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Kurzfassung

Illustrationen beinhalten oft Merkmale mit einem Label für deren Name oder Beschreibung.
Um zu verhindern, dass wichtige Teile der Illustration mit einem Label verdeckt werden
und trotzdem ansprechende und verständliche Abbildungen zu erstellen, können wir die
Labels um die Illustration herum platzieren und kreuzungsfreie Führungslinien verwenden,
um eine eindeutige Zuordnung zwischen dem Label und dem Merkmal sicherzustellen. Vor
allem in medizinischen und technischen Zeichnungen wenden wir häufig diese Methode der
externen Beschriftung an. Jedoch gibt es in diesen Gebieten auch weitere Beschränkungen,
welche aus der Semantik, die die Merkmale tragen, hervorgehen. Ein Beispiel hierfür ist
eine Gruppe von Merkmalen, die zusammen ein größeres Objekt darstellen und daher
nebeneinander beschriftet werden sollen. Obwohl die Literatur eine Vielzahl von Ansätzen
zur Erstellung von externen Beschriftungen beschreibt, berücksichtigt kaum eine davon
diese semantischen Beschränkungen.

In dieser Masterarbeit betrachten wir daher nochmal Randbeschriftungen, eine Unterart
von externen Beschriftungen, bei der die Labels entlang eines rechteckigen Randes um
die Illustration herum platziert werden. Wir erweitern diese um Gruppierungs- und
Ordnungsbeschränkungen, welche die Menge der gültigen Beschriftungen einschränken.
Gruppierungsbeschränkungen verlangen, dass ein Teil der Labels nacheinander auf dem
Rand platziert wird. Ordnungsbeschränkungen definieren eine partielle Ordnung auf den
Merkmalen. Um diese Beschränkungen darzustellen, schlagen wir PQ-A-Graphen vor,
eine Erweiterung von PQ-Bäumen. Durch die Interpretation einer Beschriftung als eine
Permutation der Merkmale, lässt sich zeigen, dass wir alle relevanten Beschränkungen
als PQ-A-Graphen darstellen können. Wir präsentieren einen Algorithmus, um einseitige
Randbeschriftungen mit achsenparallelen Führungslinien, welche höchstens eine Biegung
aufweisen, zu erstellen. Mithilfe von echten und künstlichen Instanzen evaluieren wir die
Performance des Algorithmus und analysieren die erzeugten Beschriftungen. Des Weiteren
werden mögliche Interpretationen unserer Beschränkungen in mehrseitigen Randbeschrif-
tungen diskutiert und wir zeigen, dass das Finden einer gültigen Randbeschriftung in
unserem Interpretationsvorschlag bereits für zwei Seiten NP-vollständig ist. Abschließend
schlagen wir Variationen unseres Problems vor, welche wir als interessant und relevant für
praktische Anwendungen erachten, und präsentieren, als Anstoß für weitere Forschung,
hierfür erste Ergebnisse.
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Abstract

Illustrations often include features with a label for their name or description. To avoid
obstructing crucial parts of the illustration with a label and still create appealing and
comprehensible figures, we can place the labels around the illustration and use non-
crossing leader lines to ensure that the connection between a label and the feature is
unambiguous. Especially in medical and technical drawings, we frequently apply this
external labeling technique. However, in these domains, we can encounter additional
constraints arising from the semantics of the features, such as groups of features that
constitute parts of a larger object and should be labeled next to each other. Despite the
fact that the literature proposes a multitude of approaches to compute external labelings,
hardly any of them take semantic constraints into account.

In this thesis, we revisit boundary labeling, a branch of external labeling, where all labels
are placed along a rectangular boundary around the illustration. We enrich it by grouping
and ordering constraints that restrict the set of feasible labelings. Grouping constraints
enforce that a subset of the labels must appear consecutively on the boundary while
ordering constraints define a partial order on the features. We propose PQ-A-Graphs,
an extension of PQ-Trees, to represent our constraints. By interpreting a labeling as a
permutation of the features, we are able to show that all relevant grouping and ordering
constraints can be encoded as PQ-A-Graphs. We present an algorithm to compute a
one-sided boundary labeling with axis-aligned leader lines that have at most one bend.
Using real-world and artificial instances, we evaluate the performance of the algorithm
and analyze the resulting labelings. Furthermore, we discuss an interpretation of our
constraints in multi-sided boundary labelings and show that finding a feasible labeling in
the suggested interpretation is NP-complete, even if we only consider two sides. Finally,
we propose variations of our problem that we deem interesting and relevant for practical
applications and provide preliminary results as starting points for future research.
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CHAPTER 1
Introduction

“As he sketches the thing out on paper or he studies an illustration made by
someone else, he is helped in gaining a mental image of the subject. But, more
than this, illustrations are hard taskmasters. They force us to think clearly and
logically. One can write around a subject of which one is not quite sure. But,
it is hard to leave holes or blank spaces in a picture.”

— Frank H. Netter, M.D. (1906 – 1991) [Net81, p. 226]

We encounter labeled illustrations of components and concepts of our world on a daily
basis. While most people think of cartographic applications, such as Google Maps, these
are only a fraction of what we summarize under the term labeling. Labelings also appear
outside geographic information systems, and representatives of those have been with us
since our childhood. Starting at young ages, when we label objects in picture books to
introduce vehicles and animals to our children, they quickly become indispensable for
many pupils and students. This is no surprise, as Mayer has shown that accompanying
labeled illustrations make it easier to understand textual descriptions [May89]. Yet,
blindly adding figures to text without considering the need and, in particular, the prior
knowledge of the readers is being critically questioned, and illustrations that do not
contain (all relevant) labels seem to have little to no effect [MG90]. Therefore, guidelines
have emerged that aid in developing targeted and useful labeled illustrations.

In her guidelines for scientific and medical illustrations, Briscoe pointed out that a good
figure has “concise and consistent labels” [Bri90, p. 3]. Furthermore, we should “not
obscure important details with labels” [Bri90, p. 35]. Medical illustrations often contain
many, sometimes even fine-grained, important details. To adhere to these guidelines,
designers tend to place the labels outside the illustrations, thus creating an external
labeling. They use polyline leaders to connect labels with the feature points, here called
sites, they describe. Already medical illustrations from the early 20th century, as the
one by Spalteholz in Figure 1.1a, use this technique. In his figure, Spalteholz arranges
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1. Introduction

(a) An illustration of the right foot from the
Hand Atlas of Human Anatomy by Werner Spal-
teholz, 1906 [Spa06, p. 222].

(b) Illustration on a board of the Waldlehrp-
fad im Fürther Stadtpark, a forest natural
trail in Germany. © Melanie Kirchgessner,
2019 [Kir19].

Figure 1.1: Existing illustrations that contain (a) grouping and (b) ordering constraints.

the labels around the illustration in a readable way and uses straight-line non-crossing
leaders to connect sites with labels. Furthermore, he ensures that the leaders are not too
long, thus following Tufte’s principle of maximizing the data-ink ratio [Tuf01].

Knowing that designers of similar drawings stated that they need about two hours
to accommodate illustrations and their textual information on a double page of a
book [NNR17], one can imagine how time-consuming the creation of an atlas of human
anatomy with its hundreds of illustrations is. Therefore, it is no wonder that over the
years, the literature has proposed various approaches to at least automatically place
labels around an illustration and connect them to sites with leaders in an ink-minimal
way, i.e., using short leaders. These approaches sometimes create external labelings in
the style of Figure 1.1a, but another common labeling style is boundary labeling, where
we place the labels on a(n invisible) rectangular boundary around the illustration. In an
attempt to categorize and compare the plethora of results, Bekos et al. [BNN21] identified
ten open challenges that should be tackled in this area both by the algorithms and the
visual computing community. The fourth challenge states that we should “[d]evelop more
generic, less problem-specific heuristics and algorithms for external labeling” [BNN21,
p. 97]. Taking a closer look at Figure 1.1a, we can observe that Spalteholz sometimes
grouped smaller parts into bigger ones by utilizing a curly bracket. Niedermann et
al. [NNR17] even stated that in a sample of 202 figures from the Sobotta atlas of human
anatomy [WP13], they could identify 18 with such a curly bracket. Hence, in this atlas,
almost every tenth figure contains an explicit group of labels that belong semantically
together. Of course, this requires that the labels for the group are next to each other, i.e.,
not separated by a label that is not part of the group. We can also find examples outside
the medical domain where we should group semantically related labels, for example,

2



Traiskirchen
Mödling

Hallein

Amstetten

Traun

Krems an der Donau

Baden

Lustenau

Klosterneuburg
Vienna

Salzburg
Wiener Neustadt

Villach

Innsbruck

Sankt Pölten

Graz

Steyr

Kapfenberg

Linz

Klagenfurt

Wels

Dornbirn

Kufstein

Leonding

Bregenz

(a)

Traiskirchen
Mödling

Krems an der Donau

Sankt Pölten
Baden

Lustenau

Villach

Klosterneuburg

Steyr

Dornbirn

Wels
Traun

Bregenz

Innsbruck

Kapfenberg

Klagenfurt

Graz

Leonding

Vienna

Salzburg

Amstetten

Kufstein

Hallein

Wiener Neustadt

Linz

(b)

Figure 1.2: Sample labelings of the 25 largest Austrian cities generated by our imple-
mentation that we describe in Chapters 4 and 5. Cities in the same state have the same
color. Labeling (a) does not respect the grouping constraints, whereas Labeling (b) does.
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1. Introduction

in map labeling. Consider Figures 1.2a and 1.2b, which show two labelings of the 25
largest cities of Austria. We created them with our algorithm, which we will describe in
greater detail in this thesis. Figure 1.2a shows the leader-length-minimal labeling with
axis-parallel leaders. Given that Austria consists of nine states, it would be natural to
have the labels for the cities of the same state next to each other. The colors in Figure 1.2
indicate cities that are in the same state, and we can see that in Figure 1.2a several
of these groups do not occupy continuous regions on the boundary of the figure. For
example, the two Styrian cities Kapfenberg and Graz, marked orange, are separated by
cities in Tyrol and Vorarlberg. Considering a labeling that respects these groups, as the
one in Figure 1.2b, we might observe longer leaders but arguably also a more consistent
appearance. Furthermore, respecting the groups allows an illustrator in a post-processing
step to place information next to the groups, such as the name of the state. Using a
curly bracket, as in Figure 1.1a, these groups can also be made explicit.

Although grouping constraints are arguably the most important manifestation of semantic
constraints, they are not the only ones. In existing illustrations, we can sometimes find
an order on the sites that is reflected in the order of the labels. Consider, for example,
Figure 1.1b, which describes the events that we can read off the annual rings of a tree.
On both sides of the illustration, the rings are labeled from the inside out, thus following
the chronological order of the years, even if this implies that the leaders are longer than
needed. Total orders, such as chronological orders, allow only one feasible ordering, thus
mostly dictating the labeling. However, if we order the rings by the decade, then this
is no longer the case: For two rings, we can only unambiguously determine their order
if they are from different decades. Furthermore, nothing hinders us from combining
semantic constraints of different types. For example, we could order the different layers
of the sun from inside out but also partition the layers into inner and outer layers, as in
Figure 1.3. Note that due to the grouping of the labels for the layers, the sun spots are
labeled below the illustration, which increases the length of the leader for this label.

Including grouping and ordering constraints comes at a(n algorithmic) cost. Although
such constraints are arguably common in real-world examples, they have not been
extensively considered yet, and especially ordering constraints lack algorithmic support,
as we will see in Section 1.1. Our aim with this thesis is to change that and investigate how
we can generate boundary labelings of point data in the presence of grouping and ordering
constraints. We will incorporate them into the existing model for boundary labeling and
extend common approaches accordingly. In particular, we will take a closer look at their
impact on the running time of these algorithms and the computational complexity of
the boundary labeling problem in the presence of such constraints. While we see our
main contribution in these theoretic results, we will also consider the performance of
our algorithms from a practical perspective and analyze how such constraints affect the
quality of the generated labelings. We believe that this could help overcome the challenge
of the lack of generic algorithms identified by Bekos et al. [BNN21].

4



1.1. Related Work

Figure 1.3: Illustration of the layers of the sun. © ScienceFacts.net, 2023 [BMs23].

1.1 Related Work
Algorithms for enriching illustrations with textual or graphical descriptions of feature
objects have a long-standing tradition in the literature. The roots date back to the 1970s
when Yoeli [Yoe72] and Imhof [Imh75] described basic principles for map labeling that
are valid until today. To the best of our knowledge, map labeling is one of the first areas
of computational geometry that deals with labeling feature objects, commonly point
features. Formann and Wagner [FW91] created a foundation on which many papers still
build today. On the one hand, they proposed the simple yet versatile fixed position model
that assigns each feature point a constant number of candidate positions on which we can
place a label. On the other hand, they showed that already allowing only four candidate
positions makes finding an overlap-free labeling for a set of points NP-complete, even for
uniform square labels [FW91].

While the spatial proximity between the feature point and its label is advantageous, such
internal labelings have the downside that the labels usually occlude large, and probably
also important, parts of the underlying illustration. To circumvent this limitation, Fekete
and Plaisant [FP99] proposed the excentric labeling technique, where they dynamically
label the feature points in a circular neighborhood around the mouse pointer. Their work
already contains the main ingredients we nowadays use in external labeling: They place
rectangular labels outside the illustration in a non-overlapping way, thus not hiding any

5



1. Introduction

information, and connect the ports P of labels with their feature points, so-called sites
S, using (non-crossing) leaders, to avoid ambiguities as much as possible. Since then,
many papers have proposed approaches to create external labelings for point features in
static [BHKN09; NNR17] and interactive [FHS+12; GBNH21; GHS06a] settings, where in
the latter, the labelings have to be updated upon user interaction. However, approaches
where we place some labels outside the illustration and the remaining inside, thus creating
a mixed labeling, have also been considered [BKPS11; CPWN22; LNS16].

As we can find external labelings in atlases of human anatomy or technical drawings, the
proposed algorithms should compute a labeling that adheres to defined style guides and
optimizes desired quality criteria. To incorporate these guidelines and criteria, previous
work defined the set of feasible labelings based on them by, for example, enforcing
crossing-free leaders [BKSW07] or providing a set of candidate label positions [BCK+18],
modeled them in the optimization function [NNR17], or tried to learn them from existing
handmade drawings [VVAH07]. The latter approach has recently also gained attention
for creating internal labelings [BČČ23].

In the approach by Niedermann et al. [NNR17], the authors formalized guidelines
commonly used by illustrators of atlases of human anatomy. They enforced a so-called
staircase labeling, which we can summarize as being able to extend the width of the
labels arbitrarily in one direction without introducing overlapping labels. Based on these
guidelines, they proposed an O(|S|4|P|4)-time dynamic programming algorithm to place
labels for a set of sites along a convex contour that mimics the shape of the underlying
illustration and connect the labels with non-crossing straight-line leaders to their sites.
Recall that S and P denote the set of sites and (candidate) ports, respectively. The
authors continuously sub-divided the contour until they were left with trivial instances.
With their approach, they can label around 200 illustrations in thirty minutes, the time
an illustrator usually needs to label a single illustration [NNR17]. Furthermore, their
approach is versatile by allowing them to incorporate other desiderata as hard or soft
constraints. This includes enforcing that a group of labels must appear consecutively on
the contour and thus gives a first algorithm that supports grouping constraints. However,
since the authors considered this only a potential extension of their algorithm, it was not
created with such constraints in mind. Furthermore, they did not analyze the impact
such constraints have on the running time and space consumption of the algorithm.

Enforcing that the labels are placed on a rectangular boundary around the figure might
be seen as a restriction. Yet, boundary labeling has gained much attention in the literature.
Its origins can be found in the work by Bekos et al. [BKSW07]. They proposed labelings
where we place the labels on one or several sides of a rectangular boundary that encloses
the sites. Furthermore, they considered straight-line leaders, which they called s-leaders,
and poly-line leaders, consisting of several parallel and orthogonal segments, so-called
(o)po-leaders. They used various techniques, such as dynamic programming, sweep-lines,
bipartite matchings in the Euclidean space, and geometric arguments to reroute leaders
and remove crossings. With them, they obtained in polynomial time leader-length-
minimal labelings in various settings. Furthermore, they observed that we can reduce
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Partition to the problem of placing non-uniform height labels on two opposite sides of
the boundary, showing that the corresponding labeling problem is weakly NP-complete.
Thus, we often assume that we work with uniform-height labels. However, apart from
the work by Bekos et al., other papers also contain NP-hardness results for non-uniform
height labels under different settings [BKNS10; FS16].
There exists a rich body of literature that builds on or extends these initial results.
While many of them assume rectilinear or straight-line leaders, Bekos et al. [BKNS10]
proposed new leader styles, including do-leaders. They consist of two line segments,
where one runs diagonally towards the label. The authors showed that we can find a
leader-length-minimal one-sided labeling with do-leaders in O(|S|3) time. Given the
different leader styles, it is natural to raise the question of which of them allows for the
most readable figure. Barth et al. [BGNN19] compared the readability of s-, po-, opo, and
do-leaders in a user study. They drew the conclusion that there is not much difference
in the error rates between s-, po-, and do-leaders. However, the authors could observe
faster response times for po-leaders, and the participants expressed their preference for
do-leaders.
Benkert et al. [BHKN09] proposed a dynamic programming algorithm to produce one-
and two-sided boundary labelings for po- and do-leaders for uniform height labels in
O(|S|3) and O(|S|5) time, respectively. Their algorithm works for any optimization
function that evaluates the quality of a single leader independent of the remaining
labeling. However, this does not include grouping or ordering constraints, as they have to
assess the placement of multiple leaders at a time. Nevertheless, the task of leader-bend-
minimization falls under this category. Benkert et al., therefore, solved the open problem
of Bekos et al. [BKSW07] of obtaining bend-minimal labelings for po-leaders. Similar to
Niedermann et al. [NNR17], they combined labelings for smaller instances into a labeling
for a larger one by using the leaders for sites as dividers for the instance. This will also
appear in our dynamic programming algorithm that we will present in Chapter 4.
Multi-sided boundary labeling problems have also received attention in the literature. We
can extend some of the results for the one-sided setting to two sides, most of the time by
adapting the signature of the dynamic programming table, thus increasing the runtime
significantly [BHKN09; FS16]. Other results are motivated by some specific application,
such as placing comments in text documents [KLW14]. Note that these results assume
that we put the labels on two opposite sides of the boundary, usually the left and right
sides. However, there are also results for placing them on two adjacent sides or even three
or four sides of the boundary [GAH23; KNR+16]. To some extent related to multi-sided
problems are variants where we allow putting the labels in multiple rows of the same side
or temporarily route leaders in one-sided settings at the opposite side of the boundary.
The literature contains polynomial-time algorithms and computational complexity results
for the former [GHN15] and the latter [LPT+11] variants.
Many-to-one labelings can be seen as applying a particular form of grouping constraints,
where several sites describe the same feature and thus can be labeled by a single label
connected to the sites via multiple leaders that emerge from a common backbone. If

7



1. Introduction

we label each such set of sites with a single label, we can model this as a grouping
constraint where all labels but one have zero height. Bekos et al. [BCF+15] analyzed
different variations of this model where we minimize the number of labels, thus rewarding
if multiple sites are connected to a single label, minimize the leader length, or minimize
the number of crossings if we allow leaders to cross.

Due to the unit height assumption of the labels, many papers on boundary labeling
implicitly assume that the height of the labels is maximal. Thus, a labeling has no (or
a uniform-sized) gap between two consecutive labels on the boundary. Nöllenburg et
al. [NPS10] relaxed this assumption and allowed irregular gaps between labels. If multiple
labels touch each other, they form a so-called cluster. The authors observed that in
a leader-length-minimal one-sided boundary labeling with po-leaders, we can assume
that each cluster contains a direct leader, i.e., a po-leader that runs only horizontally,
connecting to the median label, after possibly introducing a dummy-label of zero height
in case there is no (unique) median label. This observation was used to propose a
polynomial-time algorithm. Huang et al. [HPL14] extended these results for different
combinations of uniform and non-uniform height labels, po- and opo-leaders, leader-length-
and -bend-minimization, and one- and two-sided settings.

One motivation for external labeling is to occlude the underlying illustration as little as
possible. Especially in medical drawings we often have to deal with important parts that
not only should not be hidden by labels but must also not be crossed by leaders. To fulfill
this requirement, Fink and Suri [FS16] proposed an algorithm where we have also given a
set of rectangular objects that should not be crossed by the leaders. These objects serve
as obstacles that we can use to represent crucial parts of the illustration that should not
be distracted. Fink and Suri noted that in the presence of obstacles, it is not sensible to
consider an a priori given set of potential label positions on the boundary, as this is likely
to lead to infeasible instances. Rather, they let the labels slide along the boundary in the
spirit of the papers on clustering the labels [NPS10; HPL14]. However, they observed
that for a leader-length-minimal labeling, it is sufficient to consider O(c2) candidate ports
on the boundary induced by the positions of the sites and obstacles, where c denotes the
complexity of the obstacles and the number of sites. Thus, they could use the well-known
dynamic programming algorithm that uses leaders to decompose an instance. Fink and
Suri not only proposed polynomial-time algorithms for various leader styles in the one-
and two-sided setting but also showed by a reduction from Partition that finding a
crossing-free labeling with non-uniform height labels is NP-complete even when we can
only label on one side of the boundary. It will turn out that we can adapt their reduction
to also work in the presence of grouping or ordering constraints instead of obstacles.

Kaufmann [Kau09] published a survey in 2009 on results concerning boundary labeling.
Later, in 2021, Bekos et al. [BNN21] published a book containing a more extensive
survey on external labeling. One of the goals of the latter survey is to put forward a
common nomenclature in the field of external labeling and categorize the different results
depending on their features. This categorization makes the lack of support for semantic
constraints, such as grouping and ordering constraints, in external labeling and thus also
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1.1. Related Work

in boundary labeling clear. To the best of our knowledge, no paper explicitly incorporates
ordering constraints. For grouping constraints, the survey reports a handful of papers
that support the grouping or clustering of labels. However, a more detailed analysis
of the mentioned papers and their respective related literature makes clear that only a
few of them conceptualize grouping constraints in the way we do in this thesis. Some
approaches placed collections of (similar) labels on top of each other and only showed the
top-most label [GBNH21; FHS+12]. Also, the already mentioned papers on placing the
labels in several stacks with irregular gaps can be seen as a manifestation of clustering
the labels. Thus, many see clusters as a set of labels that happen to be close to each
other without any other semantic association. Furthermore, some approaches try to place
(the labels in) such clusters in a visually appealing way, for example, aligned and next to
each other [GHS06a; VVAH07].

To the best of our knowledge, apart from Niedermann et al. [NNR17], only the papers
by Götzelmann et al. [GHS06b] and Gedicke et al. [GAH23] support the grouping of
labels in the same way as we intend to do in this thesis. Götzelmann et al. [GHS06b]
assumed as additional input an ontology1 on the sites. While we can form groups using
an ontology, they used heuristic label placements and neglected crossings among leaders
from sites of different groups. This is in contrast to our setting, where we aim for a
labeling where no two leaders cross, independent of whether the corresponding sites are
in the same group. On top of that, they labeled 3D visualizations at interactive speed
and thus did not give a guarantee on the quality of the produced labelings. The paper by
Gedicke et al. [GAH23] was published while we worked on the results for this thesis. They
proposed an approach to create so-called situation maps used by emergency services to
assess the situation and plan the operation. In their paper, they defined an optimization
function that takes into account the leader length, the number of labeled sites, and
whether groups arising from the spatial proximity of the sites or the semantics associated
with them are respected. They described an ILP model and a simulated-annealing-based
algorithm to compute a crossing-free labeling that maximizes the weighted sum of these
three components. In contrast to our work, they allowed assigning each site to at most
one group. They rewarded a labeling based on the number of consecutive ports used by
labels from the same group, whereas we are, on the one hand, more strict by enforcing
that grouping constraints must be respected, but, on the other hand, less strict and
tolerate if the labels appear consecutively, but not necessarily at consecutive ports on
the boundary. Observe that by rewarding consecutive labels if they belong to the same
group, one cannot capture the (non) compliance of the labeling with overlapping groups.
Gedicke et al. see combining spatial and semantic groups as an interesting direction for
further research. This thesis is a step in that direction by allowing grouping constraints
to overlap, thus giving the possibility to model both semantic and spatial groups in the
same instance.

1Götzelmann et al. [GHS06b] refer to Gruber in their definition of an ontology, who describes it as
a mechanism to conceptualize objects of a domain, for example, classes and the relationships among
them [Gru93].
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Finally, we want to mention the work by Klawitter et al. [KKS+23], who published, also
while working on this thesis, a paper in which they propose exact and heuristic methods
to visualize geophylogenies, i.e., phylogenetic trees where we can associate each leaf with
a (geographic) site (on a map). When using the external labeling technique, they try
to find a planar embedding of the phylogenetic tree on one side of the boundary, such
that they can connect each site with the corresponding leaf using s-leaders with few
crossings. Although they assume the phylogenetic tree to be binary, it already encodes
some (implicit) grouping constraints, as closely related taxa, i.e., two taxa with a short
path between their leaves, will be labeled close together on the boundary.

In conclusion, we want to underline that we see the publication of two papers closely
related to the topic of this thesis while writing it as an indicator of the growing importance
of grouping and ordering constraints in the literature.

1.2 Outline
This thesis consists of seven chapters. We continue in Chapter 2 by describing the
fundamentals we build on in this thesis. Furthermore, we also define in this chapter
the concepts and notions we will use throughout the thesis. In Chapter 3, we introduce
grouping and ordering constraints and explain their intended semantics. This allows us
to formally define b-Sided Constrained Boundary Labeling, the problem we are
tackling in this thesis. We propose a data structure to represent our constraints and
conclude this chapter with an NP-hardness result that justifies some of the assumptions
we make. Chapter 4 is devoted to the main results of this thesis. We describe an
algorithm to solve 1-Sided Constrained Boundary Labeling, i.e., if we are only
allowed to place the labels on one side of the boundary. For 2-Sided Constrained
Boundary Labeling, we provide a reduction to prove that finding a feasible labeling is
NP-complete. We also analyze our algorithm and the produced labelings from a practical
point of view. In Chapter 5, we describe the conducted experiments to evaluate the
running time of our algorithm and the quality of the computed labelings and state
the findings of the experiments. Chapter 6 presents interesting variations of 1-Sided
Constrained Boundary Labeling and contains preliminary results for them. Finally,
we draw our conclusions in Chapter 7, where we, on the one hand, summarize the main
contributions we made with this thesis to boundary labeling but, on the other hand, also
state questions that do not yet have an answer.
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CHAPTER 2
Preliminaries

This chapter will lay the foundation for our results by introducing concepts, problems,
and terminology we will use throughout this thesis. In Sections 2.1 to 2.3, we give a short
introduction to set, graph, and computational complexity theory, respectively. We present
the concept of external labelings, which includes boundary labelings, in Section 2.4.

2.1 Principles of Set Theory
A set is an unordered (finite or infinite) collection of pairwise distinct elements. Through-
out this thesis, we use a calligraphic font to denote sets unless this differs from the
conventions of the literature. For a set A, we denote with |A| its size, i.e., the number of
elements in A. We express with a ∈ A that a is an element of A and with a /∈ A that
this is not the case. The set that does not contain any element is the empty set, indicated
as ∅. A permutation π of A is an order of the elements of A. We indicate with π(a) = j,
1 ≤ j ≤ |A|, that a ∈ A is located at the j-th position in the permutation π. Given two
sets, A and B, we will use the following operations and properties.

Intersection: A ∩ B denotes the intersection of A and B, that is, the set containing all
elements a with a ∈ A and a ∈ B.

Union: A ∪ B denotes the union of A and B, that is, the set that contains all elements
a with a ∈ A, or a ∈ B, or both.

Difference: A \ B denotes the (set) difference between A and B, that is, the set that
contains all elements a with a ∈ A but a /∈ B.

(Proper) Subset: A is a subset of B, denoted as A ⊆ B, if and only if for every element
a ∈ A we have a ∈ B. If there exists a b ∈ B such that b /∈ A, then we say that A
is a proper subset of B, denoted as A ⊂ B.

11
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We will use the standard notations for the sets of integers (Z) and reals (R). Furthermore,
we denote with R+

0 the set of all non-negative real numbers including zero. A set consisting
of other sets is called a family of sets. For example, the power set of a set A, denoted as
2A, is the family of all subsets of A. For a family of sets A = {A1, . . . , An}, we denote
with ∥A ∥ the sum of the sizes of the sets in A , i.e., ∥A ∥ := �

A∈A |A|. Note that we
have |A | = n.

2.1.1 Relations on Sets
A (binary) relation R on a set A is in itself a set of ordered tuples R ⊆ A × A. This
means that a being in relation to b, denoted as (a, b) ∈ R, does not imply that b is also
in relation to a unless (b, a) ∈ R holds. Depending on its structure, a relation R on A
has the following properties.

Reflexivity: The relation R is said to be reflexive if and only if for each a ∈ A we have
(a, a) ∈ R.

Antisymmetric: We call the relation R antisymmetric if and only if (a, b), (b, a) ∈ R
implies that a and b are the same elements.

Transitive: The relation R is said to be transitive if and only if from (a, b) ∈ R and
(b, c) ∈ R, it follows that (a, c) ∈ R.

With these notions, we can define the concept of partial and total orders.

Definition 1 (Partial and Total Orders). A relation R on a set A is a partial order if
R is reflexive, antisymmetric, and transitive. R is a total order if R is a partial order
and we have, for any a, b ∈ A, (a, b) ∈ R or (b, a) ∈ R.

We say that a total order R extends a partial order R′ if R′ ⊆ R holds. To ease notation,
we sometimes use infix notation, i.e., write aRb instead of (a, b) ∈ R.

2.2 The Fundamentals of Graph Theory
A graph G = (V, E) consists of a (finite) set of vertices V and a set of edges E ⊆ V × V .
If the graph G to which the vertices and edges belong is not clear from context, we
write V (G) and E(G). An edge e = {u, v} ∈ E is said to be undirected if the order of
its vertices is irrelevant, i.e., if {u, v} = {v, u}. Otherwise, we say that the edge e is
directed, denoted as (u, v). We call a directed edge also an arc. If G consists only of
undirected edges or directed arcs, we call it an undirected or directed graph, respectively.
If G contains edges and arcs, it is a mixed graph. An edge e = {u, v} connects the vertices
u and v. If we have such an edge e, we call u and v adjacent (to each other) and incident
to e. For an arc a = (u, v), only u is adjacent to v, but not vice-versa unless there exists
an arc a′ = (v, u). However, both vertices are incident to a (and a′). Furthermore, we
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X

(a)

x

(b)

Figure 2.1: A graph G before (a) and after (a) the contraction on X.

call here u the tail and v the head of a. All graphs that we consider in this thesis are,
unless stated otherwise, simple graphs. This means, they do not contain multiple edges
between the same pair of vertices and do not have self-loops, i.e., edges (or arcs) of the
form {v, v}. A path P = (v1, . . . , vk) in G is a series of k pairwise distinct vertices such
that we have {vi, vi+1} ∈ E for 1 ≤ i < k. If it also holds that {vk, v1} ∈ E, then we call
P a cycle. We call G acyclic if it does not contain a cycle. A graph G is connected if,
for any two distinct vertices u and v, there is a path P = (u, . . . , v) in G. Otherwise, we
say that G is disconnected. Let X ⊆ V be a non-empty subset of vertices. If we contract
G on X, we end up with a graph G′ = (V ′, E′) with V ′ := (V \ X) ∪ {x}, x /∈ V , and
E′ := {{u, v} | u, v ∈ V \ X} ∪ {{x, v} | v adjacent to at least one vertex of X}. In other
words, we first replace the vertices in X with a newly created vertex x. We connect then
x with all those vertices outside X previously adjacent to at least one vertex from X.
Figure 2.1 shows an example for a contraction on the green vertices.

We continue with discussing two special types of graphs, with which we will work
throughout the thesis.

2.2.1 Directed Acyclic Graphs
A directed acyclic graph (DAG) G = (V, A) is a directed graph that does not contain
cycles. Directed graphs can be used to represent relations. Observe that for a relation R
on a set A, the directed graph G(R) := (A, R) encodes all the required information. For
reflexive relations, we drop in this thesis the self-loops in G(R). Observe that G(R) is a
DAG if R describes a partial order. Furthermore, any DAG encodes some partial order
R′ after possibly filling in tuples to ensure transitivity of R′.

A topological sorting of a DAG G can be interpreted as an arrangement of the vertices
of G from left to right such that no arc of G goes from right to left.

Definition 2 (Topological Sorting). A topological sorting of a DAG G is a permutation
π on its vertices such that we have π(u) < π(v) for each (u, v) ∈ A(G).

We want to note that there can be exponentially many different topological sortings of G.
Furthermore, observe that any topological sorting represents a total order that extends
the partial order defined by G.
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Root

ti

Subtree Ti rooted at ti

Internal
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A

C
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D
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Figure 2.2: Sample of a tree T with frontier (A, B, C, D, E, F ).

2.2.2 Trees

A tree T is an undirected, connected, and acyclic graph. Usually, one calls the vertices of
T nodes. If we can identify a designated node as the root of the tree, we say that T is a
rooted tree, and we usually depict T such that it “grows” downwards from its root, as in
Figure 2.2. All our trees are rooted trees unless stated otherwise. Let ti be a node of
T . We call the nodes immediately below ti the children of ti and the single node above
ti the parent of ti. Observe that the root does not have a parent. The ancestors of ti

consist of the parent of ti and its ancestors. Note that the ancestors of ti form a path
from ti to the root of T . Furthermore, observe that the root does not have an ancestor.
A node is an internal node if it has at least one child else, it is a leaf. The set of leaves
of a tree T is denoted as leaves(T ). If ti is a leaf, the subtree rooted at ti, denoted as
Ti, consists only of ti. For an internal node ti, Ti consists of ti and the subtrees rooted
at its children. Following the nomenclature of Booth and Lueker [BL76], we call the
permutation obtained by reading the leaves of T from left to right the frontier of T . The
least common ancestor of two leaves, l and l′, of T , lca(l, l′), is the (internal) node ti of
T that is an ancestor of l and l′ and has no other common ancestor of l and l′ in Ti. For
a set of leaves L ⊆ leaves(T ), we define lca(L) analogously. Note that the least common
ancestor is unique. Figure 2.2 visualizes the above-introduced notions.

2.3 A Glimpse at Computational Complexity Theory
While we can state and compare the asymptotic running time or space behavior of different
algorithms in terms of the O-notation, we sometimes seek a more coarse classification.
The theory of computational complexity is concerned with determining the complexity
class a problem at hand falls into. For this, we only consider decision problems that
consist of a yes/no-question, usually asking whether a given instance I of a problem A
has a desired property. If so, we call I a positive instance. Otherwise, I is a negative
instance. Note that we can phrase any optimization problem as a series of decision
problems. Namely, instead of asking for the lowest cost of a solution for the problem, we
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can subsequently ask whether there exists a solution with a cost of at most c. In the
following, we will give an overview of the complexity classes we will come in contact with
in this thesis. We mostly follow the nomenclature and definitions of Garey and Johnson
and refer to their book for a more detailed introduction [GJ79].

2.3.1 The Complexity Classes P and NP
We call an algorithm for a problem A polynomial-time if we can bound its running time
by a polynomial p in the size of the input instance I, i.e., the running time is at most
p(|I|), for some computable polynomial function p. The complexity class P contains all
problems A for which there exists a deterministic polynomial-time algorithm1 that can
solve any instance of A. Similarly, we define the complexity class NP as the problems
for which there exists a non-deterministic polynomial-time algorithm to solve them. To
show that a problem belongs to NP, it suffices to show that we can encode for a given
instance I a solution to the problem, a so-called certificate, in space polynomial in I,
and verify in time polynomial in I that it is indeed a solution.

We say that we can reduce a problem A to another problem B if there exists a (computable)
function f : A → B that takes an instance IA of A and transforms it into an equivalent
instance IB of B. IA and IB are equivalent if IB is a positive instance of B if and only
if IA is a positive instance of A. We call it a polynomial reduction if the transformation
takes time polynomial in the size of IA, and the size of the instance IB is polynomial in
the size of IA. A problem A is said to be NP-hard if we can find for each problem B in
NP a polynomial reduction from B to A. Let I be an instance of A. If we cannot bound
the magnitude of the largest numerical value in I by a polynomial in the size of I, we
can, furthermore, make the following distinction. We say that A is strongly NP-hard if it
is NP-hard even if we only consider instances I where we bound each numerical input
value by a polynomial in the size of I. Otherwise, we say that A is weakly NP-hard.
Finally, if A is also in NP, we call A a (strongly/weakly) NP-complete problem.

2.3.2 Parameterized Complexity
Note that the definition of polynomial time looks at the instance as a whole. However,
real-world instances of problems often contain some structure. For example, while road
networks can be seen as a graph, each vertex will only have a limited number of incident
edges, as road networks do not contain arbitrary complex road intersections. The idea
behind parameterized complexity is to analyze the computational complexity of a problem
A while taking a parameter k of the input into account, which should quantify the
aforementioned structure in the input. For our road network example, the parameter
could be the highest number of edges incident to a single vertex. This should allow us to
give a more fine-grained classification of the computational complexity of a problem.

1Usually, we define the complexity classes by considering the number of steps required by a
(non-)deterministic turing machine to solve the problems in this class. However, this is beyond the scope
of this thesis, and we instead informally talk about the existence of an algorithm for these problems.
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(a) Internal labeling. (b) External labeling. (c) Mixed labeling.

Figure 2.3: Comparison of different labeling styles.

One prominent class arising from parameterized complexity is fixed-parameter-tractable
(FPT ). We call a decision problem A FPT with respect to a parameter k if there exists
a (deterministic) algorithm that has a running time bounded by f(k)p(|I|), where f is
a computable function that only depends on the parameter k, and p is a computable
polynomial function in the size of the instance I. The book by Cygan et al. [CFK+15]
gives an extensive introduction to parameterized algorithms in general.

2.4 External Labeling
The labeling process is concerned with the task of assigning textual or graphical labels to
interesting or relevant parts of an illustration, which we will use in this thesis also as a
synonym for image. Usually, we label feature points, so-called sites, of the illustration.
However, labeling other objects, such as areas [BKPS10] or text [KLW14], is also possible.
As the labels should provide further information about the site, it is vital that the
association between a site and its label is unambiguous. Therefore, we usually aim
at placing the labels close to their site without overlapping each other [HGAS05]. If
we strictly obey these guidelines, we place the labels next to the sites they describe
and thus inside the illustration, leading to a so-called internal labeling, see Figure 2.3a.
Internal labelings are popular in the map labeling community [Imh75; Wol99] due to
the spatial proximity between a label and its site. In the presence of many sites, large
labels, or important parts of the illustration that we cannot occlude with labels, an
(appealing) internal labeling might not exist. To circumvent this limitation, illustrators
place the labels outside the illustration, creating a so-called external labeling, as shown
in Figure 2.3b. As spatial proximity can no longer implicitly convey the association
between a label and its site, illustrators use leaders to connect them explicitly. An
illustration together with its labels and leaders is called a figure in this thesis. One can
also combine internal and external labelings, as in Figure 2.3c, to create a mixed labeling
of an illustration. In external labelings, we usually do not place the labels arbitrarily
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Site s
Leader λ

Label ℓ

Port p

Boundary B

Candidate port p′

Figure 2.4: Illustration of the terminology related to boundary labeling that we use in
this thesis.

outside the illustration but require that they are in a pre-defined region. This thesis deals
with boundary labeling, where this region is a rectangular boundary around the illustration
on which we must place the labels. Apart from boundary labeling, the literature also
considered contour labeling, where we must position the labels along a (convex) shape
that mimics the contour of the underlying illustration [NNR17].

2.4.1 Boundary Labeling
Boundary labeling is a restricted variant of external labeling, where we are only allowed
to place the labels along a rectangular boundary. Bekos et al. [BKPS10] formally
introduced this problem. Later, Bekos worked with others on a unifying taxonomy for
external labeling, to which boundary labeling belongs [BNN21], and we will use their
notation whenever possible. We also refer to Figure 2.4 for an illustration of the concepts
introduced in this section. Let B ⊂ R2 denote an axis-aligned rectangle, the so-called
boundary, of width W and height H enclosing an illustration F , i.e., F ⊆ B. We assume
we are given n sites S = {s1, . . . , sn} located inside F and hence also inside the bounding
rectangle B. Each site si, 1 ≤ i ≤ n, has an axis-aligned open rectangular label ℓi of
width wi and height hi associated. Furthermore, we assume that we can access the x
and y coordinates of si using x(si) and y(si), respectively. Note that we have real-valued
coordinates, i.e., x(si), y(si) ∈ R. We use the same notion also for a port p ∈ P. Unless
stated otherwise, we work under the following assumptions for the sites and their labels.

Assumption 1. The sites in S are in general position, i.e., for any two sites s, s′ ∈ S
with s ̸= s′, we have x(s) ̸= x(s′) and y(s) ̸= y(s′).

Assuming general position is common in the area of algorithmic geometry [BCKO08]
since it allows us to describe the ideas behind an algorithm without going too much into
(implementation-dependent) details. Furthermore, we can guarantee it by moving sites
by some sufficiently small ε > 0 where necessary.

Assumption 2. The labels have arbitrary (unbounded) width and uniform height, i.e.,
for all ℓi, 1 ≤ i ≤ n, we have hi = h, for some h > 0.

As boundary labeling problems tend to be NP-hard if we have non-uniform height
labels [BKPS10; FS16; HPL14], Assumption 2 is crucial for efficient algorithms. Further-
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more, observe that Assumption 2 is justified as the text inside the labels usually consists
of a few words and should fit on a single line. Therefore, h could denote the height of a
line of text [BNN21].

A boundary labeling, in this thesis simply called labeling, L of S consists of placing the
labels along the boundary B and connecting each site s ∈ S with its label ℓ using a
polyline leader λ. Depending on the number b of the sides of B on which we can place
the labels, we call it a b-sided labeling. Due to the practical relevance of the problem
and the nature of textual descriptions, we usually have b ∈ {1, 2} and place the labels
on the vertical side(s) of B. Therefore, it is safe to ignore the width of the labels. We
assume, without loss of generality, that we place the labels in a 1-sided labeling on the
right side of B. Consequently, in the 2-sided setting, we can place the labels either on
the right or on the left side of B.

The shape of the leader that connects a site with its label is usually restricted. Originally
proposed by Bekos et al. [BKPS10], and later further extended [BKNS10], we can describe
the style of the leader using a finite string Σ over the alphabet {s, p, o, d}. Each letter in
Σ describes the layout of a segment of the leader with the following semantics [BNN21].

s: A straight-line segment at an arbitrary angle.

p: A segment parallel to the labeling boundary. In our setting, this denotes a vertical
segment.

o: A segment orthogonal to the labeling boundary. In our setting, this denotes a
horizontal segment.

d: A segment diagonal, at some angle α, to the labeling boundary. In contrast to a
straight-line segment, one usually restricts the angle α.

While Σ could be any string, opo-, po-, do-, and s-leaders are commonly used. For opo-
leaders, we usually assume that the parallel part is outside the boundary, in a designated
track-routing area [BKSW07]. Note that the p- and d-segments of the leaders can also be
of zero length. In such a case, we say that the corresponding leader λ is direct. However,
note that we do not refer to s-leaders as direct leaders. Figure 2.5 shows the different
leader styles, and we refer to the user study by Barth et al. [BGNN19] for a comparison
among them. In this thesis, we only deal with po-leaders. The place where the leader
touches the label ℓ is called the port p of ℓ. If the port can be anywhere on the boundary
of the label, we call it a sliding-port labeling and otherwise a fixed-port labeling. In this
thesis, we work with fixed ports and assume that the port p of a label is placed at half
the height of the label, as also in Figure 2.5. Furthermore, the literature distinguishes
between free, sliding, and fixed reference points [BNN21]. In the first case, the label can
be placed anywhere outside the illustration. This is not common in boundary labeling,
as we enforce the label to be placed on the boundary. If we have sliding reference points,
then the label can be placed anywhere along the boundary. Finally, for fixed reference
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(a) opo-leaders with a track routing area. (b) po-leaders.

(c) do-leaders. (d) s-leaders.

Figure 2.5: A boundary labeling of the sites from Figure 2.3 with different leader styles.

points there is only a finite set of candidate positions where we can place the label. Often
there are only n candidates, and the label height h is chosen in a way such that there
is no, or an equal-spaced, gap between the individual labels while guaranteeing that
every text can be placed in any label [BHKN09; Kau09]. Observe that in a labeling
L, each port of a label will coincide with some reference point [BNN21]. In our thesis,
we will mostly focus on a fixed and finite set of reference points. Since each label will
have in this thesis a single fixed port, we use candidate port, or simply port if there is
no risk of confusion, as a synonym for reference point. Thus, if we specify a finite set
P of m reference points, we can think of it as specifying a set of m candidate ports, or,
equivalently, defining the same m candidate positions for each label. In all these cases, a
po-leader is completely specified by the site s and the port p. Hence, we will sometimes
denote a leader λ connecting s and p as (s, p).

Common Constraints and Optimization Goals

The literature has proposed a variety of constraints for external labelings that also apply
to boundary labelings. Those constraints often originated from interviews with illustrators.
In this thesis, we use the following constraints adapted from Bekos et al. [BNN21].

C1: No two labels overlap.

C2: One side of each label ℓ touches the boundary B.
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(a) (b)

Figure 2.6: An illustration, together with a labeling of its sites, that optimizes the (a)
leader length and the (b) leader overlap with the illustration.

C3: Each label ℓ faces away from the illustration. For example, if ℓ is placed on the right
side of B, the left side of ℓ touches B.

C4: The port p of a label ℓ is on the boundary B and at half the height of ℓ.

C5: All leaders λ are of the same style (but possibly straight).

C6: The leader λ of a site s does not cross a leader λ′ or a site s′ with s ≠ s′ and λ ̸= λ′.

While some of the constraints are already satisfied by our requirements on the input,
for example, C2 and C3, others have to be ensured by the labeling algorithms. We call
a labeling L planar if it satisfies C1 and C6 and feasible if it satisfies all of the above
constraints.

Since we want to compute an appealing labeling, we are not interested in some feasible
labeling L but in a labeling L∗ that optimizes towards the desired quality criterion. The
literature proposed several optimization goals [BNN21], where the most common ones
are the following.

O1: Leader-Length-Minimization, where we aim at minimizing the total leader length.

O2: Leader-Bend-Minimization, where we aim at minimizing the number of bends in the
leaders. This optimization criterion is not reasonable for s-leaders.

In the spirit of Benkert et al. [BHKN09], one can also define other optimization criteria.
For instance, one can try to not minimize the overall leader length but the overall amount
of overlap the leaders have with the underlying illustration. Observe that these two
criteria are not equivalent, as Figure 2.6 shows. To support also such goals, we will in
this thesis work with a general (computable) optimization function f : S × P → R+

0
that evaluates a site-port combination independent of the remaining labeling. As for
po-leaders the leader λ = (s, p) is uniquely defined by the site-port combination, we
write f(λ) to denote f(s, p). Furthermore, we use slight abuse of notation and define
f(L) := �

λ∈L f(λ) for a feasible labeling L. If L is not feasible, we define f(L) := ∞.
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Finally, we want to point out that O1, O2, and the basic feasibility-question, can be
modeled using the following functions.

Feasibility: Since we only want a feasible labeling, we can set f(s, p) := 1, for all s ∈
S and p ∈ P, and observe that a feasible labeling L has a cost of f(L) = n.

O1: To obtain a leader-length-minimal labeling with po-leaders, we use the Manhattan
Distance (L1-norm) as our optimization function, i.e., f(s, p) := |y(p) − y(s)| +
|x(p) − x(s)|. Observe that in a 1-sided setting, the position of the site dictates the
horizontal distance of the leader. Thus, we can use f(s, p) := |y(p) − y(s)|.

O2: To obtain a bend-minimal labeling, we have to penalize every bend, i.e.,

f(s, p) :=
�

0 if y(s) = y(p),
1 otherwise.

Using these ingredients, we can formally define the b-Sided Boundary Labeling
problem for b ∈ {1, 2}.

Problem 1 (b-Sided Boundary Labeling – based on [BNN21]).

Given: A set of n sites S = {s1, . . . , sn}, a set of m candidate ports P = {p1, . . . , pm}
on b sides of the boundary B (around S), a label height h > 0, and a computable
function f : S × P → R+

0 .
Task: Find a feasible b-sided po-labeling L on the candidate ports P with labels of height

h that minimizes f(L).

Since we provide a set of candidate ports P, b-Sided Boundary Labeling uses fixed
reference points. However, one can easily define b-Sided Boundary Labeling with
sliding reference points. Throughout this thesis, we implicitly assume n ≤ m, as otherwise
an instance is doomed to be infeasible.
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CHAPTER 3
Grouping and Ordering

Constraints and Their
Representations

In Chapter 2, we discussed the b-Sided Boundary Labeling problem, a well-studied
problem for which polynomial-time algorithms exist. The overall aim of this thesis is
to incorporate semantic constraints into boundary labeling that arise from the meaning
associated with the sites, in particular, grouping and ordering constraints. Since we can
interpret a labeling in the one-sided setting as a permutation π of the sites, reading the
labels from top to bottom, we will define grouping and ordering constraints by enforcing
certain patterns in π. However, we will also describe ways to extend these constraints to
the two-sided setting.

We start with Sections 3.1 and 3.2, where we define grouping and ordering constraints,
respectively. While stating such constraints should be intuitive from the perspective of
an illustrator, their lack of structure makes it hard to use them efficiently in algorithms.
Therefore, we also look into data structures that allow us to represent such constraints
more effectively and present them in Section 3.3. They allow us to describe in Section 3.4
a polynomial-time preprocessing procedure to check whether the given constraints are
respectable by the sites. We conclude this chapter with Section 3.5, where we formally
define the problem we investigate in this thesis and discuss a preliminary NP-hardness
result.

3.1 Grouping Constraints
A grouping constraint ∅ ⊂ G ⊆ S enforces that the labels for the sites in G must appear
consecutively on the boundary. This means that the labels for the group G cannot be
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3. Grouping and Ordering Constraints and Their Representations

(a) (b)

Figure 3.1: Two different labelings of a set of sites with grouping constraints: Labeling (a)
respects the constraints whereas Labeling (b) does not. Each color represents a grouping
constraint.

separated by a label for a site s /∈ G. Figure 3.1 visualizes this. However, observe that
the order of the labels within a group is a priori unrestricted. Only in the presence of
multiple non-disjoint grouping constraints, the order of the labels inside the group can be
partially restricted. Consider for example the set of sites S = {s1, s2, s3} together with
the grouping constraints G = {{s1, s2}, {s2, s3}}. As the two groups overlap, the label
ℓ2 (for s2) must appear between ℓ1 and ℓ3 (for s1 and s3, respectively) in any feasible
labeling L that respects the grouping constraints.

For multi-sided boundary labeling problems, we enforce that we label a group of sites
entirely on one side of the boundary. The reason behind this is that labels on different
sides of the boundary usually have a (comparably) large white space between them.
Especially for two opposite sides, this makes the group less clear and no longer allows an
illustrator to enrich a group of sites with further information next to the labels.

Assumption 3. In a multi-sided boundary labeling problem all sites for a group must be
labeled on the same side of the boundary.

In the remainder of this section, we assume, unless stated otherwise, a one-sided boundary
labeling problem. However, the results can easily be extended to multi-sided settings.

We say that a labeling L respects the grouping constraints G if the labels for any group
G ∈ G are consecutive in L.1 The grouping constraints G are respectable for a set of sites
S if there exists a labeling that respects them. Observe that not all grouping constraints
are respectable, as the following example shows.

S = {s1, s2, s3} G = {{s1, s2}, {s2, s3}, {s1, s3}}

We can see that in any of the six possible permutations π of S, the grouping constraint
that involves the first and the last site, according to π, is not respected. Thus, certainly,
there does not exist a labeling of S that respects all grouping constraints.

1Note that this does not enforce the labels to occupy consecutive ports. There may be ports between
two labels of the same group, but they must not be used by labels outside the group.
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3.1. Grouping Constraints

A B C

A B C

A C B

C B A

C A B· · ·

P

(a) A P-node and its allowed operations.

A B C

A B C C B A

Q

(b) A Q-node and its allowed operations.

Figure 3.2: The two different types of nodes in a PQ-Tree.

For our problem at hand, we assume as input a family G = {G1, . . . , Gk} of k grouping
constraints. However, having a family of sets does not reflect the implications of inter-
secting grouping constraints on the set of feasible labelings. Since we can interpret a
boundary labeling L as a permutation of the sites S and a grouping constraint as a way
of restricting the set of potential permutations, it becomes natural to consider a data
structure that represents constrained permutations of a set.

3.1.1 PQ-Trees
Booth and Lueker defined PQ-Trees to help solve the problem of finding so-called
permissible permutations [BL76] of a set U . They define this as all those permutations π
of U , where, for a family of sets W , the elements of each W ∈ W appear consecutively in
π. Observe the close relation to our problem. Effectively, we have U = S and W = G .
For a given set U , a PQ-Tree is a rooted tree T with a bijection between the leaves of T
and the elements of U , i.e., each leaf of T represents exactly one element of U and each
element of U is represented by exactly one leaf of T . Each internal node t of T is either a
P-node or a Q-node, which places different constraints on the order of its children. If t is
a P-node, we are free to permute the children of t in any order. On the other hand, if t is
a Q-node, we can only reverse the order of its children. Figure 3.2 visualizes the difference
between those two types of nodes. Similar to Booth and Lueker, we visualize P-nodes as
circles and Q-nodes as rectangles. Throughout this thesis, we assume, unless otherwise
stated, that each P-node has at least two children and each Q-node has at least three
children so that the operations have an effect. Booth and Lueker called such PQ-Trees
proper [BL76]. A consequence of this assumption is that |T | = O(|U|) holds [JLCZ20].
For a PQ-Tree T , we will denote with tr its root.

3.1.2 On the Representability of Grouping Constraints via PQ-Trees
Having now discussed PQ-Trees as a way of representing our grouping constraints G , we
should verify that we can represent at least all interesting, i.e., respectable, grouping
constraints with them. To do that, we first present the consecutive ones property of
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3. Grouping and Ordering Constraints and Their Representations

binary matrices. A binary matrix M has the consecutive ones property if there exists a
permutation of the rows such that the ones in each column are consecutive [FG65]. We
will now define a matrix that captures the grouping constraints G over a set of sites S.
Without loss of generality, we assume that G ≠ ∅ holds. This can be satisfied by adding
the trivial grouping constraint S to G . Let M(S, G ) be a binary matrix of dimensionality
n × k, with n = |S| and k = |G |. An entry mi,j ∈ M(S, G ) is one if the site si ∈ S,
1 ≤ i ≤ n, appears in the group Gj ∈ G , 1 ≤ j ≤ k, i.e., if si ∈ Gj holds, and otherwise
mi,j is zero. We call the matrix M(S, G ) the sites vs. groups matrix (for S and G ).
Intuitively, we can see the following equivalence. Each ordering π of the rows of M(S, G )
represents a (set of) possible labeling(s), not necessarily feasible, in which the order of
the labels is given by the order of the rows of M(S, G ) under π. If the ones in column
j, 1 ≤ j ≤ k, of M(S, G ) are consecutive under π, then the grouping constraint Gj is
satisfied by the labeling induced by π. We prove this intuition formally in Lemma 3.1.

Lemma 3.1. Let G be a non-empty family of grouping constraints for the sites S. G is
respectable for S if and only if the sites vs. groups matrix M(S, G ) has the consecutive
ones property.

Proof. We show both directions separately.

(⇒) We assume that the grouping constraints G are respectable. This means there
exists a (not necessarily feasible) labeling L that respects all grouping constraints. We
order the rows of M(S, G ) according to the order imposed by L on the sites S and obtain
thus a permutation π. As L is a witness labeling for the respectability of G , each group
Gj , 1 ≤ j ≤ k, is not intersected by a label for a site that is not part of Gj . Therefore, for
each group Gj , the ones in the jth column of M(S, G ) must be consecutive. Consequently,
π witnesses that M(S, G ) has the consecutive ones property.

(⇐) We assume that M(S, G ) has the consecutive ones property. This means there
exists a permutation π of the rows, i.e., the sites, such that the ones in each column, i.e.,
for each group, are consecutive. If we order the labels according to the order of their
respective sites in π and create the corresponding (not necessarily feasible) labeling L, L
will respect all the grouping constraints. If not, this would mean that we have a group Gj ,
1 ≤ j ≤ k, that is intersected by a label for a site si /∈ Gj outside the group. However, by
our definition of M(S, G ), mi,j = 0 must hold, and since the group Gj is intersected by
si, we know that mi1,j = mi2,j = 1 holds, for some π(i1) < π(i) < π(i2), 1 ≤ i, i1, i2 ≤ n.
This would mean that π is not a witness ordering for M(S, G ) having the consecutive
ones property – Contradiction. Therefore, L must be a witness for the respectability of
G .

Booth and Lueker [BL76] propose an algorithm to check whether a binary matrix M has
the consecutive ones property. Their algorithm internally uses a PQ-Tree to keep track
of the allowed row permutations and can be easily adapted to output this PQ-Tree in
the end, if it exists. Hence, we get the following corollary.
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3.1. Grouping Constraints

· · ·· · · unuiu1

P

Figure 3.3: The universal PQ-Tree for the set U = {u1, . . . , un}. Figure adapted from
Booth and Lueker [BL76, Figure 5].

Corollary 3.1 (Together with [BL76, Theorem 6]). For each family of respectable
grouping constraints, there exists a PQ-Tree that represents them.

3.1.3 Creating PQ-Trees
The literature has widely applied PQ-Trees, for example, to recognize and extend
(partial) representations of interval graphs [KKO+17], detect permutations of patterns
in genomes [LPW05], solve the Traveling Salesperson Problem where the set of
tours is constrained via a PQ-Tree [BDW98], and now also in the context of grouping
constraints in boundary labeling. Furthermore, the concept of PQ-Trees has been
extended to include further types of nodes, such as nodes that fix the order of their
children, yielding so-called FPQ-Trees [LRT21], or failure nodes to indicate parts in the
PQ-Tree where the constraints cannot be ensured, so-called PQR-Trees [MPT98]. Despite
the widespread use of PQ-Trees, Fink et al. [FPR21] have identified a lack of (correct)
implementations of PQ-Trees. One reason for this could be that while understanding
PQ-Trees, their purpose, and their semantics is easy, efficiently creating them is far from
trivial. Therefore, we want to sketch in this section the crux of the algorithm proposed
by Booth and Lueker [BL76] to create PQ-Trees, as we think it facilitates understanding
the upcoming chapters where we use and manipulate PQ-Trees.

In the algorithm, we start with the so-called universal tree T , i.e., the trivial PQ-Tree
that allows all n! possible permutations. It is visualized in Figure 3.3 and consists of
a single P-node having all n elements of U as its children. We then iteratively ensure
that in all permutations π allowed by T , the elements for some new W ∈ W appear
consecutively in π. To do that, we have to go for each W ∈ W through the following two
phases. For the first phase, the so-called bubble-up phase, let t′ be a node of T and T ′

the subtree of T rooted at t′. We mark t′ as full, empty, or partial, depending on whether
the leaves of T ′ contain only elements of W, no element of W, or some elements of W
and some not in W, respectively. We do this in a bottom-up procedure for all nodes
t′ in the so-called pruned pertinent subtree TW of T . TW is the subtree rooted at the
lca(W) that does not contain leaves that represent sites not in W [BL76]. On the way
up, we mark each node accordingly and store there further information, including its
children, the left- and rightmost child, and its type. Having computed this information
for all nodes in TW , we perform the actual manipulation of the PQ-Tree in the second
phase, the reduce phase. To do that, we go a second time bottom-up through the pruned
pertinent subtree and use the before-computed information to check for each node t′ in
TW whether it matches one of several patterns. We identify with these patterns crucial
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· · · · · ·

P

(a) A pattern for a P-node.

· · ·

· · ·

P

P

(b) Replacement for the pattern of Figure 3.4a.

· · · · · ·

· · · · · ·

Q

Q

(c) A pattern for a Q-node.

· · · · · ·· · · · · ·

Q

(d) Replacement for the pattern of Figure 3.4c.

Figure 3.4: Patterns for a (a) P-node and a (c) Q-node with their corresponding replace-
ments. Empty nodes are white, and full nodes are gray. Figures adapted from Booth
and Lueker [BL76, P-node: Figure 8, Q-node: Figure 14].

parts in the (pruned pertinent) subtree that need to be adjusted to ensure that in all
permutations of U allowed by T , the elements of W appear consecutively. Each pattern
is accompanied by a corresponding replacement t′′: If the pattern matches, we replace t′

with t′′. Figure 3.4 contains two such patterns. In the pattern from Figure 3.4a, we, for
example, check if t′ is the root of TW , a P-node, and whether some children of t′ are full,
i.e., all their leaves are from W . If so, we must make sure that in any permutation of its
children, the full children are next to each other by introducing a further P-node as in
Figure 3.4b. On the other hand, if t′ is, for example, a Q-node with some full children,
and one of them is another Q-node that also contains some full children, as in Figure 3.4c,
we must ensure that both Q-nodes are simultaneously inversed as otherwise the elements
of W are not necessarily consecutively. We can ensure this by merging the two Q-nodes
of Figure 3.4c into a single Q-node, as in Figure 3.4d.

However, if, given the information, t′ contrary to the expectations does not match a
pattern, then the set of permissible permutations is empty, and we return a designated
tree that does not allow any permutation of U at all. After applying those steps for all
sets W ∈ W , we end up with a PQ-Tree T that represents all permissible permutations
of U given W .

While we have only scratched the surface of the algorithm, it should become clear that it
is far from trivial to implement it. Not only are there almost a dozen different patterns,
some of which also have variations, but without the information obtained in the first
phase, we could not match (and replace) patterns efficiently. Thanks to pre-computing
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relevant information in the bubble-up phase, we can obtain the PQ-Tree T that represents
all permissible permutations of a set U with respect to W in O(n + |W | + ∥W ∥) time,
that is, linear in the input size, plus the sum of the sizes of the sets in W [BL76].

3.2 Ordering Constraints
While grouping constraints can only implicitly enforce an order on the labels of the sites,
ordering constraints are tailored for that. An ordering constraint (s, s′), for s, s′ ∈ S,
enforces that we have, for the leaders λ = (s, p) and λ′ = (s′, p′), y(p′) ≤ y(p), i.e., the
label for s′ must not appear above the label for s. For the ordering constraints, we expect
as input a relation ≺ ⊆ S × S containing r tuples, that represent a partial order on
the sites. Observe that we can, therefore, also understand the ordering constraints as
satisfied, if the total order on the labels, given by reading them from top to bottom,
extends the partial order on the sites given by ≺. Throughout the thesis, we implicitly
assume that ≺ contains the required tuples for being a reflexive and transitive relation.
Furthermore, we use infix notation, i.e., s ≺ s′. Recall that we can represent any relation
as a directed graph. Therefore, we can trivially encode ≺ in a directed (acyclic) graph
G(≺). We write G instead of G(≺) if there is no risk of confusion.

Analog to grouping constraints, we say that a labeling L respects ≺ if all ordering
constraints in ≺ are satisfied. Furthermore, we say that ≺ is respectable for the sites S
if there exists a labeling L of S that respects ≺. Note that we do not require that L is
feasible. For example, L might contain crossing leaders. Observe that this is equivalent
to finding a total order on the sites that extends the partial order ≺.

Finally, there are several natural ways to define an ordering constraint s ≺ s′ in the case
of a multi-sided boundary labeling problem. In the spirit of Niedermann et al. [NNR17],
one could, instead of the y-coordinates of the used ports, consider the clockwise ordering
of the labels, starting at the upper-right corner of the boundary. However, the rather
rigid position of the labels on a rectangular boundary does not allow for a sensible
interpretation of the labels in their clockwise order. Furthermore, we read in the Western
world from top to bottom and, therefore, would assume that the notion of “before” is
also from top to bottom. As another possible extension, one could, in the presence of
s ≺ s′, also enforce y(p′) ≤ y(p) for multiple sides. However, this interpretation is not
very suited due to the spatial distance labels on different sides of the boundary usually
have. Therefore, it is not so critical to ensure that the port p used by s is further up
than the port p′ used by s′ if they are on different sides. In the end, it is unlikely that
they are looked at right after each other since we might prefer to process each side of the
boundary individually. Thus, it is more important, that we fulfill the ordering constraints
for those labels that are near each other and hence are processed contemporaneously,
i.e., the labels on the same side of the boundary. Therefore, we assume in a multi-sided
boundary labeling problem the following.

Assumption 4. In a multi-sided boundary labeling problem, the ordering constraints
must be fulfilled for each side independently, i.e., for s ≺ s′, if s and s′ are labeled at p
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and p′, respectively, and p and p′ are on the same side of the boundary, then we must
have y(p′) ≤ y(p). However, if they are labeled on different sides of the boundary, this
constraint has no effect.

Observe that the interpretation given in Assumption 4 is supported by the motivating
example of Figure 1.1b that labels the rings of the tree.

3.3 The PQ-A-Graph
Now that we have convinced ourselves that we can represent any set of respectable
grouping and ordering constraints by PQ-Trees and directed graphs, respectively, we
want to combine them to represent our constraints by a single data structure. Let S be a
set of n sites, G be a family of k grouping constraints, and ≺ be a relation consisting of
r ordering constraints. We assume, without loss of generality, that the constraints are
respectable. If the constraints are not respectable there is no need to represent them, as
any instance will be infeasible. We know that we can represent the grouping constraints
G using a PQ-Tree T . Furthermore, we can represent the ordering constraints ≺ by a
directed graph G. We now combine these two data structures into the PQ-A-Graph.

Definition 3 (PQ-A-Graph). Let S be a set of sites, G be a family of respectable grouping
constraints, and ≺ be a relation of ordering constraints. The PQ-A-Graph T = (T, A)
consists of the PQ-Tree T that represents the grouping constraints G , on whose leaves we
embed the directed graph G (≺) with arcs A, which represents the ordering constraints ≺.

Observe that T is a mixed graph. Note that, unless stated otherwise, we implicitly refer
with a subtree of T to a subtree in the underlying PQ-Tree T . Analogously, a subgraph
of T is a subgraph of the underlying directed graph G (≺). Furthermore, when we refer
to the site s in T , we implicitly refer to the leaf l of T that represents s. Consequently,
we will address (the arc representing) an ordering constraint s ≺ s′ using (l, l′) or (s, s′)
interchangeably.

We want to point out that the PQ-A-Graph does not preserve the structure of the grouping
constraints, i.e., not every group G ∈ G appears as a subtree of T . Consider the sites
S = {A, B, C, D, E} together with the grouping constraints G = {{B, C, D}, {D, E}}.
The corresponding PQ-A-Graph T is visualized in Figure 3.5. Note that T effectively
consists only of the PQ-Tree T due to the lack of ordering constraints. Although a
grouping constraint might not be reflected as a subtree, we can interpret each subtree
T ′ of T as a grouping constraint, since in any labeling that adheres to the constraints
represented by T , the sites represented by leaves(T ′) will appear consecutively on the
boundary. We call these the canonical groups of T . The canonical groups of the PQ-
A-Graph from Figure 3.5 are {A}, {B}, {C}, {D}, {E}, {B, C}, {B, C, D, E}, and S.
Observe that in any PQ-A-Graph T , T and any site s ∈ S form a canonical group. In
the following, we want to argue the properties of PQ-A-Graphs.
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P

P

QA

D E

B C

Figure 3.5: The PQ-A-Graph T for the grouping constraints {{B, C, D}, {D, E}}.

Lemma 3.2. Let S be a set of sites, G be a family of grouping constraints, and ≺ be a
relation of ordering constraints. Assume that the constraints are respectable for S. We
can create the corresponding PQ-A-Graph T in O(n + k + r + ∥G ∥) time, where n is
the number of sites, k the number of grouping constraints, and r the number of ordering
constraints.

Proof. We start by reminding the reader that in order to obtain Corollary 3.1, we observed
that Booth and Lueker propose an algorithm to check whether a binary matrix M has the
consecutive ones property. This algorithm can be modified to return the corresponding
PQ-Tree on success. By Lemma 3.1, we know that the sites vs. groups matrix M(S, G )
has the consecutive ones property, as G is respectable for S by assumption, i.e., we are
guaranteed to obtain a PQ-Tree. Since their algorithm decomposes M into its columns
to build the PQ-Tree out of those, which for M(S, G ) would correspond to the sets
G ∈ G , we do not need to compute M(S, G ) but can directly work with G . Hence, we
can obtain the PQ-Tree used to build T in time O(n + k + ∥G ∥), i.e., the running time
of the algorithm proposed by Booth and Lueker [BL76, Theorem 6].

In the following, we assume that we maintain a map that returns for each site s ∈ S the
corresponding leaf in T . Since we never add or remove a leaf, maintaining this list does
not increase the asymptotic running time of creating T .

To finish the creation of T , we have to enrich T by the ordering constraints ≺. Let s ≺ s′

be one of those constraints. Since we can find the leaves for s and s′ in T in constant
time using our lookup table, adding the arc (s, s′) to T takes O(1) time. This sums up
to O(r) and together with above arguments we get O(n + k + r + ∥G ∥).

Lemma 3.3. Let S be a set of sites, G be a family of grouping constraints, and ≺ be a
relation of ordering constraints. Assume that the constraints are respectable for S and let
T be the corresponding PQ-A-Graph. T uses O(n + r) space, where n is the number of
sites and r is the number of ordering constraints in ≺.

Proof. To transform the PQ-Tree T into the PQ-A-Graph T , we need to embed the
(arcs of the) directed graph G (≺) into T . We can do this using adjacency sets, i.e.,
adjacency lists where we use sets to store the neighbors of the nodes. This gives us
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s1 s3

s2 s4

s2n−3 s2n−1

s2n−2 s2n

· · ·

· · ·

Figure 3.6: A set of sites together with some ordering constraints, visualized in gray, that
must be stored on the leaves of the corresponding PQ-A-Graph.

constant time look-up while needing O(n + r) space. So what remains to analyze is the
space consumption of T . Recall that we assume that T (and hence also T ) is proper,
which means that any P-node has at least two and any Q-node at least three children,
respectively, i.e., there are no (chains of) nodes with a single child. Hence, T uses O(n)
space [JLCZ20]. The overall space consumption of O(n + r) follows by combining the
individual ones.

One could argue that embedding the directed graph G (≺) (solely) on the leaves of T is
a limitation of the PQ-A-Graph, as this results in storing potentially redundant ordering
constraints. That is, if several arcs in T go from one part of the underlying PQ-Tree
T into another one, they are all present, even though we could only store a single arc
further up in T . While this is true in most cases, we can also find instances where this is
not possible. Consider the following example. Let S be a set of 2n sites together with
the ordering constraints {(s2i−1, s2j) | 1 ≤ i ≤ n, i < j ≤ n}. The sites can be arranged
in a ladder-like layout, as seen in Figure 3.6. The resulting PQ-A-Graph T has a single
P-node at its root and all the leaves as its immediate children, like the universal PQ-Tree
from Figure 3.3. So, there is no way to embed arcs further up in the tree. In addition,
observe that there is no pre-defined order among the sites from the upper side of the
ladder as well as among the ones from the lower side, respectively. Furthermore, since
also the sites from different sides of the ladder can be interleaved relatively freely, we
cannot infer implicit grouping constraints so that T would consist of more internal nodes.
Hence, we arrive at the following observation.

Observation 3.1. The O(n + r) space consumption of a PQ-A-Graph, where n is the
number of sites, and r is the number of ordering constraints, is worst-case optimal.

3.4 An Efficient Preprocessing Procedure
Throughout this chapter we often assumed that the given constraints are respectable for a
set of sites S. This assumption made our lives easier, as, for example, the PQ-A-Graph is
only defined for respectable constraints. In this section, we want to justify this assumption
by proving that we can efficiently check whether some given constraints C = (G , ≺) are
respectable for S. To do that, we will combine different results from the literature. More
concretely, we use Lemma 3.1 and the underlying algorithm by Booth and Lueker [BL76],
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which we already used to prove Lemma 3.2. We will combine this result by showing that
the respectability of C by S is equivalent to solving the Reorder problem on T and
G (≺), i.e., T .

Problem 2 (Reorder [KKO+17]).

Given: A PQ-Tree T and a partial order ≺.
Question: Can we re-order the leaves of T such that the resulting total order induced by

the frontier of T extends the partial order ≺?

Observe that this is equivalent to the constraints expressed by the PQ-A-Graph T being
respectable for the sites S. This follows readily from the definition of respectability, as
we can re-order in a witness labeling the leaves of T such that all embedded arcs go from
left to right, i.e., we found a topological sorting on the leaves that extends the partial
order into a total order. We use this equivalence now to prove Lemma 3.4.

Lemma 3.4. Let S be a set of sites, G be a family of grouping constraints, and ≺ be a
relation of ordering constraints. We can check whether the constraints C = (G , ≺) are
respectable for S in O(n + k + r + ∥G ∥) time, where n is the number of sites, k is the
number of grouping, and r is the number of ordering constraints.

Proof. Recall that Booth and Lueker [BL76] propose an algorithm to check whether a
binary matrix M has the consecutive ones property. Using this algorithm, we can check
in O(n + k + ∥G ∥) time whether the sites vs. groups matrix M(S, G ) has the consecutive
ones property. We showed in Lemma 3.1 that this is a sufficient and necessary property
for respectability of the grouping constraints G by the sites S. If this algorithm outputs
that M(S, G ) does not have the consecutive ones property, we are done. So assume that
M(S, G ) has the consecutive ones property and let T be the PQ-Tree representing the
grouping constraints. Recall that we can modify the algorithm by Booth and Lueker to
return it if it exists without spending additional time.
What remains to check is whether T allows for a permutation that extends the partial
order ≺. As argued above, this is equivalent to the instance (T, ≺) of the Reorder
problem. Klávic et al. show that we can solve this problem in O(n + r) time [KKO+17,
Proposition 2.4]. The claimed running time follows then readily.

Observe that the algorithm implicitly defined by merging the two steps mentioned in the
proof of Lemma 3.4 can serve as a preprocessing routine for all upcoming algorithms. If
it turns out that the constraints C are not respectable for S, we know that no feasible
labeling will exist either. Since this preprocessing routing has the same time complexity
as creating the PQ-A-Graph T out of C, we will not consider it further in the upcoming
proofs. Therefore, in the remainder of this thesis, we implicitly work under Assumption 5
unless stated otherwise.

Assumption 5. The constraints C = (G , ≺), with grouping constraints G and ordering
constraints ≺, are respectable for a set of sites S.
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3. Grouping and Ordering Constraints and Their Representations

3.5 The b-Sided Constrained Boundary Labeling
Problem

Having now defined grouping and ordering constraints, and a data structure to represent
them that also allows us to quickly identify trivial infeasible instances, we are ready
to state the main problem we will tackle in this thesis, the b-Sided Constrained
Boundary Labeling problem.

Problem 3 (b-Sided Constrained Boundary Labeling).

Given: A set of n sites S = {s1, . . . , sn}, a set of m candidate ports P = {p1, . . . , pm} on
b sides of the boundary B (around S), constraints C = (G , ≺) consisting of a family
of k grouping constraints G and a relation ≺ consisting of r ordering constraints, a
label height h > 0, and a computable function f : S × P → R+

0 .
Task: Find a feasible b-sided po-labeling L on the candidate ports P with labels of height

h that respects C and minimizes f(L).

From now on, we implicitly assume that a feasible labeling also respects the constraints
unless stated otherwise.

In the next chapter, we will present an efficient, i.e., polynomial-time, dynamic program-
ming algorithm to solve the 1-Sided Constrained Boundary Labeling problem.
However, for the algorithm to be polynomial, we must work with fixed reference points
or uniform-height labels. If we have neither of those two, the problem is weakly NP-hard,
as we will show in Theorem 3.2. There, we reduce from the Partition problem.

Problem 4 (Partition [GJ79]).

Given: A set A of N elements and a computable function w : A → Z+.
Question: Does there exist a partition of A into two sets, A1 and A2, such that�

a∈A1 w(a) = �
a∈A2 w(a) holds?

Theorem 3.1 ([GJ79]). Partition is weakly NP-hard.

Note that 2-Sided Boundary Labeling, i.e., without any constraints, is weakly
NP-hard for non-uniform height labels due to a reduction from Partition [BKSW07].

Theorem 3.2. Deciding whether an instance of 1-Sided Constrained Boundary
Labeling possesses a feasible labeling for non-uniform-height labels with sliding reference
points is weakly NP-hard, even if we only allow a constant number of grouping constraints.

Proof. The proposed reduction is conceptually almost identical to the one by Fink and
Suri [FS16] to show weak NP-hardness of the boundary labeling problem in the presence
of obstacles: We reproduce the obstacle using our constraints. Note that, for ease of
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�
2 if A is even,

3 if A is odd

Figure 3.7: The block structure. Labels that contain a slice of the same color are in the
same group.

presentation, the sites of the resulting instance are not in general position. However,
we can perturb them slightly without affecting the correctness of the construction.
Furthermore, any leader-site overlap in the figures can be resolved by similar arguments.

Let (A, w) be an instance of Partition and assume without loss of generality that
we have �

a∈A w(a) = 2A.2 We create for each element ai ∈ A, 1 ≤ i ≤ N , a site
si whose corresponding label has a height of w(ai) and place the sites on a horizontal
line next to each other. Furthermore, we create five sites, b1 to b5, with correspond-
ing labels of height 1 for b1 and b5, height ⌊A−4

2 ⌋ for b2 and b4, and height 2 or 3
for b3, depending on whether A is even or odd, respectively. Observe that the height
of the labels for b1 to b5 sums up to A. We create, in addition, the grouping con-
straints {{b1, b2, b3, b4, b5}, {b1, b2, b3}, {b3, b4, b5}, {b2, b3, b4}, {b1, b2}, {b4, b5}}. The sites
are placed as shown in Figure 3.7. Above-created grouping constraints enforce that in
any feasible labeling, the sites b1 to b5 are labeled as indicated in Figure 3.7. Since there
is neither an alternative order of the labels nor room to slide around, the labels of these
sites must be placed continuously, without any free space, and at that fixed position.
Hence, we call the resulting structure a block. We create two similar blocks above (using
the sites x1 to x5) and below (using the sites y1 to y5) the sites for A. However, we
ensure that we leave between the labels for x5 and b1 and the labels for b5 and y1 a space
of A, respectively. Figure 3.8 visualizes the final layout. The resulting instance I(A)
has N + 15 sites and 18 grouping constraints, thus a size polynomial in N . We can also
create it in time polynomial in the input size.

Regarding the correctness of the reduction we observe the following.

(⇒) Let (A, w) be a positive instance of Partition and A1 and A2 a corresponding
solution. We transform this information now into a feasible labeling for I(A). The
blockers are labeled as in Figures 3.7 and 3.8. To determine the position of the labels
for the remaining sites, s1 to sN , we traverse them from left to right. For any site si,
1 ≤ i ≤ N , we check whether its corresponding element ai is in A1 or A2. If it is in A1,

2Otherwise, (A, w) would be a trivial negative instance.
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Figure 3.8: The placement of the sites in the reduction. Gray boxes visualize the blocks.

we place the label for si as far up as possible, i.e., inside the upper free space of Figure 3.8.
On the other hand, if it is in A2, we place the label for si as far down as possible, i.e.,
inside the lower free space of Figure 3.8. As the sum of the entries of A1 and A2 evaluates
to A, respectively, and we reflect the values of the sum in the height of the respective
labels, it is guaranteed that we can place all labels for sites that represent entries in
A1 in the A-high window between the label for x5 and the one for b1. Analogously, the
sites that represent entries in A2 can be placed between the labels for b5 and y1. Finally,
by traversing the sites from left to right and assigning the outermost possible position
for the respective label, we guarantee that the resulting labeling is feasible. Thus, it
witnesses the existence of a feasible labeling for I(A).

(⇐) Let L be a feasible labeling for I(A). We define A1 as the set of elements whose
corresponding site is labeled between x5 and b1 and A2 as the one where the label is
between b5 and y1. Recall that in each of these windows, there is only space for that
many sites such that the sum of their label heights equals A. Therefore, we know that�

a∈A1 w(a) = �
a∈A2 w(a) holds, and this partition witnesses that (A, w) is a positive

instance of Partition.

Observe that in the above reduction, we used grouping constraints to keep the labels for
the sites of the blocks in place. We can achieve the same behavior by exchanging them
with the ordering constraints {b1 ≺ b2, b2 ≺ b3, b3 ≺ b4, b4 ≺ b5}. Of course, we have to
perform similar substitutions for x1 to x5 and y1 to y5. Since we exchange 18 grouping
constraints with twelve ordering constraints, we get the following corollary.

Corollary 3.2. Deciding whether an instance of 1-Sided Constrained Boundary
Labeling possesses a feasible labeling for non-uniform-height labels with sliding reference
points is weakly NP-hard, even if we only allow a constant number of ordering constraints.
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CHAPTER 4
Algorithms and Computational

Complexity Results

Now that the semantics of grouping and ordering constraints are settled and we have
seen an efficient way to represent them, we should seek an algorithm that supports them.
Although the literature contains a multitude of boundary labeling algorithms, we have
already concluded that none of them is tailored to respect semantic constraints while
still offering the flexibility we intend to do.

We have already shown that PQ-A-Graphs allow us to efficiently check that the given
constraints are respectable by a set of sites. In Section 4.1, we now propose a polynomial-
time algorithm that decides for an instance of 1-Sided Constrained Boundary
Labeling whether it has a feasible labeling and, if so, outputs the best one according to
an optimization function f . The natural next step would then be to extend this result to
2-Sided Constrained Boundary Labeling. Unfortunately, it turns out that this
problem is NP-hard, even for uniform height labels. Section 4.2 is devoted to this result.

4.1 A Polynomial-Time Algorithm for 1-Sided
Constrained Boundary Labeling

We begin by stating some key observations in Section 4.1.1 and continue with useful
subroutines in Section 4.1.2 before we propose a dynamic programming (DP) algorithm in
Section 4.1.3. The algorithm follows the ideas by Benkert et al. [BHKN09]. Throughout
this section, we assume that we are given an instance I = (S, P, C = (G , ≺) , h, f) of
1-Sided Constrained Boundary Labeling that consists of n sites S, m ports P on
the right side of a boundary B around S, constraints C = (G , ≺) consisting of a family of
k grouping constraints G and a relation ≺ consisting of r ordering constraints, a label
height h > 0, and a computable optimization function f : S × P → R+

0 .
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s

λ

}
}

I1

I2

Figure 4.1: The leader λ of the leftmost site s splits an instance into two smaller instances,
I1 and I2.

4.1.1 Key Observations for Our Dynamic Programming Algorithm

Benkert et al. [BHKN09] already observed that in a planar labeling L of I, the leader
λ of the leftmost site s splits the sites in L into those that are labeled above λ, and
those that are labeled below λ. Since L is planar, no leader will cross λ, and the two
resulting sub-labelings are disjoint and independent. We visualize this again in Figure 4.1.
This finding, which we formally state in Observation 4.1, gives rise to use dynamic
programming to compute and then combine optimal labelings of sub-instances.

Observation 4.1 ([BHKN09]). In a planar labeling L of an instance I of 1-Sided
Constrained Boundary Labeling, the leader λ connecting the leftmost site s ∈ S
with some port p ∈ P splits the instance into two independent sub-instances, I1 and I2,
excluding s and p.

Recall that a po-leader λ is fully defined by a site s ∈ S and a port p ∈ P. Together
with Observation 4.1, this implies that we can fully describe the geometric structure
of an instance I of 1-Sided Constrained Boundary Labeling using a tuple I =
(s1, p1, s2, p2), for s1, s2 ∈ S and p1, p2 ∈ P. The corresponding leaders λ1 = (s1, p1)
and λ2 = (s2, p2) bound the instance described by I from above and below, respectively.
In the following, we use I to denote the geometric part, i.e., the sites and ports, of an
instance that occurs in our DP-Algorithm. By adding artificial sites s0 and sn+1, and
ports p0 and pm+1 that are connected with leaders λ0 = (s0, p0) and λn+1 = (sn+1, pm+1)
at the very top and bottom of the boundary, respectively, we can also describe the initial
instance by a tuple I = (s0, p0, sn+1, pm+1). As a site and port combination also describes
a leader, we sometimes use the shorthand notation I = (λ1, λ2). A labeling L contains I
if λ1 and λ2 are present in L, i.e., if we label s1 at port p1 and s2 at port p2. We denote
by S(I) the sites within the instance defined by I, excluding those used in the definition
of I. P(I) and ≺(I) are defined analogously. Observe that Benkert et al. [BHKN09] and
Fink and Suri [FS16] described instances with similar tuples.
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s

si

sj

Figure 4.2: The leftmost site s splits the orange group containing si and sj . Thus, this
cannot result in a feasible labeling that respects the orange grouping constraint.

While Observation 4.1 also holds without grouping or ordering constraints, Obser-
vations 4.2 and 4.3 follow from our definition of grouping and ordering constraints,
respectively.

Observation 4.2. In a feasible labeling L of an instance I of 1-Sided Constrained
Boundary Labeling that respects the grouping constraints G , the leader λ of the
leftmost site s ∈ S never splits sites si, sj ∈ S, 1 ≤ i, j ≤ n, i ̸= j, of a group G ∈ G with
si, sj ∈ G and s /∈ G.

Observation 4.2 follows trivially from the consequences of respecting a grouping constraint.
If the leftmost site s would split si and sj that are inside the group G with s /∈ G, then
the triple si, sj , and s would be a witness that the resulting labeling L does not respect
the grouping constraints. Figure 4.2 visualizes this observation: The label ℓ for the
leftmost site s splits the group containing si and sj . Thus, in any feasible labeling where
we place ℓ there, ℓ will separate the orange labels, thus implying an infeasible labeling as
in Figure 4.2.

Observation 4.3. In a feasible labeling L of an instance I of 1-Sided Constrained
Boundary Labeling that respects the ordering constraints ≺, the leader λ of the leftmost
site s ∈ S never splits sites si and sj, 1 ≤ i, j ≤ n, i ̸= j, with si above λ and sj below λ,
for which we have sj ≺ si, sj ≺ s, or s ≺ si.

Observation 4.3 follows readily from the definition of the ordering constraints. Since the
leader of s splits the instance in a way such that si will be labeled above s, and s above
sj , the resulting labeling will inevitably violate any of the stated constraints.

4.1.2 Subroutines of Our Dynamic Programming Algorithm
Our DP-Algorithm uses several subroutines that work with the PQ-A-Graph T . Each
of the following sections introduces one of these subroutines and formally analyzes its
running time. To do that properly, we have to introduce the notion of a site being above
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Figure 4.3: We consider the sites in the green subtrees above s at t and those in the
orange subtrees below s at t.

or below another site at an internal node of T . Let s be a site and t an ancestor of s in T .
Assume that t has the children t1, . . . , tz in this order from left to right. Let Ti, 1 ≤ i ≤ z,
be the subtree that contains the site s, rooted at ti. The labels for all the sites contained
in the subtrees T1, . . . , Ti−1, i.e., the sites in 
i−1

j=1 leaves(Tj), will be placed above the
label for s in any labeling L of S in which the sites in T are ordered according to t1, . . . , tz.
Therefore, we call the sites in 
i−1

j=1 leaves(Tj) above s (at t). Analogously, the sites in the
subtrees Ti+1, . . . , Tz, i.e., represented by 
z

j=i+1 leaves(Tj), are the sites below s (at t).
Note that the sites represented by leaves(Ti) fall in neither of those two sets. However,
they are above or below s at an earlier (i.e., lower) ancestor t′ of s. Figure 4.3 visualizes
this. Each internal node t and t1 to tz in Figure 4.3 could also be a Q-node instead of a
P-node. Note that while the notion of a site being above or below s at t talks about the
position of the labels according to an order of the children of a node in T , being left or
right of a site s still talks about the (geometric) position of the sites to each other.

Verifying that the Label for a Site Respects the Constraints

The first subroutine deals with the question of whether, for a given instance I in our
DP-Algorithm, the label ℓ for the leftmost site s ∈ S(I) would respect the constraints if
placed at the candidate port p ∈ P(I). Throughout this section, we let T denote the
subtree of the PQ-A-Graph rooted at lca(s1, s2). Note that T represents the (inclusion-
wise) smallest canonical group induced by the original PQ-A-Graph that contains all the
sites in S(I), together with s1 and s2. We denote with tr the root of T .

Let tl be the leaf for s in T . There is a unique path from tl to tr in T , which we traverse
bottom up and consider each internal node t on it. We say that the (candidate) port p
respects for s at t the constraints imposed by T if the following holds depending on the
type of t. Recall that λ denotes the (candidate) leader for s.

P-node: If t is a P-node, there must exist at least one permutation π of the children
of t in which all the sites in S(I) above s at t (in the permutation π) are above λ, and
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all the sites in S(I) that will be in π below s at t are below λ. This means that it
cannot be the case that some sites of the same subtree T are above λ, while others are
below λ. Furthermore, in this permutation π, we require that there is no pair of sites
si, sj , 1 ≤ i, j ≤ n, i ̸= j, such that si is in the subtree Tx, and sj is in the subtree
Ty, 1 ≤ x, y ≤ z, x ̸= y, and we have π(tx) < π(ty), but also the arc (sj , si) ∈ T . Let
t1, . . . , tz be the children of t and ti, 1 ≤ i ≤ z, the child that contains the site s. To
check whether a desired permutation π exists, we partition the children of t, except ti,
into two sets, tabove and tbelow. In the following, we differentiate whether t is an internal
node (of T ), an internal node on the path from s1 (or s2) to the root tr of T , or the root
of T . If t is an internal node on the path, we only consider the case where it is on the
path from s1 to tr, as we can derive the other case by exchanging above with below.
If t is an internal node not on the path from s1 to tr, then all children of t contain only
sites within the instance I. For a child tj , 1 ≤ j ≤ z, i ̸= j, we check whether all the sites
in the subtree Tj rooted at tj are above λ, or if all are below λ. In the former case, we
put tj in the set tabove, and in the latter case in tbelow. Note that if neither of these cases
applies, we know that λ would split a (canonical) group to which s does not belong, and
hence, p does not respect the constraints at t for s, and we can return with failure.
If t is an internal node on the path from s1 to tr, we proceed as before. However, if a
child tj , 1 ≤ j ≤ z, i ̸= j, contains only sites outside the instance, we immediately put
it in tabove. This follows from the definition of I, as these sites are outside the instance
and must, therefore, be above s at t. If tj contains s1 ∈ leaves(Tj), it can contain some
sites in I and others outside I. We only check whether all other sites in tj that are in I,
i.e., all the sites in leaves(Tj) ∩ S(I), are above λ. Similar to before, the definition of I
already enforces that the sites must be above s at t, as s1 is above s at t. Hence, we can
return with failure if these checks do not succeed. If s1 ∈ leaves(Ti) holds, then tabove
must not contain a child tj containing sites from I, as they would then be labeled outside
I, violating the definition of I. Figure 4.4 visualizes this.
Finally, if t = tr holds, we must be more careful, as sites outside the instance can now be
above or below s at t. If for a child tj , 1 ≤ j ≤ z, i ̸= j, all sites are inside the instance
we proceed as usual. Similarly, if Tj contains s1 or s2, we can put tj in tabove or tbelow,
respectively. If there are also sites inside I, we first have to ensure that this complies
with the position of the leader λ and otherwise return with failure. Observe that this
guarantees that s1 will be above s and s2 below s at t as required by the definition of I.
If Tj does not contain the sites s1 and s2, and only sites outside I, then we ignore tj and
put it in neither of the sets. As t is a P-node, tj can be placed either above or below s at
t. Since Tj does only contain sites outside I and does not include s1 or s2, it is unclear,
unless there is a suited ordering or grouping constraint, whether to put tj in tabove or
tbelow. However, at the latest when we placed the leaders for s1 or s2, we ensured that
we did not violate a constraint that involves sites of Tj . Hence, it is safe to ignore this
child. Similar to before, if s1 ∈ leaves(Ti) holds, then tabove must not contain a tj having
sites from I. The same holds with tbelow if we have s2 ∈ leaves(Ti).
Observe that we query the position of each site s′ in a Tj , 1 ≤ j ≤ z, i ̸= j, O(1) times
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(b) Parts of the PQ-A-Graph T for the instance
from Figure 4.4a.

Figure 4.4: Visualization of the arguments why tabove must, in some cases, not contain
subtrees with sites from the instance.

and compare it each time to λ, which takes constant time, or check whether it is in
the instance, which takes also constant time. Afterwards, we do not consider this site
anymore. Therefore, this process can be implemented in O(|Tj |) = O(n) time.

Having tabove and tbelow, we check if there exists a site su, represented by a leaf lu ∈

tu∈tabove leaves(Tu), a site sv, represented by a leaf lv ∈ leaves(Ti), and a site sw,

represented by a leaf lw ∈ 

tw∈tbelow leaves(Tw), such that we have the arc (sv, su),

(sw, su), or (sw, sv) in T . If so, we know that we violate an ordering constraint and return
with failure. To perform these checks efficiently, we can maintain, while computing tabove
and tbelow, a look-up table that stores for each site whether it belongs to tabove, tbelow, or
Ti. Then we check for each of the rI = |≺(I)| many arcs on the leaves of T in constant
time whether we violate it or not. Consequently, we can implement these checks to run in
O(n + rI) time, which already includes the time required to compute the look-up tables.

Q-node: If t is a Q-node, one of the following two cases must hold.

Either all sites s′ above s at t are above λ. This can be sites in the instance I, for which
we can check the position with respect to λ, or outside the instance but in T , for which
we know where they must be due to the definition of I. Similarly, all sites below s at t are
below λ. Hence, we keep the order of the children at the node t as they are. Furthermore,
there must not be an arc (su, sv) ∈ T , 1 ≤ u, v ≤ n, that prevents this ordering.

Or all sites above s at t are below λ, and all sites below s at t are above λ. This means
that we need to inverse the order of the children at the node t. Furthermore, there must
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not be an arc (su, sv) ∈ T , 1 ≤ u, v ≤ n, that prevents this inversion of the ordering.

Similar to P-nodes, we differentiate whether t is an internal node of T , an internal node
on the path from s1 or s2 to the root tr, or the root tr of T . Observe that we use the
arguments we already gave for P-nodes to justify why it is sometimes enforced, by the
definition of I, where a child of t must be. Furthermore, note that having s1 or s2 in
some Tj , 1 ≤ j ≤ z, i ≠ j, predetermines, by the definition of I, which of the two allowed
inversions we will end up with. Therefore, in such a case, we only need to ensure that the
leader λ respects this. Altogether, these observations guarantee that we do not contradict
the definition of I. The checks for a Q-node can be implemented, by the same arguments
as for a P-node, to run in O(n + rI) time, where rI denotes the number of arcs in T .

The (candidate) port p respects the constraints for s imposed by T in the instance
I = (s1, p1, s2, p2) if it respects them for s at every node t on the path from s to the root
of T . Let RespectsConstraints(I, T , λ) be a procedure that implements above steps
and returns “true” if they succeed and “false” otherwise, i.e, checks whether the leader λ
for s would respect the constraints imposed by T in instance I.

Lemma 4.1. Let I be an instance of our DP-Algorithm with the constraints expressed
by T and p ∈ P(I). Checking whether the leader λ = (s, p) for the leftmost site s in S(I)
respects the constraints using RespectsConstraints(I, T , λ) takes O(n2 + nr) time.

Proof. When describing the procedure RespectsConstraints(I, T , λ), we have already
observed that we can check whether the port p respects for s the constraints imposed
by T at a node t on the path from s to lca(s1, s2) in time O(n + rI), where rI denotes
the number of ordering constraints, i.e., arcs, in T . Observe that rI is at most r. Hence,
O(n + rI) = O(n + r). Since we have to check this on each of the O(n) nodes t on the
path to the lca(s1, s2), we end up with a running time of O(n2 + nr).

Finally, we want to argue why we only have to check the subtree of the PQ-A-Graph
rooted at the lca(s1, s2), where s1 and s2 define the boundary of the instance. This is
because we must respect any constraint that originates from a node t further up in the
tree: All sites from S(I) are in the subtree of the same child of t. In particular, observe
that the subtree we considered for the instance I ′ that contains I has its root tr′ at tr or
above tr, i.e., tr′ = tr or tr′ is an ancestor of tr. Thus, on the way from the leftmost site
in I ′ to tr′ , we “passed by” tr and ensured that we could respect the constraints. We
still want to point out why we must consider all the internal nodes on the way to the
root of T . To show this, we give an example in Figure 4.5 where we cannot stop earlier.
The constraint that includes s1 is vacuously fulfilled, as there is no further site in this
subtree (compare Figure 4.5a with Figure 4.5b). However, if we would now connect s to
the port indicated with the dashed leader, we would not recognize that we violate the
order imposed by the Q-node. Since we recognize that this constraint is violated only at
the lca(s1, s2), i.e., the root of the subtree, we can conclude that we have to check for
all internal nodes up to and including the root of the subtree of T rooted at lca(s1, s2)
whether the constraints are satisfied.
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Figure 4.5: A (sub-)instance, together with the subtree T rooted at lca(s1, s2), showing
that we cannot stop checking the constraints earlier.

Verifying that a Label Candidate is Feasible for a Site

As we will see soon, our DP-Algorithm makes use of Observation 4.1 by testing, in an
instance I of our DP-Algorithm, for the leftmost site s ∈ S(I) which of the candidate
ports p ∈ P(I) can yield a feasible labeling L. To do that, we make use of the procedure
Feasible(I, T , p), which checks whether the port p is feasible for s with respect to the
constraints expressed by T . Formally, we say that a (candidate) port p ∈ P(I) is feasible
for the leftmost site s ∈ S(I) given T if all of the following constraints are satisfied. Note
that ℓ denotes the label for the site s and λ = (s, p) the corresponding leader.

(a) The label ℓ does not overlap with the labels ℓ1, placed at p1, and ℓ2, placed at p2,
for the sites s1 and s2, respectively, that define the instance I.

(b) The leader λ does not intersect with a site s′ ∈ S(I), s′ ̸= s.

(c) In both resulting sub-instances I1 = (s1, p1, s, p) and I2 = (s, p, s2, p2), there are
enough ports for all sites, i.e., |S(Ii)| ≤ |P(Ii)|, for i = 1, 2.

(d) RespectsConstraints(I, T , λ) must yield true.

Lemma 4.2. Let I be an instance of our DP-Algorithm with the constraints expressed
by T . We can check whether the port p ∈ P(I) is feasible for the leftmost site s ∈ S(I)
using Feasible(I, T , p) in O(n2 + nr + log m) time.

Proof. To prove the claimed running time, we will use the results of Lemma 4.1. We
continue arguing the running time for each of the above constraints individually.

Constraint (a). In Constraint (a), we must check whether two labels overlap, which
we can do in constant time. Observe that by our assumption that all labels are of height
h, and arbitrary width, together with our requirement of fixed ports, namely in the center
of the label, we only have to check whether y(p2) + h ≤ yp ≤ y(p1) − h holds.
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Constraint (b). For Constraint (b), we can check for each site s′ ∈ S(I), s′ ≠ s, to
the right of s, i.e., each site where we have x(s) < x(s′), that it does not have the same
y-coordinate as the port p, i.e, it cannot hold y(s′) = y(p). This takes O(n) time.

Constraint (c). To check this constraint efficiently, we assume that we can access a
range tree storing the sites, and a sorted list containing the ports. We will account for
this when we discuss the overall properties of our DP-Algorithm. With this assumption,
we can compute the number of ports in an instance by running two binary searches for p1
and p2 that define the instance, which takes O(log m) time. To count the number of sites
in the instance, we can run a counting range query on the sites, which takes O(log n)
time [BCKO08]. In the end, we only have to compare the retrieved numbers. Combining
this, we arrive at a running time of O(log n + log m).

Constraint (d). Checking whether RespectsConstraints(I, T , L) yields true can
be done in O(n2 + nr) time using the results from Lemma 4.1.

Combining all, we get a running time of O(n2 + nr + log m).

4.1.3 Putting It Together: Our Dynamic Programming Algorithm
Now that we have discussed in Section 4.1.2 the subroutines that serve as the ingredients
of our DP-Algorithm, it is time to put them together in the right form. We remind the
reader that our DP-Algorihm is based on the approach by Benkert et al. [BHKN09] and
heavily uses the observations presented in Section 4.1.1.

Let D be a DP-Table of size O(n2m2) that keeps track of the optimal solutions of
instances that occur in our DP-Algorithm. For an instance I = (s1, p1, s2, p2), we denote
with D[(s1, p1, s2, p2)] = f(L∗) the cost of a feasible labeling L∗ of I that is optimal
for the optimization function f . If the instance I does not possess a feasible labeling,
we set D[(s1, p1, s2, p2)] = ∞. We will use D[I] as a shorthand for D[(s1, p1, s2, p2)] if
I = (s1, p1, s2, p2) is clear from the context.

Having all notions, we can state the recurrence relation of our DP-Algorithm. If I does
not contain a site, i.e., if S(I) = ∅ holds, we set D[I] = 0. Otherwise, let s be the
leftmost site in the instance. For an instance I = (s1, p1, s2, p2), with λ1 = (s1, p1) and
λ2 = (s2, p2), we use the following relation.

D[I] = min
p∈P(I) where

Feasible(I,T ,p) is true

(D[(λ1, λ)] + D[(λ, λ2)]) + f(λ), (4.1)

where λ = (s, p) is the corresponding leader if we label s at the port p. We assume that
the minimum of the empty set is ∞, i.e., if we have P(I) = ∅ or if for all p ∈ P(I) the
subroutine Feasible(I, T , p) yields false, then we have D[I] = ∞.

The correctness of the recurrence relation from Equation (4.1) follows by combining
Observations 4.1 to 4.3. Since the leader of the leftmost site splits an instance into two
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independent smaller sub-instances (Observation 4.1), if there exists a feasible labeling L
of an instance I of the 1-Sided Constrained Boundary Labeling problem, then
we can find it by trying out for the leftmost site s in an instance I that occurs in the
DP-Algorithm all possible ports p of the instance. As not all ports p ∈ P(I) might
lead to a feasible labeling (Observations 4.2 and 4.3), we must ensure that a port p
does not violate a constraint, i.e., that Feasible(I, T , p) yields true. Since the cost of a
labeling for an instance I is composed of the costs for the two sub-instances together with
the cost of the leader that led to the creation of these sub-instances, we conclude that
the recurrence relation of Equation (4.1) computes indeed the cost of the best feasible
labeling L∗ for I according to the optimization function f . Recall that by adding two
auxiliary sites s0, sn+1 and ports p0, pm+1, the entry D[s0, p0, sn+1, pm+1] will store in
the end f(L∗), or ∞, if I does not possess a feasible labeling.
We continue with showing the running time of our DP-Algorithm. Recall that our
algorithm builds on two subroutines whose individual running times we discussed in
Lemmas 4.1 and 4.2.

Theorem 4.1. Let I = (S, P, C = (G , ≺) , h, f) be an instance of the 1-Sided Con-
strained Boundary Labeling problem with n = |S|, m = |P|, k = |G |, and
r = |≺|. We can compute f(L∗) for a feasible labeling L∗ of I that minimizes f in
O(n5m3 log m + k + ∥G ∥ + nmf(·, ·)) time using O(n2m2) space, or conclude that no
such labeling exists, where O(f(·, ·)) denotes the evaluation time of f(s, p), for arbitrary
s ∈ S and p ∈ P, i.e., the evaluation complexity of the optimization function f .

Proof. Let I be an instance of 1-Sided Constrained Boundary Labeling with the
constraints C = (G , ≺). From Lemma 3.4, we know that we can check in O(n+k+r+∥G ∥)
time whether the constraints C are respectable for S. For the sake of the proof, let us
assume that they are, as otherwise I does not possess a feasible labeling L. Therefore,
we can obtain, in this time, the corresponding PQ-A-Graph T that uses O(n + r) space.
As further preprocessing steps, we create an additional list storing the ports p ∈ P
sorted by y(p) in ascending order and a range tree on the sites. We can do the former in
O(m log m) time and O(m) space, and the latter in O(n log n) time and space [BCKO08].
In addition, we compute for each internal node t of the PQ-A-Graph T the canonical
group induced by the subtree rooted at t, and for each pair of sites s1 and s2 the lca(s1, s2)
in T . We can do the former in O(n2) time and space by traversing T bottom-up, as T
has O(n) internal nodes and each canonical group is of size at most n. We can do the
latter in O(n2) time [BF00]. Furthermore, we create a look-up table for f(s, p), i.e., we
compute f(s, p) for all (s, p) ∈ S × P . Creating this look-up table consumes O(nm) space
and requires O(nmf(·, ·)) time, where O(f(·, ·)) states the time required to compute
f(s, p) for arbitrary s ∈ S and p ∈ P . By adding artificial sites s0 and sn+1, and ports p0
and pm+1, we can describe any instance by a tuple I = (s1, p1, s2, p2), and in particular
I by I = (s0, p0, sn+1, pm+1).
We then continue filling the table D top-down using memoization. This guarantees
that we have to evaluate each sub-instance I at most once and only those that arise
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from feasible (candidate) leaders. For each such I, we have to, when evaluating the
relation from Equation (4.1), check for O(m) candidate ports p if they are feasible for
the leftmost site s. We can obtain s in O(n) time. For each candidate port p, we first
have to check whether it is feasible for s, which we can do in O(n2 + nr + log m) time
due to Lemma 4.2. Since we have pre-computed all values for f(s, p), this is the overall
time required for a single candidate port p. Hence, evaluating all candidate ports p takes
O(m

�
n2 + nr + log m

�
) time. Two sites and two ports describe an instance. Therefore,

there are O(n2m2) possible instances I that we have to evaluate in the worst case. Hence,
our DP-algorithm solves the 1-Sided Constrained Boundary Labeling problem,
for a given instance I, in O(n2m2(n + m

�
n2 + nr + log m

�
) + k + ∥G ∥ + nmf(·, ·)) =

O(n4m3+n3m3r+n2m3 log m+k+∥G ∥+nmf(·, ·)) time using O(n2m2) space. Note that
the above bounds dominate the time and space required for the remaining preprocessing
steps. Observe that r = O(n2) holds. Hence, if r is small, i.e., r = O(n), above bounds
can be simplified to O(n4m3 +n2m3 log m+k +∥G ∥+nmf(·, ·)). On the other hand, if r
is large, i.e., r = Θ(n2), above bounds yield O(n5m3 + n2m3 log m + k + ∥G ∥ + nmf(·, ·)).
Although yielding a higher bound, to ease readability, we will combine above observations
into O(n5m3 log m + k + ∥G ∥ + nmf(·, ·)), resulting in the claimed bounds.

We end our discussion of the DP-Algorithm with two observations. First, we observe
that we can store in an auxiliary table D′ for each instance I = (s1, p1, s2, p2) the port
p ∈ P(I) that yielded the minimum cost, i.e.,

D′[I] = arg min
p∈P(I) where

Feasible(I,T ,p) is true

(D[(λ1, λ)] + D[(λ, λ2)]) + f(λ).

As D′ has the same space requirement as our main DP-table D, i.e., O(n2m2), we arrive
at Corollary 4.1.

Corollary 4.1. Let I = (S, P, C = (G , ≺) , h, f) be an instance of the 1-Sided Con-
strained Boundary Labeling problem with n = |S|, m = |P|, k = |G |, and r = |≺|.
We can compute a feasible labeling L∗ of I that minimizes f in O(n5m3 log m + k + ∥G ∥ +
nmf(·, ·)) time using O(n2m2) space, if such a labeling exists.

Second, if we ask for a leader-length- or leader-bend-minimal labeling or just want to
compute some feasible labeling, we have defined in Section 2.4.1 the corresponding
functions f . As we can evaluate them in constant time, i.e., we have O(f(·, ·)) = O(1),
we get Corollary 4.2.

Corollary 4.2. Let I = (S, P, C = (G , ≺) , h, f) be an instance of the 1-Sided Con-
strained Boundary Labeling problem with n = |S|, m = |P|, k = |G |, and r = |≺|.
We can compute a feasible/leader-length-minimal/leader-bend-minimal labeling L∗ of I in
O(n5m3 log m + k + ∥G ∥) time using O(n2m2) space, if such a labeling exists.
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4.2 The Computational Complexity of 2-Sided
Constrained Boundary Labeling

In contrast to results for the general 2-Sided Boundary Labeling problem, where
we have polynomial-time algorithms for uniform-height labels [BKSW07; BHKN09]
and proofs showing weakly NP-hardness for non-uniform-height labels [BKSW07], we
will show in this section that already the problem of finding some feasible two-sided
boundary labeling in the presence of grouping and ordering constraints is NP-hard, even
for uniform-height labels. We define, based on the definition of 2-Sided Constrained
Boundary Labeling, the problem Existence of 2-Sided Constrained Boundary
Labeling.

Problem 5 (Existence of 2-Sided Constrained Boundary Labeling).

Given: A set of n sites S = {s1, . . . , sn}, a set of m ports P = {p1, . . . , pm} on two
opposite sides of the boundary B (around S), constraints C = (G , ≺) consisting
of a family of k grouping constraints G and a relation ≺ consisting of r ordering
constraints, and a label height h > 0.

Question: Does there exist a feasible two-sided po-labeling L on the ports P of height h
that respects C with labels?

Throughout this section, we assume, without loss of generality, h = 1. We remind the
reader of Assumptions 3 and 4, which we made when introducing the grouping and
ordering constraints, respectively. Assumption 3 enforces that we must label sites that
belong to the same group on the same side of B. For ordering constraints, Assumption 4
states that the ordering constraints are considered on each side of B separately and
independently. Especially the latter assumption has two immediate implications, which
we state in the following observation and visualize in Figure 4.6.

Observation 4.4. If we have the ordering constraint s ≺ s′, we can deactivate it by
labeling s and s′ on different sides of B to allow s to be labeled below s′. If we must label
s below s′, then in any feasible labeling L that respects this ordering constraint, we must
deactivate this constraint by labeling s and s′ on different sides of B.

In the hardness proof, we will, in particular, use the latter consequence. We will reduce
from Monotone One-In-Three Sat, which is defined as follows.

Problem 6 (Monotone One-In-Three Sat [GJ79]).

Given: A boolean formula φ in conjunctive normal form, where each clause consists of
exactly three different positive literals.

Question: Does there exist a truth assignment that satisfies exactly one literal in each
clause?

Theorem 4.2 ([Sch78]). Monotone One-In-Three Sat is NP-complete.
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s1

s2

s1 ≺ s2

Figure 4.6: If the geometric properties of the instance enforce that s1 must be labeled
below s2, visualized with the gray area, then we must label them on different sides if we
have s1 ≺ s2. If we label them on the same side, as indicated with the dashed leader for
s1, then the ordering constraint will be violated.

4.2.1 Building Blocks Used in the Reduction

Let φ be an instance of Monotone One-In-Three Sat consisting of N variables
X = {x1, . . . , xN } and M clauses C1, . . . , CM , with Ci = (x1

i ∨ x2
i ∨ x3

i ), for 1 ≤ i ≤ M .1
We propose a gadget-based reduction that builds upon the following building blocks. Note
that placing a building block at some y-coordinate means positioning the bottom-most
site or port at that y-coordinate. To simplify the reduction, we create an instance that is
not in general position. However, by moving the sites slightly, one can ensure general
position without affecting the size or correctness of the reduction.

Blocker Gadget

The main purpose of the blocker gadget is, as the name suggests, to block leaders from
crossing certain parts in the instance and thus ultimately splitting the generated instance
into multiple segments. The blocker gadget consists of two smaller structures, each
blocking one of the two sides of the boundary B. These structures are composed of
three sites and three ports, as shown in Figure 4.7. Furthermore, we have the grouping
constraint {s1, s2, s3}, and ordering constraints s1 ≺ s2 and s2 ≺ s3. Due to the grouping
constraint, the labels of all sites will be on the same side of B. However, due to the
ordering constraints and the position of the sites, only one of the two sides is possible.
In Figure 4.7, this would be the right side (even if ports would be on the left side), as
indicated by the leaders. If we try to label the sites on the other side (assuming now
that there were ports), we either end up with a non-planar labeling or have to violate
one of the ordering constraints. By mirroring the layout of Figure 4.7, we can create a
similar structure that enforces us to label the sites on the left side of the boundary. A
blocker, positioned at some coordinate y, consists now of two such structures, SA and

1We will use N and M to denote the number of variables and clauses, respectively, and n and m to
denote the number of created sites and ports, respectively.
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s2

s1

s3

Figure 4.7: Structure that we use to make the blocker gadget. We also add the grouping
constraint {s1, s2, s3} and the ordering constraints s1 ≺ s2 and s2 ≺ s3. The ordering
constraints are visualized with gray arrows and the labeling with the leaders.

SB, facing in opposite directions, one placed at y + 1, the other at y + 4. While the
structures enforce the side they are labeled on, we also want to ensure that the labels
have no room to move around on that side. Therefore, we place two sites, sa and sb, at a
distance of 1 above and below the two structures, respectively, as shown in Figure 4.8.
By adding the respective ports and two grouping constraints, one containing sa and the
sites of SA, the other sb and the sites of SB, we ensure that the labeling for the blocker
is completely dictated. Observe that any site above or below the blocker must be labeled
above or below the blocker, respectively, i.e., there is no room for a leader to run through
the blocker. Finally, we want to analyze the properties of the blocker.

Lemma 4.3. A blocker B consists of eight sites, eight ports, four grouping, and four
ordering constraints. Excluding the labels, it has a height of seven.

Proof. For the number of sites and ports, we refer to the construction shown in Figure 4.8.
Each blocker consists of two structures SA and SB, each having one grouping and two
ordering constraints to ensure that the involved sites are labeled at the respective side of
the boundary. The sites of SA and SB are also in a grouping constraint with sa and sb,
respectively. Furthermore, each structure has a height of two, excluding the labels, as we
need to maintain a distance of one between two consecutive ports to accommodate the
labels.2 We place the structures a distance of one apart, yielding a total height of five.
We put the sites sa and sb, which bound the blocker from above and below, also at a
distance of one above and below the two structures. Hence, the total height, excluding
the labels, equals seven.

In the upcoming sections, we will indicate a blocker B with a gray box that spans the
whole width.

2Recall that we assume that the labels are open rectangles, i.e., they can touch at their borders.
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sb

sa

SB

SA

Figure 4.8: A blocker gadget B. We indicate the only possible labeling with the leaders.

Variable Block

The next ingredient of our reduction is the variable block. Its purpose is to select a truth
assignment for each variable xi ∈ X , 1 ≤ i ≤ N . We will determine the truth assignment
of a variable by the side of B they are labeled at. To do that, we create in the variable
block for each variable xi a site si and two ports p1

i and p0
i . We place the ports for si at

the same y-coordinate as si, i.e., we have y(si) = y(p1
i ) = y(p0

i ). The port p1
i is placed on

the right side of the boundary. The presence of the leader λi = (si, p1
i ) will indicate that

xi should be true. Similarly, p0
i is placed on the left side, and the presence of λ′

i = (si, p0
i )

will indicate that xi is false. We create this setup for all variables xi ∈ X and stack them
on top of each other, but leave a vertical space of one between two consecutive sites and
ports to ensure that no two labels can overlap. Observe that there are no constraints on
the sites representing the variables. Since we spread them at a sufficient distance, each
site can be labeled either on the left or the right side, independent of the labeling of the
other sites. Hence, for each variable assignment over X , there is a corresponding labeling
over {s1, . . . , sN }. For the variable block, we furthermore observe the following.

Lemma 4.4. The variable block consists of N sites, 2N ports, and no constraints.
Excluding the labels, it has a height of (N − 1).

Proof. Since we create for each of the N variables in X one site and two ports but no
constraints, the first part of Lemma 4.4 readily follows. For the height of the variable
block, we observe that between two consecutive sites, we leave a space of 1 to ensure that
no two labels can overlap. Since we place the ports at the same vertical position as their
respective site, we arrive at a height of (N − 1) for N = |X |.

Clause Gadget

The last gadget we will use in the reduction is the clause gadget. For a clause Ci =
(x1

i ∧x2
i ∧x3

i ), 1 ≤ i ≤ M , it consists of three sites, c1
i to c3

i , and three ports as depicted in
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c1i c2i c3i

(a)

c1i c2i c3i

(b)

c1i c2i c3i

(c)

Figure 4.9: Clause gadget for the clause Ci = (x1
i ∧ x2

i ∧ x3
i ) with its different labelings.

Figure 4.9. The purpose of the clause gadget is to check whether a given truth assignment
on the variables satisfies the clause. Recall that a clause in Monotone One-In-Three
Sat is satisfied if and only if exactly one of the tree literals evaluates to true, i.e., if
exactly one variable present in Ci is set to true and the other two to false. To mimic
this behavior in our setting, we place two ports on the right boundary and only a single
port on the left boundary, such that any of the three sites can be labeled on the left
side while ensuring that we can label the remaining two sites on the right side. Hence,
in any feasible labeling, one label must be on the left side, and the corresponding site
should then represent the variable that satisfies the clause. Observe that while in the
variable block, the right side of the boundary represents true, here in the clause gadget it
is the left side. The need for this asymmetry will become clear in Section 4.2.2 when we
combine all building blocks. As for the other two gadgets, we end our presentation by
arguing its properties.

Lemma 4.5. The clause gadget for a clause Ci, 1 ≤ i ≤ M , consists of three sites, three
ports, and no constraints. Excluding the labels, it has a height of three.

Proof. The number of sites and ports follows from Figure 4.9. Furthermore, observe
that in the above description of the gadget, we do not have any constraints. Let the
y-coordinate of the sites of the clause gadget for the clause Ci be some yCi . To ensure
that any site can reach the single port on the left side of the boundary, we place it at
yCi − 1. For the two ports on the right side of the boundary, we must ensure that we
can place two labels there (without overlapping) and that we can label any two sites at
these two ports. Therefore, we place the first one at yCi + 1 and the second at yCi + 2.
In total, this gives us a height of three, excluding the labels.

4.2.2 Putting It Together: Our Complete Construction
After presenting and discussing the building blocks of our reduction, it is time to combine
them. Recall that we assume that we have given an instance φ of Monotone One-
In-Three Sat consisting of N variables and M clauses, which we want to reduce to
Existence of 2-Sided Constrained Boundary Labeling. Consider Figure 4.10 for
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c1M c2M c3M

Blocker

c11 c21 c31

Blocker

sN

s2
s1

...

Blocker

Blocker

c12 c22

p11

p1N

p01

p0N

c32

p12p02

Figure 4.10: The instance I(φ) created by our reduction. The gray arrows indicate some
of the ordering constraints in ≺.

a visualization of the overall construction. The construction starts at the bottom with
the variable block. Then, we add a blocker, followed by one clause gadget for each clause,
created in arbitrary order, each separated by a blocker. We end the construction with the
gadget for the last clause. Note that we must ensure that the vertical distance between
any two ports of different gadgets is at least 1 so that no two labels placed in different
gadgets can overlap. Having placed all the sites and ports, we still need to enrich the
existing (ordering) constraints from the gadgets with additional ones. To do that, let
φ(x) denote all clauses that contain the variable x. We now add the following set of
3M -many ordering constraints.

≺ := {si ≺ cl
j | xi = xl

j , where l ∈ {1, 2, 3}, xl
j ∈ Cj , Cj ∈ φ(xi), xi ∈ X }

These ordering constraints, which are also partially depicted in Figure 4.10, can be
summarized as enforcing for each variable x ∈ X that the label for the site it represents
in the variable block must be before the labels of the sites that represent the occurrences
of x in clauses in the respective clause gadgets. Our construction is now complete, and
we denote with I(φ) the resulting instance of Existence of 2-Sided Constrained
Boundary Labeling.
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Theorem 4.3. Existence of 2-Sided Constrained Boundary Labeling is NP-
complete.

Proof. We argue NP-containment and NP-hardness separately.

NP-containment. Given an instance I of Existence of 2-Sided Constrained
Boundary Labeling, we can describe a feasible witness labeling L that respects the
constraints as a function from the domain of the sites into the co-domain of the ports.
Hence, it uses O(nm) space. To check whether L is planar, we evaluate all O(n2) leader
combinations. For the grouping constraints, we check for each of the k groups whether
the corresponding O(n) sites are labeled on the same side of the boundary and no other
label is between them. Finally, we can check the r ordering constraints in O(r) = O(n2)
time. Therefore, we can check whether L is feasible in O(n2 + kn) time. Since these are
all polynomials in the input size, Existence of 2-Sided Constrained Boundary
Labeling is in NP.

NP-hardness. We show NP-hardness using the above-introduced reduction from Mono-
tone One-In-Three Sat to Existence of 2-Sided Constrained Boundary La-
beling. To show the correctness of the reduction, we will use Observation 4.4. Let φ be
an instance of Monotone One-In-Three Sat and I(φ) the corresponding instance of
Existence of 2-Sided Constrained Boundary Labeling. Recall that we assume
that φ consists of M clauses formed over N variables X . Assuming that each clause
gadget is “responsible” for the blocker immediately below it, we can see that we create
in total M blocker gadgets. Using Lemmas 4.3 to 4.5, we derive that I(φ) consists of
8M + N + 3M = 11M + N sites, 8M + 2N + 3M = 11M + 2N ports, 4M grouping,
and 7M ordering constraints. Observe that we have 4M ordering constraints in the
blockers and 3M ordering constraints in ≺. The height of I(φ), excluding labels, is
2M + N − 1 + 3M + 2M = 7M + N − 1, where the last 2M follow from the vertical offset
we have to maintain before and after each blocker so that they do not interfere with the
other building blocks. I(φ) has a constant width.3 Therefore, I(φ) has polynomial size
and can be created in polynomial time with respect to the size of φ.

It remains to show the correctness of our reduction.

(⇒) Assume that φ is a positive instance of Monotone One-In-Three Sat.
Hence, there exists a truth assignment Γ : X → {0, 1} such that for each clause Ci ∈ C,
1 ≤ i ≤ M , we can find a j ∈ {1, 2, 3} so that Γ(xj

i ) = 1 and Γ(xj′
i ) = 0, for j′ ∈

{1, 2, 3} \ {j}, i.e., exactly one literal of each clause evaluates to true under Γ. We
replicate this assignment in a labeling L of I(φ) by labeling si, 1 ≤ i ≤ N , at p1

i if
3Observe that the actual x-coordinate of the sites is irrelevant in most gadgets. Only for the blocker

gadgets, we must place their structures in such a way that they block any leader from running through
them. Therefore, we can horizontally scale the instance arbitrarily. Thus, we assume, without loss of
generality, that the width of the instance is constant.
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Γ(xi) = 1, otherwise at p0
i . We label the sites in the clause gadget at the left boundary if

the corresponding variable they represent satisfies the clause, i.e., is true, and otherwise
at the right side of the boundary. For the sites that make up the blocker gadgets, we
label them according to Figure 4.7. What is left to do is argue that L is feasible. For
the sites in the blocker gadgets, this is true by construction. As for any variable x ∈ X ,
we have either Γ(x) = 1 or Γ(x) = 0, but never both, the label positions for the sites
representing the variables are well-defined. Since we placed the ports and sites with
sufficient space from each other, mimicking Γ in L as described above will always result
in a feasible labeling. For the sites in the clause gadgets, as Γ ensures that exactly one
literal evaluates to true, we know that one site will be labeled at the left boundary and
the other two at the right boundary. This is exactly the distribution of the three ports
we have chosen when creating the clause gadgets (see Figure 4.9). Furthermore, we have
ensured that no matter which two sites we label on the right side, there is a way to label
them. Therefore, L is planar. To show that L respects also the constraints, we first note
that we respect the constraints in the blocker gadget by construction. Therefore, we only
have to consider the ordering constraints from ≺. Let si ≺ cl

j , 1 ≤ i ≤ N , 1 ≤ j ≤ M ,
l ∈ {1, 2, 3}, be an ordering constraint from ≺. Since si represents a variable and cl

j

its occurrence in a clause, we know that si will be labeled below cl
j in L. Therefore, to

respect si ≺ cl
j , we must show that si and cl

j are labeled on different sides, i.e., that we
deactivate that constraint. There are two cases: Γ(xi) = 0 or Γ(xi) = 1. In the former
case, we label si on the left side and, as the clause Ci is then not satisfied by the variable
xi, cl

j is labeled on the right side. In the latter case, i.e., if Γ(xi) = 1, we label si on the
right side and, as it satisfies the clause, cl

j is (the only site in this clause gadget that is)
labeled on the left side. As we label them in both cases on different sides of the boundary,
we deactivate the corresponding constraint. Since we selected si ≺ cl

j arbitrarily, we
know that we deactivate all constraints in ≺. Hence, L is feasible, thus is I(φ) a positive
instance of Existence of 2-Sided Constrained Boundary Labeling.

(⇐) Let I(φ) be a positive instance of Existence of 2-Sided Constrained
Boundary Labeling. Therefore, there exists a feasible witness labeling L. Based on L,
we create a truth assignment Γ : X → {0, 1} over X with Γ(xi) = 1 if L labels si at p1

i ,
1 ≤ i ≤ N . Otherwise, i.e., if L labels si at p0

i , we set Γ(xi) = 0. Due to the structure of
the variable block, we can assume that we label each si at one of those two ports, and
thus is Γ well-defined. All that remains is to show that in every clause Ci exactly one
literal evaluates to true. We remind the reader that every literal in φ is an un-negated
variable. L respects all the constraints of I(φ), in particular the ordering constraints
≺. However, observe that due to the blocker gadgets, especially the one between the
variable block and the first clause gadget, in any feasible labeling, and therefore also in
L, all sites in the variable block are labeled below those in the clause gadgets. Therefore,
to respect the constraints in ≺, L must deactivate all of them. Hence, for each site si

in the variable block that we label at the right side, i.e., at p1
i , we must label all sites

cl
j , 1 ≤ j ≤ M , l ∈ {1, 2, 3}, with si ≺ cl

j ∈ ≺ at the left side. A symmetric argument
holds if we label si on the left side. However, since for every clause gadget representing
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some clause Cj , 1 ≤ j ≤ M , we create three ordering constraints in ≺ and there is only
one port on the left side and two ports on the right side, we know that L can only be a
feasible labeling if exactly one of the three sites that make up the clause gadget is labeled
on the left side, i.e., considered true. Consequently, Γ satisfies exactly one literal of each
clause in φ, i.e., φ is a positive instance of Monotone One-In-Three Sat.

Corollary 4.3. 2-Sided Constrained Boundary Labeling is NP-hard.
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CHAPTER 5
Experimental Evaluation

The previous chapters shed light on the b-Sided Constrained Boundary Labeling
problem from a theoretical point of view. Given that the motivation for this problem
arises from real-world applications, we also want to consider the practical aspects of
this problem. Therefore, we implemented our DP-Algorithm. In an experiment, we
will analyze its performance and assess the produced labelings regarding leader length
and visual appeal. We also compare the created labelings to those from an alternative
algorithm that does not consider grouping and ordering constraints.

Section 5.1 explains the implementation in greater detail and describes how we can
interact with the solvers and visualize the labelings. We will discuss the setup of the
experiment in Section 5.2 and its results in Section 5.3. Throughout this chapter, we will
state distances and coordinates in pixels.

5.1 Implementation Details
Our implementation consists of two parts: two C++17 solvers, which compute the
labeling, and a web application to visualize them.

5.1.1 Solvers
Our first solver, Naïve ILP, is based on the Integer Linear Program (ILP) formulation
by Barth et al. [BGNN19]. It does not consider our grouping and ordering constraints
and should provide a leader-length-minimal labeling to compare against. The second
solver, Constraint DP, implements the dynamic programming algorithm we presented in
Chapter 4. Both solvers expect the instances as JavaScript Object Notation (JSON ) files.
Each JSON file describes a single instance and contains solver-relevant information on
the position of the sites and ports, the constraints, and the label height. Furthermore, it
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5. Experimental Evaluation

contains information purely relevant for visualizing the instance, such as the position
and the size of the boundary, the contour of the illustration, or the width of the labels.

Naïve ILP

Our solver Naïve ILP uses an ILP formulation to find a leader-length-minimal feasible
labeling. ILPs find application in many areas, for example, scheduling [FL05; JSV98] or
facility location [CNW83]. An ILP formulation consists of variables, an optimization func-
tion, and constraints. The main idea is to encode our problem using linear (in)equalities
over the variables, i.e., there is no multiplication among the variables, such that each
assignment of values to the variables that satisfies all (in)equalities corresponds to a
feasible solution. We can then use the optimization function to quantify the quality of
our solutions and select the best one. Wolsey [Wol20] gives a more detailed introduction
to integer programming.

ILP Formulation. We use the ILP formulation from Barth et al. [BGNN19] as a
reference and extend it by constraints that prevent overlapping labels and site-leader
crossings. More concretely, for an instance I of 1-Sided Constrained Boundary
Labeling, we create nm-many binary variables xs,p ∈ {0, 1}, for s ∈ S and p ∈ P. If
we label s at port p, we set xs,p = 1. Otherwise, we have xs,p = 0. Let f : (s, p) → R+

0
express the length of the po-leader λ = (s, p). We minimize the function


s∈S,
p∈P

f(s, p)xs,p

subject to the following constraints.

• Each site s must be labeled at exactly one port.

p∈P

xs,p = 1, ∀s ∈ S

• Each port p can be used by at most one site.

s∈S

xs,p ≤ 1, ∀p ∈ P

• No two labels can overlap, i.e., if two ports are too close, then at least one must
not have a label.


s∈S
xs,p + xs,p′ ≤ 1, ∀p, p′ ∈ P, p ̸= p′,

��y(p) − y(p′)
�� < h
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• No two leaders can cross, i.e., if two leaders would cross, the labeling must not
contain both.

xs,p + xs′,p′ ≤ 1, ∀s, s′ ∈ S, ∀p, p′ ∈ P, s ̸= s′, p ̸= p′, where
leaders λ = (s, p) and λ′ = (s′, p′) cross, i.e.,
x(s) < x(s′) and λ′ separates s′ and p′

• A site s cannot be labeled at a port p with the same y-coordinate as another site s′

that is right of s, as this would mean that λ = (s, p) crosses s′.

xs,p = 0, ∀s ∈ S, ∀p ∈ P, if there exists an s′ ∈ S with s ̸= s′,
x(s) < x(s′),

��y(s′) − y(p)
�� < ε, for some sufficiently small ε > 0

Recall that we use this solver to provide a leader-length-minimal feasible labeling as a
reference. Therefore, we do not incorporate inequalities for our semantic constraints.

As a solver, we use the Gurobi Optimizer (Version 10.0.0) [Gur23a]. In addition to the
labeling, if it exists, we also store the sum of the leader lengths, the time spent defining
the model, and the time it takes Gurobi to solve it.

Command-Line Interface. Naïve ILP can be started from the command line using
.\Naive-ILP PATH_TO_INSTANCE.json. It furthermore supports the following
optional arguments.

-n, --name: Specifies under which name the labeling should be displayed in the visual-
ization. Default is the same name as the instance.

-o, --output: Determines the path to the output file. If omitted, we store it next to
the instance file.

-v, --verbose: Enables verbose mode, where we output more detailed information.

--ilp_log: Specifies the path where the Gurobi Log-File should be created; see the
documentation [Gur23c] for further information. If omitted, no log will be stored.

--ilp_model: Specifies the path where the created ILP model should be saved; see
the documentation [Gur23b] for further information. If omitted, the model will not
be saved.

Constraint DP

The solver Constraint DP implements our proposed algorithm to find a leader-length-
minimal feasible labeling that respects the constraints or to report that no such labeling
exists. As for Naïve ILP, we also keep track of the sum of the leader lengths and the
running time of various parts of the algorithm. The algorithm follows the description of
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Chapter 4. We use the range tree implementation by Weihs [Wei20] that was already
used in the literature [WDM18] but fix the compilation warnings that we observed. In
the following, we discuss noteworthy deviations from the description from Chapter 4.

Implementing the PQ-A-Graph. Our PQ-A-Graph implementation builds on top
of an existing PC-Tree implementation by Fink et al. [FPR21]. Shih and Hsu introduced
PC-Trees to check whether a graph is planar [SH99]. A formal description of PC-Trees
is given by Hsu and McConnell [HM03]. PC-Trees are trees that contain two types
of nodes: P-nodes, which allow the same operations on their children as their related
nodes in PQ-Trees, and C-nodes, where we have to maintain the cyclic order of their
children or can inverse it [SH99]. Note that this operation is more general than the
inversion allowed by Q-nodes [Hsu01]. In contrast to PQ-Trees, PC-Trees can also be
unrooted. This allowed Hsu and McConnell [HM03] to show that we can use PC-Trees
to represent PQ-Trees by introducing a dummy element that does not occur in any
constraint. After computing the respective PC-Tree, we can find the leaf for this dummy
element and interpret it as the root of the tree, whose single child is then the root of
the corresponding PQ-Tree if we re-interpret the C-nodes as Q-nodes. This result allows
us to use (rooted) PC-Trees instead of PQ-Trees, for which there are (in practice) more
efficient implementations [FPR21].

Practical Considerations. Our initial runs revealed that a naïve implementation of
the DP-Algorithm has high running times even for small instances. We identified two
major causes for the high running time that we want to describe in the following.

First, it turned out that it is beneficial to explicitly pre-compute the least common
ancestor of all possible leaf pairs and look up this information in the DP-Algorithm. The
following approach was sufficient for our needs. We start at the root of T and proceed
downwards in the tree. For each internal node t, we consider each pair ti and tj , i ̸= j, of
its children and store t as the least common ancestor of each pair of leaves li ∈ leaves(Ti),
and lj ∈ leaves(Tj). Since we consider each pair of leaves only once, this takes O(n2)
time.

Second, we could observe that especially instances containing segments on the boundary
that have many ports but few sites suffered from high running times. One reason for
this is that although placing leaders at the different ports in these segments affects the
leader length of the resulting labeling, the resulting sub-instances look similar from a
geometric perspective. Consider, for example, Figure 5.1. Regardless of whether we label
s at px or py, the resulting sub-instances Ix

2 and Iy
2 contain the same sites, have the same

site s′ as its leftmost site, and (almost) the same ports. Therefore, it is not necessary
to evaluate again for every port in Iy

2 in its entirety whether we can place the label
for s′ there if we have performed these checks already in Ix

2 . More concretely, assume
that we observe that the bounding box of the sites in an instance I = (s1, p1, s2, p2) is
identical to the one in the instance I ′ = (s1, p′

1, s2, p′
2). Then, due to our general position

assumption, we know that the same sites must be inside that bounding box. Furthermore,
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s

s1

s2

p1

p2

px

py

s′

Figure 5.1: No matter whether we label s at px or py, a leader λ = (s′, p) will in both
resulting sub-instances I2, bounded by s and s2, either respect the constraints or do not
respect them.

since both instances are described by s1 and s2, everything that affects the outcome of
RespectsConstraints(I, T ,λ = (s, p)) is identical, given that s is the leftmost site
in I (and I ′) and we have p ∈ (P(I1) ∩ P(I2)). This gives rise to using memoization to
run RespectsConstraints(I, T ,λ = (s, p)) only when we encounter a new geometric
structure of the (sites of an) instance. Note that we still have to ensure for all generated
sub-instances that there are sufficiently many ports in the instance. Furthermore, we
want to mention that Niedermann et al. [NNR17] also faced the problem of similarly
structured sub-instances, which they solved by bundling them together.

Command-Line Interface. As for Naïve ILP, we can start Constraint DP from the
command line using .\Constraint-DP PATH_TO_INSTANCE.json. The program
supports the optional arguments -n or --name, -o or --output, and -v or --verbose,
with the same semantics as Naïve ILP. In addition, it also supports the following optional
argument.

-i, --inverse_ordering: If present, an ordering constraint s ≺ s′ will be interpreted
as s′ ≺ s, i.e., inversed. This is convenient for the visualization to maintain the
semantics of ordering constraints visually, as the y-axis points downwards in an
SVG [DDG+11, Chapter 7].

5.1.2 Visualization
We also provide a complementary visualization of the computed labelings. The core
functionality of the visualization is written in D3.js (Version 7.8.5) [BOH11] and embedded
in an Angular (Version 16.1.5) [Ang23] web application. As for the solvers, we use JSON
files to store the computed labelings. A single file can store several labelings for the same
instance, for example, computed with different (settings of) solvers. Each stored labeling
not only describes the leaders, but contains further information, such as the total leader
length of the labeling, used solver, and running times.
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1 2 3 4 5 6
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Figure 5.2: A screenshot of our visualization. It shows an instance of the cities-10px
dataset with intra-ordering constraints and the labeling created by Constraint DP.

User Interface

We provide a screenshot of the user interface in Figure 5.2. The core of it is the central
canvas area where the instance and the labeling, i.e., the figure, are shown. We provide
several options to interact with the figure and to retrieve further information about it.

Interaction Possibilities. There are several buttons located in the top bar. We
can use them to load an instance file ( 1 ) or a labeling file for the current instance
( 2 ). Furthermore, we can zoom in or out of the figure ( 3 ), download the currently
shown figure as a .png or .svg file ( 4 ), load sample instances and their corresponding
labelings ( 5 ), or open and close the right sidebar ( 6 ).

While the top bar is to determine what should be shown on the canvas area, the
aforementioned sidebar provides us with further information about the figure we see. It
is divided into three sections, providing information about the Instance, the Labelings, or
controlling in the Settings their appearance.

In the Instance section, we list information regarding the currently loaded instance.
Hovering over a site or a port visualizes the respective id. We can copy this id to the
clipboard by clicking on the site or port. To visualize a grouping or ordering constraint,
we can hover over it. For a grouping constraint, we enlarge the involved sites ( 7 ).
Ordering constraints are visualized with an arrow ( 8 ). With a plus-button next to the
grouping constraints, we can interactively define a new grouping constraint by clicking
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on the sites that should be part of the group. Once we have included all sites, we can
copy the respective JSON snippet into the clipboard by clicking a checkmark.

In the Labelings section, we can retrieve the information about the loaded labelings.
There is a gray chip for each labeling from the JSON file. If the labeling is feasible, we
can click on the chip to load the labeling into the illustration, i.e., complete the figure.
We mark the currently loaded labeling with (Current) next to the information ( 9 ). For
example, in Figure 5.2, we have loaded a labeling created with the solver Constraint DP.

In the Settings section, we can decide whether we want to show the ports. Furthermore,
we can enable a different way of visualizing the constraints. On the one hand, we can
color each site (and its label) to indicate the grouping constraints by color or leave them
black (white) to indicate that they are not part of a grouping constraint. On the other
hand, we can embed the arcs for the ordering constraints next to the respective labels
( 10 ). Note that the former visualization is only correct if there are at least |G | different
colors and we have non-overlapping groups, as we color each site in a single color. We
provide a default set of sixteen colors but the user can also set an individual color palette.
The latter visualization is only applicable if we enrich our illustration by a labeling.

5.2 Setup of the Experiments
Our experimental evaluation can be divided into four types of experiments, each with its
own dataset, to analyze different properties of the problem and our algorithm. In the
following, we describe first the datasets and the questions we want to answer with them
before we state the used hardware. Note that we already stated the used software when
describing our implementation in Section 5.1.

5.2.1 Datasets
Unless stated otherwise, we created the datasets using auxiliary Python scripts (Python
Version 3.8.10). We ensured general position for all datasets by moving sites in steps of
one pixel in x or y direction, where necessary. Furthermore, we will, in the following,
differentiate between intra-group and inter-group ordering constraints. The former are
ordering constraints among sites of the same group, thus creating partial orders within
the groups. The latter are ordering constraints among sites of different groups, thus
enforcing that an entire group must be labeled above another group. Unless stated
otherwise, we place the boundary and the figure with an offset of ten pixels in each
direction around the object they enclose. Furthermore, we ensure that the size of the
figure is large enough to accommodate the labels that have a height of twenty pixels
and a width of 150 pixels. The height is selected such that a single-line text with a font
size of twelve points can be accommodated inside the label. The width was selected to
accommodate a typical single-word text. However, note that the width of the label is
only set for visualization purposes and has no influence on the feasibility of an instance
or the running time to compute a labeling. In each instance, we place the ports on the
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right side of the boundary. They are spaced out evenly along the side of the boundary,
maintaining a minimum distance between each other that varies between the datasets. If
the height of the boundary is not large enough to accommodate all ports, we enlarge
it accordingly. We round the computed coordinates and sizes, i.e., widths and heights,
down to integers, where necessary.

Cities-*

The aim of the cities datasets is to analyze the impact of the number of sites on the running
time of our algorithm and the quality of the resulting labelings. It consists of instances
containing the n ∈ {10, 15, 20, 25, 30, 35, 40, 45} largest cities from Austria, Germany, and
Italy, respectively, obtained from simplemaps.com [Sim23]. We enrich the instances
with contours of the countries extracted from Wikimedia Commons images [Nor23a;
Nor23b; Nor23c]. Each combination of country and number of cities results in four
different instances. One instance is without any constraints and intended to be solved
by Naïve ILP, acting as a baseline for reference. We group the sites in the other three
instances according to the administrative regions of the respective country. In addition,
one instance contains intra-group ordering constraints, where we order the cities according
to their administrative status. The capital of an administrative region should, for example,
be labeled above the other cities in this region. The fourth instance contains inter-group
ordering constraints, where we order the groups according to their population computed
from the cities in the instance. Depending on the dataset, we create a different number
of ports. In cities-2x, each instance has m = 2n many ports, and cities-90 defines 90
ports per instance. For these two datasets, we maintain a distance of at least twenty
pixels, the label height h, between two ports. For cities-10px, we perform differently. We
take the initial height of the boundary and place a port every ten pixels. Note that in a
labeling every second port cannot be used due to the height of the labels. If this leads to
too few ports, we add more ports accordingly, thus increasing the height of the boundary.
This approach led to 71 ports for the Austrian cities and 128 and 130 for the German
and Italian cities, respectively. Each dataset contains 96 different instances.

Ports

The second dataset, ports, is a variation of the cities dataset(s) and should analyze
the effect of the number of ports on the running time, feasibility, and quality of the
labelings. To do that, we consider the n = 25 largest cities from the countries and with
the constraints as described for the cities dataset(s). For each combination of country
and constraints, we create different instances where we vary the number of ports m. We
use m ∈ {⌈xn⌉ | x ∈ {1.0, 1.1, . . . , 2.9, 3.0}} and enforce a distance of at least ten pixels
between two ports. This results in 252 instances for this dataset.
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Figure n m k r Definition of Constraints
Fig. 8.30 11 44 3 0 Groups originating from colored regions or curly brack-

ets enclosing labels.
Fig. 8.81 9 60 0 7 A nerve branching off another nerve is labeled below its

“parent”.
Fig. 9.23 11 53 3 0 Overlapping groups based on explicit curly brackets or

colored regions.
Fig. 12.33 9 38 3 0 Grouping based on colored regions. Sites on the bound-

ary of two regions are in both regions, i.e., groups over-
lap.

Fig. 12.59 19* 62 3 6 Grouping based on curly brackets, ordering based on
Roman letters next to some labels.

* The original figure contains 31 sites labeled on the left and right sides of the illustration.
However, we took only the sites labeled on the left side.

Table 5.1: Properties of the human anatomy dataset.

Random

The random dataset is based on artificial data and consists of 200 randomly generated
instances. We consider n ∈ {15, 20, 25, 30, 35} different uniformly placed sites on an
800 × 800 pixels plane.1 Each instance contains k ∈ {0, 2, 8} grouping and r ∈ {0, 5, 10}
ordering constraints. To generate the grouping constraints, we randomly choose k different
sites acting as the roots of the groups. To simulate the spatial proximity of sites in the
same group, we consider all sites within a 200-pixel radius around each root. Each such
site has a 75% chance of being part of the group. The size of the resulting groups varies
between one and eleven, with a mean of 3.82. Two groups of the same instance overlap
on average in 1.05 sites. For the ordering constraints, we randomly select two sites. We
create five instances for each combination of n, k, and r, with k + r > 0, to balance out
random factors. In each instance, we place a port every ten pixels.

Human Anatomy

The fourth dataset, human anatomy, is a small dataset containing only five instances. It
contains instances obtained from the Sobotta atlas of human anatomy [WP13] that Nieder-
mann et al. used to evaluate the performance of their contour labeling algorithm [NNR17].
These instances are enriched with grouping and ordering constraints. The constraints
are either explicitly expressed in the book, for example, by curly brackets, or deemed as
reasonable by us, for example, due to colored regions in the figures or the branches of
nerve fibers. Note that the book uses contour labeling for their figures. Therefore, we
select the instances such that we maintain feasibility also under the boundary labeling

1The actual plane has a size of 1000 × 1000 pixels, but we ensure that the sites keep a distance of at
least 100 pixels to the border.
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model. Similar to Niedermann et al., we place a port every ten pixels. We summarize
the properties of the instances in Table 5.1. The motivation behind this dataset is to
analyze our algorithm in real-world scenarios. We, therefore, will compute the labelings
for this dataset on an off-the-shelf laptop.

5.2.2 Experimental Setup
The experiments with the cities-*, ports, and random datasets were executed on the
compute cluster of the Algorithms and Complexity group at TU Wien. The compute
cluster consists of 16 nodes, each having two Intel ® Xeon ® E5-2640 v4, 2.40GHz 10-core
processors backed up by 160 gigabytes of RAM [Alg23]. We set a hard memory limit
of 96 gigabytes that we never reached. In addition, the time limit of twenty hours per
instance was also never exceeded.

The instances of the human anatomy dataset were run on a laptop with an Intel ® Core™
i5-8265U, 1.60GHz 4-core processor. The laptop runs Windows 11 Pro 22H2 and has
16 gigabytes of RAM. For compatibility reasons, we ran the experiments inside a WSL2
environment of Ubuntu 20.04.6 LTS that has 7865 mibibytes of RAM available.

We measure the running time of our solvers in wall-clock time. In the measurement, we
exclude the reading (and parsing) of the instance and writing of the labeling but include
any other preprocessing steps, such as creating the PQ-A-Graph.

5.3 Results
In the following, we present and discuss the results of our experiments. We analyze them
in Sections 5.3.1 to 5.3.4 for each dataset and give in Section 5.3.5 a final verdict.

5.3.1 Cities-*
We start with the results for the instances from the cities datasets. Table 5.2 presents the
fraction of feasible instances for each dataset grouped by country and type of constraints,
where we indicate the presence of the latter with the checkmarks and crosses. Almost
every second instance is infeasible. However, we can see that the infeasibility is not
evenly distributed across the different groups of constraints and concentrated in the
instances containing ordering constraints. A reason for this is the location and the size
of the groups. One of the regions with the most inhabitants is, for example, in Italy
Latio, which is located in the center of Italy. Due to the inter-ordering constraints, we
would need to label sites in this group above most other sites, blocking most ports with
their leaders. Many instances with grouping constraints are feasible, probably due to the
spatial proximity of the sites within a group. One exception is Germany, where probably
the group North Rhine Westphalia, which has many cities, turned the instances infeasible.

We proceed with analyzing the running time of the algorithm and the leader length of the
labelings. Since most instances with ordering constraints are infeasible, we do not include
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Constraints in the Instances # Feasible / # Total Instances
Country Gr.* Intra Or.† Inter Or.‡ cities-2x cities-90 cities-10px

A
us

tr
ia ✔ ✘ ✘ 8 / 8 8 / 8 5 / 8

✔ ✔ ✘ 1 / 8 1 / 8 1 / 8
✔ ✘ ✔ 0 / 8 0 / 8 0 / 8
✘ ✘ ✘ 8 / 8 8 / 8 8 / 8

G
er

m
an

y ✔ ✘ ✘ 3 / 8 8 / 8 4 / 8
✔ ✔ ✘ 0 / 8 0 / 8 1 / 8
✔ ✘ ✔ 0 / 8 0 / 8 0 / 8
✘ ✘ ✘ 8 / 8 8 / 8 8 / 8

It
al

y

✔ ✘ ✘ 7 / 8 7 / 8 7 / 8
✔ ✔ ✘ 3 / 8 3 / 8 4 / 8
✔ ✘ ✔ 0 / 8 0 / 8 0 / 8
✘ ✘ ✘ 8 / 8 8 / 8 8 / 8

Austria – 17 / 24 17 / 24 14 / 24
Germany – 11 / 24 16 / 24 13 / 24

Italy – 18 / 24 18 / 24 19 / 24
– ✔ ✘ ✘ 18 / 24 23 / 24 16 / 24
– ✔ ✔ ✘ 4 / 24 4 / 24 6 / 24
– ✔ ✘ ✔ 0 / 24 0 / 24 0 / 24
– ✘ ✘ ✘ 24 / 24 24 / 24 24 / 24

Total: 46 / 96 51 / 96 46 / 96
* Grouping constraints
† Intra-group ordering constraints
‡ Inter-group ordering constraints

Table 5.2: Feasible instances in the cities datasets.

them in the upcoming evaluation. However, we compared, for the feasible instances with
ordering constraints, the running time and leader length to the corresponding instance
with only grouping constraints. Regarding the running time, we could not observe a clear
pattern. The leader length was, on average, at most one percent higher across all three
datasets. This could imply that these labelings differ in re-routing a few leaders only.

Leader Length

Figure 5.3 plots the relative increase of the leader length of the (feasible) instances with
grouping constraints to the corresponding instances without constraints. We can see
that for the Austrian and Italian instances, the relative increase is across all datasets less
than 1.15. In particular, the increase for the Italian cities is negligible. Noteworthy is
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Figure 5.3: Relative increase of the leader lengths obtained with Constraint DP when
compared to labelings from Naïve ILP for instances from the cities datasets.

also that we have in the beginning almost no increase, and only for larger instances it
becomes significant for Austrian instances. One reason for this is that in denser instances
we might need to label entire (large) groups at other places, thus increasing the leader
length significantly. Note that the absence of points in Figure 5.3 means infeasibility of
the corresponding instance. We can see that for the instances with German cities (see
the violet observations in Figure 5.3) in cities-2x, only the first two instances and the last
one were feasible. Although a bit counterintuitive at first, one possible explanation for
this is that adding to this instance some sites means adding twice as many ports. Hence,
once enough ports are there, the instance becomes feasible.

We were also interested in analyzing whether the spatial proximity of sites alone is
sufficient to respect the grouping constraints, at least to some extend. To do that, we
let L be the labeling reported by Constraint DP and L′ the one by Naïve ILP. We
compute, for an evaluation function g, the relative change as g(L′)−g(L)

g(L) , i.e., we take our
algorithm as the baseline. In Figure 5.4a, we plot this relative change for the number of
group blocks against the relative change in leader length. To compute the number of
group blocks, we count for each group the number of maximal sets of consecutive labels
it is composed of. Note that this value must be at least k, the number of groups, and
splitting a group increases it by one. Figure 5.4a reveals that many instances lie, with
respect to the leader length, in the first third of the plot. However, the observations are
rather scattered concerning the group blocks, and we can observe that larger instances
are further to the right. Hence, in the labeling created by Naïve ILP, the groups are
sometimes considerably split up while the labelings have only five to ten percent shorter
leaders. This could indicate that the price to pay, in terms of leader length, to respect the
grouping constraints is small compared to how much more understandable such labelings
are as opposed to ones that only optimize for leader length. However, the instances
created from German cities do not follow the above-mentioned pattern, and it seems that
the tradeoff of respecting the constraints is higher. To let the reader judge the visual
quality of the created labelings, we present in Figures 5.7 to 5.9 some of the them.

To better understand this phenomenon, we want to analyze where the labels are placed.
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Figure 5.4: Impact of the semantic constraints on the placement of the labels and the
resulting leader lengths in the cities datasets.

As cities-90 has the most feasible instances, we take this dataset and subdivide each
instance into fifty equal-height rows between the first and the last port. Each row contains
roughly the same number of ports, and we count for each row how many times we placed
a label there. The resulting histogram is given in Figure 5.4b. Furthermore, we plot the
y-coordinate of the sites and the extent of the contour. To see changes with increasing
n, we visualize this once for all instances with 10 ≤ n ≤ 25 and once for 10 ≤ n ≤ 45.
It can be observed that y-ranges with many sites are not necessarily more heavily used
by the labels. For Germany, this is, for example, due to North Rhine Westphalia, as
Figure 5.5a reveals. Finally, note that for small n, all labels are placed inside the contour,
whereas this is not the case for large n. To see this for Germany, compare the labelings
of Figure 5.5.

Running Time

We also want to shed light on the time required to compute the labelings. Figure 5.6a
contains running time plots for all datasets. We want to remind the reader that the
number of ports in cities-2x is not constant. Hence, in Figure 5.6a, varying the number
of sites also influences the number of ports. For all other datasets, the number of ports is
the same across all instances from the same country. Furthermore, recall that we do not
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(a) (b)

Figure 5.5: Labeling of the (a) 25 and (b) 45 largest German cities with 90 ports.

consider instances with ordering constraints. As the running time for Naïve ILP varies,
for a given n, little across the countries, we report in Figure 5.6a for this solver only
the average running time together with the range of measured running times. We can
observe that the number of ports has a huge impact on the running time, as the increase
of the running time with larger n is for cities-90 and cities-10px barely visible. However,
every instance can be solved within 400 seconds, i.e., seven minutes. If we vary m with
n, we can observe that small to medium-sized instances of up to twenty-five sites can be
computed in under ten seconds, and for the larger ones, it takes between one and two
minutes.

Figure 5.6a suggests that recognizing an infeasible instance can be done an order of
magnitude faster. Therefore, we analyzed the running time of all infeasible instances,
including those with ordering constraints. We plot them in Figure 5.6b. As the running
time plots from Figure 5.6a already suggest, we can identify infeasible instances compa-
rably fast. Especially when paired with ordering constraints, we can often classify an
instance as infeasible within a second. We have already given one possible explanation for
this when arguing why instances with ordering constraints are more likely to be infeasible,
namely because we would block off many ports. Hence, we must only create and evaluate
comparably few instances in the DP-Algorithm until we conclude that the instance is
infeasible. For grouping constraints alone, but also when paired with intra-ordering
constraints, it takes longer to identify infeasible instances. This is most likely because
infeasibility can be detected only after evaluating almost all instances in the algorithm.
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Figure 5.6: Running time on various aspects for the cities datasets (log-plots).

Sample Labelings

We provide in Figures 5.7 to 5.9 sample labelings of this dataset. Each figure shows
the 25 largest Italian, Austrian, and German cities, respectively, once labeled with our
algorithm and once with Naïve ILP. Note that for Germany, the instance in the cities-2x
dataset with n = 25 is infeasible. Hence, Figure 5.9 contains an instance without a
labeling. Grouping constraints are indicated by the colors, where black sites and labels
without a colored bar represent sites that are not involved in any constraint as they are
the only city in the respective administrative region.

We can observe that the labeling created by our algorithm gives a more consistent
appearance, as the administrative regions are labeled contiguously. However, we have
visually observable longer leaders, as seen, for example, in Figure 5.9. Furthermore, the
amount and distribution of the ports in cities-10px and cities-2x give a better visual appeal
than in cities-90. In particular, observe for cities-90 the large boundary in Figure 5.8.

5.3.2 Ports
Next, we continue with analyzing the results for the ports dataset. We present in
Table 5.3 the fraction of feasible instances, grouped by country and types of constraints.
We can see that only 38.5% of the instances were feasible, which is less than for the cities
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Figure 5.7: Sample labelings of the 25 largest Italian cities from the cities datasets.
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Figure 5.8: Sample labelings of the 25 largest Austrian cities from the cities datasets.

73



5. Experimental Evaluation

Constraint DP

c
it

ie
s
-2

x

Naïve ILP

c
it

ie
s
-1

0
p
x

c
it

ie
s
-9

0

Figure 5.9: Sample labelings of the 25 largest German cities from the cities datasets.
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Constraints in the Instances
Country Gr.* Intra Or.† Inter Or.‡ # Feasible / # Total Instances

A
us

tr
ia ✔ ✘ ✘ 11 / 21

✔ ✔ ✘ 0 / 21
✔ ✘ ✔ 0 / 21
✘ ✘ ✘ 16 / 21

G
er

m
an

y ✔ ✘ ✘ 6 / 21
✔ ✔ ✘ 0 / 21
✔ ✘ ✔ 0 / 21
✘ ✘ ✘ 21 / 21

It
al

y

✔ ✘ ✘ 18 / 21
✔ ✔ ✘ 4 / 21
✔ ✘ ✔ 0 / 21
✘ ✘ ✘ 21 / 21

Austria – 27 / 84
Germany – 27 / 84

Italy – 43 / 84
– ✔ ✘ ✘ 35 / 63
– ✔ ✔ ✘ 4 / 63
– ✔ ✘ ✔ 0 / 63
– ✘ ✘ ✘ 58 / 63

Total: 97 / 252
* Grouping constraints
† Intra-group ordering constraints
‡ Inter-group ordering constraints

Table 5.3: Feasible instances in the ports dataset.

datasets. While we can again observe that almost all instances with ordering constraints
are infeasible, here we also have infeasible instances without any constraints. This is
because we enforce a minimum distance of ten pixels between two ports, which is half the
height of the labels. Hence, although we ensure that there are theoretically, i.e., when
compared by number, sufficiently many ports, they can still be too few once we consider
their placement. One reason for this is that every other port could be blocked due to
labels on the remaining ports. Hence, some instances might already be infeasible without
semantic constraints. The arguments we gave for the cities datasets about why ordering
constraints tend to be infeasible apply here as well. Furthermore, we compared, where
applicable, the leader length and running time of instances with ordering constraints to
their counterparts with only grouping constraints. We could observe that, on average, a
labeling with ordering constraints has nearly the same leader length as its counterpart,
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Figure 5.10: Comparison of leader lengths obtained with Constraint DP to Naïve ILP for
instances from the ports dataset.

but to compute it, we need 1.16 times the time. As for the cities dataset, this implies
that obtaining a feasible labeling that respects the ordering constraints can be done by
slightly re-routing the leaders.

Leader Length

We compare in Figure 5.10 the leader length of the feasible instances with grouping
constraints to the one computed by Naïve ILP. As for the cities datasets, we can see
that the labelings that respect the constraints have longer leaders. We can observe in
Figure 5.10a that the leader length decreases with more ports. This was to be expected,
as more ports imply that more sites have a port that is in terms of the y-coordinate close
by. Hence, we can use shorter leaders to reach them and have to take shorter detours to
respect the constraints. Figure 5.10b shows that the relative increase in the leader length
is comparable to the cities datasets except for one Italian instance. We can also observe
that it varies little with the number of ports. Furthermore, the difference between the
solutions from Naïve ILP and Constraint DP is negligible for the Italian cities.

Noteworthy is the increase in the leader length between m = 35 and m = 50 for Austria
and m = 60 and m = 70 for the other two countries, which can be observed in Figure 5.10a.
This is at first counterintuitive, but one possible explanation lies in the positioning of
the ports. Recall that we uniformly distribute the ports on the boundary while ensuring
a distance of at least ten pixels between two ports. Adding more ports, therefore, alters
the position of the existing ports. Hence, a labeling on the previous ports might now be
infeasible. Therefore, the labeling could significantly differ from the one on the old ports
to ensure feasibility, which explains the increase in leader length.
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(b) Infeasible instances.

Figure 5.11: Running time for our solvers on the ports dataset (log-plots).

Running Time

We have already observed when evaluating the cities datasets that the number of ports
m is the dominant factor in the running time. Figure 5.11 gives further insight into how
it affects the running time. In particular, we highlight in Figure 5.11a m = 50, which
is the number of ports for n = 25 in Figure 5.6a. As for Figure 5.6a, we aggregate the
running times of Naïve ILP and show the mean and the extent of the measured values.
In Figure 5.11a, we can observe that for up to m = 40, Constraint DP is faster than
Naïve ILP, and for larger instances, the running time of both solvers is comparable.

When comparing Figure 5.11a with Figure 5.6a, we can make two interesting observations.
On the one hand, the runtime does not seem to increase continuously with the number of
ports but decreases several times as we add more ports. On the other hand, the feasibility
of the instances is not monotone. For example, the instances with the Austrian cities
become feasible with m = 30 but then turn infeasible at around m = 38 before becoming
feasible again at around m = 58. One possible explanation for both phenomena is once
more the position of the ports. Together with what we have observed for the leader
length, we can conclude that the problem and our algorithm are not stable concerning
the position of the ports in terms of feasibility, leader length, and running time.

Figure 5.11b shows the running time of infeasible instances. The plot confirms that we
can recognize many infeasible instances within a few seconds.

Sample Labelings

We provide in Figure 5.12 sample labelings of this dataset for some instances with Italian
and Austrian cities. Since many instances with German cities were infeasible, we refrain
from plotting them in the interest of space. The figure shows the labelings computed
by our solvers for different numbers of ports. We can see how the placement of the
ports, which we mentioned in our discussion several times, can have a huge impact on
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Constraints in the Instance · / #Total Instances
Sites (n) Group. Cstrs.* Ord. Cstrs.† # Respectable # Feasible

– ✔ ✘ 34 / 50 28 / 50
– ✘ ✔ 44 / 50 32 / 50
– ✔ ✔ 56 / 100 20 / 100
15 – 25 / 40 14 / 40
20 – 28 / 40 18 / 40
25 – 28 / 40 17 / 40
30 – 27 / 40 16 / 40
35 – 26 / 40 15 / 40

Total: 134 / 200 80 / 200
* Grouping constraints
† Ordering constraints

Table 5.4: Respectable and feasible instances in the random dataset.

the computed labeling. Compare, for example, in Figure 5.12 the labelings for the Italian
cities for m = 35, i.e., 1.4n, with those for m = 60, i.e., 2.4n. While those for m = 35 have
a more scattered appearance, those for m = 60 seem reasonable and compact. Finally,
note how in this dataset many of the grouping constraints are (to a large extent) already
respected by Naïve ILP, although it does not take them into account when computing
the labeling.

5.3.3 Random

As described in Section 5.2.1, we created this dataset with artificial data to see how
runtime and feasibility are affected by the distribution of sites and constraints. Hence,
we will limit our evaluation of this dataset to these two aspects.

Table 5.4 presents the fraction of respectable and feasible instances in this dataset. From
Table 5.4, we can see that 40% of the instances were feasible. In particular, many
instances were infeasible when combining grouping and ordering constraints. Table 5.4
shows that many infeasible instances contain constraints that cannot be respected at all.
While ordering constraints alone tend to be respectable, when combined with grouping
constraints, only 56% of the instances are respectable. One reason for this could be
that it is more likely to create cycles among the groups, which results in the constraints
being no longer respectable. Hence, in conclusion, we can say that randomly adding
constraints that do not arise from the actual semantics of the sites can easily lead to
infeasible instances, at least with the given set of ports.
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Figure 5.12: Sample labelings for the n = 25 largest Italian and Austrian cities with
m = 1.4n and m = 2.4n ports from the ports dataset.
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Figure 5.13: Running time of our DP-Algorithm on the random dataset (log-plot).

Running Time

Figure 5.13 shows the running times of a few instances. To maintain readability, we
explicitly refrained from presenting all running times and decided to plot the running times
of the most constrained instances. As in the previous plots, we indicate with the markers
whether the instance was feasible or not. Since we generate per combination of n, k, and
r five different instances, we present also the mean and the standard error across the five
instances. Apart from the observations we already made for the previous datasets, we can
notice two things. First, detecting infeasibility for instances with only ordering constraints
seems to take longer than having only grouping constraints. A possible reason for this
is that we can only violate an ordering constraint s ≺ s′ if the leader for the leftmost
site uses a port between s and s′ or if we label s or s′. However, for (large) grouping
constraints, a violation can be detected earlier since separating any two sites of the
group will immediately be detected as a violation. Second, the difference in the running
times between feasible and infeasible instances is considerably larger in this dataset. We
will investigate the latter observation with the help of Figure 5.14. In Figure 5.14a,
we plot the mean running time of the instances grouped by their respectability and
feasibility together with the standard error. As we can see, the running time for feasible
instances is relatively constant, as it is dominated by the number of ports, which remains
constant in this dataset. For infeasible instances with respectable constraints, we can
observe a relatively high running time with a more noticeable standard error, which
can be traced back to the different points in time when we recognize infeasibility. Some
instances turn out to be infeasible early, thus having a comparably low running time,
whereas for others, especially for those with only ordering constraints, as we have seen
in Figure 5.13, detecting infeasibility takes almost as long as computing the labeling.
Finally, we can notice that detecting trivial infeasible instances, i.e., instances that contain
non-respectable constraints, can be done within milliseconds, as we have the linear-time
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(a) Running times of feasible, only respectable,
and non-respectable constraints.
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(b) Running times of infeasible instances.

Figure 5.14: Detailed analysis of the running times for instances from the random dataset
(log-plots).

preprocessing routine. That detecting instances with non-respectable constraints can be
done considerably faster is also the main conclusion of Figure 5.14b. There, we plot the
time required to detect an infeasible instance. We can see that the time needed to detect
infeasibility due to non-respectable constraints is almost independent of the number of
sites, types of constraints, or their number. The running time for detecting an infeasible
instance with respectable constraints, on the other hand, varies considerably among the
instances, as the more scattered observations in Figure 5.14b show.

5.3.4 Human Anatomy

Last but not least, we analyze the results of the human anatomy dataset. All of the
instances were feasible. Since the main focus of this dataset was to check whether we
can label real-world instances on an off-the-shelf laptop, we will mainly analyze the time
required to compute the labeling. Nevertheless, we also present the computed labelings.

Running Time

Table 5.5 contains the running time for Constraint DP and Naïve ILP, respectively. We
can see that both solvers can find a leader-length-minimal labeling in around five seconds
for all instances together. Remarkable is that Constraint DP solves every instance
except the largest one faster than Naïve ILP. We consider this an improvement in the
daily work of a human illustrator, as they usually need thirty minutes for a single
illustration [NNR17]. Furthermore, the labeling created by our algorithm respects the
constraints, whereas the one by Naïve ILP does not, as our sample labelings of Figure 5.15
show. Finally, we want to point out that, as expected, we spend almost the entire time
in our algorithm on filling the DP-Table. Every other part of the algorithm, such as
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Constraint DP
Instance Naïve ILP Total Of Which Bookkeeping*

Fig. 8.30 0.7922 0.6084 0.0003
Fig. 8.81 0.4295 0.3700 0.0003
Fig. 9.23 0.5023 0.3658 0.0004
Fig. 12.33 0.2519 0.0418 0.0003
Fig. 12.59 2.4632 3.6388 0.0006
* This includes everything but filling the DP-Table.

Table 5.5: Running times of our algorithms on the human anatomy dataset in seconds.

creating the PQ-A-Graph, ensuring that the constraints are respectable, or retrieving
the final labeling, was done in a few milliseconds.

Sample Labelings

Figure 5.15 shows the labelings created by Constraint DP and Naïve ILP. We visualize
the ordering constraints with the arcs embedded next to the labels. Note that we have
overlapping grouping constraints. Therefore, Figure 5.15 does not visualize all constraints.
In particular, there is a grouping constraint in the instance Fig. 12.33 among the orange
sites and the uppermost purple site. Therefore, the black site must be labeled below the
purple ones to not violate this constraint. We notice that Naïve ILP never respects all
constraints. Furthermore, we can observe that the labeling computed by Constraint DP
deviates in the majority of the cases only slightly from the one computed by Naïve ILP.

5.3.5 Overview and Final Verdict on the Experiments
Our discussion of the results gave us important insights into the problem and conclusions
for our algorithm, which we want to summarize in this section.

First, a pattern we observed throughout the different datasets is that many instances are
infeasible in the presence of ordering constraints. Comparisons with instances without
ordering constraints revealed that feasible instances have a negligible higher leader length.
Hence, it seems that ordering constraints are only suited for enforcing locally limited
orders but not suited to putting labels for sites far away into relation. Furthermore, we
could observe that instances based on geographic locations were, also without ordering
constraints, sometimes infeasible. Since the instances based on the Sobotta atlas of
human anatomy [WP13] were feasible, we can conclude that mindlessly adding restrictions
without considering the geometric position of the sites and ports is not sensible. However,
adding semantic constraints can be fruitful if an illustrator has already an idea of what
they want to visualize. As we have seen, looking only for a leader-length-minimal labeling
can (partly) respect, by coincidence, some of the semantic constraints, but there is no
guarantee for that. It also turned out that our algorithm is for small to medium-sized

82



5.3. Results

Constraint DP

F
ig

. 
8

.3
0

Naïve ILP

F
ig

. 
8

.8
1

F
ig

. 
9

.2
3

F
ig

. 
1

2
.3

3
F
ig

. 
1

2
.5

9

Figure 5.15: Sample labelings of the instances from the human anatomy dataset.
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instances fast enough to compute a labeling in a few seconds or classify them as infeasible.
On the other hand, if the instance is large, the running time can be seen as a limitation
of our approach, especially in practical applications. One reason for this was that the
running time seems, on the practical side, to be more dependent on the number of ports
than on the number of sites. We could also observe that the quality and feasibility of
the labeling strongly depend on the ports, which makes considering a setting without a
pre-determined set of ports interesting and relevant.
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CHAPTER 6
Variations of 1-Sided Constrained

Boundary Labeling

Throughout this thesis, we made different assumptions about our model and decisions on
how to interpret grouping and ordering constraints. While some of them turned out to
be crucial for efficient algorithms, others served purely to give us a starting direction. It
is time to look into variations that arise from the 1-Sided Constrained Boundary
Labeling problem once we no longer have these assumptions or change them.

We start with Section 6.1, where we no longer assume that the candidate ports are part of
the input. Similar to Fink and Suri [FS16], we observe that we can consider a restricted
set of candidate label positions and re-use our dynamic programming algorithm from
Chapter 4. In Section 6.2, we neglect ordering constraints and assume that the grouping
constraints induce a partition on the sites since this often occurs in real-world examples.
Finally, in Section 6.3, we allow the violation of grouping or ordering constraints but
have to compensate for this in the optimization function.

We see this chapter only as a first look into some variations that might arise. Therefore,
we leave it open for future work to further analyze the proposed variations or define new
extensions of b-Sided Constrained Boundary Labeling.

6.1 Sliding Reference Points
Until now, we could place each label at one of m different candidate positions. The main
task of the algorithm that we introduced in Chapter 4 was, therefore, to select for each
site s ∈ S one single port p ∈ P out of that m ports, such that the resulting labeling
fulfills all of our constraints, while at the same time being optimal with respect to some
quality criterion. Having only m different placements for the labels has some algorithmic
advantages. Observe that we have for n sites and m ports up to

�m
n

�
n! = mn, i.e., m to the
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6. Variations of 1-Sided Constrained Boundary Labeling

s1
s2

s3

s4

(a) This instance does not possess a feasible
labeling on the given reference points.

s1

s2

s3

s4

(b) The instance from Figure 6.1a that we can
label with an alternative set of reference points.

Figure 6.1: An instance whose feasibility depends on the position of the reference points.

n falling, different labelings one would need to try. Although there are exponentially many
combinations, thanks to the observation that the leader of the leftmost site subdivides
an instance, we can enumerate all relevant site-port combinations in time polynomial
in the size of the instance. In particular, recall that the recurrence relation we used in
our DP-Algorithm of Chapter 4 does not work if we do not have finitely many label
candidates for a site. Hence, it seems reasonable to assume that those reference points
are part of the instance. However, this simplistic approach has two disadvantages. On
the one hand, it requires that a human illustrator determines suitable label positions
by hand and potentially re-runs the algorithm several times with different candidate
positions until they are satisfied with the result. On the other hand, while we can find
an optimal solution given the reference points, there is no guarantee that this will be the
overall best solution, i.e., when neglecting the predefined reference points.

To circumvent these limitations, the literature proposed models and algorithms that do
not assume a set of reference points as input. Noteworthy in this regard is the initial
work by Nöllenburg et al. [NPS10] and the follow-up results by Huang et al. [HPL14].

The motivations for sliding reference points we gave above already apply to the general
boundary labeling problem, i.e., where we do not have any semantic constraints. However,
specifying a fixed set of potential label positions in the presence of grouping or ordering
constraints has a further disadvantage that is arguably more severe. Consider, for
example, the instance from Figure 6.1, together with the grouping constraints G =
{{s1, s4}, {s2, s3}}, which we also indicated with the colors of the sites in the figure.
Observe that the instance from Figure 6.1a does not possess a feasible labeling. No
matter where we label the green group, their leaders either enclose an orange site, as in
Figure 6.1a, or cut off a port that would be required by the orange sites. However, after
moving the reference points downwards as shown in Figure 6.1b, we can find a feasible
labeling. This peculiarity that, in the presence of our semantic constraints, the feasibility
of an instance also depends on the placement of the reference points makes algorithms
for flexible label positions inevitable.
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6.1. Sliding Reference Points

6.1.1 The 1-Sided Constrained Boundary Sliding Labeling Problem
We now extensively discussed why it is sometimes necessary to abandon the pre-defined
set of reference points and allow the labels to be placed everywhere along one side
of the boundary, as long as the resulting labeling is feasible. We can easily model
this new freedom of the label placement by slightly altering the definition of 1-Sided
Constrained Boundary Labeling (see Problem 3).

Problem 7 (1-Sided Constrained Boundary Sliding Labeling).

Given: A set of n sites S = {s1, . . . , sn}, an infinite vertical line ν to the right of S,
constraints C = (G , ≺) consisting of a family of k grouping constraints G and
a relation ≺ consisting of r ordering constraints, a label height h > 0, and a
computable function f : S × R → R+

0 .
Task: Find a feasible 1-sided po-labeling L that respects C, minimizes f(L), and in which

all labels have their port on ν.

Note that we still require that the port of a label is at its (left) vertical center. Observe
that the problem definition allows to place the labels anywhere on the infinite vertical
line ν. However, in real-world applications, this is not always possible. One usually then
asks to place the labels within a given (vertical) interval that represents, for example, the
available height on a book page. Nevertheless, to simplify arguments, we assume that
there is no such restriction on the placement of the labels but see it as an interesting
open problem.

In the following section, we will show that we do not have to consider all (infinite) label
positions on the entire (unbounded) vertical line but can restrict ourselves to a set of
polynomially many candidate ports. To that end, we will show this result for the most
common optimization functions, feasibility, leader-bend-minimization, and leader-length-
minimization. We see investigating other optimization functions as a direction for further
research.

6.1.2 Reducing to 1-Sided Constrained Boundary Labeling by
Defining a Suitable Finite Set of Reference Points

While 1-Sided Constrained Boundary Sliding Labeling seems notoriously difficult,
we will show in this section that it is sufficient to consider only O(n2) many reference
points. This result will use Assumption 6, which states that the vertical distance between
any pair of sites must not be a multiple of the label height h. We want to point out that
Assumption 6 is not a real restriction since we can achieve this by moving some sites
slightly.

Assumption 6. The vertical distance |y(s) − y(s′)| between two sites s, s′ ∈ S, s ≠ s′,
must not be a multiple of h, the height of the labels.
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6. Variations of 1-Sided Constrained Boundary Labeling

In the following, we first restrict ourselves to finding some feasible labeling. Later, we
provide arguments to adapt the proof to find a leader-bend-minimal or leader-length-
minimal feasible labeling. As in the literature, we will call a set of touching labels a stack
of labels [NPS10].

Checking on the Feasibility of an Instance

Let I be an instance of 1-Sided Constrained Boundary Sliding Labeling that
satisfies Assumption 6. We define the following.

d := min
s,s′∈S,

s ̸=s′

���y(s) − y(s′)
�� − qh

�
, where q =

 |y(s) − y(s′)|
h



Note that d equals the smallest value one would need to add to a multiple of h such that
there are two sites in S that are this far apart. Due to Assumption 6, d > 0 holds. Let
0 < ε < d be an arbitrary but instance-dependent constant. We create the following set
P(S) of ports. For each port p ∈ P(S), we have x(p) = x(ν). Hence, we only state their
y-coordinates.

P(s) := {y(s) + qh, y(s) + qh + ε, y(s) − qh, y(s) − qh − ε | 0 ≤ q ≤ n}
P(S) :=

�
s∈S

P(s)

Clearly, |P(S)| = O(n2). Furthermore, the definition of d gives rise to the following
observation.

Observation 6.1. For each s, s′ ∈ S, s ̸= s′, there exists a p ∈ P(s) such that we have
|y(s) − y(p)| < |y(s) − y(s′)|, i.e., between any two sites there is at least one port.

The following Lemma 6.1 builds on top of Observation 6.1 to show that it suffices to
consider only ports from P(S) to check whether an instance I has a feasible labeling.

Lemma 6.1. Let I be an instance of 1-Sided Constrained Boundary Sliding
Labeling that satisfies Assumption 6. If I possesses a feasible labeling, then there also
exists one in which each port is from P(S).

Proof. Our proof builds on arguments used by Fink and Suri for a similar result [FS16,
Lemma 1].

Let L be a feasible labeling of I in which, for the sake of the proof, not all ports are from
P(S). We will transform it into a feasible labeling L′ in which each port is from P(S).
Note that throughout the proof we will never change the order of the labels. Hence, if
L respects the constraints, so does L′. Let st and sb be the top-most and bottom-most
sites in the instance, respectively. If there are labels that have its port above y(st) + ε,
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6.1. Sliding Reference Points

h+ 1⇒ d ≤ 1

h
h+ εh+ 4⇒ d ≤ 4

Figure 6.2: The leader of a green site crosses the orange site after moving all stacks
upwards. We only show the ports that arise from the orange site.

we move all of them simultaneously down until the bottom-most one, let it be ℓ, either
hits the port p ∈ P(st) with y(p) = y(st) + ε, or another label. In either case, we no
longer move ℓ, but continue the same process with the other labels above st. Observe
that in the former case, ℓ is positioned at a port from P(S). Furthermore, the label that
is the next one above ℓ will eventually hit it and is thus also placed at a port from P(S).
We do the same with labels that are entirely below sb. However, we move them upwards.
Since these labels were entirely above st or below sb, and also remain that, this cannot
introduce any crossings.

Then, for the remaining labels not yet positioned at a port from P(S), we proceed
bottom-to-top as follows. We take the bottom-most not yet positioned label ℓ and move
it upwards until it either is positioned at a port from P(S) or hits another label ℓ′. In
the former case, we stop. In the latter case, ℓ might not yet be at a port from P(S). To
ensure the feasibility of L′, we “merge” those labels into a stack and move from now on
this entire stack and thus all its labels simultaneously. Observe that ℓ can never move
past by a site since any site induces a port in P(S), i.e., in the worst case, we stop at
a p ∈ P(S) with y(p) = y(s) for some s ∈ S. This may result in leaders crossing other
sites, but we will address that later. First, we continue to move all the not-yet-positioned
labels in the same manner.

In the end, we have to deal with the aforementioned leader-site crossings. Such crossings
can arise if in L a leader λ, originated at a site s, passes between a port of P(S) and a
site s′ ∈ S, s ̸= s′. If we then move labels upwards, we may first hit the port induced by
s′, i.e., the port p with y(p) = y(s′), before any other port. Depending on the position
of s′, i.e., if x(s) ≤ x(s′) holds, λ now crosses s′. To resolve this crossing, we take that
label and the stack it belongs to, if there is one, and move it downwards until we hit a
port from P(S). By our selection of ε, it is guaranteed that we will hit a port before
we hit another site since there is at least one other port strictly between the end of the
stack and any other site s′′, as 0 < ε < d ≤


|y(s′) − y(s′′)| −

� |y(s′)−y(s′′)|
h

�
h


holds, and

we have a port at y(s′) − ε and one at y(s′′) + ε. Figure 6.2 also visualizes this with
the orange ports. Note that d ≤ 1 holds in Figure 6.2. Therefore, we have ε < 1 and
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6. Variations of 1-Sided Constrained Boundary Labeling

(a) The labels are trapped between two sites if
we do not include the ε in the definition of the
ports.

(b) This instance with sliding reference points
possesses a feasible but no leader-length-
minimal feasible labeling.

Figure 6.3: Instances that show (a) why we need the ε in the discretization step and (b)
how an instance might have no leader-length-minimal labeling.

consequently h + ε < h + d ≤ h + 4, the distance between the orange and the purple
sites. If we move all such (stacks of) labels simultaneously, we can never overrun a placed
label by moving downwards but might merge with another stack already placed at ports
from P(S). Now, in the resulting labeling L′, each label is located at a port p ∈ P(S),
and since we never changed the order of the labels when transforming L into L′, all
constraints are still respected.

We get the following corollary from |P(S)| = O(n2).

Corollary 6.1 (Together with Theorem 4.1). Let I = (S, ν, C = (G , ≺) , h, f) be an
instance of 1-Sided Constrained Boundary Sliding Labeling that satisfies As-
sumption 6 with n = |S|, k = |G |, and r = |≺|. We can compute a feasible labeling of I
in O(n11 log n + k + ∥G ∥) time using O(n6) space if such a labeling exists.

In contrast to Fink and Suri [FS16], we require the additional ε in the definition of the
ports. The reason for this is to ensure planarity without changing the order of the labels
while moving them. Therefore, we have to ensure that a stack of labels is not enclosed
between two sites without having the ability to reach a port without intersecting a site, as
in Figure 6.3a. In the proof by Fink and Suri, we can resolve the situation of Figure 6.3a
by moving the green stack of labels up (or down) until we hit a site with our leader
and then exchange the respective leaders and labels. However, this is impossible in our
setting, as this would violate the green grouping constraint.

Minimizing Leader Bends

If we seek a leader-bend-minimal labeling, we first recall the optimization function that
we defined in Section 2.4.1 and note that it only matters whether a site s is labeled at the
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6.1. Sliding Reference Points

(single) port p with y(p) = y(s), if it exists. Any other port induces an identical cost in
the labeling. Now, observe that P(s) introduces such a port for each s ∈ S. Since P(S),
therefore, contains for each site such a port, we conclude, with the help of Lemma 6.1, that
a leader-bend-minimal labeling of an instance I of 1-Sided Constrained Boundary
Sliding Labeling must exist on our discretized set of ports P(S) if I possesses a
feasible labeling at all. Corollary 6.2 summarizes this conclusion.

Corollary 6.2 (Using results of Theorem 4.1). Let I = (S, ν, C = (G , ≺) , h, f) be
an instance of 1-Sided Constrained Boundary Sliding Labeling that satisfies
Assumption 6 with n = |S|, k = |G |, and r = |≺|. We can compute a leader-bend-minimal
labeling of I in O(n11 log n + k + ∥G ∥) time using O(n6) space if such a labeling exists.

Minimizing Leader Length

In contrast to leader-bend-minimal labelings, retrieving leader-length-minimal labelings
for sliding reference points is not so trivial. One reason for this is that not every
instance that possesses a feasible labeling also possesses a leader-length-minimal feasible
labeling, as Figure 6.3b shows. There, the geometric position of the sites, together with
the grouping constraints expressed by the colored sites, and the ordering constraints
expressed by the arcs, force us to order the groups of labels as shown in the figure.
Now assume that a feasible labeling L∗, for example, the one in Figure 6.3b, would be
leader-length-minimal. Since L∗ is feasible, there is no site-leader crossing. But no matter
how close the leader of the green sites passes by the purple site, we can always halve the
vertical distance between the site and the leader. This results in a feasible labeling with
shorter leaders, a contradiction to the optimality of L∗.

To circumvent this limitation, we enforce that any leader must maintain a vertical distance
of dmin > 0 to other sites. As a consequence, we no longer work with the ε but define a
new set of ports P(S). Recall that for each port p ∈ P(S), we have x(p) = x(ν). Hence,
we only state the y-coordinates of the ports in P(S).

P(s) := {y(s) + qh, y(s) + qh + dmin, y(s) − qh, y(s) − qh − dmin | 0 ≤ q ≤ n}
P(S) :=

�
s∈S

P(s)

Clearly, we still have |P(S)| = O(n2). Although we have changed the set of ports, we
can still show that they are sufficient for finding a leader-length-minimal labeling.

Lemma 6.2. Let I be an instance of 1-Sided Constrained Boundary Sliding
Labeling that satisfies Assumption 6. If I possesses a feasible labeling L where each
leader maintains a vertical distance of at least dmin to other sites, then there exists
a feasible labeling L′ of I in which each port is from P(S). Furthermore, we have
f(L′) ≤ f(L), where f measures the leader length of a labeling.

Proof. The crux of the proof is similar to the one for Lemma 6.1. However, note that in
the initial labeling L, all leaders maintain a vertical distance of at least dmin to other
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6. Variations of 1-Sided Constrained Boundary Labeling

sites. Since we place a port this far away from each site s, we can never hit a site with our
leaders while moving (stacks of) labels, i.e., we can never introduce a site-leader crossing.

The remainder of the proof is identical to Lemma 6.1, except that we move (stacks of)
labels always in a non-increasing direction with respect to the leader lengths. This means
that if in a stack more labels have their site above the respective port, we move the stack
upwards, and vice-versa. We break ties arbitrarily. As already observed by Fink and
Suri [FS16], with this operation we never increase the overall leader length. Thus, for
the labeling L′ that we eventually obtain with this operation, we have f(L′) ≤ f(L).

Note that P(S) can contain ports that would lead to an infeasible labeling if certain sites
are labeled there due to not maintaining a vertical distance of at least dmin. However,
observe that in the proof of Lemma 6.2, we never moved past a port. Since we started
with a feasible labeling that maintains the distance dmin and created ports that are that
far away from the sites, this can never result in a labeling violating the vertical distance.

Corollary 6.3 (Together with Theorem 4.1). Let I = (S, ν, C = (G , ≺) , h, f) be an
instance of 1-Sided Constrained Boundary Sliding Labeling that satisfies As-
sumption 6 with n = |S|, k = |G |, and r = |≺|. We can compute a leader-length-minimal
labeling of I where each leader maintains a vertical distance of at least dmin to other sites
in O(n11 log n + k + ∥G ∥) time using O(n6) space if such a labeling exists.

6.2 Disjoint Grouping and No Ordering Constraints

Although we showed in Theorem 4.1 that we can solve 1-Sided Constrained Boundary
Labeling in polynomial time, the result is arguably only from little practical relevance
due to the high running time. As we have seen in Chapter 5, computing a leader-length-
minimal labeling can take for larger instances several minutes. Especially if one recalls
that Benkert et al. [BHKN09] solved 1-Sided Boundary Labeling in O(n2m3) time,
assuming that the optimization function can be evaluated in constant time, we can expect
a significant difference in the running times.

One reason for the high running time is the intrinsic checks to ensure that a candidate
port is feasible for the leftmost site. While our PQ-A-Graph can represent all respectable
constraints, including complex intersecting combinations of grouping constraints, this
generality is not always required. Many real-world instances have only simple grouping
constraints and completely lack ordering constraints. For example, in atlases of human
anatomy, there are often only a few grouping constraints per figure, explicitly indicated by
curly brackets, and most of the time they enclose only a few sites [WP13]. Furthermore,
many grouping constraints from the real world partition the set of sites. Consider, for
example, the administrative regions of a country. They induce a partition of the cities,
as every city of that country belongs to exactly one region.

92



6.2. Disjoint Grouping and No Ordering Constraints

We can assume without loss of generality that each site is in a grouping constraint, as we
can always introduce singleton groups. Due to the above observations, it seems, from a
practical point of view, reasonable to work under Assumption 7 in some cases.

Assumption 7. The groups in G form a partition of S, i.e., for G = {G1, . . . , Gk}, it
holds Gi ∩Gj = ∅, 1 ≤ i, j ≤ k, i ̸= j, and S = 
k

i=1 Gi. There are no ordering constraints,
i.e., ≺= ∅.

Assumption 7 can also be summarized as not having any ordering enforced on the sites,
neither explicitly with the ordering constraints ≺ nor implicitly, due to intersecting
grouping constraints.

In this section, we will exploit this assumption and use it to show that we can assume
that any group is continuous, i.e., without an unused reference point in between. As this
follows the ideas behind a stack of labels with sliding reference points, we call such a set
of labels a stack of labels. We want to remind the reader that we use port as a synonym
for reference point unless stated otherwise.

Lemma 6.3. Let I be an instance of 1-Sided Constrained Boundary Labeling
that satisfies Assumption 7. If I possesses a feasible labeling, then there exists also a
labeling of I in which the labels of each group form a stack.

Proof. The proof is constructive, and we refer to Figure 6.4 for illustrations that support
some arguments of the proof. Let L be a labeling of the instance I in which there exists
at least one group G ∈ G whose labels do not form a stack. We will adapt L to a new
feasible labeling L′ in which all groups that previously formed a stack still do so, and in
addition, the labels for G also do form a stack. By repeatedly applying this procedure,
we eventually arrive at a labeling in which the labels for each group form a single stack.

We assume, without loss of generality, that the labels for the group G form two stacks.
If they form more than two stacks, we can iteratively take any two stacks next to each
other and apply the transformations below until the labels for G eventually form a single
stack. As L is a feasible labeling, there cannot be a label between the two stacks of G,
i.e., they only have unoccupied ports between each other, and we have a situation as in
Figure 6.4a. We start moving the two stacks of labels closer to each other by moving
them one port at a time. We either stop when (i) they are next to each other and we
can merge them into a single stack, or (ii) we would run with the leader of a site in the
group over another site s ∈ S. In the former case, we are done. In the latter case, we
have to distinguish whether s is part of the group. If s ∈ G holds, i.e., the site is part of
the group, then we exchange the labels, as shown in Figures 6.4b and 6.4c, and continue
moving the stacks closer together. However, if s /∈ G, we have to be more careful. In
the following, we assume, without loss of generality, that s would be overrun by the top
stack that moves down, as shown in Figure 6.4d. The other case, i.e., where the bottom
stack overruns s while moving upwards, is symmetric. If we would overrun s with the
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6. Variations of 1-Sided Constrained Boundary Labeling

(a) The two green stacks move towards each
other.

(b) The lower stack overruns a leader of a site
that belongs to the same group, which results
in a leader-crossing.

(c) To make the labeling from Figure 6.4b pla-
nar, we re-route the involved leaders.

(d) If both green stacks would overrun sites not
part of the group, then the original labeling
must have been non-planar.

Figure 6.4: Figures illustrating the arguments of the proof for Lemma 6.3.
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s1

s2

s3
s4

Figure 6.5: If this instance violates Assumption 7 by, for example, having the partial
order ≺= {s1 ≺ s2, s2 ≺ s3, s3 ≺ s4}, as illustrated, or the grouping constraints G =
{{s1, s2, s3, s4}, {s1, s2}, {s2, s3}, {s3, s4}}, then there does not exist a feasible labeling
where all groups form a single stack.

top stack while moving down, we stop moving with the top stack. We observe that the
port for the leader λ of s is below s. This is because L is feasible and hence s has to be
labeled either above or below G. Therefore, λ must entirely pass by at least one of the
stacks of G. However, since we would overrun s with a leader while moving the top stack
down, λ cannot pass the upper stack of the labels for G without crossing that leader.
Therefore, λ must go downwards, and we cannot move the top stack further without
introducing a crossing. We proceed with moving the bottom stack upwards until we
merge with the top stack. Observe that it is guaranteed that while doing so, we can
never overrun another site s′ /∈ G, s ̸= s′, as in Figure 6.4d, with a leader. Because by
similar arguments as before, the leader λ′ of s′ must go upwards to a feasible position for
the label of s′. However, if the leader λ of s runs downwards to pass the bottom stack of
labels and the leader λ′ of s′ upwards to pass the top stack of labels, and one of s and s′

is more to the right, this inevitably leads to a crossing with one of the leaders for G that
would overrun s or s′, which we also illustrate in Figure 6.4d. This would contradict the
feasibility of the labeling L. Therefore, we can conclude that if we hit a site that is not
part of the group while moving the top stack downwards, we know that we can move the
bottom stack all the way upwards until we eventually merge the two stacks into a single
one for G.

Observe how the proof of Lemma 6.3 uses the fact that we can interchange the order of
the labels within a stack. If this would not be possible due to, for example overlapping
grouping constraints or explicit orders on the sites, i.e., if we violate Assumption 7, then
some instances possess a feasible labeling, but not one where all labels from a group form
a single stack, for example, as in Figure 6.5.

6.2.1 The Collapsed Pyramid Structure
Assumption 7 implies that we can assume that the labels for the sites of each group form
a single stack. If we consider the stack for a group G ∈ G , we can observe that the leader
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sL

pL

Figure 6.6: The collapsed pyramid for the green group of sites.

of the leftmost site sL of G splits the group into three parts, Ga and Gb, consisting of the
sites above and below the leader of sL, respectively, and sL itself. To ensure that sites
in G with a long horizontal segment in their leader, i.e., far to the left, do interfere, or
rather block, as few sites as possible, they should be labeled as close to sL as possible.
In a naïve way, one would label the remaining sites of G “from left to right” to avoid any
overlaps with sites outside of G. However, this is not always possible, as we could “cut
off” sites of G located below a port. Nevertheless, we can follow this intuition as long
as possible. This results in a labeling structure that we call the collapsed pyramid and
define in the following. Let G be a group with its leftmost site sL ∈ G being labeled at
pL ∈ P. This partitions G \ {sL} into Ga and Gb. For Ga, create two lists, LL = Ga and
LR = ∅. Sweep a line l from pL upwards. Whenever l hits a site s ∈ Ga, remove s from
LL and add it to LR. Whenever l hits a port p, let s be the rightmost site in LR; if LR

is empty, then the leftmost site in LL. Label s at p and repeat this until all sites in Ga

are labeled. The structure that results from repeating the symmetric procedure for Gb is
the collapsed pyramid, or simply pyramid, for G with its foundation at pL. Figure 6.6
shows an example of the collapsed pyramid for the group of green sites. sL builds the
foundation of the pyramid at the port pL. The length of the horizontal segments of the
leaders are, outgoing from λL = (sL, pL), in principle non-increasing, and would form
a pyramid. We call this the pillars of the pyramid. If this would cause crossings, we
have to use “shorter” leaders, i.e., label first sites further to the right. We say that the
pyramid collapses at such sites. Some of the pillars in the upper half of the pyramid from
Figure 6.6 are collapsed. Note that the collapsed pyramid does not necessarily result in a
leader-length-minimal labeling.

In the following, we prove some basic properties of the collapsed pyramid.

Lemma 6.4. The collapsed pyramid for a group G ∈ G with the foundation at pL does
not have any crossing among leaders from sites of G.

Proof. Let L be a labeling that contains the collapsed pyramid for the group G ∈ G .
In the following, we concentrate on Ga, as the leaders for a site in Ga and in Gb or the
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sL
pL

sx

sy
λx λy

py

px
l

(a) sx is below py.

sL
pL

sx sy
λx λy

py

px
l

(b) sx is above py.

Figure 6.7: Figures illustrating the arguments of the proof for Lemma 6.4 – Cases where
λx is above λy.

leftmost site sL in G trivially never intersect. Furthermore, we consider only sites from
Ga as the arguments for sites from Gb are symmetric. Towards a contradiction, assume
that in L, there would be a crossing among the leaders of sites from Ga, let it be sx and
sy. Assume that sy is further to the right than sx. Hence, the crossing must involve the
vertical segment of the leader λy = (sy, py) of sy and the horizontal segment of the leader
λx = (sx, px) of sx. We differentiate whether (the horizontal segment of) λx is above or
below (the one of) λy.

λx is above λy. If λx runs above λy, as in Figure 6.7, then the port px for sx is above
the port py for sy. Furthermore, we can see that λy must run downwards, i.e., sy is above
py. However, sx can be above or below py. For sx being below py, when the sweep line l
was at py (gray dashed line in Figure 6.7a), we have that sx is in the list LR and sy in
the list LL. Since this means that LR is non-empty, we would have never selected sy in
this situation – Contradiction to the definition of L. If sx is above py, as in Figure 6.7b,
then, when our procedure to create L was at py (gray dashed line in Figure 6.7b), we
have that sx and sy are in the list LL. However, as sx is further to the left than sy, we
would not have selected sy in this situation – Contradiction to the definition of L. We
can see that if λx runs above λy, then we always arrive at a contradiction.

λx is below λy. When λx runs below λy, as in Figure 6.8, then the port px for sx is
below the port py for sy. Furthermore, we can see that λy must run upwards, i.e., sy is
below py. However, sx can be either above or below px, and we will differentiate between
these scenarios. If sx is above px, as in Figure 6.8a, and we hit with the sweep line l
px (gray dashed line in Figure 6.8a), we have that sx is in LL and sy is in the list LR.
Similar to above, this means that LR is non-empty, and we would have never selected an
entry from LL. Hence, we would not have selected sx in this situation – Contradiction
to the definition of L. If sx is below px, as in Figure 6.8b, then, when our procedure to
create L was at px (gray dashed line in Figure 6.8b), we have that both sx and sy are
in LR. However, since this implies that LR is non-empty, we would take the rightmost
entry of LR. As sy is further to the right than sx, we would have never selected sx –
Contradiction to the definition of L. We can see that also when λx runs below λy, we
arrive at a contradiction.
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Figure 6.8: Figures illustrating the arguments of the proof for Lemma 6.4 – Cases where
λx is below λy.

As the above cases are exhaustive and always lead to a contradiction, we can conclude
that there cannot be a crossing within G, if G was labeled as a collapsed pyramid.

While Lemma 6.4 guarantees that the collapsed pyramid is free of crossings within its
group, Lemma 6.5 will ensure that no overlaps can occur outside the group, provided
that a feasible labeling exists at all.

Lemma 6.5. Let I be an instance of 1-Sided Constrained Boundary Labeling
that satisfies Assumption 7. If I possesses a feasible labeling, then there also exists a
feasible labeling of I in which each group is labeled as a collapsed pyramid.

Proof. For an instance I, satisfying Assumption 7, let L be a labeling that witnesses the
feasibility of I. Due to Lemma 6.3, we can assume without loss of generality that each
group in L forms a single stack. Let G ∈ G be a group whose labels do not form the
collapsed pyramid. This proof will be constructive, and we show that we can transform
the feasible labeling L into a feasible labeling L′ where the labels for G form a single
stack as a collapsed pyramid. Repeating the argument for all groups proves the lemma.
Let sL be the leftmost site in G and pL its port in L. We define L′ to be the labeling
where we replace the labeling of G with the collapsed pyramid with the foundation at
pL but leave all other labels unchanged. Note that in L and L′, the labels for G form a
stack. Hence, we occupy in both labelings the same ports for G. As a consequence, L′

must respect all grouping constraints as L did so. In the following, we show that L′ is
still crossing-free. Since by Lemma 6.4 we know that there cannot be a crossing among
the leaders for sites in G, the only crossings that could occur are with leaders for sites
outside G. We continue using proof by contradiction and assume that a leader for a site
s ∈ G intersects with a leader for a site s′ /∈ G. Without loss of generality, we assume
that s ∈ Ga holds. Since we did not change the foundation of the pyramid, s and s′ must
be labeled above λL = (sL, pL) in L and L′.

Let s and s′ be labeled in L′ at the ports p and p′, respectively. Depending on the
position of s and s′ with respect to p, i.e., above or below the port, and to each other,
i.e., which of s and s′ is further to the left, we arrive at eight different cases.
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We can neglect all four cases where s′ is left of s. As we do not change the port where s′

is labeled, either s′ would split the group G in L, for example, if s is below p′, or L is
non-planar, for example, if s is above p′. However, this contradicts our assumptions on L.

From the four cases where s is left of s′, only the two remain where s′ is below p, as the
other two imply that L would not respect the grouping constraint G. Observe that s
left of s′ implies that s′ is above λL. We continue arguing by cases depending on the
position of s with respect to p. See Figure 6.9 for illustrations supporting the following
arguments.

s is above p. Consider Figure 6.9a for an illustration of the situation where s is above
p. Let p be the port where we labeled s in L and observe that p must be below p, as L is
feasible. Note that we have s ∈ LL at p. Since in both labelings, L and L′, the labels for
G form a stack, and p is above p, there must be some site s that we label in L′ at p or a
port below, but in L at a port strictly above p. We can observe the following depending
on the position of s with respect to p.

If s is above p, it would be in LL at p, assuming we would not remove the site from the
list once labeled. This means that s must be left of s, as otherwise we would have labeled
s further below in L′. However, to ensure that L is planar, we must label s in L above s.
But this means that the leader for s crosses the leader for s′ in L, or s is labeled above
s′ in L. Both contradict the feasibility of L.

If s is below p, it would be in LR at p, as in Figure 6.9a. Therefore, s must be left of s,
because we labeled s in L above p. Hence, if s would be right of s, then the leaders for s
and s would cross in L. But even if s is left of s, as in Figure 6.9a, the same reasoning as
above leads to a contradiction. Therefore, the situation from Figure 6.9a cannot occur.

s is below p. Consider now the case where s is below p and see Figure 6.9b for an
illustration. Again, let p be the port where we labeled s in L and observe that it must
be below p. If p is below s, the same arguments as above imply that there is a site s
that was labeled above s in L. On the other hand, if p is above s, then s is in LR when
creating L′. Since we did not label s at p, but somewhere above p, there must be some
other site in LR that is further to the right. This site must have been labeled in L at
a port below p, and as the labels for G form a stack in both labelings, there must be
some other site s that is now labeled below p but was labeled above p in L. As s is below
p (and p), we must label s at a port below s to avoid crossings. If s was in LL when
we labeled it in L′, then it must be left of s, as also s is in LL at that port. But even
if s was in LR at that port, it must be left of s. Recall that in L, s is labeled above p.
Therefore, if s is not to the left of s, this would result in crossing leaders in L.

We have now derived that there must be a site s left of s that is labeled below p in L′

but above this port in L. Due to the reasoning from the case where s was above p, L
cannot label s above s′ and, therefore, s must be labeled between s and s′ in L. Consider
the topmost site left of s that we label above s in L. The site s guarantees its existence,
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Figure 6.9: Figures illustrating the arguments of the proof for Lemma 6.5. Dashed lines
indicate L, solid lines L′.

as it fulfills these properties. To not introduce another site, we assume that s is also the
topmost site left of s. However, this simplification is without loss of generality. Since it
is left of s and labeled above s in L, all sites, including s, that are right and below it
must be labeled below that site in L. In particular, this means there are enough ports to
label all those sites and s. Since some of these sites are now labeled further below, we
push some of the remaining labels further up in the L′. However, the leader for s shields
these sites from the sites labeled above the leader λ for s, also depicted in Figure 6.9b.
Therefore, we never move these labels further up than the port where s is labeled in L. In
particular, p is at most the port where s was labeled in L. If p is further up, the labels for
G cannot form a stack, as in Figure 6.9b. Since L is feasible and s to the left of s, when
we label s at p, its leader can never cross the leader from s′. This, however, contradicts
our assumption of L′ having a crossing between the leaders of s and s′. Therefore, the
situation from Figure 6.9b can never occur.

Since all cases lead to a contradiction, our initial and only assumption that L′ contains
a crossing must have been false. Therefore, if the initial labeling L was feasible, so
is L′. By applying the same arguments several times, we conclude that there exists
a feasible labeling of I where each group forms a collapsed pyramid, if there exists a
feasible labeling at all.

6.2.2 Speeding Up Our Dynamic Programming Algorithm for 1-Sided
Constrained Boundary Labeling

Using Lemma 6.5, we can define a DP-Algorithm to compute a feasible labeling of an
instance I of 1-Sided Constrained Boundary Labeling that adheres to Assump-
tion 7.

Theorem 6.1. Let I = (S, P, C = (G , ∅) , h, f) be an instance of 1-Sided Constrained
Boundary Labeling that satisfies Assumption 7 with n = |S|, m = |P|, and k = |G |.
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We can check in O(n4m3 log m) time and O(n2m2) space whether I possesses a feasible
labeling.

Proof. Let I be an instance of 1-Sided Constrained Boundary Labeling that
adheres to Assumption 7. The crux of the proposed algorithm will be to use the generic
O(n2m3)-time DP-Algorithm blueprint sketched by Bekos et al. [BNN21] for computing
1-sided boundary labelings. However, we exploit Lemma 6.5 and label, instead of the
leftmost site, the leftmost group using the collapsed pyramid.

We define a DP-Table D of size k2m2 that stores one, if an instance possesses a feasible
labeling and zero otherwise. Similar to the DP-Algorithm from Theorem 4.1, we denote
with I = (G1, p1, G2, p2) an instance in our DP-Algorithm. However, since we know by
Lemma 6.5 that we can assume that in a feasible labeling, every group forms a collapsed
pyramid, an instance can be bound by (the leftmost sites of) two groups rather than two
sites. Therefore, the semantic of an instance I = (G1, p1, G2, p2) in our DP-Algorithm is
that the foundation of the two pyramids for G1 and G2 is at p1 and p2, respectively. For
an instance I let GL ∈ G be the group to which the leftmost not yet labeled site in the
instance belongs. Note that by our definition of the instance, all the sites of GL are in I.
As in our DP-Algorithm from Theorem 4.1, we denote for an instance I with S(I) and
P(I) the set of sites and ports, respectively, that are in the instance I. However, note
that we now also exclude from these sets the sites and ports already used in a collapsed
pyramid that defines the instance.

We say that a port p is a feasible foundation for GL, if we can place the collapsed pyramid
for GL with the foundation at p without introducing label overlaps. Furthermore, no two
sites of another group are split by the pyramid, and no site outside GL is surrounded by
two pillars of the pyramid for GL such that it cannot reach another port without crossing
a leader of GL. If a port is a feasible foundation for GL, we create the collapsed pyramid
for GL and recursively evaluate the sub-instances I1 and I2, i.e., we use the following
relation.

D[(G1, p1, G2, p2)] = max
feasible

foundation
p∈P(I)

min (D[(G1, p1, GL, p)], D[(GL, p, G2, p2)]) (6.1)

Furthermore, we set D[I] = 1 for S(I) = ∅ and D[I] = 0 if we are unable to place a
collapsed pyramid for GL, i.e., if there is no feasible foundation. If I does possess a
feasible solution, we have in the end D[(G0, p0, Gk+1, pm+1)] = 1, where G0 and Gk+1,
and p0 and pm+1 denote dummy groups and ports that bound I from above and
below, respectively. Correctness follows by the correctness of the DP-Algorithm from
Theorem 4.1, as Equation (6.1) resembles the recurrence relation used in the DP-Algorithm
from Chapter 4, combined with Lemmas 6.3 to 6.5, which guarantee us the existence of a
feasible labeling that consists of collapsed pyramids only.

We proceed with analyzing the running time of our DP-Algorithm. As a preprocessing step,
we sort all sites and ports in increasing order by their x and y-values, where applicable,
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and assign the sites to the group they belong to. This takes O(n log n + m log m) time.
Furthermore, we store for each group G ∈ G the leftmost site that is part of G. As
the groups form a partition over the sites, this can be done in O(n) time by a linear
scan over the groups. If we fill the DP-Table D top-down using memoization, we have
to evaluate, in the worst case, each possible instance at most once. There are k2m2

different instances. We can find the group GL in O(k) time since we store for each group
the leftmost site. Once found, we have to evaluate O(m) different candidate ports p.
Determining whether p is a feasible foundation for GL includes building the collapsed
pyramid structure. To do this, we can locate the leftmost site of GL and the port p in
the sorted lists in O(log n + log m) time. Then, we can run the sweep line, which takes
O(|GL|) time, as we have already sorted the sites and ports. While placing the pillars of
the collapsed pyramid, we can continuously check that we do not enclose another site
or overlap with another label. This increases the running time of creating the structure
to O(|GL| n). To ensure that we do not split any two sites that belong to the same
group, we can, in the end, naïvely iterate over all O(n2) pairs of sites. Overall, this
sums up to O(log n + log m + |GL| n + n2) = O(log m + n2) time, as we have |GL| ≤ n.
Furthermore, as G forms a partition over S, we have k = O(n). Combining all, we get
a running time of O(k2m2 �

k + m
�
log m + n2��

) = O(n2m2 �
n + m

�
log m + n2��

). This
can be simplified and upper-bounded by O(n4m3 log m). Note that this dominates the
O(n log n + m log m) running time of the preprocessing steps. The space requirement is
trivially in O(n2m2).

Note that we can retrieve a feasible labeling for I, if it exists, by the same means as
for the DP-Algorithm from Chapter 4. Finally, recall that this algorithm only checks
whether there exists a feasible labeling. It is not guaranteed that the reported labeling is
the best according to an optimization function f .

6.3 Soft Grouping and Ordering Constraints
The third and last variation we consider in this thesis is motivated by the fact that
grouping and ordering constraints might cause long leaders or prevent any feasible
labeling. Consider, for example, the instance from Figure 6.10 that contains a grouping
and an ordering constraint. The ordering constraint s1 ≺ s2 requires us to label s1
above s2. However, the geometric position of s2, i.e., above all ports, makes a feasible
labeling impossible, as Figure 6.10a shows. Once we ignore this ordering constraint, as
in Figure 6.10b, we can obtain a feasible labeling.

Therefore, it could be beneficial to not respect some constraints but pay a penalty instead
to obtain an overall more appealing labeling, i.e., consider our semantic constraints as soft
constraints. It would be natural to incorporate such a mechanic into our DP-Algorithm
from Chapter 4. However, if the given constraints are not respectable, there might exist
no PQ-A-Graph T that represents them, as there might not even exist a PQ-Tree that
represents the (conflicting) grouping constraints.
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(a) An instance that does not possess a feasible
labeling.
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(b) A planar labeling where we do not respect
the constraint s1 ≺ s2.

Figure 6.10: An instance that only possesses a feasible labeling if we do not respect the
ordering constraint s1 ≺ s2, indicated by the gray arrow.

We present in the following a simple way of working around this limitation by deciding
beforehand which constraints we want to ignore. Since we cannot know in advance which
of the constraints we should neglect, we try out all possible combinations, yielding an
exponential running time. By closer examining the running time, we will see that this
problem is fixed parameter tractable (FPT) in the number of constraints that should be
respected. Such a result should be preceded by an accompanying NP-hardness proof.
Although we suspect the boundary labeling problem in the presence of soft constraints
to be NP-hard, finding the corresponding reduction is an open problem.

Let g : C → R+
0 be a function that assigns to each grouping and ordering constraint a

non-negative penalty value for not respecting it. For a labeling L, we define g(L) as the
sum of penalties for all constraints not respected in L.

Theorem 6.2. Let I = (S, P, h, f) be an instance of the 1-Sided Boundary Labeling
problem, with n = |S| and m = |P|. Furthermore, let C = (G , ≺) be k grouping and
r ordering constraints, and g : C → R+

0 be a penalty function for not respecting the
constraints. We can compute a feasible labeling L∗ of I that minimizes f(L∗) + g(L∗)
in O(2k+r

�
n5m3 log m + k + ∥G ∥�

+ nmf(·, ·)) time using O(n2m2) space, or conclude
that no such labeling exists, where O(f(·, ·)) denotes the evaluation time of f(s, p), for
arbitrary s ∈ S and p ∈ P, i.e., the evaluation complexity of the optimization function f .

Proof. For an instance I and grouping and ordering constraints C, we perform as follows.
We enumerate all subsets of possible constraints, i.e., we enumerate all entries of 2(G ∪≺).
For each set of constraints C′ = (G ′, ≺′) of size k′ and r′, respectively, we enrich I by
the constraints, thus creating an instance I ′ of 1-Sided Constrained Boundary
Labeling, and run our DP-Algorithm from Chapter 4 on I ′. As shown in Theorem 4.1,
this takes O(n5m3 log m + k′ + ∥G ′∥ + nmf(·, ·)) time and requires O(n2m2) space. If I ′

does not possess a feasible labeling (that respects the constraints C′), we store E[C′] = ∞
in a table E. Otherwise, if L is the labeling that minimizes f in the presence of the
constraints C′, we store E[C′] = f(L) + g(L). Furthermore, we maintain in a second
table E′ for each subset of constraints C′ the optimal labeling. In the end, we report the
labeling L that yielded the minimum but finite entry in E as the labeling L∗.

103



6. Variations of 1-Sided Constrained Boundary Labeling

Regarding the running time, we first note that we have
���2(G ∪≺)

��� = 2k+r and C′ ⊆
C. Since the values for f are independent of the constraints, we can compute them
once in the beginning. Therefore, using Theorem 4.1, we have a running time of
O(2k+r

�
n5m3 log m + k + ∥G ∥�

+ nmf(·, ·)). Regarding space consumption, we note
that we iteratively evaluate one subset C′ of constraints at a time. Therefore, we can
re-use the same DP-Tables when iteratively calling the DP-Algorithm from Chapter 4.
Furthermore, this means that we do not have to store the whole tables E and E′, but
only those values corresponding to the so far optimal labeling. Since we can interpret a
labeling as a function from the sites to (the indices or y-coordinates of) the ports, we have
O(|L|) = O(n). The space requirement is, therefore, dominated by the DP-Tables of our
algorithm from Chapter 4, which require O(n2m2) space, as shown in Theorem 4.1.

Recall from Theorem 4.1 that the terms k and ∥G ∥ in the running time of our DP-
Algorithm arose from the preprocessing steps to obtain the PQ-A-Graph T . As this only
depends on the constraints C (or rather C′), we can summarize these terms in a function
h that only depends on (the size of) C and obtain the following corollary.

Corollary 6.4. 1-Sided Boundary Labeling for n sites S, m ports P, soft constraints
C = (G , ≺), and a penalty function g, can be solved in O(h(C)n5m3 log m) time and
O(n2m2) space for a computable function h. Thus, it is FPT in the size of the soft
constraints.
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CHAPTER 7
Conclusion

This thesis aimed to make a first step towards supporting semantic constraints in external
labeling by extending the common boundary labeling model by grouping and ordering
constraints. We have seen that most of the existing work on external labeling does not take
such constraints into account. The papers that do support them all have some limitations:
They either make compromises by allowing leaders to cross or grouping constraints to
be violated or see it as a possible extension without analyzing the impact that such
constraints can have on the running time. Therefore, we strived for approaches tailored
to these constraints and started by formally defining grouping and ordering constraints
for one-sided boundary labelings: When arranging the sites according to the order of
their labels on the right boundary, the sites of each group must appear consecutively, and
the resulting total order must be an extension of the ordering constraints. For multi-sided
boundary labelings, we require that we must not split groups across different sides of the
boundary, and ordering constraints are only relevant if both sites are on the same side of
the boundary.

Using these definitions, we managed to adapt existing results from the literature to
the extended model. On the one hand, we showed that finding a one-sided labeling
with non-uniform height labels is weakly NP-complete for sliding reference points, even
with only a constant number of grouping or ordering constraints. On the other hand,
we proposed a polynomial-time dynamic programming algorithm to compute a feasible
one-sided boundary labeling with po-leaders, uniform height labels, and fixed reference
points that respects a set of constraints C and minimizes a function f : S × P → R+

0
or report that no feasible labeling exists. Our algorithm operates on PQ-A-Graphs,
an extension of PQ-Trees we introduced, that are capable of efficiently encoding all
respectable constraints. Surprisingly, in contrast to the unconstrained boundary labeling
problem, our results do not carry over to multi-sided settings, and we showed that already
finding a feasible labeling for two sides is NP-complete.
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7. Conclusion

Furthermore, we implemented our algorithm and evaluated its performance experimentally.
The experiments revealed that blindly adding semantic constraints, especially ordering
constraints, to instances tends to turn them infeasible. Furthermore, although we can
compute labelings for our motivating example, i.e., medical drawings, within four seconds,
computing them for larger instances, such as cartographic maps, can take up to seven
minutes. These results motivated us to look into variations of our problem: Sliding
reference points, permitting only pairwise disjoint grouping constraints and no ordering
constraints, and allowing restrictions to be violated at the cost of a penalty. While
we consider the first variation mostly solved, we see the latter two as candidates for
complementing our results in future work.

But not only the variations are directions for future research. While we have answered
in this thesis some open questions related to semantic constraints in external labeling,
we have stumbled upon others. We see the high running time of our algorithm as a
limitation of our approach. Therefore, reducing it or finding heuristic approaches or
approximation algorithms is a major open challenge. For example, we might apply other
algorithmic paradigms to find at least some feasible labeling fast. Although there are
no theoretical guarantees, the experiments have shown that state-of-the-art ILP solvers
are powerful enough to find optimal solutions for many instances in a (comparatively)
short time. Hence, we should try to formulate b-Sided Constrained Boundary
Labeling as an ILP and experimentally evaluate its running time. The experiments
revealed that our constraints, especially ordering constraints, tend to turn an instance
infeasible. Therefore, we deem it crucial to be able to interpret grouping and ordering
constraints not only as hard but also as soft constraints. The computational complexity
of the corresponding problem is still open, as well as the one of 2-Sided Constrained
Boundary Labeling once we consider only grouping or ordering constraints, but not
in combination. While we have mainly compared the leader length of labelings with
constraints to their counterparts without constraints, a user study is worth conducting
to analyze the impact of complying with semantic constraints from the perspective of a
user in more detail. Finally, although grouping and ordering constraints are arguably
the most common manifestation of semantic constraints, they are not the only ones, and
we see identifying and supporting other (semantic) constraints as an interesting open
problem in its own right.
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