
TYPE Original Research
PUBLISHED 16 November 2023| DOI 10.3389/fcvm.2023.1280899
EDITED BY

Lanfranco D’Elia,

University of Naples Federico II, Italy

REVIEWED BY

Lisheng Xu,

Northeastern University, China

Taous Meriem Laleg,

King Abdullah University of Science and

Technology, Saudi Arabia

*CORRESPONDENCE

Laila Gbaoui

laila.gbaoui@ovgu.de

RECEIVED 22 August 2023

ACCEPTED 24 October 2023

PUBLISHED 16 November 2023

CITATION

Gbaoui L, Hoeschen C, Kaniusas E, Khatib S,

Gretschel S and Wellnhofer E (2023) Estimation

of central blood pressure waveform from

femoral blood pressure waveform by blind

sources separation.

Front. Cardiovasc. Med. 10:1280899.

doi: 10.3389/fcvm.2023.1280899

COPYRIGHT

© 2023 Gbaoui, Hoeschen, Kaniusas, Khatib,
Gretschel and Wellnhofer. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Cardiovascular Medicine
Estimation of central blood
pressure waveform from femoral
blood pressure waveform by blind
sources separation
Laila Gbaoui1*, Christoph Hoeschen1, Eugenijus Kaniusas2,
Saher Khatib3,4, Stephan Gretschel3,4 and Ernst Wellnhofer5
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Background: Central blood pressure (cBP) is a better indicator of cardiovascular
morbidity and mortality than peripheral BP (pBP). However, direct cBP
measurement requires invasive techniques and indirect cBP measurement is
based on rigid and empirical transfer functions applied to pBP. Thus,
development of a personalized and well-validated method for non-invasive
derivation of cBP from pBP is necessary to facilitate the clinical routine. The
purpose of the present study was to develop a novel blind source separation
tool to separate a single recording of pBP into their pressure waveforms
composing its dynamics, to identify the compounds that lead to pressure
waveform distortion at the periphery, and to estimate the cBP. The approach is
patient-specific and extracts the underlying blind pressure waveforms in pBP
without additional brachial cuff calibration or any a priori assumption on the
arterial model.
Methods: The intra-arterial femoral BPfe and intra-aortic pressure BPao were
anonymized digital recordings from previous routine cardiac catheterizations of
eight patients at the German Heart Centre Berlin. The underlying pressure
waveforms in BPfe were extracted by the single-channel independent
component analysis (SCICA). The accuracy of the SCICA model to estimate the
whole cBP waveform was evaluated by the mean absolute error (MAE), the root
mean square error (RMSE), the relative RMSE (RRMSE), and the intraclass
correlation coefficient (ICC). The agreement between the intra-aortic and
estimated parameters including systolic (SBP), diastolic (DBP), mean arterial
pressure (MAP), and pulse pressure (PP) was evaluated by the regression and
Bland–Altman analyses.
Results: The SCICA tool estimated the cBP waveform non-invasively from the
intra-arterial BPfe with an MAE of 0.159 ± 1.629, an RMSE of 5.153 ±
0.957 mmHg, an RRMSE of 5.424 ± 1.304%, and an ICC of 0.94, as well as two
waveforms contributing to morphological distortion at the femoral artery. The
regression analysis showed a strong linear trend between the estimated and
intra-aortic SBP, DBP, MAP, and PP with high coefficient of determination R2 of
0.98, 0.99, 0.99, and 0.97 respectively. The Bland–Altman plots demonstrated
good agreement between estimated and intra-aortic parameters with a mean
error and a standard deviation of difference of −0.54 ± 2.42 mmHg [95%
confidence interval (CI): −5.28 to 4.20] for SBP, −1.97 ± 1.62 mmHg (95% CI:
−5.14 to 1.20) for DBP, −1.49 ± 1.40 mmHg (95% CI: −4.25 to 1.26) for MAP, and
1.43 ± 2.79 mmHg (95% CI: −4.03 to 6.90) for PP.
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FIGURE 1
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Conclusions: The SCICA approach is a powerful tool that identifies sources
contributing to morphological distortion at peripheral arteries and estimates cBP.
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1. Introduction

Central blood pressure (cBP) is generally a superior source of

information on cardiac dynamics and global circulation than

peripheral blood pressure (pBP) (1, 2). The direct acquisition of

cBP at the ascending aorta implies cardiac catheterization that is

highly invasive, costly, time consuming, and requires skilled

physicians. Thus, this procedure is unsuitable for routine

screening in clinical settings. Regrettably, pBP cannot be used as

a direct surrogate for the cBP due to varying and individual

arterial stiffness, pulse wave propagation, and reflection along the

arterial system (3), all leading to distorted pulse wave

morphology between aortic root and peripheral arteries, as

illustrated in Figure 1.

The brachial cuff sphygmomanometer is widely used as a

routine and non-invasive measurement of BP in clinical use.

However, the cuff brachial BP (bBP) is a poor surrogate for cBP.

The systolic bBP can exceed the central systolic pressure cSBP up
he contraction pulse wave tr
tery, and iliac artery. The forw
on. (B) The pulse pressure a
eriphery. In contrary, the me
tral aorta pulse is replaced b

02
to 40 mmHg (4, 5). The bBP is accepted in clinical settings as a

surrogate of outcome rather than corresponding intra-arterial BP

(6). Accumulating evidence supported by several studies

suggested that the cBP is strongly related to cardiovascular events

and responds differently to certain vasomodulating drugs than

bBP (7, 8).

Today, several attempts have been developed to estimate the

cBP from the pressure waveform recorded at distal arteries such

radial and carotid by applanation tonometry and calibrated to

systolic, diastolic, or mean of bBP recorded by a cuff

sphygmomanometer. Each of the proposed approaches has its

own strengths and shortcomings. The carotid pressure waveform

is often preferred as a direct surrogate of cBP due to its

proximity to the aorta and is calibrated by mean and diastolic

bBP that are assumed to be constant throughout the arterial

system (4, 9). However, this technique requires highly skilled

staff and is not fully integrated in the routine assessment of the

cBP in clinical settings due to the difficulty to obtain an accurate
avels from aortic root toward the periphery. (A) Pulse wave traveling in the
ard wave travels from the ventricle to the periphery of the arterial tree and
mplification and the systolic blood pressure increase due to pulse wave
an arterial pressure and the diastolic blood pressure are nearly constant
y a relatively later dicrotic notch that occurs at lower pressure levels.
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signal in all patients, especially in obese individuals. In addition,

under-estimation of the low aorto-carotid pulse pressure (PP)

amplification can lead to over-estimation of cBP. Alternatively,

the cBP can be estimated from the pressure waveform of the

radial artery using either a group-averaged generalized transfer

function (GTF) model (10–12), an adaptive transfer function

(ATF) (13), the identification of the late systolic shoulder of the

pressure waveform, or a proprietary empirical algorithm (14, 15).

The different GTF approaches are based on exogenous

population models that are not individualized. The ATF uses an

additional pulse delay time from core to the periphery in order

to personalize the model and improve the accuracy of the

estimated cBP. However, the transfer function (TF) is still based

on a population averaged model and requires a second

measurement that is not necessary for TF derivation. Nowadays,

a variety of instrumentations are available, which are based on

one or more of these approaches (4–6). However, the main

drawback of these non-invasive devices is the calibration with the

brachial cuff pressure rather than intra-arterial brachial pressure

that can lead to under-estimation of the true invasive pressure at

the brachial artery and cBP (16, 17). Second, the brachial-to-

radial amplification is not taken into account and can lead to

additional under-estimation of cBP. The cSBP can be estimated

by a simple algorithm or directly from the late systolic shoulder

of invasive measured BP waveform at distal arteries without

calculation of TF (8, 12, 18). However, this method has

limitations, especially in younger people with non-augmented

peak systolic pressure or individuals with low blood pressure

(9, 19).

Alternative statistical methods for cBP waveform estimation

comprise the blind source separation (BSS) algorithms that are

subject-specific and independent of the arterial model (20–23).

The approaches are widely used in biomedical signal denoising

and separation (24–27) and model the arterial system as a single-

input multiple-output system in order to estimate the cBP as an

input signal that propagates through unknown channels from

central to peripheral arteries using a synchronized multi-channel

recording of pBP at specific times. The main advantage of BSS is

that only the knowledge of the recorded pBP signals as output of

the model without further assumptions on the used arterial

model is required. Other researchers investigated different

machine learning approaches (MLA) and neural network

approaches to estimate the cBP from pBP (28, 29) or from other

physiological signals such as electrocardiography (ECG) and

photoplethysmography (PPG) (30). However, MLA focused

mainly on the estimation of central indices such as cSBP.

Moreover, the pulse wave analysis is mainly focused on the

derivation of indices from time and morphological characteristics

defined by fiducial or inflection points on the BP waveform, as

well as the area under BP waveform rather than the analysis of

the pressure components that contribute to the morphology of

this multivariate BP signal. Thus, in the last few decades, several

approaches such as the wave separation analysis (WSA) (31),

wave intensity analysis (WIA) (14, 5, 32–34), reservoir wave

concept (RWC) (35–37), and instantaneous wave free ratio

approach (31) have been developed to decompose cBP or pBP
Frontiers in Cardiovascular Medicine 03
into their generating pressure waves. The approaches are based

on different theories and arterial models. Consequently, the

number and the interpretation of the extracted components

depend strongly on the assumed hypothesis and the used arterial

model. WSA and WIA assume that the measured pressure is a

sum of a forward pressure wave generated by the left ventricle

ejection and backward wave as a sum of several reflected waves

from the different sites of the arterial tree system between center

and periphery. The RWC assumes that the measured arterial

pressure is the sum of a reservoir pressure BPres related to the

dynamical storage and release of blood by compliant arteries,

and an excess pressure BPexc, which is determined by local

arterial characteristics and responsible for local changes in the

pulse wave. The BPres wave varies temporally in the same way

throughout the arterial system, but with a time lag that depends

on the travel time from the root to the distal location, the

properties of the arteries, and input from the heart (38, 39). On

the other hand, all these separation techniques require several

recordings, which is generally not feasible in clinical settings.

WSA and RWC use simultaneous recording of pressure and

flow, whereas WIA uses their derivatives. BPres can be calculated

from the pressure without the need of local flow recording,

however under several additional assumptions (40).

Accordingly, it is highly desirable to estimate the subject-

specific cBP and investigate the cardiovascular dynamics between

the root and periphery without recourse to experimental

population using GTF, additional measurements, or brachial cuff

calibration. Thus, in order to extract the cBP from pBP waveform

in a strategic way, we introduce in this study the single-channel

independent component analysis (SCICA) of a single recording

of pBP to extract the underlying pressure waveforms contributing

to its dynamic and identify the compounds that cause

morphological distortion and augmentation at distal arteries. The

proposed SCICA in this study is a combination of the non-linear

embedding of the single recording of pBP in a high-dimensional

state space by the method of delay (41) and the BSS of the

reconstructed state vectors of pBP in this space by the independent

component analysis (ICA) (42). Moreover, the calibration of the

estimated BP waveforms is based only on the wide accepted

hypothesis that the mean arterial pressure (MAP) and diastolic

pressure (DBP) are nearly constant in the arterial tree. The intra-

arterial pressure at the femoral artery BPfe and intra-aortic

pressure BPao at the ascending aorta were used to validate the

proposed SCICA approach.
2. Methods

2.1. Subjects and data acquisition

The study was conducted with archived fully anonymized data

acquired at the German Heart Centre Berlin between 2000 and

2007 during routine cardiac catheterization by a femoral

approach in eight patients providing written informed content.

Simultaneous pressure recordings from the sheath connected to a

pressure transducer by a fluid-filled line in the femoral artery
frontiersin.org
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and a catheter placed with the tip in the ascending aorta were used

for BPfe and BPao acquisition. In total, 32 pressure waveform

recordings were acquired for this study in two raters (two BPfe
and two corresponding BPao per subject). The pressure waveforms

have been digitized at a sample rate of 500 Hz using 12-bit

resolution CE certified AD interface device directly from pressure

transducers. Table 1 provides a summary of biometric data.

The required post hoc sample size for further validation of the

SCICA model was estimated to 15 subjects (17 for 10% dropout)

using the interclass correlation coefficient (ICC) of 0.94 as inter-

subject and intra-subject reliability index. ICC was estimated from

the preliminary results of this study including Pearson’s

correlation between the estimated and the measured cBP in all

patients and in both raters (43–45). The sample size calculation

was performed by the calculator retrieved from https://wnarifin.

github.io/ssc/ssicc.html with a minimum acceptable reliability of 0.

75, a significance level of 0.05, a power of 80%, an estimated ICC

of 0.94, using two measures per subject, and a dropout rate of 10%.
2.2. Statistical analysis and validation

All data in the present study were evaluated using the Statistical

and Machine Learning Toolbox in MATLAB. The distribution of

the data was investigated using the Kolmogorov–Smirnov test.

The BPfe was decomposed using SCICA and the estimated

pressure compounds were identified according to their time and

morphological characteristics as well as their contribution to BPfe.
2.2.1. Peripheral blood pressure waveform
decomposition by SCICA

ICA is a sub-class of unsupervised machine learning

approaches that is widely used in the signal processing for signal

denoising, dimension reduction, and blind (unobserved) sources

separation techniques without any background knowledge about

these hidden sources. The classical ICA model assumes that a set

of n recorded signals x(t) ¼ [x1(t), x2(t), . . . , xn(t)]
T is a linear

combination of k≤ n statistical independent blind sources

s(t) ¼ [s1(t), s2(t), . . . , sk(t)]
T .

xi ¼
Xk
j¼1

aijsj for i ¼ 1, . . . , n (1)

The coefficient aij represents the weight of the blind source sj in the

recorded signal xi and form the full range n × k mixing matrix A.
TABLE 1 Subject characteristics.

Characteristic Mean ± SD
N (m/f) 7/1

Age (years) 34 ± 11.58

BMI (kg/m2) 24.73 ± 3.44

Height (cm) 176.75 ± 9.67

Weight (kg) 77.25 ± 12.04
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The ICA model can be succinctly written in vector-matrix form as

x(t) ¼ A:s(t) (2)

The ICA algorithms attempt to find a linear transformation of the

blind sources and solve the blind source problem by finding a de-

mixing matrix W separating the sources by only giving mixture

signals x such that

ŝ(t) ¼ W � x(t) (3)

where ŝ is the estimation of the unobserved sources s with ICA.

ICA is considered an extension of the principal component

analysis that optimizes the covariance matrix of the data which

represent the second order statistics. The different ICA

algorithms extract the independent components by different

optimization procedures including maximation of the non-

Gaussianity of the sources by high order statistics (e.g., kurtosis,

negentropy), minimizing the mutual information between the

sources, or maximum likelihood (42, 46, 47).

It is generally assumed by classical ICA algorithms that all

underlying sources are statistically independent. However, this

assumption is not realistic in several biomedical applications. The

sources contributing to the underlying dynamic in multi-

dimensional signals are not necessarily statistically independent,

but some groups of sources lie in statistically independent multi-

dimensional subspaces with some dependency within a subspace.

In addition, the classical ICA model requires more recordings

than underlying sources that should be estimated. Since only one

recording of the blood pressure waveform at the femoral artery

BPfe is available in this study, we extend the classical model into

SCICA that represents an extreme case of the overcomplete ICA

models, which extract more sources than available sensors. As

illustrated in Figure 2, we break up the single-channel recording

of BPfe into a sequence of time-delayed m-dimensional state

vectors using the method of delay so that the underlying

temporal dynamics in the recorded BPfe is captured, and

consider these as multi-channel mixing input for the classical

ICA (42). We relaxed the statistical independency between the

hidden pressure sources to the statistical independency between

subspaces of the underlying pressure waves (48). The principle of

the non-linear embedding of scalar time series in state space has

been detailed previously (41, 49). In this study, the state space of

BPfe was reconstructed using the method of delay that was first

introduced by Takens (41) and adapted to pulse pressure in our

previous work (50). Briefly, the basic idea consists of viewing the

signal in a high-dimensional Euclidean space and build an

embedding matrix M by simply decomposing the recorded BP

into m-dimensional time-delayed and overlapped state vectors as

M ¼

BPt BPtþt . . . BPtþNt

BPtþt BPtþ2t . . . BPtþ(Nþ1)t

..

. ..
. . .

. ..
.

BPtþ(m�1)t BPtþmt . . . BPtþ(mþN�1)t

2
6664

3
7775 (4)
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FIGURE 2

Principle of the decomposition of the single recording of the intra-arterial blood pressure waveform at femoral artery BPfe by the SCICA: (1) single
recording of BPfe as input signal for the SCICA; (2) non-linear embedding of the BPfe in state space using the method of delay and reconstruction of
time-delayed m-dimensional state vectors (Si, for i= 1,…,N ) that capture the similar dynamics as in BPfe; (3) centering and whitening of state vectors
(Si,p, for i= 1,…,N ) of BPfe as multi-channel input for the standard independent component analysis algorithm in state space; (4) time-delayed state
vectors of all estimated independent compounds X that lie in independent subspaces; (5) clustering of the mixing matrix basis that span the
independent subspaces of the blind pressure sources and projection of X in these independent subspaces. Each cluster of state vectors lie in an
independent subspace and corresponds to an estimated blind source that contribute to the dynamic in the BPfe; and (6) reconstructed sources in
time domain by averaging time-delayed state vectors of the extracted sources and calibration of pressure waveforms with the mean and diastolic
blood pressure of BPfe.

Gbaoui et al. 10.3389/fcvm.2023.1280899
where τ is the time lag and N is the number of the consecutive state

vectors. Takens showed that the Euclidean embedding dimension

m should be at least as large as the freedom degree, but in real-

world applications, the embedding dimension should be

sufficiently larger than the Euclidean embedding dimension to

account for the inherent noise and the dependencies in the time

series data. In practice, m can be chosen based on the sampling

frequency fs, the lowest frequency of interest fL, and the time lag

that can be set to 1, i.e.,

m � fs
fL

(5)

Once the embedding parameters m, τ, and N are adequately

chosen, the embedding matrix M is rich in information about the

underlying temporal dynamics in the recorded pressure wave. In

this contribution, τ was set to one sampling time corresponding

to 2 ms and m was set at least to 500 that corresponds to one

cardiac cycle (∼1 s) in order to capture the cardiac content of the

BP because the lowest frequency of interest of the underlying

blood pressure sources is unknown a priori (25).

In a pre-processing step, the state vectors of BPfe were centered

and whitened prior to the ICA separation. The time-delayed state
Frontiers in Cardiovascular Medicine 05
vectors of all blind sources were extracted by ICA using the Fast-

ICA algorithm because of its speed and easy implementation (51,

52). It uses the fixed-point scheme for finding the local extrema

of the kurtosis

Kurt(x) ¼ E{x4}� 3(E{x2})2 (6)

and solves the blind source problem by maximizing the non-

Gaussianity of the sources.

The extracted state vectors with ICA corresponding to single

pressure waveforms BPfe,Si (i = 1,…, k) are still correlated

compounds. Thus, a post-processing step is needed to group

these compounds together. In this step, we cluster the basic

functions spanning the independent subspace of estimated

pressure waveforms using the K-means algorithm and project the

ICA outputs X into these subspaces. This is done by

Mi ¼ A(:, Ci):W(Ci, :):X (7)

where Mi is the matrix of delay and Ci is the cluster of the ith

extracted pressure wave BPfe,Si, respectively. In the last stage, the

extracted pressure waveforms BPfe,Si were reconstructed in
frontiersin.org
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measurement space by performing an average of the rows of the

their corresponding embedding matrix Mi

BPfe,Si(t) ¼ 1
m

Xm
k¼1

Mi
k,(tþk�1) for t ¼ 1, 2, . . . , N (8)

The estimated pressure waves with ICA are generally mean free and

scaled versions of the original underlying pressure waveforms. To

correct this scaling issue, we calibrated the estimated pressure

waveforms with MAP and DBP of the measured intra-arterial

BPfe. We base this procedure on the assumption that the MAP

and DBP are nearly constant in the arterial system.
2.2.2. Evaluation of the SCICA model performance
The accuracy of the SCICA model to estimate the whole cBP

waveform morphology was evaluated by different performance

metrics. The association between the estimated and observed cBP

waveforms was evaluated by Pearson’s correlation. The inter-rater

and intra-rater reliability was performed by ICC according to the

Shrout and Fleiss schema (43) using the correlation between the

estimated and observed cBP in two raters. The estimation error

was assessed by the mean absolute error (MAE), the root mean

square error (RMSE), and the relative RMSE (RRMSE). The

MAE is the average error obtained from differences between

the recorded and the estimated values of the cBP. The RMSE is

the average square difference between the observed measured and

the predicted values of the cBP, in order to obtain a higher

weight for large errors. MAE and RMSE are calculated as the

following equations:

MAE ¼ 1
n

Xn
i¼1

BPao,i � BPfe,S1i (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(BPao,i � BPfe,S1i )
2

s
(10)

where n is the sample size, BPao,i is the ith value of the recorded

BPao at the ascending aorta, and BPfe,S1i is the ith value of the

estimated BPfe,S1 with SCICA.

For a parametric test of the SCICA performance to estimate the

cBP waveform morphology, the RRMSEm and RRMSEr were

calculated as normalization of the RMSE to the mean of the

measured BPao, and to the root mean square (RMS) of the BPao
as the following equations:

RRMSEm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
(BPao,i � BPfe,S1i )

2

r
mean(BPao)

: 100 (11)

RRMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
(BPao,i � BPfe,S1i )

2

r
RMS(BPao)

: 100 (12)
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2.2.3. Estimation of central indices by SCICA
Several pulse pressure parameters are affected by pulse wave

transmission and reflection between aorta and peripheral arteries.

Thus, we assess additionally the accuracy of the SCICA tool to

estimate central indices. The SBP, DBP, MAP, and PP were

derived from the estimated cBP from intra-arterial BPfe by

SCICA and the intra-aortic BPao, and the regression analysis was

performed to assess the linear relationship between the estimated

and the intra-aortic parameters. The linear fit was quantified by

the coefficient of determination R2, where R is the Pearson

correlation coefficient. In addition, Bland–Altman plots were

used to demonstrate the agreement between estimated and

reference parameters. Bland–Altman plots are scatter plots of

the mean difference �d against the mean of the two assay

measurements. The statistical agreement limits are calculated

using the mean difference �d and its standard deviation SD as
�d � 1:96 SD and �d þ 1:96 SD. For good agreement between the

two methods, 95% of the differences data points should lie

within these limits of agreement.
3. Results

3.1. Participant characteristics

The pressure recordings were acquired from eight participants

with a mean age of 34 ± 11.56 years, predominantly being male

(87.5%). Demographic information of the study population is

outlined in Table 1.
3.2. Estimation of the central aortic pressure
by SCICA

The separation of BPfe into their underlying blind sources by

SCICA showed in all enrolled patients in this study a presence of

three pressure waveform sources contributing to determination of

its morphology. As depicted in Figure 3, the first estimated

component BPfe,S1 shows the largest contribution to BPfe. The

second extracted source BPfe,S2 is similar to the biphasic blood

waveform of the typical blood flow at the femoral artery and

plays a pivotal role in the augmentation of pressure in the

systole. It consists of a sharp systolic forward up rise and fall,

and a backward wave identical to the reverse flow during early

diastole. The third component BPfe,S3 provides the smallest

contribution to BPfe, but plays an important role in the time

arrival of the BPfe. The BPfe,S3 is predominantly composed of a

backward wave that demonstrates an inverted, scaled, and

compressed form of BPfe,S1 and occurs directly after the arrival of

BPfe,S1 at the femoral artery, as depicted in Figures 3D, 4C. This

indicates that this backward wave probably represents a reflection

of BPfe,S1 that arises locally at the femoral artery, and that BPfe,S3
may represent an overlapping of discrete reflections of the

incident BPfe,S1 occurring between aorta and femoral arteries

because of impedance discontinuities due to radius and tonus

changes. The inflection point corresponding to dicrotic notch
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FIGURE 3

Decomposition of a 10-s segment intra-arterial femoral blood pressure BPfe into blind pressure signals contributing to its dynamic using SCICA: (A) the
recorded intra-arterial BPfe (solid line) and the blood pressure at the ascending aorta BPao (dashed line) during coronary artery surgery; (B) the first
estimated blood pressure BPfe,S1 (solid line) has the largest contribution to BPfe and shows nearly similar time and morphological characteristics to
the measured intra-arterial BPao including systolic and diastolic blood pressure, inflection points such as anacrotic notch, systolic rise, and
exponential fall-off during the diastole. The anacrotic notch is obvious in the estimated BPfe,S1 but delayed due to pulse travel time from root to the
periphery. However, the incisura of BPfe,S1 is smother compared to the incisura of the intra-arterial BPao. The time delay Dtao,fe between BPao and
BPfe,S1 is nearly similar to the time delay Dtao,S1 between BPao and BPfe,S1; (C) the second estimated BPfe,S2 has similarities with the biphasic blood
flow waveform that corresponds to typical blood flow waveform at the femoral artery. It consists of a sharp systolic forward up rise and fall, and a
backward wave identical to the reverse flow during early diastole; (D) the third estimated BPfe,S3 has the minimal contribution to the BPfe but play an
important role in its time arrival at the femoral artery. It is predominantly composed from a backward wave that has inversed, scaled, and compressed
form of BPfe,S1 and occurs directly after the arrival of BPfe,S1 at the femoral artery. This may indicate that BPfe,S3 corresponds to reflected waves of
BPfe,S1.
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occurred at a relatively higher pressure as the incisura of the

measured cBP, as illustrated in Figures 4B, 5B, and was not

obvious in the reflected wave in all patients, as shown in

Figure 3D compared to Figure 4C.

BPfe,S1 and BPao arise with similar systolic upstroke, as shown

in Figure 3B. After closure of the aortic valve, BPao and BPS1,fe
decrease to the baseline levels at the end diastole with nearly

similar exponential diastolic decay. The time delay Δτao,S1
between BPfe,S1 and BPao is close to the time delay Δτao,fe
between the measured BPfe and BPao that corresponds to the

transit time of the pressure wave from the ascending aorta to the

femoral artery. Moreover, the pressure wave activity of BPfe,S2
and BPfe,S3 during diastole was minimal and very close to zero,

matching the diastolic flow. BPfe,S1 was the main driver of the

exponential pressure fall-off in diastole in all patient recordings.
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Furthermore, the performance metrics MAE, RMSE, RRMSEm,

and RRMSEr evaluating the difference between the estimated BPfe,

S1 and the measured BPao using a window duration of 10 s and a

time lag of 2 ms were relatively consistent across all subjects with

mean values 0.159 ± 1.629 mmHg, 5.153 ± 0.957 mmHg, 5.424%

± 1.304%, and 5.354% ± 1.263% respectively, as shown in

Table 2. However, with decreasing duration of BPfe (but no

shorter than one cardiac cycle), the difference between the

estimated and measured cBP morphologies increased relatively.

However, the performance of the SCICA model was sufficiently

good with RMSE ≤10 mmHg, RRMSEm ≤10%, and RRMSEr
≤10%. In addition, the high ICC of 0.94 showed a good inter-

subject and intra-subject consistency of the cBP estimation by

SCICA approach. Furthermore, the high number of state vectors

due to low embedding dimension led to distorted pressure
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1280899
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

Estimation of the contribution of the pressure wave reflection by SCICA: (A) recorded intra-arterial blood pressure at the femoral artery BPfe (black) and
blood pressure at the ascending aorta BPao (gray) during coronary artery surgery; (B) first estimated pressure waveform BPfe,S1 with similar morphological
and time characteristics such as BPao; and (C) the third extracted pressure waveform BPfe,S3 has the minimal contribution to the recorded BPfe. The first
backward wavelet of BPfe,S3 occurs directly after the arrival of BPfe,S1 at the femoral artery. It has an inversed, scaled, and compressed form of the BPfe,S1

that may correspond to a local reflection of BPfe,S1 at the femoral artery. The other wavelets contributing to BPfe,S3 morphology occur in the systole and
early diastole The late diastolic part of BPfe,S3 is nearly wave free.

TABLE 2 Performance evaluation of SCICA approach to estimate the whole central blood pressure waveform morphology from the femoral artery.

Patient MAE (mmHg) RMSE (mmHg) RRMSEm (%) RRMSEr (%) R1 R2
#1 0.537 5.182 5.709 5.665 0.961 0.960

#2 1.238 6.309 5.847 5.810 0.951 0.981

#3 −1.158 4.207 4.780 4.713 0.984 0.984

#4 0.663 6.348 6.945 6.684 0.965 0.957

#5 1.853 4.849 4.376 4.354 0.978 0.982

#6 −0.916 3.607 3.627 3.578 0.974 0.973

#7 −2.761 5.657 7.432 7.367 0.890 0.858

#8 1.812 5.061 4.675 4.659 0.940 0.953

Total 0.159 ± 1.629 5.153 ± 0.957 5.424 ± 1.304 5.354 ± 1.263 0.955 ± 0.301 0.956 ± 0.415

RRMSEm, relative RMSE normalized with the mean of the observed cBP; RRMSEr relative RMSE normalized with the root mean square of the observed cBP; R1 and R2,

correlation between the estimated and measured cBP in first and second measurement (rater), respectively.

The metrics were calculated using BPfe waves with a duration of 10 s, and a constant time lag of τ= 2 ms for all patients.
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waveform, smoothed, or suppressed notch points. The embedding

dimension was the most sensitive embedding parameter that

showed strong intra-subject and inter-subject variability.
3.3. Evaluation of derived parameters from
estimated aortic blood pressure by SCICA

In this part, we investigate the accuracy of SCICA to estimate

central indices from BPfe,S1. As depicted in Figure 5, the

regression analysis showed a strong linear fit between the

estimated parameters MAPfe,S1, SBPfe,S1, DBPfe,S1, and PPfe,S1
derived from the extracted BPfe,S1 and the intra-aortic parameters

MAPao, SBPao, DBPao, and PPao with very high coefficient of
Frontiers in Cardiovascular Medicine 08
determination R2 of 0.9821, 0,9811, 0.9910, and 0.9611

respectively, and following regression functions:

MAPfe,S1 ¼ 1:025 MAPao � 0:458 (13)

SBPfe,S1 ¼ 0:995 SBPao � 1:101 (14)

DBPfe,S1 ¼ 1:050 DBPao þ 1:225 (15)

PPfe,S1 ¼ 1:031 PPao � 2:659 (16)

As illustrated in Figure 6 and summarized in Table 3, Bland–

Altman plots show good agreements between estimated and

intra-aortic features with a mean difference of −0.54 ±
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FIGURE 5

Linear regression between the parameters derived from the estimated central pressure BPfe,S1 from the pressure recording at the femoral artery BPfe by
SCICA and the central parameters derived from the intra-aortic pressure BPao. The solid lines represent the regression lines of best fit and the dashed lines
represent 95% confidence intervals (95% CI) for the regression lines. The regression analysis shows a strong linear relationship between the estimated
central indices by SCICA and intra-aortic indices: (A) MAPfe,S1 and MAPao, (B) SBPfe,S1 and SBPao, (C) DBPfe,S1 and DBPao, and (D) PPfe,S1 and PPao with
very high coefficients of determination R2 of 0.98, 0.98, 0.99, and 0.96, respectively.

TABLE 3 Evaluation of the SCICA approach to estimate the central
parameters using the regression and Bland–Altman analyses.

Biomarkers Mean differencea SD of meanb 95% CI R2

SBP (mmHg) −0.54 2.42 −5.28 to 4.20 0.98

DBP (mmHg) −1.97 1.62 −5.14 to 1.20 0.99

MAP (mmHg) −1.49 1.40 −4.25 to 1.26 0.98

PP (mmHg) 1.43 2.79 −4.03 to 6.89 0.96

CI, confidence interval.
aMean difference between the intra-aortic and estimated parameters.
bStandard deviation of the mean difference.
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2.42 mmHg [95% confidence interval (CI): −5.28 to 4.21] for SBP,

−1.97 ± 1.62 mmHg (95% CI: −5.14 to 1.20) for DBP, −1.49 ±
1.40 mmHg (95% CI: −4.25 to 1.26) for MAP, and 1.43 ± 2.79

(95% CI: −4.03 to 6.89) for PP. Most data points (more than

95%) lie within the limits of agreements −0.54 ± 4.74 mmHg,

−1.97 ± 3.18 mmHg, −1.49 ± 2.74 mmHg, and 1.43 ± 5.47 mmHg

for SBP, DBP, MAP, and PP, respectively.

According to the high morphological association between BPao
and BPfe,S1 with an averaged high correlation of 0.96, and a high

ICC of 0.94, as well as the relative low morphological difference

in-between with MAE and RMSE lower than 6 mmHg, RRMSE

lower than 6%, and the accurate estimation of the central

parameters including SBP, DBP, PP, and MAP, the estimated

pressure wave BPfe,S1 was considered to be an estimate of the cBP.
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4. Discussion

We introduced in this study a novel cardiovascular tool for the

separation of the multivariate pBP into their blind pressure

waveforms in humans without a priory assumption on the

arterial model or the origins of these pressure compounds. To

our knowledge, the proposed SCICA approach is the first ICA

tool that estimates the cBP waveform using only one recording of

intra-arterial BPfe. Most ICA algorithms applied to the

decomposition of the BP rely on the spatial analysis, i.e., use a

synchronized multi-recording of BP at distal arteries to estimate

the cBP. The proposed SCICA approach in this contribution can

extract multiple underlying pressure sources using only the

temporal information inherent within a single recording of pBP

using a non-linear embedding in a high-dimensional state space.

SCICA estimated three independent pressure waveforms from

BPfe that interact linearly with each other to determine the

pressure wave morphology and provided an explanation of shape

distortion at this artery. Similar results were observed in finger

PPG decomposition by SCICA in healthy subjects in our

previous works (50, 53), in radial pressure waveform in our

recent ongoing works, and can be validated in other distal and

proximal arteries. The first extracted pressure wave BPfe,S1
showed in all patient recordings temporal and morphological

characteristic relatively similar to intra-aortic BPao at the
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FIGURE 6

Bland–Altman plots comparing the estimated parameters derived from the extracted BPfe,S1 from the intra-artery BPfe using SCICA with the intra-aortic
parameters derived from intra-aortic BPao: (A) MAP, (B) PP, (C) SBP, and (D) DBP. The dotted lines show the mean difference between the reference and
estimated measurements. The 95% limits of agreement are represented with bold lines and are computed as the mean difference plus or minus 1.96 times
of its standard deviation SD: mean− 1.96 SD and mean + 1.96 SD. Bland–Altman plots show a good agreement between the estimated central parameters
by SCICA and the intra-aortic features because 95% of mean differences points lie within the limit of agreements.
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ascending aorta and played the dominant role in determining the

morphology of the pressure waveform at the femoral artery.

According to the relatively consistent MAE and RMSE

(<6 mmHg) across the study subjects, as well as the very good

RRMSE lower than 6%, the BPfe,S1 could be considered a good

estimate of the cBP waveform. The difference between the

estimated and measured cBP waveforms increases with decreased

duration of the peripheral blood pressure and the performance

decreases, but not considerably. In the literature, there are no

enough specific guidelines for an optimal selection of duration,

m or τ; only general recommendations are available (54). Our

preliminary results indicated that the shorter duration of the pBP

(but not shorter than one cardiac cycle) is sufficient for a

relatively good performance with RMSE ≤10 and RRMSE ≤10%.
This may be due to the fact that the important cardiac patterns

in our study are already apparent at short lengths such as one

cardiac cycle. Furthermore, the most available methods and

commercial devices that estimate non-invasively the cBP from

the pBP evaluate mainly the performance of their estimation

methods according to the error between the estimated and

observed central parameters such as SBP, DBP, MAP, PP, or

augmentation index (13, 15, 55, 56). The literature is quite sparse

considering the accuracy of the non-invasive estimation of the

whole cBP morphology from pBP. Several blind source separation

approaches and machine learning models reconstructed the cBP
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from multiple measurements of pBP. However, few information

about the accuracy of the whole waveform reconstruction is

available. Magbool et al. reported an average RMSE lower than

7 mmHg using different machine learning models, and an

average RMSE lower than 4 mmHg using hybrid machine

learning and multi-channel blind source separation identification

models. However, virtual databases were used to train the

models (29).

The morphological difference between the estimated cBP

with SCICA approach and the recorded cBP waveform at the

ascending aorta could be in part due to the technical issues in

clinical settings that cause a damping of pBP waveforms. On

the other hand, the SCICA approach estimates the cBP as a

blind source without additional pressure compounds contrary

to the measured cBP at the ascending aorta that represent a

summation of the forward pressure wave and other pressure

waves such as reflected waveforms occurring at distal and

proximal sites. Thus, it is expected that the predicted pressure

waveform has some difference in the key points such anacrotic

notch and incisura. This may explain the occurrence of the

incisura of the estimated cBP with SCICA in higher pressure

compared with the measured BPao, as previously explained in

the introduction und illustrated in Figure 1. Moreover, our

results showed that a small embedding dimension led to

smoothed notches.
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The second estimated blind source BPfe,S2 showed a similarity

with a biphasic blood flow waveform that corresponds to typical

flow wave at the femoral artery in all patients and seems to play

a pivotal role in the augmentation and morphological change

during the systole at this artery. Similar morphology showed

BPexc in previous works using the decomposition of cBP and pBP

by the RWC model that assumes that the cBP and pBP are

summation of a reservoir pressure that accounts for global

arterial compliance of the arteries and a BPexc that is determined

by local arterial characteristics (57). The BPres is homogeneous

throughout the arterial system, but varies temporally with a time

lag that depends on the travel time from the root to the distal

location and properties of the arteries (39) and could be

estimated at any peripheral artery. Accumulating evidence

suggested that BPexc at the aorta and peripheral arteries correlate

directly with the local blood flow waveform (39, 40). Moreover,

the BPfe,S3 showed the smallest contribution to the BPfe and

consisted predominantly of a backward pressure wave that may

represent wave reflection of BPfe,S1. This agrees with the less

prominent role of the wave reflection in pressure augmentation.

Mounting evidence suggests that discrete wave reflection plays a

less important role in the shape determination of the cBP

waveform than originally conceived (58–60). Furthermore, the

results of SCICA showed that the wave activity in the late

diastole is minimal and mainly related to BPfe,S1, whereas the

wave activity of BPfe,S2 and BPfe,S3 occurred mainly during the

systole. These findings are in accordance with the RWC theory.

A growing body of literature supports the largest contribution of

BPres to the pressure wave during diastole (57).

Adding to this, SCICA estimated the central parameters with a

clinically acceptable accuracy. The Bland–Altman analysis showed

a very good agreement between intra-aortic and the estimated

parameters from the femoral artery with SCICA. The mean

errors of all estimated central parameters were generally less than

3 mmHg with an acceptable scatter of the data points in a

confidence interval between −5 and 6 mmHg. Of particular

significance was the estimated cSBP with a mean error of –

0.54 mmHg and a precision (SD) of 2.421 mmHg (95% CI:

−5.284 to 4.205), which both, mean error and SD, fall within the

limits proposed by the guidelines of the Association for the

Advancement of Medical Instrumentation, namely, a mean error

lower than 5 mmHg and a precision lower than 8 mmHg. In

addition, the estimated cSBP with SCICA in this study was very

similar to the value of the mean error reported in systematic

reviews and meta-analysis of non-invasive cBP validation studies

of commercial devices. Cheng et al. reported a small error of

estimated cSBP with a mean and standard deviation of difference

−1.1 ± 4.1 mmHg (95% CI: −9.1 to 6.9 mmHg) (12). In a second

meta-analysis, the mean error of estimate cSBP in devices that

was calibrated using invasively recorded BP was −1.08 mmHg

(95% CI: −2.81 to 0.65 mmHg) (56).

Of particular importance regarding the SCICA tool is the

determination of the pressure waveforms underlying the pressure

dynamics and the time delay in-between. These data hide

valuable information about the augmentation of pressure,

reflection site of the pressure wave in the circulatory system, and
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state of the endothelium, and could be used to derive new

augmentation and reflection indices. Compared with methods

currently used, there is no need for any supplementary device to

calibrate the extracted pressure waveforms or a plurality of

recording to conceptualize the underlying arterial hemodynamic.

Only the statistical independency of the extracted blind source

pressures, MAP, and DBP of the measured intra-arterial BPfe was

used to calibrate the estimated pressure waves. Most of the

commercial devices consider the widely accepted assumption that

the MAP and DBP are nearly constant in the arterial tree to

calibrate pBP. No additional brachial cuff calibration was

required in this study. This may indicate that the newly

developed SCICA method could avoid additional errors induced

with the not accurate brachial cuff BP measurement. Different

validation studies reported that the discrepancy between

estimated SBP by arterial tonometer and intra-aortic SBP appears

to be largely related to the calibration process of non-invasively

assessed pulse pressure waveform. Moreover, in contrary to the

commercially available device for generating cBP non-invasively

from the peripheral arteries that use a generalized transfer

function, the SCICA tool is time- and subject-specific. No

averaging over time or over a population is required.

Despite the aforementioned findings, our study has several

limitations. The main limitation of this study is the validation in

a small data set with a prevalence of male participants. Second,

the pressure recordings were originally acquired in patients

undergoing cardiac catheterization, who are not necessarily

representative of the general population. Nonetheless, similar

pressure waveform estimation was observed in PPG

decomposition with SCICA in our previous works (50, 53) and

in radial BP in healthy subjects. We believe that the results can

be extrapolated to the general population with some confidence.

A third limitation is the use of only one ICA algorithm, the Fast-

ICA algorithm that assumes that the recorded BP signal is a

linear combination of the blind pressure waves contributing to its

dynamics. This is, however, not necessarily the case. We cannot

rule out that more sources are available and could be

convolutively added in the detected waveforms. Thus, non-linear

and convolutive ICA algorithms should be investigated in future

works to compare the accuracy of the ICA approaches and the

number of pressure waveforms. Fourth, the embedding

parameters play a decisive role in the detection of the underlying

dynamics and estimation of the underlying pressure compounds.

In the present contribution, only the time of delay embedding

method was implemented. This method has some limitations in

the presence of noise (61). Thus, in a future investigation, several

embedding approaches such as derivative embedding or other

dynamical prediction methods should be implemented and

optimized in a larger population to analyze the impact of the

embedding parameters for state space on the performance of the

SCICA approach. In the present research, the pressure waveforms

were sampled with a constant sampling frequency of 500 Hz in

clinical settings. This corresponds to a time lag of 2 ms that

provided a good model performance. Generally, the sampling

frequency plays a key role in the determination of the embedding

time lag. A high sampling rate led to redundant information due
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to the small time lag, and similarity of the consecutive samples (the

trajectory in state space is close to the diagonal), whereas a low

sampling rate led to a large embedding time lag that may cause a

distortion of the underlying dynamic (the geometric structure of

the trajectory in state space become more complex and the

dispersed) (61). Thus, the impact of different sampling rates on

the performance of the SCICA model should be investigated in

future works. In addition, the embedding dimension was the

most sensitive embedding parameter that showed inter-subject

and intra-subject variability and should be analyzed in a larger

population using different methods. Finally, the proposed SCICA

model has similarities with the reservoir-excess arterial model.

Thus, a comparison of the extracted pressure compounds with

both models should be compared in future investigation in order

to explain the physiology of the estimated pressure waves.
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