
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06462-2

1 3

Temporal silhouette: validation of stream clustering robust 
to concept drift

Félix Iglesias Vázquez1 · Tanja Zseby1

Received: 8 March 2023 / Revised: 26 July 2023 / Accepted: 17 October 2023 
© The Author(s) 2023

Abstract
Stream clustering is required in applications where data is generated continuously or peri-
odically and must be processed considering its temporal nature. In the absence of a ground 
truth, internal validation is the only option to evaluate the quality of performances. Tradi-
tional internal validation is commonly used also in stream clustering, even in spite of the 
fact that it becomes inconsistent in the event of data evolution. Recent trends opt for incre-
mental approaches, but these are closer to change detection rather than validation methods 
and limit themselves by imposing online validation on online analysis. In this work we 
study the impact of concept drift in the validation of stream clustering and propose the 
Temporal Silhouette index, therefore making internal validation conform to streaming data. 
We conduct tests with more than 200 datasets and contrast performances of four popu-
lar stream clustering algorithms with seven validation methods (three static internal, three 
incremental internal, one external) and the proposed index. Results show the suitability of 
the Temporal Silhouette index for stream clustering validation in the event of concept drift 
and different types of outliers. The demand for reliable unsupervised learning in applica-
tions that process data in streams is ever-increasing, and such reliability inevitably requires 
the use of validation. This fact highlights the significance of the novel approach proposed 
in this work.

Keywords  Stream clustering · Clustering validation · Multivariate time series

1  Introduction

Streaming data analysis has become highly relevant due to the impact of big data and per-
vasive communications. Nowadays data is generated, transmitted and consumed on a mas-
sive scale. Streaming data analysis not only implies data being processed incrementally, 

Editors: Dino Ienco, Robert Interdonato, Pascal Poncelet.

 *	 Félix Iglesias Vázquez 
	 felix.iglesias@tuwien.ac.at

	 Tanja Zseby 
	 tanja.zseby@tuwien.ac.at

1	 Institute of Telecommunications, TU Wien, Gusshausstraße 25 / E389, 1040 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06462-2&domain=pdf


	 Machine Learning

1 3

also emphasizes “time” and the “temporal nature” of the data as key aspects of the knowl-
edge to be discovered through analysis.

Leaving univariate time series analysis aside, the maturity of theoretical knowledge and 
technological developments in data analysis are much more consolidated in static scenarios 
than in dynamic ones. In a recent paper, Bezdek and Keller (2021) point out that “useful 
analysis of real streaming data is in its infancy”. The authors, who particularly focus on 
stream clustering, observe that most “state-of-the-art” algorithms are based on batch clus-
tering, which may not be applicable in some cases (e.g., real-time responses and update 
of models is required, or process memory must be decoupled from the batch size and arti-
facts). Although their examples rather belong to anomaly detection (e.g., intrusion detec-
tion), most popular stream clustering are actually batch extensions of traditional static 
clustering.

Beyond aspects related to computational costs, the fundamental difference between 
stream and static clustering is nonstationarity, i.e., changes over time that the phenomena 
represented by the data may undergo. This often increases the analysis challenge, since, for 
instance, algorithms must be able to update their models to cope with the sudden appear-
ance of new classes. Context changes in data are commonly referred to as distribution shift 
(Moreno-Torres et al., 2012) or concept drift (Gama et al., 2014).

In this respect, adaptation to the new or unknown is usually faced from unsupervised or 
semi-supervised approaches, particularly stream clustering and stream anomaly detection. 
Later on, the consistency of clustering is evaluated by means of clustering validity indices 
(CVI). Due to the inherent ambiguity of clustering, it has been remarked that it is to be 
assessed taking into account application goals and peculiarities (von Luxburg et al., 2012; 
Iglesias et  al., 2020); however, context-independent validation is also useful in design 
phases to select most appropriate methods, for refinement and optimization, and as a sup-
port tool in descriptive analytics (Arbelaitz et al., 2013).

As for stream clustering, in the absence of benchmark partitions, the internal validation 
is commonly performed with traditional static validation, which is blind to concept drift. 
On the other hand, incremental validation indices (iCVI) have emerged and gained popu-
larity in recent years. These perspectives are rather change detectors—similar to those pro-
posed in multivariate time series analysis, (Kuncheva, 2013)—than validation techniques 
per se. They therefore share the limitations of incremental analysis, e.g., tied to forgetting 
factors, focused on the last arriving data points, unable to use future values, or hardly capa-
ble to provide global validations. Such limitations are unavoidable in iCVI as algorithms 
subscribe to the assumption—which, although useful in many applications, is otherwise 
arbitrary—that online analysis requires online validation.

Concept drift remains relatively unexplored in the field of stream clustering despite its 
impact (Silva et  al., 2013). This is even more true for its validation. As posed by Gama 
et  al. (2014): “in unsupervised learning over evolving data, and in case of delayed and 
on-demand labeling in supervised learning, validation of change detection and adaptation 
mechanisms only start to be investigated”. Furthermore, clustering requires robust and 
detailed evaluation. Improving evaluation methods leads to higher reliability of algorithms, 
thus facilitating their integration into real-life AI. As claimed by von Luxburg et al. (2012): 
“What is missing is not ‘better’ clustering algorithms but a problem-centric perspective in 
order to devise meaningful evaluation procedures”.

With a perspective focused on the problem of concept drift, in this paper we propose a 
new internal validation index—the Temporal Silhouette (TS)—that can cope with the vari-
ations that clusters may experience over time. Furthermore, it is robust to spatial outliers as 
well as to out-of-phase outliers (i.e., points that share the geometric space of a cluster, but 



Machine Learning	

1 3

not its time of occurrence), the latter commonly ignored in the literature. The name “Tem-
poral Silhouette” is inherited from the popular Silhouette validation (Rousseeuw, 1987), on 
whose fundamental equations our method is based. Robust algorithms capable of coping 
with concept drift are not only relevant because of specific application requirements, but 
also due to the need of learning models that operate autonomously while maintaining their 
quality and reliability over time.

The rest of the paper is organized as follows. Section  2 reviews main approaches to 
stream clustering and its validation. Section 3 presents concept drift and its different types. 
Section 4 explains the rationale behind TS, our proposal for stream clustering validation, 
and shows simple examples for each case of concept drift and outliers. In Sect. 5, TS is 
tested as a traditional (i)CVI with four popular datasets for clustering evaluation and facing 
perturbations related to underclustering, overclustering, slicing and impurity. The sensitiv-
ity and coherence of TS parameters is also checked with the same experimental setup. The 
response of TS against concept drift is evaluated in Sect. 6 with 200 datasets and with four 
state-of-the-art stream clustering algorithms. Two additional examples with real data are 
shown in Sect. 7. The paper ends with the conclusions in Sect. 8.

2 � Stream clustering

Within streaming data analysis, stream clustering can be briefly defined as the task of on-
the-fly clustering data obtained in a continuous process over time. Traditionally, this task 
has been performed by batch clustering, i.e., algorithms that deal with the incoming data 
in chunks, process each chunk sequentially and update their internal models accordingly. 
In their survey about stream clustering, Silva et al. (2013) collect some requirements that, 
although demanding, should be kept in mind for the design of future algorithms:

(i) provide timely results by performing fast and incremental processing of data 
objects; (ii) rapidly adapt to changing dynamics of the data, which means algorithms 
should detect when new clusters may appear, or others disappear; (iii) scale to the 
number of objects that are continuously arriving; (iv) provide a model representation 
that is not only compact, but that also does not grow with the number of objects pro-
cessed (notice that even a linear growth should not be tolerated); (v) rapidly detect 
the presence of outliers and act accordingly; and (vi) deal with different data types, 
for example, XML trees, DNA sequences, GPS temporal and spatial information.

Silva et  al. mention the following algorithms as the most relevant: BIRCH, CluStream, 
ClusTree, D-Stream, DenStream, DGClust, ODAC, Scalable k-means, Single-pass 
k-means, Stream, Stream LSearch, SWClustering, and StreamKM++. We briefly introduce 
here the algorithms used in our experiments.

BIRCH (Zhang et al., 1996) is perhaps the oldest clustering algorithm that can be natu-
rally used in streaming setups. It was designed with the idea of solving the problem of 
processing large datasets while minimizing computational costs. It processes data incre-
mentally, updates its internal models, and can handle outliers. CluStream is an extension of 
BIRCH (Aggarwal et al., 2007) that relies on micro-clusters, which are structures similar to 
the clustering features in BIRCH but with additional time-related dimensions. DenStream 
(Cao et al., 2006) is a density-based algorithm; as CluStream, it uses micro-clusters, which 
here are classified based on their density before clustering them with DBSCAN (Ester 
et al., 1996). Finally, StreamKM++ (Ackermann et al., 2012) is an adaptation of k-means 



	 Machine Learning

1 3

to streaming environments that reduces the computational effort by using coresets and a 
tree structure to construct and save coreset information.

The reader will find another comprehensive work on stream clustering in (Nguyen 
et al., 2015). In both mentioned surveys, concept drift is seen as one of the main challenges 
to face, as well as the fact that most algorithms neglect it. New algorithms appear regu-
larly, and concept drift is receiving increased attention. Recent examples are: EmCStream 
(Zubaroğlu & Atalay, 2022), in which concept drift is particularly addressed by a stream 
clustering method based on data stream embedding; also EvolveCluster, whose authors 
remark in this respect: “it is harder to determine if the data objects are outliers or if the 
streams’ concepts are evolving as the stream evolves” (Nordahl et al., 2021).

2.1 � Stream clustering validation

Research on clustering validation is extensive, but also mainly focused on static setups. In 
the survey by Nguyen et al. (2015), the validation of stream clustering is addressed from a 
purely external perspective, i.e., by comparing results with Ground Truth (GT) partitions. 
In this line, some popular external validity measures used in clustering are: the Sum of 
Squared Errors, the Rand index (Hubert & Arabie, 1985), the Adjusted Mutual Information 
Score (Vinh et al., 2010), and the Cluster Mapping Measure (Kremer et al., 2011).

Nevertheless, clustering, being unsupervised, requires internal validation since GT is 
often not available. Also, validation is intended to evaluate theoretical properties that algo-
rithms should maximize, e.g., intra-cluster compactness and inter-cluster separation. In this 
respect, internal validation seeks generality, while external validation is application-spe-
cific, meaning that it is compliant to the GT used, which is not forced to guarantee any kind 
of mathematical or topological property.

Many methods exist for CVI; to cite some widely used: the Silhouette index (Rous-
seeuw, 1987), the Davies-Bouldin index (Davies & Bouldin, 1979), the Xie-Beni index 
(Xie & Beni, 1991), and the Calinski-Harabasz index (Caliński & Harabasz, 1974). Liu 
et al. (2010) compare 11 popular CVIs when facing issues related to monotonicity, noise, 
density, subclusters and skewed distributions. Hassani and Seidl (2017), who observe that 
stream clustering is almost exclusively externally validated, compare the same 11 CVIs in 
stream clustering.

However, the trend in recent years has been the development of incremental versions of 
internal validation algorithms (iCVI). For instance, Moshtaghi et al. (2019) propose incre-
mental versions of the popular Xie-Beni and Davies-Bouldin indices and use them to ana-
lyze stream clustering with Sequential k-means and Online Ellipsoidal Clustering. Ibrahim 
et al. (2018) study and extend the incremental Davies-Bouldin index and use it to validate 
performances of the Extended Robust Online Streaming Clustering algorithm. Later, the 
incremental version of the Partition Coefficient and Exponential Separation algorithm is 
presented and tested with the MU Streaming Clustering algorithm in (Ibrahim et al., 2019). 
Perhaps the most exhaustive work on incremental validation for clustering is the contribu-
tion by Brito Da Silva et al. (2020), in which 13 iCVIs are compared (seven of them pro-
posed in the cited work). Insights of this study are mainly focused on over-partitioned and 
under-partitioned clustering and the capability of iCVIs to detect such undesired behaviors.

It seems logical to think that stream clustering, in principle aiming at online data analy-
sis, also requires online validation. This is certainly a useful feature, but not mandatory. 
Validation can be offline, or not be forced to give an instantaneous response in the forefront 
of the analysis. The imposition of online validation makes the task more difficult and ends 



Machine Learning	

1 3

up transforming proposed algorithms into change detectors rather than validation methods. 
This has already been pointed out by Moshtaghi et al. (2019): “In turn, the iCVIs we have 
derived are also misnamed, because they are not really CVIs; they are functions derived 
from batch CVIs that track computational performance, enabling the user to control and 
analyze the dynamic performance of the streaming algorithms to which they are attached. 
A better term for our iCVIs might be something like incremental Performance Monitors 
(iPMs)".

Thus incremental validation inherits the challenges associated with incremental learn-
ing. It implies adaptive models (Giraud-Carrier, 2000), which might require being con-
figured with or without forgetting factors (Moshtaghi et al., 2019), and are also forced to 
estimate with little information whether the latest data points should be considered outliers, 
belonging to a new cluster or to an old cluster. This, for example, makes that clusters form-
ing intermittently among other clusters are difficult to spot with iCVI if not detected before 
by the clustering algorithm (Ibrahim et al., 2019).

Finally, note that none of the previously mentioned papers about stream clustering vali-
dation explicitly address the issue of nonstationarity nor analyze the implications of con-
cept drift. In fact, clusters in many of the datasets used in their experiments are stationary 
(broadly speaking) and stable in time. Since concept drift is a major challenge in stream 
clustering, validation methods should be tested with datasets showing different types of 
concept drift.

3 � Concept drift

Concept drift adds the differentiating factor between static and streaming data analysis. 
In its absence, the problem would boil down to efficiently processing large datasets; static 
analysis methods would be equally valid for streaming data, and the temporal dimension 
could be simply ignored.

Gama et al. (2014) formally define concept drift as:

where pt0 and pt1 stand for the joint distribution between the input set of features X and 
the target variable y in times t0 and t1 respectively. Equation  1 indicates that, in the lapse 
between t0 and t1 , there is a variation in the mechanisms that generate data with regard to 
their hypothetical classification. From a Bayesian perspective, this is changes in the class 
prior probabilities p(y), class conditional probabilities p(X|y), and/or class posterior prob-
abilities p(y|X). Hence, two types can be defined: (a) real concept drift, which implies 
changes in p(y|X) regardless of p(X); and (b) virtual drift, meaning changes in p(X) that do 
not affect p(y|X).

Intuitively, we can say that real drift implies the modification of ideal classification 
boundaries, while virtual drift is a change in how data appear, without implying a change 
in how they should be classified. Differentiating between real or virtual drift is pertinent in 
supervised problems; however, it becomes elusive in unsupervised environments, since the 
decision on whether or not the classification boundaries should change is ambiguous and 
application-dependent.

(1)∃X ∶ pt0 (X, y) ≠ pt1 (X, y),



	 Machine Learning

1 3

3.1 � Types of changes over time

Beyond real drift and virtual drift, concept drift can also be classified according to the 
types of change observed in data over time. Gama et al. (2014) differentiate:

•	 Sudden drift, which implies an abrupt shift in concepts, e.g., what was blue suddenly 
turns to red and remains.

•	 Incremental drift, which involves a slow or gradual transition from one state to another, 
e.g., what is blue gradually transforms into red in a transition that passes through violet.

•	 Gradual drift, which implies a discontinuous change between concepts that, during a 
period, coexist with evolving persistence, e.g., what was only blue appears red from 
time to time, more and more often, until only red remains.

•	 Reoccurring concepts, referring to concepts that intersperse in time, e.g., colors in a 
traffic light.

Gama et al. (2014) also consider outliers as “one of the challenges for concept drift han-
dling algorithms”; in other words, outliers do not imply concept drift, but noisy informa-
tion that disrupts algorithms. Here we differentiate two types of outliers that are congruent 
with streaming data:

–	 Spatial outliers, which match the traditional definition and include both far and local 
outliers. We can see them as data points that lie in areas of the feature space that do not 
belong to any class regardless of time.

–	 Temporal outliers (aka contextual or out-of-phase outliers), which are samples that fall 
in areas of the feature space corresponding to classes or clusters, but isolated in time or 
not at the expected time.

For a discussion of types of anomalies, novelties and outliers, we address the reader to the 
survey by Ruff et al. (2021). Due to their subjectivity, we set aside collective anomalies 
(interpretable as both anomalies or clusters, i.e., anomalous clusters). Note the difficulties 
to detect collective anomalies in evolving data—they are commonly addressed in univari-
ate time series analysis (Fisch et al., 2022).

4 � Temporal validation

The Temporal Silhouette (TS) index attempts to estimate the coherence of clusters relative 
to time.

Like the static Silhouette, it is an index that tends to 1 for perfect clustering and can be 
calculated element-wise, cluster-wise and solution-wise. It is formed by four components: 
the Distance to Temporal Centroid ( � ), the Temporal Inter-Distance ( � ), the Inter-Arrival 
Discrepancy ( � ) and the Temporal Centroid Discrepancy ( � ). We describe and combine 
them below after introducing some basic terms.

Given T as an ordered sequence of n real variables1:

1  Regardless of the definition, for the sake of simplicity in our experiments simultaneity is not allowed and 
any consecutive points of a dataset are separated by a temporal unit.



Machine Learning	

1 3

A cluster A can be seen as a set of m multivariate data points (or multidimensional vec-
tors) indexed in time order, i.e., m = |A| . Each data point in A takes an instant time from T, 
therefore:

where A shows a one-to-one correspondence with the SA
T
 subsequence of T, i.e., arrival 

times of data points in A.

4.1 � Distance to temporal centroid ( ̨ )

The objective of the Distance to Temporal Centroid component ( � ) is to estimate the devia-
tion of data points from the inertia shown by their cluster over time. Clusters that remain or 
evolve progressively as a whole minimize �.

For a cluster A, if we define an observation window w as an even number of points, we 
can estimate a temporal centroid at instant t ( t ∈ SA

T
 ) as:

where o is the index of t in A. Hence, the calculation of ct can be seen as a multidimen-
sional simple moving average (SMA). We define � as the mean of distances between a 
given data point in time t and its corresponding temporal centroid. Therefore, for cluster A:

4.2 � Temporal inter‑distance ( ̌ )

The goal of the Temporal Inter-Distance ( � ) is to estimate the distance from data points to 
the closest-in-time data points from other clusters. Clusters far from each other or that do 
not overlap in space or time maximize �.

Given an arbitrary data point xt in cluster A, we can find the set of k nearest-in-time 
neighbors that do not belong to A, we call it A′

k
.

Hence, Bk is any subcluster of B within the A′
k
 subset (i.e., Bk ⊆ B and Bk ⊆ A′

k
 ). There-

fore, B represents any cluster in the global solution that is not A. �t is the distance between 
xt and the closest Bk subcluster in A′

k
.

(2)T = {t1, ..., tn}, ti ∈ ℝ

(3)A = {xa,1, ..., xa,m}

(4)SA
T
= {ta,1, ..., ta,m}

(5)ct =
1

w

o+w∕2∑

i=o−w∕2

xi, xi ∈ A

(6)�t = d(xt, ct), t ∈ SA
T

(7)�t = min
Bk≠A

1

|Bk|
∑

i∈Bk

d(xt, xi), xi ∈ Bk, t ∈ SA
T



	 Machine Learning

1 3

4.3 � Inter‑arrival discrepancy ( 
)

The objective of the Inter-Arrival Discrepancy component ( � ) is to estimate the coherence 
between the time elapsed in consecutive points of the same cluster. A temporally well-
formed cluster minimizes �.

The set of temporal distances between consecutive data points of A is:

Outliers in ΔSA
T
 indicate either out-of-phase outliers or disruption patterns, therefore 

decreasing the temporal coherence of the cluster. Hence,

which is the number of outliers in ΔSA
T
 divided by the cardinality of A. Equation 9 uses the 

median absolute deviation (MAD) for finding outliers in a one-dimensional set as recom-
mended in (Leys et al., 2013). Since the distribution of ΔSA

T
 is not expected to be normal, 

we use a consistency constant based on the 0.75 quantile and consider values above 3 times 
the MAD as outliers.

4.4 � Temporal centroid discrepancy ( ı)

The Temporal Centroid Discrepancy ( � ) shows some similarity with � but in the spatial 
domain and with regard to temporal centroids. It is a factor that penalizes extreme jumps in 
the evolution of temporal centroids, since it is assumed that they must show either no vari-
ation or a smooth variation. For cluster A, the series of absolute distances from consecutive 
temporal centroids is:

Again, we use the number of outliers of an univariate series to define �A:

Intuitively, �A is the proportion of big jumps in the temporal centroid evolution.

4.5 � Temporal silhouette (ts, TS)

A ts score is calculated per data point by combining � , � , � and � components. � and � are 
related as in the traditional Silhouette score, whereas � is added to diminish the quality of 
the cluster in the event of incoherent centroid evolution and � in the event of inter-arrival 
discrepancies. A parameter � weights the impact of �.

The core part of the index ( � , � ) is translated two times ( +1 and −1 ) to ensure that 
the penalties involved by � and � always make the score decrease. Therefore, for data 
points in cluster A:

(8)ΔSA
T
= {ta,2 − ta,1, ..., ta,m − ta,m−1}

(9)𝛾A =
|{dt ∈ ΔSA

T
| dt > 3 MAD (ΔSA

T
)}|

|A|

(10)ΔcA = {|ca,2 − ca,1|, ..., |ca,m − ca,m−1|}

(11)𝛿A =
|{dc ∈ ΔcA | dc > 3 MAD (ΔcA)}|

|ΔcA|



Machine Learning	

1 3

As with Silhouette, the following exception applies: tst = 0 if |A| = 1 . The ts score for clus-
ter A is calculated as the mean ts score of its data points:

To properly deal with outliers, when combining all cluster scores in a final TS index we 
want to represent their effective magnitude rather than their central tendency. The quadratic 
mean of cluster temporal silhouettes weighted with their respective cardinality and keeping 
the sign of each individual cluster score is an option that avoids losing representativeness. 
Therefore, if all data points are univocally split into the set of clusters {A, ...,Z},

For the calculation of the TS index we have defined three external parameters: w, k and � . 
w and k are highly robust and have primarily a computational implication. While w affects 
the inertia of the SMA, k determines the external neighborhood to which each point is 
compared. In most of the experiments, there were no significant variations in validations 
with values for w between

[20,  ...,  200] and k between [200,  ...,  2000] (the robustness of these parameters is 
analyzed in Sect. 5.5). However, parameter � decides the importance of time inconsist-
ency, which depending on the application may or may not be desired. Empirically the 
default value � = 1 is set as a good trade-off. In Sect. 4.6 the effect of this parameter is 
shown with simple examples.

4.6 � Examples of TS validation for concept drift types

The four types of changes over time plus the two types of outliers introduced in Sect. 3.1 
are the main types of time-related challenges that stream clustering algorithms com-
monly face. They are shown with one-dimensional examples in Fig. 1. In the examples, 

(12)tst =
(
1 +

�t − �t

max (�t, �t)

)
×

1 − �A

1 + � �A
− 1, t ∈ SA

T

(13)tsA =
1

|A|
∑

t

tst, t ∈ SA
T

(14)TS� =
sgn (tsA) ts

2
A
|A| + ... + sgn (tsZ) ts

2
Z
|Z|

|A| + ... + |Z|

(15)TS = sgn (TS�)
√
�TS��

Fig. 1   Time-related challenges (x-axis: time, y-axis: 1D-data). Top and bottom rows show respectively cor-
rect and wrong clustering (Color figure online)



	 Machine Learning

1 3

two clustering are shown: correct in the top plots (case A) and wrong in the bottom 
plots (case B). We briefly explain the examples:

1.	 Sudden drift. In this example a cluster abruptly disappears at t=500 and is replaced by 
a new cluster. Case A interprets a new cluster, while clustering in B is blind to such 
change.

2.	 Incremental drift. In this scenario two clusters maintain their position over time while a 
third cluster varies its centroid linearly. Solution A distinguishes the three clusters, but 
solution B merges intersecting clusters.

3.	 Gradual drift. In this case the drift happens gradually: while one cluster slowly appears, 
a second cluster disappears progressively. Again, clustering A distinguishes them, while 
clustering B wrongly groups them together.

4.	 Reoccurring concepts. In this scenario two clusters intersperse their presence over time 
while a third cluster remains. Clustering A differentiates intermittent clusters, but clus-
tering B sees them as the same one.

5.	 Spatial outliers. Here two clusters surrounded by outliers remain stationary. Outliers 
account for 5% data points and are local and far. Clustering A separates outliers into an 
independent group, while clustering B absorbs them into the two clusters according to 
their distance from the centroids.

6.	 Temporal outliers. In this scenario three clusters appear and disappear periodically. 
1% of the data points are outside the normal periods of their clusters. In case A the 
algorithm identifies out-of-phase outliers, while clustering B absorbs them into clusters 
geometrically coherent.

Table 1 collects TS scores for all clusterings shown in Fig. 1. Scores for case A are always 
higher than scores for case B, thus confirming the suitability of TS in the given examples. 
Note the exception for the Scenario 6 and TS with � = 0 . By canceling the inter-arrival dis-
crepancy component, out-of-phase outliers are seen as inliers by the validation.

5 � Evaluation in stationary environments

In this section we study the response of TS and other validations when facing suboptimal 
clustering. We model three common sources of distortion (overclustering, undercluster-
ing and purity) plus the most elemental perturbation in stream clustering: cluster slicing 
(or time overclustering). Perturbations are gradually added in the labels of four datasets 

Table 1   TS scores for two 
clusterings, A and B, on the six 
types of temporal challenges and 
for validations with � = 0 and 
� = 1 . Rows and columns match 
plots in Fig. 1

Bold values show the solution evaluated as "the best" by the TS index 
when A and B clustering are compared

Case A ( � = 1) B ( � = 1) A ( � = 0) B ( � = 0)

1. Sud 0.864 0.733 0.886 0.754
2. Inc 0.688 0.667 0.849 0.742
3. Grad 0.733 0.563 0.901 0.663
4. Reoc 0.790 0.740 0.902 0.849
5. S.Out 0.863 0.704 0.910 0.762
6. T.Out 0.824 0.823 0.831 0.848



Machine Learning	

1 3

that pose different space challenges. The sensitivity of TS parameters is later explored 
with the same experimental setup. The implementation of the TS index and all experi-
ments and tests described in this work are freely available in our repository (TUWien - CN 
Group, 2023). A permanent, immutable version for repeatability is also available (Igle-
sias Vázquez, 2023).

5.1 � Data

For these tests we use datasets obtained from the Clustering Basic Benchmark of the Uni-
versity of Eastern Finland (Fränti & Sieranoja, 2018), a popular data repository for clus-
tering evaluation.2 They are: s1 (Fränti & Virmajoki, 2006), unbalance2b (based on the 
umbalance2 dataset (Rezaei & Fränti, 2020) with four extra clusters), d64 (Fränti et  al., 
2006). The noise dataset has been created with the MDCgen tool (Iglesias et  al., 2019). 
Datasets have been selected to represent different spatial challenges: (a) d64: medium/
high number of dimensions; (b) s1: space with very close clusters; (c) unbalance2: clusters 
with different density and cardinality; and (d) noise: clusters surrounded by noise. In all 
four cases, data points are shuffled and sequentially timestamped to give them a temporal 
dimension. Figure 2 shows a two-spatial-dimensional view of the datasets.

5.2 � Perturbations

To simulate suboptimal clustering, GT labels of the datasets introduced in Sect.  5.1 are 
submitted to four different types of perturbation, each one of them in eight different levels 
of degradation, from 0 (no-degradation, equal to GT) to 7 (high-degradation). A summary 
is shown in Table 2. Perturbations are:

•	 Overclustering, meaning arbitrarily splitting proper clusters into glued clusters. This is 
done by halving clusters in one of their spatial dimensions chosen at random. There-
fore, a low degradation (1) implies one extra cluster when compared to the GT parti-
tion, while the highest degradation (7) will show seven additional clusters.

•	 Underclustering means joining clusters that should be separated and assigning them 
the same label. In our experiments this is performed by merging the clusters that show 

Fig. 2   Spatial view of the datasets used for the evaluation in stationary degradation and the sensitivity of 
parameters experiments. d64 only shows 2 dimensions out of 64 (Color figure online)

2  https://​cs.​joens​uu.​fi/​sipu/​datas​ets/

https://cs.joensuu.fi/sipu/datasets/


	 Machine Learning

1 3

closest centroids. This process is repeated according to the degradation level, but 
always ensuring at least two clusters in the final solution. Therefore, if compared with 
the GT partition, a low degradation (1) implies one cluster less, while the highest deg-
radation (7) will show seven clusters less.

•	 Slicing (or time overclustering) involves chopping up a legitimate cluster along the time 
dimension. We select the biggest cluster and subdivide it into two new clusters. The 
cutoff point is set randomly in a way that each subcluster gets between 40% and 60% of 
the data points of the original cluster. Again, the lowest degradation (1) will show one 
extra cluster with respect to the GT partition, whereas the highest degradation will have 
seven additional clusters.

•	 Impurity refers to data points randomly assigned to the wrong cluster. We increase the 
percentage of wrongly clustered data points based on the degradation level (Table 2).

5.3 � Validation indices

In addition to TS, we also test other validation techniques. CVIs under comparison are: 
the Silhouette (Sil) (Rousseeuw, 1987), Davies-Bouldin (DB) (Davies & Bouldin, 1979) 
and Calinski-Harabasz (CH) (Caliński & Harabasz, 1974) indices, as implemented in the 
scikit-learn 1.1.1 library (Pedregosa et al., 2011). From the same source is also 
the external validation index taken as benchmark, namely: the Adjusted Mutual Informa-
tion (AMI) (Vinh et al., 2010).

iCVIs evaluated are: the incremental Xie-Beni index (iXB) (Moshtaghi et al., 2019), the 
incremental Partition Separation index (iPS) (Brito Da Silva et al., 2020), and the incre-
mental representative Cross Information Potential (irCIP) (Brito Da  Silva et  al., 2020), 
as implemented in the Python cvi 0.4.0 library.3 TS is set with default parameters: 
w = 100 , k = 1000 , � = 1.

5.4 � Results and discussion

Figures 3, 4, 5 and 6 show the performances of the studied indices when adding perturba-
tions to GT labels to simulate suboptimal clustering for each one of the selected datasets. 

Table 2   Perturbations and degradation levels added in the experiments. ‘cl.’ stands for ‘clusters’. The GT is 
used for 0 degradation

Degradation level

0 1 2 3 4 5 6 7

Overclustering GT + 1 cl + 2 cl + 3 cl + 4 cl + 5 cl + 6 cl + 7 cl
Underclustering GT − 1 cl − 2 cl − 3 cl − 4 cl − 5 cl − 6 cl − 7 cl
Slicing GT + 1 cl + 2 cl + 3 cl + 4 cl + 5 cl + 6 cl + 7 cl
Impurity GT 4.2% 8.3% 12.5% 16.7.0% 20.8% 25.0% 29.2%

3  https://​pypi.​org/​proje​ct/​cvi/

https://pypi.org/project/cvi/


Machine Learning	

1 3

To facilitate the comparison among indices without altering dynamical differences among 
scores, given a dataset, a type of perturbation and a validation index, the set of scores for 
the different levels of degradation are min-max scaled to show 1 for the best performance 
and 0 for the worst performance. Since DB, iXB and irCIP indicate better clustering for 
lower index scores, they are previously inverted. Thus, a proper internal validation is 
expected to show either ‘1’ for the 0-degradation case and ‘0’ for the 7-degradation case or 
correlation with the external AMI index.

Results shown in Figs. 3, 4, 5 and 6 reveal that CVIs are significantly more stable and 
consistent than iCVIs. This is not surprising and subscribes to the reasoning suggested in 

Fig. 3   Performances of studied validation indices under different levels of overclustering, underclustering, 
slicing and impurity degradation for the d64 dataset case. Scores are scaled and inverted (when required) to 
show 0 for the worst performance and 1 for the best performance in the set. The y-axis shows the level of 
degradation (Table 2)

Fig. 4   Performances of studied validation indices under different levels of overclustering, underclustering, 
slicing and impurity degradation for the s1 dataset case. Scores are scaled and inverted (when required) to 
show 0 for the worst performance and 1 for the best performance in the set. The y-axis shows the level of 
degradation (Table 2)

Fig. 5   Performances of studied validation indices under different levels of overclustering, underclustering, 
slicing and impurity degradation for the unbalance2b dataset case. Scores are scaled and inverted (when 
required) to show 0 for the worst performance and 1 for the best performance in the set. The y-axis shows 
the level of degradation (Table 2)



	 Machine Learning

1 3

Sects.  1 and 2.1, since incremental indices are closer to change detectors rather than to 
validation indices per se. Note that, among the perturbations implemented in this section, 
only slicing actually introduces a significant temporal change.

TS and Sil indices are the most stable and correlated with the external reference index 
AMI, followed by CH and DB. To better visualize the correlation among AMI, Sil and TS, 

Fig. 6   Performances of studied validation indices under different levels of overclustering, underclustering, 
slicing and impurity degradation for the noise dataset case. Scores are scaled and inverted (when required) 
to show 0 for the worst performance and 1 for the best performance in the set. The y-axis shows the level of 
degradation (Table 2)

Fig. 7   AMI, sil and TS scores for the evaluation in stationary environments experiments. Scores are sorted 
based on AMI values (ascending)

Fig. 8   Correlation among valida-
tion indices in the evaluation in 
stationary environments experi-
ments



Machine Learning	

1 3

and, at the same time, assess the dynamical range of TS values, in Fig. 7 we sorted scores 
obtained from all 128 experiments (4 datasets, 4 perturbation-types, 8 degradation-lev-
els) by taking AMI as reference. Additionally, Fig. 8 shows linear correlation coefficients 
among all studied indices (after inverting DB, iXB and irCIP).

Overall, experiments conducted in this section show that, when evaluating streaming 
data in stationary cases, TS has a stable behavior and is the closest to the external AMI 
benchmark. On the other hand, it largely outperforms DB and incremental options: iXB, 
iPS, irCIP.

5.5 � Sensitivity of parameters

In Sect. 4 we anticipated the robustness of TS parameters. In this section, we perform a 
comprehensive sensitivity analysis by repeating the same experiments with different values 
of w and k. We omit � since it is a parameter designed to be sensitive and give a greater or 
lesser penalty for temporal incoherence; i.e, variation in sigma induces strong variation in 
TS scores.

We evaluate values in W and K sets:

Given a dataset, a perturbation-type and a degradation-level, we calculate TS for each com-
bination of w ∈ W and k ∈ K , obtaining 100 different TS scores. We then fix w and calcu-
late the drift of TS respect the mean for the different values of k. We do the same by fixing 
k for the different values of w. Hence, ΔTS is the signed deviation from the mean of each 
parameter value with regard of all tested values for the same parameter.

Figure 9 shows boxplots with ΔTS for the different values of w and k. Each boxplot is 
calculated over 1280 values. For instance, when setting k = 50 , this value is used 1280 
times: 4 (datasets) × 4 (perturbation-types) × 8 (degradation-levels) × 10 (values of w) 
times. The same for each w in W and k in K.

Figure 9 shows negligible variations, which are slightly larger at the extreme values of 
the studied ranges, thus confirming the robustness of w and k in the experiments described. 

W ={10, 20, 50, 100, 150, 200, 250, 300, 400, 500}

K ={200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000}

Fig. 9   Variations of TS scores for different values of w and k. Boxplot whiskers are set between the 0.5 and 
0.95 quantiles



	 Machine Learning

1 3

w and k are parameters to be adjusted according to the expected and desired dynamics, 
and are easily adjustable with a minimum pre-knowledge of the scenario under study; i.e., 
while w is linked to the expected inertia of clusters, k determines the neighborhood around 
which each data point is evaluated. If clusters move over time, depending on their rate of 
change, variations in w will have a larger impact on TS.

6 � Evaluation in concept drift

In this section we evaluate TS when facing scenarios submitted to concept drift. In contrast 
to Sect. 5, these experiments are not performed by corrupting labels; instead, we compare 
the performances of established stream clustering algorithms, thus also exploring their 
ability to cope with concept drift. Again, experiments and codes are available in our reposi-
tory (TUWien - CN Group, 2023) and in a DOI-citable version for reproducibility in (Igle-
sias Vázquez, 2023).

6.1 � Methodology

Experiments in this section conform to: 

1.	 Data consists of 200 datasets generated to implement temporal challenges introduced 
in Sect. 3.

2.	 Stream Clustering Algorithms process data. We use four consolidated algorithms and 
the GT, which is added in the comparison as a perfect clustering competitor.

3.	 Validation Indices. All clustering solutions ( 200 × 5 = 1000 ) are validated with TS, 
three CVIs and three iCVIs. Additionally, the external AMI index is provided to obtain 
a benchmark context-validation based on the GT partition.

4.	 Finding the Best Validation. The more reliable the validation method, the more often 
it will prefer the perfect clustering given by the GT rather than clusterings discovered by 
algorithms. We show such comparison as a whole and broken down by set of datasets. 
We also show comparisons without the GT perfect clustering by tentatively considering 
the best AMI as the best clustering (which might be biased or unreliable in cases with 
close scores).

6.2 � Data

Data is taken from Data for Evaluation of Stream Data Analysis Algorithms (Iglesias, 
2021). This collection of datasets are formed by 9 sets of 20 datasets, generated with 
MDCStream (Iglesias et al., 2020a) and designed to fit different challenges related to con-
cept drift, outliers and data geometries. Our experiments are conducted on the sets that 
address the types of concept drift introduced in Sect. 3, plus the base set, which is taken as 
a baseline. The sets are:

–	 Base. These datasets have between 3 and 30 dimensions and contain from 2 to 10 clus-
ters with different cardinality. The point appearance of each cluster shows a stable high 
frequency, making them stationary. Outliers are below 5%. Cluster centroids do not 
move over time and there is no cluster overlap. Two different distributions and distri-
bution coefficients are allowed to set point locations in spatial dimensions. This fact, 



Machine Learning	

1 3

together with the diverse cluster cardinality and the stationary condition, offers a con-
siderable variation of spatio-temporal cluster densities.

–	 Nonstationary. While keeping the same configuration as base datasets, nonstationary 
scenarios allow clusters randomly appear, disappear, coexist and reappear. From the 
types of concept drift above, these datasets satisfy the cases of sudden drift, gradual 
drift and reoccurring contexts.

–	 Moving. In these datasets cluster centroids are forced to move linearly over time, thus 
implementing incremental drift. Other characteristics are as in the base set.

–	 Sequential. Compared to the nonstationary set, here clusters do not coexist, so they 
are forced to appear sequentially. This set focuses exclusively on the sudden drift 
type.

All datasets—as retrieved from the original source—are formed by 10000 data 
points,  which include spatial outliers (extreme values and local outliers). To test the 
effect of both types of outliers discussed in Sect.  3, we created dataset versions by 
removing outliers, and versions in which 1% of the data points were transformed into 
temporal outliers after removing spatial outliers. Injecting out-of-phase outliers is only 
possible in cases with temporal gaps before, after or in between clusters, i.e., nonsta-
tionary and sequential sets. Therefore, our experiments run over 10 sets of datasets, 
namely: 

	 1.	 Base (base).
	 2.	 Base, spatial outliers removed (base-r).
	 3.	 Nonstationary (nonst).
	 4.	 Nonstationary, spatial outliers removed (nonst-r).
	 5.	 Nonstationary, spatial outliers removed, 1% of temporal outliers (nonst-p).
	 6.	 Moving (mov).
	 7.	 Moving, spatial outliers removed (mov-r).
	 8.	 Sequential (seq).
	 9.	 Sequential, spatial outliers removed (seq-r).
	10.	 Sequential, spatial outliers removed, 1% of temporal outliers (seq-p).

Figure 10 shows three random datasets. Given the difficulties to plot multidimentional 
time-evolving spaces, it only draws two spatial dimensions and time.

Fig. 10   Plots of two features over time for three random datasets used in the experiments. Data points take 
colors depending on the cluster to which they belong (outliers are shown in black). Note that plot resolution 
may give a false sense of distance between data points (Color figure online)



	 Machine Learning

1 3

6.3 � Stream clustering algorithms

Stream clustering algorithms used in the experiments are: 

1.	 CluStream (Aggarwal et al., 2003) from the ClusOpt library (Oliveira, 2020). Hyper-
parameters are: the number of micro-clusters m is 10 times the number of clusters, the 
horizon h is set to 5000 data points, whereas the radius t is 2. The version used does not 
discriminate outliers.

2.	 DenStream (Cao et al., 2006) from the implementation in the DenStream repository 
(Memari, 2020). Hyperparameters are: DBSCAN epsilon, eps = 0.2 ; the forgetting fac-
tor, lambd = 0.1 , the outlier factor, beta = 0.2 , and the weight of data points to define a 
core cluster, mu = 11.

3.	 Birch (Zhang et al., 1996) from the implementation in the scikit-learn 1.1.1 library 
(Pedregosa et al., 2011). Hyperparameters are: threshold radius for merging subclusters, 
th = 0.5.

4.	 StreamKM++ (Ackermann et al., 2012) from the the ClusOpt library (Oliveira, 2020). 
Hyperparameters are: the coreset-size is 10 times the number of clusters and the length 
of the window is set to 5000 data points. The version used does not natively discriminate 
outliers.

The GT is added as a fifth algorithm performing perfect clustering. Algorithms are fed 
with chunks of 200 data points. With all datasets having a total of 10000 data points 
equispaced one time unit, this results in 500 chunks. Except for DenStream, other algo-
rithms take the expected number of clusters as an external parameter.

6.4 � Validation indices

We use the same validation índices as in Sect.  5.3. TS is adjusted with the default 
parameters: w = 100 , k = 1000 , � = 1.

Fig. 11   Boxplots showing AMI performances of the streaming clustering used in the experiments. ‘1’ 
means perfect clustering 



Machine Learning	

1 3

6.5 � Results and discussion

Figure  11 shows a boxplot summary with the performances of the different algorithms 
used. This evaluation applies the external metric AMI, for which the value ‘1’ indicates 
perfect clustering, i.e., an exact match with the GT partition. In the figure we see that algo-
rithms show dissimilar behaviors depending on the dataset type. Although DenStream is 
not inputted with the number of clusters to discover, it obtains the best overall clustering, 
slightly dropping performances in the nonstationary sets. In fact, in streaming environ-
ments, due to concept drift, externally setting the number of clusters might be a drawback 
for poorly adaptive algorithms, since some clusters may be absent during several batches. 
The base set without outliers (base-r) and sequential datatsets (i.e., no more than one 
cluster at a time) tend to be the best solved in general. While it is true that all algorithms 
work better in the absence of outliers (-r cases), in BIRCH and CluStream such effect is 
stronger. Out-of-phase outliers have a minor impact in performances, and even improve 
them in some cases. Note that these outliers only account for 1% of the data; also, when 
they improve clustering, it is because they help keep main clusters in memory, even though 
they are incorrectly absorbed by them. StreamKM obtains the worst performances as it 
tends to arbitrarily forget and reassign clusters as well splitting them over time into differ-
ent subclusters.

Table 3 shows the comparison among CVIs and iCVIs. Sil and TS get the highest scores 
by correctly highlighting perfect clustering over suboptimal clustering, with TS clearly 
standing out. As expected based on previous work, e.g., (Liu et al., 2010), DB and CH indi-
ces are affected by outliers, particularly DB.

Also, iCVIs obtain significantly worse performances than CVIs since they fail to capture 
an overall perspective of the whole clustering. Among them, iXB stands out as the best 
option. This is consistent with the recommendations given by Moshtaghi et al. (2019), yet 
Brito Da Silva et al. (2020) find iXB less informative than other iCVIs. On the other hand, 
except for TS, all validation methods are confused in cases with out-of-phase outliers, since 
they fail to see them and do not penalize the clustering. In the tests, the most commonly 

Table 3   On the left, matches for each index rating perfect clustering (GT) as the best. On the right, once 
removed the GT from the comparison, matches for each index rating the clustering with the highest AMI 
(best suboptimal solution) as the best

GT as ref. best AMI as ref.

Sil CH DB iXB iPS irCIP TS Sil CH DB iXB iPS irCIP TS

base 20 12 3 11 4 3 20 20 19 16 16 12 14 20
base-r 20 18 20 20 16 14 20 20 20 18 17 14 14 20
mov 20 9 1 10 3 5 20 18 20 18 18 12 14 20
mov-r 20 19 16 18 11 14 20 19 19 18 17 8 12 20
nonst 20 13 3 11 4 4 20 20 20 17 15 14 14 18
nonst-r 20 17 20 18 13 13 20 20 20 15 10 8 10 18
nonst-p 6 8 1 12 0 0 17 14 16 13 8 6 6 15
seq 20 18 0 5 2 0 20 20 20 20 18 17 18 20
seq-r 20 20 20 17 10 15 20 20 20 19 16 9 14 20
seq-p 4 2 0 3 3 3 20 17 18 17 16 15 17 17
all 170 136 84 125 66 71 197 188 192 171 151 115 133 188



	 Machine Learning

1 3

observed time disturbance was making algorithms chop a single cluster over time into false 
sub-clusters i.e., slicing. This effect is easily detectable by non-time-sensitive validation (i.e., 
CVIs), since it is processed as a spatial overlap. Even in the particular case of moving clus-
ters, these are seen as elongated clusters that—features being multidimensional—very rarely 
intersect. These are the reasons why Sil still obtains good scores. When GT is not used as 
a benchmark, it is often difficult to establish best clustering. The better match between CH 
and the best AMI compared to TS (192 vs 188) is because TS penalizes spatial incongruity 
more than temporal incongruity (since it assumes that clusters can evolve), while other CVIs 
do the opposite (AMI is also not sensitive to the instant at which data points are compared).

7 � Examples with real data

To better understand the usefulness of TS and its suitability with respect to traditional 
CVIs and iCVIs, we show two examples with real data that allow visual validation.

7.1 � Retail sales collection

The Retail and Retailers Sales Time Series Collection dataset belongs to the U.S. Cen-
sus Bureau and is maintained and updated by the Federal Reserve Economic Database 
(FRED). It is publicly available in the kaggle repository.4 The collection consists of 23 
one-dimensional timeseries, from which we select the RETAILIMSA, RETAILIRSA, and 

Fig. 12   Evolution of clusters in the retail sales collection dataset according to the studied stream clustering 
algorithms and the GT (Color figure online)

Table 4   Validation scores of the clustering performances for the retail sales collection dataset. Arrows in 
CVIs indicate whether the best performance corresponds to the highest or lowest index value

Bold values show the clustering solution evaluated as "the best" by each validation index (column)

algorithm AMI ↑ Sil ↑ CH ↑ DB ↓ iXB ↓ iPS ↑ irCIP ↓ TS ↑

CluStream 0.66 0.48 1649.56 1.94 0.21 1.80 0.65 0.79
DenStream 0.57 0.70 3457.57 0.38 0.09 1.68 0.13 0.57
BIRCH 0.34 0.21 1237.54 0.61 0.48 0.72 1.19 0.32
StreamKM 0.31 0.17 485.94 10.51 68916.33 1.26 1.80 0.36
GT 1.00 0.48 2630.33 0.80 0.12 2.00 0.63 0.90

4  https://​www.​kaggle.​com/​datas​ets/​census/​retail-​and-​retai​lers-​sales-​time-​series-​colle​ction.

https://www.kaggle.com/datasets/census/retail-and-retailers-sales-time-series-collection.


Machine Learning	

1 3

RETAILSMNSA to evaluate the performance of the stream clustering algorithms and the 
CVIs/iCVIs. We joined the three series into a single series and ordered data points based 
on the timestamp, obtaining a final dataset of size 1x999 with three clusters. Selected algo-
rithms are expected to differentiate the three series. Evaluation methods are the same as in 
Sect. 5 and Sect. 6, while algorithm parameterizations were adjusted to optimize clustering. 

Figure 12 and Table 4 show the performances of algorithms and CVIs/iCVIs respec-
tively. In Fig.  12 we clearly see how established algorithms for stream clustering have 
problems adapting to the temporal displacement of clusters even in very simple scenarios. 
On the other hand, the commonly used CVIs and iCVIs are not able to differentiate the best 
solution either, showing a tendency to support the solution obtained by Denstream. Only 
TS and iPS identify GT as the best solution.

7.2 � Fertility vs income

The Fertility vs Income dataset consists of yearly data from 1800 to 2022 related to the 
average babies per woman and the GDP (Gross Domestic Product) per capita in constant 
PPP dollars of a set of world countries. Data used to create this dataset belongs to the 
Gapminder data repository.5 Gapminder is an independent foundation whose mission is to 
identify systematic misconceptions about relevant global trends through the collection and 
open publication of data from reliable sources, e.g., the UN (United Nations), WPP (World 
Population Prospects), the World Bank, the Maddison Project Database.

Among all available countries, we selected 18 that can be split into two groups with 
clearly distinguishable trends, i.e., 11 non-European (blue) and 7-European (orange) 

Fig. 13   Captures of GDP per capita vs children per woman in 18 countries for different years. European 
(orange) and non-European (blue) countries are separated by colors (Color figure online)

Table 5   Validation scores of the clustering performances for the fertility vs income dataset. Arrows in 
CVIs/iCVIs indicate whether the best performance corresponds to the highest or lowest index value

Bold values show the clustering solution evaluated as "the best" by each validation index (column)

algorithm AMI ↑ Sil ↑ CH ↑ DB ↓ iXB ↓ iPS ↑ rCIP ↓ TS ↑

CluStream 0.92 0.43 3154.06 0.92 0.10 1.57 1.51 0.75
DenStream 0.40 −0.01 2410.79 6.42 17.19 0.33 4.20 0.49
BIRCH 0.18 −0.09 311.20 1.87 0.73 0.45 4.21 0.38
StreamKM 0.11 0.12 634.12 2.07 5.55 1.72 9.78 0.53
GT 1.00 0.42 3032.29 0.94 0.10 1.60 1.23 0.77

5  https://​www.​gapmi​nder.​org/​data/

https://www.gapminder.org/data/


	 Machine Learning

1 3

countries. Thus, the dataset contains 4014 two-dimensional data points, timestamped with 
the year and identified in the two mentioned classes. Figure 13 shows five snapshots cor-
responding to 1820, 1870, 1920, 1970 and 2020. These plots reveal how, regardless of their 
respective evolution, both groups appear separated over time. Therefore, stream clustering 
algorithms are expected to fully or partially match the labeling. As in the previous exam-
ple, we tuned algorithms to obtain optimal clustering.

Figure  14 and Table  5 show the performances of algorithms and CVIs/iCVIs. This 
time CluStream was able to infer consistent clusters, significantly close to the GT and the 
human intuition. Other stream clustering algorithms show partitions with different kinds of 
deviation. Note that traditional, static CVIs tend to consider CluStream as the best cluster-
ing, whereas the majority of iCVIs and TS correctly prefer the clustering given by the GT.

8 � Conclusions

We have introduced the Temporal Silhouette index, an internal validation method for 
stream clustering designed to provide reliable evaluations even in the event of concept 
drift. Our index has shown satisfactory validation when comparing two real-life cases, four 
datasets for clustering evaluation submitted to 32 different forms-levels of degradation, and 
200 scenarios to implement the different types of concept drift identified in the literature, 
as well as cases with spatial and temporal outliers. As a general rule, Temporal Silhouette 
showed better performances than both traditional and incremental validation.

The Temporal Silhouette index fills a gap within the methods for the internal validation 
of unsupervised algorithms in streaming data analysis, which to date is performed either 
with static validation, opaque to concept changes, or with incremental approaches, which 
are closer to techniques for the online detection of context changes.

Author Contributions  Conceptualization, Methodology, Formal analysis and Investigation, and Writing - 
Original Draft Preparation: FIV; Writing - Review and Editing, Resources and Supervision: TZ.

Funding  Open access funding provided by TU Wien (TUW). The authors acknowledge TU Wien Biblio-
thek for financial support through its Open Access Funding Programme.

Fig. 14   Evolution of clusters in the fertility vs income dataset according to the studied stream clustering 
algorithms and the GT. Upper plots show income vs time, while lower plots show children per woman vs 
time (Color figure online)



Machine Learning	

1 3

Data availability  All experiments, data and codes used in the paper are available for reuse and replication 
in a Figshare repository with a DOI-citable version: Iglesias Vázquez, F. (2023). Temporal Silhouette for 
Stream Clustering Validation - Evaluation Tests (2.0.0). TU Wien. https://​doi.​org/​10.​48436/​ss6a3-​3r720

Code availability  All experiments, data and codes are also available in an open Github repository updated 
and maintained by the authors in: TUWien - CN Group (2023). Temporal Silhouette (Python). URL: https://​
github.​com/​CN-​TU/​py-​tempo​ral-​silho​uette.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of this 
article.

Ethical approval  Not applicable.

Consent to participation  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., & Sohler, C. (2012). 
Streamkm++: A clustering algorithm for data streams. ACM J Exp Algorithmics, 17, 1–2.

Aggarwal, C.C., Han, J., Wang, J., & Yu, P.S. (2003). A framework for clustering evolving data streams. 
In Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, VLDB 
Endowment, VLDB ’03, p 81–92.

Aggarwal, C.C., Han, J., Wang, J., & Yu, P.S. (2007). On clustering massive data streams: A summarization 
paradigm. In Data Streams, Springer, pp 9–38.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative 
study of cluster validity indices. Pattern Recognition, 46(1), 243–256.

Bezdek, J. C., & Keller, J. M. (2021). Streaming data analysis: Clustering or classification? IEEE Trans on 
Systems, Man, and Cybernetics: Systems, 51(1), 91–102.

Brito Da Silva, L. E., Melton, N. M., & Wunsch, D. C. (2020). Incremental cluster validity indices for 
online learning of hard partitions: Extensions and comparative study. IEEE Access, 8, 22025–22047.

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 
3(1), 1–27.

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006). Density-Based Clustering over an Evolving Data Stream 
with Noise, pp 328–339.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence PAMI, 1(2), 224–227.

Ester, M., Kriegel, H.P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in 
large spatial databases with noise. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, AAAI Press, KDD’96, pp. 226–231

Fisch, A. T. M., Eckley, I. A., & Fearnhead, P. (2022). A linear time method for the detection of collective 
and point anomalies. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 
494–508.

https://doi.org/10.48436/ss6a3-3r720
https://github.com/CN-TU/py-temporal-silhouette
https://github.com/CN-TU/py-temporal-silhouette
http://creativecommons.org/licenses/by/4.0/


	 Machine Learning

1 3

Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intel-
ligence, 48(12), 4743–4759.

Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering problems. Pattern Recognition, 
39(5), 761–765.

Fränti, P., Virmajoki, O., & Hautamäki, V. (2006). Fast agglomerative clustering using a k-nearest neighbor 
graph. IEEE Trans on Pattern Analysis and Machine Intelligence, 28(11), 1875–1881.

Gama, J., Zliobaite, I., Bifet, A., & Pechenizkiy, M. (2014). A survey on concept drift adaptation. ACM 
Computing Surveys (CSUR), 46(4), 1–37.

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. AI Communications, 13(4), 
215–223.

Hassani, M., & Seidl, T. (2017). Using internal evaluation measures to validate the quality of diverse stream 
clustering algorithms. Vietnam Journal of Computer Science, 4(3), 171–183.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.
Ibrahim, O.A., Keller, J.M., & Bezdek, J.C. (2018). Analysis of streaming clustering using an incremental 

validity index. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8.
Ibrahim, O.A., Keller, J.M., & Popescu, M. (2019). A new incremental cluster validity index for streaming 

clustering analysis. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8.
Iglesias, F. (2021). Data for evaluation of stream data analysis algorithms. Mendeley Data. https://​doi.​org/​

10.​17632/​c43kr​4t7h8.1
Iglesias, F., Zseby, T., Ferreira, D., & Zimek, A. (2019). Mdcgen: Multidimensional dataset generator for 

clustering. Jour of Classification, 36(3), 599–618.
Iglesias, F., Ojdanic, D., Hartl, A., & Zseby, T. (2020a). Mdcstream: Stream data generator for testing analy-

sis algorithms. In Proceedings of the 13th EAI International Conference on Performance Evaluation 
Methodologies and Tools, Association for Computing Machinery, New York, NY, USA, VALUE-
TOOLS ’20, pp. 56–63.

Iglesias, F., Zseby, T., & Zimek, A. (2020). Absolute cluster validity. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 42(9), 2096–2112.

Iglesias Vázquez, F. (2023). Temporal Silhouette for Stream Clustering Validation - Evaluation Tests (2.0.0) 
https://​doi.​org/​10.​48436/​ss6a3-​3r720​, tU Wien

Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., & Pfahringer, B. (2011). An effective 
evaluation measure for clustering on evolving data streams. In Proceedings of the 17th ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining, Association for Computing 
Machinery, New York, NY, USA, KDD ’11, pp. 868–876.

Kuncheva, L. I. (2013). Change detection in streaming multivariate data using likelihood detectors. IEEE 
Transactions on Knowledge and Data Engineering, 25(5), 1175–1180.

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard devia-
tion around the mean, use absolute deviation around the median. Journal of Experimental Social Psy-
chology, 49, 764–766.

Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of internal clustering validation meas-
ures. IEEE International Conference on Data Mining (pp. 911–916). New Jersey: IEEE.

von Luxburg, U., Williamson, R.C., & Guyon, I. (2012). Clustering: Science or art? In Guyon I, Dror G, 
Lemaire V, Taylor G, Silver D (eds) Proceedings of ICML Workshop on Unsupervised and Transfer 
Learning, PMLR, Bellevue, Washington, USA, Proceedings of Machine Learning Research, vol 27, 
pp. 65–79.

Memari, I. (2020). DenStream (Python). https://​github.​com/​issam​emari/​DenSt​ream, GitHub repository 
(Accessed on Jun, 2022).

Moreno-Torres, J. G., Raeder, T., Alaiz-RodríGuez, R., Chawla, N. V., & Herrera, F. (2012). A unifying 
view on dataset shift in classification. Pattern Recogn, 45(1), 521–530.

Moshtaghi, M., Bezdek, J. C., Erfani, S. M., Leckie, C., & Bailey, J. (2019). Online cluster validity indices 
for performance monitoring of streaming data clustering. International Journal of Intelligent Systems, 
34(4), 541–563.

Nguyen, H. L., Woon, Y. K., & Ng, W. K. (2015). A survey on data stream clustering and classification. 
Knowledge and Information Systems, 45(3), 535–569.

Nordahl, C., Boeva, V., Grahn, H., & Persson Netz, M. (2021). Evolvecluster: An evolutionary clustering 
algorithm for streaming data. Evolving Systems pp. 1–21.

Oliveira, G. (2020). ClusOpt Core (Python). https://​github.​com/​giuli​ano-​olive​ira/​cluso​pt_​core, GitHub 
repository (Accessed on Jun, 2022).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, 

https://doi.org/10.17632/c43kr4t7h8.1
https://doi.org/10.17632/c43kr4t7h8.1
https://doi.org/10.48436/ss6a3-3r720,
https://github.com/issamemari/DenStream
https://github.com/giuliano-oliveira/clusopt_core


Machine Learning	

1 3

M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning 
Research, 12, 2825–2830.

Rezaei, M., & Fränti, P. (2020). Can the number of clusters be determined by external indices? IEEE Access, 
8, 89239–89257.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. 
Journal of Computational and Applied Mathematics, 20, 53–65.

Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft, M., Dietterich, T. G., & 
Müller, K. R. (2021). A unifying review of deep and shallow anomaly detection. Proceedings of the 
IEEE, 109(5), 756–795.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. LFd., & Ja, Gama. (2013). Data 
stream clustering: A survey. ACM Computing Surveys, 46(1), 1–31.

TUWien - CN Group. (2023). Temporal Silhouette (Python). https://​github.​com/​CN-​TU/​py-​tempo​ral-​silho​
uette, GitHub repository.

Vinh, N.X., Epps, J., Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, 
properties, normalization and correction for chance 11:2837–2854.

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 13(8), 841–847.

Zhang, T., Ramakrishnan, R., Livny, M. (1996). Birch: An efficient data clustering method for very large 
databases. Association for Computing Machinery, New York, NY, USA, SIGMOD ’96, pp. 103–114.

Zubaroğlu, A., & Atalay, V. (2022). Online embedding and clustering of evolving data streams. Statistical 
Analysis and Data Mining: The ASA Data Science Journal, 16(1), 29–44.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://github.com/CN-TU/py-temporal-silhouette
https://github.com/CN-TU/py-temporal-silhouette

	Temporal silhouette: validation of stream clustering robust to concept drift
	Abstract
	1 Introduction
	2 Stream clustering
	2.1 Stream clustering validation

	3 Concept drift
	3.1 Types of changes over time

	4 Temporal validation
	4.1 Distance to temporal centroid ( )
	4.2 Temporal inter-distance ( )
	4.3 Inter-arrival discrepancy ( )
	4.4 Temporal centroid discrepancy ( )
	4.5 Temporal silhouette (ts, TS)
	4.6 Examples of TS validation for concept drift types

	5 Evaluation in stationary environments
	5.1 Data
	5.2 Perturbations
	5.3 Validation indices
	5.4 Results and discussion
	5.5 Sensitivity of parameters

	6 Evaluation in concept drift
	6.1 Methodology
	6.2 Data
	6.3 Stream clustering algorithms
	6.4 Validation indices
	6.5 Results and discussion

	7 Examples with real data
	7.1 Retail sales collection
	7.2 Fertility vs income

	8 Conclusions
	References


