 2021, done in combination with commercial VNIR hyperspectral and SWIR 

multispectral cameras. Meanwhile, with industry and university partners, we are migrating the laser 

transmitter components to 1 micron, which is necessary to achieve the efficiencies needed for spaceflight 
use. That lidar and spectrometry system will be capable of operating at high altitudes, up to 20km. We 

are also migrating the data system to an FPGA processor which emulates the GSFC SpaceCube 

spaceflight processor architecture.  Demonstration of this prototype is expected in late 2022. 
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1. Introduction
The USDA Forest Service Forest Inventory and Analysis (FIA) program is mandated by US 

Congress to implement a forest inventory and monitoring system in the boreal forests of interior Alaska, 
and extending the FIA inventory into this region has been identified as a strategic priority for the national 
program. Given the extreme logistical challenges and high costs associated with implementing a field 
inventory in this remote region – where there is virtually no transportation infrastructure and almost 
every plot requires a helicopter to access – there is a strong interest in leveraging state-of-the-art remote 
sensing technology to support the FIA inventory in interior Alaska. For this reason, FIA has partnered 
with NASA-Goddard to implement an innovative, multi-level sampling design in this region, where a 
sparse grid of field plots is supplemented with high-resolution airborne remote sensing data collected 
with the multi-sensor G-LiHT (Goddard Lidar-Hyperspectral-Thermal) system. Initial results from the 
first inventory unit (Tanana Valley) indicate that use of model-assisted estimation in a 2-stage design 
can increase the precision of estimates for key inventory attributes (biomass, carbon).   

2. Data

2.1 Forest inventory data 
The FIA program established 690 field inventory plots on forested conditions in the Tanana inventory 
unit during the period 2014-2018. Field plots were established on a regular hexagonal grid, with a 
spacing between plots of approximately 11 km, resulting in a field sampling intensity of 1 plot per 12000 
ha. The standard FIA plot design was used, where each plot consists of a cluster of four 1/60th ha fixed- 
A large number of forest attributes were measured at each plot, including measurements of tree size, 
species and condition (live/dead), downed woody materials, lichens/moss, and soil properties (bulk 
density, carbon, etc.) (Cahoon et al., in prep), as well as condition-level attributes such as forest type, 
stand size, etc. In addition, high-precision GNSS receivers were used to obtain high-quality spatial 
coordinates for each FIA subplot (Andersen et al., in prep). Total aboveground biomass for individual 
trees (live and dead) was calculated using published biomass equations (Cahoon et al., in prep) and total 
biomass, by forest type, was calculated for each plot.  
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2.1 G-LiHT airborne remote sensing data 
High-resolution airborne remote sensing data was collected with the Goddard Lidar-Hyperspectral-
Thermal (G-LiHT) system in a strip sampling mode over the entire Tanana unit in 2014 and 2018 (fig. 
1). This multi-sensor instrument provides 1) detailed forest structure and terrain morphology using lidar 
scanning, 2) forest composition and health measurements using imaging spectrometry, and 3) surface 
temperature measurements using thermal scanning (Cook et al., 2013). G-LiHT data were acquired in 
nominal 350 meter side swaths along flight lines (spaced approx. 9,200 meters apart, oriented in a NE-
SW direction) that were planned to cover every potentially-forested FIA field plot. In the end, G-liHT 
measurements were acquired over 906 out of 1,091 total FIA plots in the Tanana Unit (most of the plots 
missed by G-LiHT were in clearly unvegetated rock/ice areas of the Alaska Mountain Range, etc.).  

3. Methods

3.1 Post-stratified, 2-stage model-assisted estimation framework 
The standard estimation approach in the FIA program uses post-stratification (Bechtold and 

Patterson, 2005), where the stratification is usually based on a combination of spatial layers including 
satellite-derived land cover classification (e.g. National Land Cover Dataset (NLCD), Dewitz, 2019), 
and other environmental gradients such as precipitation, elevation, etc. In order to incorporate the 
additional information provided by the G-LiHT strip sample in interior Alaska, we utilize a post-
stratified ratio estimator under a two-stage design, where the FIA plots and G-LiHT acquisition can be 
seen as a two-stage (cluster) sampling design, with the G-LiHT swaths (strips) treated as clusters (1st 
stage) and the FIA plots represent a subsample within the clusters (2nd stage). The efficiency of the 
estimation from this two-stage design can be further improved through post-stratification and by 
accounting for the length of the strips (via ratio estimation). The resulting estimator is a post-stratified, 
ratio estimator for model-assisted estimation in a two-stage design (Andersen et al., 2011; Ringvall et 
al., 2016; Strunk et al., 2014). Following Ringvall et al. (2016), the response variable is a forest inventory 
attribute (possibly for a specific domain, such as forest type) summarized at the FIA plot-level, and the 
predictor variables are G-liHT derived metrics extracted from the footprint of the FIA plot (average 
lidar-derived canopy height, hyperspectral-based forest type classification), and a linear regression 
model is developed relating the inventory attribute to lidar metrics.  

FIA plots are distributed about 9 km apart along each G-LiHT strip (1,091 total FIA plots), and 
remote sensing (RS) plots (with the same spatial configuration and size as a FIA plot) were distributed 
at 200 meter intervals along the center of each G-LiHT strip (fig 3; 73,509 total RS plots). At each of 
these RS plots, the regression model is used to predict the inventory parameter. In addition, if the 
population is post-stratified, where the number of remote sensing plots  within each stratum is assumed 
to be known without error, the model-assisted regression estimate for the specified inventory attribute 
in a given strip and stratum can be calculated. In cases where a RS plot is missing (mountainous areas, 
low clouds, etc.), the value for the RS plot measurement (lidar and/or forest type classification) was 
imputed as the mean lidar height or most commonly occurring forest type class within the stratum. A 
ratio-to-size estimator at the stratum level and the post-stratified ratio estimator can be calculated. The 
variance estimator of the post-stratified ratio estimator takes into account 1) the variance of the model-
assisted estimator within strips, 2) variance between strips, and 3) the dependency between stratum-
level estimates within strips.  A variance estimator can be applied in cases where only a small portion 
of the strips may cover individual strata (Ringvall et al., 2016). However, with very small strip- and 
stratum-level plot sample sizes the variance estimator is likely highly variable or even impossible to 
calculate. Therefore the variance estimator is modified to replace stratum- and strip-level residual 
variance with the stratum-level residual variance calculated across all strips, which we assume will be 
more stable and, if anything, will be a conservative estimate because residuals within strips are likely to 
be spatially-autocorrelated). It should be noted that this variance estimator assumes that the G-LiHT 
strips, RS, and FIA plot subsamples are collected as a simple random sample in both stages. In reality, 
both the FIA data (regular hexagonal grid) and the G-LiHT strips (evenly-spaced strip sample) represent 
a systematic sample, not a simple random sample. This likely leads to an overestimation of variance, 
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although it should be noted that small samples at the strip level can also lead to unreliable variance 
estimators (Ringvall et al., 2016). Further research on optimal field sampling intensity, stratification, 
and use of hyperspectral-based forest type classification within this 2-stage design and model-assisted 
inferential framework is needed and ongoing.  

Figure 1: Alaska, USA (right), Tanana inventory unit (center) with FIA plots (green dots), G-LiHT 
flight lines (black) and post-strata (various colors). Left inset image shows G-liHT swath covering RS 
plots and FIA plot (dark outline), colored by lidar canopy height.  

4. Results
A comparison of the tabular estimates for aboveground tree biomass, by forest type, provided by the 
standard post-stratified and post-stratified ratio estimator is shown in Table 1. These results indicate that 
incorporating the G-LiHT lidar height measurements in the estimator through a ratio estimator can 
significantly improve the precision of the inventory estimates. The standard errors (SE) of the post-
stratified ratio estimators are generally lower than the post-stratified estimator, with the most significant 
reduction in the more aggregated estimators (i.e. total biomass, all softwood, all hardwood) and less 
improvement in the precision of biomass estimates for specific domains (i.e. forest types).  

Table 1 - Comparison of standard FIA post-stratified and post-stratified ratio estimates under a 
two-stage design of aboveground biomass by forest type, Tanana Unit, Alaska, 2018  

Forest type 
Post-stratified 

Post-stratified 
Ratio 

Total SE Total SE 
Softwoods thousand tons 

White Spruce 71,113 9,151 68,807 7,767 
Black Spruce 101,820 6,368 99,948 5,761 
Tamarack 527 309 522 399 
Total Softwoods 173,460 9,811 169,277 7,654 

Hardwoods 
Paper Birch 74,553 8,370 70,140 5,667 
Aspen 22,114 4,631 20,375 4,711 
Balsam Poplar 5,118 2,323 4,850 1,503 
Total Hardwoods 101,786 9,244 95,390 6,769 

Nonstocked 
< 10% live trees 25 16 25 360 
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Total 275,271 12,008 264,667 7,407 

5. Discussion and conclusions
The results of this study indicate that incorporating airborne lidar sampling in the FIA sampling design 
in interior Alaska – through model-assisted estimation – can improve the precision of key inventory 
estimates, such as aboveground biomass and carbon. The gains are precision are most pronounced for 
aggregate estimates, such as total biomass or total biomass for hardwoods/softwoods. The gains in 
precision for more specific domains (forest type) are much less pronounced, indicating that more 
informative predictor variables, or perhaps more sophisticated modelling approach, should be used to 
leverage the information provided by G-LiHT measurements to improve domain-level estimation. 
Going forward,  FIA and NASA are proceeding with data collection in other regions of interior Alaska 
and it is expected that FIA will continue to leverage the detailed information provided by this airborne 
data to increase the reliability and value of the scientific products from this inventory and monitoring 
program.  
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1. Introduction

The investigators sought to explore and examine the impact of varied remote sensing inputs for species 
identification using machine learning.  The foundation of the research was a multi-class support vector 
machine (SVM) learning adaptation originally developed in 2012.  The latter used LiDAR as the 
exclusive input for species identification and leveraged spatial density, trunk & branch geometry, and 
the intensity attribute.  In the new effort, the team attempted to adapt and incorporate spectral as well as 
land form information to the SVM descriptor list.  251 new descriptors were created and ranked 
alongside the existing 847 descriptors.  The research team sought to determine the optimal combination 
of descriptors for species identification accuracy.  The result was an increase in stem accuracy in a cross-
fold validation test of between 8% and 13% for a mix of 13 conifer and deciduous species. 

1.1 Background 

The Tree Species Identifier (TSI) system uses a bottom-up approach where metrics are measured and 
predicted first at the individual tree level. The individual tree process captures height, canopy 
characteristics, and species from the LiDAR.  From those inputs, the system can calculate estimates of 
the diameter at breast height (DBH) as well as volume. Once the analysis has been completed at the 
single tree level, the outputs can be rolled up to larger reporting units.  The results individual tree 
inventory can also be used for statistical adjustments across the land base using and area-based enhanced 
forest inventory approach. 
First developed in 2012, the process has successfully analysed over 2 billion trees and produced 
operational inventories derived from hundreds of terabytes of LiDAR across millions of forested 
hectares.  

1.2 Tree Species Identifier Process 

First the LAS is reviewed, cleaned, and prepared for analysis.  Analysts review an array of factors 
including the consistency of point density, the intensity calibration, and any gaps in the coverage.  Then 
TSI segments the individual trees from the point cloud and produces an area shapefile for each tree.  The 
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system calculates a number of attributes including height, slope, crown area, aspect, local density, and 
live crown percentage.  Each tree also receives a unique ID at this point in the process.   

The segmentation parameters used are selected based on a variety of stand characteristics using a blend 
of classic watershed techniques and point finding routines.  Individual tree inventories from LIDAR 
tend to underestimate the number of stems as the software can only include what the sensor sees.  Missed 
stems are typically smaller ones hiding under larger ones or those in tight clumps with a common height. 
Conversely, leaning trees can sometimes be segmented into multiple trees.  As LiDAR point densities 
increase, say above 16-20 pts/m2, the segmentation algorithm is able to adapt resulting in higher overall 
tree segmentation accuracy as well as understory segmentation. 

Figure 1: Tree Species Identifier Process 

The next step in the species identification process is the collection of ground truth trees to be used in the 
TSI species prediction model.  Trees are collected based on species, height, and location within the 
project area of interest by field crews and/or photo-interpretation.  The goal is to acquire 100 to 300 
samples of each species in the project area.  The required number of samples per species varies project 
to project based on the complexity of the species mix and the size of the area under consideration.    
Using methods refined over 9 years, a trained 2-person field crew can collect 800 trees over 5 days.  

Once the trees are captured, analysts attempt to match up the field or photo-interpretation collects with 
the correct tree in the LiDAR point cloud.  The quality control success rates vary depending primarily 
on canopy density and GPS signal strength.  Next the tree samples that have passed quality control are 
translated into machine-learning numeric “descriptors” in TSI.  The software translates the information 
in each tree’s point cloud into numeric descriptors based on geometry, density, and reflectivity.  This 
step is at the heart of the TSI capability and the focus of the research.  The model validation proceeds 
with the derived descriptors and the resulting model is used to perform a discrete analysis of each 
segmented tree.  

Diameter at breast height (DBH) is derived from the tree height and species using established biometric 
models.  The DBH is then used to calculate gross and merchantable volume for each tree.  

2.0 Descriptor Research 

The research team collected remote sensing inputs over forest areas in the Canadian province of British 
Columbia.  The imagery data included 30 cm resolution 4-band RGB-NIR ortho-photo as well as 10 m 
resolution satellite Sentinel-2 multispectral.  Terrain data included 2m resolution wetness and sunlight 
maps derived from the LiDAR.  The Provincial Forestry Ministry also provides ecosite information and 
predictive ecosystem mapping, land base metrics that provide broad soil and moisture information, both 
of which were incorporated.  The LiDAR was flown with a 10-12 pts/m2 point density. 

6 descriptor test combinations were tested: 
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1. Baseline: 10-12 ppm LiDAR only
2. Baseline plus LiDAR-derived intensity images from two channels
3. Baseline plus 4-band RGB-NIR
4. Baseline plus terrain characteristics
5. Baseline plus 4-band RGB-NIR & terrain characteristics
6. Baseline plus 4-band RGB-NIR & terrain characteristics & LiDAR-derived intensity images

The descriptors were run against a ground truth set of 4,395 trees including 13 species. 

FD Douglas Fir CW Western Red Cedar 

LW Western Larch AC Black Cottonwood 

BL Balsam Fir AT Trembling Aspen 

PY Ponderosa Pine EP Paper Birch 

PL Lodgepole Pine DP Lodgepole Pine (Dead) 

SX Spruce (hybrid) SN Snag 

RP Lodgepole Pine (Red - Dying) 

Table 1: Species included in the test 

Figure 2: Species Results by descriptor set 

The general trend evidenced by the trials was that as the descriptor sets added additional remote sensing 
and terrain input information, species accuracy improved.  This trend held for conifer and deciduous 
classes broadly as well as dead or stressed trees.  The largest improvement was seen for dying lodgepole 
pine (red) while the highest accuracies were recorded for the deciduous species.   
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Table 2: Baseline Species Accuracy Confusion Matrix 

Table 3: Final Species Accuracy Confusion matrix 

The most significant improvement was in dying lodgepole pine (SR).  A working hypothesis was that 
SR would improve as a result of the addition of spectral descriptors.  While true, SR accuracy also 
improved with the addition of terrain characteristics in the absence of spectral data.  Douglas fir and 
ponderosa pine confusion was reduced from 89 direct errors to 73 direct errors.  The latter improvement 
fell short of expectations as the two species have distinct spectral signatures.  Those distinct signatures 
enable rigorous accuracies in photo-interpretation and so more improvement was expected.  One 
possible explanation is that the geometry and density descriptors derived from the point cloud may have 
some embedded biases that need to be addressed in future research.  Another possible explanation is the 
introduction of noise by the imagery due to parallax offsets that degraded the predictive power of the 
descriptor. 
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1. Introduction

Rapid changes in atmospheric trace gases, the resulting changes to climate, and numerous other 

anthropogenic effects are changing the function of forests globally. These anthropogenic changes to 

forest function affect gross primary productivity (GPP) and thus the potentially mitigative effect of forest 

growth on the rate of atmospheric carbon dioxide increase. GPP can be modelled as the product of light 

use efficiency (LUE), photosynthetically active radiation (PAR), and the fraction of PAR absorbed by 

foliage (fPAR). While robust satellite-derived PAR and fPAR estimates have been routine for decades, 

LUE has been more difficult to quantify over space and time. This is in part because folial LUE is 

dependent on the amount of incident light, typically being lower for sunlit foliage receiving light 

exceeding that which can be used in photosynthesis. Very high spatial resolution optical images can be 

used to determine whether a pixel is receiving direct (sunlit) or diffuse (shaded) light, or a mixture of 

both. However, given that canopy structure mediates the light environment, lidar data, the gold standard 

for quantifying canopy structure, is needed to enable articulation of the within-canopy light 

environment.  

The photochemical reflectance index (PRI), derived using image spectroscopy, has been used 

successfully to estimate LUE (Zhou et al., 2017). This study incorporates high-resolution airborne 

imaging spectroscopy and lidar data to investigate the vertical distribution of light and PRI. This research 

enhances our understanding of forest light utilization, which we expect will lead to improved model 

estimation of GPP.  

2. Study Area

The study area in the coastal plain of North Carolina, USA is a 420 m x 420 m plot centred on the 

Ameriflux US-NC2 flux tower in a loblolly pine stand planted in 1993 with NNW-SSE rows. (Figure 

1).  During establishment of the stand, drainage channels were constructed every 5th row and broad-

leaf, deciduous vegetation was planted to stabilize the banks.  In 2009, every fifth pine row was removed, 

and regrowth dominated by broad-leaf vegetation has subsequently filled those rows.  

Figure 1: Study area 420 m x 420 m plot centered on US-NC2 overlain on G-LiHT’s 2 m lidar canopy 

height model. North is to the top and blue to red correspond to increasing canopy height. 
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3. Airborne Remote Sensing Data Fusion

Goddard Lidar, Hyperspectral and Thermal (G-LiHT) (Cook et al., 2013) airborne data were collected 

in October 2013 at Parker Tract in eastern North Carolina during the FLEX-US Airborne Campaign 

(Middleton et al., 2017). Ten flights spanned the time range from 10:00 am to 4:30 pm on October 26th 

and 27th.  Deciduous broad-leaf foliage was present on these dates.  G-LiHT’s products, gridded at 2 m 

resolution, include digital terrain models (DTM) and canopy height models (CHM) derived from lidar 

point clouds. We added those models to produce a canopy surface model (CSM). G-LiHT’s 114 

hyperspectral bands, with 5 nm band widths, have been calibrated to a surface reflectance product and 

co-registered with the height models. 

Figure 2: Time series of PRI stand means for the three light environment classes for flights oriented 

North-South and in the solar principal plane, and 2nd order polynomial fits excluding the last flight. 

For each flight, we computed PRI using the normalized difference of two narrow-band, green 

wavelengths at 531 nm and 570 nm (Gamon, 1997). Before PRI was calculated, a Normalized Difference 

Vegetation Index (NDVI) threshold of 0.5 and below was implemented to eliminate non-vegetated 

pixels that are not photosynthetically active.  Sunlit, mixed illumination and shadowed parts of the 

canopy were classified based on the reflectance distributions of 2 m pixel panchromatic images produced 

by averaging G-LiHT wavelength bands from 525 nm to 600 nm. The panchromatic band pixels were 

classified based on the mean and standard deviation of the reflectance distribution (sunlit > mean + 1 

sigma, mixed between ±1 sigma, and shadow < mean – 1 sigma). Stand mean PRI was computed for 

each flight and illumination class (Figure 2). 

Figure 3: Height distributions of panchromatic reflectance and PRI for 2m pixels, with colors 

indicating the density of plotted points (increasing from black to red). 

To assess the diurnal vertical distribution of reflectance and PRI for the different illumination 

classes, the CSM height of each hyperspectral pixel was determined for three times of day (10:00, 13:30, 

and 15:30) for North-South flights on the 26th (Figure 3). The 13:30 CSM was used for each distribution, 

under the assumption that the structure was invariant through the day. 
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4. Results and Discussion

Mean PRI is negative for the sunlit class and positive for the shadow class, indicative of low and high 

LUE, respectively (Figure 2). The mixed illumination class falls between these. PRI is higher at the 

beginning and end of the day and decreases during the midday, likely due to the availability of light 

exceeding the capacity of photosynthetic activity when the solar zenith angle is small. The latest flight 

observed the plot close to the “hot-spot” solar backscatter orientation which can cause anomalous PRI 

results (Cheng et al., 2012) and is potentially the cause of the departure from the diurnal trend. 

The height distributions (Figure 3) show a clear delineation between the 20-year-old upper canopy, 

the lower regrowth understory, and the flat ground. The panchromatic reflectance depicts the depth to 

which light is penetrating the canopy.  For the 10:00 and 15:30 flights, the upper canopy exhibits 

decreasing reflectance as height decreases, indicative of less direct light illumination of the foliage and 

a greater amount of shadow (assuming the reflectivity of the foliage does not change with height). The 

understory is primarily in shadow, indicated by its mostly low reflectance and the associated 

predominance of shadowed pixels in the PRI distributions as compared to sunlit.  At 13:30, the upper 

canopy reflectance is more uniform, and the understory reflectance includes higher values and is more 

equally distributed between illumination classes. Presumably, this is because the higher mid-day direct 

sunlight oriented more in-line with the rows creates fewer shadows and reaches deeper into the canopy. 

For all illumination classes, the reduction in mid-day PRI, as compared to the earlier and later flights, 

occurs at all heights (Figure 3).   At 10:00 and 15:30 the PRI of the upper canopy and understory are 

equivalent, but at 13:30 the understory exhibits lower PRI than the upper canopy for the sunlit and mixed 

illumination classes.  This suggests that the reduced mid-day efficiency of the broadleaf foliage 

dominating the understory is more sensitive to excessive illumination than the loblolly pine.  The return 

of the PRI values in the afternoon to the morning levels implies that stresses lowering mid-day 

photosynthetic efficiency, due to excessive illumination and possibly increased temperature or reduced 

water availability, do not continue into the later afternoon. 

This novel fusion of canopy reflectance, the PRI hyperspectral functional index, and a lidar 

representation of structure introduces a new method to gain a better understanding of the light 

environment of forests and the diurnal variation in LUE.  It is a step forward in modelling structure-

mediated forest productivity and carbon sequestration. 
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1. Introduction
The Global Ecosystem Dynamics Investigation (GEDI) was proposed and selected as part of 
NASAs Earth System Science Pathfinder (ESSP) Earth Ventures 2 (EV-2) competition. The 
GEDI mission represents the culmination of almost 30 years of effort on the part of the 
terrestrial ecology community to provide critical data on the structure of the Earth’s forests 
towards key science questions regarding the aboveground carbon balance of the Earth’s land 
surface, the role of the land surface with regards to atmospheric CO2 concentrations, and the 
impact of ecosystem structure on habitat quality and biodiversity. 

The GEDI instrument was successfully launched in December of 2018 and subsequently 
installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on board the 
International Space Station (ISS). GEDI became fully operational in April 2019, when it began 
its two-year prime science mission and as of June 2021 has publicly released more than 18 
months of on-orbit data over the Earth’s tropical and temperate forests. The key driving factor 
that has determined mission operations during its prime mission is the GEDI Level 1 science 
requirements. All measurement requirements trace back towards achieving these. In terms of 
aboveground biomass density (AGBD), the GEDI mission is designed to acquire lidar canopy 
vertical profile data required to estimate AGBD for the Earth’s global tropical and temperate 
forests at ≤ 1 km resolution. At the end of a two-year mission, AGBD of at least 80% of the 1 
km cells is expected be estimated with a precision (standard error of the mean) of the larger of 
±20 Mg / ha or 20% of the estimate, whichever is greater. 

Here we present the status of GEDI’s progress towards global mapping of AGBD and will 
discuss the major successes and challenges in achieving the measurement performance required 
for input to this mapping, as well as the outlook for an extended mission through to 2023. 

2. Key results
In collaboration with the forest remote sensing and terrestrial ecology communities, GEDI 

has developed the Forest Structure and Biomass Database (FSBD), which is comprised of 
31,414 simulated waveforms that are collocated with footprint level estimates of aboveground 
biomass. These have provided the means to train models representative of the entire GEDI 
observation domain (Hancock et al., 2019; Dubayah et al., 2020). Selected Level 4A models 
used to predict footprint AGBD from Level 2A canopy height metrics have % RMSE that range 
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from 28.66% (evergreen broadleaf trees in Australia) to 66.89% (evergreen broadleaf trees in 
Africa), with a mean %RMSE of 51.34% across all selected models. 

Between April 2019 and September 2020, over 5.7 billion science quality land surface shots 
were acquired, which has quantified spatial variation in canopy height, cover and vertical 
profile metrics at unprecedented spatial resolution. Evaluation of Level 2A estimates of canopy 
height collocated with the GEDI FSBD over evergreen broadleaf forests has shown an overall 
RMSE of 2.09 m to date, which is approaching the mission design precision of 2 m. Similarly, 
evaluation of on-orbit Level 2B canopy cover estimates using NASA Land, Vegetation and Ice 
Sensor (LVIS) data has shown an overall RMSE of 13%, which is within the mission design 
accuracy of minimum 10-20% (Bergen et al., 2009). 

GEDI uses hybrid model-based statistical estimators to infer the mean AGBD and its 
uncertainty within each grid cell from the Level 4A models and predictions of AGBD (Patterson 
et al. 2019). GEDI ground tracks are treated as cluster samples under the hybrid inference 
paradigm, and at least two clusters are required to create a valid estimate. The output of this 
process is the Level 4B product, for which preliminary 1 km maps of AGBD and uncertainty 
estimated from quality waveforms acquired under leaf-on conditions between April 2019 and 
September 2020 are shown in Figure 1. Estimates are aggregated over larger areas for 
comparison with independent estimates from national forest inventory data (e.g., Menlov & 
Healey, 2020), accounting for dependencies between grid cells due to the same Level 4A 
models being applied and the same GEDI tracks intersecting multiple grid cells. 

Figure 1. Preliminary Level 4B maps of 1 km estimates of the mean aboveground biomass 
density (top), standard error of the mean (middle), and the number of clusters (tracks) with 
quality waveforms acquired under leaf-on conditions used for estimation (bottom). These maps 
are based on 18 months of on-orbit data acquired between April 2019 and September 2020. 
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3. Status and outlook
GEDI has met or exceeded expectations with regards to the quality and quantity of its 
observations, derived canopy height, cover and vertical profile metrics, and how these are 
applied to advance GEDI science questions. GEDI is the first mission to design and implement 
a formal inference framework for the estimation of AGBD, enabling comparison with 
independent estimation of AGBD at multiple scales and unprecedented insights into the global 
quantity and distribution of carbon stocks. GEDI’s prime mission was two-years, ending on-
orbit acquisitions on 30 March 2021. New challenges introduced by unplanned change in the 
ISS altitude has recently limited GEDI’s ability to uniformly sample the Earth’s surface. 
Therefore, a longer time on orbit is now required to fully meet mission science requirements, 
with estimates ranging from 2-4 years depending on whether the ISS changes its orbital altitude. 
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1. Introduction
Traits associated with structural (morphological) diversity are an important subset of plant 

functional traits, the morphological or physiological characteristics that are functionally relevant for 
growth, reproduction and survival (Ma et al. 2019) and are at the crossroads between responses to the 
environment and ecosystem properties (Díaz et al. 2013). Functional traits influence forest ecosystem 
carbon dynamics. Metrics that quantify canopy structural diversity are much more strongly associated 
with forest productivity than traditional biodiversity measures like species richness and phylogenetic 
diversity (Aponte et al. 2020). 

Theories that have emerged to explain the influence of functional traits on productivity include niche 
complementarity (Tilman et al. 1997) and the mass ratio hypothesis (Grime 1998). Niche 
complementarity is the idea that co-existing species within the forest will use different resources, and 
that high species diversity will increase the variability of functional traits and increase ecosystem 
function and productivity. The mass ratio hypothesis (Grime1998) states that "immediate controls are 
in proportion to inputs to primary production" and "are determined to an overwhelming extent by the 
traits and functional diversity of the dominant plants and are relatively insensitive to the richness of 
subordinates and transients." Mass ratio has been shown to be more related to forest productivity than 
niche complementarity in numerous within- and across-biome forest ecosystem studies (e.g., Watt et al. 
2020), particularly outside the humid tropics (Madrigal-González et al. 2020). 

Both the mean and dispersion of functional traits at a given scale are typically quantified. The mean 
is most often weighted by the abundance of constituent species or other taxonomic groupings, the 
community weighted mean. Descriptors of dispersion of functional traits represent the functional 
diversity (Wang and Gamon, 2019) within a community, landscape, or coarser spatial scales (Ma et al. 
2019). Forest productivity has been shown to be associated with community-weighted means (Ammer 
2019). Being able to quantify status and changes in functional diversity is increasingly important as both 
pressures on‚ and the needs for‚ forests continue to increase. Plant functional traits vary both across and 
within species (Schneider et al. 2017) and can be mapped using remote sensing (Schneider et al. 2020). 

Both physiological and morphological traits are needed for full characterization of functional 
diversity using remote sensing (Schneider et al. 2017, Ma et al. 2019), necessitating the use of sensors 
enabling quantification of canopy structure (Aponte et al. 2020) as well as function. Further, high-spatial 
resolution (or other comparable) data enabling quantification of canopy structure is needed to address 
multiple scattering and contrasting illumination and to control for varying amounts of vegetation 
percentage cover in fine spectral resolution measurements (Wang and Gamon 2019). Considering the 
natural circadian dynamics in photosynthetic function, observation of daily rhythms must be accelerated. 

Improved articulation of carbon exchange between forest ecosystems and the atmosphere thus 
requires diurnal and seasonal observations combining the mean and dispersion of functional traits, 
morphological and physiological characteristics relevant for growth. 

2. Objective
Our overall objective is to determine how gross primary productivity is influenced by variations in 
remotely quantified functional traits and their diversity across space and time. 
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3. Methods

3.1 Study Sites 
The study sites are two AmeriFlux tower sites in Virginia, USA, Sweet Briar Land-Atmosphere 
Research Station (AmeriFlux site US-SB1) and National Ecological Observatory Network (NEON) 
Mountain Lake Biological Station (AmeriFlux Site US-xML). Sweet Briar is an evergreen needleaf 
forest (managed loblolly pine), and Mountain Lake a deciduous broadleaf forest, the two principal forest 
types in the southeastern United States.  

3.2 Eddy Covariance Data and Site Characterization 
Since the two sites are in the AmeriFlux network, standardized sets of measurements are collected to 
describe ecological processes, including continuous (every 30 minutes) eddy covariance measurements 
of canopy photosynthetic uptake. Photosynthetic function responds to environmental stresses, such as 
low or high temperatures or water availability, along with seasonal growth patterns. In addition to CO2 
fluxes, flux towers collect meteorological measurements including air temperature, humidity, incident 
photosynthetically active radiation (PAR), precipitation, and net radiation that provide information on 
environmental conditions. 

3.3 Airborne Data 
Data from both small unmanned aerial systems (sUAS) and manned aircraft (from the hyperspectral and 
lidar NEON Airborne Observation Platform acquisition in 2021 at the Mountain Lake site) are being 
used. Optical sUAS data are collected using Cubert FireflEYE snapshot hyperspectral imaging system 
(HIS) camera mounted on a SkyFish M6 with a total wavelength range of 450 to 998 nm with spectral 
band widths (FWHM) ranging from 4 nm at 450 nm to 29 nm at 988 nm. A second focal plane provides 
high resolution panchromatic observations. The integrated pan camera has a ground resolution of 0.03 
m and shares the same front-end optics with the HIS camera. These data are used to produce canopy 
surface reflectance hyperspectral cube (HIS), sunlit and shaded canopy fractions, and canopy surface 
models using structure from motion. A YellowScan lidar system mounted on a Vapor 35 helicopter is 
used to collect ultra-high-density airborne laser scanning (ALS) data over each site once per growing 
season. The NEON Level 3 Ecosystem Structure product (1 m x 1 m canopy height model) is being used 
from the 2021 NEON Airborne Observatory acquisition over the Mountain Lake site.  

COVID restrictions on field work restricted us to only one sUAS acquisition in the summer of 2020. All 
these restrictions have now been lifted in Virginia, so the full suite of acquisitions is taking place in 
2021, including two sets of diurnal measurements in both sunlit and shaded conditions for both study 
sites using the FireflEYE and one ultra-high-density ALS acquisition for each site.  

3.4 Functional Diversity Metrics 
We are using two relatively simple metrics based on the relative contributions of species at the sites: 
Community weighted means (CWM) of each functional trait (as well as standard deviations, minimums, 
and maximums) and the functional divergence index (FDi), which describes the variation in functional 
traits, proportioned by species (1):  

𝐹𝐷𝑖 = !
"
arctan	(5𝑉), 𝑉 = ∑𝑝#(ln	 𝑥#−	ln	 𝑥44444)!, 𝑝# =

$!
∑$!

(1) 

where V is the weighted variance of functional trait x, ai is the relative cover of each community type at 
the site. FDi ranges from 0-1 with no units. 

Space precludes listing each site-level trait and its corresponding citation. Physiological traits include 
indices associated with live green vegetation, vigor, the xanthophyll cycle, light use efficiency, leaf 
water, and chlorophyll content. Structural traits include LAI quantiles, canopy height and canopy height 
quantiles, and shadowed and sunlit fractions. Figure 1 shows a partial example of the metric derivation 
workflow using a limited set of functional traits derived from our 2020 sUAS data and airborne lidar.  
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3.5 Statistical analysis to explore functional diversity and productivity across sites 
The community-weighted metrics and functional divergence indices are being used to (1) compare the 
functional diversity throughout the course of a day in for a sunny and cloudy day at each site during the 
peak of the growing season, and (2) examine the effects of the functional traits on gross primary 
production.  

4. Impact
The recently released IPBES-IPCC workshop report on biodiversity and climate change (Pörtner et al. 
2021) makes it clear that limiting global warming and protecting biodiversity are necessary and mutually 
supporting goals. Developing means by which the combined structure and function of forested 
ecosystems can be monitored, from canopy to global scales, is becoming vital to human well-being. 
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Figure 1: Workflow describing the calculation of functional traits, community-weighted functional 
diversity metrics, and functional divergence indices.  
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1. Introduction

The 3D laser technology is commonly available for automatic driving system to detect collision on the 

road. The rapid 3D sensor development enables us to monitor trees along the road if the sensor can 

identify trees. To identify trees, a fast laser processing technique is required. In image processing, a 

semantic segmentation has been developed to classify rough sketch of objects (cars, buildings, and 

vegetation) on 2D landscape images. However, the vegetation has not been classified more by species 

name. The species identification by laser can play an important role for urban tree recognition. The 

mobile mapping systems only cover a portion of canopy or one side of stems. The technique to identify 

species from the limited view of a tree is needed to develop an accurate species identification system. 

Deep learning (DL) is one of the most powerful machine learning techniques automatically identify 

unique features of objects based on training samples. DL has been extensively used for classification in 

remote sensing. The native species was identified in Spanish savanna to get more than 90% accuracy 

compared to 70% accuracy of conventional object-based classification (Guirado et al., 2017). Individual 

palm trees in Malaysia were identified and segmented over densely populated stands from Quickbird 

(Digital Globe Inc.) high resolution images to reach 90% accuracy (Li et al., 2017). However, high 

accuracy needs a large number of training samples. To reduce collecting samples, the transfer learning 

has been proposed to borrow the network built from different training samples (Carranza-Rojas et al., 

2017). But it is still challenging to collect samples efficiently and the DL accuracy relies on the number 

of training data. This study proposes a way to generate 2D images of different view angles from a 3D 

tree virtually as an efficient way to provide 2D training samples for DL processing. 

2. Methodology

2.1 Study site and field data 

The study site was located at Shinjuku Gyoen National Park in downtown Tokyo, Japan. The park has 

58.3 ha area and trees has been preserved since 1591. The five tree species were selected and used for 

this study (Figure. 1), Italian stone pine (Pinus Pinea), Himalayan cedar (Cedrus deodara)，black pine 

(Pinus thunbergii)，London planetree (Platanus x acerifolia)，cherry blossom (Prunus spp.)。The 10 

trees were sampled from each species and the total 50 trees were scanned by terrestrial laser scanner. 

The reason to choose these species was to have unique shapes and the bigger size among trees in the 

park. We conducted fieldwork between August to November in 2020.  The terrestrial laser scanner used 

for this study was LMS511 (SICK Inc.). A tree was scanned from two vantage points to cover the front 

and the back of a tree to get an entire shape. LMS511 laser scanner has 905mm wavelength, 4.7 mrad, 

40 m max. distance, and -60°to 90°vertical angle range. The field data was tree height, diameter at 

breadth height (DBH), crown width, the lowest height of branch and stem. We only used tree height and 

DBH for the validation of the laser scanner coverage.  

2.2 Methodology 

The software named cloud compare was used to merge 3D data taken from the two scanning locations 

(the front and the back of a tree). During the process, the objects such as a fence and shrub were removed 

only to extract a tree. To create input images for DL processing, the 2D images were generated from 
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Figure 1: Tree species used for this study. 

various viewpoints of a 3D tree virtually. The 3D data was coloured by height and was viewed from 

different vertical and horizontal angles to create 2D images. For this study, we set the vertical angles for 

0°, 30°, 60°, and 90°and horizontal angles for 0°, 90°, 180°, and 270°. The total 16 images 

were generated from one tree (Figure. 2). DL processing used for this study was Visual Recognition of 

IBM Watson Studio (IBM Inc.) to identify tree species. The 70% of entire samples was used as training 

dataset and the rest 30% was used as validation dataset. The total images generated by this method were 

5 (species) x 10 (trees) x 16 (images) = 800 (images). 

Figure 2: Generating different view angle 2D images from a 3D tree for DL processing. 

3. Results and Discussion

Tree height and DBH had good relation between field and laser measurement. Tree height had 0.94 

of R2 value (p < 005) and DBH measurement had 0.7 of R2 value (p < 005). The sensor used for this 

study has enough capability to cover the upper height vertically and reach enough depth inside canopy 

horizontally. And tree hight and DBH were the most trustable parameters from field data to validate this 

sensor capability. 
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DL result showed the listed species with ratio. The highest number of the ratio was used as the 

species identified from DL. Furthermore, the training and validation data was separated by vertical angle 

to obtain each accuracy by angle (Table 1). The overall accuracy was derived by all data (Table 2) . 

From Table 1, London planetree had similar shapes within the same species samples and Italian pine 

was the most unique shape different from the other species. They were identified accurately. Cherry 

blossom, black pine, and Himalayan cedar had more irregular and diverse shapes from various looking 

angles. It was difficult to find the common feature during DL process among training dataset. Thersefore, 

the within-species variance was more than the among-species variance. Black pine and Himalayan pine 

were misclassified each other by 40%. From Table 1 and 2, overall accuracy had the lower accuracy 

than each angle accuracy. From Table 1, 60°view angle had the best accuracy to identify species 

through this method.  

To improve the accuracy for irregular shape trees, stem, leaves, and branching structure can be 

separately trained (Joly et al., 2014). Then the weighted score among separated components can be used 

to find the best identification result from DL. This 2D image generation approach helps simplify 

classifying (or labelling) objects from massive 3D data (Xie et al., 2020). The terrestrial laser has been 

used for DL in the past study for tree species identification (Lin and Herold, 2016). Our approach took 

a different way to use 2D images generated from 3D data instead of measuring tree parameters from 3D 

from their approach. Our approach is more efficient way to reduce the cost and time to prepare training 

samples and a flexible way to provide input images for DL processing.  

Table 1. Accuracy assessment separated by angle 

Table 2. Overall accuracy 
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Italian pine Himalayan cedar black pine London planetree cherry blossom

0 75% 8% 42% 100% 42%

30 92% 25% 8% 100% 0%

60 100% 42% 42% 100% 0%

90 83.30% 16.70% 33.30% 100% 8%

Italian pine Himalayan cedar black pine London planetree cherry blossom

all angles 68.80% 20.80% 12.50% 95.80% 18.80%
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1. Introduction
Lidar data have been shown to be helpful in discriminating secondary from primary forest, both 

alone and in combination with other sensors. Drake et al. (2002) used the Laser Vegetation Imaging 
Sensor (LVIS) to examine primary forests and secondary forests at 14, 22, and 31 years at La Selva 
Biological Station. Four waveform-derived metrics (lidar canopy height, height of median energy, 
height/median ratio, and ground return ratio) were evaluated. Secondary growth sites were virtually 
indistinguishable from older (22 and 31 years old) secondary forests with respect to the height/median 
and ground return ratios, but the height of median energy and height/median ratio enabled separation of 
secondary from primary forest regardless of the age of the former. Castillo et al. (2012) also used LVIS 
data to characterize secondary forests in Guanacaste, Costa Rica (a tropical dry forest site). Using only 
three return levels (heights at which the normalized cumulative return energy reached 50, 75, and 100% 
of the total energy reflected by the target) they were able to separate successional stages of secondary 
forest. A preceding study by almost the same team (Castillo-Núñez et al., 2011) found maximum canopy 
heights to be estimated reasonably accurately (RMSE = 1.3 m) by waveform lidar (using only the LVIS 
canopy elevations maximum canopy height) in the same tropical dry forest environment. Caughlin et al. 
(2016) estimated canopy cover and height associated with forest regrowth in Los Santos Province, 
Panama using a canopy height model derived from Carnegie Airborne Observatory-2 waveform data 
and the mean photosynthetic fraction derived from four Landsat Thematic Mapper images acquired near 
the same time as the lidar data. 

A study of forest transition in the Amazon requires separation of primary from secondary forest. 
With optical data this is only feasible for a short period after the initiation of regrowth unless the area 
of prior clearing is known. In either case small clearings and subsequent secondary regrowth can be 
missed. Secondary growth mapping using maps of primary forest loss is, of course, limited to the 
accuracy and minimum mapping unit of those maps. Lidar data appear able to discriminate secondary 
from primary forest for decades after regrowth began, but their suitability for land cover and land use 
change studies has heretofore been limited by their necessarily limited coverage. That has now changed 
in the area of NASA spaceborne lidars. 

2. Objective
Our overall objectives are to (1) use the Rural Environmental Registry (Cadastro Ambiental Rural - 
CAR), current MapBiomas classifications, stand maps from industrial partners, and our collaborator’s 
expertise to identify classes of land use histories of interest, with a focus on disturbed areas that appear 
have recovered to secondary forests, and (2) use NASA spaceborne lidars (GEDI02B and ATL08 
products) to develop a structurally-mediated identification and characterization of secondary forests in 
portions of the legal Amazon. 

3. Methods

3.1 Study Area 
We are initially focusing only on (1) areas of the Amazon that MapBiomas has classified as forests 

that were previously recorded as having been cleared in the CAR, and (2) known forest plantations.  
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3.2 CAR 
The CAR is an online, electronic land registry and is required for all private land properties in Brazil. 

In the CAR, the landowner (with assistance from a qualified technical professional or the government) 
reports to the state and federal governments the extent of each of these areas and where they are located 
within the property in question. As of May 2019, the number of registered properties was 5,983,649, 
which summed up to a total area of approximately 24 times the size of Germany, with 205 million 
hectares of original vegetation cover. 

3.3 MapBiomas 
The Brazilian Annual Land Use and Land Cover Mapping Project (MapBiomas) is a multi-

institutional collaboration that has generated a Landsat-derived land use and land cover time series for 
Brazil, computed in Google Earth Engine.  The products include 30 m land use and land cover maps, 
28-layer image mosaics including spectral bands and indices, derived maps and statistics organized by 
biome from 1985. 

3.4 Lidar Data 
Metrics from GEDI (02B) and ICESat-2 (ATL08) are being used. 19 variables in GEDI02B (elev_lowest 
mode, toploc, botloc, Pgap (z, theta), cover, cover_z, pai, pai_z, pavd_z, Rh100, rhog, rhov, Rg, Rv, 
local_beam_elevation, Omega, Ross-G, LC, and Sensitivity) are in the modeling framework. There are 
34 canopy variables in the ATL08 product, but we are only using relative height metrics, reducing that 
by 12. As such, the metrics used are canopy_h_metrics (25, 50, 60, 70, 75, 80, 85, 90, 95), h_canopy, 
h_mean_canopy, h_dif_canopy, h_min_canopy, h_max_canopy, canopy_openness, toc_roughness, 
h_canopy_quad, n_ca_photons, n_toc_photons, centroid_height, canopy_flag, Landsat_flag. The 91-
day repeat of ICESat-2 is substantially reducing data availability in some persistently cloudy forests. 

3.5 Finding Secondary Growth using MapBiomas and CAR data 
The CAR data by themselves do not have secondary growth as a class. We are identifying secondary 
growth as CAR-identified forest loss that is forest on the 2019 MapBiomas classification. Neither the 
CAR nor MapBiomas is completely correct (otherwise we would not need to assess secondary forest 
growth with spaceborne lidar data), but with field verification by trained interpreters at the Universidade 
Federal de Lavras we are able to create a high-quality random but balanced sample of secondary forest 
growth, along with areas that have not been disturbed and those that have been disturbed but on which 
(secondary) forests have not been re-established. 

3.5 Analysis 
Classification is being conducted using random forests. We recently pioneered an iterative modeling 
framework approach in which each random forests model is run with an iterative bootstrapping approach 
to include all available in-bag training data while also using an out-of-bag sample for model evaluation. 
The result of this process is that each individual footprint or segment has 500 labels, enabling a de facto 
estimate of uncertainty at the segment or footprint level, as the strength of the assignment can be 
determined from the distribution of assigned classes. Classification accuracy is being assessed using 
standard methods. 

4. Early Results
While the analyses are not yet complete, visualizations indicate some likelihood of success (Figure 1 
and Figure 2). In Figure 1, the upper left shows actual ground hits for the “3L” beam of ICESat-2 ground 
reference track 1268 on June 20, 2019 (left track) and on December 20, 2018 (right track) for a small 
area in the western Amazon where secondary forest patches have been identified in the CAR.  The lower 
left shows an enlarged CAR polygon with 3 highlighted ICESat-2 ATL08 samples.  Samples A and B 
are outside the CAR polygon, with no known history of disturbance.  Sample C is secondary forest.  The 
right-hand side of the figure shows cumulative relative heights extracted from ATL08 data for the three 
samples. 
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Figure 2 shows specified shots chosen from ground hits for beam 0010 of GEDI ground reference track 
3218 on July 8, 2019 in the western Amazon where secondary forest polygons from the CAR were 
supplemented with examples in surrounding undisturbed forest. Shown in this figure are extracted RX 
waveforms from the GEDI 1B product along with estimated relative heights from GEDI 2B. 
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Figure 1. Examples of interactions between ICESat-2 and the CAR. 

Figure 2. Examples of interactions between GEDI and the CAR. 
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1. Introduction

On September 15, 2018 NASA launched the ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) 

laser altimeter from Vandenburg Air Force Base. Although the primary mission goal of ICESat-2 is to 

monitor changes in the cryosphere, ICESat-2 also collects elevation data over the Earth’s land surfaces 

providing geodetic measurements to support a wide range of terrestrial applications. In the temperate 

and tropical regions, ranging measurements from ICESat-2 are used to produce estimates of terrain and 

canopy heights of the worlds’ forests. The density and vertical distribution of the returned photons from 

within the canopy can be utilized to infer information regarding forest biomass, canopy volume, habitat 

mapping, biodiversity, and parameterization of land-climate models. The ICESat-2 satellite is in a polar 

orbit (92 degrees) and is the only space based laser altimeter capable of collecting ranging measurements 

over all land surfaces. 

The instrument onboard ICESat-2 is the Advanced Topographic Laser Altimeter System (ATLAS) 

and ATLAS is sensitive to detect single photons reflected from the surface. ATLAS uses a 532 nm laser 

that fires at a rate of 10 kHz (or every 70 cm on the Earth’s surface) which facilitates high spatial 

resolution in the along-track direction. A diffractive optical element splits the ATLAS laser into 6 

beams; 3 beam pairs approximately 3 km apart. Each beam pair is comprised of a strong beam and weak 

beam. Because ATLAS is sensitive at the photon level, solar background noise can present a challenge 

in the analysis or photon counting data. ICESat-2 is a profiling lidar and a result of the beam 

configuration is high resolution in the along-track direction; however gaps exist between beams. In the 

mid-latitudes, ICESat-2 operates in vegetation mode which consists of off-nadir pointing the satellite to 

a different ground track each 91-day repeat cycle. Thus, rather than repeating an orbit every 91 days, 

ICESat-2 will point to a different location on the Earth to improve the spatial sampling. Over a period 

of two years, this series of off-pointing maneuvers has reduced the distance between tracks at the equator 

from 29 km to approximately 2 km. As the mission continues through time with more off-pointing 

maneuvers, the distance between ground tracks will continue to decrease. 

1.1 Land and Vegetation Data Product (ATL08) 

Because ATLAS is a photon counting system operating at a much lower energy that typical 

waveform or discrete return lidar systems, only a handful of photons (~1 – 2) are returned from each 

outgoing laser pulse. The actual number of returned photons is a function of the surface reflectance and 

vary over different forest types. As such, determination of the surface (both ground and top of canopy) 

requires the accumulation of photons across a larger distance. Because the detectors on ATLAS are 

sensitive at the photon level, they will also detect solar background photons both above and below the 

reflected signal photons. The algorithm utilized to create the Land and Vegetation Data Product 

(ATL08) uses a series of cluster/density filters to eliminate background noise and iterative filters to 

identify the ground and top of canopy surfaces. The ATL08 algorithm then labels each photon as ground, 

canopy, top of canopy, or noise and subsequently reports statistics for both the ground and canopy for a 

100 m step size along the orbit direction. 
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Figure 1: Transect of ICESat-2 data over Western Finland. The individual photons available on the 

ATL03 data product are color coded with the assigned label (ground, canopy, top of canopy, or noise) 

from the ATL08 algorithm. The large green dots correspond to the ATL08 canopy height value 

reported every 100 m in the along-track direction. 

2 Results of Canopy Height Estimates 

Figure 2 illustrates the ATL08 canopy height errors plotted against canopy cover for managed 

forests in Southern Finland (Neuenschwander et al. 2020). The mean absolute errors for each 

stratification scenario show that the ATL08 canopy height errors improved as canopy cover increased 

from 10–40%. The MAE plateau from 40–80% and then gradually increase above 80%. These results, 

combined with the results from the terrain residuals indicate that at low canopy cover (<40%) where the 

terrain estimates are more accurate, ICESat-2 likely does not capture enough canopy reflections to obtain 

an accurate estimate of a canopy height. Canopy heights are most accurate in the 40-80% range of 

canopy cover, with dense cover (>80%) associated with increasing errors when there are likely less 

ground photons being reflected and detected.  
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Figure 2. Canopy height residuals of ATL08 strong beam 1-sigma plotted against canopy cover a) 

mean errors stratified by snow/no-snow b) mean absolute errors stratified by snow/no-snow c) mean 

errors stratified by day/night d) mean absolute errors stratified by day/night conditions e) mean errors 

stratified by day/night for no-snow conditions and f) mean absolute errors stratified by day/night for 

no-snow conditions. (From Neuenschwander et al. 2020) 

Results from this study indicate that the strong beam consistently provided better canopy height 

estimates than the weak beam. For forested classes, canopy height retrievals during the summer months 

at night yielded the lowest errors with a mean bias of 0.56 m and a RMSE% of 13.75% which is in line 

with canopy height retrievals from lidar estimates of forest canopies (Næsset, 1997; Magnussen and 

Boudewyn 1998, Næsset and Økland 2002, Næsset 2007). Much of the success of the canopy height 

retrievals in the Neuenschwander (2020) Finland study are based on the ability to accurately determine 

the underlying terrain. In other regions where atmospheric conditions or vegetation cover limits the 

detection of the ground surface, canopy height estimates will certainly be less accurate. We found that 

ATLAS data acquired during the summer months (May–August) had the lowest canopy height errors 

(mean ~0.5 m, RMSE ~2.5 m, %RMSE ~14.5%). In snow conditions, the canopy height errors are larger 

(mean ~1.1 m, RMSE ~2.7 m, %RMSE ~16.3%), however, these larger errors are likely the result of 

seasonal differences between ICESat-2 and the airborne lidar data used as reference, as well as snow-

covered terrain biasing the relative canopy heights. 

Although ICESat-2 was not specifically designed for canopy height retrievals, it has shown to 

provide useful canopy height estimates for global observations, particularly at latitudes where GEDI 

does not collect data. 
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1. Introduction
Time series of traditional tree diameter measurements on permanent forest inventory sample plots may 
comprehend several decades, especially in NFI time series. Under such circumstances, the exact position 
on the stem, where a calliper is positioned to measure diameters (e.g. DBH) is critical. Stems cross 
sections are not perfectly circular, more often elliptic or irregular, especially regarding deciduous tree 
species. A slightly dislocated calliper can produce a significant failure which sometimes exceeds the 
annual increments between the measurements. For this reason, in a NFI-compliant TLS solution the scan 
accuracy and the scanner placement is critical for single stem related repeatability. 

A second issue is the method of diameter extraction. Most often, stem related point clouds are fitted to 
cylinders. In this case, noise influences from sensor, multi-station-adjustment, bark and wind influences 
can hardly be separated. The method of arc-detection within single scan-lines (Eric Hyyppä et al 2020) 
allows more accurate and robust diameter extraction. However, arc-detection in scan-lines requires 
roughly horizontal scan lines and therefore a tilt mount for TLS devices. 

This study investigates the influence of scan patterns, scan resolution and scan-line direction on 
repeatability of diameter results from point-clouds recorded with a Riegl VZ400i using a tilt mount. 

2. Study area and data

The test site is an old-grown beach-dominated mixed stand near Vienna.  In total, 6 circular sample plots 
with 20m radius were defined and the center points were permanently marked to follow up with future 
measurements. The trees are scanned from 12 scan positions using different patterns of scan positions, 
different scan resolutions and different direction of scan lines (vertical vs. horizontal). To estimate 
repeatability, the 12 scan positions are split into two sub-sets of 6 scan positions per sample plot per 
method (uneven and even numbers of scan positions). The results of the corresponding sub-sets are 
compared and evaluated regarding repeatability of tree diameters. 

The data (point clouds as LAZ) will be made available for open access. 

3. Methods

The scanner recordings and diameter extraction are currently in progress. 

The method of diameter extraction is chosen to best fit to the scan method. 
Three variants are investigated: 

a) Vertical scan lines in 40x40 mdeg resolution, scan-positions in radius 20m round centre point; tree
diameter by cylinder fitting
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b) Horizontal scan lines in 10x100 mdeg resolution, scan-positions in radius 20m round centre point;
tree diameter by arc detection

c) Horizontal scan lines in 5x100 mdeg resolution, scan-positions in radius 2m round centre point;
tree diameter by arc detection

We expect an enhanced diameter-related repeatability with horizontal scan lines and arc detection 
methods for diameter extraction. The results will be evaluated until the conference. 

Outlook 
Horizontal super-dense scan-lines from TLS scanning in forest environment in combination with arc-
analysis for stem detection has a high potential for enhanced repeatability, especially regarding an 
accurate derivation of annual increments by time series of point clouds.  
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To ensure sustainable forest management, understanding and monitoring of forest stand metrics is 
crucial. The Swiss National Forest Inventory (NFI) continuously assesses the status and development 
of the Swiss forests on more than 6000 plots distributed on a regular grid all over the country. Vertical 
stand structure is one important parameter acquired by the NFI. While fundamental in forest planning 
it is also known to be a good proxy for e.g. habitat diversity, light availability or recreational potential. 
However, the assessment of vertical forest stand structure is difficult and is therefore currently 
assessed by experts in the field, which may be subject to observer bias. A possible way to reduce such 
uncertainties due to human error could be given by remote sensing. The Swiss Federal Office of 
Topography swisstopo is currently about to produce a nationwide airborne laser scanning (ALS) 
dataset of classified point clouds with an average point density of 15 – 20 pts/m2. In this contribution, 
we present a method to asses vertical stand structure from ALS and NFI data. Our approach focuses 
on the analysis of return height distribution within the canopy in conjunction with machine learning. 
We stay close to the definition for stand structure specified by the Swiss NFI, which allows us to use 
their stand structure assessment as training data. We aim to apply the fitted model to the Swiss forests 
to produce a nationwide wall-to-wall stand structure assessment.  
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1. Introduction

Sites affected by avalanches are considered as highly dynamic sites and are therefore of high ecological 

value. A wide spectrum of environmental conditions occurs in a narrow space. Due to the uneven 

mechanical impact of avalanches within the avalanche path, important niches and microhabitats are 

generated. Often adjacent forest stands cause a braking effect due to deadwood, uprooted trees and 

breaking trees (Bartelt and Stöckli, 2001). Depending on the size of the avalanche, damage to tree cover 

can be limited to the loss of a few trees, but can also clear several hectares of mature forest stands (CCA, 

1995). All these processes lead to a heterogeneous habitat mosaic, which has a positive effect on species 

diversity (Rixen and Brugger, 2004). Aside from the effect on biodiversity, the protective function of 

forest stands also plays an important role in alpine regions. To capture the impact on and of forests, 

topographic Lidar can be used to simulate runout scenario based on vegetation height models (Brožová 

et al., 2020). Forest and vegetation structure, on the one hand, influence the flow of avalanches and are, 

on the other hand, formed by the impact of avalanches. Therefore, monitoring the vegetation structure 

is an essential prerequisite to understand the dynamic processes within the avalanche tracks. 

In order to capture the dynamics of avalanche tracks, multi-temporal area-based topographic Lidar 

data are of high benefit in addition to conventional forest inventory. A comparison of laser scanning 

data at two different points in time was used here to capture the dynamic of the avalanche path.  

2. Data and Methods

2.1 Study Area, Data Acquisition and Processing 

The study area is located to the southeast of Tamischbach Mountain in the Gesäuse National Park, 

Austria. Inventory plots are located at two avalanches paths in this area. The avalanche path Brett in the 

east covers an area of four hectares and is characterized by grass- and shrubland. The second avalanche 

path in the west is called the Hochkar, which can be divided into areas with frequent avalanche influence 

and areas which are only influenced during extreme events. The last extreme event happened in 2005.  

Table 1. Technical specifications of ALS data used. 

Year Sensor Point density Frequency 

2010 Riegl LMS-Q560 Min. 4 pts/m² below 2000 m a.s.l.;  

min. 2 pts/m² above 2000 m a.s.l. 

200 KHz 

2020 Riegl VUX240 200 pts/m²/overpass; 2 overpasses = 400 pts/m² 1.8 MHz 

In 2010 a terrestrial baseline survey at 32 monitoring points was realised (Carli and Zimmermann, 

2011). In 2021 the survey was re-conducted according to the methodological guideline for forest 

inventory of the Gesäuse National Park (Carli and Kreiner, 2009; Berger et al., 2020). In addition, high-

resolution aerial imagery and airborne laser scanning data (ALS) were recorded in the study area. The 

aerial survey took place on 6/5/2020. During the evaluation, the current laser scanning data was 

compared with an existing laser scanning dataset from 2010 (source: GIS-Steiermark). The technical 

details of both ALS campaigns are shown in Table 1. Clearly, the two datasets are not fully comparable 

due to better sensor and lower flight altitude in 2020 compared to 2010.  
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2.2 Methods 

The comparison of the height provides an insight into the change in vegetation height, which records 

the development of the vegetation since the last aerial survey. Image processing followed standard Lidar 

data handling. From the 2010 data, a digital terrain model (DTM) was generated using the point 

classification and a set of interpolation. This DTM was used to calculate vegetation height in both time 

periods for two reasons. First, there are not major changes in the terrain to be expected and second, we 

wanted to avoid potential differences coming from the data properties and processing to jeopardize 

comparability. For both time periods, digital surface models (DSMs) at a spatial resolution of 0.5 m 

were extracted using only points classified as vegetation. Clearly, the 2020 data would allow to extract 

a much higher resolutions DSM based on the given point density, but again, for comparability, we 

decided to process both data set to the same spatial resolution. As the maximum value per pixel is 

extracted from the laser scanning data, no overall bias caused by the different point density is to be 

expected. These DSMs were combined with the DTM to generate the two vegetation height models. 

They were clipped to a maximum of 60 m to remove outliers, mainly stemming from birds in the high 

resolution 2020 data. This clipping further reduces differences caused by the different acquisition 

settings rather than vegetation changes. Finally, both nDSMs were smoothed by a 3x3 median filter. 

The two vegetation height models were then subtracted to visualize the patterns of vegetation change. 

The colours represent the changes in vegetation height: while greenish colours indicate vegetation 

growth, yellow-orange colours indicate areas where the trees have been pushed down by avalanches. 

The small red patches are missing individual trees that had fallen between surveys (Figure 1). 

3. Results and Discussion

From the orthophoto, it can be seen that some trees have fallen due to an avalanche event, as the 

orientation of the dead wood coincides with the flow direction of the avalanche track. The red patches 

in the map indication significant loss of vegetation height where individual trees have fallen. The yellow-

orange areas indicate areas where trees have been downed by avalanches, but most have not been 

destroyed. Open areas without significant regeneration since 2010 show no increase in stand height. A 

general growth of trees can be observed in areas of closed forest stands that have not suffered impact of 

avalanches during the period considered. On the map, some gaps caused by natural mortality of 

individual trees are visible. Thus, growth can be used to infer the impact of avalanche events on the tree 

population. When analysing the entire avalanche path, it is clear that only small-scale tree stands have 

been destroyed by avalanches since 2010.  

Figure 1: A) The difference in vegetation height between the years 2010 (source: GIS-Steiermark, 

2010) and 2020 (DeepDigitalForest) shows the loss of trees (orange to red) and the growth of trees 

(green) B) The green area reflects an increase in vegetation height since 2010, the main avalanche 

track is displayed in orange and the loss of forest stands since 2010 in red. 
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Based on the 116-hectare survey area, 41 hectares have been affected by avalanches on a more or 

less yearly basis since 2010. These areas are characterized by grassland and lying or hanging living 

young trees with an average diameter at breast height (DBH) of 30 mm. Since 2010, about 7 hectares of 

previously mature forest was changed into grassland due to an avalanche event. There are also 68 

hectares within proximity to the affected area which show an increase of height compared to 2010. The 

results of the ALS height comparison reflect the forest stand parameters that were assessed within the 

conventional forest inventory. The basic structure of the vegetation distribution can also be read from 

the laser scanning data. While the Hochkar avalanche path has average vegetation heights of 2.06 m, the 

Brett avalanche track has significantly lower vegetation with heights of only 1.32 m on average. The 

standard deviation is on a similar level with 2.35 m and 2.15 m, respectively.  

4. Conclusions

The recording of forest structure in the context of long-term monitoring with conventional survey 

methods is particularly difficult. A description of the forest structure with lying trees is often impossible 

with existing inventory keys. Above all, the threshold values are not designed for the representation of 

lying or hanging trees. The application of a clipping threshold, whereby only trees above a certain 

diameter are surveyed, results in hardly any trees being recorded, although the biomass on the plots is 

relatively high due to the dense stand despite the low DBH. Furthermore, the recording of single trees 

from a height of 5 m leads to the fact that living trees that are lying or bent are not recorded, because 

their absolute height above ground is below this threshold. An extension of the existing inventory keys 

is therefore inevitable, especially for ecological questions that exceed the forestry usability.  

By combining methodological conventional in-situ approaches with topographic Lidar 

technologies, a higher comparability of parameters, such as structural elements, can be achieved since 

they no longer depend solely on the estimation of the operator. The two-dimensional recording of the 

forest structure by means of aerial laser scanning images makes it possible to record the forest structure 

and the individual trees along the entire avalanche path.  

The main advantages of the topographic Lidar approach in the practical assessment compared to 

field measurements are:  

• the wall-to-wall information without any interpolation needed

• the information on otherwise inaccessible areas

• the area-based change detection on vegetation dynamics
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1. Introduction

Forests provide many goods and services to humans; one of the main goods provided by forests is 

roundwood.  

The roundwood offers socio-economic and environmental benefits to forest owners and 

stakeholders, mainly because it plays a crucial role in the forestry production chain (SoEF 2020). The 

roundwood products can be classified into many timber assortments e.g., pulpwood, saw-log, fuelwood, 

and other industrial roundwood. 

Nowadays, quantitative and qualitative information on timber assortments became crucial for 

implementing sustainable forest activities. Innovative tools and methods are necessary to facilitate the 

assessment of timber assortments with high accuracy. Despite the enormous efforts made over the years 

to improve the accuracy of the estimates, several challenges are still evident, particularly for mixed and 

multi-layered forests.  

For these reasons, this study introduces a stepwise approach for catching timber assortment 

information of standing trees using Terrestrial Laser Scanning (TLS) data in mixed-species and multi-

layered Mediterranean forests (Central Italy).  

2. Data and Methods

2.1 Study area and ground truth field data 

The study area was located in Bosco Pennataro (41°42′ N, 14° 12′ E), in Molise region (Central of 

Italy) (Figure 1). Bosco Pennataro is characterized by a high tree species richness and heterogeneity of 

forest structure, forming a multi-layered and mixed forest.  

Field data were collected in 2016 within five squared field plots (hereafter ADS) of 529 m2 (23m * 

23m). All trees with a diameter at breast height (DBH) ≥ 0.025m were measured through the Field-Map 

tool (https://www.fieldmap.cz/). Many forest-related characteristics surveyed from standing trees were: 

DBH, tree height (TH), the height of the first attached branch or branch union (TH1). 

Figure 1 Study area. From left to right: the location of the study area concerning Italy; the distribution 

of the five squared field plots (ADS) within Mediterranean forests; a vertical slice of Terrestrial Laser 

Scanning (TLS) data for one ADS. 

2.2 Terrestrial Laser Scanning data 

The collection of TLS point cloud was carried out in July 2018. The TLS point cloud was acquired using 

a device named Leica ScanStation P30/40 (hereafter LSS)(https://leica-geosystems.com/it-it/). The 

horizontal and vertical field-of-view of this device was 360° and 290°, respectively.   
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A total of 178 single trees, divided into five ADS, were scanned using the Leica ScanStation P30/40 

namely LSS device (about 9 scans for each ADS). To optimize the huge quantity of collected TLS point 

cloud, we clip each TLS point cloud based on a box dimension of 27m * 27m using many OPALS 

(Orientation and Processing of Airborne Laser Scanning data) modules, such as opalsImport, 

opalsAlgebra, and opalsExport (https://opals.geo.tuwien.ac.at/html/stable/index.html). The five TLS 

scans including the geographic coordinates (i.e. x, y, z) and intensity feature were used as input data for 

the subsequent steps. 

2.3 Ground truth TLS point cloud 

Based on the TLS point cloud, some tree variables, as maximum-end diameter, (e.g., trunk base 

THbase); minimum-end diameter, (e.g. at the end of the trunk assortment – TH1); trunk length, were 

manually measured using point picking tool through CloudCompare software. The useful trunk section 

from TLS point cloud was ranged between THbase and TH1 (Liang et al. 2018).  

To extract the timber assortment information of trees, we selected all trees having a DBH > 0.20m. 

To improve the characterization accuracy of each trunk section, we divided and classified the logs into 

merchantable logs (2.5m ≤ length of log ≤ 3m) and non-merchantable logs (2.5m < length of log).  

Qualitative and quantitative information for both types of logs was gathered through vary log 

measurements e.g., straightness (STR; cm m-1; equation 1), tapering (TAP; cm m-1; equation 2), 

minimum-end and maximum-end diameter of logs (Dmax and Dmin; m); length of log (L; m) (Nosenzo 

2007). 

2.4 TLS analysis 

Four steps were implemented for computing the TLS point cloud: a) timber-leave discrimination; b) tree 

detection and DBH estimation; c) stem reconstruction and d) timber assortment assessment.  

The timber-leave discrimination was performed using geometric-based features from TLS point 

clouds through Random Forests algorithm. The tree detection allows us to find the tree position and to 

estimate the DBH of detected trees. The stem reconstruction, corresponding to the trunk section of 

detected trees, was based on a cylinder-fitting approach implemented in opalsDBH OPALS module. 

The timber assortment assessment provides both qualitative and quantitative information of trunk 

sections from standing trees (Figure 2).  

Figure 2 Workflow of Terrestrial Laser Scanning (TLS) processing. The green rectangles represent the 

steps. DBH is the diameter at breast height. 

3. Results and Discussion

3.1 Timber-leave point clouds discrimination 

Results revealed that Random Forests algorithm has accurately discriminated the timber from the leaves 

points in a mixed-species and multi-layered forest, and it was supported by a similar great accuracy 

(0.98), sensitivity (0.98), and specificity (0.98) values obtained for all five squared field plots, namely 

ADS. Despite the optimal performance showed by Random Forests, we observed an occlusion effect 

from large to small trees. It was more evident in the understory layer. However, these occlusion factors 

were worsened in trees having lianas (Vicari et al. 2019).  

3.2 Tree detection and DBH estimation  

We detected 151 out of 178 observed trees, reaching an average detection rate accuracy equal to 84.4%, 

with a high uniformity/similarity among the ADS, based on the standard deviation values (SD = ± 4.7%). 
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All trees with a DBH > 0.30m were detected. The comparison between predicted and observed DBH 

measurements from correctly detected trees has outlined that the linear model excluding outlier values 

was more accurate (R-squared = 0.84; RMSE = 0.02m) than that including outlier values (R-squared = 

0.67; RMSE = 0.08m). The problem to identify the trees with a DBH lower than 0.30m might be 

supported by the shadow effects from large to small trees and/or from branches to trunk, TLS point 

cloud quality, error in the assembly, the verticality of stems, the non-circular shape of the trunk and the 

tree species composition (Liang et al. 2018). 

3.3 Stem reconstruction 

We reconstructed 47 out of 70 observed trees using TLS point cloud through a cylinder-fitting approach, 

reaching an average stem reconstruction accuracy equal to 67.2%, with a low similarity/uniformity 

among the ADS (SD = ± 14.86%). Results indicated that more than three-quarters of the trunk section 

was described by cylinders. The factor conditioned the reconstruction of trees was straightness of trees, 

the difference of cylinder diameter, TLS point cloud quality, and the forest structure. 

3.4 Timber assortment estimation 

Results about timber assortment quantification demonstrated that nearby 75% of logs provided by 

reconstructed trees were quantified, particularly, 134 out of 179 merchantable logs and 34 out of 40 non-

merchantable logs were quantified.  

As regards Timber assortment classification, results demonstrated that 8 out of 11 assortment types 

were more accurate, based on the small difference between predicted and observed quantity of 

merchantable logs (± 2 units). We observed that a part of the logs was “missing” in both log types. We 

assumed that the occurrence of this problem might be associated with the irregular stem form (i.e. stem 

straightness) and the irregularities on the bark (i.e. geometry defects: knots, bulges, microhabitats). 

4. Conclusion

This study introduces a stepwise approach for extracting the timber assortment information of standing 

trees using TLS point cloud in a mixed species and multi-layered Mediterranean forest. This is very 

important to assess and implement sustainable forest management.  

Moreover, four conclusions may be drawn from the stepwise approach used for analysing the TLS 

point cloud. First, accurate timber-leaves discrimination favoured the reconstruction of dominant trees 

species; second, this stepwise approach proved to be more efficient for large trees (> 0.20m of DBH) 

and it is advantages for timber assortment assessment; third, the cylinder-fitting approach was powerful, 

despite the straightness of trees; fourth, the forest structure, bark surface, and microhabitats can 

influence the success of the reconstruction of trees. Our approach better works in veteran trees, this is a 

significant outcome, because this approach is focused on trees with a greater timber volume.   
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1. Introduction

When studying land use and land cover changes in urban and hyper-urban areas, finer scales of 
information are required to accurately identify fragments of other coverages, such as forest, trees, green 
areas, soils, etc. In that sense, optical images such as SPOT have proven to be a solution for better 
understanding urban phenomena (Weber & Hirsch, 1992; Sertel et al., 2015; Li et al., 2019). Moreover, 
they now have a historical record that allows them to overcome the challenges of time scale to quantify 
changes. 

In this context, this study aimed to identify and estimate land cover changes in an urban space. This 
information provides tools to address the challenges of urban sustainability and green infrastructure 
design. To achieve this goal, we set out to quantify over a five-year period (2013–2017) the changes in 
land cover with an emphasis on impervious cover, forest fragments, urban trees, and urban green areas. 

2. Data and Methods

To determine the temporal changes in urban forest cover and climate variability in recent years, we first 
quantified changes in forest cover and urban green areas over a five-year period (2013–2017) using 
high-resolution imagery in a mountain city: Quito at 2,815 m.a.s.l. (Figure 1).  

Figure 1. Study Area: Quito hyper urban gradient 
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We classified two images: SPOT 6 sensors (PMS 1503537, ORT 2956463201, June 23, 2013) and SPOT 
7 (PMS 1512376, ORT 2956433101, December 16, 2017). The resolution of this type of image (cell: 
1.5*1.5) provides a suitable scale for the identification of green areas and urban forests (Andersson et 
al., 2009; du Toit et al., 2011). The two images were divided into five segments to facilitate 
classification. From these images, a land use classification process was initiated, which included three 
phases: atmospheric correction with the ATCOR tool - Ground Reflectance Workflow (Geomatica, 
2019); mosaic generation with the OrthoEngine tool (Geomatica, 2018a); and finally, a classification 
process based on objects through the Object Analyst tool (Geomatica, 2018b). 

This last tool was applied on high resolution images and performed an object-based image analysis. 
First, it segments an image for classification, then an analysis phase determines the classification process 
and, it is characterized by the extraction of statistical and geometric features from the object/polygon 
layer. Statistical features are a function of image pixels within an object and SPOT bands. Whereas the 
geometric features: circular, elongated compact and rectangular are calculated by analyzing the 
boundaries of the polygons created in the segmentation process (Geomatica, 2018b; Bonilla-Bedoya et 
al., 2020). 

Then, we generated a grid over the SPOT. This was useful to distribute the land cover classification 
training polygons. The classes considered were forest component, grassland, impervious, agriculture, 
shrubs and herbs, soil, and water. For the evaluation, a new class sample was generated that considered 
approximately 25% of the total area of each land cover. These data were used to cross-check a confusion 
matrix and errors of omission and commission to derive a validation kappa index.  

The land cover classification for 2013–2017 and a cross-tabulation matrix allowed the total change of 
the coverage categories to be quantified. This process considered both the net change and the swap in 
addition to the gross gains and losses (Pontious, 2004; Alo & Gilmore, 2008; Bonilla-Bedoya et al., 
2014). In addition, this enabled the visualization of differences between the systematic or random 
transitions among the different categories that make up the urban landscape (Pontious et al., 2004; Alo 
& Gilmore, 2008). 

3. Results

Classification of the SPOT images (2013, 2017) yielded a mean kappa index calculated from the five 
sections into which each image was divided (Table 1). The categories of impervious cover, forest, green 
areas, and shrub-herb dominate the urban landscape of this city. The most important processes of loss, 
gain, and exchange in the landscape occur in these categories (Table 2). In addition, our results 
demonstrate an increase in the impervious category and the loss of urban vegetation, represented by the 
sum of the categories: forest, green areas, and shrub-herb (Figure 2). However, in parallel with this 
change, we observed an increase in forests and urban woodland that compensated for losses in the shrub-
herb and green areas categories (Table 3) 

Table 1. Mean and standard deviation of the Kappa Index considering the five classification 
sections 2013-2017. 

Land cover 
Kappa index 

2013  
mean±sd 

2017  
mean±sd 

Agriculture 0,95±0,07 0,810.08 

Forest 0.89±0.11 0,92±0.06 

Green areas 0.87±0.16 0,72±0.18 

Impervious 0.90±0.20 0,94±0.04 

Shurb and herbaceous 0.75±0.17 0,65±0.39 

Soil 0.87±0.10 0,72±0.14 

Water 0.80±0.45 0,69±0.47 
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Table 2. Gain, Loss, Total Change, Interchange, Absolute value of net change of Quito City (2013-2017) 

Land cover Gain (%) Loss (%) Total change (%) Interchange (%) Absolute value of 
net change 

Agriculture 1.00 2.41 3.41 2.00 -1.41 
Forest 8.49 4.54 13.03 9.09 3.94 

Green areas 4.39 6.20 10.59 8.79 -1.80 
Impervious 9.54 5.26 14.80 10.51 4.28 

Shrub and herb 4.60 9.01 13.61 9.21 -4.41 
Soil 1.29 1.89 3.17 2.58 -0.60 

Water 0.04 0.05 0.08 0.07 -0.01 

Table 3.  Systematic transitions in the gain and loss function. 

Year 2013 Year 2017 Gain (Observed minus expected) Loss (Difference divided by expected) 
Forest Agriculture 0 0 0.04 0.51 
Forest Green areas 0.09 0.16 0.26 0.62 
Forest Impervious -1.19 -0.43 -1.8 -0.53 
Forest Shrub and herb 1.38 2.06 1.42 2.25 
Forest Soil -0.06 -0.36 0.01 0.08 

Figure 2. Gains: Forest and impervious cover categories 

361



4. Discussion

We estimate land cover changes (2013-2017) of a mountain city (Bonilla-Bedoya et al., 2020). Remote 
sensing methods applied to SPOT images allowed, compared to other sensors, to present information at 
a fine and precise scale for urban research (Liang et al., 2012). It allows to identify, in relatively recent 
periods, variations in land cover and land use in urban landscapes. 

The loss of urban vegetation, represented by the sum of forest, green areas, and shrub-grass categories 
is complemented by an increase, over time, in tree cover and urban fragments at the expense of shrub 
and green area categories. These dynamics in urban cover change indicate the pressure exerted by hyper-
urban infrastructure on the few spaces that could be allocated to hyper-urban greenery 

However, this methodology for understanding the dynamics of green infrastructure in the city could be 
enhanced by assessing forest stand conditions and forest components in urban and peri-urban areas by 
integrating new approaches, such as those involving airborne laser scanning (LiDAR) data (Alonso et 
al., 2016). 

5. Conclusions

Remote sensing and geographic information systems applied to the study of land use, land cover, and 
forest change along urban-rural-natural gradients are essential tools for planning initiatives. The 
conversion of urban land use and land cover affects the environmental conditions of a city and the 
wellbeing of its citizens. 

Understanding the spatio-temporal variations of urban forests more accurately and at an appropriate 
scale are challenges that aim to accurately quantify urban forest ecosystem services. This information 
for the design of planning policies in the framework of environmental justice could make a difference 
in the value of contemporary urban land. 

Therefore, including methods that incorporate appropriate technologies, such as LiDAR, to improve the 
scale first; and the accuracy of forest allometric models derived from the metrics taken by these 
technologies would complement the advances in the multispectral domain and reduce uncertainty.  
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Abstract 

Precision forestry allow decision making on tree level or pixel-level, as compared to stand-level data. 

However, little is known about its long-term effects on within-stand variation, stand economy and 

growth. In this study, silviculture was optimized in 20 conifer-dominated forest stands located in the 

boreo-nemoral region of southern Sweden. Two thinning scenarios were tested; optimization using a 

stand-based approach; Stand level thinning (SLT) and precision thinning approach; Precision thinning 

(PT).  

Mean annual increment of living stem volume (MAInet) was significantly higher for PT than SLT for 

the full rotation (p = .002) but not regarding Net Present Value (NPV, p = .10). The within-stand 

variation in basal area (m2/ha-1) was significantly lower at the end of the rotation compared to the start 

of the simulation for both SLT (p < .001), and PT (p < .001). At the end of the rotation, SLT had 

significantly higher variation in basal area compared to PT (p < .001). The results indicate the there is 

no clear long-term benefit or drawback in basing silvicultural decision on pixel-level information as 

compared to stand level data when optimizing stand economy. However, PT was the upper hand since 

within-stand variation can be accounted for and targeted during harvest planning. 
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