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Abstract: For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element
method steered by two-level error indicators. For this algorithm, we show linear convergence in two and three
space dimensions as well as convergence of the algorithm with optimal algebraic rates in 2D, when newest
vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott–
Zhang interpolation operators in certain weighted L2-norms.
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1 Introduction

Solutions to PDEs with non-integer powers of differential operators, such as the fractional Laplacian (−Δ)s ,
s ∈ (0, 1), which are commonly used to describe anomalous, non-local diffusion processes, typically exhibit a sin-
gular behavior at the boundary of the computational domain. Thus, solutions to fractional PDEs are, in general,
less regular than in the case of integer order powers [24], and as a consequence, finite element approximations
on uniform meshes lead to non-optimal orders of convergence [2].

The nature of this boundary layer singularity is well understood [23, 24], and regularity estimates with
weights can be obtained [2, 8, 19], which in turn can be used to a-priori design suitablemeshes that allow to recu-
perate better convergence rates. In this sense, graded meshes with appropriate grading factors give algebraic
rates for the finite regularity case [2, 23], while exponentially gradedmeshes can be used to obtain exponentially
convergent hp-FEM approximations in the case of weighted analytic regularity [18].

A different approach to dealing with the singularities at the boundary, which we employ here, is to use
adaptive finite element methods (AFEM). Hereby, meshes are locally refined only where some error measure
indicates large errors. We consider a classical adaptive loop of the form SOLVE–ESTIMATE–MARK–REFINE; see
e.g. [15]. The key to the success of such an adaptive strategy is the choice of error indicators for the ESTIMATE step.

A classical strategy for a posteriori error estimation is to take the (weighted) residual, which in our case
takes the form ‖f − (−Δ)suh‖L2 , with f denoting the data and uh being the FEM solution, as local error indicator.
After correcting this residual with a suitable weight function such that one indeed obtains a well-defined L2-
function, one obtains an algorithm that converges with optimal algebraic rates [20]. For other strategies on
a posteriori error estimation for classical, integer order differential operators, we refer to [5, 11, 29, 36]. While
the weighted residual error estimator has nice analytical properties, it has distinct drawbacks for fractional
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PDEs. Most notably, the computation of the L2-norm enforces the use of accurate, expensive quadrature rules
as the integrand tends to be singular, and the evaluation of the fractional Laplacian in the quadrature points is
expensive as well.

Therefore, in the following, we consider a different strategy for error estimation using approximations on
different refinement levels to measure the local errors. The advantage of this approach is that the costly evalua-
tion of the fractional differential operator is avoided. Two-level or hierarchical error estimators are commonly
used in practice [16, 25, 28, 30] and perform well in numerical examples. On the analytical side, reliability of
the error indicators always hinges on certain saturation assumptions, i.e., that refinement reduces the error by
a contraction factor q < 1. Under these assumptions, there even holds optimality for adaptive finite element and
boundary element methods [32]. In this article, we show a corresponding result for the fractional Laplacian.
In fact, for d = 2, 3 and under certain saturation assumptions, we show discrete efficiency and reliability of
the error indicators, which implies linear convergence of the error between exact solution and AFEM approx-
imation. For the case of two spatial dimensions, we show discrete stability as well, which together with the
frameworks of [11, 32] even provides optimal algebraic convergence of the algorithm.

The present paper is structured as follows. In Section 2, we introduce the model problem, its discretiza-
tion as well as the adaptive finite element method based on two-level error estimation. Finally, we present our
main results, Theorem 7–11. Section 3 is dedicated to the proofs of the main results. A key step that might be of
independent interest is the equivalence of nodal interpolation and Scott–Zhang projection on discrete spaces
in the L2-sense, Theorem 15. Finally, Section 4 presents some numerical examples that underline the optimal
convergence of the adaptive algorithm.

Throughout this article, we write ≲ to abbreviate ≤ up to a generic constant C > 0 that does not depend on
critical parameters in our analysis. Moreover, we write ≃ to indicate that both estimates ≲ and ≳ hold.

2 Setting and Main Results

LetΩ ⊆ ℝdwith d ∈ {2, 3}be aboundedpolygonal/polyhedral Lipschitz domain and s ∈ (0, 1).Wenote that there
are several ways to define non-integer powers of differential operators such as the fractional Laplacian (−Δ)s . A
classical definition on the full space is given as operator with Fourier symbol |ζ |2s , but definitions using spectral
theory, semi-group approaches or PDE extensions can also be employed [9, 10, 27].Wenote that these approaches
are equivalent on the full space, but not on a bounded domain.

Here, for a sufficiently smooth function u defined onℝd and x ∈ Ω, we use the integral fractional Laplacian
(−Δ)su, defined pointwise as the Cauchy principal value

(−Δ)su(x) := C(d, s) P.V. ∫
ℝd

u(x) − u(y)
|x − y|d+2s

dy, C(d, s) :=
22ssΓ( d2 + s)
πd/2Γ(1 − s)

,

where Γ( ⋅ ) is the Gamma function.
In this paper, we are interested in the solution u of the Dirichlet problem

(−Δ)su = f in Ω,
u = 0 in ℝd \ Ω,

where f ∈ L2(Ω) is a given right-hand side. The proper function spaces for this problem are fractional Sobolev
spaces with an exterior boundary condition defined by means of the Aronstein–Slobodeckij norm for any open
set ω ⊂ ℝd ,

|v|2Hs(ω) = ∫
x∈ω

∫
y∈ω

|v(x) − v(y)|2

|x − y|d+2s
dx dy, ‖v‖2Hs(ω) = ‖v‖

2
L2(ω) + |v|

2
Hs(ω) ,

H̃s(Ω) := {u ∈ Hs(ℝd) | u ≡ 0 on ℝd \ Ω}, ‖v‖2H̃s(Ω) = ‖v‖
2
Hs(Ω) + ‖v/r

s
∂Ω‖

2
Hs(Ω) ,

where r∂Ω(x) := dist(x, ∂Ω) is the Euclidean distance of a point x ∈ Ω to the boundary of Ω.
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The weak formulation of our model problem reads as: find u ∈ H̃s(Ω) such that

a(u, w) := C(d, s)2 ∫
ℝd

∫

ℝd

(u(x) − u(y))(w(x) − w(y))
|x − y|d+2s

dy dx = ∫
Ω

fw dx (2.1)

for all w ∈ H̃s(Ω) (see [2]). For u ∈ H̃s(Ω), the energy-norm ⦀u⦀ := a(u, u)1/2 is an equivalent norm on H̃s(Ω)
(see [2]); thus, for given f ∈ L2(Ω), the weak formulation (2.1) has a unique solution.

2.1 Discretization

In the following, we consider a finite element discretization of the fractional PDE, which is based on regular
(in the sense of Ciarlet [13], i.e., there are no hanging nodes) meshes Tℓ that decompose Ω into (open) triangles/
tetrahedrons. The subscript ℓ ∈ ℕ0 will refer to the ℓ-th step of an iterative algorithm. Moreover, we assume
that all triangulations employed are γ-shape regular, meaning that there exists a constant γ > 0 such that

max
T∈Tℓ(diam(T)/|T|1/d) ≤ γ,

where diam(T) denotes the Euclidean diameter of a triangle T and |T| denotes the Lebesgue measure of T .
The set of all nodes of Tℓ (i.e., the set of all vertices of elements in the triangulation Tℓ) is denoted by NTℓ .

Furthermore, N∗Tℓ denotes the set of all nodes of Tℓ that lie inside of Ω and not on the boundary. Moreover, for
T ∈ Tℓ, we writeN∗Tℓ (T) for the set of all vertices of T that lie inside of Ω. For an element T ∈ Tℓ, the set

Ωℓ[T] := interior⋃{T | T ∈ Tℓ , T ∩ T ̸= 0}

is called the element patch of T . For a triangulation Tℓ, the associated mesh-width function hℓ ∈ L∞(Ω) is
elementwise defined by hℓ|T := |T|1/d for T ∈ Tℓ.

Based on a regular triangulation Tℓ, we define the space of globally continuous, piecewise linear polynomi-
als as

S1(Tℓ) := {u ∈ C(Ω) | u|T ∈ P1(T) for all T ∈ Tℓ}, S10(Tℓ) := S
1(Tℓ) ∩ H1

0(Ω),

where P1(T) is the space of all linear polynomials on T .
Due to H1(Ω) ⊆ Hs(Ω) for s ∈ (0, 1) (see [14, Propositions 2.1 and 2.2]), we obtain that S10(Tℓ) is a closed

subspace of H̃s(Ω) for all regular triangulations Tℓ. The discretization of the weak formulation (2.1) thus reads
as: find the Galerkin solution uℓ ∈ S10(Tℓ), which satisfies

a(uℓ , wℓ) = ∫
Ω

fwℓ dx for all wℓ ∈ S10(Tℓ). (2.2)

By the Lax–Milgram lemma, one also obtains unique solvability of the discrete Galerkin formulation. Hence-
forth, by uℓ, we always denote the piecewise linear Galerkin solution corresponding to Tℓ, whereas u shall
always refer to the exact solution of (2.1).

2.2 Mesh Refinement

In this work, we consider meshes obtained from consecutive refinement of an initial triangulation T0. We
assume that refinement is done by newest vertex bisection (NVB). That is, bisecting an element T of a trian-
gulation Tℓ always follows the same principle, namely that an edge opposite to the newest vertex is halved; see
e.g. [26] for d = 2 or [35] for d ≥ 2.

Consider a triangulation Tℓ and a setMℓ ⊆ Tℓ of marked elements. As in [6, 32], we use the following nota-
tion: when d = 2, the triangulation Tℓ+1 := refine(Tℓ ,Mℓ) shall denote the coarsest NVB refinement of Tℓ such
that all edges ofmarked elements T ∈ Tℓ are bisected. This corresponds to bisecting everymarked element three
times into four sons; see e.g. [17].
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Newest vertex bisection in 3D is a bit more complex: in order to guarantee γ-shape regularity of refined
meshes, each element T ∈ Tℓ has a certain refinement type β ∈ {0, 1, 2} which specifies the next bisection step;
see [17, 33, 35] for further discussion.

In the three-dimensional case, it was required in [17] that Tℓ+1 := refine(Tℓ ,Mℓ) is the coarsest NVB refine-
ment of Tℓ such that all faces of marked elements contain an interior node. According to [17], this can be done
by splitting every marked element according to a certain rule, where the exact rule depends on the refinement
parameter β ∈ {0, 1, 2} of T . If β = 0 or β = 1, the element T is split into 18 sons with 14 nodes. If β = 2, then T
is split into 20 sons with 14 nodes. The splitting of a marked element T is such that the 14 new nodes always
consist of the 4 original nodes of T , the midpoints of the 6 edges of T and 1 node in the interior of each of the
4 faces of T , respectively. See [17] for a thorough discussion.

In this work, we go a step further and require that, in 3D, the refinement Tℓ+1 := refine(Tℓ ,Mℓ) is the coars-
est NVB refinement of Tℓ such that all faces of elements T ∈ Λ(Mℓ) contain an interior node. Here, Λ(Mℓ) is
defined as

Λ(Mℓ) :=⋃{T ∈ Tℓ | T ∈Mℓ or T shares at least one edge with an element T ∈Mℓ},

i.e., it is the set of all elements in Tℓ that are either marked themselves or share one or more edges with
a marked element. If we denote the refinement strategy from [17] as refineEGP( ⋅ ) and the one used in this work
as refineFSW( ⋅ ), then we observe that there holds

refineFSW(Tℓ ,Mℓ) = refineEGP(Tℓ , Λ(Mℓ)) (2.3)

for all subsetsMℓ ⊆ Tℓ.

Remark 1. The two-dimensional refinement rule refine( ⋅ ) and the three-dimensional rules refineEGP( ⋅ ) and
refineFSW( ⋅ ) have the property that the refinement of a marked element does not depend on its neighbors,
i.e., the mesh closure step does not further refine sons of marked elements. In particular, for a refinement
Tℓ+1 := refine(Tℓ ,Mℓ) and the uniform refinement Tℓ,u := refine(Tℓ , Tℓ), there holds that sons of marked
elements are the same in Tℓ+1 and Tℓ,u . The same is true if refineEGP( ⋅ ) is used. For refineFSW( ⋅ ), not only
the sons of marked elements but the sons of all elements T ∈ Λ(Mℓ) are the same in Tℓ+1 and Tℓ,u . In the two-
dimensional case, this fact is easy to check; for refineEGP( ⋅ ), we refer to [17], and due to (2.3), the arguments
provided in [17] extend to refineFSW( ⋅ ).

Remark 2. Note that, for a marked element T ∈Mℓ, the number of elements T ∈ Tℓ that share an edge with T
is bounded in terms of the γ-shape regularity of Tℓ. That is, there holds

#Mℓ ≤ #Λ(Mℓ) ≤ C#Mℓ ,

with C > 0 depending only on the γ-shape regularity of Tℓ. That is, the number of elements in Λ(Mℓ) can be con-
trolled in terms of thenumber of elements inMℓ, and this suggests that itmight be possible to control the amount
of refined elements in refineFSW(Tℓ ,Mℓ) in terms of the number of refined elements in refineEGP(Tℓ ,Mℓ).

From now on, if not stated otherwise, we will only consider refineFSW( ⋅ ) as refinement strategy, and we write
refine( ⋅ ) instead of refineFSW( ⋅ ).

Let us mention that, for a one-level refinement Tℓ+1 := refine(Tℓ ,Mℓ) of Tℓ, elementary geometric consid-
erations provide equivalence of the corresponding mesh-size functions

hℓ+1 ≤ hℓ ≤ Chℓ+1 , (2.4)

where C = 2 for d = 2 and C = 3√32 for d = 3.
Remark 1 implies the following lemma.

Lemma 3. For a triangulation Tℓ and a subsetMℓ ⊆ Tℓ, consider the refinement Tℓ+1 := refine(Tℓ ,Mℓ), as well
as the uniform refinement Tℓ,u := refine(Tℓ , Tℓ). Then Tℓ+1 is coarser than Tℓ,u , i.e.,

for all T ∈ Tℓ,u , there exists T ∈ Tℓ+1 such that T ⊆ T.
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Proof. According to Remark 1, marked elements T ∈ Tℓ have the same sons in Tℓ+1 and Tℓ,u . By definition, and
since Tℓ,u is a conforming triangulation, Tℓ+1 is coarser than Tℓ,u .

For a triangulation Tℓ, the symbol refine(Tℓ) shall denote the (infinite) set of all triangulations that can be
obtained by refining Tℓ finitely many times. Henceforth, we assume that an initial conforming triangulation
T0 is given, and we write 𝕋 := refine(T0) for the set of all possible refinements of T0.

2.3 Two-Level Error Estimation and Adaptive FEM

For each node z ∈ N∗Tℓ , there is a unique function φℓz ∈ S10(Tℓ) that satisfies φℓz(z) = δzz for all z ∈ N∗Tℓ , where
δzz denotes the Kronecker delta. The family {φℓz | z ∈ N∗Tℓ } forms a basis of S10(Tℓ), and we call this basis the
nodal basis associated toTℓ. Furthermore, for the uniform refinementTℓ,u := refine(Tℓ , Tℓ), let {φℓ,uz | z ∈ N∗Tℓ,u }
be the nodal basis associated to Tℓ,u .

For any triangle T ∈ Tℓ, the local contribution of the two-level error estimator (see e.g. [32]) is defined as

ηℓ(T)2 := ∑
z∈N∗

Tℓ,u (T)\NTℓ τℓ(φ
ℓ,u
z )2 , where τℓ(φℓ,uz ) :=

|⟨f, φℓ,uz ⟩L2(Ω) − a(uℓ , φ
ℓ,u
z )|

⦀φℓ,uz ⦀
(2.5)

and where N∗Tℓ,u (T) is the set of all vertices of sons of T that do not lie on the boundary of Ω. Furthermore, for
any subset Uℓ ⊆ Tℓ, we set ηℓ(Uℓ)2 := ∑T∈Uℓ ηℓ(T)2 and ηℓ := ηℓ(Tℓ).
Remark 4. In [4], it was noted that there holds τℓ(φℓ,uz ) = ⦀𝔾z(uℓ,u − uℓ)⦀, where𝔾z : S10(Tℓ,u)→ span(φℓ,uz ) is
theGalerkin projection onto span(φℓ,uz ) and uℓ,u ∈ S10(Tℓ,u) is theGalerkin solution corresponding to the uniform
refinement Tℓ,u .

We employ an adaptive algorithm of the form SOLVE–ESTIMATE–MARK–REFINE. As error estimators, we use the
two-level indicators defined above. The marking step is done by using Dörfler marking [15], which in fact can
be done in linear complexity [31]. Finally, mesh refinement is done with newest vertex bisection [26, 35].

Algorithm 5. Input: Conforming triangulation T0, right-hand side f , refinement parameter θ ∈ (0, 1].
For ℓ = 0, 1, 2, . . . ,

(1) compute the unique solution uℓ ∈ S10(Tℓ) of (2.2);
(2) for each T ∈ Tℓ, compute the two-level estimator contribution ηℓ(T) defined in (2.5) and the total error

estimator ηℓ;
(3) find a setMℓ ⊆ Tℓ of minimal cardinality such that ηℓ(Mℓ)2 ≥ θη2ℓ;
(4) generate the refined mesh Tℓ+1 := refine(Tℓ ,Mℓ).
Output: Sequence of triangulations (Tℓ)ℓ∈ℕ0 with associated discrete solutions (uℓ)ℓ∈ℕ0 .

Regarding convergence of adaptive algorithms with optimal algebraic rates for model problems with integer
order as well as for boundary element discretizations of integral equations, we refer to [7, 11, 12, 22, 34] and
to [20] for the fractional Laplacian.

2.4 Saturation Assumptions

As in [32], the validity of our main results hinges on certain saturation assumptions. We say that a sequence
(Tℓ)ℓ∈ℕ0 of triangulations satisfies the weak saturation assumption if there exists a q ∈ (0, 1) such that

⦀u − uℓ,u⦀ ≤ q⦀u − uℓ⦀ (2.6)

for all ℓ ∈ ℕ0. Here, uℓ,u ∈ S10(Tℓ,u) denotes the Galerkin solution corresponding to the uniform refinement
Tℓ,u := refine(Tℓ , Tℓ).

Furthermore, we say that a sequence (Tℓ)ℓ∈ℕ0 of triangulations satisfies the strong saturation assumption if
there exist constants 0 < κ ≤ q < 1 such that, for all ℓ ∈ℕ0 and allTh ∈ refine(Tℓ) satisfying ⦀u − uh⦀ ≤ κ⦀u − uℓ⦀,
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there exists a setMH ⊆ Tℓ \ Th such that TH := refine(Tℓ ,MH) satisfies

⦀u − uH⦀ ≤ q⦀u − uℓ⦀ and Tℓ \ TH ⊆ Tℓ \ Th . (2.7)

Remark 6. In [32], the strong saturation assumption was defined differently. There, the strong saturation as-
sumption reads as: suppose that there exist constants 0 < κ ≤ q < 1 such that, for all ℓ ∈ℕ0 and Th ∈ refine(Tℓ),
the mesh TH := refine(Tℓ , Tℓ \ Th) satisfies that

⦀u − uh⦀ ≤ κ⦀u − uℓ⦀ implies ⦀u − uH⦀ ≤ q⦀u − uℓ⦀. (2.8)

If Tℓ+1 := refine(Tℓ , Mℓ) denotes the coarsest NVB refinement such that every marked element T ∈ Mℓ
is bisected at least once, both strong saturation assumptions are in fact equivalent since then the mesh
TH := refine(Tℓ , Tℓ \ Th) satisfiesTℓ \ TH ⊆ Tℓ \ Th . IfTℓ+1 := refine(Tℓ ,Mℓ) is defined as in Section 2.2, however,
assumption (2.7) is stronger than (2.8).

2.5 Main Results

Our first main result states that discrete efficiency, discrete reliability and stability holds for the two-level error
indicator.

Theorem 7. Let Tℓ ∈ 𝕋 and Tℓ+1 := refine(Tℓ ,Mℓ) for some subsetMℓ ⊆ Tℓ, as well as Tm ∈ refine(Tℓ). Let uℓ,
uℓ+1 and um denote the Galerkin solutions of (2.2) corresponding to Tℓ, Tℓ+1 and Tm , respectively. Then
(a) there exists a constant Ceff > 0 such that

ηℓ(Mℓ) ≤ Ceff⦀uℓ+1 − uℓ⦀;

(b) there exists a constant Crel > 0 such that

⦀uℓ+1 − uℓ⦀ ≤ Crelηℓ(Tℓ \ Tℓ+1).

(c) Assume d = 2. Then there exists a constant Cstab > 0 such that

|ηℓ(Tm ∩ Tℓ) − ηm(Tm ∩ Tℓ)| ≤ Cstab⦀um − uℓ⦀.

The constants Ceff , Crel and Cstab depend only on Ω, s, d and the γ-shape regularity of Tℓ.

Remark 8. The triangle inequality shows ⦀uℓ+1 − uℓ⦀ ≤ 2⦀uℓ − u⦀ and employment of Dörfler marking means
θη2ℓ ≤ ηℓ(Mℓ)2. That is, Theorem 7 (a) together with Dörfler marking leads to efficiency of the two-level error
indicator. Furthermore, the triangle inequality and the weak saturation assumption prove

(1 − q)⦀u − uℓ⦀ ≤ ⦀uℓ,u − uℓ⦀.

In combination with Theorem 7 (b), this shows that the two-level error estimator is reliable, provided that the
weak saturation assumption holds.

Remark 9. In order to prove Theorem 7 (a), it will be essential to use the refinement strategy refineFSW( ⋅ ) since
this refinement strategy guarantees that the nodal basis functions corresponding to newly introduced nodes on
marked elements are the same in S10(Tℓ+1) and S

1
0(Tℓ,u). The proof of Theorem 7 (b) stays valid, even if one uses

the refinement strategy refineEGP( ⋅ ) instead.

In combination with the general frameworks presented in [11, 32] and the weak saturation assumption, Theo-
rem 7 guarantees linear convergence of Algorithm 5.

Theorem 10. Assume that the output (Tℓ)ℓ∈ℕ0 of Algorithm 5 satisfies the weak saturation assumption (2.6). Then
the sequence of Galerkin solutions (uℓ)ℓ∈ℕ0 associated to (Tℓ)ℓ∈ℕ0 converges linearly, i.e., there exists a constant
κ ∈ (0, 1) such that ⦀u − uℓ+1⦀ ≤ κ⦀u − uℓ⦀ for all ℓ ∈ ℕ0. The constant κ depends only on θ, Ceff , Crel and the
constant q from the weak saturation assumption.

Proof. This follows from Theorem 7 (a), (b) and [32, Theorem 2.6].
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Furthermore, in two dimensions, the frameworks from [11, 32], Theorem 7 and the strong saturation assumption
lead to convergence with optimal algebraic convergence rates.

Theorem 11. Assume d = 2. Consider the output (Tℓ)ℓ∈ℕ0 of Algorithm 5 for a fixed refinement parameter
θ ∈ (0, 1], and assume that the strong saturation assumption (2.7) holds.

Then there exists θopt ∈ (0, 1] such that, if θ < θopt, the sequence (uℓ)ℓ∈ℕ0 of discrete solutions associated with
(Tℓ)ℓ∈ℕ0 converges with the best possible algebraic rate. That is, for every t > 0, there exists a constant Copt > 0
depending only on t, θ, T0, Ceff , Crel, Cstab and the constants κ and q from the strong saturation assumption such
that

C−1opt‖u‖𝔸t ≤ sup
ℓ∈ℕ0
(#Tℓ)t⦀u − uℓ⦀ ≤ Copt‖u‖𝔸t ,

where ‖u‖𝔸t is the so-called approximation constant [12] of u,

‖u‖𝔸t := sup
N∈ℕ0
(N + 1)t min

{Topt∈𝕋 | #Topt−#T0≤N}
⦀u − uTopt⦀.

Proof. This follows from Theorem 7 (a)–(c) and [32, Theorem 2.9].

3 Proof of Theorem 7

The proof of our main theorem requires some auxiliary results. As was pointed out in [20], one major diffi-
culty in the discussion of a posteriori error estimators for the fractional Laplacian is that, for wℓ ∈ S10(Tℓ) and
3/4 ≤ s < 1, the expression (−Δ)swℓ is in general no longer in L2(Ω). In order to overcome this difficulty, a cer-
tain weight function is introduced. For a triangulation Tℓ of Ω and s ∈ (0, 1), the weight function h̃sℓ is defined
as

h̃sℓ :=
{
{
{

hsℓ for 0 < s ≤ 1/2,
h1/2ℓ ωs−1/2

ℓ for 1/2 < s < 1,

where
ωℓ(x) := inf

T∈Tℓ infy∈∂T
|x − y|, x ∈ Ω,

is the distance from the mesh skeleton.

3.1 Properties of the Weight Function

The following properties of the weight function have been proved in [20].

Theorem 12. Consider a triangulation Tℓ of a bounded Lipschitz domain Ω ⊆ ℝd and s ∈ (0, 1).
(a) For all wℓ ∈ S10(Tℓ), there holds h̃

s
ℓ(−Δ)swℓ ∈ L2(Ω).

(b) There exists a constant C > 0 depending only on Ω, s, d and the γ-shape regularity of Tℓ such that

‖h̃sℓ(−Δ)
swℓ‖L2(Ω) ≤ C‖wℓ‖H̃s(Ω)

for all wℓ ∈ S10(Tℓ), i.e., an inverse estimate is available for the fractional Laplacian.

Let the reference element Tref be defined as the convex hull of the origin and the two (respectively three,
for d = 3) canonical basis vectors. For T ∈ Tℓ with vertices z0 , z1 , z2 (or z0 , z1 , z2 , z3 in the case d = 3), let
FT : Tref → T be the unique diffeomorphism that satisfies FT (ei) = zi , where ei shall be the zero vector for i = 0
and the i-th canonical basis vector otherwise. Without loss of generality, we may assume that the ordering of
the vertices of T is such that the edge z0z1 corresponds to the refinement edge of T . That is, FT maps e0e1 to the
refinement edge of T .

For the reference element Tref , we define

ωref(x) := inf
y∈∂Tref
|x − y|, x ∈ Tref .
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According to [20, proof of Lemma 3.2], there holds the pointwise estimate

hℓ(T)ωref ≃ ωℓ ∘ FT , (3.1)

where the hidden constants depend only on d and the γ-shape regularity of Tℓ.
Consider a triangulation Tℓ with uniform refinement Tℓ,u := refine(Tℓ , Tℓ). For an element T ∈ Tℓ, the

refinement pattern Pat(T) of T is the set

Pat(T) := {F−1T (T1), . . . , F
−1
T (TN)},

where T1 , . . . , TN are the sons of T in Tℓ,u and N = 4 in 2D and N = 18 or N = 20 (depending on the refinement
type of T) in 3D.

For the refinement pattern of an element T , we define

ωPat(T)(x) := inf
T∈Pat(T) infy∈∂T|x − y|, x ∈ Tref .

If d = 2, every element T has the same refinement pattern, i.e., the refinement pattern is independent of T .
In the three-dimensional case, each element has an associated refinement type β ∈ {0, 1, 2}, and the refinement
pattern of an element T only depends on its refinement type, i.e., T has one of three possible refinement patterns.

Consider a triangulation Tℓ with uniform refinement Tℓ,u := refine(Tℓ , Tℓ). Using (2.4), arguing as in
[20, proof of Lemma 3.2] leads to

(hℓ,u ∘ FT )ωPat(T) ≃ ωℓ,u ∘ FT (3.2)

for all T ∈ Tℓ, where hℓ,u and ωℓ,u denote the mesh-width and distance-to-skeleton function associated to Tℓ,u .
The hidden constants in (3.2) depend only on d and the γ-shape regularity of Tℓ.

Lemma 13. Let s ∈ (0, 1) and let Tℓ be a triangulation of Ω and Tℓ+1 := refine(Tℓ ,Mℓ) for some subsetMℓ ⊆ Tℓ.
Then, for all vℓ+1 ∈ S10(Tℓ+1) and all T ∈ Tℓ, there holds

‖h̃−sℓ+1vℓ+1‖L2(T) ≃ ‖h̃
−s
ℓ vℓ+1‖L2(T) , (3.3)

where the hidden constants depend only on s, d and the γ-shape regularity of Tℓ.

Proof. Due to (2.4), the statement is clear for s ≤ 1/2. Therefore, consider s > 1/2 in the following. Again, due
to (2.4), inequalities (3.3) are equivalent to

‖ω1/2−s
ℓ+1 vℓ+1‖L2(T) ≃ ‖ω

1/2−s
ℓ vℓ+1‖L2(T) . (3.4)

Due to the pointwise inequalityωℓ+1 ≤ ωℓ and s > 1/2, bounding the right-hand side by the left-hand side in (3.4)
is clear, and we only have to prove the converse estimate.

Step 1. The first step is to prove the lower bound in (3.4) under the assumption thatMℓ = Tℓ, i.e., thatTℓ+1 = Tℓ,u .
To this end, let T ∈ Tℓ be given and consider the induced distance-function ωPat(T) on the reference element.

Furthermore, we define the space

S1(Pat(T)) := {u ∈ C(Tref) | u|T ∈ P1(T) for all T ∈ Pat(T)}.

For vref ∈ S1(Pat(T)), consider the weighted L2-norms

‖vref‖2ωPat(T) := ∫
Tref

(ωPat(T)(x))1−2sv2ref dx and ‖vref‖2ωref := ∫
Tref

(ωref)1−2sv2ref dx.

Since S1(Pat(T)) is finite-dimensional and Pat(T) is independent of T (when d = 2) or depends only on its refine-
ment type β ∈ {0, 1, 2} (when d = 3), the norms ‖ ⋅ ‖ωPat(T) and ‖ ⋅ ‖ωref are pairwise equivalent and there exists
a constant C > 0 depending only on s and d such that C−1‖ ⋅ ‖ωPat(T) ≤ ‖ ⋅ ‖ωref ≤ C‖ ⋅ ‖ωPat(T) . In combination with
(3.1) and (3.2), a scaling argument proves the lower bound in (3.4), provided that Tℓ+1 is the uniform refinement
of Tℓ.
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Step 2. In the more general case, consider the distance-to-skeleton function ωℓ,u , which is induced by the uni-
formrefinementTℓ,u . FromLemma3,we infer the pointwise inequalityωℓ,u ≤ ωℓ+1, which togetherwith s > 1/2
and the first step of the proof therefore implies

‖ω1/2−s
ℓ+1 vℓ+1‖L2(T) ≤ ‖ω

1/2−s
ℓ,u vℓ+1‖L2(T)

Step 1
≲ ‖ω1/2−s

ℓ vℓ+1‖L2(T)

for all vℓ+1 ∈ S10(Tℓ+1), which concludes the proof.

3.2 Scott–Zhang Projection

We recall that, for a triangulation Tℓ, the Scott–Zhang projection Jℓ : H̃s(Ω)→ S10(Tℓ) is defined as follows: for
any node z ∈ N∗Tℓ , let Tz ∈ Tℓ be an element that has z as vertex. Furthermore, let φℓz ∈ S10(Tℓ) denote the nodal
basis function associated to z and let φℓ∗z ∈P1(Tz) be the unique dual function that satisfies ⟨φℓ∗z ,φℓz⟩L2(Tz) = δzz
for all z ∈ N∗Tℓ (Tz), where δzz is the Kronecker delta. Then, for v ∈ H̃s(Ω),

Jℓ(v) := ∑
z∈N∗

Tℓ(∫Tz φ
ℓ∗
z v dx)φℓz .

The Scott–Zhang projection has the following stability and approximation properties (see [20, Lemma 3.2]).

Theorem 14. For s ∈ (0, 1), there exists a constant C > 0 depending only on s, the γ-shape regularity of Tℓ, Ω
and d such that the following statements hold.
(a) ‖Jℓv‖H̃s(Ω) ≤ C‖v‖H̃s(Ω) for all v ∈ H̃s(Ω).
(b) ‖h̃−sℓ (1 − Jℓ)v‖L2(Ω) ≤ C‖v‖H̃s(Ω) for all v ∈ H̃s(Ω).

For a triangulationTℓ, let Iℓ : C(Ω)→ S10(Tℓ)be the nodal interpolation operator, i.e., Iℓ(v) := ∑z∈N∗
Tℓ v(z)φℓz . The

next theorem shows that, on the discrete space S10(Tℓ), the nodal interpolation operator and the Scott–Zhang
projection are in some sense equivalent.

Theorem 15. Let Tℓ ∈ 𝕋 with uniform refinement Tℓ,u := refine(Tℓ , Tℓ). Then, for all vℓ,u ∈ S10(Tℓ,u), there holds
the estimate

‖h̃−sℓ (1 − Iℓ)vℓ,u‖L2(Ω) ≃ ‖h̃
−s
ℓ (1 − Jℓ)vℓ,u‖L2(Ω) ,

where the hidden constants may depend only on s, d and the γ-shape regularity of Tℓ.

Proof. It is enough to prove the elementwise estimate

‖h̃−sℓ (1 − Iℓ)vℓ,u‖L2(T) ≃ ‖h̃
−s
ℓ (1 − Jℓ)vℓ,u‖L2(T)

for all T ∈ Tℓ. The proof of this estimate is split into four steps.

Step 1. For any T ∈ Tℓ, we have already considered the affine diffeomorphism FT : Tref → T . Let VT : ℝd → ℝd
be the unique affine extension of FT to ℝd . Note that FT and VT have the same Jacobi matrix. For T ∈ Tℓ, we
define

Πref
ℓ [T] := {V

−1
T (T
) | T ∩ T ̸= 0},

as well as
Ωref
ℓ [T] := interior⋃{V

−1
T (T) | T ∩ T ̸= 0}.

The affine mapping PT := VT |Ωrefℓ [T] then maps Ωref
ℓ [T] onto Ωℓ[T], and we may consider the space

S1(P−1T (Tℓ,u)) := {vℓ,u ∘ PT | vℓ,u ∈ S
1
0(Tℓ,u)}.

This definition suggests that S1(P−1T (Tℓ,u)) depends on the element T . A closer look, however, reveals that it
depends only on the shape of the element patch of T and the distribution of the refinement edges of elements in
the patch (and the refinement types β ∈ {0, 1, 2} of the elements in the patch in d = 3). The amount of possible
shapes of element patches can be controlled in terms of γ-shape regularity. This shows that S1(P−1T (Tℓ,u)) is one
of onlyM possible spaces, whereM depends on T0, d and γ-shape regularity, but is independent of the number
of elements in Tℓ.
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Step 2. Let an element T ∈ Tℓ with associated function space S1(P−1T (Tℓ,u)) be given. We define an operator
Iref : S1(P−1T (Tℓ,u))→ S1(P−1T (Tℓ,u)) by

Iref(vℓ,u ∘ PT ) := ∑
z∈N∗

Tℓ (T) vℓ,u(z)φ
ℓ
z ∘ PT .

We observe that, for all vℓ,u ∈ S10(Tℓ,u), there holds ((1 − Iℓ)vℓ,u) ∘ FT = (1 − Iref)(vℓ,u ∘ PT )|Tref .
Furthermore, for T ∈ Tℓ with associated function space S1(P−1T (Tℓ,u)), we define an operator

JrefT : S1(P−1T (Tℓ,u))→ S1(P−1T (Tℓ,u))

by
JrefT (vℓ,u ∘ PT ) := ∑

z∈N∗
Tℓ (T)(∫Tz φ

ℓ∗
z vℓ,u dx)φℓz ∘ PT ,

where the elements Tz are the averaging elements associated to vertices z of T chosen in the definition of Jℓ.
We keep the subscript T here since this operator is also dependent on the choice of the averaging elements Tz .
In other words, not every information needed to define JrefT is incorporated in the function space S1(P−1T (Tℓ,u));
one still has an option to choose different averaging elements. This is in contrast to the operator Iref , which is
determined by S1(P−1T (Tℓ,u)).

By definition, JrefT satisfies ((1 − Jℓ)vℓ,u) ∘ FT = (1 − JrefT )(vℓ,u ∘ PT )|Tref for all functions vℓ,u ∈ S
1
0(Tℓ,u).

Step 3. For T ∈ Tℓ, the functions

‖g‖I := ‖ω1/2−s
ref (1 − I

ref)g‖L2(Tref ) and ‖g‖J,T := ‖ω1/2−s
ref (1 − J

ref
T )g‖L2(Tref )

are seminorms on the associated space S1(P−1T (Tℓ,u)). For each T ∈ Tℓ, the kernels of ‖ ⋅ ‖I and ‖ ⋅ ‖J,T coincide,
and since the number of elements T in Tℓ is finite, there exists a constant CTℓ ,s > 0 such that

C−1Tℓ ,s‖g‖J,T ≤ ‖g‖I ≤ CTℓ ,s‖g‖J,T
for all g ∈ S1(P−1T (Tℓ,u)) and all T ∈ Tℓ. The aim of the third step is to show that there is a constant Cs > 0, which
may depend on s, γ-shape regularity and d but not on Tℓ, such that

C−1s ‖g‖J,T ≤ ‖g‖I ≤ Cs‖g‖J,T (3.5)

for all g ∈ S1(P−1T (Tℓ,u)).
To this end, let an element T ∈ Tℓwith associated spaceS1(P−1T (Tℓ,u))be given. The set {φ

ℓ,u
z ∘ PT | z ∈ N∗Tℓ,u }

is a spanning set of S1(P−1T (Tℓ,u)). Note the amount of nonzero functions in this spanning set is bounded by
a number depending only on d and γ-shape regularity. For each function in this set, the definition of JrefT shows

JrefT (φ
ℓ,u
z ∘ PT ) = ∑

z∈N∗
Tℓ (T)(∫Tz φ

ℓ∗
z φℓ,uz dx)φℓz ∘ PT .

The function φℓz ∘ PT is a nodal basis function associated to a node of Tref , i.e., it is one of only d + 1 functions.
The key is to take a closer look on the coefficients (∫Tz φ

ℓ∗
z φℓ,uz dx). If φℓ,uz does not have support in Tz , then the

coefficient is zero. We observe that, if φℓ,uz has support in Tz , then φℓ,uz ∘ FTz is one of only M functions, where
M = 6 in the case d = 2 or M = 14 for d = 3. This is due to the fact that φℓ,uz ∘ FTz corresponds to a nodal basis
function associated to vertices of Tref or nodes on the midpoints of edges or contained in faces of Tref .

The transformation rule shows that hℓ(Tz)d(φℓ∗z ∘ FTz ) ∈ P1(Tref) is a dual function on the reference
element, and

1
d! ∫

Tz

φℓ∗z φℓ,uz dx = ∫
Tref

hℓ(Tz)d(φℓ∗z ∘ FTz )(φℓ,uz ∘ FTz ) dx.
Since there are only d + 1 dual functions in P1(Tref), this implies that the number of possible values of the
coefficient ∫Tz φ

ℓ∗
z φℓ,uz dx can be bounded by a constant depending only on d.
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Since the number of possible coefficients can be bounded independently of Tℓ, it follows that the number of
functions of the form JrefT (φ

ℓ,u
z ∘ PT ) is bounded independently of T . Consequently, the number of interpolation

operators JrefT depends only on d and not on the number of elements in Tℓ. In other words, the number of
possible operators JrefT (and therefore the number of possible seminorms ‖ ⋅ ‖J,T on the space S1(P−1T (Tℓ,u))) is
bounded independently of the number of elements in Tℓ. Together with the fact that the amount of possible
spaces S1(P−1T (Tℓ,u)) is bounded independently of Tℓ (see Step 1), this shows (3.5).

Step 4. According to Step 3, for T ∈ Tℓ and g ∈ S1(P−1T (Tℓ,u)), we have

‖ω1/2−s
ref (1 − I

ref)g‖L2(Tref ) ≃ ‖ω
1/2−s
ref (1 − J

ref
T )g‖L2(Tref ) ,

where the hidden constants are independent of T . In combination with a transformation to the reference
element, equation (3.1) and the definition JrefT show

‖h̃−sℓ (1 − Iℓ)vℓ,u‖
2
L2(T) ≃ hℓ(T)

d−2s ∫
Tref

ω1−2s
ref ((1 − I

ref)(vℓ,u ∘ PT ))2 dx

≃ hℓ(T)d−2s ∫
Tref

ω1−2s
ref ((1 − J

ref
T )(vℓ,u ∘ PT ))

2 dx

≃ hℓ(T)d−2s ∫
Tref

ω1−2s
ref (((1 − Jℓ)vℓ,u) ∘ FT)

2 dx.

Transforming back to the reference element (and again using (3.1)) yields

hℓ(T)d−2s ∫
Tref

ω1−2s
ref (((1 − Jℓ)vℓ,u) ∘ FT)

2 dx ≃ ‖h̃−sℓ (1 − Jℓ)vℓ,u‖
2
L2(T) .

Thus, we have shown
‖h̃−sℓ (1 − Iℓ)vℓ,u‖

2
L2(T) ≃ ‖h̃

−s
ℓ (1 − Jℓ)vℓ,u‖

2
L2(T)

for all T ∈ Tℓ and vℓ,u ∈ S1(Tℓ,u). Summing over T ∈ Tℓ completes the proof.

Theorem 15 yields equivalence of the energy norm and a weighted L2-norm for certain discrete functions.

Lemma 16. Let Tℓ ∈ 𝕋, Mℓ ⊆ Tℓ and Tℓ+1 := refine(Tℓ ,Mℓ). For any node z ∈ N∗Tℓ+1 \NTℓ , consider the associ-
ated nodal basis function φℓ+1z ∈ S

1
0(Tℓ+1). Then there holds

⦀φℓ+1z ⦀ ≃ ‖h̃−sℓ φ
ℓ+1
z ‖L2(Ω) ,

where the hidden constants depend only on s, d, Ω and the γ-shape regularity of Tℓ.

Proof. The Cauchy–Schwarz inequality, Lemma 13 and Theorem 12 (b) lead to

⦀φℓ+1z ⦀
2 = a(φℓ+1z , φℓ+1z ) = ∫

Ω

(−Δ)s(φℓ+1z )h̃sℓ+1h̃
−s
ℓ+1φ
ℓ+1
z dx

≤ ‖h̃sℓ+1(−Δ)
s(φℓ+1z )‖L2(Ω)‖h̃−sℓ+1φ

ℓ+1
z ‖L2(Ω)

≲ ‖h̃sℓ+1(−Δ)
s(φℓ+1z )‖L2(Ω)‖h̃−sℓ φ

ℓ+1
z ‖L2(Ω)

≲ ⦀φℓ+1z ⦀‖h̃−sℓ φ
ℓ+1
z ‖L2(Ω) ,

which proves the lower inequality. For the reverse inequality, note that, for a node z ∈ N∗Tℓ+1 \NTℓ , there holds
φℓ+1z = (1 − Iℓ)φℓ+1z . Therefore, Theorem 15 and Theorem 14 imply

‖h̃−sℓ φ
ℓ+1
z ‖L2(Ω) = ‖h̃−sℓ (1 − Iℓ)φ

ℓ+1
z ‖L2(Ω) ≃ ‖h̃−sℓ (1 − Jℓ)φ

ℓ+1
z ‖L2(Ω) ≲ ⦀φℓ+1z ⦀,

where the last inequality is due to norm equivalence of ⦀ ⋅ ⦀ and ‖ ⋅ ‖H̃s(Ω).
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3.3 Proof of Theorem 7 (a)

Weneed a generalization of the definition of the two-level indicators τℓ(φℓ,uz ) defined in (2.5). For any refinement
Tℓ+1 = refine(Tℓ ,Mℓ) and a nodal basis function φℓ+1z ∈ S

1
0(Tℓ+1) associated to a node z ∈ N

∗
Tℓ+1 (T) \NTℓ , we set

τℓ(φℓ+1z ) :=
|⟨f, φℓ+1z ⟩L2(Ω) − a(uℓ , φℓ+1z )|

⦀φℓ+1z ⦀
.

The following lemma proves the first part of Theorem 7.

Lemma 17. Let Tℓ ∈ 𝕋,Mℓ ⊆ Tℓ and Tℓ+1 := refine(Tℓ ,Mℓ). Assume uℓ and uℓ+1 are the Galerkin solutions with
respect to the triangulations Tℓ and Tℓ+1. Then there holds

∑
z∈N∗

Tℓ+1 \NTℓ τℓ(φ
ℓ+1
z )

2 ≲ ⦀uℓ+1 − uℓ⦀2 (3.6)

as well as
ηℓ(Mℓ) ≲ ⦀uℓ+1 − uℓ⦀, (3.7)

where the hidden constants depend only on s, d, Ω and the γ-shape regularity of Tℓ.

Proof. Consider a node z ∈ N∗Tℓ+1 \NTℓ and an element T ∈ Tℓ such that z ∈ T . Note that
|⟨f, φℓ+1z ⟩L2(Ω) − a(uℓ , φℓ+1z )| = |a(uℓ+1 − uℓ , φℓ+1z )| =


∫
Ω

h̃sℓ+1((−Δ)
s(uℓ+1 − uℓ))h̃−sℓ+1φ

ℓ+1
z dx

.

Due to supp(φℓ+1z ) being contained in the patch Ωℓ[T], the Cauchy–Schwarz inequality and the identity
(1 − Iℓ)φℓ+1z = φℓ+1z show


∫
Ω

h̃sℓ+1((−Δ)
s(uℓ+1 − uℓ))h̃−sℓ+1φ

ℓ+1
z dx

=

∫

Ωℓ[T] h̃
s
ℓ+1((−Δ)

s(uℓ+1 − uℓ))h̃−sℓ+1φ
ℓ+1
z dx


≤ ‖h̃sℓ+1(−Δ)
s(uℓ+1 − uℓ)‖L2(Ωℓ[T])‖h̃−sℓ+1(1 − Iℓ)φℓ+1z ‖L2(Ω) .

Furthermore, Lemma 13, Theorem 15 and Theorem 14 (b) imply

‖h̃−sℓ+1(1 − Iℓ)φ
ℓ+1
z ‖L2(Ω) ≲ ‖h̃−sℓ (1 − Iℓ)φ

ℓ+1
z ‖L2(Ω) ≲ ‖h̃−sℓ (1 − Jℓ)φ

ℓ+1
z ‖L2(Ω) ≲ ⦀φℓ+1z ⦀.

Thus, for all z ∈ N∗Tℓ+1 \NTℓ , we have
τℓ(φℓ+1z ) =

|⟨f, φℓ+1z ⟩L2(Ω) − a(uℓ , φℓ+1z )|

⦀φℓ+1z ⦀
≲ ‖h̃sℓ+1(−Δ)

s(uℓ+1 − uℓ)‖L2(Ωℓ[T]) .
Consequently, summing over all z ∈ N∗Tℓ+1 \NTℓ , using γ-shape regularity and Theorem 12 (b), we conclude

∑
z∈N∗

Tℓ+1 \NTℓ τℓ(φ
ℓ+1
z )

2 ≲ ∑
z∈N∗

Tℓ+1 \NTℓ‖h̃
s
ℓ+1(−Δ)

s(uℓ+1 − uℓ)‖2L2(Ωℓ[T])
≲ ‖h̃sℓ+1(−Δ)

s(uℓ+1 − uℓ)‖2L2(Ω)
≲ ⦀uℓ+1 − uℓ⦀2 .

This completes the proof of (3.6). In order to obtain (3.7), we have to compare the nodal basis function
φℓ+1z and φℓ,uz . According to the refinement strategy used in this work, for any element T ∈Mℓ, there holds
NTℓ+1 (T) = NTℓ,u (T).

In the two-dimensional case, itwas observed in [32, proof of Theorem3.2] that, for T ∈Mℓ, z ∈N∗Tℓ,u (T) \NTℓ ,
there holds the equality φℓ+1z = φ

ℓ,u
z .

This equality does also hold in 3D: consider T ∈Mℓ and z ∈ N∗Tℓ,u (T) \NTℓ . That is, z is either the midpoint
of an edge of T or is contained in a face of T . Consequently, the nodal basis function φℓ+1z only has support in
elements T ∈ Tℓ which share at least one edge with the marked element T , i.e.,

supp(φℓ+1z ) ⊆⋃{T | T ∈ Λ(Mℓ)}.
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Since the sons of elements T ∈ Λ(Mℓ) are the same inTℓ+1 andTℓ,u (see Remark 1), we conclude that φℓ+1z = φ
ℓ,u
z .

Finally, the equalities NTℓ+1 (T) = NTℓ,u (T), φℓ+1z = φ
ℓ,u
z (for elements T ∈Mℓ and nodes z ∈ N∗Tℓ,u (T) \NTℓ )

imply
ηℓ(Mℓ)2 = ∑

T∈Mℓ ∑
z∈N∗

Tℓ+1 (T)\NTℓ τℓ(φ
ℓ+1
z )

2 ≲ ∑
z∈N∗

Tℓ+1 \NTℓ τℓ(φ
ℓ+1
z )

2 ,

and (3.7) follows from (3.6).

3.4 Proof of Theorem 7 (b)

The proof of Theorem 7 (b) requires an auxiliary lemma.

Lemma 18. Let Tℓ ∈ 𝕋,Mℓ ⊆ Tℓ and Tℓ+1 := refine(Tℓ ,Mℓ). Consider a function vℓ+1 ∈ S10(Tℓ+1), i.e.,

vℓ+1 = ∑
z∈N∗

Tℓ+1 λzφ
ℓ+1
z

for certain coefficients λz . Then there holds

∑
z∈N∗

Tℓ+1‖h̃
−s
ℓ λzφ

ℓ+1
z ‖

2
L2(Ω) ≃ ‖h̃

−s
ℓ vℓ+1‖

2
L2(Ω) .

The hidden constants depend only on s, d and the γ-shape regularity of Tℓ.

Proof. The proof is done similarly to the proof of [4, Lemma 15]. For any element T ∈ Tℓ, the transformation
rule and (3.1) show

∑
z∈N∗

Tℓ+1‖h̃
−s
ℓ λzφ

ℓ+1
z ‖

2
L2(T) = ∑

z∈N∗
Tℓ+1 (T)‖h̃

−s
ℓ λzφ

ℓ+1
z ‖

2
L2(T)

= d! hℓ(T)d ∑
z∈N∗

Tℓ+1 (T)‖(h̃
−s
ℓ λzφ

ℓ+1
z ) ∘ FT‖2L2(Tref )

≃ hℓ(T)d−2s ∑
z∈N∗

Tℓ+1 (T)‖ω
1/2−s
ref λz(φℓ+1z ∘ FT )‖2L2(Tref ) .

The functions φℓ+1z ∘ FT are linearly independent; therefore, norm equivalence on finite-dimensional spaces
shows

∑
z∈N∗

Tℓ+1 (T)‖ω
1/2−s
ref λz(φℓ+1z ∘ FT )‖2L2(Tref ) ≃ ‖ω

1/2−s
ref (vℓ+1 ∘ FT )‖

2
L2(Tref ) .

Thus, together with (3.1), we conclude

∑
z∈N∗

Tℓ+1‖h̃
−s
ℓ λzφ

ℓ+1
z ‖

2
L2(T) ≃ hℓ(T)

d−2s‖ω1/2−s
ref (vℓ+1 ∘ FT )‖

2
L2(Tref ) = ‖h̃

−s
ℓ vℓ+1‖

2
L2(T) .

Summing over all T ∈ Tℓ completes the proof.

Finally, we can present the proof of Theorem 7 (b).

Lemma 19. LetTℓ ∈ 𝕋,Mℓ ⊆ Tℓ andTℓ+1 := refine(Tℓ ,Mℓ). Let uℓ and uℓ+1 be the discrete solutionswith respect
to the triangulations Tℓ and Tℓ+1. Then there holds

⦀uℓ+1 − uℓ⦀2 ≲ ∑
z∈N∗

Tℓ+1 \NTℓ τℓ(φ
ℓ+1
z )

2 (3.8)

as well as
⦀uℓ+1 − uℓ⦀ ≲ ηℓ(Tℓ \ Tℓ+1), (3.9)

where the hidden constants depend only on s, d, Ω and the γ-shape regularity of Tℓ.



616  M. Faustmann et al., Two-Level Estimation for Fractional Laplacian

Proof. Let Iℓ : S10(Tℓ+1)→ S10(Tℓ) be the nodal interpolation operator. As in [4, Lemma 15], there are coefficients
λz , where z ∈ N∗Tℓ+1 \NTℓ , such that we can express

(1 − Iℓ)(uℓ+1 − uℓ) = ∑
z∈N∗

Tℓ+1 \NTℓ λzφ
ℓ+1
z .

For z ∈ N∗Tℓ+1 \NTℓ , let 𝔾z : S10(Tℓ+1)→ span{φℓ+1z } denote the Galerkin projection onto span{φℓ+1z }. With this
notation, by using Galerkin orthogonality and since𝔾z is self-adjoint with respect to a( ⋅ , ⋅ ), we obtain

⦀uℓ+1 − uℓ⦀2 = a(uℓ+1 − uℓ , (1 − Iℓ)(uℓ+1 − uℓ)) = ∑
z∈N∗

Tℓ+1 \NTℓ a(uℓ+1 − uℓ , λzφ
ℓ+1
z )

= ∑
z∈N∗

Tℓ+1 \NTℓ a(uℓ+1 − uℓ , λz𝔾zφ
ℓ+1
z ) = ∑

z∈N∗
Tℓ+1 \NTℓ a(𝔾z(uℓ+1 − uℓ), λzφ

ℓ+1
z ).

The Cauchy–Schwarz inequality yields

⦀uℓ+1 − uℓ⦀2 ≤ ( ∑
z∈N∗

Tℓ+1 \NTℓ⦀𝔾z(uℓ+1 − uℓ)⦀
2)

1/2

( ∑
z∈N∗

Tℓ+1 \NTℓ⦀λzφ
ℓ+1
z ⦀

2)
1/2

. (3.10)

According to Lemma 16, there holds
⦀φℓ+1z ⦀ ≲ ‖h̃−sℓ φ

ℓ+1
z ‖L2(Ω)

for all z ∈ N∗Tℓ+1 \NTℓ . Together with Lemma 18, we conclude
∑

z∈N∗
Tℓ+1 \NTℓ⦀λzφ

ℓ+1
z ⦀

2 ≲ ∑
z∈N∗

Tℓ+1 \NTℓ‖h̃
−s
ℓ λzφ

ℓ+1
z ‖

2
L2(Ω) ≲ ‖ ∑

z∈N∗
Tℓ+1 \NTℓ h̃

−s
ℓ λzφ

ℓ+1
z ‖

2
L2(Ω)

= ‖h̃−sℓ (1 − Iℓ)(uℓ+1 − uℓ)‖
2
L2(Ω) .

By using Theorem 15 and Theorem 14 (b), we get

‖h̃−sℓ (1 − Iℓ)(uℓ+1 − uℓ)‖
2
L2(Ω) ≃ ‖h̃

−s
ℓ (1 − Jℓ)(uℓ+1 − uℓ)‖

2
L2(Ω) ≲ ⦀uℓ+1 − uℓ⦀

2 ,

i.e.,
∑

z∈N∗
Tℓ+1 \NTℓ⦀λzφ

ℓ+1
z ⦀

2 ≲ ⦀uℓ+1 − uℓ⦀2 .

From (3.10) and Remark 4, we deduce

⦀uℓ+1 − uℓ⦀2 ≲ ∑
z∈N∗

Tℓ+1 \NTℓ⦀𝔾z(uℓ+1 − uℓ)⦀
2 = ∑

z∈N∗
Tℓ+1 \NTℓ τℓ(φ

ℓ+1
z )

2 ,

which finishes the proof of (3.8).
In the two-dimensional case, it was noticed in [32, proof of Theorem 3.2] that, for any node z ∈ N∗Tℓ+1 \NTℓ ,

there holds φℓ+1z = φ
ℓ,u
z , which, in combination with (3.8), implies (3.9).

The three-dimensional case ismore involved: for z ∈ N∗Tℓ+1 \NTℓ , we have to compare τℓ(φℓ+1z ) and τℓ(φ
ℓ,u
z ).

For any node z ∈ N∗Tℓ+1 \NTℓ , there exists an element T ∈ Tℓ such that z is either contained in a face of T or is
the midpoint of an edge of T . That is, we can write N∗Tℓ+1 \NTℓ = ETℓ+1 ∪ FTℓ+1 , where ETℓ+1 is the set of new
nodes that are the midpoint of edges of elements in Tℓ and FTℓ+1 is the set of new nodes contained in faces of
elements in Tℓ.

For z ∈ FTℓ+1 , there holds φℓ+1z = φ
ℓ,u
z and consequently τℓ(φℓ+1z ) = τℓ(φ

ℓ,u
z ), which implies

∑
z∈FTℓ+1 τℓ(φ

ℓ+1
z )

2 ≤ ηℓ(Tℓ \ Tℓ+1)2 . (3.11)

If z ∈ ETℓ+1 , then there exists an edge Ez of an element T ∈ Tℓ such that z is the midpoint of Ez . We consider the
set of nodes

NΓℓ(Ez) := {z ∈ N∗Tℓ,u \NTℓ+1 | z is contained in a face F ∈ Γℓ(Ez)},
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where Γℓ(Ez) is the set of all faces F in the triangulation Tℓ with the property that Ez is an edge of F. We observe
that there holds

φℓ+1z = φ
ℓ,u
z + ∑

z∈NΓℓ(Ez )
1
2φ
ℓ,u
z ,

where the factor 1/2 comes from φℓ+1z (z) = 1/2 for all z ∈ NΓℓ(Ez). Galerkin orthogonality shows
|⟨f, φℓ+1z ⟩L2(Ω) − a(uℓ , φℓ+1z )| = |a(uℓ,u − uℓ , φℓ+1z )| ≤ |a(uℓ,u − uℓ , φ

ℓ,u
z )| + ∑

z∈NΓℓ(Ez )|a(uℓ,u − uℓ , φ
ℓ,u
z )|,

and for a node z ∈ N∗Tℓ+1 \NTℓ , Lemma 16 (applied to Tℓ+1), the pointwise inequality φℓ+1z ≥ φ
ℓ,u
z and Lemma 16

(applied to Tℓ,u) lead to
⦀φℓ+1z ⦀ ≳ ‖h̃−sℓ φ

ℓ+1
z ‖L2(Ω) ≥ ‖h̃−sℓ φ

ℓ,u
z ‖L2(Ω) ≳ ⦀φ

ℓ,u
z ⦀. (3.12)

Furthermore, for z ∈ NΓℓ(Ez), there holds φℓ+1z ≥
1
2φ
ℓ,u
z , and with the same arguments as for (3.12) one shows,

for all z ∈ NΓℓ(Ez),
⦀φℓ+1z ⦀ ≳ ⦀φℓ,uz ⦀.

Altogether, for z ∈ ETℓ+1 , we obtain
τℓ(φℓ+1z ) =

|⟨f, φℓ+1z ⟩L2(Ω) − a(uℓ , φℓ+1z )|

⦀φℓ+1z ⦀
≲ τℓ(φℓ,uz ) + ∑

z∈NΓℓ(Ez ) τℓ(φ
ℓ,u
z ).

Since the number of nodes in NΓℓ(Ez) is bounded by a constant depending only on the γ-shape regularity of Tℓ,
we conclude

τℓ(φℓ+1z )
2 ≲ τℓ(φℓ,uz )2 + ∑

z∈NΓℓ(Ez ) τℓ(φ
ℓ,u
z )2 .

Summing over all z ∈ ETℓ+1 yields
∑

z∈ETℓ+1 τℓ(φ
ℓ+1
z )

2 ≲ ηℓ(Tℓ \ Tℓ+1)2 + ∑
z∈ETℓ+1 ∑z∈NΓℓ(Ez ) τℓ(φ

ℓ,u
z )2 ≲ ηℓ(Tℓ \ Tℓ+1)2 ,

where the last inequality is due to the fact that every z ∈ NΓℓ(Ez) is counted at most three times and that every
element T ∈ Tℓ, which has a face F belonging to Γℓ(Ez), is necessarily in Tℓ \ Tℓ+1. Thus, together with (3.11), we
have

∑
z∈N∗

Tℓ+1 \NTℓ τℓ(φ
ℓ+1
z )

2 = ∑
z∈FTℓ+1 τℓ(φ

ℓ+1
z )

2 + ∑
z∈ETℓ+1 τℓ(φ

ℓ+1
z )

2 ≲ ηℓ(Tℓ \ Tℓ+1)2 ,

which, together with (3.8), proves (3.9) in 3D.

3.5 Proof of Theorem 7 (c)

The proof of Theorem 7 (c) requires a modification of Lemma 13.

Lemma 20. Assume d = 2. Let TL ∈ 𝕋 with uniform refinement TL,u := refine(TL , TL), as well as a triangulation
Tℓ ∈ refine(TL) with uniform refinement Tℓ,u := refine(Tℓ , Tℓ) and consider an element T ∈ TL ∩ Tℓ. Then there
holds N∗TL,u

(T) \NTL = N
∗
Tℓ,u (T) \NTℓ , and for any node z ∈ N∗TL,u

(T) \NTL , the associated nodal basis function
φL,uz is the same in S10(TL,u) and S

1
0(Tℓ,u). Furthermore, there holds

‖h̃−sℓ φ
L,u
z ‖L2(Ω) ≃ ‖h̃−sL φL,uz ‖L2(Ω) , (3.13)

where the hidden constants depend only on s, d and the γ-shape regularity of TL .

Proof. In 2D, it is easy to check that the refinement of a marked element does not depend on its neighbors, and
in combination with T ∈ TL ∩ Tℓ, this implies N∗TL,u

(T) \NTL = N
∗
Tℓ,u (T) \NTℓ . Furthermore, in 2D, the nodal

basis function φL,uz associated to a node z ∈ N∗TL,u
(T) \NTL depends only on T . Therefore, φL,uz is the same in

S10(TL,u) and S10(Tℓ,u).
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It remains to show (3.13). Due to the pointwise inequality h̃−sℓ ≥ h̃
−s
L , the upper inequality is clear, and we

only have to show the lower estimate.
Consider a node z ∈ N∗TL,u

(T) \NTL . Then z is the midpoint of an edge Ez of T . Let T ∈ Tℓ be an element
in the fine mesh Tℓ, which shares Ez . Then T is either itself an element of the coarse mesh TL or it is a son of
an element T∗ ∈ TL . Applying one or two NVB bisection steps (depending on T ∈ TL or T being a son of an
element in TL) then leads to elements in the uniform refinement of the coarse mesh TL,u . This means that, on
supp(φL,uz ), the uniform refinement is locally finer than Tℓ.

In terms of the corresponding weight functions h̃ℓ and h̃L,u (where h̃L,u is the weight function associated
to TL,u), this implies that h̃−sL,u ≥ h̃

−s
ℓ pointwise on supp(φL,uz ). From Lemma 13, we infer

‖h̃−sL,uφ
L,u
z ‖L2(Ω) ≃ ‖h̃−sL φL,uz ‖L2(Ω) ,

which proves the lower estimate in (3.13).

Finally, we prove stability of the two-level estimator in two dimensions.

Lemma 21. Assume d = 2. Let TL ∈ 𝕋with uniform refinement TL,u := refine(TL , TL), as well as Tℓ ∈ refine(TL).
Furthermore, let uL and uℓ be the discrete solutions associated to TL and Tℓ. Then

∑
T∈TL∩Tℓ ∑

z∈N∗
TL,u
(T)\NTL

|a(uL − uℓ , φL,uz )|2

⦀φL,uz ⦀2
≲ ⦀uL − uℓ⦀2 , (3.14)

as well as
|ηL(TL ∩ Tℓ) − ηℓ(TL ∩ Tℓ)| ≲ ⦀uL − uℓ⦀,

where the hidden constants depend only on s, d and the γ-shape regularity of TL .

Proof. Let T ∈ TL ∩ Tℓ be arbitrary and z ∈ N∗TL,u
(T) \NTL . Due to supp(φ

L,u
z ) ⊆ ΩL[T] and Lemma 20, analo-

gous arguments as in the proof of Lemma 17 show

|a(uL − uℓ , φL,uz )| ≲ ‖h̃sℓ(−Δ)
s(uL − uℓ)‖L2(ΩL[T])⦀φ

L,u
z ⦀.

Consequently, summing over all z ∈ N∗TL,u
(T) \NTL and since #{N∗TL,u

(T) \NTL } is boundedwith anupper bound
depending only on d, we conclude

∑
z∈N∗

TL,u
(T)\NTL

|a(uL − uℓ , φL,uz )|2

⦀φL,uz ⦀2
≲ ∑

z∈N∗
TL,u
(T)\NTL

‖h̃sℓ(−Δ)
s(uL − uℓ)‖2L2(ΩL[T]) ≲ ‖h̃

s
ℓ(−Δ)

s(uL − uℓ)‖2L2(ΩL[T]) .

Summing over T ∈ TL ∩ Tℓ, using γ-shape regularity and Theorem 12 (b) then shows

∑
T∈TL∩Tℓ ∑

z∈N∗
TL,u
(T)\NTL

|a(uL − uℓ , φL,uz )|2

⦀φL,uz ⦀2
≲ ∑

T∈TL∩Tℓ‖h̃sℓ(−Δ)s(uL − uℓ)‖2L2(ΩL[T])

≲ ‖h̃sℓ(−Δ)
s(uL − uℓ)‖2L2(Ω)

≲ ⦀uL − uℓ⦀2 ,

which is (3.14). As in [32, proof of Theorem 3.2], the reverse triangle inequality and the equality φL,uz = φ
ℓ,u
z (see

Lemma 20) show

|ηL(TL ∩ Tℓ) − ηℓ(TL ∩ Tℓ)| =
( ∑
T∈TL∩Tℓ ηL(T)2)

1/2
− ( ∑

T∈TL∩Tℓ ηℓ(T)2)
1/2

≤ ( ∑
T∈TL∩Tℓ ∑

z∈N∗
TL,u
(T)\NTL

|a(uL − uℓ , φL,uz )|2

⦀φL,uz ⦀2
)
1/2

≲ ⦀uL − uℓ⦀,

which finishes the proof.
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Remark 22. For the proof of Lemma 21, it is essential that, for any node z ∈ N∗TL,u
(T) \NTL , the associated nodal

basis function φL,uz is the same in S10(TL,u) and S
1
0(Tℓ,u). In the case d = 3, this fact is not longer true. That is, the

proof of Lemma 21 cannot directly be generalized to d = 3, and stability (and consequently also convergence
with optimal algebraic rates) of the two-level error estimator in three dimensions still remains open.

4 Numerical Experiments

We illustrate our work by carrying out some numerical experiments. We consider the model problem in its
weak form (2.1) in dimension d = 2. As in [20], we choose Ω to be either the unit circle or an L-shaped domain.

4.1 Aspects of Our Implementation

We implemented Algorithm 5 in MATLAB R2022a. Regarding the steps SOLVE, ESTIMATE and REFINE (steps (1),
(2), (4) in Algorithm 5), we note the following.
∙ For a given triangulation Tℓ ∈ 𝕋, the computation of the associated discrete solution uℓ ∈ S10(Tℓ) was done

by using the already existing MATLAB code from [1]. The unbounded domain ℝ2 is replaced by a circle
around the domain Ω, and the integrals occurring in the finite element discretization are transformed by
a Duffy transformation and then computed by quadrature formulas.

∙ Computing the two-level error estimator (2.5) requires the evaluation of the expressions a(uℓ , φℓ,uz ) and
a(φℓ,uz , φℓ,uz ). Again, these evaluations were computed by using the MATLAB code from [1], and quadrature
formulas were used to compute ⟨f, φℓ,uz ⟩L2(Ω).

∙ Based on a set of marked elements Mℓ ⊆ Tℓ, the refined mesh Tℓ+1 := refine(Tℓ ,Mℓ) is obtained by NVB.
Recall that we assumed that every marked element T ∈Mℓ is bisected three times into four sons. In order
to compute refinedmeshes, we used an existing MATLAB code from [21], which generates NVB refinements
with the property that every marked element is split into four sons.

4.2 Unit Circle with Constant Right-Hand Side

For the first example,we chooseΩ to be the unit circle, i.e.,Ω := B1(0), and set f := 22sΓ(1 + s)2.With this domain
and right-hand side, the exact solution to (2.1) is known (see e.g. [3]) and is given by u(x) := (1 − |x|2)s+, where
g+ := max{g, 0}. The energy norm of the exact solution u can easily be computed by

a(u, u) = ∫
B1(0)

fu dx = 22sΓ(1 + s)2 2π
2s + 2 .

Figure 1 shows the uniform and adaptive error estimators, as well as the uniform and adaptive errors for
the cases s = 0.25 and θ = 0.3, as well as s = 0.75 and θ = 0.3.

We observe that uniform refinement leads to a reduced rate of N−1/4 for error and error estimator. The
adaptive algorithm, however, leads to the optimal rate of N−1/2.

4.3 L-Shaped Domain with Constant Right-Hand Side

In our second numerical example, we choose Ω := (−1, 1)2 \ [0, 1)2 and f ≡ 1. The exact solution of this problem
is unknown; therefore, we have to extrapolate the energy of the exact solution from the energies of the discrete
solutions by means of Aitken’s delta-squared process. Figure 2 shows the computed errors and estimators for
s = 0.25 and θ = 0.3, as well as s = 0.75 and θ = 0.4, respectively.

Qualitatively, we observe the same as in the first example: Uniform refinement yields the reduced rate
N−1/4, whereas adaptive refinement leads to improved rates of convergence.
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Figure 1: Error and two-level estimator for a constant right-hand side on the unit circle for uniform and adaptive mesh refinement.
Left: s = 0.25 and θ = 0.3. Right: s = 0.75 and θ = 0.3.
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Figure 2: Error and two-level estimator for a constant right-hand side on the L-shaped domain for uniform and adaptive mesh
refinement. Left: s = 0.25 and θ = 0.3. Right: s = 0.75 and θ = 0.4.
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