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Kurzfassung

Diese Dissertation konzentriert sich auf Theorien und Algorithmen zur deterministischen
und statistischen Erreichbarkeitsanalyse von Cyber-physischen Systemen, welche durch
neuronale Netze mit kontinuierlicher Tiefe (CDNN) geregelt werden. Hierbei betrachten
wir geschlossene Systeme, deren Zustandsdynamik durch ein System von Differentialglei-
chungen (ODEs) gegeben ist. Die Motivation dieser Arbeit ist es, das große Potenzial von
CDNN bei Anwendungen, welche für traditionelle Regler zu komplex sind, ausschöpfen
zu können. Die Fragestellung lautet daher: Wie können Sicherheitsgarantien, vorhersagba-
res Verhalten und damit Vertrauenswürdigkeit von CDNN-Regler bereitgestellt werden,
sodass der Einsatz auch für sicherheitskritische Anwendungen möglich wird?

In dieser Arbeit verbessern und erweitern wir den Stand der Technik mit zwei komple-
mentären Ansätzen: Der erste besteht aus dem Algorithmus LRT-NG und einer Reihe
von analytischen, symbolischen Techniken zur Approximation von nichtlinearen ODEs.
Hierbei wird zum ersten Mal die optimale Metrik der Kugel, welche die erreichbaren
Zustände umschließt, bewiesenermaßen analytisch so berechnet, dass diese Metrik das
Volumen der Kugel minimiert. Im zweiten Teil wird zunächst eine reine Theorie dargestellt
und bewiesen, dass neuronale ODEs, eine Teilklasse der CDNNs, durch die Lösung einer
Reihe globaler Optimierungsprobleme verifiziert werden können. Anschließend wird ein
neuer statistischer Verifizierungsalgorithmus, GoTube, vorgestellt, der die Robustheit
eines beliebigen zeitkontinuierlichen Prozesses, der als CDNN-Modell formuliert ist, for-
mal quantifiziert, indem er statistische obere Schranken lokaler Lipschitz-Konstanten
berechnet. LRT-NG erhielt den Outstanding Student-Paper Award des IEEE CPS-DES
TC, und GoTube wurde mit dem Scientia Preis ausgezeichnet.

Wir vergleichen LRT-NG mit modernsten konservativen Algorithmen wie LRT, CAPD und
Flow* und zeigen seine Überlegenheit anhand Tests an umfassenden ODE-Benchmarks,
einschließlich zweier neuronaler ODEs, wobei LRT-NG als einziger CDNNs verifizieren
kann. GoTube, unser statistischer Algorithmus, akkumuliert - im Vergleich zum Stand
der Technik - keine Fehler zwischen den Zeitschritten und vermeidet den berüchtigten
Wrapping-Effekt, der symbolischen Techniken innewohnt. Wir zeigen anhand einer großen
Anzahl von Experimenten, dass GoTube die modernsten Verifizierungsalgorithmen in
Bezug auf die mögliche Größe der Anfangskugel, den Zeithorizont und die Skalierbarkeit
deutlich übertrifft. Unsere Programme, LRT-NG und GoTube, sind auf GitHub frei
verfügbar: https://github.com/DatenVorsprung.
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Abstract

The main focus of this thesis is the development of a theory and associated algorithms
and tools, for the deterministic and statistical reachability analysis, of cyber-physical
systems controlled by continuous-depth neural networks (CDNNs). We assume that the
dynamics of the closed-system’s states is given by a set of ordinary differential equations
(ODEs), and the output is a function of the solution of the ODEs at a given time.

The primary motivation for this work is the huge potential of CDNNs in the design and
implementation of safety-critical applications which are required to solve difficult tasks.
So the main question of the thesis is: How to provide safety-guarantees, predictable
behaviour, strong assurances, and thus trustworthiness, such that the use of CDNN
controllers becomes a feasible strategy for safety-critical applications, too?

In this thesis, we improve and extend state-of-the-art with two complementary approaches.
The first, introduces a set of conservative, symbolic techniques and an algorithm, LRT-
NG, for the reachability analysis of nonlinear ODEs. This uses for the first time an
analytically computed metric for the ball enclosing the propagated reachable states, which
is proven to minimize the ball’s volume. The second, first discusses a purely theoretical
framework and shows that Neural-ODEs, an emerging class of CDNNs, can be verified
by solving a set of global-optimization problems. It then introduces a new statistical
verification algorithm, GoTube, that formally quantifies the behavioural robustness of any
time-continuous process formulated as a CDNN model, by computing statistical upper
bounds of local Lipschitz constants. LRT-NG received the Outstanding Student-Paper
Award from the IEEE CPS-DES TC, and GoTube won the Scientia Prize.

We experimentally demonstrate that LRT-NG, our conservative algorithm, is the only
symbolic tool capable of handling CDNNs, compared to the state-of-the-art tools such
as LRT, CAPD and Flow*. Moreover, our experiments on a comprehensive set of ODE
benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance.
Compared to advanced reachability analysis tools for time-continuous neural networks,
our statistical theory, and algorithm GoTube, does not accumulate over-approximation
errors between time steps and avoids the infamous wrapping effect inherent in symbolic
techniques. We show that GoTube substantially outperforms state-of-the-art verification
tools in terms of the size of the initial ball, speed, time-horizon, task completion, and
scalability on a large set of experiments. Our tools, LRT-NG and GoTube, are freely
available on GitHub: https://github.com/DatenVorsprung.
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CHAPTER 1
Motivation and Problem

Statement

Since the advent of neural ordinary differential equations (Neural ODEs) [CRBD18],
modern cyber-physical systems (CPS) increasingly use deep-learning systems powered by
continuous-depth neural networks (CDNN). In these networks, the dynamics of the hidden
states is defined by a set of nonlinear ordinary differential equations (ODE) and the output
is a function of the solution of the ODEs at a given time. CDNNs thus generalise Neural
ODEs and are used within the cyber part of a CPS, responsible for state-estimation,
planning, and (adaptive) optimal control, of the physical part of the CPS. CDNNs are
especially suited for the task of controlling safety-critical CPS, as they are: 1) more robust
against both random Gaussian perturbations and adversarial attacks than conventional
convolutional neural networks [YDTF20], 2) there is a better characterization of Neural
ODEs [RCD19, DDT19, DBMP19, JB19], and 3) a better understanding of their stability
[YWL+20], and controllability [QGMK19, HKT20, KMFL20]. As the use of CDNNs in
real-world applications increases [FJNO20, LHA+20, EAQM20, LH20, HLA+20], so does
the importance of ensuring their safety through the use of verification techniques, such
as their reachability analysis (see Fig. 1.1).

Formally, a CDNN is an infinite depth neural network, which means that there are not
several hidden layers which processes the input step by step. Rather, the transformation
of the hidden states are described by an ODE, such that they can be evaluated at any
time/depth using an ODE solver. As often the ODE is specified by a neural network,
CDNNs are also generally referred to as Neural ODEs, even though this was the name of
a specific CDNN presented in [CRBD18]. Let us define a CDNN [MPP+20]:

ˆth = f◊(t)(t, h, s) with h(t0) = ĝ(s(t0)) and c(t) = f̂(h(t)), (1.1)

with h being the hidden states (or generally speaking the neurons), s(t) the input, ĝ and
f̂ input and output functions correspondingly, c(t) the output, ◊(t) the parameters of the

3



1. Motivation and Problem Statement

control 
variables

state 
variables

Neural Network Control System

Figure 1.1: A Cyber-Physical System with a neural network controller is safe, if the
system will not reach any unsafe state for all inputs and initial states.

CDNN. The derivative of the unknown hidden states h is described by a parameterized
vector-valued function ”th = f◊(t)(t, h, s) which is often a neural network. This definition
is a general formulation as CDNN is an umbrella term for different neural networks with
ODEs, e.g. such as those introduced in [CRBD18] or the augmented version [DDT19].

In contrast to regular neural networks, where the input is passed through several hidden
layers until the output layer, we integrate the ODE of the hidden states in Eq.(1.1) until
a specific time T and evaluate the output c(T ) = f̂(h(T )). When using an integration
timestep of Δt = 1 and Euler method as the solver, a CDNN can be interpreted as similar
to a ResNet: every integration step is equivalent to h + f(h), resembling one hidden layer
in a ResNet. This is why these networks are considered continuous-depth. Another way
to interpret CDNNs is as a continuous-time RNN: if we compare a CDNN with an RNN,
it has continuous-time hidden state and can be evaluated at any desired time point T .

4



CDNNs have shown to be effective in handling irregularly sampled input data. In addition,
they are particularly useful in control applications, as they can be used with varying
control input timings after being trained, whereas regular neural networks would require
distinct neural networks for different control input times. This reflects the ability of
parameter sharing in CDNNs, allowing for more flexible and adaptive control in different
situations, such as variable control input rates during specific maneuvers or turns.

Since all these networks are characterized by nonlinear ODEs, it is impossible, that
is, undecidable, to exactly predict their behaviour, as they do not have a closed-form
solution. This is very problematic because safety is an important concern in many
of such systems, as for example, smart mobility, industry 4.0, or smart health-care.
Robustness analysis of CDNNs, can be seen as a special case of reachability analysis
of nonlinear ODEs, as it measures the ability to resist change in the input values.
Fortunately, it is possible to approximate this behaviour but there is a big problem:
traditional verification approaches for hybrid systems are not scalable enough to tackle
the complex system dynamics that arises due to the use of a machine-learned model,
such as a neural network. Deterministic verification approaches ensure conservative
bounds [CÁS13, GDS+18, MGV18, BDPD+20, KMWZ20], but often sacrifice speed and
accuracy [Ehl17]. Another big drawback is that, especially due to the wrapping effect
caused by interval arithmetic, they suffer from scalability in space and in time; see
CAPD, Flow*, Lagrangian Reachability (LRT), and LRT-NG in Fig. 1.2(a). Statistical
methods, on the other hand, only ensure a weaker notion of conservativeness in the form
of confidence intervals (statistical bounds). This, however, allows them to achieve much
more accurate and faster verification algorithms that scale up to much larger dynamical
systems [SZ15b, BS14]. However, to the best of our knowledge, there did not exist any
statistical method for the robustness analysis of CDNNs.

The main problem is how to over-approximate the system dynamics, and thus the
behaviour of the system, in as tight a way as possible, so that one can rely upon and
use the huge potential of these CDNNs even in safety-critical systems, when it comes to
difficult tasks. In principle the computation of the aforementioned over-approximations
of the reachable states (also called a reachtube) is straightforward: one uses the Taylor
expansion (in time) of the nonlinear ODEs, by replacing the set of initial states with a
box (an interval in every dimension) and applying interval arithmetics to get the results
(in interval arithmetics every function and relation is conservatively extended from points
to boxes). In practice, however, this approach is too coarse: the result would be a far too
wide reachtube (and thus over-conservative), giving us false positives when looking for
intersections of the reachtube with unsafe regions. To avoid false positives, it is crucial to
have as-tight-as-possible reachtubes. Otherwise they would e.g. predict that a car driven
by an CDNN would cause a crash even if the CDNN is behaving perfectly and never
causes a crash. Such reachtubes are thus not useful in evaluating CDNNs’ safety.

This doctoral thesis is based on three peer-reviewed conference papers (see Fig. 1.3)

5



1. Motivation and Problem Statement

Figure 1.2: Reachtubes of LRT-NG [GCL+20] and GoTube [GLH+21]: (a) for a CT-
RNN controlling Cart-Pole-v1 environment. LRT [CIB+17], CAPD [KMWZ20], and
Flow* [CÁS13] failed on this benchmark. (b) For Dubins Car dynamical system. False
positives are avoided by achieving tight reachtubes with GoTube compared to LRT-NG.
The box representing unsafe states on the top right of the picture intersects with LRT-NG
and yields a false positive, as the true sample traces are not inside that box.

which resulted in two tools: LRT-NG1 and GoTube2. With the first conference paper,
we improved the LRT theory dramatically and built our own conservative, set-based
reachability tool and technique LRT-NG [GCL+20]. We used as comparison metrics the
average volume of the constructed tubes as well as the maximum time horizon the tools
were able to handle. Our results show that LRT-NG is very competitive with both Flow*
and CAPD. Moreover, it is the only conservative tool able to handle the CDNNs. Flow*
and CAPD either completely fail to handle these dynamical systems or fail after a very
short time horizon (to the best of our knowledge at the time when this work was done).
The second conference paper [GHL+21] presented a new non-conservative, statistical
theory SLR, where reachability analysis is formulated as a global optimization problem,
which uses interval arithmetics to compute local Lipschitz constants, a forward-mode
gradient-descent algorithm for local search, and uniform sampling for global search. In
our third conference paper [GLH+21], we presented our scalable statistical tool GoTube,
where we introduce a Theorem to compute statistical bounds for the Lipschitz constant.
In addition, GoTube is tensor-based and thus allows efficient (even multiple) GPU
computation. We performed a diverse set of experiments and are able to show that
GoTube substantially outperforms all state-of-the-art verification tools in terms of the
size of the initial ball, time-horizon, task completion, and scalability.

While LRT-NG guarantees safety, SLR and GoTube only guarantee with a certain
1https://github.com/DatenVorsprung/LRTNG
2https://github.com/DatenVorsprung/GoTube
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Theoretical 
Framework

Tool 
Development

conservative (set-based)

statistical bounds

CDC-20

AAAI-21 AAAI-22

Robustness Analysis of Continuous-Depth Neural Networks

Figure 1.3: Areas of contribution of peer-reviewed conference papers on which this
doctoral thesis is based.

confidence the safety of closed-loop CPS with CDNNs. The stochasticity of the latter
two is only introduced through the algorithm, we are not looking at stochastic dynamical
systems. The advantage of the statistical approach is to be able to predict the behaviour
of a neural network control system in a much tighter and more scalable fashion, see
Fig. 1.2(b). The price for it is a weaker assurance, for example that with a given
probability (e.g. 99%) the reachable states of the CPS are inside the reachtube.
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CHAPTER 2
Research Goals and Methodology

As described in Chapter 1, CPS with CDNN controllers were not yet ready for deployment
in safety-critical systems. When using existing deterministic verification approaches, only
an extremely short time-horizon could be verified. Statistical methods, on the other
hand, were still not ready to be used in these complex nonlinear dynamical systems.

The research goal – was to provide safety-guarantees, a predictable behaviour and
strong assurance even for high-dimensional neural network control systems, such that
they can be used for complicated tasks in safety-critical environments. Therefore, the
main motivation of my doctoral research project was to scale up reachability analysis of
nonlinear ODEs to high-dimensional systems such as CDNNs.

The research questions – on which I focused in this thesis to get to the aforementioned
goal, are the following:

1. How to provide a stand-alone implementation of LRT that scales up to large systems
of nonlinear ODEs?
When I started my PhD, the state-of-the-art technique for reachability analysis
of nonlinear ODEs at TU Wien was LRT [CIB+17]. This was not able to scale
up to high dimensional systems, not even to small neural network control systems.
As LRT uses the over-approximation tool CAPD [KMWZ20, Zgl02] to handle the
interval arithmetic calculations, our first goal was to remove that dependency.
Methodology. This required us to replace CAPD routines with verified integration
schemes [MB06, NJC99, Alt13], an approach also taken by other tools, including
CAPD, CORA [AGK18] and Flow* [CÁS13]. Additionally, we took advantage of
an improved Lohner’s QR method [Loh92, NJC99] to account for the infamous
wrapping effect, which is intrinsically connected to interval arithmetic [SB13].

2. How to significantly improve LRT such that it can be applied even to Neural ODEs?

9



2. Research Goals and Methodology

After removing CAPD dependencies, we were able to focus on taming the infamous
wrapping effect that occurs in every conservative, set-based over-approximation
and computation as these prevent the desired scaling.
Methodology. We simulated and ploted the traces starting from different initial
points as well as the reachtubes computed with LRT. After seeing where the
biggest wrapping effect occurred, we developed new theorems combating that
shortcoming. We ran experiments on a comprehensive set of benchmarks, including
two Neural ODEs, to demonstrate LRT-NG’s superior performance, when compared
to state-of-the-art reachability tools such as LRT, CAPD, and Flow*.

3. How to provide a theory of stochastic guarantees for much tighter and scalable
reachtubes?
Improving LRT such that it could be applied to simple Neural ODEs, was not enough
however, so it was necessary to develop the necessary mathematical foundations
and theory for constructing tight reachtubes, and provide stochastic guarantees in
the form of confidence intervals for the reachtubes’ bounds.
Methodology. We investigated statistical methods to find a good starting point
for stochastic guarantees for reachtubes’ bounds. By adapting these theories for
our specific needs, we gave formal theorems and proofs. Finally, we introduced
a theoretical framework for the verification of Neural ODEs by restating the
reachability problem as a set of global-optimization problems.

4. How to provide a statistical tool for robustness analysis that provides safety bounds
up an arbitrary time horizon?
After developing the theoretical background for stochastic guarantees, we aimed
at finding technical solutions for implementing and adapting the theory, such that
it could be in fact applied for statistical verification. We wanted to introduce a
practical statistical verification algorithm for continuous-depth neural networks.
Methodology. We first implemented the theory of stochastic guarantees from
Research-question 3 in form of the SLR algorithm. After observing and identifying
the computational and implementation constraints resulting from the application
of SLR, we proposed new technical solutions for addressing these fundamental
issues, in the form of formal theorems and proofs. Finally, we introduced GoTube,
a practical statistical verification algorithm for continuous-depth models.

Before talking about the contributions of this thesis, it is important to give an overview
of its main research topics. Therefore, I will first clarify the state of the art in Chapter 3,
then present the underlying background techniques in Chapter 4, before summarizing
the scientific results and contributions of each paper in Chapter 5.

10



CHAPTER 3
State of the Art

A CPS consists of an environment, modeled as nonlinear ODEs (more generally as a
Markov decision process), and a controller, modeled e.g., as an neural network controller
(NNC), as seen in Fig. 1.1. No matter which specific NNC is chosen, one part of the
CPS is defined by the environment which is a system of nonlinear ODEs in unknown
x œ Rn, where the field f : Rn ‘æ Rn is assumed to be a sufficiently smooth (at least
twice differentiable), time-invariant function:

ˆtx = f(x), x0 = x(t0). (3.1)

Since time dependence can be incorporated by adding the auxiliary variable ˆtxn = 1,
our discussion naturally extends to time-varying systems of the form ˆtx = f(t, x).

3.1 Reachability Analysis of Nonlinear ODEs
Linear ODEs posses a general closed-form solution, describing the behaviour of the
solution-traces over time, for every initial state. Nonlinear ODEs however, have no
closed-form solution anymore. One is able to calculate the solution for different initial
states, but one does not know what happens between these already calculated traces.

The main goal of the reachability analysis of nonlinear ODEs, is to over-approximate the
reachable states of the ODEs, starting from a set of initial states, symbolically represented
for example as an interval, a ball, or an ellipsoid, in such a way that one can guarantee
that all solution traces of the nonlinear ODE are inside the over-approximation. We call
such an over-approximation a reachtube. Let us now define this mathematically:

Definition 1 (initial value problem (IVP)) We have a time-invariant ordinary dif-
ferential equation ˆtx = f(x), f : Rn æ Rn, a set of initial values defined by a ball
B0 = B(x0, ”0) with center x0 œ Rn and radius ”0 œ R, the initial condition x(t0) œ B0

11



3. State of the Art

and a sequence of k timesteps {tj : j œ [0, . . . , k] · (t0 <t1 < · · ·<tk)}. For every tj, we
want to know the solution x(tj) of

ˆtx = f(x), x(t0) œ B0 = B(x0, ”0). (3.2)

Let ‰(tj , x0) = x(tj) be the solution of Eq. (3.2) at time tj , for x(t0) = x0. In reachability
analysis, the goal is to find for every time step tj an over-approximation Bj ´ {‰(tj , x) :
x œ B0}, such that the set of these over-approximations build up a reachtube, containing
the reachable states.

Definition 2 (Reachtube) Given a set of initial values B0 œRn◊n, a nonlinear ODE
as in Eq. (3.2), the pointwise solution function ‰(tj , ·) :Rn æRn and over-approximations
Bj ´ {‰(tj , x) : x œ B0}. The reachtube for a sequence of k timesteps {tj : j œ [0, . . . , k] · t0 <
t1 < · · · < tk)} is defined as

R = {B0, B1, . . . , Bk}. (3.3)

As we use balls and ellipsoids, we call the reachset Bj bounding balls. For every ellipsoid
there is a metric in which the ellipsoid equals a ball. Let Mj œRn◊n be a positive definite
matrix (Mj º 0). Then there exists a decomposition Aj œRn◊n with A€

j Aj = Mj . Every
ellipsoid can be defined as BMj (xj , ”j) = {x : Îx ≠ xjÎMj = ”j} with center xj , weighted
radius ”j and norm ÎxÎMj =

Ò
x€Mjx = ÎAjxÎ2. If Mj is the identity matrix, then Bj is

a ball in the Euclidean metric, so we will omit the subscript and use B(xj , ”j).

When using reachability analysis to check for intersections of the reachtube with regions
of bad states, it is crucial to compute an as-tight-as-possible reachtube.

Robustness Analysis. Given the definition of reachability analysis, it is straightfor-
ward to see that robustness analysis is a special case of reachability analysis. Intuitively,
the first computes how an initial perturbation ”0 evolves over time, and gives guarantees
about the maximum distance between the perturbed and unperturbed solutions for ”0.

3.2 Reachability Analysis of CPS with Continuous-Depth
Neural Networks

In the robustness analysis of a CPS with a CDNN controller as in Eq. (1.1), the nonlinear
dynamics of the physical part of the CPS (referred to as the environment) is combined
with the ODEs of the NNC In this thesis, we propose a combined ODE system for the
CDNN controller and the environment as follows:

Definition 3 (CDNN Control System) Let s œ S ™ Rns be the state variables of
the environment, h œ H ™ Rnh be the hidden states of a CDNN, ”th = f◊(s, h) be a

12
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Technique Determ. Parallel Wrapping Arbitrary
Effect Time-horizon

LRT [CIB+17] with Infinitesimal strain theory yes no yes no
CAPD [KMWZ20] implements Lohner algorithm yes no yes no
Flow* [CÁS13] with Taylor models yes no yes no
”-reachability [GKC13] with approximate satisfiability yes no yes no
C2E2 [DMVP15] with discrepancy functions yes no yes no
LDFM [FKJM17] by simulation, matrix measures yes yes no no
TIRA [MDA19] with second-order sensitivity yes yes no no
Isabelle/HOL [Imm15] with proof-assistant yes no yes no
Breach [Don10, DM07] by simulation yes yes no no
PIRK [DKAZ20] with contraction bounds yes yes no no
HR [LBB20] with hybridization yes no yes no
ProbReach [SZ15a] with ”-reachability, no no yes no
VSPODE [ES11] using p-boxes no no yes no
Gaussian process (GP) [BS14] no no no no
LRT-NG [GCL+20] (part of this thesis) yes no yes no
SLR [GHL+21] (part of this thesis) no yes no no
GoTube [GLH+21] (part of this thesis) no yes no yes

Table 3.1: Related work on the reachability analysis of continuous-time systems. Determ.=
Deterministic. "No" indicates a stochastic method.

parameterized vector-valued function describing the derivatives of the hidden states h,
c(t) = f̂(h(t)) œ C ™ Rnc represent the control input variables as a function of the
hidden states, ”ts = gc(s, c) = gc(s, f̂(h)) = g(s, h) be a vector field which defines the
environment as a function of the state and control variables and h(t0) = ĝ(s(t0)) be the
input function from the environment to the CDNN. Then an NNC system is represented
as a nonlinear ODE that combines the environment with the CDNN:

x =
A

s
h

B
, ”tx = f(x) =

A
f◊(x)
g(x)

B
, x0 = x(t0) =

A
s(t0)

ĝ(s(t0))

B
œ B0, (3.4)

where f is assumed to be Lipschitz-continuous and forward-complete.

Hence, a CDNN control system can be seen as a special case of a high-dimensional system
of nonlinear ODEs as given by Eq. (3.1).

Solving this equation solely by Taylor expansion is not feasible due to the fact that the
initial value x0 is not a single real number but a set of initial states. Therefore, we need
to consider alternative methods to avoid blow-up in space of the over-approximations
when running the algorithm for a longer time horizon.

We start by providing a summary of methods developed for the reachability analysis of
nonlinear ODEs in Table 3.1. A fundamental shortcoming of the majority of the methods
described in Table 3.1 is their lack of scalability while providing conservative bounds.

Interval-Arithmetic-Based Approaches. The set of initial states can be represented
as a multi-dimensional interval box. When using intervals instead of reals and applying
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Taylor expansion, the arguably best approach to combat the wrapping effect is Lohner’s
method, which wraps the linear image of a box with a box aligned with its largest
side [Loh92]. The state-of-the-art tool CAPD [KMWZ20, Zgl02, WZ12] employs this
method when integrating the nonlinear ODEs and additionally integrates the associated
variational equations to improve the tightness of the reachtube by also exploiting the
sensitivity of the ODEs with respect to their initial states.

Taylor-Models-Based Approaches. Instead of working with intervals directly to
describe the set of reachable states (reachset) in the space dimension, it is also possible
to use Taylor models, which represent intervals as a pair, consisting of a symbolic part
(a Taylor expansion expression), and a remainder part (an interval). The symbolic part
supports the parametric definition of the initial states (e.g. (1 + a, 1 ≠ a), for a ranging
in a particular interval), and consequently, the higher order terms can encode non-convex
sets. This is the so-called expansion in space [NJN07]. Nevertheless it is still necessary
to work with intervals to conservatively express the remainder part. This approach was
first used in COSY-Infinity [MB03], and then in Flow* [CÁS13]. As a straightforward
application of Taylor models would be also too coarse, similar results as with Lohner’s
method in interval arithmetic are achieved by using shrink-wrapping and preconditioning.

Bloating-based Techniques. They avoid the explicit propagation of the reachset by
conservatively bloating each state of an execution starting in an initial state, to a ball in
some appropriate metric [MA15, FKJM17]. By bloating we mean increasing the diameter
of the current reachset overestimate (e.g. a ball), with the goal of conservatively bounding
all reachable states for a given time. Discrepancy-function techniques (tool C2E2)
compute the bloating by over-approximating the ODE solution with an exponential
function, whose time constant is the interval approximation of the ODE’s Jacobian
in a metric computed through semidefinite programming [FM15, FKJM16, FKJM17].
Lagrangian techniques (tool LRT) compute the bloating numerically, by integrating the
variational ODEs (capturing system’s sensitivity) with interval arithmetic, and computing
the Jacobian’s metric either analytically [CIS+18, GCI+19] or by using semidefinite
programming [CIB+17]. The key observation of LRT is that interval arithmetic should
be used with considerable care, and only when necessary, due to its inevitable blow up.

Statistical Methods. Bortolussi et al [BS14] developed a method to construct reach-
tubes which is not exact and not conservative, but provides statistical guarantees. Their
method is simulation-based, such that they only consider a finite number of sample traces.
Using non-parametric Bayesian methods they were able to statistically control the error
and to produce a statistical over-approximation. With their approach they construct
reachtubes and prove that the true reachable set is inside that reachtubes with a given
confidence. In [BCP+19] the focus is on neural predictive monitoring, where they also
compute statistically sound estimates of uncertainty. As the conservative methods make
use of the sensitivity analysis, Oakley et al [OO04] presented a scalable probabilistic
sensitivity analysis with a Bayesian approach. In this case instead of intervals describing
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3.3. Reachability Analysis of CPS with Feedforward Neural Networks

the initial set, they use a distribution describing the uncertainty in the input and then
they analyse the uncertainty in the produced output.

3.3 Reachability Analysis of CPS with Feedforward
Neural Networks

Some state-of-the-art methods are limited to feedforward neural networks, or rather spe-
cific activation functions, which I also want to mention here for the sake of completeness.

ReLu-Based Approaches. Dutta et al [DCS19] developed an approach to construct
reachtubes for CPS controlled by NNCs using ReLU activation functions, represented
by piecewise linear functions. They use Flow* to over-approximate the dynamics of the
environment. Instead of directly over-approximating the output of the neural network,
they produce a "local" Taylor model for that part, which can be integrated into Flow*, thus
constructing a reachtube for the whole system using that tool. More precisely, they replace
the neural network feedback law for a small subset of inputs, by a polynomial mapping
using regression. In addition they compute an error interval which conservatively covers
the difference between the polynomial function and the real neural network. Similar to
Taylor models, this yields a polynomial function plus an error interval. The computation
of the error interval can be solved as a mixed integer nonlinear optimization problem.

Sigmoid-Based Approaches. Ivanov et al [IWA+18, ICW+20, ICW+21] focused on
the reachability analysis of CPS using NNCs with sigmoids or tanh as activation functions.
They exploited the property of a sigmoid that it is the solution to a quadratic differential
equation. In their tool Verisig, they converted the dynamical system, consisting of the
controller and the environment, into an equivalent hybrid system. This conversion was
achieved by replacing the neurons in each layer with ODEs, and by converting each
layer into a mode of the hybrid system. Finally, they combined the nonlinear dynamical
system of the environment with the hybrid system of the controller, and used Flow* to
construct the reachtubes of the closed-loop CPS.

Bernstein-Polynomials-Based Approaches. ReachNN [HFL+19] and the corre-
sponding tool ReachNN* [FHC+20] are not limited to the activation function of the
neural network, as long as the activation function is Lipschitz continuous. However,
ReachNN* only considers feedforward neural networks. The authors abstract the NNC
as Bernstein Polynomials for a small subset of inputs and then over-approximate the
error bound between the real output and the one of the polynomials, thus creating Taylor
models. The error can be either computed conservatively using the Lipschitz constant of
the neural network, or with a sampling-based estimation error.

Star-Sets-Based Approaches. NNV [TBXJ20] verifies convolutional neural networks
with a set-based method by first introducing a new type of set called ImageStar, and then
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by showing that they can compute tighter over-approximations than other approaches
using zonotopes or polytopes, by taking advantage of ImageStar.

Statistical Methods. Weng et al [WCN+18] did not focus on CPS using NNC but on
probabilistic robustness of neural networks. They assume that the input noises are either
zero-mean Gaussian or independent bounded random noises. Their tool is able to certify
the probability that the classifiers top prediction cannot be altered. As expected, they
can improve robustness certification by up to 75% compared to the worst-case approaches,
with 99.99% confidence. Ruan et al [RWS+19] propose an optimization-based approach
to compute robustness of convolutional neural networks, for the Hamming distance of
images. As a sort of inverse reachability analysis, they compute the maximum radius of
the initial ball, within which there are no adversarial examples for a trained network.
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CHAPTER 4
Background

4.1 Interval Arithmetic and Lohner Method
There are different ways to define conservative regions by set representations: intervals,
balls, ellipsoids, polytopes and more. In the papers [GCI+19, GCL+20] we relied on
interval arithmetic, so we want to shortly review the benefits and problems with that
method. The set of intervals on the real numbers is defined as ([NJC99]):

IR = {[a] = [a, a] : a, a œ R, a Æ a}, (4.1)

whereas an interval vector [x] œ IRn is a vector with interval components and an interval
matrix [A] œ IRn◊m is a matrix with interval components. The biggest problem in interval
arithmetic is the wrapping effect, which happens if we apply concatenated functions on
intervals (see Fig. 4.1). In the LRT algorithms [GCI+19, GCL+20] an improved version
of Lohner’s QR method [Loh92, NJC99] is used to directly address the wrapping effect

Figure 4.1: Wrapping effect. Symbolic illustration for wrapping of a parallelogram (green)
when applying a consecutive rotation of 45¶ to it with interval boxes (grey) and with
interval boxes in adapted coordinate systems using Lohner’s QR method (yellow).
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caused by interval arithmetic. Intuitively, the rotational part Q of a function evaluation
is extracted, which is subsequently used as a new coordinate system. For a more detailed
discussion of the steps mentioned above, please refer to [GCI+19].

4.2 Lipschitz Constant and the Variational Equation
The Lipschitz constant defines a relation between the domain and the range of a function,
more precisely it bounds the distance in the range by a multiple of the distance in the
domain. Intuitively, if we know the Lipschitz constant of a dynamical system, we are
able to bound the maximum distance between trajectories at a given time, having the
distance of their initial starting points.

Definition 4 (Lipschitz Constant) Let f : AæRm (A™Rn) be a function, MA, MB º
0 metrics on the domain and range, respectively, S ™A a subset of the domain. Then:

⁄S = sup
x,yœS,x ”=y

Îf(x) ≠ f(y)ÎMB

Îx ≠ yÎMA

(4.2)

is called the Lipschitz constant of f on set S.

An upper bound of the Lipschitz constant can be computed using the mean value theorem
from calculus with the statement for vector valued functions:

Theorem 1 (Mean value theorem (generalized Rolle’s theorem) ) Let M1, M2 º
0 be respectively metrics on the domain and the range with M1 =A€

1 A1, M2 =A€
2 A2 and

norm ÎxÎM1,2 =ÎA2xA≠1
1 Î2. Considering the change of metric [CIB+17, Lemma 2] and

the well-known mean value theorems, we are able to make the following statement:

Let ‰ : AæRn (A™Rn) be a vector-valued function, S ™ A a subset of the domain and
the norm of the Jacobian matrix of ‰ be bounded by some constant Λ1,2 Ø Îˆx‰(x + h ·
(y ≠ x))ÎM1,2 for all h œ [0, 1] and all x, y œ S. Then it holds:

Î‰(x) ≠ ‰(y)ÎM2 Æ Λ1,2 · Îx ≠ yÎM1 ’x, y œ S, (4.3)

and thus Λ1,2 is an upper bound of the Lipschitz constant ⁄S of Definition 4.

The mean value theorem can be used to find an upper bound of the local Lipschitz
constant. We will need such an upper bound for both deterministic and statistical
guarantees. In both cases we need the Jacobian matrix of the solution function ‰(tj , ·) of
Eq. (3.2), so the question is how to compute the Jacobian matrix for the solution of a
differential equation, for which we do not even have a closed form solution?
To this end, we introduce Fx :RæRn◊n with Fx(t) = ˆx‰(t, x) called the deformation
gradient in [Sla02, Abe98], and sensitivity in [Don10, DM07]. Fx(t) describes how sensitive
the solution to the IVP at time t is to an infinitesimal small perturbation in the initial
value x. To compute Fx(t) we make use of the variational equation, which intuitively
describes how an initial perturbation in the initial value evolves over time.
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t0 t

0

χ(tj, x0)0

Initial states ℬ0

 Λj ⋅ δ0

nonlinear ODE 
∂tx = f(x)

Reachset ℬj

BMj
(χ(tj, x0), Λj ⋅ δ0)solution to ODE initial value problem

Figure 4.2: A graphical overview of the underlying algorithm of LRT. The figure shows
the over-approximation of one timestep.

Definition 5 (Variational equation) Let f be the system equations of the initial value
problem defined in Eq. (3.2) and ‰(t, x0) be the solution at time t for x(t0) = x0, then
the following equation is called the variational equation:

ˆtF (t) = (ˆxf)(‰(t, x))F (t), F (t0) = I, (4.4)

with I œ Rn◊n is the identity matrix.

In [GCL+20] it was shown that Fx is a solution of the variational equations associated
to the system equations in Eq. (3.2). Thus, we compute Fx(t) for different initial points
x by solving the IVP of Eq. (4.4) for these points.

4.3 Lagrangian Reachability (LRT)
The most straightforward way to compute a conservative reachtube as defined in Def. 2,
would be to use an interval enclosure [X0]´B0 of the initial values and just use interval-
arithmetic evaluations of an integration method, for example, the Runge-Kutta method,
to propagate them from timestep to timestep.

However, due to the infamous wrapping effect (as shown in Fig. 4.1), this approach would
lead very soon to a blow-up in space. As we already mentioned in the related work
sections in Chapter 3, there are various ways on how to avoid that blow-up in space and
create as tight as possible reachtubes.

LRT is a bloating based technique. As shown in Fig. 4.2, starting with an initial ball
B0 = B(x0, ”0), at a sequence of k timesteps {tj : j œ [0, . . . , k] · (t0 < t1 < · · · < tk)},
it propagates the center of the ball x(tj) = ‰(tj , x0), and computes the new radius ”j ,
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by multiplying ”0 with a stretching factor Λj . In addition, LRT claims to compute an
optimal metric Mj of the ball at time tj , to make sure that the reachsets are ellipsoids of
an optimal shape. So the question is, how to compute a stretching factor Λj and a metric
Mj such that Bj = BMj (‰(tj , x0), Λj · ”0) is a tight over-approximation of the reachable
set of states at time tj .

With ‰(tj , x0) being the solution of Eq. (3.1) at time tj , for x(t0) = x0 and using Thm. 1
it holds that:

max
xœB0

Î‰(tj , x) ≠ ‰(tj , x0)ÎMj Æ max
xœB0

ÎFx(tj)ÎMj max
xœB0

Îx ≠ x0ÎM0 . (4.5)

Interval arithmetic is used to over-approximate maxxœB0ÎFx(tj)ÎMj by propagating all
possible deformation gradients as an interval [Fj ] ´ {Fx(tj) : x œ B0} with an interval
arithmetic version of the variational equation Eq. (4.4):

ˆt[F ] = (ˆxf)([Xj ])[F ], F0 = [I] (4.6)

where [Xj ] is an as-tight-as-possible interval over-approximation of Bj . Thus the challenge
is to bound the norm of the interval deformation gradients:

Î[Fj ]ÎMj Æ Λj ∆ ”j = Λj”0. (4.7)

Λj - the upper bound of the Lipschitz constant of ‰(tj , ·) - is called the stretching factor
(SF) associated to the interval gradient tensor, as it shows by how much the initial ball B0
has to be stretched, such that it encloses the set of all reachable states. Having the interval
gradient [Fj ] at time tj , Eq. (4.7) is solved using algorithms from [HDT10, Rum01, Roh98],
and choosing the tightest result available. The correctness of LRT is rooted in [CIB+17,
Theorem 1].

The metric Mj is chosen by solving the following optimization problem:

Mj = arg min
Mº0

Î[Fj ]ÎM . (4.8)

In [CIS+18], they developed a simple explicit analytical formula for finding Mj in Eq. (4.8).
But in fact, as shown in our LRT-NG paper [GCL+20], this was a correct result for the
wrong optimization problem.

As the tightness of the bounding balls Bj depends on the previous values, for example
Bj≠1, [Xj ] or [Fj ], the wrapping deficiencies accumulate in time, as shown in Fig. 4.1.
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CHAPTER 5
Summary of Scientific Results

5.1 Lagrangian Reachtubes: The Next Generation
This section presents the theoretical advances of LRT-NG in [GCL+20] which concentrates
on minimizing the volume of the bounding balls and their enclosure, and thus on creating
tighter and longer reachtubes. In particular, we first state the optimization problem to be
solved in order to get the optimal metric, and thus the bounding ball with minimal volume.
We first describe an analytic solution of an optimal metric minimizing the volume of the
ellipsoid and prove that it solves the optimization. Finally, we focus on the new reachset
box [Xj ] computation, the interval over-approximation of the ellipsoid-ball-intersection.

As shown in Algorithm 1, LRT-NG iterates over the sequence of k timesteps, until it
reaches the given time horizon T . After propagating the center point, it computes the
interval deformation gradient by integrating Eq. (4.6) in Line 4. After computing the
optimal metric Mj , it bounds the maximum singular value of [Fj ] in both the Euclidean
norm and Mj norm, such that LRT-NG constructs an ellipsoid Bj and an Euclidean
ball Bcircle

j . This allows us to define an as-tight-as-possible interval box [Xj ], as the
intersection of the ellipsoid and the ball. This intersection-based approach considerably
reduces the wrapping effect of the next integration of the interval variational equation.

5.1.1 Computation of the Metric
To obtain an as-tight-as-possible over-approximation, we minimize the volume of the
n-dimensional ball Bj = BMj (xj , ”j). Hence, the optimization problem is given by:

arg min
Mjº0

Vol(BMj (xj , ”j)), (5.1)

where ”j =Λj(Mj)·”0. Let us further define F̂j≠1,j =ˆx‰
tj

tj≠1(x)|x=xj≠1 as the deformation
gradient from time tj≠1 to tj at the center of the ball. Using the chain rule it holds that
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Algorithm 1 LRT-NG
Require: initial ball B0 = B(x0, ”0), initial metric M0, initial metric decomposition

A0 (M0 = A€
0 A0), time horizon T, sequence of timesteps tj (t0 <. . .<tk = T ), system

dynamics f
1: set [F ] Ω {I}, [X ] Ω over-approximation of B0
2: for (j = 1; j Æ k; j = j + 1) do
3: xj Ω solveIVP(f, xj≠1, [tj≠1, tj ])
4: [F ] Ω F[X0](tj) = rungeKuttaVariational((ˆxf)([X ]), [F ], [tj≠1, tj ]))
5: Mj Ω computeOptimalMetric(Fxj (tj), A0)
6: for all M œ {Mj , I} do
7: compute Λ Ø Î[F ]ÎM (stretching factor)
8: end for
9: Bj Ω BMj (xj , ”Mj )

10: Bcircle
j Ω B(xj , ”I)

11: [X ] Ω intersectionBox(Bj , Bcircle
j )

12: end for
13: return (B1, . . . , Bk), (Bcircle

1 , . . . , Bcircle
k )

Fj =rj
m=1 F̂m≠1,m, where Fj is defined as the deformation gradient at x0. The following

theorem defines a metric M̂j and shows that this metric minimizes the ellipsoid volume,
and is therefore optimal.

Theorem 2 (Thm. 1 in [GCL+20]) Let the gradient-of-the-flow matrices F̂j≠1,j œRn◊n

and Fj be full rank, and the coordinate-system matrix of the last time-step Aj≠1 œRn◊n

be full-rank and Aj≠1 º 0. Define metric M̂j(Fj)=Âj(Fj)€Âj(Fj), where:

Âj(Fj) = Aj≠1F̂ ≠1
j≠1,j = A0F ≠1

j (5.2)

When Fj is known, we simply abbreviate Âj(Fj) with Âj, and M̂j(Fj) with M̂j. Let
Λ0,j(Mj) be given by (with M0 fixed):

Λ0,j(Mj) =
Ú

⁄max
1
(A€

0 )≠1F €
j MjFjA≠1

0

2
.

Then, it holds that Vol
1
BM̂j

(‰(tj , x0), Λ0,j(M̂j) ”0)
2

is equal to:

min
Mjº0

Vol
1
BMj (‰(tj , x0), Λ0,j(Mj) ”0)

2
.

In other words, the symmetric matrix M̂j º 0 minimizes the volume of the ellipsoid
BMj (‰(tj , x0), Λ0,j(Mj) ”0) as a function of Mj.

Thus, Thm. 2 gives us an analytic solution for the optimal metric, releasing us from
either solving an optimization problem with semi-definite programming in every time-step
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Figure 5.1: Reachtube for the Robotarm model, obtained with the LRT (in blue) and
LRT-NG metric (in purple), respectively. The small, black dots represent points of
trajectories starting in the set initial states. The time is bounded to the interval t œ [0, 5],
and it evolves starting at the top left corner of the figure, and going to the right.

like in [FKJM17, CIB+17], or risking false-positive consequences of using a suboptimal
metric as in LRT [CIS+18, GCI+19].

A comparison of the reachsets obtained with LRT metric M̃j [CIS+18, Definition 1] and
the one obtained with LRT-NG metric M̂j is illustrated in Fig. 5.1. It shows that the LRT
metric is by far not an optimal choice, and it also shows how well our new analytically
computed metric M̂j follows the shape of the set of reachable states.

5.1.2 Intersection of the Bounding Balls
Another novelty in LRT-NG, is that the next reachset is the intersection of an ellipsoid
computed in the optimal metric and an Euclidean ball. This considerably reduces the
volume and therefore enables LRT-NG to work also for CDNNs.

An effective way of getting a much tighter conservative bound [Xj ] is taking the intersection
of the ellipsoid in the optimal metric M̂j , and the ball in Euclidean metric. As small
errors accumulate in interval arithmetic, taking the intersection leads to a considerable
improvement especially as the time horizon increases. This new approach is conservative
as shown in Lemma 1 of [GCL+20], which allows us to dramatically reduce the volume of
the reachtube and combat the wrapping effect in a way that has not been considered before
by bloating-based techniques [CIB+17, CIS+18, GCI+19, FKJM17, FKJM16, FM15].

5.1.3 Theoretical Contributions
The theory of this paper answers our Research-Questions 1 and 2 from Chapter 2. We
present a stand-alone tool LRT-NG, whose underlying theory and algorithm significantly
improved LRT and can be even applied to Neural ODEs. In summary, our theoretical
contributions resulting in much tighter reachtubes are as follows:
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Table 5.1: Performance comparison with Flow*, CAPD and LRT. We use following labels for
models M: B(2)- Brusselator, V(2)- Van der Pol oscillator, R(4)- Robotarm, D(3)- Dubins Car,
M(2)- Mitchell Schaeffer cardiac-cell, C(4)- controlled cartpole, Q(17)-Quadcopter, C-N(12)-
cartpole wt. Neural ODEs, C-L(12)- cartpole wt. LTC RNN (number in parenthese denotes
dimension). T: time horizon, dt: time step, r: initial radius in each dimension, AV: average
volume of reachtubes in T, Fail: Volume blow-up before T; (1), (2) and (4) denotes the integration
order. We mark in bold the best performers for low orders (1,2nd) and the higher order (4th).

M dt T r
AV

LRT-NG Flow* CAPD LRT

B(2) 0.01 9 0.01
1.5e-4 (1)

1.4e-4 (2, 4)

5.1e-3 (2)

9.8e-5 (4)

4.3e-4 (2)

3.6e-4 (4)

6.7e-4 (1)

6.1e-4 (2, 4)

V(2) 0.01 40 0.01
4.2e-4 (1)

4.1e-4 (2, 4)

5.6e-3 (2)

3.5e-4 (4)

1.5e-3

(2, 4)

4.1e-3 (1)

3.7e-3 (2, 4)

R(4) 0.01 40 0.005

8.1e-11 (1)

8e-11 (2)

7.9e-11 (4)

1.1e-9 (2)

8.7e-10 (4)

1.1e-9

(2, 4)
Fail

D(3) 0.00125 15 0.01
0.1323 (1)

0.1312 (2, 4)

6.6037 (2)

4.5e-2 (4)

0.1181

(2, 4)

390 (1)

385 (2, 4)

M(2) 0.01 10 10≠4 3.8e-9 (1, 2)

3.7e-9 (4)

3.9e-8 (2)

1.5e-8 (4)

4.9e-8 (2)

4.4e-8 (4)

3.2e-8

(1, 2, 4)

C(4) 0.001 10 10≠4 8.4e-17 (1)

7.2e-17 (2,4)

1.1e-11 (2)

7e-13(4)

2.6e-13 (2)

2.6e-13 (4)
Fail

Q(17) 10≠4 2 0.005
3.21e-54 (1)

9.31e-56 (2)
9.7e-25

(2)
1.7e-31

(2)
Fail

C-
N(12)

10≠5 1 10≠4 3.9e-27 (1, 2) Fail Fail Fail

C-
L(12)

10≠6 0.35 10≠4 4.49e-33 (1) Fail Fail Fail

Metric computation. We introduce a new analytic method for computing the next-ball
(next bloating) metric, and prove that by using this metric we minimize the volume
of the resulting next-ellipsoid (Cartesian bloating).

Reachset computation. We considerably reduce the wrapping effect in the computation
of the next reachset by intersecting the ball resulting in the Cartesian metric with
the ellipsoid computed in the optimal metric.

Center propagation. We show how to conservatively propagate the bloating-center
states, without incurring the infamous wrapping effect due to the interval-arithmetic
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5.2. On the Verification of Neural ODEs with Stochastic Guarantees

propagation of boxes (multi-dimensional intervals).

5.1.4 Experimental Evaluation
To assess the performance of LRT-NG in terms of accuracy and speed, we applied it
to a comprehensive set of available nonlinear ODE benchmarks, and to two Neural
ODEs we developed ourselves. The benchmarks are as follows: Brusselator, Van der Pol
Oscillator, Robotarm, Dubins Car, Mitchell-Schaeffer Cardiac-cell, linearly controlled
Cartpole, Quadcopter, Cartpole controlled with a Neural ODEs [LZLD18], and a Cartpole
controlled with an LTC [LHZ+19]. For comparison, we applied LRT and the latest versions
of Flow* and CAPD to these benchmarks, too, and show the results in Table 5.1. LRT-NG
is the only tool able to compute reachtubes for the Neural ODEs benchmarks (to the
best of our knowledge at the time when this work was done).

5.2 On the Verification of Neural ODEs with Stochastic
Guarantees

In order to avoid the bounding-balls blow up, as it happens in the conservative methods,
we developed a statistical version of LRT. This technique provides convergence guarantees
for computing the upper bound of the confidence interval, for the maximum perturbation
at time tj with confidence level 1 ≠ “ and tube tightness µ.

We first review Stochastic Lagrangian Reachability (SLR), a purely theoretical statistical
version of LRT framework [GHL+21], and then GoTube, a practical statistical verification
algorithm for continuous-depth models [GLH+21], where we achieved technical solutions
for fundamental problems occurring when applying SLR.

We describe reachability as an optimization problem and solve that problem for every
timestep such that the size of the bounding ball Bj at time tj does not depend on the
previous values Bj≠1, [Xj ] or [Fj ] like in LRT-NG. To compute a bounding reachtube, we
have to compute at every time step tj , the maximum perturbation ”j in metric Mj for
x œ B0, which is defined as the solution of the optimization problem:

”j Ø max
xœB0

Î‰(tj , x) ≠ ‰(tj , x0)ÎMj = max
xœB0

d(‰(tj , x)) = mı (5.3)

where dj(x) = d(‰(tj , x)) denotes the distance at time tj from the center ‰(tj , x0), if the
initial center x0 and metric Mj is known from the context.

As we require Lipschitz-continuity and forward-completeness of the CDNN in Eq. (3.4),
the map x ‘æ ‰(tj , x) is a homeomorphism and commutes with closure and interior
operators. In particular, the image of the boundary of the set B0 is equal to the boundary
of the image ‰(tj , B0). Thus, Eq. (5.3) has its optimum on the surface of the initial ball
BS

0 = surface(B0), and we will only consider points on the surface.

In order to be able to optimize this problem, we describe the points on the surface
with (n-dimensional) polar coordinates such that every point x œ BS

0 is represented by a

25



5. Summary of Scientific Results

!! "!

initial 
perturbation

Initial ball #!

Lipschitz cap $" "
!(#! , %)

Bounding ball ## with
desired probability ≥ 1 − (

)$" = +(")Continuous-depth model

' !(%)

(! = * max"∈$%'!(%)

Time

.! .#

!(#! , .)
'!(.)"% "&""

"% "&""

!(#! , %&)

Propagated 
perturbation ball

/

Figure 5.2: Statistical Guarantees in a nutshell. The center x0 of ball B0 = B(x0, ”0),
with the initial perturbation ”0, and samples x drawn uniformly from B0’s surface, are
numerically integrated in time to ‰(tj , x0) and ‰(tj , x), respectively. The Lipschitz
constant of ‰(tj , x) and their distance dj(x) to ‰(tj , x0) are then used to compute
Lipschitz caps around samples x, and the radius ”j of bounding ball Bj depending on
the chosen tightness factor µ. The ratio between the caps’ surfaces and B0’s surface are
correlated to the desired confidence 1 ≠ “.

tuple (”0, Ï), with angles Ï = (Ï1, . . . , Ïn≠1), radius ”0 and center x0, having a conversion
function x((”0, Ï), x0) from polar to Cartesian coordinates. Whenever the center x0 and
the radius ”0 of the initial ball B0 are known from the context, we will use the following
notation: x(Ï) for the conversion from polar to Cartesian coordinates, and just x if we
do not want to mention the polar coordinates explicitly.

5.2.1 Forward-Mode Use of Adjoint-Sensitivity Method.

For both algorithms, we need the deformation gradient Fx for several sample points. The
integral of Eq. (4.4) has the same form as the ODE used for reverse-mode automatic
differentiation of Neural ODEs, when optimized by the adjoint sensitivity method
[CRBD18] with one exception: our Fx defines the differential of the solution by the
initial value, and their equivalent function a defines the differential of the loss function
by the initial value. Their approach computes gradients by solving a second, augmented
ODE backwards in time. In our case, solving the variational Eq. (4.4) until target time
tj , already gives us the required gradient Fx, but requires knowledge of ‰(t, x) for all
t œ [t0, tj ]. This is why in our forward-mode adjoint sensitivity method, we propagate for
all samples x using Eq. (3.2) and Fx(t) using Eq. (4.4) forwards in time together until
tj , starting from its augmented (combined) initial state (x, I) and using its augmented
dynamical system (f(x), (ˆxf)(‰(t, x))F (t)).
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Algorithm 2 Stochastic Lagrangian Reachability (SLR)
Require: initial ball B0 = B(x0, ”0), time horizon T, sequence of timesteps tj (t0 Æ

t1 Æ · · · Æ tk = T ), tolerance µ > 1, confidence level “ œ (0, 1), distance function dj ,
gradient of loss ÒÏL

1: for (j = 1; j Æ k; j = j + 1) do
2: V, U Ω {} (list of visited and random points)
3: xj Ω solveIVP(f, xj≠1, [tj≠1, tj ])
4: [F ] Ω F[X0](tj) = rungeKuttaVariational((ˆxf)([X ]), [F ], [tj≠1, tj ]))
5: compute Λ Ø Î[F ]Î (interval arithmetic Lipschitz constant)
6: p̄ Ω 0, S Ω {}
7: while p̄ < 1 ≠ “ do
8: sample x œ B0 and add sample to V and U
9: ‰(tj , x), Fx(tj) Ω forwardModeAdjointSensitivity(x, I, [t0, tj ])

10: if x /œ S then findLocalMinimum(x, ÒÏL, Fx(tj)) and add x to V
11: m̄ Ω maxxœV dj(x)
12: rx Ω computeSafetyRegionRadius(dj(x), m̄, Λ) ’x œ V
13: S Ω t

xœV B(x, rx)
14: p̄ Ω Pr(µ · m̄ Æ mı)
15: end while
16: Bj Ω B(xj , µ · m̄)
17: end for
18: return (B1, . . . , Bk)

5.2.2 Theoretical Statistical Verification Framework

In SLR, we solve each optimization problem globally, via uniform sampling, and locally,
through gradient descent, whereas gradient descent is avoided in spherical-caps around
the start/end states of previous searches. The cap radius is derived from its local Lipschitz
constant, computed via interval arithmetic.

5.2.3 Gradient Computation

The SLR algorithm uses gradient descent locally, when solving the global optimization
problem of Eq. (5.3). In [GHL+21] the loss function L(Ï)= ≠dj ¶ x(Ï) is introduced in
polar coordinates at time tj to be able to do gradient descent on the surface, in order to
find the optimum. L also depends on the initial radius ”0 and initial center x0; as these
are fixed inputs, we do not consider them in the notation. Gradient descent is started
from uniformly sampled points not contained in already constructed safety regions.

In [GHL+21], we introduced a new framework to compute the loss’s gradient which is
needed to find the local minimum in a unified fashion, and improved the optimization
runtime by 50%, compared to the optimization scheme used in [CRBD18]: we save half
of the time because we do not have to go backwards to compute the loss.
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5.2.4 Safety-Region Computation
In contrast to the perspective in [GHL+21], we will discuss the problem of finding a
global maximum of dj(x) for points x œ B0 instead of the equivalent problem of finding a
global minimum of L(Ï) for points Ï œ Rn≠1. With our global search strategy, we are
covering the feasible region BS

0 with already visited points V. Consequently, we have
access to the current maximum in V:

m̄j,V = max
xœV

dj(x) (5.4)

with m̄ Æ mı, where mı is the global maximum of Eq. (5.3). We will now identify safety
regions for a continuous-depth model flow and describe how the use of these regions is
incorporated in the SLR algorithm.

Definition 6 (Safety Region) Let xi œ V ™ B0 be an already-visited point. A safety-
radius rxi = r(xi) defines a safe spherical-cap B(xi, rxi)S = B(xi, rxi)flBS

0 , if it holds that
dj(y) Æ µ · m̄ for all y œ B(xi, rx)S and m̄ Æ mı.

In Thm. 3 below, we use Thm. 1 to bound the local Lipschitz constant (Def. 4) and to
define the radius rx of the safety region B(x, rx)S around an already-visited point x œ V .

Theorem 3 (Radius of Safety Region ([GHL+21], Thm. 1)) At target time tj,
let m̄ be the current global maximum, as in Eq. (5.4). Let x œ V be an already-visited
point with value dj(x), and let rx and B(x, rx)S be defined as follows:

rx = ⁄≠1
Σx

(µ · m̄ ≠ dj(x)) (5.5)

with µ > 1, ⁄Σx = maxyœΣxÎFy(tj)ÎM0,j and Σx ´ B(x, rx)S, then it holds that:

dj(y) Æ µ · m̄ ’y œ B(x, rx)S (5.6)

We can now use these safety regions around the samples to compute the probability
needed in Line 14 of Algorithm 2:

Pr(µ · m̄ Ø mı) Ø Pr(÷x œ U : Sx – xı) = 1 ≠
Ÿ
xœU

(1 ≠ Pr(Sx)) , (5.7)

with Sx = B(x, rx)S being the safety region around x. In [GHL+21], we provide a
convergence guarantee as well as a convergence rate for the probability Pr(Sx) =
Area(Sx)/ Area(B0). Thm. 2 of [GHL+21] shows that in the limit of the number of
samples, the constructed reachset converges with probability 1 to the smallest ellipsoid
that encloses the true reachable set using tightness bound µ.
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5.2.5 Theoretical Contributions
With SLR, we presented a theoretical framework for the statistical verification of Neural
ODEs and provided an answer to Research-Question 3 in Chapter 2. We summarize our
key research contributions as follows:

• We introduced a theoretical framework for the verification of Neural ODEs by
restating the reachability problem as a set of global-optimization problems.

• We solved each optimization problem globally, via uniform sampling, and locally,
through gradient descent (GD), avoiding costly Hessian computations.

• GD is avoided in spherical-caps around the start/end states of previous searches.
The cap radius is computed from its local Lipschitz constant via interval arithmetic.

• We designed a forward-mode GD algorithm based on the so-called adjoint sensitivity
method for (Neural) ODEs.

• We proved convergence properties of SLR, the safety guarantees it ensures, and
analysed its time and space complexity.

5.3 GoTube: Scalable Statistical Verification of
Continuous-Depth Models

As we implemented the SLR algorithm, we observed that even after resolving its first-
occurring inefficient sampling and its vanishing gradient problems, SLR still blew up
in time, even for low-dimensional benchmarks such as the Dubins Car. Our GoTube
algorithm and its associated theory solve fundamental scalability problems of SLR (see
Table 3.1), by replacing the interval arithmetic used to compute deterministic caps, with
statistical Lipschitz caps. This enables us to verify continuous-depth models up to an
arbitrary time-horizon, a capability beyond what was achievable before.

To be able to do that, we formulated theorems on: 1) How to choose the radius of a
Lipschitz cap, using statistical bounds of local Lipschitz constants of the samples, together
with the expected difference quotients of their Lipschitz constants. 2) How to provide
convergence guarantees using these new statistical caps, as they are used by GoTube to
compute the probability of µ · ”j being an upper bound of the biggest perturbation. In
addition, as in machine learning, we encapsulated a large number of samples within a
tensor. This allowed us to dramatically increase the computation speed by employing
the latest advances in machine learning technology.

We start by describing the novelties in GoTube compared to SLR. This facilitates the
comprehension of the different computation and theory steps. Although the input and
output is similar to Algorithm 2, we had to significantly change the algorithm by creating
new theorems, such that GoTube is scalable and also works on continuous-depth models.

GoTube starts by sampling a batch (tensor) xB œ BS
0 and if needed, it adds new samples

to that tensor in Line 14 and computes every step in a tensorized manner, for all samples
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Algorithm 3 GoTube
Require: initial ball B0 = B(x0, ”0), time horizon T, sequence of timesteps tj (t0 <

· · · < tk = T ), error tolerance µ > 1, confidence level “ œ (0, 1), batch size b, distance
function d

1: V Ω {} (list of visited random points)
2: sample batch xB œ BS

0
3: for (j = 1; j Æ k; j = j + 1) do
4: p̄ Ω 0
5: while p̄ < 1 ≠ “ do
6: V Ω V fi {xB}
7: xj Ω solveIVP(f, xj≠1, [tj≠1, tj ])
8: m̄j,V Ω maxxœV d(tj , x)
9: x, Fx(tj) Ω forwardModeAdjointSensitivity(x, I, [t0, tj ]) ’x œ V

10: compute local Lipschitz constants ⁄x = ÎFxÎ for x œ V
11: compute statistical quantile Δ⁄V
12: compute cap radii rx(⁄x, Δ⁄V) (Lipschitz Cap) for x œ V
13: p̄ Ω computeProb(“, {rx : x œ V}, n, ”0)
14: sample batch xB œ B0
15: end while
16: Bj Ω B(xj , µ · m̄j,V)
17: end for
18: return (B1, . . . , Bk)

at the same time. In each iteration, it integrates the center and the already available
samples from their previous time step, and the possibly new batches from their initial
state (for simplicity, the pseudocode does not make this distinction explicit). GoTube
then computes the maximum distance from the integrated samples to the integrated
center, and their local Lipschitz constant according to the variational Eq. (4.4) using the
forward-mode adjoint sensitivity method. Unlike SLR, Fx is not used within gradient
descent to find local optima, but to compute local Lipschitz constants for all samples.

Based on this information, GoTube then computes a statistical upper bound for Lipschitz
constants and the cap radii accordingly. The total surface of the caps is then employed
to compute and update the achieved confidence. Once the desired confidence is achieved,
GoTube exits the inner loop, and computes the bounding ball in terms of its center and
radius, which is given by tightness factor µ times the maximum distance m̄j,V . After
exiting the outer loop, GoTube returns the reachtube.

Definition 7 (Lipschitz Cap) Let V be the set of all sampled points, x œ V be a sample
point on the surface of the initial ball, m̄j,V = maxxœV dj(x) be the sample maximum, and
B(x, rx)S = B(x, rx) fl BS

0 be a spherical cap around that point. We call the cap B(x, rx)S

a “, tj-Lipschitz cap if it holds that Pr (dj(y) Æ µ · m̄j,V) Ø 1 ≠ “ for all y œ B(x, rx)S.
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Lipschitz caps around the samples, are a statistical version of the safety regions around
samples, commonly used to cover a state space. Intuitively, the points within a cap do
not have to be explored. The difference with Lipschitz caps is that we statistically bound
the values inside that space, and develop a theory enabling us to calculate a probability of
having found an upper bound of the true maximum mı

j = dj(xı
j ) = max{x1,...,xm}µB0 dj(x)

for any m-dimensional set of the optimization problem in Eq. (5.3).

Our objective is to avoid the usage of interval arithmetic, for computing the Lipschitz
constant - as it is done in SLR - because this impedes scaling up to continuous depth
models. Instead, we define statistical bounds on the Lipschitz constant, to set the radius
rx of the Lipschitz caps, such that µ · m̄j,V is a “-statistical upper bound for all distances
dj(y) at time tj , from values inside the ball B(x, rx)S .

Theorem 4 (Radius of Statistical Lipschitz Caps, [GLH+21], Thm. 1) Given a
continuous-depth model f from Eq. (3.2), “ œ (0, 1), µ > 1, target time tj, the set of
all sampled points V, the number of sampled points N = |V|, the sample maximum
m̄j,V = maxxœV dj(x), the IVP solutions ‰(tj , x), and the corresponding stretching factors
⁄x = Îˆx‰(tj , x)Î for all x œ V. Let ‹x = |⁄x ≠ ⁄X |/Îx ≠ XÎ, for x œ V, be a new random
variable, where X œ BS

0 is the random variable which is thrown by random sampling on
the surface of the initial ball, and Δ⁄V be the upper bound of the confidence interval of
the mean E‹x defined as follows:

Δ⁄V(“) = ‹x + tú
“/2(N ≠ 2) s(‹x)Ô

N ≠ 1
, (5.8)

with ‹x and s(‹x) being the sample mean and sample standard deviation of ‹x, and tú

being the Student’s t-distribution. Let rx be defined as:

rx =

1
≠⁄x +

Ò
⁄2

x + 4 · Δ⁄V · (µ · m̄j,V ≠ dj(x))
2

2 · Δ⁄V
, (5.9)

then it holds that:

Pr (dj(y) Æ µ · m̄j,V) Ø 1 ≠ “ ’y œ B(x, rx)S , (5.10)

and thus that B(x, rx)S is a “, tj-Lipschitz cap.

Using conditional probabilities, we were able to state that the convergence guarantee
also holds for the GoTube algorithm, thus ensuring that the algorithm terminates in
finite time, even when using statistical Lipschitz caps around the samples, instead of the
deterministic local balls in [GLH+21][Thm. 2].

5.3.1 Theoretical Contributions
With GoTube, we provide the necessary theory extension in order to make a scalable
tool for statistical robustness analysis out of the theoretical framework SLR. As GoTube
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is stable and sets the state-of-the-art in terms of its ability to scale to time horizons
well beyond what has been previously possible, we anwer the last research question of
Chapter 2. In summary, the theoretical contributions of GoTube are the following:

• We introduced a novel and efficient theory for computing statistical bounds for
the Lipschitz constant of systems of nonlinear ODEs, which helps us achieve tight
reachtubes for continuous-depth neural network models.

• We proved convergence guarantees for the GoTube algorithm, thus ensuring that
the algorithm always terminates in finite time even when using statistical Lipschitz
caps around the samples instead of deterministic local balls.

5.3.2 Experimental Evaluation
With a variety of experiments, we evaluated GoTube’s performance and compared it
with other tools using the volume of the reachtubes or the time horizon as a metric. We
showed experimentally, that GoTube can trade runtime for reachtube tightness.

Our first experimental evaluation was concerned with the over-approximation errors of
the constructed bounding tubes. The results are shown in Table 5.3. For the first five
benchmarks, which are classical dynamical systems, we use the small time horizons T
and small initial radii ”0, which the other tools could also handle. GoTube, with 99%
confidence, achieves a competitive performance to the other tools, coming out on top in
3 out of 5 benchmarks, by using µ = 1.1 as the tightness bound. Intuitively this means,
we are confident that the over-approximation includes all executions with a confidence
level 1 ≠ ⁄, but this over-approximation might not be as tight as desired. GoTube is able
to achieve any desired tightness by reducing µ and increasing the runtime.

The second experimental evaluation was concerned with the time interval for which
GoTube and existing methods can construct a reachtube before exploding due to over-
approximation errors. To this end, we extended the benchmarks by increasing the time
horizon for which the reachtube should be constructed, used tightness bound µ = 1.1 and

Benchmark CartPole-v1+CTRNN CartPole-v1+LTC
Time horizon 1s 10s 0.35s 10s
LRT Blowup Blowup Blowup Blowup
CAPD Blowup Blowup Blowup Blowup
Flow* Blowup Blowup Blowup Blowup
LRT-NG 3.9e-27 Blowup 4.5e-33 Blowup
GoTube (ours) 8.8e-34 1.1e-19 4.9e-37 8.7e-21

Table 5.2: Results of the extended benchmark by longer time horizons. The numbers
show the volume of the constructed tube, “Blowup” indicates that the method produced
Inf or NaN values due to a blowup. Lower is better; the best method is shown in bold.
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set a 95% confidence level, that is, probability of being conservative. Results in Table 5.2
demonstrate that GoTube produces significantly longer reachtubes than all considered
state-of-the-art approaches, without suffering from severe over-approximation errors.

Benchmark LRT-NG Flow* CAPD LRT GoTube
(90%) (99%)

Brusselator 1.5e-4 9.8e-5 3.6e-4 6.1e-4 8.6e-5 8.6e-5
Van Der Pol 4.2e-4 3.5e-4 1.5e-3 3.5e-4 3.5e-4 3.5e-4
Robotarm 7.9e-11 8.7e-10 1.1e-9 Fail 2.5e-10 2.5e-10
Dubins Car 0.131 4.5e-2 0.1181 385 2.5e-2 2.6e-2
Cardiac Cell 3.7e-9 1.5e-8 4.4e-8 3.2e-8 4.2e-8 4.3e-8
CartPole-v1+LTC 4.49e-33 Fail Fail Fail 2.6e-37 4.9e-37
CartPole-v1+CTRNN 3.9e-27 Fail Fail Fail 9.9e-34 1.2e-33

Table 5.3: Comparison of GoTube (using tightness bound µ = 1.1) to existing reachability
methods. The first five benchmarks concern classical dynamical systems, whereas the two
bottom rows correspond to time-continuous RNN models (LTC= liquid time-constant
networks) in a closed feedback loop with an RL environment [HLA+21, VHA+21]. The
numbers show the volume of the constructed tube. Lower is better; best number in bold.
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CHAPTER 6
Discussions, Scope and

Conclusions

6.1 Comparison of our Algorithms

A common aspect of LRT, LRT-NG, SLR, and GoTube, is that they all make use of
the variational equations of Eq. (4.4), together with the mean value theorem (Thm. 1).
They allow our algorithms to have tighter bounds, less wrapping effect, and to be more
efficient than other tools, as shown in the experimental evaluation. It is nevertheless
important to know that for each algorithm, we had to develop new tools and theoretical
techniques, allowing to avoid the blow up in space as well as in time.

When computing conservative guarantees, as it was done in LRT-NG [GCL+20], we
employed the propagated interval deformation gradient, by using the interval version of
the variational equations of Eq. (4.4), and by multiplying the starting radius ”0 with
the resulting stretching factor ÎFjÎMj to over-approximate the set of reachable states at
time tj . As we needed to use [Xj≠1] to compute ÎFjÎMj , the theoretical contributions
of optimal metric computation and balls intersection with ellipsoids, are responsible
for being the only conservative tool that could also verify continuous-depth models, by
avoiding the accumulation of small errors (the infamous wrapping effect).

For the theoretical stochastic version of Lagrangian Reachability (the SLR algorithm
in [GHL+21]), we used the variational equations even in two different ways: 1) To
propagate the deformation gradient for several samples, by using the forward-mode
adjoint sensitivity method, when calculating the gradient of loss needed to find local
minima. 2) To propagate the interval variational equations and use the results of Thm. 1,
to compute an upper bound of the Lipschitz constants for the distance function dj(x).
This upper bound was then used to compute the safety regions radii.
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In our scalable statistical robustness analysis algorithm GoTube, we completely avoided
the use of interval arithmetic, as the interval Lipschitz constant in SLR lead to a blow-up
in time. In Algorithm 3, the variational equation is used to compute Fx(t) via the forward
mode adjoint sensitivity method for a tensorized batch of samples. We presented a new
theory on how to compute statistical upper bounds of the local Lipschitz constants ⁄x

for the samples, which we used to compute the cap radiuses and thus the probability.

Instead of using Lipschitz constants as a bloating factor for the ball’s radius as in LRT-NG,
we used it in SLR and GoTube to define regions (caps) around already visited points
on the surface, and to compute an upper bound for the values inside that caps: either
deterministic safety regions (SLR), or statistical Lipschitz caps (GoTube). This knowledge
allowed us to compute the probability of having an upper bound for the global maximum
of Eq. (5.3). The bigger the Lipschitz constant, the smaller the safety-region radius and
thus the confidence of the reachtube. So a huge difference between the conservative and
the statistical method is that a too large upper bound of the Lipschitz constant results
in a state explosion for LRT-NG but in a time explosion for SLR and GoTube.

Another difference is that LRT-NG always computes as-tight-as-possible reachtubes,
given the dynamical system. In contrast, SLR and GoTube allow to trade between time
and accuracy, by using the tightness bound parameter µ. Thus, after finishing our global
search strategy for timestep tj , we have the statistical guarantee that the functional value
of every x œ B0 is less or equal to µ · m̄. This implies that we should initiate the search
with a relatively large µ = µ1, obtaining for every x a relatively large value of rx,µ1 and
therefore obtain a faster coverage of the search space. Subsequently, we can investigate
whether the reachset Bj with radius ”j = µ1 · m̄ intersects with a region of bad (unsafe)
states. If this is not the case, we can proceed to the next timestep tj+1. Otherwise, we
reduce µ to µ2 < µ1. Accordingly, we can find a first radius for Bj faster and refine it as
long as Bj intersects with the region of bad states.

6.2 Scientific Contributions
In this thesis, we presented technical solutions and new theorems, and introduced
practical verification algorithms and tools, for the reachability analysis of CPS with
CDNN controllers, not only in a conservative but also in a statistical way.

We significantly improved the state-of-the-art in conservative reachability analysis of
nonlinear ODEs with our LRT-NG theory and tool, which demonstrated a superior
performance compared to LRT, CAPD and Flow*. From a theoretical point of view,
we introduced a novel theorem for the analytical metric computation in an optimal
way, such that it minimizes the volume of the reachtube. In addition, we introduced an
intersection of ellipsoids and balls in the reachset computation, which was seen as two
opposite approaches in previous work. Together with the improved center propagation,
we minimized the over-approximation in every timestep, and thus we were able to run
the reachability analysis for a longer time horizon than previously possible. Especially
for Neural ODEs the difference was the biggest: we were able to run the Cartpole
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model with a Neural ODEs controller until 1 second whereas CAPD and Flow* were
not able to construct a reachtube for a longer time horizon than 0.135 second. From a
tool perspective view, we improved upon LRT by providing a standalone tool with an
improved interface and a scalable Runge-Kutta time-integrator.

We widened the limited possibilities of conservative reachability analysis, where an over-
approximation of the reachset is provided without any uncertainties, by introducing a
statistical confidence interval for the reachset computation. We introduced the theoretical
framework SLR for statistical verification of Neural ODEs, by restating the reachability
problem as a set of global-optimization problems. To locally solve the optimization
problem in an efficient way, we presented a novel forward-mode gradient-descent algorithm
based on the adjoint method for Neural ODEs [CRBD18]. Finally, we proved the
convergence properties of the theoretical framework SLR.

After designing a theoretical framework for statistical reachability analysis, we developed
the statistical robustness analysis algorithm GoTube. To put the theoretical results into
practice, there were several adaptations and also new theories needed. We presented a
novel and efficient theory for computing statistical bounds for the Lipschitz constant and
proved convergence properties of GoTube with stochastic Lipschitz Caps. Finally, we
demonstrated that GoTube considerably outperforms state-of-the-art verification tools
on the highly complex task of robustness analysis of CPS with CDNN controllers.

6.3 Future Work
This thesis presents several intriguing avenues for future research. One promising direction
is to extend robustness analysis to black-box systems, such as those encountered in real-
world applications like autonomous driving, where the underlying differential equations
of the environment are unknown. Investigating how to compute statistical upper bounds
of Lipschitz constants using only simulated outputs of the function and not the function’s
derivative would be a significant research question in this context.

Another interesting area of exploration is the combination of conservative (LRT-NG)
and statistical (GoTube) robustness analysis. Utilizing a statistical tool to achieve a
probabilistic guarantee (e.g., 99%), and then using a conservative version of LRT-NG
during runtime to monitor for unsafe states and trigger alerts or switch to a safe fallback
controller, could be a valuable approach. As it would be crucial to synchronously monitor
for critical events, the open question here is how to speed up LRT-NG such that it is
able to run in parallel with the controller. A possible research direction would be to
precompute set-based reachtubes and just compute deviations from the closest trajectory
or reachtube bound in runtime. Another approach would be to compute a reachtube
backwards in time starting from unsafe states to know in which region it is necessary
to switch to a safe fallback controller. In any case, the execution time of the LRT-NG
algorithm would introduce a new safety hazard to the system.

Furthermore, exploring the incorporation of GoTube in the training cycle of a neural
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network controller to proactively train a safe controller is another interesting research
direction. Investigating the feasibility of incorporating reachtubes in computing the loss
function or leveraging insights from reachtube robustness analysis to retrain the neural
network controller to satisfy safety criteria could yield valuable insights.

In summary, there are several compelling avenues for future research, including extending
robustness analysis to black-box systems, combining conservative and statistical robust-
ness analysis, addressing the challenge of synchronous monitoring, and incorporating
reachtubes in the training cycle of neural network controllers.
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Neural ODEs neural ordinary differential equations. 3, 9, 10, 23–26, 29, 36, 37

NNC neural network controller. 11–13, 15, 16

ODE ordinary differential equations. 3–5, 9–15, 25, 36
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