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Abstract: For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element
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vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott-
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1 Introduction

Solutions to PDEs with non-integer powers of differential operators, such as the fractional Laplacian (-A)S,
s € (0, 1), which are commonly used to describe anomalous, non-local diffusion processes, typically exhibit a sin-
gular behavior at the boundary of the computational domain. Thus, solutions to fractional PDEs are, in general,
less regular than in the case of integer order powers [24], and as a consequence, finite element approximations
on uniform meshes lead to non-optimal orders of convergence [2].

The nature of this boundary layer singularity is well understood [23, 24], and regularity estimates with
weights can be obtained [2, 8, 19], which in turn can be used to a-priori design suitable meshes that allow to recu-
perate better convergence rates. In this sense, graded meshes with appropriate grading factors give algebraic
rates for the finite regularity case [2, 23], while exponentially graded meshes can be used to obtain exponentially
convergent hp-FEM approximations in the case of weighted analytic regularity [18].

A different approach to dealing with the singularities at the boundary, which we employ here, is to use
adaptive finite element methods (AFEM). Hereby, meshes are locally refined only where some error measure
indicates large errors. We consider a classical adaptive loop of the form SOLVE-ESTIMATE-MARK—REFINE; see
e.g.[15]. The key to the success of such an adaptive strategy is the choice of error indicators for the ESTIMATE step.

A classical strategy for a posteriori error estimation is to take the (weighted) residual, which in our case
takes the form |f — (—A)Sup|l 2, with f denoting the data and uj, being the FEM solution, as local error indicator.
After correcting this residual with a suitable weight function such that one indeed obtains a well-defined L2-
function, one obtains an algorithm that converges with optimal algebraic rates [20]. For other strategies on
a posteriori error estimation for classical, integer order differential operators, we refer to [5, 11, 29, 36]. While
the weighted residual error estimator has nice analytical properties, it has distinct drawbacks for fractional
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PDEs. Most notably, the computation of the L2-norm enforces the use of accurate, expensive quadrature rules
as the integrand tends to be singular, and the evaluation of the fractional Laplacian in the quadrature points is
expensive as well.

Therefore, in the following, we consider a different strategy for error estimation using approximations on
different refinement levels to measure the local errors. The advantage of this approach is that the costly evalua-
tion of the fractional differential operator is avoided. Two-level or hierarchical error estimators are commonly
used in practice [16, 25, 28, 30] and perform well in numerical examples. On the analytical side, reliability of
the error indicators always hinges on certain saturation assumptions, i.e., that refinement reduces the error by
a contraction factor g < 1. Under these assumptions, there even holds optimality for adaptive finite element and
boundary element methods [32]. In this article, we show a corresponding result for the fractional Laplacian.
In fact, for d = 2,3 and under certain saturation assumptions, we show discrete efficiency and reliability of
the error indicators, which implies linear convergence of the error between exact solution and AFEM approx-
imation. For the case of two spatial dimensions, we show discrete stability as well, which together with the
frameworks of [11, 32] even provides optimal algebraic convergence of the algorithm.

The present paper is structured as follows. In Section 2, we introduce the model problem, its discretiza-
tion as well as the adaptive finite element method based on two-level error estimation. Finally, we present our
main results, Theorem 7-11. Section 3 is dedicated to the proofs of the main results. A key step that might be of
independent interest is the equivalence of nodal interpolation and Scott—Zhang projection on discrete spaces
in the L?-sense, Theorem 15. Finally, Section 4 presents some numerical examples that underline the optimal
convergence of the adaptive algorithm.

Throughout this article, we write < to abbreviate < up to a generic constant C > 0 that does not depend on
critical parameters in our analysis. Moreover, we write = to indicate that both estimates < and > hold.

2 Setting and Main Results

LetQ ¢ R?with d € {2, 3} be abounded polygonal/polyhedral Lipschitz domain and s € (0, 1). We note that there
are several ways to define non-integer powers of differential operators such as the fractional Laplacian (-A)S. A
classical definition on the full space is given as operator with Fourier symbol |{|?¢, but definitions using spectral
theory, semi-group approaches or PDE extensions can also be employed [9, 10, 27]. We note that these approaches
are equivalent on the full space, but not on a hounded domain.

Here, for a sufficiently smooth function u defined on R4 and x € Q, we use the integral fractional Laplacian
(-A)u, defined pointwise as the Cauchy principal value

u(x) - u(y) 225sT(4 +55)

(=A)Su(x) := C(d, s) PV. I dy, C(d,s):= po

d+2s
X
i | y|

where I'(-) is the Gamma function.
In this paper, we are interested in the solution u of the Dirichlet problem
(-0)’u=f inQ,
u=0 inRY\Q,
where f € L?(Q) is a given right-hand side. The proper function spaces for this problem are fractional Sobolev

spaces with an exterior boundary condition defined by means of the Aronstein—Slobodeckij norm for any open
set w ¢ RY,

2

s [ v ST,

Ve = | | S s Wi =M M
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B (@)= {ue B R [u=00nRNQ}, Vi, o = Vg + 1V/r5olfq)

where rag(x) := dist(x, 0Q) is the Euclidean distance of a point x € Q to the boundary of Q.
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The weak formulation of our model problem reads as: find u € H%(Q) such that

_Cd,s) (u(x) = u(y))(w(x) - w(y)) B
-« I j e dy dx = jfw dx @1

R4 R4 Q

a(u,w) :

for all w € H5(Q) (see [2]). For u € H%(Q), the energy-norm ||u|| := a(u, u)"/? is an equivalent norm on H%(Q)
(see [2]); thus, for given f € L%(Q), the weak formulation (2.1) has a unique solution.

2.1 Discretization

In the following, we consider a finite element discretization of the fractional PDE, which is based on regular
(in the sense of Ciarlet [13], i.e., there are no hanging nodes) meshes T, that decompose Q into (open) triangles/
tetrahedrons. The subscript £ € Ny will refer to the ¢-th step of an iterative algorithm. Moreover, we assume
that all triangulations employed are y-shape regular, meaning that there exists a constant y > 0 such that

max(diam(T)/|T|V4) < y,
TeT,

where diam(T) denotes the Euclidean diameter of a triangle T and |T| denotes the Lebesgue measure of T.

The set of all nodes of T, (i.e., the set of all vertices of elements in the triangulation T;) is denoted by Ng,.
Furthermore, N;}Z denotes the set of all nodes of T, that lie inside of Q and not on the boundary. Moreover, for
T € Ty, we write N}E(T) for the set of all vertices of T that lie inside of Q. For an element T € T, the set

Q,[T] := interior U{F | T € Tp, TNT' # 0}

is called the element patch of T. For a triangulation T, the associated mesh-width function h, € L*(Q) is
elementwise defined by h|r := |T|V/? for T € T.
Based on a regular triangulation T,, we define the space of globally continuous, piecewise linear polynomi-
als as
8(Te) :={u e C(Q) | ulr e PHT) forall T € Tp},  83(Te) := 8'(Te) N Hy(Q),

where P1(T) is the space of all linear polynomials on T.

Due to H'(Q) ¢ H%(Q) for s € (0,1) (see [14, Propositions 2.1 and 2.2]), we obtain that S(l](‘Ig) is a closed
subspace of H%(Q) for all regular triangulations T,. The discretization of the weak formulation (2.1) thus reads
as: find the Galerkin solution u, € 8(1](7 ¢), which satisfies

a(up, We) = J fwedx for all we € S3(Te). 2.2)
Q

By the Lax-Milgram lemma, one also obtains unique solvability of the discrete Galerkin formulation. Hence-
forth, by u,, we always denote the piecewise linear Galerkin solution corresponding to T,, whereas u shall
always refer to the exact solution of (2.1).

2.2 Mesh Refinement

In this work, we consider meshes obtained from consecutive refinement of an initial triangulation T. We
assume that refinement is done by newest vertex bisection (NVB). That is, bisecting an element T of a trian-
gulation T, always follows the same principle, namely that an edge opposite to the newest vertex is halved; see
e.g. [26] for d = 2 or [35] for d > 2.

Consider a triangulation T, and a set M, ¢ T, of marked elements. As in [6, 32], we use the following nota-
tion: when d = 2, the triangulation T, := refine(7,, M,) shall denote the coarsest NVB refinement of 7, such
that all edges of marked elements T € T, are bisected. This corresponds to bisecting every marked element three
times into four sons; see e.g. [17].
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Newest vertex bisection in 3D is a bit more complex: in order to guarantee y-shape regularity of refined
meshes, each element T € T, has a certain refinement type f8 € {0, 1, 2} which specifies the next bisection step;
see [17, 33, 35] for further discussion.

In the three-dimensional case, it was required in [17] that T, := refine(T,, M,) is the coarsest NVB refine-
ment of T, such that all faces of marked elements contain an interior node. According to [17], this can be done
by splitting every marked element according to a certain rule, where the exact rule depends on the refinement
parameter 8 € {0,1,2} of T.If § = 0 or 8 = 1, the element T is split into 18 sons with 14 nodes. If § = 2, then T
is split into 20 sons with 14 nodes. The splitting of a marked element T is such that the 14 new nodes always
consist of the 4 original nodes of T, the midpoints of the 6 edges of T and 1 node in the interior of each of the
4 faces of T, respectively. See [17] for a thorough discussion.

In this work, we go a step further and require that, in 3D, the refinement T, := refine(T,, M,) is the coars-
est NVB refinement of T, such that all faces of elements T € A(M,) contain an interior node. Here, A(M,) is
defined as

AM,) = U{T’ €T, | T' € M, or T' shares at least one edge with an element T € M,},

i.e, it is the set of all elements in T, that are either marked themselves or share one or more edges with
a marked element. If we denote the refinement strategy from [17] as refinergp( - ) and the one used in this work
as refinepsy (- ), then we observe that there holds

refinepsw(Te, Me) = refineggp(Te, A(Me)) (2.3)

for all subsets M, € Tp.

Remark 1. The two-dimensional refinement rule refine(-) and the three-dimensional rules refineggp(-) and
refinepsw (- ) have the property that the refinement of a marked element does not depend on its neighbors,
i.e,, the mesh closure step does not further refine sons of marked elements. In particular, for a refinement
Te41 = refine(T,, M,) and the uniform refinement 7, := refine(T,, T;), there holds that sons of marked
elements are the same in J,.1 and J,. The same is true if refineggp(-) is used. For refinepsw(-), not only
the sons of marked elements but the sons of all elements T € A(M,) are the same in T,.1 and T¢ . In the two-
dimensional case, this fact is easy to check; for refinegcp(-), we refer to [17], and due to (2.3), the arguments
provided in [17] extend to refinepgw( - ).

Remark 2. Note that, for a marked element T € M, the number of elements T’ € T, that share an edge with T
is bounded in terms of the y-shape regularity of T,. That is, there holds

#Mp < #A(My) < CHEM,,

with C > 0 depending only on the y-shape regularity of T,. That is, the number of elements in A(M,) can be con-
trolled in terms of the number of elements in M,, and this suggests that it might be possible to control the amount
of refined elements in refinepsyw (T¢, M) in terms of the number of refined elements in refineggp(T,, Mp).

From now on, if not stated otherwise, we will only consider refinersw(-) as refinement strategy, and we write
refine(-) instead of refinegsw( - ).

Let us mention that, for a one-level refinement ;1 := refine(T,, M) of T, elementary geometric consid-
erations provide equivalence of the corresponding mesh-size functions

hes1 < he < Cheyy, (2.4)

where C =2 ford = 2 and C = V32 for d = 3.
Remark 1 implies the following lemma.

Lemma 3. For a triangulation T, and a subset M, < T, consider the refinement T,,1 := refine(T,, My), as well
as the uniform refinement T, ,, := refine(T,, T¢). Then T, is coarser than Tp y, Le.,

forall T' € T,,, there exists T € Tp4q such that T' c T.
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Proof. According to Remark 1, marked elements T € T, have the same sons in T,,1 and T, . By definition, and
since Ty is a conforming triangulation, T, is coarser than T . O

For a triangulation T, the symbol refine(J,) shall denote the (infinite) set of all triangulations that can be
obtained by refining 7, finitely many times. Henceforth, we assume that an initial conforming triangulation
To is given, and we write T := refine(T)) for the set of all possible refinements of Tj.

2.3 Two-Level Error Estimation and Adaptive FEM

For eachnode z € N;e, there is a unique function (pﬁ € 8(1)(‘7 ) that satisfies (oﬁ(z’ ) =68, forallz’ € Nf}e, where
8,7 denotes the Kronecker delta. The family {¢¢ | z € N,}e} forms a basis of 85(? ), and we call this basis the
nodal basis associated to T,. Furthermore, for the uniform refinement 7, ;, := refine(T;, T¢), let {gog’" |z € N‘?re,u}
be the nodal basis associated to T .

For any triangle T € T, the local contribution of the two-level error estimator (see e.g. [32]) is defined as

(2.5)

If, 05"V 12(0) — alute, 93]
ne(M?= Y ze(9s")?,  where ;") = )2 v - e 92
2eN;, (D\Na, ozl

and where N}e ; (T) is the set of all vertices of sons of T that do not lie on the boundary of Q. Furthermore, for
any subset U, < Ty, we set ne(Ue)? := Y peqq, Ne(T)* and ne := ne(Te).

Remark 4. In [4], it was noted that there holds Tg((pg’“) = |Gz (ueu — ue)ll, where G;: S(l)(‘J'g,u) — span(goﬁ’") is
the Galerkin projection onto span((pﬁ’“) andugy € 8(1)(7 ¢.u) 1s the Galerkin solution corresponding to the uniform
refinement Ty ;.

We employ an adaptive algorithm of the form SOLVE-ESTIMATE-MARK—REFINE. As error estimators, we use the
two-level indicators defined above. The marking step is done by using Dérfler marking [15], which in fact can
be done in linear complexity [31]. Finally, mesh refinement is done with newest vertex bisection [26, 35].

Algorithm 5. Input: Conforming triangulation Ty, right-hand side f, refinement parameter 6 € (0, 1].
For¢=0,1,2,...,

(1) compute the unique solution u, € 8(1)(‘.T 2) of (2.2);

(2) for each T € T,, compute the two-level estimator contribution 7,(T) defined in (2.5) and the total error
estimator ny;

(3) find a set M, < T, of minimal cardinality such that n¢(M,)? > 6n%;

(4) generate the refined mesh Jp,1 := refine(JT,, Mp).

Output: Sequence of triangulations (T¢)ecn, With associated discrete solutions (u¢)een, -

Regarding convergence of adaptive algorithms with optimal algebraic rates for model problems with integer
order as well as for boundary element discretizations of integral equations, we refer to [7, 11, 12, 22, 34] and
to [20] for the fractional Laplacian.

2.4 Saturation Assumptions

As in [32], the validity of our main results hinges on certain saturation assumptions. We say that a sequence
(Te)een, of triangulations satisfies the weak saturation assumption if there exists a g € (0, 1) such that

I —ueull < qllu - uell (2.6)

for all ¢ € Np. Here, usy € Sé(‘I 2.u) denotes the Galerkin solution corresponding to the uniform refinement
Te,u = refine(Tp, Tp).

Furthermore, we say that a sequence (7¢).cn, of triangulations satisfies the strong saturation assumption if
there exist constants 0 < k < q < 1 such that, for all £ € Ny and all Ty, € refine(T;) satisfying [|u — uplll < xllu — uell,
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there exists a set My < T, \ Tp such that Ty := refine(T,, My) satisfies
lu —ugll < qllu—uell and T, \ Tg € Tp \ T 2.7

Remark 6. In [32], the strong saturation assumption was defined differently. There, the strong saturation as-
sumption reads as: suppose that there exist constants 0 < k < q < 1 such that, for all £ € Ny and Ty, € refine(T,),
the mesh Ty := refine(T,, T, \ Th) satisfies that

llu —upll < xllu - uell implies [lu - ugll < qllu - well. (2.8)

If Tpyq = refine(Tp, M,) denotes the coarsest NVB refinement such that every marked element T € M,
is bisected at least once, both strong saturation assumptions are in fact equivalent since then the mesh
Ty :=refine(Tp, T, \ Tp) satisfies Te \ Ty € Tp \ Th. If Teyq1 = refine(7T,, M,) is defined as in Section 2.2, however,
assumption (2.7) is stronger than (2.8).

2.5 Main Results
Our first main result states that discrete efficiency, discrete reliability and stability holds for the two-level error
indicator.

Theorem 7. Let T, € T and T, := refine(Tp, M) for some subset M, < Ty, as well as Ty, € refine(T,). Let uy,
Ugs1 and upy, denote the Galerkin solutions of (2.2) corresponding to T,, T¢.1 and T, respectively. Then
(a) there exists a constant Cess > 0 such that

NeMe) < Cettlllues1 — uell;

(b) there exists a constant Cre; > 0 such that

ltter1 — tell < Cretne(Te \ Tes1)-

(c) Assume d = 2. Then there exists a constant Cgap > 0 such that

Ne(Tm N Te) = Nm(Tm N Tp)| < Cotablltm — Uell.
The constants Cest, Crel and Csiap depend only on Q, s, d and the y-shape regularity of 7.

Remark 8. The triangle inequality shows [|ug+1 — ugll < 2[Ju, — ul] and employment of Dérfler marking means
9:7% < Ne(M,)?. That is, Theorem 7 (a) together with Dorfler marking leads to efficiency of the two-level error
indicator. Furthermore, the triangle inequality and the weak saturation assumption prove

(I - llu - uell < llue,u — uell.

In combination with Theorem 7 (b), this shows that the two-level error estimator is reliable, provided that the
weak saturation assumption holds.

Remark 9. In order to prove Theorem 7 (a), it will be essential to use the refinement strategy refinersw ( - ) since
this refinement strategy guarantees that the nodal basis functions corresponding to newly introduced nodes on
marked elements are the same in Sé(T r+1) and 8(1,(7 ¢.u)- The proof of Theorem 7 (b) stays valid, even if one uses
the refinement strategy refineggp( - ) instead.

In combination with the general frameworks presented in [11, 32] and the weak saturation assumption, Theo-
rem 7 guarantees linear convergence of Algorithm 5.

Theorem 10. Assume that the output (T¢)een, 0f Algorithm 5 satisfies the weak saturation assumption (2.6). Then
the sequence of Galerkin solutions (ue)¢en, associated to (Te)een, converges linearly, i.e., there exists a constant
K € (0,1) such that ||u — ug41ll < xllu — uel| for all € € Ny. The constant k depends only on 0, Cefr, Crel and the
constant q from the weak saturation assumption.

Proof. This follows from Theorem 7 (a), (b) and [32, Theorem 2.6]. O
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Furthermore, in two dimensions, the frameworks from [11, 32], Theorem 7 and the strong saturation assumption
lead to convergence with optimal algebraic convergence rates.

Theorem 11. Assume d = 2. Consider the output (T¢)een, Of Algorithm 5 for a fixed refinement parameter
0 € (0, 1], and assume that the strong saturation assumption (2.7) holds.

Then there exists Oqp € (0, 1] such that, if 0 < Oopt, the sequence (ue)ecn, of discrete solutions associated with
(Te)een, converges with the best possible algebraic rate. That is, for every t > 0, there exists a constant Copt > 0
depending only on t, 6, Ty, Cefr, Crel, Cstap and the constants k and q from the strong saturation assumption such
that

-1 t
Coptllulla, < esuﬂg (#Te) llu = uell < Coptllulla,,
€No

where ||ull 4, is the so-called approximation constant [12] of u,

ulla, ;= sup (N +1)* min u-ug,|l
el Neﬁo( +) {iropleirl#fropl—#?rgsN}m Toul
Proof. This follows from Theorem 7 (a)—(c) and [32, Theorem 2.9]. O

3 Proof of Theorem 7

The proof of our main theorem requires some auxiliary results. As was pointed out in [20], one major diffi-
culty in the discussion of a posteriori error estimators for the fractional Laplacian is that, for w, € 83(7 ¢) and
3/4 < s < 1, the expression (~A)*wy is in general no longer in L%(Q). In order to overcome this difficulty, a cer-
tain weight function is introduced. For a triangulation T, of Q and s € (0, 1), the weight function flg is defined
as
s - h; for0<s<1/2,
RS for1/2<s <1,

where
we(x) = Inf inf|x-y|, xe€Q,
f( ) Te‘J'eyeaTl yl

is the distance from the mesh skeleton.

3.1 Properties of the Weight Function

The following properties of the weight function have been proved in [20].

Theorem 12. Consider a triangulation T, of a bounded Lipschitz domain ¢ R% and s € (0, 1).
(@) Forallw, € 8(1)(75), there holds fzj(—A)SWg e L%(Q).
(b) There exists a constant C > 0 depending only on Q, s, d and the y-shape regularity of T, such that

RS (=8) well20) < Clwellgs o)
forallw, € 8(1](7 ?), Le., an inverse estimate is available for the fractional Laplacian.

Let the reference element Ty be defined as the convex hull of the origin and the two (respectively three,
for d = 3) canonical basis vectors. For T € T, with vertices zg, z1, zy (or zg, Z1, Z3, Z3 in the case d = 3), let
Fr: Tyt — T be the unique diffeomorphism that satisfies Fr(e;) = z;, where e; shall be the zero vector fori = 0
and the i-th canonical basis vector otherwise. Without loss of generality, we may assume that the ordering of
the vertices of T is such that the edge zyz; corresponds to the refinement edge of T. That is, F7 maps egpe; to the
refinement edge of T.

For the reference element Ty, We define

Wref(X) = Inf |x-y|, X € Tres.
yeaTref
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According to [20, proof of Lemma 3.2], there holds the pointwise estimate
he(T)wret = we o Fr, (31D

where the hidden constants depend only on d and the y-shape regularity of 7.
Consider a triangulation T, with uniform refinement T, := refine(7,, T;). For an element T € T,, the
refinement pattern Pat(T) of T is the set

Pat(T) := {F;(T1), ..., F7 (Tn)},

where T1,..., Ty are thesons of Tin T,y and N = 4in 2D and N = 18 or N = 20 (depending on the refinement
type of T) in 3D.
For the refinement pattern of an element T, we define
wparr)(X) == Inf inf [x—y|, X € Tres.
T'ePat(T) yeoT'
If d = 2, every element T has the same refinement pattern, i.e., the refinement pattern is independent of T.
In the three-dimensional case, each element has an associated refinement type f € {0, 1, 2}, and the refinement
pattern of an element T only depends on its refinement type, i.e., T has one of three possible refinement patterns.
Consider a triangulation T, with uniform refinement T, := refine(T¢, T;). Using (2.4), arguing as in
[20, proof of Lemma 3.2] leads to
(hey o FT)Wpay(t) = Weu © FT (3.2)

for all T € T,, where hg; and w, denote the mesh-width and distance-to-skeleton function associated to T .
The hidden constants in (3.2) depend only on d and the y-shape regularity of T,.

Lemma13. Let s € (0,1) and let T, be a triangulation of Q and Ty, := refine(T,, M,) for some subset M, < Tp.
Then, for all ve,1 € 8(1)(7 e+1) and all T € Ty, there holds

||f12f.1\/e+1 2y = ||7lEsVe+1||L2(T), (3.3)
where the hidden constants depend only on s, d and the y-shape regularity of T,.
Proof. Due to (2.4), the statement is clear for s < 1/2. Therefore, consider s > 1/2 in the following. Again, due
to (2.4), inequalities (3.3) are equivalent to
”w}ﬁ_svlﬂlllLZ(T) = ||wz/2_sve+1||L2(T)- (34)

Due to the pointwise inequality wy.1 < we and s > 1/2, bounding the right-hand side by the left-hand side in (3.4)
is clear, and we only have to prove the converse estimate.

Step 1. The first step is to prove the lower bound in (3.4) under the assumption that M, = T, i.e., that Te1 = Teu.
To thisend, let T € T, be given and consider the induced distance-function wpay(ry on the reference element.
Furthermore, we define the space

SY(Pat(T)) := {u € C(Tret) | ulp € PY(T) for all T € Pat(T)}.
For vy € 8!(Pat(T)), consider the weighted L?-norms

IVrefllZy ey = J(wpatm(x))l‘zsvﬁefdx and [vrerl?,, i= J(wref)l-“vfefdx.

Tref Tref

Since 8'(Pat(T)) is finite-dimensional and Pat(T) is independent of T (when d = 2) or depends only on its refine-
ment type B € {0, 1, 2} (When d = 3), the norms |- [y, and |- lw,, are pairwise equivalent and there exists
a constant C > 0 depending only on s and d such that C™|| - llupr, < I+ lirer < Cll llwpr,- IN combination with
(3.1) and (3.2), a scaling argument proves the lower bound in (3.4), provided that T, is the uniform refinement
of ‘Ig.
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Step 2. In the more general case, consider the distance-to-skeleton function w, ,, which is induced by the uni-
form refinement T, ;,. From Lemma 3, we infer the pointwise inequality we ; < w41, Which together with s > 1/2
and the first step of the proof therefore implies

Step1
1/2-s 1/2-s 1/2-s
lweyy "Verllzzr < llwyy “Verlzay < lw,™ "Verllzzr

for all ve.1 € 83(T¢+1), which concludes the proof. O

3.2 Scott-Zhang Projection

We recall that, for a triangulation T, the Scott-Zhang projection J,: HS(Q) —> 8(1)(‘7 ¢) is defined as follows: for
any node z € N7 » let T, € T, be an element that has z as vertex. Furthermore, let (pz € 81(7 e) denote the nodal
basis function assoc1ated to z and let (p‘-’ * ¢ P1(T,) be the unique dual function that satisfies (@¢* . go 2V LA(T,) = Ozz'
forallz’ e N}e(TZ), where §,, is the Kronecker delta. Then, for v € H5(Q),

Jew) =y (J(Dﬁ*vdx)(pﬁ.

zeNf}e T
The Scott-Zhang projection has the following stability and approximation properties (see [20, Lemma 3.2]).

Theorem 14. For s € (0, 1), there exists a constant C > 0 depending only on s, the y-shape regularity of T, Q
and d such that the following statements hold.

@ Jevligs) < Clviigsg for allv e H(Q).

M) 171 = Je)vizg) < CIVligs (g for all v e HS(Q).

For a triangulation T, let Ip: C(Q) — 8} o(Te) be the nodal interpolation operator, i.e., I (v) := ZzeN v(2)pt. The
next theorem shows that, on the dlscrete space 81(T ¢), the nodal interpolation operator and the ‘Scott— Zhang
projection are in some sense equivalent.

Theorem 15. Let T, € T with uniform refinement T, := refine(T,, T;). Then, for all v, € Sé(‘I@,u), there holds
the estimate
Ih,°(1 = Ie)veullzze) = 1h,* (1 = Je)veullrz(g)s

where the hidden constants may depend only on s, d and the y-shape regularity of T,.
Proof. It is enough to prove the elementwise estimate

1R, = IVeullrzry = 1,51 = Je)veullLzcr
for all T € T,. The proof of this estimate is split into four steps.

Step 1. For any T € T,, we have already considered the affine diffeomorphism Fr: Tyet — T.Let Vr: RY - R4
be the unique affine extension of Fr to RY. Note that Fy and V have the same Jacobi matrix. For T € T,, we
define
T = Ve () | T T # 0},

as well as _

Q' [T] := interior | J{Vz'(T") I TN T’ #0}.
The affine mapping Py := VT|Q;ef[T] then maps Qﬁef[T] onto Q,[T], and we may consider the space

8Y(PT (Tew)) = {veu o Pr | Veu € S§(Tew)}-

This definition suggests that Sl(P}l(T ¢,u)) depends on the element T. A closer look, however, reveals that it
depends only on the shape of the element patch of T and the distribution of the refinement edges of elements in
the patch (and the refinement types § € {0, 1, 2} of the elements in the patch in d = 3). The amount of possible
shapes of element patches can be controlled in terms of y-shape regularity. This shows that Sl(P}l(T ?.u)) 1S one
of only M possible spaces, where M depends on Ty, d and y-shape regularity, but is independent of the number
of elements in Tp.
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Step 2. Let an element T € T, with associated function space Sl(P}l(Tg,u)) be given. We define an operator
et 8YP (T ) — S'(PT (Tew)) by

I ey oPr)=" Y veu(2)9 o Pr.
zeN;}[(T)

We observe that, for all vg;, € 8(1)(7@,“), there holds ((1 — Ip)vey) o Fr = (1 - Iref)(vm o PT) |1,
Furthermore, for T € T, with associated function space Sl(P}l(T ¢.u)), we define an operator

JiEt: 81 PT (Tew) = 81 (P (Tew)

by

FeuoPr):= Y (j 95 Veu dX>(P§ o Pr,
zeN}e(T) T,

where the elements T, are the averaging elements associated to vertices z of T chosen in the definition of J,.
We keep the subscript T here since this operator is also dependent on the choice of the averaging elements T,.
In other words, not every information needed to define ]‘}ef is incorporated in the function space Sl(P}l(‘I )
one still has an option to choose different averaging elements. This is in contrast to the operator I"®f, which is
determined by 8'(P; (Te.u)).

By definition, TTef satisfies (1 — Je)veu) o Fr = (1 - ]rTEf)(ve,u o P7)|7,, for all functions v, € 83(7 ou)-
Step 3. For T € T, the functions

1/2— 1/2—
Iglr = logs (- Fglary  and  lglyr = loge (A - )8l
are seminorms on the associated space Sl(P}l(‘J' ¢.u))- For each T € T,, the kernels of || - [|; and | - [|;,7 coincide,
and since the number of elements T in T, is finite, there exists a constant Cg, s > 0 such that

C3 Slglyr < llglr < Cor, sligllyr

forallg e Sl(P}l(‘I ¢w))andall T € T,. The aim of the third step is to show that there is a constant Cs > 0, which
may depend on s, y-shape regularity and d but not on T, such that

st lgly,r < liglr < Csliglly,r (3.5)

for all g € SY(PF (T ).
To this end, let an element T € T, with associated space 8' (P}1 (Te,u)) be given. The set {(pg’,” oPr|z' € Ni*n u}
is a spanning set of Sl(P}l(‘.T ¢.u)). Note the amount of nonzero functions in this spanning set is bounded by

a number depending only on d and y-shape regularity. For each function in this set, the definition of ]]}ef shows

T @4 o Py = Y (prﬁ*wﬁv“dX)doPr-
zeNi}e(T) T,

The function ¢¢ o Pris anodal basis function associated to anode of Ty, i.€., it is one of only d + 1 functions.
The key is to take a closer look on the coefficients (ITZ ob* goﬁ’,” dx). If qoﬁ’,“ does not have support in T,, then the
coefficient is zero. We observe that, if (p‘z"’,” has support in T,, then (pﬁ;“ o Fr, is one of only M functions, where
M =6 in the case d = 2 or M = 14 for d = 3. This is due to the fact that (pﬁ’,“ o Fr, corresponds to a nodal basis
function associated to vertices of Tyer or nodes on the midpoints of edges or contained in faces of Trer.

The transformation rule shows that he(Tz)d((pg* oFr,) € PL(Trer) is a dual function on the reference
element, and

1 ES ES

o | ebetax= [ ne(riol o Fr )@k o Frax
' Tz Tref

Since there are only d + 1 dual functions in PL(Trer), this implies that the number of possible values of the

coefficient jT ol (pﬁ;“ dx can be bounded by a constant depending only on d.
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Since the number of possible coefficients can be bounded independently of T, it follows that the number of
functions of the form ]ref o Pr) is bounded independently of T. Consequently, the number of interpolation
operators ]ref depends only on d and not on the number of elements in T,. In other words, the number of
possible operators ] ref (and therefore the number of possible seminorms | - |77 on the space si(p 1(‘I eu))) 1S
bounded independently of the number of elements in T,. Together with the fact that the amount of possible
spaces 8.1(P}1 (Te,u)) is bounded independently of T, (see Step 1), this shows (3.5).

Step 4. According to Step 3,for T € Tpand g € Sl(P}l(‘I ¢.u)), We have

1/2—- 1/2-
Nl (1 = I gl = l0lE (1 = ) gl2 (1)

where the hidden constants are independent of T. In combination with a transformation to the reference

element, equation (3.1) and the definition /5 show

||ﬁ;S<1—Ie>ve,u||§z(T):he(T)“sj WS (1= ") (Ve  Pr)) dx
Trer

=h£(T)d_sz W2 ((1 - 5 (ve o Pr))” dx
Tref

=he(T)“3j W25 ((L = Jo)Vew) o Fr) dx.
Tref

Transforming back to the reference element (and again using (3.1)) yields
he(T)2 j W1t (A = Jo)veu) o Fr)* dx = I * (1 = Jo)veulZs -
Tref

Thus, we have shown
Ihe* (A = Ieveullfo gy = 1R (1 = Je)Veull? o,

forall T € Teand vey € ST, ¢,u)- Summing over T € T, completes the proof. O
Theorem 15 yields equivalence of the energy norm and a weighted L?-norm for certain discrete functions.

Lemma 16. Let T, € T, M, € T, and Te.q := refine(Te, Me). For any node z € N5, \ N, consider the associ-
ated nodal basis function ¢*! € 81(T¢.1). Then there holds

NS = 1A, 0 120y

where the hidden constants depend only on s, d, Q and the y-shape regularity of Tp.

Proof. The Cauchy-Schwarz inequality, Lemma 13 and Theorem 12 (b) lead to

oS 1% = a(pl, @4tt) = j( DY (95 YRS, by ottt dx
Q

< 1IR3, 1 (=85 (@5 D) 2 lh,S, 05 2o
< RS, (D) (@5 ) 2@y IRy 05 120
< NS MR, 95 20

which proves the lower inequality. For the reverse inequality, note that, for anode z € N3, \ No,, there holds
oft = (1 - Ip)p’*t. Therefore, Theorem 15 and Theorem 14 imply

1505 2@y = 1A,°(1 = 1) 95 20y = 1R5(1 — Jo) 08 2y < N5,

where the last inequality is due to norm equivalence of || - | and || - | as5(Q)- O
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3.3 Proof of Theorem 7 (a)
We need a generalization of the definition of the two-level indicators Tg(goﬁ’”) defined in (2.5). For any refinement
Tes1 = refine(T,, M) and a nodal basis function (p“l € 81(7 2+1) associated to anode z € N{*T (T) \ Ng,, we set

ety 105100 — e, 95
(A

The following lemma proves the first part of Theorem 7.

To(Q,

Lemma17. Let T, € T, M, € Tp and Ty := refine(T,, Mp). Assume u, and u,,1 are the Galerkin solutions with
respect to the triangulations T, and T;.1. Then there holds

z Te(05)? < g — uell? 3.6)

ze \N,

'rel

as well as
Ne(Me) < lluesr — uell, (3.7

where the hidden constants depend only on s, d, Q and the y-shape regularity of T,.

Proof. Consider anode z € N}M \ N, and an element T € T, such that z € T. Note that

1, 08 120 — alte, 94 = [a(ttenn — e, 92| = |j R (-0 e = o)) 057 x|
Q

Due to supp(¢5*!) being contained in the patch Q,[T], the Cauchy-Schwarz inequality and the identity
(1-1Ip)9p% = &t show

” h;+1(( A) (Ups1 = uf))h€+1(pz+1 dX| = | J h2+1(( A) (Ups1 = uf))h€+1(pz+l dX|
Q Qe[T]

< RS, (D) (uer1 — ue)lz2oump RS, (1 - 1)95 ™ 20y
Furthermore, Lemma 13, Theorem 15 and Theorem 14 (b) imply
RS, (1= I @5 2 @) < 151 = 1) @5 2oy < 1RG5 = Jo)9 2y < @S5I

Thus, for all z € N,*IM \ No,, we have

IKf, 05 1) 120y — alue, 5|
AR : ”(|(p)€+1 I L= < RS, (—8)° (Uest — Ue) L2, [T)-

Consequently, summing over all z € N\ Ny, using y-shape regularity and Theorem 12 (b), we conclude

Yo weles s Y g (=) et — ud)Fyg, iy,
ZEN;}M \Ne, ZEN}M \Ne,

7e(;

< g, (~B) (ess — up)ll7, g,
< lMuess - uell®.

This completes the proof of (3.6). In order to obtain (3.7), we have to compare the nodal basis function
ot and (og’”. According to the refinement strategy used in this work, for any element T € M,, there holds
N7,y (T) = No,, (T).

In the two-dimensional case, 1t was observed in [32, proof of Theorem 3.2] that, for T € My, z € N; (T)\ Ny,
there holds the equality p¢*! = g5,

This equality does also hold in 3D: consider T € M, and z € N5, (T)\ Ng,. Thatis, z is either the midpoint
of an edge of T or is contained in a face of T. Consequently, the nodal basis function ¢! only has support in

elements T’ € T, which share at least one edge with the marked element T, i.e.,

supp(s™) < | JIT | T € AV}
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Since the sons of elements T’ € A(M,) are the same in T, and T, (see Remark 1), we conclude that (pﬁ“ = goﬁ’".
Finally, the equalities N, (T) = N, (T), 95 = 95" (for elements T € M, and nodes z € N3, (T)\N7,)
imply '
neMe)? = ) Yoo n@iY s Y el

TeM, zeNy, (D\Ng, zeN \Ne,

*
Te+1 Te1

and (3.7) follows from (3.6). O

3.4 Proof of Theorem 7 (b)

The proof of Theorem 7 (b) requires an auxiliary lemma.

Lemma18. Let T, € T, M, < T, and T;41 := refine(Ty, M). Consider a function ve.q € S})(Teﬂ), ie.,

£+1
Ver1 = z Azq);

"
ZENTen

for certain coefficients A;. Then there holds

Z ”h;SAZ(p?lI&Z(Q) = "F‘ESVFHH%Z(Q)-

ZeNT,
Te+1

The hidden constants depend only on s, d and the y-shape regularity of T,.

Proof. The proof is done similarly to the proof of [4, Lemma 15]. For any element T € T, the transformation
rule and (3.1) show

2 M 2202 My = X WA A02 g,

2eNT, 2eN5,,, (D
=dh(D® Y W A95) o Frif
z2eNy, (T)
_ 1/2—-
=he(M* Y Mg A @5 o Fo)lisr, -
zeN}eﬂ(T)

The functions ¢*! - Fr are linearly independent; therefore, norm equivalence on finite-dimensional spaces
shows

1/2— 1/2—
Y o Aa(@5 ™ e FD)lZ iy ) = gt e o F)ly g .
zeN;}M(T)
Thus, together with (3.1), we conclude

P - 1/2- -
3 IR A5 gy = he(D SNt ers o FD)ly gy = g et i2ar,-

ZENT,
Te+1

Summing over all T € T, completes the proof. O
Finally, we can present the proof of Theorem 7 (b).

Lemma19. Let T, € T, M, € T, and Tp,1 := refine(Tp, My). Let up and ue.1 be the discrete solutions with respect
to the triangulations T, and T;41. Then there holds

Mues —uell> s Y 7e(s™)? (3.8)

.
€Ny, \N7,

as well as
Mot — uell < Ne(Te \ Tes1), (3.9

where the hidden constants depend only on s, d, Q and the y-shape regularity of Tp.
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Proof. LetI,: 8(1)(7 ?41) — S(l](‘I ) be the nodal interpolation operator. As in [4, Lemma 15], there are coefficients
Az, where z € N,*IM \ N, such that we can express

(1= Ip) (e - Ug) = Z 205

z€ 7e+1 \N,

For z € N;m \ Nog,, let G;: S},(‘J‘ 2+1) — span{@’*'} denote the Galerkin projection onto span{p‘*'}. With this
notation, by using Galerkin orthogonality and since G, is self-adjoint with respect to a(-, - ), we obtain

2 e+1
Nuess — uell® = aluess — e, (1= Le)(Uess —up)) = Y alutgsr - g, A,05™)
2eNy, \Na,
e+1 e+1
= Y alup - un G0t =Y a(Galues - ue), A,05M).
zeNy, \Na, ZeNy, \Na,

The Cauchy-Schwarz inequality yields

1/2 1/2
llues1 — uell* < ( Y NG (e - ue)|||2> ( Z |||Az<o§“|||2) . (3.10)
zeNfIHl\qu zZ€e % 1\N‘Te
According to Lemma 16, there holds
@&l < 1505 2o
forall z € N. i}m \ Ng,. Together with Lemma 18, we conclude
IR S D Y [P A TS D RN P L A
zeNs, \N7, zeNy, \N7, zeNy, \Ng,

= 17, ° (1 = Ip)(ues1 = ue)l72 g

By using Theorem 15 and Theorem 14 (b), we get

Ih* (1 = L) (ues1 = Ue)7ag) = I1R° (1 = Je)Uert — U7z gy < Mttesn — uell?,

ie,
e+1y2 2
Z 2205 M 1% < Mug - uell®.
zeN7,  \ N7,
From (3.10) and Remark 4, we deduce
2 2 24142
e —uell> s Y NG (uess - up)ll* = Z Te(97")"
zeNZ‘IeH\Nge VAS Te ]\Nre

which finishes the proof of (3.8).

In the two- dlmensmnal case, it was noticed in [32, proof of Theorem 3.2] that, for any node z € N} \ Ny,
there holds ¢4t = (pz , which, in combination with (3.8), implies (3.9).

The three-dimensional case is more involved: for z € N{*TM \ Ng,, we have to compare Tg((pﬁ”) and r€(<p§’“).
For any node z € N;M \ Ng,, there exists an element T € T, such that z is either contained in a face of T or is
the midpoint of an edge of T. That is, we can write Ny \Ng, = &7,,, UFy,,,, where 7, is the set of new
nodes that are the midpoint of edges of elements in T, and Fg,,, is the set of new nodes contained in faces of
elements in Tp.

For z € F,,,, there holds ¢£+! = 2" and consequently 7,(¢%*) = 7,(¢5"), which implies

> we(@fh? < 0e(Te \ Ter) (3.11)

2€F 7,y

If z € £5,,,, then there exists an edge E, of an element T € T, such that z is the midpoint of E,. We consider the
set of nodes
NI, (E,) - ={z' e N \Nf_]'“l | z' is contained in a face F € Tp(E;)},
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where I'p(E,) is the set of all faces F in the triangulation T, with the property that E; is an edge of F. We observe
that there holds 1
¢,
ort =0+ Y Sogt,

Z’ENre(EZ)

where the factor 1/2 comes from ¢’* Lz'y=1/2forallz' € Nr,(£,)- Galerkin orthogonality shows

£+1 e+1 £+1 &,u e,
1K, 05" D) 120) — alue, 95 = la(ue,y — ue, 95| < la(ueu — ue, 07N+ Y |a(uey - e, 95",
Z’ENFg(Ez)

and for anode z € N}M \ Ng,, Lemma 16 (applied to T¢.1), the pointwise inequality ¢+ > (pﬁ’“ and Lemma 16
(applied to T;,,,) lead to
s fu

NoE Il 2 17,5 05 i) = 1A 05 2@y = Nlos . (3.12)

Furthermore, for z' € Nr,(£,), there holds (pﬁ” > %goﬁ’,“, and with the same arguments as for (3.12) one shows,

forall z' € Nr,(g,),
NSt = No&eil.

Altogether, for z € E+,,,, we obtain

| ) €+1> 2 _a(u: €+1)|
oy _ 1002 Luﬁ)"”m £ N o + Y eehh).
VA

2'€Nry(kz)

Te(f

Since the number of nodes in Nt,(g,) is bounded by a constant depending only on the y-shape regularity of T,
we conclude

(05 < Te(0f )+ Y Te(ehhP

Z,ENI‘E(EZ)
Summing over all z € Eq,,, yields

Y @i < neTe\Tes) + Y Y w05 < 0e(Te \ Tesn)?,

z€€q,, 2€€ 7,1 2'€NT, (k)

where the last inequality is due to the fact that every z' € Nr,(g,) is counted at most three times and that every
element T € T,, which has a face F belonging to I'y(E;), is necessarily in T, \ T¢1. Thus, together with (3.11), we
have

Yooonef = Y @i+ Y (@) < ne(Te\ Tean)?,

«
ZGNWH\NW 2€F 7, z€€7,,,

which, together with (3.8), proves (3.9) in 3D. O

3.5 Proof of Theorem 7 (c)

The proof of Theorem 7 (c) requires a modification of Lemma 13.

Lemma 20. Assume d = 2. Let Ty, € T with uniform refinement Ty ,, := refine(7, 1), as well as a triangulation
T € refine(7) with uniform refinement T, := refine(T,, Tp) and consider an element T € T;, N T,. Then there
holds N. ‘*TL . (T)\Ng, = N*TE . (T) \ No,, and for any node z € N{"TL . (T) \ Ng,, the associated nodal basis function
oy is the same in 81(71, ) and 81(T,y,). Furthermore, there holds

1hz°07 Iz = 1A;°97 " 120 (313)
where the hidden constants depend only on s, d and the y-shape regularity of Jy.

Proof. In 2D, it is easy to check that the refinement of a marked element does not depend on its neighbors, and
in combination with T € T, n Ty, this implies N,*TL u(T) \ Ny, = Nr_”‘m(T) \ Ng,. Furthermore, in 2D, the nodal
basis function (pf’“ associated to a node z € NT*TL,H (JT) \ No, dependé only on T. Therefore, (oﬁ’” is the same in
S§(TL,u) and 83(Teu)-
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It remains to show (3.13). Due to the pointwise inequality fzgs > leS, the upper inequality is clear, and we
only have to show the lower estimate.

Consider a node z € N‘*IL,H(T) \ N1, . Then z is the midpoint of an edge E, of T. Let T’ € T, be an element
in the fine mesh T, which shares E,. Then T’ is either itself an element of the coarse mesh T or it is a son of
an element T* € T7. Applying one or two NVB bisection steps (depending on T’ € T, or T' being a son of an
element in 77 ) then leads to elements in the uniform refinement of the coarse mesh 77, ;. This means that, on
supp(gof’“), the uniform refinement is locally finer than T,.

In terms of the corresponding weight functions h, and h; , (Where h; , is the weight function associated
to J7,,), this implies that flifu > ﬁ;s pointwise on supp((p§ ). From Lemma 13, we infer

7_s L, 7_s L,
Ih5 @z N2 = 1h° 07" I12@),

which proves the lower estimate in (3.13). O

Finally, we prove stability of the two-level estimator in two dimensions.

Lemma 21. Assume d = 2. Let T;, € T with uniform refinement Ty, , := refine(Jz, 71), as well as T, € refine(7r).
Furthermore, let u;, and u, be the discrete solutions associated to T and T,. Then

5 la(uy, - ue, o512

T < llug - uell?, (3.14)
TeTINTe zeNy, (D\Ny, Mozl

as well as
[NL(TL N Te) = Ne(TL N Tp)| < Mlug — uell,

where the hidden constants depend only on s, d and the y-shape regularity of Jr.
Proof. Let T € T, N T, be arbitrary and z € N}LM(T) \ Ng,. Due to supp(gof’”) € Qr[T] and Lemma 20, analo-
gous arguments as in the proof of Lemma 17 show
la(ug — ue, p2")| < RS (=) (uy, - u£)||L2(9L[T])|||(P§’u|||-
Consequently, summing overall z € N}L . (T) \ Ng, and since #{N;L . (T) \ N, }ishounded with an upper bound
depending only on d, we conclude
_ L,uy 2
|a(ur — ue, 9z )I° _ Z

T < IRS(~A)® (ur,
2Ny, (D\Ny, ozl 2eN5, (DN,

< hy(=0)° (ug

2 2
- uf)”Lz(QL[T]) - uf)”LZ(QL[T])'

Summing over T € T, N Tp, using y-shape regularity and Theorem 12 (b) then shows

L,u
la(u, - ue, 97 )* _

L,u
TeTINT, zeNy, (I\Ny, lloz M2

7 2
Y IRG=0)* (s — uolFag, (1)
TeT NT,

< hp(-0)*(ur = uo)l7 2 g,
< llug - uell?,

which is (3.14). As in [32, proof of Theorem 3.2], the reverse triangle inequality and the equality (pﬁ’” = (pﬁ’” (see
Lemma 20) show

M@ 0T -ne@nTal=|( Y nL(T)z)l/Z—( > ’“"T)z)l/2|

TeT NT, TeTNT,

L
la(uz, - ug, 97)? )1/2

= Tu
TeTnT, zeNy  (D\N, lloz"lI1?

< llug - uell,

which finishes the proof. O
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Remark 22. For the proof of Lemma 21, it is essential that, for any node z € N,’}L . (T) \ Ny, the associated nodal
basis function (pf’” is the same in 8(1)(7 ,u) and S(l)(‘I ¢.u)- Inthe case d = 3, this fact is not longer true. That is, the
proof of Lemma 21 cannot directly be generalized to d = 3, and stability (and consequently also convergence
with optimal algebraic rates) of the two-level error estimator in three dimensions still remains open.

4 Numerical Experiments

We illustrate our work by carrying out some numerical experiments. We consider the model problem in its
weak form (2.1) in dimension d = 2. As in [20], we choose Q to be either the unit circle or an L-shaped domain.

4.1 Aspects of Our Implementation

We implemented Algorithm 5 in MATLAB R2022a. Regarding the steps SOLVE, ESTIMATE and REFINE (steps (1),

(2), (4) in Algorithm 5), we note the following.

» For a given triangulation T, € T, the computation of the associated discrete solution u, € 8(1)(7 ¢) was done
by using the already existing MATLAB code from [1]. The unbounded domain R? is replaced by a circle
around the domain Q, and the integrals occurring in the finite element discretization are transformed by
a Duffy transformation and then computed by quadrature formulas.

o Computing the two-level error estimator (2.5) requires the evaluation of the expressions a(ug, gof’") and
a((oﬁ’“, (oﬁ’”). Again, these evaluations were computed by using the MATLAB code from [1], and quadrature
formulas were used to compute (f, (pﬁ’“) 12(Q)-

» Based on a set of marked elements M, < T, the refined mesh T,,1 := refine(T,, M,) is obtained by NVB.
Recall that we assumed that every marked element T € M, is bisected three times into four sons. In order
to compute refined meshes, we used an existing MATLAB code from [21], which generates NVB refinements
with the property that every marked element is split into four sons.

4.2 Unit Circle with Constant Right-Hand Side

For the first example, we choose Q to be the unit circle, i.e., Q := B1(0),and set f := 225T(1 + s)2. With this domain
and right-hand side, the exact solution to (2.1) is known (see e.g. [3]) and is given by u(x) = (1 - [x|%)$, where
g+ = max{g, 0}. The energy norm of the exact solution u can easily be computed by

21
25 +2°

a(u, u) = J fudx = 25T(1 + s5)?
B1(0)

Figure 1 shows the uniform and adaptive error estimators, as well as the uniform and adaptive errors for
the cases s = 0.25and 0 = 0.3,aswellas s = 0.75 and 6 = 0.3.

We observe that uniform refinement leads to a reduced rate of N-1/4 for error and error estimator. The
adaptive algorithm, however, leads to the optimal rate of N~/2,

4.3 L-Shaped Domain with Constant Right-Hand Side

In our second numerical example, we choose Q := (-1, 1)%\ [0, 1)% and f = 1. The exact solution of this problem
is unknown; therefore, we have to extrapolate the energy of the exact solution from the energies of the discrete
solutions by means of Aitken’s delta-squared process. Figure 2 shows the computed errors and estimators for
s=0.25and 0 = 0.3, aswell as s = 0.75 and 60 = 0.4, respectively.

Qualitatively, we observe the same as in the first example: Uniform refinement yields the reduced rate
N~1/4 whereas adaptive refinement leads to improved rates of convergence.
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Figure 1: Error and two-level estimator for a constant right-hand side on the unit circle for uniform and adaptive mesh refinement.
Left:s = 0.25and 6 = 0.3. Right: s = 0.75and 6 = 0.3.
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Figure 2: Error and two-level estimator for a constant right-hand side on the L-shaped domain for uniform and adaptive mesh
refinement. Left: s = 0.25 and 6 = 0.3. Right: s = 0.75and 6 = 0.4.
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