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Abstract
Bitonic st-orderings for st-planar graphs were introduced as a method to cope with
several graphdrawingproblems.Notably, theyhavebeenused to obtain the best-known
upper bound on the number of bends for upward planar polyline drawings with at most
one bend per edge in polynomial area. For an st-planar graph that does not admit a
bitonic st-ordering, one may split certain edges such that for the resulting graph such
an ordering exists. Since each split is interpreted as a bend, one is usually interested in
splitting as few edges as possible.While this optimization problem admits a linear-time
algorithm in the fixed embedding setting, it remains open in the variable embedding
setting. We close this gap in the literature by providing a linear-time algorithm that
optimizes over all embeddings of the input st-planar graph. The best-known lower
bound on the number of required splits of an st-planar graph with n vertices is n − 3.
However, it is possible to compute a bitonic st-ordering without any split for the st-
planar graph obtained by reversing the orientation of all edges. In terms of upward
planar polyline drawings in polynomial area, the former translates into n − 3 bends,
while the latter into no bends. We show that this idea cannot always be exploited by
describing an st-planar graph that needs at least n − 5 splits in both orientations. We
provide analogous bounds for graphs with small degree. Finally, we further investigate
the relationship between splits in bitonic st-orderings and bends in upward planar
polyline drawings with polynomial area, by providing bounds on the number of bends
in such drawings.
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1 Introduction

Incremental drawing algorithms have a long history in the field of Graph Drawing.
The central result of de Fraysseix, Pach and Pollack [1], who showed that every planar
graph admits a planar straight-line drawing within quadratic area, marks the beginning
of this line of research. In their seminal paper, they introduced the concept of canonical
ordering, an ordering of the vertices that is used to drive their incremental drawing
algorithm. In each step, one vertex at a time is placed, while it is ensured that certain
invariants are satisfied. Another important result with respect to canonical orderings
is by Kant [2]. While the original ordering is only defined for maximal planar graphs,
he generalizes this concept to triconnected planar graphs. However, Kant’s ordering
is no longer a vertex ordering, instead it is an ordered partition of vertices. Later on,
Harel and Sardas [3] show how one can further extend canonical orderings to the
biconnected case.

Another type of vertex ordering that has its origins not in Graph Drawing, but finds
its applications there [4, 5], is the so-called st-ordering [6]. However, st-orderings
are not restricted to planar graphs, hence, the ordering is not related directly to the
embedding of the underlying planar graph. This relation between a planar embedding
and the ordering itself is established by the bitonic st-orderings [7], which have been
used to solve various graph drawing problems, e.g., T-contact representations [7], L-
drawings [8], finding universal slope sets [9]. Besides being a proper st-ordering, the
definition takes the embedding into account and ensures that the vertex ordering has
similar properties to a canonical ordering. Initially introduced for undirected graphs
in [7], where it is shown that for every biconnected planar graph a bitonic st-ordering
can be found in linear time, the concept has been extended to directed graphs [10].

The idea that led initially to the extension to directed graphs, namely the st-planar
graphs, is rather simple. By slightly modifying the original algorithm of de Fraysseix,
Pach and Pollack, one may use a bitonic st-ordering to obtain a planar straight-line
drawing. Combined with the observation that a vertex is always drawn above its prede-
cessors in the ordering, the resulting drawing is upward planar straight-line. However,
not every st-planar graph admits such a bitonic st-ordering, but a full characterization
is given in [10] that is based on the existence of so-called forbidden configurations.
These configurations, however, can be eliminated by splitting certain edges in the
graph, such that for the resulting graph one can then obtain the desired ordering. This
technique is used to prove that every upward planar graph with n vertices, admits an
upward planar polyline drawing with at most one bend per edge within O(n2) area.
Moreover, the number of bends is at most n − 3, which is the best-known bound so
far [10]. Hereby, each bend corresponds to a dummy vertex that has been introduced
by splitting an edge. Note that in [10] an example is given that requires exactly n − 3
splits, which shows that this bound is tight.

In practice, one is interested in splitting as few edges as possible. In [10], a simple
linear-time algorithm is described that finds the optimal set of edges to split. This
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algorithm assumes the embedding of the underlying st-planar graph to be part of
the input. Hence, it is only optimal in the fixed embedding scenario. Changing the
embedding, however,may have a big impact on the required number of splits. Chaplick
et al. [8] take a first step towards the variable embedding scenario by describing an
algorithm based on SPQR-trees [11] to test whether an st-planar graph admits a bitonic
st-ordering in any of its embeddings. In the positive case, their algorithm computes
such an embedding and a corresponding bitonic st-ordering. Otherwise, one has to fall
back to the fixed embedding algorithm for computing a set of edges to split. However,
the number of edges to split may depend on the choice of the embedding, and a smaller
set may be obtained from a different embedding.

1.1 Our Contribution

In this work, we first close the aforementioned gap in the literature by describing
a linear-time algorithm to compute a smallest set of edges to split over all possible
embeddings (see Theorem 1). Within the same time complexity, the algorithm outputs
also a corresponding embedding.

Then, we turn our attention to upward planar polyline drawings obtained with the
approach by Gronemann [10]. In this regard, Rettner [12] observed that an upward
planar drawing can be obtained by reversing all edges of the graph, obtain an upward
planar drawing for this reversed graph, and then mirror this drawing vertically. This
idea stems from the observation that the example given in [10], which requires n − 3
splits, does not require any split at all when all edges have been reversed. In view of
this property, one would naturally choose the orientation with the minimum number
of splits. However, there exist limitations also in this approach, as there exist n-vertex
st-planar graphs that require at least 3n

4 − 3 splits in each of the two orientations [12].
Still the question that arises is whether one of the two orientations always requires
significantly less than n−3 splits.We answer this question negatively by demonstrating
n-vertex st-planar graphs that require n − 5 splits in each of the two orientations (see
Theorem 3).

Note that the graphs supporting Theorem 3 are of maximum degree 6. On the
other hand, if the maximum degree of the input st-planar graph is 3, then no split is
required [13]. We show in Theorem 6 that n

2 − 2 splits may be required for maximum
degree 4 st-planar graphs.We finally prove that n2 splits are sufficient even for degree-5
st-planar graphs (see Theorem 4).

Finally, we study lower bounds on the total number of bends in upward planar draw-
ings under the polynomial-area requirement, independently of the required number of
splits and of the allowed number of bends per edge. We show that n − o(log n) bends
may be required for st-planar graphs of maximum degree 6 (see Theorem 8), while for
maximum degree 4 the corresponding number of required bends is n

2 − o(log n) (see
Theorem 9). As a result, our findings imply that the upper bounds on the number of
bends obtained by the approach byGronemann are worst-case tight up to a logarithmic
factor, even if more than one bend per edge is allowed.

Structure of the paper We give preliminaries in Sect. 2. Then, we devote Sect. 3 to
describe our algorithm to minimize the number of splits in the variable embedding
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setting. We complement our algorithm by providing upper and lower bounds on the
number of splits in Sect. 4, and by discussing the relationship between bitonic embed-
dings and upward planarity in Sect. 5. Finally, we conclude with open problems in
Sect. 6.

2 Preliminaries

Graph drawings and upward planarity A drawing � of a graph G maps the vertices
of G to distinct points in the plane and the edges of G to simple Jordan arcs between
their endpoints. Drawing � is planar if no two edges share an interior point. Planar
drawings partition the plane into regions, called faces, whose boundaries consist of
edges. The unbounded face is the outer face. An embedding is a class of drawings
defining the sets of faces with the same boundaries.

A drawing � of a directed acyclic graph G is upward planar if for every edge
(u, v), vertex u lies below v in � and (u, v) is drawn as a y-monotone curve in �;
accordingly graphG is upward planar if it admits an upward planar drawing. A vertex
v of a directed graph is a source (sink, resp.), if it only has outgoing (incoming, resp.)
edges. A directed graph G is st-planar if it has a unique source s and a unique sink t
such that there is an upward planar drawing ofG, where s and t are incident to the outer
face of it. In our definition, we assume that the edge (s, t) exists and is incident to the
outer face. An upward planar embedding of an st-planar graph induces a left-to-right
ordering of the incoming and outgoing edges of each vertex. We call the left-to-right
ordered sequence of the neighbors of a vertex v connected with outgoing edges of v

the successor list of v. Note that the faces of an st-planar graph have a unique source
and a unique sink [14] connected by two paths. If one of these paths is a single edge,
we call it transitive.

st-orderings An st-ordering of an st-planar graph is a linear ordering of its vertices
with a prescribed vertex s being the first and a prescribed vertex t being the last vertex
such that for every directed edge (u, v), it holds that u precedes v [15]. Given an
st-ordering of an embedded st-planar graph, the successor list of a vertex u is mono-
tonically increasing (decreasing, resp.) if the outgoing neighbors of u appear in this
successor list in the same (opposite, resp.) order as they appear in the st-ordering.
Further, the successor list of u is bitonic if there exists an outgoing neighbor h of u,
called apex of u, such that the successor list of u is monotonically increasing from
the beginning up to h and monotonically decreasing from h up to the end. Note that a
monotonically increasing (decreasing, resp.) successor list is bitonicwith the rightmost
(leftmost, resp.) outgoing neighbor being its apex. We call an embedding E of an st-
planar graph G monotonic (bitonic, resp.) if there exists an st-ordering of G such that
the successor lists of all vertices defined by E are monotonically increasing/decreasing
(bitonic, resp.); we call the corresponding st-orderingmonotonic (bitonic, resp.). Fur-
ther, we say that an st-planar graph G is monotonic (bitonic, resp.) if G admits a
monotonic (bitonic, resp.) embedding.

Forbidden configurations for bitonic st-orderings Consider an embedding and an st-
ordering of an st-planar graph G. Let u be a vertex and h the outgoing neighbor of
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Fig. 1 Forbidden configurations that prevent a bitonic successor list for u where a vi+1 �= v j and b vi+1 =
v j , respectively

u with largest rank in the st-ordering. Note that h is the only possible apex for the
successor list ofu. Then, the successor list ofu is not bitonic if andonly if there exist two
vertices v,w such that v precedesw in the st-ordering and v appears betweenw and h
in the successor list.We call this configuration a conflict. It has been shown [10] that for
a given embedding of an st-planar graph there exists an st-ordering without conflicts
if and only if the embedding does not contain any forbidden configuration, where a
forbidden configuration with source u is formed by two faces f1 = 〈u, vi+1, . . . , vi 〉
and f2 = 〈u, v j , . . . , v j+1〉 such that the successor list of u contains vi , vi+1, v j , v j+1
in this order, with possibly vi+1 = v j , and (vi+1, . . . , vi ) and (v j , . . . , v j+1) are
directed paths in G; see Fig. 1. In order to obtain bitonic embeddings even in the
presence of forbidden configurations, Gronemann [10] proposed to split at least one
of the transitive edges (u, vi ) and (u, v j+1). More specifically, if we split edge (u, vi ),
we obtain two new edges (u, v′

i ) and (v′
i , vi ) with dummy vertex v′

i . Note that v
′
i then

replaces vi in the successor list of u in the obtained graph. Since there exists no directed
path from vi+1 to v′

i , the forbidden configuration has been resolved.

Connectivity and SPQR-treesA graph is connected if for any pair of vertices there is a
path connecting them. A graph is k-connected if the removal of any set of k−1 vertices
leaves it connected. A 2- or 3-connected graph is also referred to as biconnected or
triconnected, respectively. Note that a triconnected planar graph has a unique embed-
ding up to the choice of the outer face. Also note that st-planar graphs are always
biconnected.

The SPQR-tree T of an st-planar graph G is a labeled tree representing the decom-
position ofG into its triconnected components [11, 16]. Every triconnected component
of G is associated with a node μ in T . The two vertices separating the component
associated with μ from the rest of the graph are called the poles sμ and tμ of μ. The
skeleton of μ, denoted by skel(μ), is an st-planar graph where s = sμ and t = tμ
whose edges are called virtual edges. In particular, there exists a virtual edge for every
child ν of μ in T plus a parent virtual edge (sμ, tμ) that corresponds to a virtual edge
between sμ and tμ in the skeleton of its parent. A node μ ∈ T can be of one of four
different types:

(i) S-node, if skel(μ) is composed of the parent virtual edge and a directed path of
length at least 2 from sμ to tμ;

(ii) P-node, if skel(μ) is a bundle of at least three parallel edges from sμ to tμ;
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(iii) Q-node, if skel(μ) consists of two parallel edges, one being the parent virtual
edge and the other one being the corresponding edge in G;

(iv) R-node, if skel(μ) is a simple triconnected st-planar graph with s = sμ and
t = tμ.

The set of leaves of T coincides with the set of Q-nodes, except for the Q-node
ρ corresponding to edge (s, t), which is selected as the root of T . Also, neither two
S-nodes, nor two P-nodes are adjacent in T . The subtree Tμ of T rooted at μ induces
a subgraph pert(μ) of G, called pertinent, which is described by Tμ in the decompo-
sition. In particular, pert(μ) is obtained from skel(μ) by recursively identifying each
virtual edge with the corresponding parent virtual edge in the corresponding child
node. We assume that the parent virtual edge of μ is not part of pert(μ). All embed-
dings of pert(μ) can be described by a permutation of the parallel virtual edges in
each P-node in Tμ and a flip of the skeleton of each R-node in Tμ. SPQR-tree T is
unique, and can be computed in linear time [17].

3 Number of Splits in the Variable Embedding Setting

In this section, we present an algorithm that given an st-planar graph G computes
a minimum-cardinality set of edges E ′ of G so that the graph G ′ obtained from G
by splitting every edge in E ′ is bitonic. More precisely, our goal is to construct an
embedding E of G such that the embedding E ′ of G ′ obtained from E by splitting
the edges in E ′ admits a bitonic ordering π ′. At the end of the section we discuss an
analogous (and simpler) algorithm that even guarantees G ′ to be monotonic albeit at
the cost of more splits.

To compute E , we adopt an SPQR-tree approach similar to the one by Chaplick
et al. [8] to test whether an st-planar graph with fixed upward planar embedding is
bitonic. In contrast, however, we do not explicitly augment the graph as Chaplick et
al. [8] do. Instead, we specify the embedding E and a labeling of the edges describing
whether they will eventually be split.

Let T be the SPQR-tree of G, rooted at the edge (s, t). We associate each node μ

of T , with poles sμ and tμ, with two costs cb(μ) and cm(μ), and with two embeddings
Eb(μ) and Em(μ) of pert(μ), whose edges are labeled as split or non-split,
such that the following invariants hold:

I.1 cm(μ) is the minimum number of splits to make pert(μ) bitonic, with the addi-
tional requirement that the successor list of sμ is monotonically decreasing, and
Em(μ) is an embedding of pert(μ) achieving this cost;

I.2 cb(μ) is theminimumnumber of splits tomakepert(μ)bitonic,with no additional
requirement, and Eb(μ) is an embedding of pert(μ) achieving this cost;

I.3 (a) An edge e in Em(μ) is labeled as split if and only if e contributes to cm(μ),
(b) An edge e in Eb(μ) is labeled as split if and only if e contributes to cb(μ);

I.4 If the edge (sμ, tμ) exists in pert(μ), then tμ is the apex of sμ in Em(μ) and the
edge (sμ, tμ) is labeled as non-split.

Observe that, by definition, it holds that cb(μ) ≤ cm(μ).
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sμ

νh

νr

tμ

ν�

Fig. 2 Bitonic embeddingEb(μ) for aP-nodeμ.One childνh uses its bitonic embeddingEb(νh). Embedding
Em (ν�) of child ν� appearing left of νh is flipped

We perform a bottom-up traversal of T and compute for each nodeμ the costs cb(μ)

and cm(μ), the two embeddings Eb(μ) and Em(μ) of pert(μ), and the labeling of their
edges, so that Invariants I.1–I.4 hold, assuming that they hold for all the children of
μ. We distinguish cases based on the type of node μ.

Node μ is a Q-node that is a leaf of T . We set both Eb(μ) and Em(μ) to the
unique embedding of pert(μ), which consists only of edge (sμ, tμ). Since this embed-
ding is monotonic, we set both costs cm(μ) and cb(μ) to 0, and we label (sμ, tμ) as
non-split in both embeddings. Hence, Invariants I.1–I.4 are satisfied.

Node μ is a P-node: Let ν1, . . . , νk denote the children of μ. W.l.o.g., assume that
if μ has a Q-node child then this child is ν1. We construct both Em(μ) and Eb(μ)

by ordering the children of μ in clockwise order around sμ from ν1 to νk . Then, we
choose embeddings and flips for the pertinent graphs of the children of μ in order to
obtain Em(μ) and Eb(μ), as follows.

In order to construct Em(μ), we choose the monotonic embedding Em(νi ) for each
child νi and perform no flip. We set the monotonic cost cm(μ) for μ to

∑k
i=1 cm(νi ),

satisfying Invariant I.1. The labeling of the edges in Em(μ) is inherited from the
corresponding ones of Em(ν1), . . . , Em(νk), which ensures Invariants (a) and I.4.

To specify Eb(μ), we select one of the children of μ to contain the apex of sμ,
in such a way that the resulting bitonic cost cb(μ) for μ is minimized. For this, we
select the child νh , with 1 ≤ h ≤ k, such that the difference cm(νh) − cb(νh) is
maximum. If this difference is 0 for all children of μ, we set νh to be ν1. Then, we
select the bitonic embedding Eb(νh) for νh and the monotonic embedding Em(νi ) for
each child νi �= νh . Finally, we flip the embeddings Em(ν1), . . . , Em(νh−1) of the
pertinent graphs of ν1, . . . , νh−1. Note that the flip of these embeddings results in a
monotonically increasing successor list at sμ for each of them, and hence guarantees
that Eb(μ) is bitonic, except when ν1 is a Q-node and νh �= ν1; see Fig. 2.

To guarantee that Eb(μ) is bitonic also in this special case, edge (sμ, tμ) must be
split; note that, by Invariant I.4, edge (sμ, tμ) = (sν1 , tν1) is labeled as non-split
in the embedding Em(ν1) of ν1. So, to guarantee Invariant I.2, we set cb(μ) = cm(μ)−
cm(νh) + cb(νh) + 1 if ν1 is a Q-node and νh �= ν1, and cb(μ) = cm(μ) − cm(νh) +
cb(νh) otherwise.
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Fig. 3 a An unavoidable conflict if v j is selected as apex of u. b–d Different cases, that arise, when
computing cb(u, j)

To satisfy Invariant (b),we inherit the labeling of the edges inEb(μ) from the embed-
dings Em(ν1), . . . , Em(νh−1), Eb(νh), Em(νh+1), . . . , Em(νk). Further, in the special
case in which ν1 is a Q-node and νh �= ν1, we label edge (sμ, tμ) as split.

Node μ is an S-node: Let ν1, . . . , νk denote the children of μ, where sμ = sν1
and tμ = tνk . To compute Em(μ) and Eb(μ), we use Em(ν1) and Eb(ν1) for child ν1,
respectively, and the bitonic embeddings Eb(ν2), . . . , Eb(νk) for children ν2, . . . , νk
in both cases, without performing any flip. To guarantee Invariants I.1 and I.2, we set
cm(μ) and cb(μ) to cm(ν1)+∑k

i=2 cb(νi ) and
∑k

i=1 cb(νi ), respectively. To guarantee
Invariants (a) and (b), the labeling of the edges in Eb(μ) and Em(μ) is inherited from
the corresponding ones in the chosen embeddings of the children. Finally, Invariant I.4
is satisfied since edge (sμ, tμ) does not exist in pert(μ).

Node μ is an R-node: Since skel(μ) is triconnected, it has a unique embedding;
we will construct both Em(μ) and Eb(μ) based on such an embedding and by selecting
for each child ν of μ a suitable embedding of pert(ν) and a flip. Since each virtual
edge is outgoing for only one of its end-vertices due to the fact that G is st-planar,
we consider every vertex in skel(μ) independently, together with its outgoing virtual
edges, similar to [10].

Let u be a vertex of skel(μ), and let (u, v1), . . . , (u, vk) be the outgoing virtual
edges of u, as they appear consecutively clockwise around u, and let ν1, . . . , νk be the
corresponding children of μ. If u �= sμ, we can construct a bitonic successor list for u
in both Em(μ) and Eb(μ). Otherwise, we may need to perform different choices when
constructing Em(μ) and Eb(μ), to guarantee Invariants I.1 and I.2, respectively.

Suppose first that u �= sμ. Similar to the P-node case, we determine a child νh of
μ, with 1 ≤ h ≤ k, to contain the apex of u, in such a way to minimize the number of
splits of the outgoing edges of u to make the successor list of u bitonic; we denote this
number by cb(u). To determine νh , we consider each child ν j , for j = 1, . . . , k, to be
candidate for νh , and compute the required number of splits for this choice, denoted
by cb(u, j). We then obtain cb(u) = min{cb(u, j) | j = 1, . . . , k}.

In contrast to the P-node case, we cannot conclude that cb(u, j) = cb(ν j ) +∑
i �= j cm(νi ), since the choice of ν j and the structure of skel(μ) may result in new

conflicts. Namely, consider a child νi ofμwith i < j and assume that the edge (u, vi )

exists in pert(μ) and that there is a directed path in skel(μ) from vi+1 to vi ; see e.g.
Figure 3a. This implies that there is a directed path from a successor of u in pert(νi+1)

to vi . Since i < j , this defines a forbidden configuration, and hence edge (u, vi ) must
be split. On the other hand, by Invariant I.4 edge (u, vi ) is labeled as non-split in
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Em(νi ), and thus we have to account the cost of the split of edge (u, vi ) in the compu-
tation. Analogously, if i > j , a conflict may arise when there exists a directed path in
skel(μ) from vi−1 to vi . Denote by cs(u, j) the total number of these additional splits
when ν j contains the apex of u. Thus,

cb(u, j) =
j−1∑

i=1

cm(νi ) + cb(ν j ) +
k∑

i= j+1

cm(νi ) + cs(u, j).

The computation of cb(u, j) for all j = 1, . . . , k can be done in quadratic time with
respect to the number of outgoing virtual edges of u. Next, we make use of ideas of
the fixed-embedding algorithm [10] to achieve linear time. Namely, we first compute
cb(u, 1) in linear time. Then, for each j = 2, . . . , k, we can compute cb(u, j) from
cb(u, j − 1) in constant time as follows. Namely, for computing cb(u, j), we assume
that we already computed cb(u, j−1) and that the apex of u is to be contained in child
ν j . In this transition, pert(ν j−1) changes its embedding from Eb(ν j−1) to Em(ν j−1),
while pert(ν j ) changes its embedding from Em(ν j ) to Eb(ν j ); the pertinent graphs of
the remaining children maintain their monotonic embeddings. We take this change
into account by considering the corresponding difference δ j (u) = cb(ν j ) − cm(ν j ) +
cm(ν j−1)−cb(ν j−1). In addition,wemust also take into account the differencebetween
cs(u, j − 1) and cs(u, j), whose computation can be done again by only considering
the children ν j−1 and ν j . More precisely, if (u, v j−1) is an edge in pert(μ), then it
did not need to be split when the apex of u was in ν j−1, but it has to be split when
moving the apex to ν j , if there is a directed path from v j to v j−1; see Fig. 3b. On the
other hand, if (u, v j ) is an edge of pert(μ) and it had to be split when the apex of
u was in ν j−1, i.e., there is a directed path from v j−1 to v j , then edge (u, v j ) does
not need to be split any longer when the apex is in ν j ; see Fig. 3c. Note that, if there
is no directed path between v j−1 and v j , then neither of the two cases occurs, and
edges (u, v j−1) and (u, v j ) (if they exist) do not need to be split; see Fig. 3d. In either
case, we conclude that the difference between cs(u, j − 1) and cs(u, j) is at most 1.
Depending on which of the three cases arises, we compute cb(u, j) as follows:

cb(u, j) = cb(u, j − 1) + δ j (u) +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ∃ directed path from v j to v j−1, and
(u, v j−1) is an edge in pert(μ)

−1 if ∃ directed path from v j−1 to v j , and
(u, v j ) is an edge in pert(μ)

0 otherwise

We remark that there is a directed path from v j to v j−1 in G if and only if vertex
v j−1 is the sink of the face shared with v j and u in skel(μ). Similarly, a directed path
from v j−1 to v j in G exists if and only if vertex v j is the sink of the face shared with
v j−1 and u in skel(μ). Both properties can be checked in constant time as demonstrated
in [10].

Once cb(u, j) has been computed for all j = 1, . . . , k, we choose νh , with 1 ≤
h ≤ k, so that cb(u, h) is minimum among all cb(u, j) and define cb(u) = cb(u, h).
Hence, in order to construct Em(μ) and Eb(μ), we select the bitonic embedding Eb(νh)
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for pert(νh) and the monotonic embedding Em(νi ) for the pertinent graph pert(νi ) for
i ∈ {1, . . . , h−1, h+1, . . . , k}.We further flip the embeddingsEm(ν1), . . . , Em(νh−1),
as in the P-node case. We inherit the labeling of the edges from the embeddings
Em(ν1), . . . , Em(νh−1), Eb(νh), Em(νh+1), . . . , Em(νk), except for the edges that con-
tribute to cs(u, h), which we label as split. We repeat the above operations for every
vertex u of skel(μ) with u �= sμ.

Consider now the case u = sμ. We distinguish two cases, based on which embed-
ding of pert(μ) we are going to compute. Namely, for Eb(μ) we perform the same
operations as for any other vertex of skel(μ), since in this embedding we can have a
bitonic successor list for sμ. This guarantees Invariants I.2 and (b). In order to also
guarantee Invariants I.1 and (a), we have to slightly adjust our approach. In particular,
we have to obtain a monotonic successor list for sμ in Em(μ). To achieve this, we
first choose the monotonic embeddings for pert(ν1), . . . , pert(νk). Then, we have to
choose whether ν1 or νk contains the apex of sμ. In order to perform this choice, we
have to consider the conflicts that are created due to the presence of directed paths in
skel(μ), as in the bitonic case. Thus, we compute cs(sμ, 1) and cs(sμ, k) and choose
the minimum of the two. We choose the corresponding child to contain the apex of sμ
and label edges as split such that all conflicts are resolved and inherit the labeling
of the remaining edges from embeddings Em(ν1), . . . , Em(νk). Note that if νk contains
the apex of sμ, we also have to flip all the embeddings Em(ν1), . . . , Em(νk) and the
resulting embedding of the entire R-node μ so to obtain a monotonically decreasing
successor list for sμ.

We account for the monotonic and the bitonic costs of node μ by summing up the
corresponding costs of all vertices in Vμ, where Vμ denotes the vertex set of skel(μ).
In particular, we can always choose the bitonic embedding for all the vertices different
from sμ. For sμ on the other hand, we choose the corresponding embedding. This
results in costs

cb(μ) =
∑

u∈Vμ

cb(u)

and

cm(μ) =
∑

u∈Vμ

u �=sμ

cb(u) +
k∑

i=1

cm(νi ) + min{cs(sμ, 1), cs(sμ, k)}
︸ ︷︷ ︸

u=sμ

for Eb(μ) and Em(μ), respectively. We remark that Invariant I.4 is trivially satisfied,
since edge (sμ, tμ) does not exist in pert(μ).

Nodeμ is aQ-node that is the root of T : This case arises at the end of the traversal
of T . Since we seek to compute a bitonic embedding for G, we only have to compute
Eb(μ) and satisfy Invariants I.2 and (b) (i.e., Invariants I.1, (a) and I.4 can be safely
neglected). Consider the unique child ν of μ.

We first discuss the case where cb(ν) < cm(ν). Here, assume for a contradiction,
that the apex of sμ = sν in Eb(ν) is incident to a face that contains both sμ and tμ.
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Then either sν has already a monotonic successor list in Eb(ν) or ν is a P-node and it
is possible to obtain a monotonic successor list of sν by only reordering and flipping
the embeddings of the pertinent graphs of its children. But then cb(ν) = cm(ν) holds,
which contradicts our assumption. Hence sμ is not incident to a face in Eb(ν) that
contains both sμ and tμ. Therefore, any possible embedding obtained from Eb(ν) by
adding the edge (sμ, tμ) violates the bitonicity of the successor list of sμ. Thus, we
label (sμ, tμ) as split, and inherit the labeling of the remaining edges from Eb(ν).

Second, consider the case cb(ν) = cm(ν). Here, we use the monotonic embedding
Em(ν) and label the edges according to the labeling of Em(ν) while labeling (sμ, tμ)

as non-split.
In both cases, edge (sμ, tμ) is embedded on the outer face of the embedding of

pert(ν) such that tμ is the leftmost successor of sμ, which guarantees Invariant I.2.
Invariant (b) is satisfied by the waywe treat edge (sμ, tμ) and by inheriting the labeling
of the remaining edges of pert(μ) from the chosen embedding of pert(ν).

We are now ready to prove the main theorem of this section.

Theorem 1 Let G = (V , E) be an st-planar graph with n vertices. There exists an
O(n)-time algorithm that computes an embedding and a set of edges E ′ ⊆ E of
minimum cardinality such that the graph G ′ obtained from G by splitting each edge
in E ′ once is bitonic.

Proof The correctness of our algorithm follows from the fact that at the end of the
traversal of T , Invariant I.2 is satisfied by the bitonic embedding Eb(ρ) of the root ρ

of T . Further, since the labeling of the edges of Eb(ρ) satisfies Invariant (b), we can
set E ′ to be the set of edges that are labeled as split in Eb(ρ), which guarantees that
E ′ is of minimum cardinality and that the graph G ′ obtained from G by splitting each
edge in E ′ once is bitonic. Note that we can obtain an actual bitonic st-numbering for
G ′ using the fixed-embedding algorithm [10] on the embedding of G ′ obtained from
Eb(ρ) by splitting each edge of E ′.

To complete the proof of the theorem, it remains to discuss the time complexity
of our algorithm. The construction of the SPQR-tree can be done in O(n) time [17].
Then, at each step of the algorithm, we consider a node μ of T and we perform a
set of operations in time linear to the size of skel(μ). This is clear for the Q-, S-, and
P-node cases. In the R-node case, this follows from our analysis and the fact that the
fixed-embedding algorithm [10] is linear in the size of the input embedding. Since
the sum of the sizes of the skeletons over all the nodes of T is O(n) [18], the time
complexity of the algorithm follows. 
�
We conclude this section with two remarks.

Remark 1 Our algorithm can be adjusted so that the resulting graph G ′ is monotonic.
To achieve that, in the S- and R-node cases, we apply to all vertices of skel(μ) the
same procedure as we applied to sμ when computing Em(μ). In this way, we guarantee
that the successor lists of all vertices are in fact monotonic.

Remark 2 Every series–parallel graph, oriented consistently with the series–parallel
structure, is monotonic. This is because, in the absence of R-nodes, there is no need
to split when computing a monotonic embedding.
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tk−1
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Fig. 4 a Graph G1 in G. b Construction of graph Gk in G

4 Bounds on the Number of Splits

In this section, we provide upper and lower bounds on the number of splits that are
required for making either an n-vertex st-planar graph G or its reversed graph G̃
bitonic. First, recall that there is an upper bound of n−3 splits [10] and a lower bound
of 3

4n − 3 splits [12]. In the following, we will improve the lower bound to n − 5
hence showing that the upper bound is tight up to a small additive constant. Second,
we investigate the number of splits that are required for graphs of bounded degree
motivated by the fact that our lower bound construction has maximum degree 6.

We start by describing the family G of graphs for the lower bound for general
graphs.

Definition 1 (Graph family G) For every integer k ≥ 1, G contains a graph Gk =
(Vk, Ek) that is recursively defined as follows:

– For k = 1, we set V1 = {s0, s1, t0, t1, t2} and E1 = {(s0, t0), (s0, t1), (s0, t2),
(s1, t0), (s1, t1), (s1, t2), (s1, s0), (t0, t1), (t1, t2)}; see Fig. 4a.

– For k > 1, graph Gk constructed from Gk−1 so that Vk = Vk−1 ∪ {sk, tk+1} and
Ek = Ek−1 ∪ {(sk, tk−1), (sk, tk), (sk, tk+1), (sk−1, tk+1), (sk, sk−1), (tk, tk+1)};
see Fig. 4b.

With the following lemma, we first establish some properties of the graphs in G. As a
side note, we also mention that Gk has pathwidth 3.

Lemma 2 Each graph Gk in graph family G contains the directed Hamiltonian path
〈sk, sk−1, . . . , s0, t0, t1, . . . , tk+1〉 and its underlying undirected graph is a triangula-
tion with maximum degree 6.

Proof The fact thatGk is a triangulation follows easily by construction.Moreover, ver-
tex ti is connected to ti+1, ti−1, si−2, si−1, si , si+1 (if these vertices exist), while vertex
si is connected to si+1, si−1, ti−1, ti , ti+1 and ti+2 (again, if these vertices exist). Hence,
each vertex of Gk has maximum degree 6. The existence of the Hamiltonian path can
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(b)
Fig. 5 a, b Illustration of forbidden configurations and edges that must be split in both orientations

be shown inductively. Namely, G1 contains the Hamiltonian path 〈s1, s0, t0, t1, t2〉
by definition. Since by induction hypothesis Gk−1 contains the Hamiltonian path
〈sk−1, . . . , tk〉 and since Gk contains edges (sk, sk−1) and (tk, tk+1), it holds that Gk

contains the Hamiltonian path 〈sk, sk−1, . . . , tk, tk+1〉. 
�
We now prove a new lower bound on the number of splits required for turning either
Gk or G̃k into a bitonic st-planar graph.

Theorem 3 Let Gk = (Vk, Ek) with k > 1 be a graph in graph family G and let n be
its number of vertices, i.e., n = 2k + 3. For every set E ′ ⊂ Ek with |E ′| < n − 5,
neither the graph G ′

k obtained from Gk by splitting each edge in E ′ once nor the

reversed graph G̃ ′
k of G

′
k is bitonic.

Proof By Lemma 2, graph Gk is a triangulated Hamiltonian st-planar graph. Thus, it
has a unique st-ordering and a unique embedding up to the choice of the outer face,
which simply allows us to embed edge (sk, tk+1) as the leftmost or as the rightmost
edge of vertex sk . Similar arguments apply when considering G̃k .

In the following, we describe forbidden configurations that inevitably appear in
both embeddings of Gk , and then count the number of edge splits that are required
to eliminate them. In particular, for vertex si with 1 ≤ i ≤ k − 1, each of the two
faces 〈si , ti−1, si−1〉 and 〈si , ti , ti−1〉 form a forbidden configuration with each of the
faces 〈si , si−1, ti+1〉 and 〈si , ti+1, ti+2〉; see the blue and red colored faces in Fig. 5a,
respectively. In order to eliminate these forbidden configurations, at least one of the
two pairs of edges (si , ti−1), (si , ti ) and (si , ti+1), (si , ti+2) must be split; see the
blue and red edges in Fig. 5a, respectively. Forbidden configurations involving sk are
avoidable by embedding (sk, tk+1) as the leftmost edge of sk .

We now describe the forbidden configurations that appear in both embeddings of
G̃k . Namely, for vertex ti with 2 ≤ i ≤ k − 1, each of the two faces 〈ti , ti−1, si 〉 and
〈ti , si , si+1〉 form a forbidden configuration with each of the two faces 〈ti , si−2, ti−1〉
and 〈ti , si−1, si−2〉; see the blue and red colored faces in Fig. 5b, respectively. Hence,
at least one of the two pairs of edges (ti , si ), (ti , si+1) and (ti , si−2), (ti , si−1) must
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be split; see the blue and red edges in Fig. 5b, respectively. Note that forbidden con-
figurations that involve vertex tk+1 can be avoided by embedding edge (tk+1, sk)
as the leftmost edge of tk+1. Moreover, for vertex t1 (tk , resp.), face 〈t1, s0, t0〉
(〈tk, tk−1, sk〉, resp.) forms forbidden configurations with both faces 〈t1, t0, s1〉 and
〈t1, s1, s2〉 (〈tk, sk−2, tk−1〉 and 〈tk, sk−1, sk−2〉, resp.). Hence, for each of t1 and tk
at least one more incident edge must be split (namely, splitting (t1, s0) and (tk, sk),
respectively, eliminates these forbidden configurations).

We conclude that for both Gk and G̃k , a set of edges E ′ of cardinality at least
2(k−1) = n−5 has to be split to eliminate all the forbidden configurations discussed
above. Note that in G̃1 there is already one unavoidable forbidden configuration (at
vertex t1), while this is not the case for G1. 
�

4.1 Bounds for Graphs of Bounded Degree

In Theorem 3, we showed that n−O(1) is a tight upper bound for the required number
of splits even for graphs with maximum degree 6 (see also Lemma 2). On the other
hand, if the input graph has maximum degree 3, then no split is required [13]. In the
next two theorems, we focus on graphs with maximum degree 5. For this graph class,
we improve the general upper bound of n−3 [10] on the number of splits to n/2. Then,
we provide a corresponding lower bound of n/2−2, which holds even for graphs with
maximum degree 4.

Theorem 4 Let G = (V , E) be an st-planar graph with n vertices and maximum
degree 5. There exists a set of edges E ′ ⊆ E with |E ′| ≤ n/2 such that either the
graphG ′ obtained by splitting each edge in E ′ or the reversed graph G̃ ′ of G ′ is bitonic.
Moreover, set E ′ can be computed in O(n) time.

Proof Consider any upward planar embedding of G. Consider a vertex v of G that
is the source of at least one forbidden configuration. In the following, we will prove
the existence of a face that belongs to all forbidden configurations with source v

(after possibly redrawing edge (s, t)). Suppose first that v does not coincide with s,
which implies that v has at most four outgoing edges. Hence, there exist at most three
internal faces with v as a source, which implies that there is one that belongs to all
forbidden configurations with source v. Suppose now that v coincides with s. In this
case, s can be the source of four internal faces and, therefore, there might exist two
forbidden configurations with source s not sharing a face. If s is the source of two
such forbidden configurations and if (s, t) is the leftmost (rightmost) outgoing edge
of s, then we redraw it as rightmost (leftmost, respectively). After this redrawing, s
is necessarily the source of three forbidden configurations that share a single face f ,
i.e., one of the previous two forbidden configurations is resolved. Now, all remaining
forbidden configurations with source s share the face f that has a transitive edgewhich
is not (s, t).

In both cases, there is a face f that belongs to all forbidden configurations with
source v. Therefore, by splitting the transitive edge of f , every forbidden configuration
with source v is resolved.We associate this splitwith vertex v. Since v is the source of at
least one forbidden configuration, it has at least three outgoing edges, and thus at most
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two incoming edges. Therefore, v cannot be the source of a forbidden configuration
in G̃ as well. This allows us to conclude that each vertex contributes at most one split
in either G or G̃.

For the time complexity, we first observe that an upward-planar embedding can be
computed in linear time for st-planar graphs []. Then, for each face we decide whether
it contains a transitive edge or not. If this is the case, we assign the corresponding
face to its source and sink. Afterwards, we iterate over all vertices and check how
many faces are assigned to it (both as a source and as a sink) and perform the splits
as described above. This last step can be done in constant time for each vertex as at
most four faces are assigned to each vertex in the previous step. 
�
Next, we prove that the upper bound given in Theorem 4 is tight by providing a
corresponding lower bound. First, we present the class of graphs used in our lower
bound construction. For this purpose, we define the following family of auxiliary
graphs:

Definition 2 (Auxiliary graph family Ĥ) For every integer k ≥ 1, Ĥ contains a graph
Ĥk = (Vk, Ek) that is recursively defined as follows:

– For k = 1, graph Ĥ1 consists of six vertices that form a directed path
〈b1,b, r1,b, g1,b, b1,t , g1,t , r1,t 〉. Additionally, it contains four edges (b1,b, b1,t ),
(r1,b, b1,t ), (r1,b, r1,t ) and (g1,b, g1,t ); see Fig. 6a.

– For k > 1, graph Ĥk contains Ĥk−1 as a subgraph and six additional vertices
bk,t , gk,t , rk,t , bk,b, rk,b, gk,b that form two directed paths 〈rk−1,t , bk,t , gk,t , rk,t 〉
and 〈bk,b, rk,b, gk,b, bk−1,b〉 with rk−1,t and bk−1,b of Ĥk−1, respectively. The
recursive construction of Ĥk is completed by adding the six edges (bi−1,b, bi,t ),
(bi,b, bi,t ), (gi,b, gi−1,t ), (gi,b, gi,t ), (ri,b, ri−1,t ) and (ri,b, ri,t ); see Fig. 6b.

Based on Ĥ, we define the following graph family:

Definition 3 (Graph family H) For every integer k ≥ 1, H contains a graph Hk =
(Vk, Ek) obtained from Ĥk of Ĥ by adding the two edges (bk,b, gk,t ) and (bk,b, rk,t )
to it; see the dashed edges in Fig. 6b.

In the following, we discuss some properties of each graph Hk of H.

Observation 1 Let Hk ∈ H. The edges of Hk can be partitioned into the following
four paths (ignoring the edge orientations):

– P = 〈bk,b, rk,b, gk,b, . . . , b1,b, r1,b, g1,b, b1,t , g1,t , r1,t , . . . , bk,t , gk,t , rk,t 〉,
– Pb = 〈b1,t , b1,b, b2,t , b2,b, . . . , bk,t , bk,b〉,
– Pg = 〈g1,b, g1,t , g2,b, g2,t , . . . , gk,b, gk,t , bk,b〉, and
– Pr = 〈b1,t , r1,b, r1,t , r2,b, r2,t , . . . , rk,b, rk,t , bk,b〉.
Moreover, P is a directed Hamiltonian path.

Lemma 5 The underlying undirected graph of each Hk ∈ H is triconnected and has
maximum degree 4.
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Fig. 6 a Graphs Ĥ1 in Ĥ and H1 inH. b Construction of graph Ĥk in Ĥ and Hk inH. In both subfigures,
dashed edges are part of Hk but not of Ĥk

Proof By Observation 1, the edges of Hk can be partitioned into the four paths P , Pb,
Pg and Pr (ignoring the edge orientations). Each vertex bi, j of Hk is on path Pb is
also connected to one vertex rk,� via P or Pr and to one vertex gx,y via P or Pg for
some values of i, j, k, �, x and y. Analogous properties hold for vertices gi, j and ri, j
of Hk . Thus, for each pair of vertices, there exists three disjoint paths such that each
follows a distinct subpath of Pb, Pg and Pr possibly except for the very first and the
very last edge which may also belong to P .

For the maximum degree, observe that every vertex except for b1,t and bk,b belongs
to exactly two of the four paths partitioning the edges of Hk . Vertex b1,t is an internal
vertex of P and an extremal vertex of both Pb and Pr . Finally, bk,b is an extremal
vertex in all four paths. 
�
We are now ready to prove that the upper bound given in Theorem 4 is tight up to a
small additive constant.

Theorem 6 Let Hk = (Vk, Ek) be a graph in graph family H, which has maximum
degree 4, and let n be its number of vertices, i.e., n = 6k. For every set E ′ ⊂ Ek with
|E ′| < n/2 − 2, neither the graph H ′

k obtained from Hk by splitting each edge in E ′
once nor the reversed graph of H ′

k is bitonic.

Proof Since Hk is triconnected and Hamiltonian by Lemma 5 and Observation 1,
it admits a unique upward planar embedding (see Fig. 6a, b) up to a flip and the
choice of the outer face which can either be 〈bk,b, rk,b, rk,t 〉 as shown in Fig. 6b or
〈rk,t , gk,t , bk,b〉 depending on whether (bk,b, rk,t ) is drawn on the right or on the left
side, respectively. We emphasize that the forbidden configurations that we describe
next occur in each of the four possible upward planar embeddings.

First consider Hk . We find the following forbidden configurations:

– For 2 ≤ i ≤ k, vertex ri,b is source of the forbidden configuration formed by the
faces 〈ri,b, ri,t , gi,t , gi,b〉 and 〈ri,b, gi,b, gi−1,t , ri−1,t 〉; see Fig. 7a.
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Fig. 7 a, b Illustration of forbidden configurations and edges that must be split in both orientations

– For 2 ≤ i ≤ k, vertex gi,b is source of the forbidden configuration formed by the
faces 〈gi,b, gi,t , bi,t , bi−1,b〉 and 〈gi,b, bi−1,b, bi−1,t , gi−1,t 〉; see Fig. 7a.

– For 2 ≤ i ≤ k − 1, vertex bi,b is source of the forbidden configuration formed by
the faces 〈bi,b, bi+1,t , ri,t , ri,b〉 and 〈bi,b, ri,b, ri−1,t , bi,t 〉; see Fig. 7a.

– Vertex r1,b is source of a forbidden configuration formed by faces 〈r1,b, r1,t ,
g1,t , g1,b〉 and 〈r1,b, g1,b, b1,t 〉; see Fig. 6a.

– Vertex b1,b is source of a forbidden configuration formed by faces 〈b1,b, b2,t ,
r1,t , r1,b〉 and 〈b1,b, r1,b, b1,t 〉; see Fig. 6a.
Thus, there are 3k − 2 forbidden configurations in any upward planar embedding

of Hk that each require at least one split to obtain a bitonic subdivision.
Next consider the reversed graph H̃k . In each of the four upward planar embeddings

of graph H̃k , we find the following forbidden configurations:

– For 1 ≤ i ≤ k − 1, vertex ri,t is source of the forbidden configuration formed by
the faces 〈ri,t , gi,t , gi,b, ri,b〉 and 〈ri,t , ri+1,b, gi+1,b, gi,t 〉; see Fig. 7b.

– For 2 ≤ i ≤ k − 1, vertex gi,t is source of the forbidden configuration formed by
the faces 〈gi,t , bi,t , bi−1,b, gi,b〉 and 〈gi,t , gi+1,b, bi,b, bi,t 〉; see Fig. 7b.

– For 2 ≤ i ≤ k, vertex bi,t is source of the forbidden configuration formed by the
faces 〈bi,t , ri−1,t , ri−1,b, bi−1,b〉 and 〈bi,t , bi,b, ri,b, ri−1,t 〉; see Fig. 7b.

– Vertex g1,t is source of a forbidden configuration formed by faces 〈g1,t , b1,t , g1,b〉
and 〈g1,t , g2,b, b1,b, b1,t 〉; see Fig. 6a.

– Vertex gk,t is source of a forbidden configuration formed by faces 〈gk,t , bk,t ,
bk−1,b, gk,b〉 and 〈gk,t , bk,b, bk,t 〉; see Fig. 6b.
We conclude that there are also 3k−2 forbidden configurations in any upward planar

embedding of H̃k that each require at least one split to obtain a bitonic subdivision.
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Since Hk has 6k vertices, 3k − 2 = n/2− 2 and the statement of the theorem follows.

�

5 Relationship to Upward Planarity

For an n-vertex st-planar graph that can be made bitonic by splitting a subset E ′ of
its edges, Gronemann suggested an approach in [10] to construct an upward planar
polyline drawing of it in O(n2) area, where each edge of E ′ has one bend while the
remaining edges are drawn as straight lines. This approach has been used to prove
that every n-vertex st-planar graph admits an upward planar drawing in O(n2) area
with at most one bend per edge and at most n − 3 bends in total [10], and that every
n-vertex st-planar graph of maximum degree 3 can be drawn upward planar without
any bends in O(n2) area [13]. A notable consequence of Theorem 4 is that the bound
on the total number of bends can be reduced from n − 3 to n/2 for n-vertex st-planar
graphs of maximum degree 5.

Theorems 3 and 6, on the other hand, show the limitations of this approach. In partic-
ular,whenconstructingupwardplanar drawingswith the approachbyGronemann [10],
n − 5 bends may be required for graphs of maximum degree 6 (by Theorem 3), and
n/2 − 2 bends may be required for graphs of maximum degree 4 (by Theorem 6).
Note that these limitations are tailored to the adopted approach. As a matter of fact,
Gronemann [7] further observed that there exist st-planar graphs which require a lin-
ear number of splits to become bitonic, and at the same time admit bend-less upward
planar drawings in even linear area.

In this section, we investigate whether these limitations are caused by the spe-
cific drawing technique or are already imposed by the nature of the upward planarity
problem. To this end, we study lower bounds on the total number of bends in upward
planar drawings under the polynomial-area requirement, independently of the required
number of splits and of the allowed number of bends per edge. Interestingly, our find-
ings imply that the upper bounds on the number of bends obtained by the approach
by Gronemann are worst-case almost tight, even if more than one bend per edge is
allowed.

Central in our lower bound studies is the following structure, the so-called coil; for
an illustration refer to Fig. 8a:

Definition 4 (k-coil) A k-coil ξ = 〈v0, v1, . . . , vk〉 with k ≥ 2 in an upward planar
embedding of an st-planar graph G is an embedded subgraph of G so that

[(i)] either (vi , vi−1), (vi , vi+1) ∈ E(ξ), i.e.,vi is source in ξ , or (vi−1, vi ), (vi+1, vi ) ∈
E(ξ), i.e., vi is sink in ξ , for 1 ≤ i ≤ k − 1,

(ii) there is a directed st-path Pξ in G that passes through all vertices of ξ so that vi
follows vi+2 along Pξ if vi is sink in ξ or precedes vi+2 along Pξ if vi is source in
ξ , and,

(iii) for 1 ≤ i ≤ k − 1, the edges {vi , vi−1}, {vi , n∗
i }, {vi , vi+1} appear in this order

either consistently clockwise or consistently counter-clockwise around vi where
n∗
i is the predecessor of vi on Pξ if vi is source in ξ or the succesor of vi on Pξ if

vi is sink in ξ .

123



Algorithmica (2023) 85:2667–2692 2685

v0

v2

v3

v4

v5

v6

t

s

v1

(a)

vi+1

vi

vi−1

hi+1

R(ξi)

vi+2

vi+3

(b)

Fig. 8 a A 6-coil 〈v0, . . . , v6〉. b The region R(ξi )

Note that by Property [(i)] of Definition 4 it follows that if vi is sink in ξ , then vi+1
is source in ξ , and vice-versa. We also remark that a similar concept has already been
used for area lower bounds in [19] and [20]. In particular, Frati [20] proved that a k-
coil requires 	(2k) area in any upward planar straight-line drawing. In the following,
we generalize this result by showing that superpolynomial area is required for a coil
unless roughly half of its edges have at least one bend each.

Lemma 7 Let G be an st-planar graph with a fixed upward planar embedding con-
taining a k-coil ξ = 〈v0, v1, . . . , vk〉. In any polyline upward planar drawing of G, ξ
is drawn in ω(poly(k)) = ω(2log(k)) area unless k/2 − O(log(k)) edges of ξ have at
least one bend.

Proof Assume for a contradiction that G admits an upward st-planar drawing � in
which the k-coil ξ is drawn in O(poly(k)) area such that k/2 − ω(log(k)) edges of ξ

are bent.
Consider a 2-coil ξi = 〈vi−1, vi , vi+1〉 that is part of ξ . We say that ξi is a V-shape

if and only if vi is a source of ξ . Similarly, we say that ξi is a �-shape if and only
if vi is a sink of ξ . By definition of k-coil, the number of 2-coils in ξ is k − 1; more
precisely, ξ1, . . . , ξk−1 are the 2-coils in ξ , where ξi is a V-shape if and only if ξi+1
is a �-shape. Furthermore, we say that ξi is eliminated in � if either edge (vi , vi−1)

or edge (vi , vi+1) is bent in �. Conversely, we say that a bend b on one of these two
edges eliminates ξi . We call a V-shape ξi valid if and only if ξi is not eliminated and
the next non-eliminated 2-coil ξ j along ξ with j > i is a�-shape. Similarly, we call a
�-shape ξi valid if and only if it is not eliminated and the next non-eliminated 2-coil
ξ j along ξ with j > i is a V-shape.
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Fig. 9 Illustration for the proof of Lemma 7

Let ξ ′ = 〈v j , v j+1, . . . , v j+k′ 〉 be a k′-subcoil of ξ , so that all k′ edges of ξ ′ are
bent in �. Then, the bends along ξ ′ eliminate all 2-coils ξ j , . . . , ξ j+k′ of ξ ′, which are
in total k′ + 1. In addition, if k′ is even, ξ j−1 and ξ j+k′+1 are either both V-shapes or
both �-shapes. Thus, the bends along ξ ′ make k′ + 1 of the 2-coils in ξ not valid, if
k′ is odd, or k′ + 2 of the 2-coils in ξ , if k′ is even. In either case, the bends along ξ ′
make at most 2k′ of the 2-coils in ξ not valid, namely if k′ ∈ {1, 2}. Recall now that in
� only k/2− ω(log(k)) edges of ξ are bent. Hence, by the previous analysis, at most
k−2ω(log(k)) 2-coils in ξ are not valid. As ξ contains k−1 2-coils, we conclude that
ξ contains c = ω(log(k)) valid 2-coils ξ∗

1 , . . . , ξ∗
c so that if ξ∗

i = ξ j and ξ∗
i+1 = ξ j ′

it holds that j < j ′, for 1 ≤ i < c. In particular, if ξ∗
i is a �-shape, then ξ∗

i+1 is a
V-shape and vice versa.

We first observe, that all of vi+2, . . . , vk are located in the bounded region R(ξi )

delimited by edge {vi , vi+1}, the horizontal hi+1 through vi+1 and the part of edge
{vi , vi−1} between vi and the crossing with hi+1; see Fig. 8b (in this and the following
figures {vi , vi−1}, {vi , n∗

i }, {vi , vi+1} appear in this order clockwise around vi ; the
counter-clockwise case is symmetric). We now show, that the region R(ξ∗

i ) has at
least four times as much area as R(ξ∗

i+1) for all 1 ≤ i < c. We assume w.l.o.g. that
ξ∗
i = 〈β1, β2, β3〉 is a V-shape while ξ∗

i−1 = 〈λ1, λ2, λ3〉 is a �-shape. Further, we
assume w.l.o.g. that β2 and λ2 have the same x-coordinate, otherwise this property
may be obtained by shearing the drawing horizontally. Note that Euclidean area is
invariant under shear mapping [21][Thm.9-2].

Consider the following:

– horizontals y2 and y3 through vertices λ2 and λ3, resp.,
– rays r1 and r3 from λ2 through λ1 and λ3, resp.,
– point λ′

1 on the intersection of y3 and r1,
– verticals x1, x2 and x3 through λ′

1, λ2 and λ3, resp.,
– the line p1 through λ3 which is parallel to edge (β2, β1), and,
– the line p3 through λ′

1 which is parallel to edge (β2, β3).

We consider the following three cases:
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Case 1: Both r1 and r3 cross (β2, β1). For an illustration refer to Fig. 9a. The area
of R(ξ∗

i+1) is at most half the area of the axis-aligned rectangle R spanned by edge
(λ3, λ2). Moreover, R(ξ∗

i ) contains the right triangle T bounded by y2, x2 and p1.
Since R is an inscribed rectangle of T , R has at most half the area of T . Thus, we
conclude that the area of R(ξ∗

i ) is at least four times as large as the area of R(ξ∗
i+1).

Case 2: Both r1 and r3 cross (β2, β3). This case is symmetric to Case 1; here R is
spanned by the segment (λ2, λ′

1).
Case 3: r1 crosses (β2, β1) and r3 crosses (β2, β3). For an illustration refer to

Fig. 9b. The area of R(ξ∗
i+1) is at most half the area of the axis-aligned rectangle R

bounded by x1, x3, y2 and y3. Moreover, R(ξ∗
i ) contains the triangle T bounded by

y2, p1 and p3. Since R is an inscribed rectangle of T , R has at most half the area of
T . Thus, we conclude that the area of R(ξ∗

i ) is at least four times as large as the area
of R(ξ∗

i+1).
Recall that by assumption, k/2−ω(log(k)) edges of ξ are bent. As we have proven,

there is the sequence ξ∗
1 , . . . , ξ∗

c of 2-coils with c = ω(log(k)) as claimed above.
Finally, we showed that the area of R(ξi ) is at least four times as large as the area of
R(ξ∗

i+1) for 1 ≤ i < c.
We now conclude that R(ξ∗

1 ) has at least 4c−2 · 	(1) = 4ω(log(k)) area, which is
superpolynomial in k assuming that R(ξ∗

c−1) has area 	(1). This leads to a contradic-
tion.

Hence, it remains to show that R(ξ∗
c−1) has area 	(1). Assume w.l.o.g. that

λ1, λ2, λ3 are the vertices of ξ∗
c and that β1, β2, β3 are the vertices of ξ∗

c−1; as shown
in Fig. 9. Observe that R(ξ∗

c−1) contains a triangle T bounded by β2, β3, and λ2.
By Pick’s theorem [22, 23], T , and hence also R(ξ∗

c−1), has area at least 1/2. This
concludes the proof. 
�

We now shift our attention back to the two graph families introduced in Sect. 4.
As we shall see in the next two theorems, members of these graph families contain
coils which require many bends in any polynomial area upward planar drawing. More
precisely, the induced number of required bends almost matches the upper bound
obtained via splitting technique for obtaining a bitonic subdivision:

Theorem 8 Let Gk ∈ G and let n be its number of vertices. Graph Gk does not admit
an upward planar drawing with n − o(log(n)) bends within polynomial area.

Proof Recall the definition of the graph family G described in Definition 1. In partic-
ular, we may assume Gk ∈ G to be upward planar embedded as it is a triangulated
graph with a Hamiltonian directed path. Observe that in Gk

– the path ξh = 〈sk, tk, sk−1, tk−1, . . . , s1, t1, s0〉 is a (2k − 1)-coil, and
– ξ1 = 〈sk, tk−1, sk−3, tk−4, sk−6, . . .〉, ξ2 = 〈sk−1, tk−2, sk−4, tk−5, sk−7, . . .〉 and

ξ3 = 〈sk−2, tk−3, sk−5, tk−6, sk−8, . . .〉 are three (2k/3 − O(1))-coils.

By Lemma 7, every polynomial area upward drawing � of Gk has at least 2k
2 −

o(log(2k)) = k − o(log(k)) bent edges along ξh and at least 2k/3
2 − o(log(2k/3)) =

k
3 − o(log(k)) bent edges along each of ξ1, ξ2 and ξ3. Since ξh , ξ1, ξ2 and ξ3 are
pairwise edge-disjoint, � has at least 2k − o(log(k)) = n − o(log(n)) bent edges in
total. 
�
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Theorem 9 For infinitely many values of n ∈ N, there exists an n-vertex st-planar
graph with maximum degree 4 that does not admit any upward planar drawing with
n
2 − o(log(n)) bends within polynomial area.

Proof Consider the graph Hk from the proof of Theorem 6. Observe that the paths Pr ,
Pb and Pg are disjoint (2k + 1)-, (2k − 1), and 2k-coils, resp. By Lemma 7, every
polynomial area upward drawing� of Hk has at least 2k2 −o(log(2k)) = k−o(log(k))
bent edges along each of Pr , Pb and Pg . Thus, � has at least 3k − o(log(k)) =
n
2 − o(log(n)) bent edges in total. 
�

Note that Theorem 9 improves upon the result of Di Battista et al. [19] in two ways:
First, we show that the superpolynomial area is still required if we allow an almost
linear number of bends. Second, our area lower bound construction has maximum
degree 4 which closes the gap towards the maximum degree 3 graphs, which are
known to always admit a straight-line upward drawing in polynomial area.

This result also strengthens the observation on the relationship between the number
of splits in bitonic st-orderings and the number of bends in polynomial-area upward
planar drawings. Consequently, we may now ask whether graphs that require a certain
number of splits in any bitonic st-ordering also require a certain number of bends in
a polynomial-area upward planar drawing. In the following theorem, we answer this
question negatively even for graphs of maximum degree 4.

Theorem 10 There exist infinitely many n-vertex st-planar graphs G = (V , E) with
maximum degree 4 so that

(i) for every set E ′ ⊂ E with |E ′| < n/4−5/2, neither the graph G ′ obtained from
G by splitting each edge in E ′ once nor the reversed graph of G ′ is bitonic and

(ii) there is a straight-line upward planar drawing of G within quadratic area.

Proof Our construction for the n-vertex (such that n ≡ 2(mod 4)) st-planar graph
G consists of source s and sink t and subgraphs G1 and G2 with sources s1 and s2,
respectively, and sinks t1 and t2, respectively, which are st-planar except for lacking
the st-edge; refer also Fig. 10. We first describe G1.

Let k = n/4 − 3/2. Then, G1 contains the three directed paths

– 〈s1 = v1, v2, . . . , vk〉,
– 〈vk, �(k−1)/2, . . . , �2, �1〉 and
– 〈vk, r(k−1)/2, . . . , r2, r1〉.
In addition, there is a vertex t1 and the following edges:

– (�1, t1),
– (r1, t1),
– (vi , ��i/2�) for i ∈ {1, . . . , k − 1} and
– (vi , ��i/2�) for i ∈ {1, . . . , k − 1}.
Now, we observe that vertex vi for i ∈ {1, . . . , k − 1} is source of a forbidden

configuration, namely,
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Fig. 10 Illustration for the proof of Theorem 10

– if i is odd, consisting of face (vi , �(i+1)/2, vi+1) with transitive edge (vi , �(i+1)/2)

and face (vi , r(i+1)/2, vi+1) with transitive edge (vi , r(i+1)/2), or,
– if i is even, consisting of face (vi , �i/2, �i/2+1, vi+1)with transitive edge (vi , �i/2)

and face (vi , ri/2, ri/2+1, vi+1) with transitive edge (vi , ri/2).

Hence, G1 requires at least k − 1 = n/4 − 5/2 splits in G. In addition, G1 admits
an upward planar drawing in quadratic area (as shown in Fig. 10), where

– vi is located at (0, i) for i ∈ {1, . . . , k},
– �i is located at (−(k + 1)/2 + i, k + i) for i ∈ {1, . . . , (k − 1)/2},
– ri is located at ((k + 1)/2 − i, k + i) for i ∈ {1, . . . , (k − 1)/2} and
– t1 is located at (0, 3k/2 + 1/2).

Now the construction ofG is completed as follows.G2 is isomorphic to G̃1. Further,
vertices s and t are incident to edges (s, t), (s, s1), (s, s2), (t1, t) and (t2, t).

Since G2 is isomorphic to G̃1, it requires at least k − 1 = n/4 − 5/2 splits in G̃
and admits an upward planar drawing isomorphic to the one described above for G1.
We can combine the described drawings of G1 and G2 to a drawing of G as follows:

– G1 is drawn as described above,
– vertex s is placed at ((k + 1)/2, 0), and,
– the drawing of G2 is isomorphic (rotated by π/2) to the drawing of G1 and vertex
s2 of G2 (which is isomorphic to t1) is located at (k + 1, 1).

With the above construction, we obtain a drawing in area O(k) × O(k) = O(n2).
In addition, we have already seen that G1 requires at least n/4−5/2 splits in G, while
G2 requires at least n/4 − 5/2 splits in G̃. This concludes the proof. 
�
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Fig. 11 Illustration of a slight modification of a lower bound construction in [12]

Similarly to the previous theorem, the graph shown in Fig. 11 that is inspired by
a lower bound construction of Rettner [12] requires only linear area for an upward
planar drawing but n/2 splits in each orientation. Thus, we conclude that the number
of bends required in a polynomial area upward planar drawing is not an upper bound
for the number of splits in a bitonic st-ordering while the reverse relation holds.

6 Conclusions and Open Problems

In this work, we proposed a linear-time algorithm to minimize the number of splits
over all embeddings tomake a given st-planar graph bitonic.We then provided bounds
on the number of required splits that are tight up to an additive constant in the worst
case. Finally, we studied the relationship between the required number of such splits
and the number of bends in polynomial-area upward planar drawings.
We conclude with some open problems raised by our work.

(i) An experimental evaluation of our algorithmwould allow to estimate the required
number of splits in practice. In addition, our investigation of the relationship to
upward planar drawings in Sect. 5 suggests that an actual implementation of our
algorithm would be a viable tool in practical applications.

(ii) In view of Remark 2 and Theorem 4, it is worth investigating other meaningful
subclasses of st-planar graphs that admit improved upper bounds on the required
number of splits; note that our lower bound examples inTheorems 3 and 6 already
impose strong restrictions. Namely, they are Hamiltonian have pathwidth 3 and
4, respectively, and the latter construction has maximum degree 4.

(iii) Another possible direction would be to study whether some of the results for st-
planar graphs translate to general upward planar graphs. Note that the definition
of bitonic st-orderings is based on st-planar graphs, hence, it would have to
be extended to support general upward planar graphs. Recall that a directed
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acyclic graph is upward planar if and only if it can be augmented to an st-planar
graph [24].
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