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to obtain experiments for identification. The main contribution is an MPC formulation with a
target-oriented implementation of the parameter sensitivity (Fisher information), which remains
a convex quadratic problem. Computers can optimally and efficiently solve quadratic problems,
including constraints, and the method is demonstrated with a linear cathode model of a polymer
electrolyte membrane fuel cell. The MPC is demonstrated in simulations, including disturbances,
and significantly improves the parameter identifiability compared to a non-optimized experiment.
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1. INTRODUCTION

A fuel cell (FC) model is generally the basis for many appli-
cations, such as simulation, diagnosis, and control. In order
to obtain valid analysis conclusions, the models utilized
should replicate the dynamic FC behavior quantitatively
and qualitatively well. Otherwise, the derived conclusions
may be misleading due to erring signal magnitudes and sys-
temdynamics. E.g., the simulation shows a sufficient species
concentration, but in reality, the FC already experiences
fuel starvation, which also affects the degradation diagnosis
based on the simulation. Erring system dynamics would
highly influence model-based controllers, e.g., according to
the model, there is no water condensation, but the real FC
is already flooded, devastating the performance without
appropriate controller counteractions. Thus, experiments
covering the entire operating range with increased param-
eter sensitivities are required for satisfactory model iden-
tification. In this work, a novel optimal design of experi-
ments (DOE) model predictive controller (MPC) based on
quadratic programming is introduced, which is a promising
method for obtaining well-designed experiments for identi-
fication, and it is demonstrated with a simplified cathode
model of a polymer electrolyte membrane FC (PEMFC).

The process of obtaining a well-parametrized model is any-
thing but simple. The first question is what model type
should be used, and the model types can be roughly catego-
rized into three groups: black-boxmodels, grey-boxmodels,
and white-box models, see Jones et al. (2007). Black-box
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models replicate a system’s input and output correlation
artificially, white-box models derive their model structure
and parameters only from first principles and literature,
and grey-box models are a middle ground of both model
types. The latter enables a physical interpretation of the
model states and parameters, and the models are fitted to
real-world systems to replicate their behavior satisfactorily,
which is advantageous for diagnosis and control. Thus, grey-
boxmodels are often used in FC studies and as well as in this
work. The second question is, how should the experiments
be designed to get a good base for model identification?
DOE can be subdivided into two approaches: non-model-
based andmodel-based. E.g., exciting a systemwith sequen-
tial input steps of arbitrary magnitude and frequency as
in Ritzberger et al. (2021) is a non-model-based approach.
Another non-model-based approach is to utilize well-
established experiments, e.g., a polarization curve experi-
ment for FCs as in the authors’ workDu et al. (2021b). How-
ever, if systemproperties are known, this information can be
exploited in a target-orientedway. E.g., based on the system
dynamics, it can be derived that only excitations in a specific
region and frequency range increase the parameter informa-
tion, and an additional excitation in other regions and fre-
quency ranges barely contribute anything to it. Hence, the
experiments can be specifically adapted to a system, lead-
ing to fewer and shorter experiments necessary to obtain
the same parameter information content as non-specifically
designed ones. An often-used measure for parameter infor-
mation is the Fisher information I as described in Ljung
(1999), which can be analytically derived from a model
and an excitation signal. The popularity of the Fisher in-
formation is due to the property Var(θ) ≥ I−1, according
to Cramér (1999), which means that the inverse of I is the
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the stack n, the Faraday constant F , and the oxygen mass
fraction in dry airwO2

. A linear nozzle equation governs the
outflowing mass, where c is the nozzle coefficient, patm the
atmospheric pressure, and pca(t) =RTmca/(VMair) is the
model output, cathode pressure pca=pca(t), obtained with
the ideal gas law. Here, R is the universal gas constant, T is
the uniform cathode temperature, V is the cathode volume,
andMair is themolarmass of dry air. The described cathode
model has five parameters that are not natural constants:
oxygen stoichiometry λ, the number of cells in the stack
n, the nozzle coefficient c, the uniform temperature T , and
the cathode volume V . The number of cells is known, and
the oxygen stoichiometry and the temperature can be man-
ually set. Therefore, only two unknown model parameters
θ = [θ1 θ2]

T remain, the nozzle coefficient θ1 = c and the
cathode volume θ2=V . The presented model with the state
xm=mca, input u=I, and output y=pca can be rewritten
as ẋm=f(xm,u,θ) and y=g(xm,θ). Subsequently, a state-
space system is derived for a stationary operating point
(denoted by index 0 and ẋm,0=0 holds):

˙̃xm
︷ ︸︸ ︷

ẋm−ẋm,0=

Ac
︷ ︸︸ ︷

∂f(xm,u,θ)

∂xm

x̃m
︷ ︸︸ ︷

(xm−xm,0)

+
∂f(xm,u,θ)

∂u
︸ ︷︷ ︸

bc

(u−u0)
︸ ︷︷ ︸

ũ

,

(3a)

y−y0
︸ ︷︷ ︸

ỹ

=
∂g(xm,θ)

∂xm
︸ ︷︷ ︸

cm

(xm−xm,0)
︸ ︷︷ ︸

x̃m

. (3b)

The system Ac, input bc, and output coefficient cm are
partial model derivatives, the indices c and m denote time-
continuous and model, respectively, and a tilde indicates
deviation from the operating point. In this form, the model
is applicable in the following derivations.

2.2 Analytical Fisher Information Derivation

In order to optimize the identifiability of an unknown pa-
rameter, e.g., the volume V , the sensitivity measure Fisher
information is used,where the inverse is the lower parameter
variance bound, so higher information for V means lower
uncertainties during identification. In order to calculate the
Fisher information, a first plausible guess of the unknown
parameter is essential, which can be derived from literature
and expert knowledge, e.g., the nominal volume according
to the datasheet. For readability reasons, the DOE MPC
only optimizes the sensitivity of one parameter. However,
the procedure is extendable for multiple parameters. For
the Fisher information, the state parameter sensitivity
ξ̃i=dx̃m/dθi and output parameter sensitivity ψ̃i=dỹ/dθi
are required, which are obtained by calculating the total
derivative of the given state-space model (3) with respect
to a parameter θi as in Řehoř and Havlena (2014):

d

dt
ξ̃i=

d

dt

(
d

dθi
x̃m

)

=
d

dθi

(
d

dt
x̃m

)

=
d

dθi
(Acx̃m+bcũ)=Ac,θi x̃m+Acξ̃i+bc,θi ũ,

(4a)

ψ̃i=
d

dθi
(cmx̃m)=cm,θi x̃m+cmξ̃i. (4b)

The variables with θi in the index denote the partial deriva-
tive of the original variable with respect to the parameter in
the index. The solution of (4) delivers the time-continuous

output parameter sensitivity ψi = ψ̃i + ψi,0, and for the
evaluation of the Fisher information I, only the sampled
(at the time instants tk for k∈{1,2,...,N}) counterpart ψi,k

is relevant. The reason is that a measured output signal,
i.e., cathode pressure, is unknown between the sampling
instants, and the unknown parts do not contribute any
information. Finally, I is calculated utilizing the absolute
output parameter sensitivity as in Ljung (1999)

I=
N∑

k=1

ψi,k

1

σ2
ψi,k. (5)

Here, N is the total number of samples, and σ2 represents
the prediction error variance, which is the measurement
noise variance under the assumption of a perfect model.
The Fisher information is a square matrix with an order
equivalent to the number of parameters, and in this work,
it is only a scalar because only one parameter is considered.
Moreover, whether a parameter is (uniquely) identifiable
could have two reasons: either the experiment is not exciting
the specific parameter (e.g., phase change coefficient and
the experiment does not consider an appropriate operating
region), or due to the model structure (e.g., the diffusion
through the membrane is governed by two linearly inter-
dependent parameters). This derivation already forms the
prerequisite for the following implementation in the MPC.

2.3 Optimal Design of Experiments Controller Design

An MPC is a controller where the resulting system input,
i.e., stack current, is calculated online at every sampling
instant by solving a finite horizon optimal control problem.
The initial state is the system state at the moment, i.e.,
the cathode gas mass, and the optimization delivers a finite
control trajectory, where the first control action is applied
to the system. Please refer to Wang (2009) for a detailed
description of MPCs. The main contribution of this work is
an optimal DOE MPC, which optimizes the system input
regarding the Fisher information while tracking a reference,
considering constraints, disturbances, and the actual sys-
tem state. Constraints are, e.g., the rate of current change
and feasible regions for the cathode pressure, and the Fisher
information is implemented into theMPC formulationwhile
maintaining the convex problem property, the highlight
of this work. In order to design the controller, the state-
space (3) and sensitivity model (4) need to be discretized in
time as described in Řehoř and Havlena (2014):

[
Ad 0 bd
Ad,θi Ad bd,θi
0 0 1

]

=exp

([
Ac 0 bc
Ac,θi Ac bc,θi
0 0 0

]

∆t

)

. (6)

For the discretization, the constant sampling time ∆t is
required (set to 0.1 s), and the index d denotes discrete.
The discrete versions of (3) and (4) are given as

x̃m,k+1=Adx̃m,k+bdũk, (7a)

ỹk+1=cmx̃m,k+1, (7b)

ξ̃i,k+1=Ad,θi x̃m,k+Adξ̃i,k+bd,θi ũk, (7c)

ψ̃i,k+1=cm,θi x̃m,k+1+cmξ̃i,k+1, (7d)

lower variance bound of the parameter θ, also known as
the Cramér–Rao inequality. Hence, a higher I means lower
parameter uncertainties and the goal is to optimize this
measure by designing the experiment appropriately, mainly
conducted offline beforehand. E.g., the authors developed
an approach where the scalar Fisher information for every
parameter is maximized in a steady-state operating point
individually, see Du et al. (2023). In Wilson et al. (2014),
a trajectory for a two-link cart pendulum is optimized
regarding the Fisher information, which is then fed into the
real-world system. The online DOE goes further: an MPC
optimizes the control input regarding the Fisher informa-
tion in real-time during operation and considers the actual
state and constraints of the system, e.g., as in Jayasankar
et al. (2010), where the objective is to find an input to max-
imize the D-optimality of the sensitivity matrix. In compar-
ison, Larsson et al. (2013) and Marafioti et al. (2014) incor-
porated the sensitivity matrix as a constraint, demanding it
to be bigger than a lower bound to obtain persistent exciting
inputs. Inmost cases, the objective function for DOEMPCs
is non-convex and optimized with a numerical solver, which
is computationally expensive, and optimality is not guaran-
teed. Thus, a DOE MPC formulated as a convex quadratic
problem is missing, and this would significantly reduce the
necessary computational effort and guarantee optimality,
which is beneficial for real-time applications.

In order to fill the literature gap, this work presents a novel
optimal DOEMPC formulated as a convex problem capable
of considering constraints and disturbances. A PEMFC
cathode model serves as the linear modeling basis, and
an analytical way of evaluating the Fisher information is
implemented into the MPC formulation, maintaining the
quadratic property, which is the main contribution of this
work. This property is achieved by linearly deriving the
scalar Fisher information of a single parameter. In this
way, it is optimized during operation to increase the pa-
rameter sensitivities, and this optimization problem can
be optimally and efficiently solved, which is essential for
control applications. TheMPC simulation study results are
presented and thoroughly discussed, and the DOE MPC
experiments deliver higher Fisher information than a non-
specifically designed one.

The remainder is structured as follows: Section 2 presents
the modeling basis and an analytical way of obtaining the
Fisher information. The convex MPC formulation consid-
ering the Fisher information is presented based on that.
Section 3 illustrates the simulation study results of the
MPC, including a detailed results discussion.

2. METHODS

This section presents the modeling basis, a simplified
control-oriented PEMFC cathode model. Based on this,
the analytic Fisher information calculation is shown, which
is implemented into a novel convex quadratic DOE MPC
formulation, the main contribution of this work. The fol-
lowing holds to keep this work concise: the modeling basis
is a linear model with a single input and output, noise is
neglected, the model states are always known, and the DOE
MPC optimizes for only one parameter. The MPC design
is not limited to the shown model and can be extended to
multiple inputs, outputs, and parameters. Moreover, the

Cathode Channel

mca(t)

ṁin(t) ṁout(t)

ṁcons(t) ṁprod(t)

Gas Diffusion Layer

Fig. 1. Sketch of PEMFC cathode model, where mca(t) is
the mass of the cathode gas, ṁin(t) is the inflowing air,
ṁout(t) the outflowing mass, ṁcons(t) the consumed
mass, and ṁprod(t) the produced mass.

controller can be equally applied to nonlinear models via,
e.g., successive linearization as in Zhakatayev et al. (2017).

2.1 Cathode Model

The modeling basis is a linear control-oriented cathode
model of a 30 kW PEMFC stack with 96 cells, a simplified
version of Du et al. (2021a). This model was chosen because
it keeps themodeling part concise to focus on theMPCpart,
and it comprises all the necessary properties the authors
want to highlight (e.g., a time-constant-like volume param-
eter), elaborated on later in the results. Simplifying assump-
tions aremade to increase the readability of this work,which
do not limit the applicability of the proposed MPC:

(a) The ideal gas law is applicable, and the inflowing mass
is dry air, which only consists of nitrogen and oxygen.

(b) The cathode is a lumped volumewith no spatial expan-
sions and has only one lumped mass, which considers
all the species.

(c) The composition of the cathode mass is equal to the
one of dry air at any time, and when there is mass,
there is always enough oxygen for consumption.

(d) Influences of the gas diffusion and catalyst layer are
neglected except for the mass flows due to the electro-
chemical reaction.

(e) Diffusion through the membrane is neglected.
(f) The nozzle to the atmosphere behaves linearly, and the

cathode is open-ended.
(g) The cathode has a constant uniform temperature.

The mass balance

ṁca(t)=ṁin(t)−ṁcons(t)+ṁprod(t)−ṁout(t) (1)

is the cathode’s governing ordinary differential equation,
and a sketch is given in Fig. 1. In (1), ṁca = ṁca(t)
denotes the time derivative of the lumped cathode gasmass,
ṁin(t) is the inflowing dry air, ṁcons(t) the consumed mass,
ṁprod(t) the produced mass, and ṁout the outflowing mass.
The right-hand-side variables are defined as follows:

ṁin(t)=
λMO2

n

4FwO2

I(t), ṁcons(t)=
MO2

n

4F
I(t),

ṁprod(t)=
MH2On

2F
I(t), ṁout(t)=c(pca(t)−patm).

(2)

The stack current I=I(t) governs the inflowing dry air, con-
sumed, and produced mass. The first mass flow represents a
constant stoichiometry λ of oxygen converted to dry air, the
second the consumed oxygen, and the third the produced
water due to the electrochemical reaction. For the calcula-
tion, the following quantities are necessary: the molar mass
of oxygen MO2

and water MH2O, the number of cells in
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the stack n, the Faraday constant F , and the oxygen mass
fraction in dry airwO2

. A linear nozzle equation governs the
outflowing mass, where c is the nozzle coefficient, patm the
atmospheric pressure, and pca(t) =RTmca/(VMair) is the
model output, cathode pressure pca=pca(t), obtained with
the ideal gas law. Here, R is the universal gas constant, T is
the uniform cathode temperature, V is the cathode volume,
andMair is themolarmass of dry air. The described cathode
model has five parameters that are not natural constants:
oxygen stoichiometry λ, the number of cells in the stack
n, the nozzle coefficient c, the uniform temperature T , and
the cathode volume V . The number of cells is known, and
the oxygen stoichiometry and the temperature can be man-
ually set. Therefore, only two unknown model parameters
θ = [θ1 θ2]

T remain, the nozzle coefficient θ1 = c and the
cathode volume θ2=V . The presented model with the state
xm=mca, input u=I, and output y=pca can be rewritten
as ẋm=f(xm,u,θ) and y=g(xm,θ). Subsequently, a state-
space system is derived for a stationary operating point
(denoted by index 0 and ẋm,0=0 holds):

˙̃xm
︷ ︸︸ ︷

ẋm−ẋm,0=

Ac
︷ ︸︸ ︷

∂f(xm,u,θ)

∂xm

x̃m
︷ ︸︸ ︷

(xm−xm,0)

+
∂f(xm,u,θ)

∂u
︸ ︷︷ ︸

bc

(u−u0)
︸ ︷︷ ︸

ũ

,

(3a)

y−y0
︸ ︷︷ ︸

ỹ

=
∂g(xm,θ)

∂xm
︸ ︷︷ ︸

cm

(xm−xm,0)
︸ ︷︷ ︸

x̃m

. (3b)

The system Ac, input bc, and output coefficient cm are
partial model derivatives, the indices c and m denote time-
continuous and model, respectively, and a tilde indicates
deviation from the operating point. In this form, the model
is applicable in the following derivations.

2.2 Analytical Fisher Information Derivation

In order to optimize the identifiability of an unknown pa-
rameter, e.g., the volume V , the sensitivity measure Fisher
information is used,where the inverse is the lower parameter
variance bound, so higher information for V means lower
uncertainties during identification. In order to calculate the
Fisher information, a first plausible guess of the unknown
parameter is essential, which can be derived from literature
and expert knowledge, e.g., the nominal volume according
to the datasheet. For readability reasons, the DOE MPC
only optimizes the sensitivity of one parameter. However,
the procedure is extendable for multiple parameters. For
the Fisher information, the state parameter sensitivity
ξ̃i=dx̃m/dθi and output parameter sensitivity ψ̃i=dỹ/dθi
are required, which are obtained by calculating the total
derivative of the given state-space model (3) with respect
to a parameter θi as in Řehoř and Havlena (2014):

d

dt
ξ̃i=

d

dt

(
d

dθi
x̃m

)

=
d

dθi

(
d

dt
x̃m

)

=
d

dθi
(Acx̃m+bcũ)=Ac,θi x̃m+Acξ̃i+bc,θi ũ,

(4a)

ψ̃i=
d

dθi
(cmx̃m)=cm,θi x̃m+cmξ̃i. (4b)

The variables with θi in the index denote the partial deriva-
tive of the original variable with respect to the parameter in
the index. The solution of (4) delivers the time-continuous

output parameter sensitivity ψi = ψ̃i + ψi,0, and for the
evaluation of the Fisher information I, only the sampled
(at the time instants tk for k∈{1,2,...,N}) counterpart ψi,k

is relevant. The reason is that a measured output signal,
i.e., cathode pressure, is unknown between the sampling
instants, and the unknown parts do not contribute any
information. Finally, I is calculated utilizing the absolute
output parameter sensitivity as in Ljung (1999)

I=
N∑

k=1

ψi,k

1

σ2
ψi,k. (5)

Here, N is the total number of samples, and σ2 represents
the prediction error variance, which is the measurement
noise variance under the assumption of a perfect model.
The Fisher information is a square matrix with an order
equivalent to the number of parameters, and in this work,
it is only a scalar because only one parameter is considered.
Moreover, whether a parameter is (uniquely) identifiable
could have two reasons: either the experiment is not exciting
the specific parameter (e.g., phase change coefficient and
the experiment does not consider an appropriate operating
region), or due to the model structure (e.g., the diffusion
through the membrane is governed by two linearly inter-
dependent parameters). This derivation already forms the
prerequisite for the following implementation in the MPC.

2.3 Optimal Design of Experiments Controller Design

An MPC is a controller where the resulting system input,
i.e., stack current, is calculated online at every sampling
instant by solving a finite horizon optimal control problem.
The initial state is the system state at the moment, i.e.,
the cathode gas mass, and the optimization delivers a finite
control trajectory, where the first control action is applied
to the system. Please refer to Wang (2009) for a detailed
description of MPCs. The main contribution of this work is
an optimal DOE MPC, which optimizes the system input
regarding the Fisher information while tracking a reference,
considering constraints, disturbances, and the actual sys-
tem state. Constraints are, e.g., the rate of current change
and feasible regions for the cathode pressure, and the Fisher
information is implemented into theMPC formulationwhile
maintaining the convex problem property, the highlight
of this work. In order to design the controller, the state-
space (3) and sensitivity model (4) need to be discretized in
time as described in Řehoř and Havlena (2014):

[
Ad 0 bd
Ad,θi Ad bd,θi
0 0 1

]

=exp

([
Ac 0 bc
Ac,θi Ac bc,θi
0 0 0

]

∆t

)

. (6)

For the discretization, the constant sampling time ∆t is
required (set to 0.1 s), and the index d denotes discrete.
The discrete versions of (3) and (4) are given as

x̃m,k+1=Adx̃m,k+bdũk, (7a)

ỹk+1=cmx̃m,k+1, (7b)

ξ̃i,k+1=Ad,θi x̃m,k+Adξ̃i,k+bd,θi ũk, (7c)

ψ̃i,k+1=cm,θi x̃m,k+1+cmξ̃i,k+1, (7d)
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Fig. 2. Simulation results of the DOE MPC are illustrated. The left column shows the optimized results for the nozzle
coefficient c, and the right one shows the volume V results. The top panel depicts the model output cathode pressure
pca, the middle one the model input stack current I, and the bottom one the respective output parameter sensitivity
ψi. The blue lines visualize the model’s actual behavior, the red ones the corresponding references, and the black
dashed lines indicate the start of the step disturbance.

The already shown prediction approach is applied for the
combined augmented model and results in

Y =Fx+Φ∆U+c̄ψψi,0, (19)

with the vectors

Y =[yk+1|k yk+2|k ... yk+N |k]
T, (20a)

c̄ψ=[cψ cψ ... cψ]
T. (20b)

Finally, the quadratic MPC objective function is given in
the well-known form:

J(∆U)=(Y ref−Y )TQ(Y ref−Y )+∆UTR∆U , (21)

where Q is the weighting matrix considering the weights
for the ỹ and ψi correspondingly. The minus in (17) for the
Fisher information is merged with the weights inQ, and the
reference in Y ref for ψi is zero, so (17) and (21) are equiva-

lent. Note that the Hessian matrix of (21) is (ΦTQΦ+R),
which has to be positive-definite to obtain the global mini-
mum. This property is not automatically fulfilled due to the
negative weights for theψi inQ. Positive definiteness can be
enforced by, e.g., choosing an appropriateR=Er, whereE
is the identity matrix, and r>0 is a proper scalar. Note that
R penalizes the incremental input and not the absolute one,
and of course, increasing it is conflictive with optimizing
the parameter identifiability, the initial goal. So, a trade-
off needs to be found, and a meaningful way of choosing r
is to set it at the lowest possible value so that the Hessian
matrix is just positive definite. By doing so, the excitation
penalization is minimal bymaintaining the convex property
of the programming problem, given as follows:

∆Uopt=argmin
∆U

J(∆U)

with respect to

∆ũmin≤∆ũl≤∆ũmax

ũmin≤ ũl≤ ũmax

}

for l∈{k,k+1,...,k+N−1}

ỹmin≤ ỹl≤ ỹmax for l∈{k+1,k+2,...,k+N}

(22)

By adjusting the ratio of the weights in Q, the MPC be-
haves more like a reference follower or tries to increase the
parameter identifiability, respectively. A controller usually
stabilizes a system, but to increase the identifiability, it
tends to destabilize a system if no constraints are consid-
ered. Thus, constraints are mandatory because otherwise,
the MPC excites the system too aggressively, leading to
instability and physical damage. E.g., an unconstrained
problem would lead to too high current amplitudes and
frequencies, harming the system. Thus, the constraints for
the system with u0=50A and y0=109kPa are set to

∆ũmin=−10A
s ∆t, ∆ũmax=10A

s ∆t, (23a)

ũmin=0A, ũmax=350A, (23b)

ỹmin=−7.48kPa, ỹmax=51.2kPa. (23c)

To implement the constraints and, if required, slack vari-
ables into the problem, please refer to Wang (2009). Re-
garding closed-loop stability, the optimization problem (22)
could be extendedwith terminal set constraints and a termi-
nal cost, where theweightings for the sensitivitiesψi are zero
after the prediction horizon. Thus, the calculation of the
terminal cost reduces to one for a regular reference tracking
MPC. These extensions are out of this work’s scope, and the
reader is referred to Rawlings et al. (2019) in this regard.

3. RESULTS AND DISCUSSION

The simulation results of the proposed DOE MPC are
shown in Fig. 2. The results optimized for the nozzle coeffi-
cient are in the left column, and the ones for the volume are
in the right. In the nozzle coefficient case, theMPC increases
the input (Fig. 2c) to obtain a higher pressure by accepting
more deviations from the reference (Fig. 2a). Under consid-
eration of the objective function, it tries tomaximize the dif-
ference between the cathode pressure and the environment
because, in this case, the nozzle coefficient is most identifi-
able, see (2) and Fig. 2e. The MPC behaves entirely differ-

with the discretized system variables. In addition, the in-
cremental (denoted by ∆) formulation as in Wang (2009),

∆x̃m,k+1

� �� �

x̃m,k+1−x̃m,k=Ad

∆x̃m,k

� �� �

(x̃m,k−x̃m,k−1)+bd

∆ũk
� �� �

(ũk−ũk−1), (8a)

ỹk+1−ỹk
� �� �

∆ỹk+1

=cm(x̃m,k+1−x̃m,k)
� �� �

∆x̃m,k+1

, (8b)

of the discrete cathodemodel leads to an augmented system
xR,k+1

� �� �
�
∆x̃m,k+1

ỹk+1

�

=

AR
� �� �
�

Ad 0
cmAd 1

�

xR,k

� �� �
�
∆x̃m,k

ỹk

�

+

bR
� �� �
�

bd
cmbd

�

∆ũk, (9a)

ỹk+1=[0 1]
����

cT
R

�
∆x̃m,k+1

ỹk+1

�

� �� �

xR,k+1

, (9b)

which is used for the MPC design. The index R denotes ref-
erence tracking, elaborated on later. Using the augmented
system, the future output trajectory, i.e., cathode pressure,
at instant k of the system is calculated, dependent on the
to-be-optimized system input, i.e., stack current, with

xR,k+1|k=ARxR,k+bR∆ũk,

xR,k+2|k=ARxR,k+1|k+bR∆ũk+1,

=AR(ARxR,k+bR∆ũk)+bR∆ũk+1,

...

xR,k+N |k=AN
RxR,k+AN−1

R bR∆ũk

+AN−2
R bR∆ũk+1+···+bR∆ũk+N−1,

(10a)

ỹk+1|k=cTRxR,k+1=cTR(ARxR,k+bR∆ũk),

ỹk+2|k=cTR(A
2
RxR,k+ARbR∆ũk+bR∆ũk+1),

...

ỹk+N |k=cTR(A
N
RxR,k+AN−1

R bR∆ũk

+AN−2
R bR∆ũk+1+···+bR∆ũk+N−1).

(10b)

Here,N denotes the prediction horizon (set to 50), which is
the number of prediction samples, and the control horizon,
the number of manipulable input samples, is identical to
the former to increase the readability. With the vectors

Y R=[ỹk+1|k ỹk+2|k ... ỹk+N |k]
T, (11a)

∆U=[∆ũk ∆ũk+1 ... ∆ũk+N−1]
T, (11b)

the predictions (10) can be rewritten as

Y R=FRxR,k+ΦR∆U , (12)

with the relations

FR=








cTRAR

cTRA
2
R

...
cTRA

N
R







, (13a)

ΦR=








cTRbR 0 ... 0
cTRARbR cTRbR ... 0

...
...

. . .
...

cTRA
N−1
R bR cTRA

N−2
R bR ... cTRbR







. (13b)

The same procedure is repeated to obtain the predicted
parameter sensitivities with the augmented model based
on Řehoř and Havlena (2014):

xI,k+1

� �� �




∆x̃m,k+1

∆ξ̃i,k+1

ψ̃i,k+1



=

AI

� �� �
�

Ad 0 0
Ad,θi Ad 0

cm,θiAd+cmAd,θi cmAd 1

�

·

xI,k

� �� �




∆x̃m,k

∆ξ̃i,k
ψ̃i,k



+

bI

� �� �
�

bd
bd,θi

cm,θibd+cmbd,θi

�

∆ũk,

(14a)

ψi,k+1=[0 0 1]
� �� �

cT
I





∆x̃m,k+1

∆ξ̃i,k+1

ψ̃i,k+1





� �� �

xI,k+1

+ψi,0, (14b)

resulting in

Y I=F IxI,k+ΦI∆U+Iψi,0. (15)

Here, I is a column vector with ones in every entry. The
output sensitivity ψi,0 at the operating point must also be
considered because it contains information, e.g., the operat-
ing point pressure (model output y, so ψi, too) depends on
the unknown nozzle coefficient. Note that the exact relation

I=
N�

k=1

ψi,k

1

σ2
ψi,k=Y T

IY I/σ
2 (16)

for the Fisher information (5) holds, enabling its prediction
calculation. In order to minimize the parameter uncertain-
ties for the volume or nozzle coefficient, I−1 should be
minimized, which is equivalent to maximizing I. With the
available predictions, theMPCobjective function is given as

J(∆U)=

Reference tracking
� �� �

(Y R,ref−Y R)
TQR(Y R,ref−Y R)

+∆UTR∆U
� �� �

Input penalty

− QIY
T
IY I

� �� �

Fisher information

,
(17)

where Y R,ref is the output reference, QR � 0 the out-
put deviation weighting, R ≻ 0 the input weighting, and
QI = qI/σ

2 ≥ 0 combines the weighting for the Fisher
information qI and its measurement noise variance σ2.
An MPC problem is usually minimized, so subtracting the
Fisher information in J is equivalent to maximizing I. The
objective function (17) is simplified using an augmented
model combining (9) and (14):

xk+1

� �� �






∆x̃m,k+1

∆ξ̃i,k+1

ỹk+1

ψ̃i,k+1






=

A
� �� �





Ad 0 0 0
Ad,θi Ad 0 0
cmAd 0 1 0

cm,θiAd+cmAd,θi cmAd 0 1






·

xk
� �� �






∆x̃m,k

∆ξ̃i,k
ỹk
ψ̃i,k






+

b
� �� �





bd
bd,θi
cmbd

cm,θibd+cmbd,θi




∆ũk,

(18a)

�
ỹk+1

ψi,k+1

�

� �� �

yk+1

=

�
0 0 1 0
0 0 0 1

�

� �� �

C







∆x̃m,k+1

∆ξ̃i,k+1

ỹk+1

ψ̃i,k+1







� �� �

xk+1

+

�
0
1

�

����

cψ

ψi,0. (18b)
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Fig. 2. Simulation results of the DOE MPC are illustrated. The left column shows the optimized results for the nozzle
coefficient c, and the right one shows the volume V results. The top panel depicts the model output cathode pressure
pca, the middle one the model input stack current I, and the bottom one the respective output parameter sensitivity
ψi. The blue lines visualize the model’s actual behavior, the red ones the corresponding references, and the black
dashed lines indicate the start of the step disturbance.

The already shown prediction approach is applied for the
combined augmented model and results in

Y =Fx+Φ∆U+c̄ψψi,0, (19)

with the vectors

Y =[yk+1|k yk+2|k ... yk+N |k]
T, (20a)

c̄ψ=[cψ cψ ... cψ]
T. (20b)

Finally, the quadratic MPC objective function is given in
the well-known form:

J(∆U)=(Y ref−Y )TQ(Y ref−Y )+∆UTR∆U , (21)

where Q is the weighting matrix considering the weights
for the ỹ and ψi correspondingly. The minus in (17) for the
Fisher information is merged with the weights inQ, and the
reference in Y ref for ψi is zero, so (17) and (21) are equiva-

lent. Note that the Hessian matrix of (21) is (ΦTQΦ+R),
which has to be positive-definite to obtain the global mini-
mum. This property is not automatically fulfilled due to the
negative weights for theψi inQ. Positive definiteness can be
enforced by, e.g., choosing an appropriateR=Er, whereE
is the identity matrix, and r>0 is a proper scalar. Note that
R penalizes the incremental input and not the absolute one,
and of course, increasing it is conflictive with optimizing
the parameter identifiability, the initial goal. So, a trade-
off needs to be found, and a meaningful way of choosing r
is to set it at the lowest possible value so that the Hessian
matrix is just positive definite. By doing so, the excitation
penalization is minimal bymaintaining the convex property
of the programming problem, given as follows:

∆Uopt=argmin
∆U

J(∆U)

with respect to

∆ũmin≤∆ũl≤∆ũmax

ũmin≤ ũl≤ ũmax

}

for l∈{k,k+1,...,k+N−1}

ỹmin≤ ỹl≤ ỹmax for l∈{k+1,k+2,...,k+N}

(22)

By adjusting the ratio of the weights in Q, the MPC be-
haves more like a reference follower or tries to increase the
parameter identifiability, respectively. A controller usually
stabilizes a system, but to increase the identifiability, it
tends to destabilize a system if no constraints are consid-
ered. Thus, constraints are mandatory because otherwise,
the MPC excites the system too aggressively, leading to
instability and physical damage. E.g., an unconstrained
problem would lead to too high current amplitudes and
frequencies, harming the system. Thus, the constraints for
the system with u0=50A and y0=109kPa are set to

∆ũmin=−10A
s ∆t, ∆ũmax=10A

s ∆t, (23a)

ũmin=0A, ũmax=350A, (23b)

ỹmin=−7.48kPa, ỹmax=51.2kPa. (23c)

To implement the constraints and, if required, slack vari-
ables into the problem, please refer to Wang (2009). Re-
garding closed-loop stability, the optimization problem (22)
could be extendedwith terminal set constraints and a termi-
nal cost, where theweightings for the sensitivitiesψi are zero
after the prediction horizon. Thus, the calculation of the
terminal cost reduces to one for a regular reference tracking
MPC. These extensions are out of this work’s scope, and the
reader is referred to Rawlings et al. (2019) in this regard.

3. RESULTS AND DISCUSSION

The simulation results of the proposed DOE MPC are
shown in Fig. 2. The results optimized for the nozzle coeffi-
cient are in the left column, and the ones for the volume are
in the right. In the nozzle coefficient case, theMPC increases
the input (Fig. 2c) to obtain a higher pressure by accepting
more deviations from the reference (Fig. 2a). Under consid-
eration of the objective function, it tries tomaximize the dif-
ference between the cathode pressure and the environment
because, in this case, the nozzle coefficient is most identifi-
able, see (2) and Fig. 2e. The MPC behaves entirely differ-
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Fig. 3. The shown current excitation I of a polarization
curve experiment covers the whole operating range.

ently for the volume because the latter behaves like a time
constant.As a result, it is only identifiable during transients,
which can be seen in Fig. 2f around the places where the
rate of change for the current is zero, and as a consequence,
the output parameter sensitivity is zero too. Thus, theMPC
enforces an oscillating input trajectory (Fig. 2d) and system
behavior while following the reference (Fig. 2b) and consid-
ering the constraints. There are always control errors in the
real world, e.g., due to model mismatch and disturbances.
An advantage of the MPC is that it notices and reacts
accordingly. An input disturbance (−50A current step,
e.g., an uncontrollable auxiliary load dropped) is applied at
t=70s, and theMPCplays its advantage and counteracts by
adjusting the stack current. A polarization curve excitation
is shown in Fig. 3, and its Fisher information is evaluated to
benchmark the MPC’s performance. The DOEMPC yields
for the nozzle coefficient (Fig. 2e) a 10.3% higher Fisher
information, and for the volume (Fig. 2f), a 132%higher one
than for the polarization curve experiment while tracking
a reference, leading to lower uncertainties in the identifica-
tion. Note that all the experiments have the same length,
meaning that the DOE MPC would require shorter (and
fewer) experiments to achieve the same identification result
as non-specifically optimized ones. Optimized experiments
from the proposed DOE MPC yield better-parametrized
models, which are the base for further applications such as
simulation, diagnosis, and control.

4. CONCLUSION

A well-identified model is a basis for further applications.
This work proposes a novel optimal DOEMPC considering
constraints and guaranteeing optimality to contribute to
the identification challenge. Based on a PEMFC cathode,
the linear modeling basis, a classic MPC formulation is
defined for a single input, output, and parameter. In ad-
dition, the Fisher information evaluation is analytically
derived and implemented into the MPC objective function,
which stays a convex quadratic problem. The latter can be
efficiently solved, and the optimal solution can be evaluated.
The MPC results are shown and discussed for two parame-
ters individually, including disturbances. Finally, a signifi-
cant increase in Fisher information is shown compared to a
commonly-used polarization curve experiment.

Future work incorporates the extension of the MPC to mul-
tiple inputs, outputs, and parameters, including nonlinear
models and direct feedthrough behavior. Themain task is to
find a well-defined objective function because the Fisher in-
formation is a matrix in the multiple-parameter case, which
needs to be considered via an optimality criterion, and the
challenge here is to keep the convex problem property. An-
other research direction could be investigating meaningful
ways to consider the Fisher information via constraints
by maintaining a relatively simple optimization problem.

Moreover, the MPC’s stability properties and experimental
validation are additional research directions.
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