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Abstract

Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders

when imbalanced. This process is regulated by the coagulation cascade, a biochemical net-

work that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin

fibers that constitute clots. Coagulation cascade models are typically complex and involve

dozens of partial differential equations (PDEs) representing various chemical species’ trans-

port, reaction kinetics, and diffusion. Solving these PDE systems computationally is chal-

lenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to

increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics

of molecular diffusion, we transform the governing PDEs into ordinary differential equations

(ODEs) representing the evolution of species concentrations versus blood residence time.

We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatio-

temporal maps of species concentrations in terms of the statistical moments of residence

time, t p
R , and provide the governing PDEs for t p

R . This strategy replaces a high-fidelity sys-

tem of N PDEs representing the coagulation cascade of N chemical species by N ODEs and

p PDEs governing the residence time statistical moments. The multi-fidelity order (p) allows

balancing accuracy and computational cost providing a speedup of over N/p compared to

high-fidelity models. Moreover, this cost becomes independent of the number of chemical

species in the large computational meshes typical of the arterial and cardiac chamber simu-

lations. Using a coagulation network with N = 9 and an idealized aneurysm geometry with a

pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of

p = 1 and p = 2. The thrombin concentration in these models departs from the high-fidelity

solution by under 20% (p = 1) and 2% (p = 2) after 20 cardiac cycles. These multi-fidelity

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011583 October 27, 2023 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Guerrero-Hurtado M, Garcia-Villalba M,

Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh

E, et al. (2023) Efficient multi-fidelity computation

of blood coagulation under flow. PLoS Comput Biol

19(10): e1011583. https://doi.org/10.1371/journal.

pcbi.1011583

Editor: Alison Marsden, Stanford University,

UNITED STATES

Received: June 1, 2023

Accepted: October 9, 2023

Published: October 27, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011583

Copyright: © 2023 Guerrero-Hurtado et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, its Supporting information files,

and on Zenodo (DDOI:10.5281/zenodo.8344615).

https://orcid.org/0009-0004-7664-8484
https://orcid.org/0000-0002-6953-2270
https://orcid.org/0000-0001-5683-0239
https://orcid.org/0000-0003-2365-0738
https://doi.org/10.1371/journal.pcbi.1011583
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011583&domain=pdf&date_stamp=2023-11-20
https://doi.org/10.1371/journal.pcbi.1011583
https://doi.org/10.1371/journal.pcbi.1011583
https://doi.org/10.1371/journal.pcbi.1011583
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.8344615


models could enable new coagulation analyses in complex flow scenarios and extensive

reaction networks. Furthermore, it could be generalized to advance our understanding of

other reacting systems affected by flow.

Author summary

The coagulation cascade is an intricate biochemical process that prevents excessive bleed-

ing while maintaining vascular integrity. Modeling this process involves dozens of inter-

dependent chemical reactions with disparate kinetics. Moreover, the reacting species are

transported by the flow, leading to complex spatio-temporal dynamics. Consequently, the

computational cost of modeling the coagulation cascade in flowing blood prohibits realis-

tic simulations. To overcome this challenge, we introduce a new multi-fidelity approach

that exploits the slow diffusion of chemical species to decouple simulating their flow trans-

port and chemical reaction. This approach achieves a significant reduction in computa-

tional requirements while maintaining the accuracy of our simulations. We anticipate this

new multi-fidelity approach will make coagulation cascade simulations in physiologically

relevant scenarios accessible to many researchers. This technique will also enable studies

necessitating multiple parametric runs, such as sensitivity or uncertainty quantification

analyses. This advancement is poised to benefit medical professionals and researchers,

opening new horizons in our understanding of coagulation processes and the effects of

blood thinners.

Introduction

Blood coagulation, or clotting, is a highly regulated mechanism vital in sealing wounded blood

vessels to prevent bleeding. Abnormal or excessive clotting can result in serious medical condi-

tions, such as stroke and deep vein thrombosis. Therefore, blood coagulation has been the sub-

ject of extensive research, and understanding its mechanisms is crucial to diagnose and

manage numerous diseases.

The initiation of blood coagulation is an enzymatic cascade that amplifies thrombin con-

centration in plasma, activating fibrin polymerization to form a clot [1, 2]. This cascade can be

started via extrinsic and intrinsic pathways. The extrinsic pathway is triggered by a vessel-

injury-mediated release of coagulation factor VII and tissue factor (TF) into the bloodstream.

The intrinsic pathway is auto-initiated, i.e., it does not require exposure to an extravascular tis-

sue factor, and begins with the activation of plasma factors XII, XI, IX, and VIII. Both path-

ways eventually activate factor X, converging into the common pathway that amplifies

thrombin, which in turn converts fibrinogen into fibrin filaments and activates factor XIII,

which cross-links the fibrin mesh [3, 4]. The initiation, propagation, and inhibition of this

complex process involve a network of over 80 known biochemical reactions [5].

Since thrombosis is a ubiquitous complication of cardiovascular diseases and device

implantation [6, 7], there is an abundance of computational models considering coagulation

in diverse physiological and anatomical settings. These models may be coupled to computa-

tional fluid dynamics (CFD) solvers to capture the interactions between the abnormal blood

flow, hypercoagulability, and vessel injury characteristic of thrombus formation. However, the

problem is very complicated, and state-of-the-art studies including all interactions are limited.

Intra-luminal thrombogenesis in an abdominal aortic aneurysm has been studied using an
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18-equation model based on tissue factor activation [8, 9], providing an integrated mechano-

chemical picture of the process [10]. The same model was used later to study thrombogenesis

in an infarcted left ventricle [11]. More complex models have also been used in the literature,

either increasing the number of reaction equations involved in the model [12], or including

the effects of tissue factor, platelet activation, and clot porosity on thrombus growth [13].

Other models have analyzed the contribution of intrinsic and extrinsic pathways at different

timescales, highlighting the multi-stage character of the coagulation process [14].

Eulerian-Lagrangian approximations can be used to integrate coagulation cascade reaction-

advection-diffusion equations with platelet activation and deposition. Researchers have used

this approach to describe the evolution of non-activated and activated platelet concentrations

[15], using the simulated velocity fields to track platelet activation and accumulation. The

equations were solved using a stabilized finite element method. The accumulation model [16]

accounts for various factors, including plasma-phase and membrane-phase reactions, coagula-

tion inhibitors, and the presence of activated and unactivated platelets. Other groups have

used similar strategies, like coupling a calibrated platelet aggregation model, which accounts

for adhesion forces between platelet-platelet and platelet-wall at low and high shear rate levels,

with an extrinsic coagulation cascade initiation model [17]. In this case, the coagulation cas-

cade was based on a model using 23 chemical species [18].

The large number of coupled partial differential equations (PDEs) representing the reac-

tion, advection, and diffusion of the species involved in the coagulation cascade creates strin-

gent requirements for numerical simulation. This problem is aggravated by the high

numerical cost of solving each PDE, owing to the disparate timescales associated with the flow,

reaction kinetics, and diffusion [19–21]. The dimensional parameters involved in these pro-

cesses for mid-size arteries are: flow velocity, Uc* 10cm/s; vessel diameter, Lc* 1cm; the car-

diac cycle’s period, tc� 1s; timescales of enzymatic reaction kinetics, ranging from a few

seconds to hundreds of seconds (tr* 102s) [9, 20, 22]; and mass diffusivity coefficients for spe-

cies in blood, Di* 10−6cm2/s [10, 23, 24]. The relatively slow reaction times in these systems

require running simulations over many cardiac cycles to reach convergence, i.e., tr� tc. More-

over, the slow diffusion of reactive species creates extremely thin layers in their concentration

fields since the Peclet number, Pe = UcLc/Di = td/ta� 107, which measures the ratio between

convective and diffusive transport, is very large. For reference, the Schmidt number, which

measures the ratio between the viscous diffusion acting in the Navier-Stokes equations and the

mass diffusivity acting in the coagulation system’s equations, is Sc = ν/Di* 104 where ν�
4 × 10−2cm2/s is the kinematic viscosity of blood. Consequently, the spatial discretization of

the coagulation system’s equations requires much finer computational grids than the ones

used to solve the Navier-Stokes equations. This problem is well described in CFD literature

and it is common to many other reactive and non-reactive cardiovascular transport problems

[25].

Previous simulations of the coagulation cascade under flow have proposed concessions to

reduce computational cost. First, the multi-scale nature of reaction kinetics have been simpli-

fied by assuming that fast-reacting species are in equilibrium, leading to reduced models with

fewer chemical species [23], or by using phenomenological models [26]. The latter have been

used to investigate hypercoagulability in the left heart by considering fibrin production from

fibrinogen and thrombin [27]. Second, in most if not all studies, the Peclet number has been

decreased explicitly by prescribing unphysically high values for Di [10, 11], or implicitly by

using a diffusive numerical discretization (e.g., upwinding first-order finite differences). In

non-reactive transport problems, this concession has been justified on the basis of accounting

for additional noise sources and as long as the effective Pe remains� 1 [28]. However, its ade-

quacy is more questionable in reacting problems like the coagulation cascade, where the
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reaction timescale is intermediate between the transport and diffusive timescales. Another

compromise adopted by some authors is to shorten the time integration to a few cardiac cycles,

focusing only on the initial phases of thrombin activation [11]. Finally, many studies have con-

sidered idealized two-dimensional geometries to save computational cost [10, 13, 20, 21, 27].

In summary, there is an unmet need for computationally efficient strategies to model the coag-

ulation cascade under flow.

We introduce a multi-fidelity modeling approach to significantly reduce the computational

cost of coagulation cascade simulations in flowing blood and make this cost independent of

the number of chemical species. The multi-fidelity approach transforms the reaction-advec-

tion-diffusion equations for species concentrations (ui, i = 1, . . ., N) into a system of ODEs by

using blood residence time (tR) as the independent variable. The resulting model requires inte-

grating only one PDE for tR and N ODEs for the coagulatory species, whose concentration

fields can be mapped as uiðtRðx; tÞÞ. The transformation is exact for zero diffusivity. For small,

finite diffusivity, the model can be Taylor-expanded in terms of the residence time statistical

moments, i.e., t 2
R ; t 3

R ; . . . t p
R , to derive a family of customizable, multi-fidelity models that offer

a balance between cost and accuracy. We compare 1st-order (MuFi-1: 1 PDE, N ODEs) and

2nd-order (MuFi-2: 2 PDEs, N ODEs) multi-fidelity models with the high-fidelity (HiFi: N-

PDEs) model for pulsatile flow through an aneurysm-like geometry, using a 9-species coagula-

tion system [23] as a benchmark. Overall, the MuFi-1 and HiFi models show good agreement

up to t� 10tc cardiac cycles, while this agreement is improved and extended to longer times (t
� 20tc) for MuFi-2. The proposed family of multi-fidelity coagulation models could benefit

researchers in the field by enabling them to simulate and analyze complex blood coagulation

phenomena more quickly and accurately, thus advancing our understanding of the underlying

mechanisms and informing clinical practice.

Methods

This section presents a multi-fidelity model to reduce the cost of simulating coagulation net-

works of N species in flowing blood. To facilitate the model’s presentation, we first review the

standard high-fidelity model (HiFi: N-PDE) and introduce its first-order (MuFi-1: 1-PDE, N-

ODE) approximation, which neglects diffusion. We then introduce the second-order approxi-

mation (MuFi-2: 2-PDE, N-ODE) accounting for small, finite diffusion, define our benchmark

flow problem and coagulation reaction system, and describe the numerical discretization

methods.

High-fidelity and first-order multi-fidelity coagulation models

We consider blood as a continuum in space and time (x, t) flowing with velocity v(x, t), and

model its coagulation by the system of reaction-advection-diffusion equations

Dui

Dt
¼
@ui

@t
þ v � rui ¼ Ri þ Dir

2ui; for i ¼ 1; . . . ;N; ð1Þ

where D/Dt denotes material derivative, the subindex i indicates each of the N species involved

in coagulation system, ui(x, t) its concentration field, Ri(u1, u2, . . ., uN) its reaction rate from

chemical kinetics, and Di its diffusivity coefficient. This system of N PDEs is denoted the high-

fidelity (HiFi) model. Assuming that v(x, t) is known, this HiFi model can be solved with some

appropriate initial and boundary conditions for ui. For simplicity, we consider uniform initial

conditions ui(x, 0) = ui,0, Dirichlet boundary conditions at the domain flow inlets (ui = ui,0),

and homogeneous Neumann boundary conditions (@ui/@n = 0) at solid surfaces and flow

outlets.
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The Eq (1) can be written in non-dimensional form using the flow velocity scale Uc and ves-

sel length scale Lc,

Dui

Dt
¼ Da~Ri þ

1

Pe
r2ui; ð2Þ

where τ = tUc/Lc is a dimensionless time variable, ~Ri ¼ trRi is a dimensionless reaction rate,

the Damköhler number Da = Lc/(trUc) measures the relative importance of reaction kinetics

(rate t� 1
r ) and convective terms, and the Péclet number Pe = UcLc/Di measures the relative

importance of convection over diffusion. Using typical values corresponding to mid-size arter-

ies and the reaction rate and diffusivity of coagulation cascade species (i.e. Uc* 10 cm/s, Lc*
1 cm, tr* 102 s, Di* 10−6 cm2/s) yields Da* 10−3 and 1/Pe* 10−7, so both terms on the

right-hand side of Eq (2) are small. However, the reaction term is the only forcing in the equa-

tion and cannot be neglected, while the diffusive term is even smaller and can be neglected.

Doing so simplifies Eq (1) to

Dgi
Dt
¼ Ri; ð3Þ

where gi approximates ui in the limit of zero molecular diffusivity. The simplified model has

no mixing [29], making the reaction rate within each fluid element independent of the species

concentrations in surrounding elements, and exclusively dependent on its age. Consequently,

it should be possible to write an ODE system for the coagulation system of each fluid element

in a Lagrangian frame that follows the element as it moves with the flow. To avoid the compli-

cation of tracking Lagrangian trajectories, we follow previous works [30–33] and resort to the

PDE governing the residence time

DtR
Dt
¼ 1; ð4Þ

which can be used to calculate the age of fluid elements in the region of interest. Applying the

chain rule on Eq (3) and taking into account Eq (4), we obtain

Dgi
Dt
¼

dgi
dtR

DtR
Dt
¼

dgi
dtR

; ð5Þ

which simplifies the HiFi PDE system Eq (1) into the ODE system

dgi
dtR
¼ Riðg1; g2; . . . ; gNÞ: ð6Þ

We note that this ODE system is the same for all fluid elements, as it has no explicit depen-

dence on x, and each fluid element’s pathline information is implicitly encoded by the spatial

dependence of tRðx; tÞ. This model involves solving a system of N ODEs (i.e., Eq (6) for i = 1

. . . N) to obtain giðtRÞ, solving one PDE to calculate tR , and mapping uiðx; tÞ � giðtRðx; tÞÞ.
Because it combines solving ODEs and PDEs, we consider this approximate model a multi-

fidelity (MuFi) model. When N is large, the MuFi model can be significantly cheaper to run

than the HiFi model, which involves solving N PDEs.

Higher-order multi-fidelity approximations

In the previous section, we used overline notation for residence time to emphasize that tR as

defined in Eq (4) is the ensemble average age of all molecules within a fluid element, defined as
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the first integral moment of its probability density function, fT:

tRðx; tÞ ¼
Z 1

� 1

T fTðT; x; tÞ dT: ð7Þ

Considering residence time as a stochastic variable is important because, as discussed in the

Introduction, the numerical solutions to transport PDEs like Eq (4) explicitly include unphysi-

cally large diffusivities or employ discretization methods that implicitly introduce numerical

diffusivity. Numerical dissipation helps control instabilities and spurious oscillations but it is a

source of numerical error [34]. This error makes tR satisfy an equivalent differential equation

(EDE) instead of the theoretical PDE given by Eq (4). The specific form of the EDE depends

on the details of the temporal integration scheme and the approximation used to discretize the

spatial derivatives. For commonly used, first-order, dissipative methods, the EDE for tR takes

the form

DtR
Dt
¼ 1þ Dnr

2tR ; ð8Þ

where the coefficient Dn* cΔx/2 represents the diffusivity of the numerical method, where c
is the flow characteristic velocity and Δx the mesh spatial resolution [34].

In this effective scenario, diffusivity creates uncertainty in the residence time. This phenom-

enon can be shown using Itô’s differentiation [35] to derive the EDE for the second-order

moment of the residence time, t2
R , as

Dt2
R

Dt
¼ 2tR þ Dnr

2t2
R ;

ð9Þ

where

t2
Rðx; tÞ ¼

Z 1

� 1

T2fTðT; x; tÞdT: ð10Þ

Then, it is possible to express this equation in terms of the residence time variance,

s2
T ¼ t2

R � tR
2

, as

Ds2
T

Dt
¼ 2DnjrtR j

2
þ Dnr

2s2

T: ð11Þ

The interested reader can find the derivation of Eqs (8) and (11) in S1 Appendix. Of note,

when Dn = 0 and fT is a Dirac delta function, Eqs (8) and (9) yield t2
R ¼ tR

2

and zero residence

time variance, i.e., s2
T ¼ 0. But when Dn 6¼ 0, the non-negative forcing term in Eq (11) causes

s2
T to increase unless residence time is constant. Note also that for higher order numerical

methods, the differential operator multiplying Dn in the EDEs (8) and (9) will involve higher

order derivatives, with a dispersive or dissipative character depending on the order of the tem-

poral and spatial discretizations. This will result in more complex evolution equations for s2
T ,

without changing the fact that numerical diffusion results in an increase on s2
T in regions with

strong gradients of tR .

The growth of s2
T causes errors in the MuFi model derived in the previous section as time

increases. To illustrate these errors and derive higher-order corrections, it is convenient to

express the concentration of chemical species as

uiðx; tÞ ¼
Z 1

� 1

Ui fUi
ðUi; x; tÞ dUi ¼

Z 1

� 1

giðTÞfTðT; x; tÞdT; ð12Þ
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where Ui is the concentration’s statistical variable, fUi
ðUi; x; tÞ is its probability density func-

tion, and fT(T;x, t) is the probability density function of the residence time. The substitution

Ui = gi(T) is warranted because, in the absence of diffusion, σT is zero and fT is a Dirac delta,

yielding ui ¼ giðtRÞ, consistent with the definition of gi in Eq (3).

Assuming next that gi(T) is second-order differentiable, we can Taylor-expand it around

T ¼ tR and integrate the expansion to obtain

uiðx; tÞ � giðtRÞ þ g 00i ðtRÞ
s2
T

2
; ð13Þ

where the primes denote derivatives. This result demonstrates that the MuFi model ui ¼ giðtRÞ
error grows with the residence time variance for non-linear reaction systems (i.e., those with

g0 0 6¼ 0). But, more important, it provides a high-order correction that is also an inexpensive

MuFi model as it only requires solving one additional PDE.

In summary, we introduce two multi-fidelity models that balance cost with accuracy:

• First-order (MuFi-1):

• Solve N ODEs Eq (6) to calculate gi(t).

• Solve one PDE Eq (4) to calculate tRðx; tÞ.

• Map uiðx; tÞ � gi½tRðx; tÞ�.

• Second-order (MuFi-2):

• Solve N ODEs Eq (6) to calculate gi(t) and its second temporal derivative g 00i ðtÞ.

• Solve two PDEs: Calculate tRðx; tÞ from Eq (4) and t2
Rðx; tÞ from

Dt2
R

Dt
¼ 2tR ; ð14Þ

which follows from ignoring the numerical diffusion term from the EDE in Eq (9).

• Calculate s2
T ¼ t2

R � tR
2

, and map uiðx; tÞ � gi½tRðx; tÞ� þ g 00i ½tRðx; tÞ�s
2
Tðx; tÞ=2.

This procedure can be extended to higher order approximations by retaining additional

terms in the Taylor expansion of gi around tR , and solving additional PDEs for higher-order

moments of the residence time. For example, the MuFi model of third order (involving

N-ODEs and three PDEs) is derived in S2 Appendix. Finally, we note that the PDEs to be

solved in the MuFi-2 model are the true PDEs (i.e., Eqs (4) and (14)), not the EDEs (Eqs (8)

and (9)). If the PDEs explicitly include diffusivity, then a diffusive term should be added. If

not, the resulting s2
T will capture the effect of the discretization’s numerical diffusivity, Dn,

regardless of the order of the numerical method employed to solve Eqs (4) and (14). We

emphasize that explicit knowledge of Dn is not required, which is advantageous since this dif-

fusivity may be constant or vary in space and time depending on the numerical

discretization.

Computational cost estimates

We estimate the computational cost of running a HiFi model in D dimensions to be φNnD+1

floating point operations (FLOPs), where N is the number of species, φ* O(102) is a parame-

ter that depends on the numerical discretization scheme and the function evaluations needed

to calculate the reaction rates, and n is the number of elements in the spatial mesh along each

direction. Note that the exponent D + 1 reflects that the temporal resolution is linked to the
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spatial resolution by the CFL condition to guarantee an accurate temporal integration. As a

consequence, the number of time steps required to reach a finite integration time is propor-

tional to n. On the other hand, a MuFi-p model is estimated to require βNn + θpnD+1 FLOPs,

where the first term is the cost of integrating the N ODEs for the species reaction kinetics and

the second term is the cost of solving the p PDEs governing the statistical moments of resi-

dence time. Like in the HiFi model, the parameters β and θ depend on the numerical imple-

mentation and the right-hand-side terms in the governing equations. It is worth noting that

θ< φ because the forcing terms in the residence time equations (see e.g., Eqs 4 and 14) are

simpler than the reaction rate terms in the equations governing species concentration (see S4

Appendix).

Based on these estimates and assuming that n is a large number as in, e.g., spatially

resolved simulations of flow through arteries or the cardiac chambers, we make two remarks.

First, we note that the cost of MuFi models becomes effectively independent of the number

of species, N, since D� 1. Second, we note that MuFi models achieve a speedup * (φ/θ)(N/

p) > N/p. Furthermore, MuFi models significantly reduce the memory allocation necessary

to run simulations, which could lead to additional speedups in parallel implementations by

avoiding the overheads associated with message passing and loss of cache memory

coherence.

Test case: Coagulation cascade in an idealized aneurysm

To compare the multi-fidelity models MuFi-1 and MuFi-2 with the high-fidelity model based on

the PDE system (1), we considered a simplified coagulation cascade model under pulsatile flow

through an idealized two-dimensional geometry (Fig 1). This flow geometry broadly resembles a

cerebral aneurysm or the left atrial appendage, two cardiovascular sites associated with thrombo-

sis [36–40]. The parent vessel is modeled as a straight tube of diameter H, and the aneurysm is

modeled as a circular cavity of radius 0.75H. The center of the cavity is located such that the aneu-

rysm neck size is H. The corners at the aneurysm neck are smoothed with a radius of curvature

equal to 0.067H, to avoid sharp corners in the geometry. The pulsatile flow was driven by impos-

ing a two-dimensional Womersley flow as the inflow boundary condition (see S3 Appendix). The

Fig 1. Geometry. Idealized aneurysm geometry.

https://doi.org/10.1371/journal.pcbi.1011583.g001
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Reynolds and Womersley numbers are Re = UcH/ν = 500 and a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pH2=ðtcnÞ

p
¼ 10, respec-

tively, where Uc is the maximum velocity. These values of Re and α are representative of intracra-

nial saccular aneurysms [41]. Fig 2 shows the time history of the mass flow rate and the inlet

velocity profiles at two time instants, corresponding to the minimum (t/tc = 0.5) and maximum

(t/tc = 1) flow rates through the vessel. While the waveform of Q(t) does not include all the tempo-

ral complexity of physiological waveforms, it does include the acceleration and deceleration

phases needed to drive the flow in the cavity, as described in section Results.

To model the coagulation cascade, we chose a 9-species system considering prothrombin (II),

thrombin (IIa), fibrin (Ia), PCa, and factors XIa, IXa, Xa, VIIIa, and Va [23]. The corresponding

source terms in Eq (1) are detailed in S4 Appendix. The equations describe the activation of pro-

thrombin (II) into thrombin (IIa) by factors Va and Xa. In turn, thrombin activates the produc-

tion of factors Va, VIIIa, XIa, and the system’s main inhibitor, PCa. The reaction rates for the

model are adopted from previous works [23, 42] and are reported in Table A in S4 Appendix.

Fig 3 illustrates the evolution of the 9 species in stagnant blood (i.e., v = 0) for uniform ini-

tial concentrations (see Table 1), chosen within physiologically plausible ranges to ensure sub-

stantial thrombin growth within 20 cardiac cycles. This timescale aligns with the peak

residence time values observed in the left atrial appendage (LAA) [43, 44]. These conditions

lead to an accumulation of thrombin and factors Xa and VIIIa over the initial 10–17 cardiac

cycles, followed by a rapid decrease in thrombin concentration over the subsequent 15 cycles.

Numerical methods

We used the in-house code TUCAN [45, 46] to solve the Navier-Stokes equations for Newto-

nian, incompressible flow in the configuration described in the previous section. The

Fig 2. Womersley flow profiles. A: Time evolution of the mass flow rate through the vessel. B and C: Velocity profile

at the inlet at t = 0.5tc and t = tc.

https://doi.org/10.1371/journal.pcbi.1011583.g002

Fig 3. Evolution of coagulation cascade species. Obtained by solving Eq (6) for the 9-species coagulation model.

https://doi.org/10.1371/journal.pcbi.1011583.g003
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numerical discretization used second-order finite differences on a Cartesian staggered grid.

The temporal integration was performed with a three-stage, low-storage, semi-implicit Runge-

Kutta scheme. The no-slip boundary condition at the vessel walls was modeled by the

immersed boundary method [47]. After discarding initial transient effects, the velocity field (v

(x, t)) computed by TUCAN was sampled at constant time intervals (tsamp = tcycle/35) and

stored to be linearly interpolated for integrating Eqs (1), (4) and (14). To assess the conver-

gence of the velocity field, we performed a grid refinement study employing four resolutions,

Δx/H = 1/38, Δx/H = 1/75, Δx/H = 1/150 and Δx/H = 1/300. Each simulation was run with a

constant time step Δt that ensured the Courant number to be CFL = max(|u(x)|)Δt/Δx� 0.1.

The relative error was defined with respect to the case with Δx/H = 1/300,

εk ¼
jok � o300j

o300

; ð15Þ

where

okðtÞ ¼
1

Ocav

Z Z

Ocav

joðx; y; tÞjdO

is the averaged absolute value of the vorticity in the cavity computed with a spatial resolution

Δx = H/k, and Ocav is the volume of the cavity. Table 2 displays the values of the relative error

for each resolution at three time points (t/tc = 0, t/tc = 0.33, and t/tc = 0.67). The case with reso-

lution Δx/H = 1/150 was selected for the present study because it yielded a relative error consis-

tently below 1% throughout the cardiac cycle.

A third-order weighted essentially non-oscillatory (WENO) scheme [48] was implemented

to integrate the advection-reaction-diffusion PDEs (Eqs (1), (4) and (14)) as in previous works

[43, 44]. This scheme locally adjusts numerical diffusivity to damp convective fluxes perpen-

dicular to sharp scalar fronts, preventing spurious oscillations while at the same time keeping

the overall numerical diffusivity low. The systems of PDEs (1), (4) and (14), and the system of

Table 1. Initial conditions.

Species Concentrations Initial condition [nM]

uXIa 0.105

uIXa 11.024

uXa 0.202

uIIa 92.626

uII 867.564

uVIIIa 1.534 � 10−4

uVa 2.713

uPCa 3.488 � 10−2

uIa 48.811

https://doi.org/10.1371/journal.pcbi.1011583.t001

Table 2. Grid refinement study.

Relative Error t/tc = 0 t/tc = 0.33 t/tc = 0.67

ε38 0.0842 0.0491 0.0747

ε75 0.0306 0.0170 0.0268

ε150 0.0090 0.0051 0.0081

https://doi.org/10.1371/journal.pcbi.1011583.t002
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ODEs (6) were integrated in time using an explicit, low-storage, 3-stage Runge Kutta scheme.

The grid resolution employed to solve these PDEs was the same used for generating the veloc-

ity fields, Δx/H = 1/150, as in previous works [10, 11]. The interested reader can find the corre-

sponding grid resolution study in the S5 Appendix. In the system of PDEs, uniform initial

conditions were used for all variables, ui(x, 0) = ui,0, tRðx; 0Þ ¼ t2
Rðx; 0Þ ¼ 0, while for the ODE

system the corresponding initial conditions were imposed, ui(0) = ui,0.

Results

Flow patterns and residence time

Pulsatile flow in the parent channel has two distinct phases coinciding with the acceleration

and deceleration of the inflow profile prescribed at the inlet (Fig 2). The deceleration phase

occurs for 0≲ t/tc≲ 0.5, whereas the acceleration phase comprises the rest of the cycle. Fig 4

shows instantaneous vorticity fields (panels A–C) and streamlines (panels D–F) at three differ-

ent instants of the cycle. At the onset of deceleration (t = 0, first column in Fig 4), the velocity

is maximum in the parent channel and a counter-clockwise vortex is the dominant pattern

inside the cavity. As deceleration proceeds (t = 0.33tc, center column in Fig 4), the counter-

Fig 4. Flow patterns in the cavity. A-C: Vorticity and D-E: instantaneous streamlines colored by velocity magnitude,

both normalized by its maximum value across the cardiac cycle. G-I: Residence time during the 21th simulation cycle.

Each variable is plotted at three different phases of the cardiac cycle, as indicated on top of each panel.

https://doi.org/10.1371/journal.pcbi.1011583.g004
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clockwise vortex is partially sucked into the parent channel, creating a thin jet that drives fluid

into the cavity in the downstream neck region while fluid slowly exits the cavity along the rest

of the neck region. Finally, during acceleration (t = 0.67tc, last column in Fig 4), a vortex pair

appears inside the cavity and pulls fluid from the parent channel near the upstream neck

region, ejecting fluid to the channel near the downstream neck region.

This alternating transport of fluid into and out of the cavity repeats every cycle, generating

a layered structure in residence time values reminiscent of the growth rings in a tree trunk. Fig

4G, 4H and 4I highlight the developed layer pattern in the 21th cycle of the simulation, demon-

strating that the WENO scheme effectively reproduces sharp tR gradients over long periods of

time without introducing excessive numerical diffusivity. However, albeit small, the WENO

scheme does introduce a non-zero Dn and, consequently, this scheme leads to σT> 0. This

behavior is apparent in Fig 5, which displays snapshots of tR and σT over the period 10tc�
t� 21tc. Both variables grow with time, while keeping approximately the same spatial

organization.

Fig 6 presents the temporal evolution of tR and σT at three points along the horizontal diam-

eter of the cavity (i.e., the crosses in Fig 5A). In all three points, the residence time exhibits an

initial phase of linear growth, tR � t and σT� 0, as in our previous work [43]. At points that

do not receive “fresh” fluid from the parent channel (e.g., the wall point in Fig 6A), this phase

should last indefinitely. In our simulations, a small departure from tR ¼ t and σT = 0 becomes

noticeable for t≳ 15tc due to the WENO scheme’s numerical diffusivity. Points exchanging

fluid with the parent channel experience a different behavior characterized by two principal

features. First, tR rises and falls every cardiac cycle as pockets of stagnant and fresh fluid move

back and forth over the point of interest. Second, the envelope of tR saturates to a maximum

value tRmax indicating the time needed for fluid exchange with the parent channel to wash out

the local blood pool. At these points, σT follows a similar behavior since fresh blood from the

parent channel has not only low tR but also low σT. We note that, for long enough simulation

Fig 5. Mean and standard deviation of the residence time. A-C: spatial distribution of tR=tc. D-F: spatial distribution

of σT/tc. Each variable is plotted at three different cycles. A,D: 11th cycle. B,E: 16th cycle. C,F: 21th cycle.

https://doi.org/10.1371/journal.pcbi.1011583.g005
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times, σT can grow at certain points to be comparable in magnitude to tR . This result has impli-

cations for multi-fidelity modeling of the coagulation cascade but also for the uncertainty of tR
itself.

Multi-fidelity modeling of the coagulation cascade

The initiation of the coagulation cascade is characterized by the rapid growth of thrombin

(IIa), peaking at about 15 cycles (see Fig 3). Fig 7 depicts the spatio-temporal structure of uIIa
over the 16th simulation cycle, as obtained by the MuFi-1 (panels A–C) and MuFi-2 (panels

D–F) models, as well as by the reference HiFi model (panels G–I). The three models capture

the rise of uIIa inside the cavity and the formation of a layered structure similar to that of the

residence time. There is a trend for MuFi-1 to underestimate uIIa, which is for the most part

corrected by MuFi-2.

To study each model’s behavior in more detail, Fig 8 shows the thrombin concentration

vs. time at the same three points considered in Fig 6, representative of scenarios where

sT � tR , sT ≲ tR , or sT ≳ tR after running the simulation for a large number of cycles, t�
tc. For reference, the figure also shows the thrombin concentration obtained from the HiFi

Fig 6. Time series of residence time and its standard deviation. A,C,E: Temporal evolution of tR=tc (━). B,D,F:

Temporal evolution of σT/tc (━). Three locations are considered, indicated with × in Fig 5A: A,B at (x/H, y/H) = (1.78,

1.19); C,D at (x/H, y/H) = (2.5, 1.19); and E,F at (x/H, y/H) = (3.15, 1.19).

https://doi.org/10.1371/journal.pcbi.1011583.g006
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model and the ODE system corresponding to no flow and no diffusion, i.e., tR ¼ t and σT =

0 (Eq 6).

Similar to the residence time, uIIa experiences peaks and valleys every cycle due to the

periodic fluid exchange between the cavity and the parent channel. In addition, the peak

value of uIIa increases from one cycle to the next as the coagulation cascade progresses in the

fluid trapped in the cavity. The no-flow ODE model (dashed lines in Fig 8) fails to capture

the oscillations of uIIa and severely overestimates the growth of its peak values. The MuFi-1

model captures the oscillatory nature of uIIa, but it begins to underpredict the growth of its

peak values after a number of cardiac cycles that varies from point to point. At the first sam-

pled point, where sT � tR , the MuFi-1 model is almost exact for t≲ 15tc and remains fairly

accurate for t≲ 20tc (Fig 8A). At the second and third sampled points, where sT � tR , the

MuFi-1 model significantly departs from the HiFi model beyond t* 10tc (Fig 8C and 8E).

In contrast, the MuFi-2 model, which incorporates both tR and σT, remains in reasonable

agreement with the HiFi model much longer than the MuFi-1 model, producing fairly accu-

rate results for simulation times well over 10 cycles at the three sampled points (Fig 8B, 8D

and 8F). By t = 20tc, the MuFi-1 model underestimates the peak uIIa by 4.8%, 21.5%, and 15%

while the MuFi-2 model does so by 2.7%, 1%, and 4.1%, respectively, at the first, second, and

third sampled points.

Next, we compare the spatio-temporal behavior of the high-fidelity and multi-fidelity mod-

els by representing in Fig 9 the concentrations of thrombin, prothrombin, and factor Xa (i.e.,

uIIa, uII, and uXa) along the horizontal cavity diameter depicted in Fig 7A, with y/H = 1.19. Spa-

tial concentration profiles are plotted at time-points t/tc = 10, 15, 20. Factor Xa displays the

best agreement between HiFi and MuFi models, followed by the prothrombin (II) and throm-

bin (IIa). Of note, the MuFi-2 model replicates the HiFi behavior for all three species, captur-

ing their complex spatial oscillations. In comparison, the accuracy of the MuFi-1 model

deteriorates faster with simulation time, although this model still retains the qualitative spatial

dependence of species concentration.

Fig 7. Spatial distribution of thrombin concentration. A-C: MuFi-1. D-F: MuFi-2. G-I: HiFi reference model. Three

phases within the 16th cycle are plotted for each case, as indicated on the top row. A,D,G: t/tc = 15. B,E,H: t/tc = 15.34.

C,F,I: t/tc = 15.67.

https://doi.org/10.1371/journal.pcbi.1011583.g007
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Multi-fidelity model error analysis

While interesting to understand the performance of the multi-fidelity models, Figs 8 and 9

include examples of extreme behavior that do not reflect these models’ overall accuracy. To

systematically quantify the discrepancies between the high-fidelity and multi-fidelity models,

we compute the relative errors

εp
i ðx; y; tÞ ¼

juHiFi
i ðx; y; tÞ � uMuFi� p

i ðx; y; tÞj
uHiFi
i ðx; y; tÞ

; ð16Þ

where i stands for species and p for MuFi order. Fig 10 shows the thrombin relative errors of

the MuFi-1 and MuFi-2 models, ε1
IIa and ε2

IIa, for three instants along the 16th simulation cycle.

These errors are negligible in the parent channel but reach appreciable values inside the cavity,

where they exhibit a layered pattern with strong gradients, similar to tR and σT. Also, ε1
IIa is sig-

nificantly higher than ε2
IIa, consonant with the data shown in Figs 7–9.

To characterize the dependence of the MuFi errors on the residence time and its variance

inside the cavity, we divide the ðtR ; sTÞ plane in bins, ensemble-average εp
i inside each bin, and

plot the resulting error maps in Fig 11 together with the corresponding normalized bin counts

Fig 8. Time series of thrombin concentration, uIIa. Each line correspons to a different model: MuFi-1 (━), MuFi-2

(━) and HiFi model (━). For reference, the solution of the 9-ODE system Eq (6) is also included (┅). Three locations

are considered, indicated with × in Fig 5A: A,B at (x/H, y/H) = (1.78, 1.19); C,D at (x/H, y/H) = (2.5, 1.19); and E,F at

(x/H, y/H) = (3.15, 1.19).

https://doi.org/10.1371/journal.pcbi.1011583.g008
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[i.e., the probability density function pðtR ; sTÞ]. The error maps obtained for different values

of t/tc indicate that the MuFi error increases with σT while it is much less sensitive to tR . The

MuFi-2 model particularly outperforms the MuFi-1 model in areas of large σT, since MuFi-1

assumes σT = 0. Similar observations can be made for the error maps for factor Xa and pro-

thrombin (II) concentrations, which are provided in S6 Appendix.

Inspection of the probability density functions shows that the majority of the points inside

the cavity are circumscribed to two regions in the ðtR ; sTÞ plane. The region near the point

ðtR ; sTÞ ¼ ð0; 0Þ corresponds to locations within the cavity that receive periodic inflows of

Fig 10. Spatial distribution of relative errors in thrombin concentration. The relative error εp
IIa is defined in Eq (16).

A-C: MuFi-1. D-F: MuFi-2. Three phases within the 16th cycle are plotted for each case, as indicated on the top row. A,

D: t/tc = 15. B,E: t/tc = 15.34. C,F: t/tc = 15.67.

https://doi.org/10.1371/journal.pcbi.1011583.g010

Fig 9. Spatial distribution of species concentration. Data is show at y/H = 1.19 for MuFi-1 (━), MuFi-2 (━) and

HiFi model (━). A,B,C: thrombin, uIIa. D,E,F: prothrombin, uII. G,H,I: factor Xa, uXa. Three different times are plotted

for each species, as indicated on the top row.

https://doi.org/10.1371/journal.pcbi.1011583.g009
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fresh flow from the parent channel. This periodic infusion sustains a low level of εp
i through-

out each cycle, since fresh flow has small values of tR and s2
T . The region near ðtR ; sTÞ ¼

ð5 � 10; 3 � 4Þtc corresponds to the stagnant areas of recirculating flow inside the cavity

(see Fig 5). The modal errors in this region (black crosses in Fig 11G–11I) are 0.065, 0.141,

and 0.187 for MuFi-1 and 0.004, 0.002, and 0.002 for MuFi-2 at t/tc = 9.5, 14.5, and 19.5,

respectively. These stagnant flow areas displace upwards and towards the right in the ðtR ; sTÞ

plane as the simulation time advances (see bottom row of Fig 11). Consequently, we expect

σT and εp
i to grow with t/tc inside the cavity and the MuFi-2 model to outperform the MuFi-1

model.

To test this hypothesis and quantify the overall error of MuFi models, we calculate the spa-

tial average of εp
i over the cavity region,

εi
pðtÞ ¼

1

Ocav

Z Z

Ocav

εp
i dO; ð17Þ

and plot it vs. simulation time in Fig 12 for all 9 species. The results show differences among

species but, overall, the MuFi-1 error εi
1 grows sharply with time for t≲ 10tc, then more grad-

ually for longer times, even plateauing or tapering off in some cases. For most species, the

MuFi-2 error εi
2 is significantly lower than εi

1 over extended periods of time or both errors

are very low. For example, after 20 integration cycles, MuFi-2 is about an order of magnitude

more accurate than MuFi-1 for thrombin and pro-thrombin, i.e., ε1
IIa ¼ 0:14 vs. ε2

IIa ¼ 0:02,

and ε1
II ¼ 0:08 vs. ε2

II ¼ 0:01, whereas both models yield similar low errors for Factor XIa, i.e.,

ε1
Xa; ε2

Xa < 2� 10� 3. The species showing the highest relative errors is PCa, reaching ε1
PCa ¼

0:8 and ε2
PCa ¼ 0:24 at t = 20tc. However, both the MuFi-1 error at t = 10tc and the MuFi-2

error at t = 20tc were well under 0.1 for all other species.

Fig 11. Error maps for thrombin. A-C: Relative error in thrombin concentration in MuFi-1, ε1
IIa

, as a function of

residence time and its standard deviation. D-F: Same, but for MuFi-2, ε2
IIa

. G-I: Joint probability density function of

residence time (tR ) and its standard deviation (σT). Data for all panels is compiled inside cavity during three different

cycles, as indicated on the top row. A,D,G: 10th cycle. B,E,H: 15th cycle. C,F,I: 20th cycle.

https://doi.org/10.1371/journal.pcbi.1011583.g011
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To assess the dependence of the MuFi errors on coagulation model complexity, we repeated

the numerical experiments described above using a 3-species system considering thrombin,

factor XIa, and the inhibitor PCa [23]. This simplified system can be derived from the 9-equa-

tion system under the assumption that the faster chemical equations are in equilibrium. Over-

all, the performance of MuFi models was similar on the 3-equation and 9-equation systems

(see S7 Appendix). For thrombin, the MuFi-1 and MuFi-2 models yielded respectively ε1 ¼

0:16 and ε2 ¼ 0:05 at t = 20tc in the 3-equation system, comparable to the 9-equation values

ε1
IIa ¼ 0:14 and ε2

IIa ¼ 0:05.

Computational cost

The computational cost of solving 20 cycles of the 9-equation coagulation system using the

HiFi approach was approximately 66.67 hours, using the MATLAB codes provided in [49] on

an Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz. On the same hardware, the MuFi-1

approach required around 4.24 hours, while the MuFi-2 approach took approximately 7.36

hours. This results in a speedup of 15.7 for MuFi-1, and 9.1 for MuFi-1, compared to the HiFi

model. When the speedup estimated in Computational cost estimates taken into account (i.e.,

Fig 12. Averaged relative error in the cavity. Each line correspons to a different model: MuFi-1 solid, MuFi-2 dashed. Dashed-dot lines correspond to ε i / ðt=tcÞ
2

and ε i / ðt=tcÞ
3
. A: Thrombin (IIa) B: Prohrombin (II) C: Factor Xa D: Factor IXa E: Factor Xa F: Activated protein C (PCa) G: Factor VIIIa H: Factor Va I: Fibrin

(Ia).

https://doi.org/10.1371/journal.pcbi.1011583.g012
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speedup� (φ/θ)(N/p)), these numbers imply that the overhead associated to computing the

reaction terms Ri in HiFi (instead of the forcing terms for tR and t2
R) is φ/θ� 2.

Discussion

The computational modeling of the coagulation cascade in flowing blood poses significant

challenges due to the multi-scale nature of the process and the large number of involved chem-

ical species. High-fidelity (HiFi) continuum mechanics models of coagulation lead to dozens

of reaction-advection-diffusion partial differential equations (PDEs) [50]. The reaction kinet-

ics in these equations are much slower than the cardiac cycle, requiring long simulation times

to cover the coagulation process [9, 20, 22]. Moreover, the diffusion of chemical species is

orders of magnitude slower than their convection and reaction kinetics, causing sharp scalar

fronts that require ultra-high-resolution spatial meshes [25]. Despite the vast advances in

computational software and hardware achieved in past decades, these joint requirements still

impede the fast simulations of chemo-fluidic coagulation models in arterial or intracardiac

domains, hindering the adoption of these models in clinical decision-making. Modelers usu-

ally resort to surrogate metrics associated with thrombogenesis, derived from blood residence

time or wall shear stress [33, 51–55]. On the other hand, chemo-fluidic models of thrombosis

are rare [10, 11] and often suffer from excessive diffusivity (numerical or explicit), short simu-

lation times, and/or simplified coagulation models with few species.

We introduce a family of tailorable multi-fidelity (MuFi) models to effectively decouple the

computational cost of simulating the coagulation cascade under flow from the number of

reacting species, N. The MuFi models are designed to approximate the HiFi model in the limit

of vanishing molecular diffusivity. In this limit, the N-PDEs of the HiFi model can be trans-

formed into ordinary differential equations (ODEs) by changing variables between simulation

time and blood residence time. Consequently, the HiFi model is replaced by N ODEs repre-

senting the reaction kinetics and p PDEs representing the ensemble mean residence time

within each fluid particle, tR , and p − 1 higher-order statistical moments (namely,

t 2
R ; t 3

R ; . . . t p
R) [56]. We provide a procedure to incrementally derive MuFi models of arbitrary

order starting from the first-order model obtained with p = 1, corresponding to zero diffusiv-

ity. In the presence of small diffusivity, natural or numerical, higher-order models can be

derived by Taylor-expanding the HiFi model around the zero diffusivity limit.

We assess the performance of the MuFi-1 and MuFi-2 models obtained for p = 1, 2 in a

well-characterized, simplified coagulation system representing nine species: prothrombin (II),

thrombin (IIa), fibrin (Ia), PCa, and factors XIa, IXa, Xa, VIIIa and Va [23]. This coagulation

system is evaluated in a pulsatile flow through a two-dimensional geometry consisting of a par-

ent channel driven by a Womersley inflow profile with a laterally protruding cavity where

blood becomes stagnant. The non-dimensional parameters governing the flow, i.e., the Rey-

nolds (Re = 500) and Womersley (α = 10) numbers, are representative of a saccular aneurysm

in an intermediate-size artery of the adult human circulatory system [57], although the instan-

taneous flow rate driving the flow does not include all the temporal complexity of physiological

waveforms. For the residence time and its variance, the Peclet number is nominally set to be

infinitely high by not including mass diffusivity terms in the corresponding PDE equations.

This configuration creates a cyclic influx of fresh fluid from the parent channel to the cavity

and efflux of stagnant fluid from the cavity to the channel, together with a swaying fluid

motion inside the cavity. Flow transport leads to a complex residence time pattern with thin

layers separated by strong gradients, which intensifies as tR grows with simulation time. Our

WENO scheme resolve the thinly layered tR pattern for long simulation times. However, albeit

low, the WENO scheme has a non-zero numerical diffusivity [48], and thus, the effective Pe in
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our HiFi simulations is finite, affecting the solution to the transport equations for tR and t2
R .

Consequently, not only tR but also its standard deviation, σT, increases with simulation time.

Overall, the MuFi-1 model compares well with the HiFi model, producing spatially aver-

aged errors for thrombin inside the cavity that remain below 10% for up to 10 simulation

cycles even if this model was derived under the assumption of Pe!1 and σT = 0. Neverthe-

less, MuFi-1 starts to underestimate the concentration of all species beyond that point. By

t = 20tc, the spatially averaged errors for thrombin inside the cavity are as high as�20%. The

MuFi-2 model yields significantly lower errors than the MuFi-1 model, with spatially averaged

errors for thrombin that remain below 2% for up to t� 20tc. These errors are comparable to

those associated to solving the HiFi model’s PDEs (see S5 Appendix). The accuracy of the

MuFi models is worst for PCa, the species with the fastest growth rate in the considered coagu-

lation model. Statistical analysis shows that the MuFi errors depend almost exclusively on σT
and that this dependence is steeper for MuFi-1 than for MuFi-2.

Because σT increases with numerical diffusivity, Dn, the performance of MuFi implementa-

tions is expected to depend on the numerical scheme and the spatio-temporal resolution used

to discretize the model PDEs. While an exhaustive analysis of the numerical diffusivity of

numerical discretizations of advection-reaction-diffusion problems is beyond the scope of this

study, we have outlined a general methodology to formulate MuFi models of arbitrary order,

derive each numerical scheme’s EDE for σT, and outlined a step-by-step process to compute σT
without the need to derive its EDE. With these tools, it should be straightforward to tailor

MuFi models to the peculiarities of each flow and numerical solver. These step-by-step proce-

dures should also apply to models that compute residence time using non-classical numerical

representations of the governing PDEs such as, e.g., neural networks.

The MuFi models (N ODEs, p PDEs) are much more efficient than the HiFi model (N
PDEs) because solving ODEs is significantly cheaper than solving PDEs. In physiologically rel-

evant computational meshes containing hundreds of elements in each direction, MuFi models

achieve a speedup > N/p. We anticipate this speedup to exceed an order of magnitude, consid-

ering the favorable accuracy achieved by low-order MuFi models (p = 1, 2) and the dozens of

species involved in realistic coagulation cascade models. An alternate interpretation is that the

computational cost of MuFi models becomes independent of the number of species N. Addi-

tionally, one can run any number of different MuFi models inexpensively for a specified flow

baseline. The costly part of MuFi models, i.e., solving the p-PDEs representing residence time

and its higher-order moments, does not need to be redone unless the anatomy or inflow/out-

flow conditions change. Thus, MuFi models are highly efficient for sensitivity analyses, uncer-

tainty quantification, kinetics model comparisons, and any type of study requiring multiple

evaluations of the coagulation cascade model.

In the coagulation cascade, the diffusive and chemical timescales are, overall, significantly

different, justifying the idea of MuFi models. However, the non-linearity of the reaction rate

terms makes it difficult to rule out that diffusion became dominant for some species in some

regions of state space, especially as the number of species increases. While this situation could

make it necessary to increase the MuFi order as N increases, deteriorating the MuFi speedup,

we have seen no indication of it being significant. Specifically, MuFi models reproduced the

HiFi results for thrombin with similar accuracy on a classic 9-equation model [23], and its

3-equation simplified version. Investigation of MuFi models with N> 9 should clarify this

matter further.

For simplicity and to establish proof of concept of the MuFi strategy, this study focuses on

the intrinsic coagulation cascade, ignoring the extrinsic cascade initiated by the release of pro-

coagulatory or inhibitory species from the vessel walls. While both the intrinsic and extrinsic
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coagulation pathways are often activated in cardiovascular conditions associated with throm-

bosis [58–60], focusing on the intrinsic pathway is not uncommon in the literature, motivated

by the paucity of information about the wall’s prothrombotic potential in many clinically rele-

vant scenarios [15]. Generating MuFi models for the extrinsic pathway would involve addi-

tional PDEs representing the residence time of wall-released chemical species or the time

spent by blood near damaged wall regions, e.g., the near-wall residence time proposed by oth-

ers [11]. As long as the number of additional PDEs remains lower than the total number of

species, N, the resulting MuFi models would still save computational time. Furthermore, appli-

cations requiring multiple HiFi runs, e.g., uncertainty quantification studies, simulations phar-

macological treatments, etc., can still be accelerated by MuFi models, even if this required

solving a significant number of residence-time-like PDEs. A notable exception would be, how-

ever, applications requiring two-way coupling between flow and coagulation.

Finally, note that residence time and its higher order moments can not only be obtained in
silico using CFD analysis [43, 44, 51], but also in vitro using experimental techniques like parti-

cle image velocimetry [61–63]. In vitro experiments offer opportunities to validate HiFi and

MuFi approaches by, e.g., tracking the trajectories of single particle tracers or the evolution of

dye injections. Moreover, residence time can also be estimated in vivo using medical imaging

modalities like phase-contrast magnetic resonance imaging, Doppler ultrasound, and perfu-

sion computed tomography [64–67]. Residence time maps obtained in vivo could be fed to the

ODE component of the MuFi models, providing a computationally tractable method to calcu-

late the spatio-temporal evolution of the coagulation species non-invasively in the clinical

setting.

Conclusion

We present a novel multi-fidelity approach to mitigate the computational burden of simulating

the coagulation cascade under flow. Using residence time tR and its statistical moments, the

multi-fidelity (MuFi) modeling achieves a favorable trade-off between computational cost and

accuracy. The multi-fidelity approach allows for the integration of various data streams,

including CFD analysis, in vitro experiments, and non-invasive imaging in vivo techniques,

enabling a comprehensive understanding of the spatial and temporal progression of coagula-

tion species and offering promise for clinical translation. Finally, we note that the same multi-

fidelity strategy developed here can be adopted to increase the efficiency of simulating other

systems biology processes influenced by blood flow.
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