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Zusammenfassung

Das Ziel dieser Arbeit ist es, Modelle zu hinterfragen, die die Dynamik der Covid-
19 Pandemie beschreiben. Diese Modelle sind höchst relevant, da politische und
ökonomische Einschränkungen auf ihren Ergebnissen basieren. Wir wollen herausar-
beiten, wo und wie bestimmte Annahmen einen signifikanten Einfluss auf das Resultat
dieser Modelle haben. Genauso geben wir Verbesserungsvorschläge, wo es notwen-
dig ist. In der gesamten Arbeit liegt ein spezieller Fokus auf den mathematischen
Hintergründen der Schätzmethoden, der Infektionsdynamik und versicherungsmathe-
matischen Themen.
Nach einer kurzen Einleitung in Kapitel 1, beginnen wir mit der Schätzung rele-

vanter Zeitspannen wie dem seriellen Intervall und der Inkubationszeit in Kapitel
2. Wir untersuchen mehrere Verteilungsfamilien und Schätzmethoden und verglei-
chen diese mit anderen wissenschaftlichen Papers und der offiziellen Schätzung durch
österreichische Behörden. Wir legen einen starken Fokus darauf, welche Daten beobach-
tet werden können und welche Probleme dabei entstehen. Schlussendlich diskutieren
wir Schwächen und Verzerrungen der Resultate.

Um den Reproduktionsfaktor in Kapitel 3 zu schätzen, brauchen wir die Verteilung
vom seriellen Intervall aus dem vorherigen Kapitel. Wir diskutieren die exakte Defini-
tion eines zeitabhängigen Reproduktionsfaktors und wie er beobachtet werden kann.
Dann analysieren wir das Modell der österreichischen Behörden und die zugrunde
liegenden Annahmen. Wir untersuchen, welche Schwächen dadurch entstehen und
welche Aspekte ignoriert werden.

Danach betrachten wir den Galton–Watson Prozess in Kapitel 4, der die Dynamik
einer Pandemie stochastisch beschreiben kann. Wir leiten einfache Eigenschaften
ab und diskutieren die Aussterbewahrscheinlichkeit. Schlussendlich zeigen wir die
Verbindung zum Modell für den Reproduktionsfaktor.

In Kapitel 5 stellen wir mehrere Konzepte zur Schätzung der Fallsterblichkeit vor.
Wir analysieren wie die Sterbewahrscheinlichkeit von Alter und Geschlecht abhängt
und vergleichen sie für mehrere Länder.
Dann betrachten wir den Einfluss von Sterblichkeitsschocks auf Versicherungen in

Kapitel 6. Wir diskutieren, ob Covid-19 ein paralleler Schock ist und besprechen die
Folgerungen für Lebenserwartung und Rentenpreise.
Weil es viel mehr interessante Probleme gibt als in dieser Arbeit behandelt werden

können, stellen wir zum Schluss offene Fragen, um den interessierten Leser zu wei-
terführender Forschung zu ermutigen.
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Abstract

The aim of this thesis is to question the models used to describe the dynamic of
the Covid-19 pandemic. These models are highly relevant because political and
economical restrictions are based on their results. We want to point out where and
how certain assumptions have a significant impact on the outcome of these models.
At the same time, we give suggestions for improvement when necessary. Throughout
this thesis, a special focus is on the mathematical background of estimation methods,
infection dynamics and actuarial topics.
After a short introduction in Chapter 1, we start with the estimation of relevant

time spans like the serial interval and the incubation time in Chapter 2. We look
at several distribution families and estimation methods and compare these to other
scientific papers and to the official estimation by the Austrian authority. We also
put a strong focus on which data can be observed and which problems occur thereby.
Finally, we discuss limitations and potential biases of the results.
To estimate the reproduction number in Chapter 3, we need the result for the serial

interval from the previous chapter. We start with a discussion about the definition of
a time-varying reproduction number and how it can be observed. Then, we take a
look at the model used by the Austrian authority and the underlying assumptions.
We discuss which limitations arise therefrom and which effects are ignored by the
model.
Further, we study the Galton–Watson process in Chapter 4, which stochastically

describes the dynamics of a pandemic. We derive some basic properties and discuss
the extinction probability. Finally, we outline the connection to the model for the
reproduction number.
In Chapter 5, we provide several concepts for the estimation of the case fatality rate.

We analyse briefly how the dying probability depends on age and sex and compare it
for different countries.
We then study the impact of mortality shocks on insurance companies in Chapter

6. We discuss whether Covid-19 is a parallel shock and outline the implications for
life expectancy and annuity prices.
As there are way more interesting problems than can be dealt with in this thesis,

we finally raise open questions to encourage the interested reader to do further research.

Keywords: Covid-19, Serial Interval, Incubation time, Reproduction Number, Model
Risk, Galton–Watson Process, Case Fatality Rate, Insurance, Mortality Shock
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1 Introduction

In the beginning of 2020, Covid-19 turned into a global pandemic. The consequences
were restrictions on the economy and freedom in order to save as many lives as possible
until a significant portion of people have access to vaccination. The drastic political
decisions were supported by epidemiological and mathematical models, which tried
to predict the future development of the number of infections or other key figures in
specific scenarios. To get meaningful results, these models rely on certain assumptions,
which are not always trivial. We want to discuss what happens to the models if some
assumptions do not hold. Also, we examine how the results and their certainty would
be affected. In other words: What is the underlying model risk?
We start with building our own model in Chapter 2 in order to be able to define the

serial interval, the incubation time and the generation time precisely. We examine the
connection between these time spans, calculate basic properties and try to estimate
their distributions. In this thesis, when we build a model or when we want to derive
results, we will put a strong focus on the underlying assumptions and the resulting
limitations.
However, in Chapter 3, we have already given a model by the Austrian authority.

We start with a discussion about the implicit assumptions made. In the following
sections, we examine what happens if these assumptions do not hold. The aim of this
thesis is to show that the presented results are not as certain as insinuated and that
the interpretation can be entirely different if we change an assumption.
Nevertheless, not only the model itself can be subject to inaccuracies, but also the

estimation process. The variables used in a model are often easy to define and to
calculate with, however, it is sometimes hard or even impossible to observe them.
That leads to additional uncertainty, as these variables have to be approximated
or estimated itself. Apart from Chapter 2 and 3, we face these problems also in
Chapter 5, where we present several approaches to estimate the case fatality rate.
Therefore, throughout this thesis, we will state precisely which variables of the model
are necessary for a certain calculation and how they are approximated or estimated
with the data we have.

However, we not only want to examine the models itself but also look behind the
curtain and study its mathematical justification. Therefore, we will study the theory
behind the Galton–Watson process in Chapter 4. After showing some basic properties,
we will discuss the extinction probability and proof associated theorems. In Section
4.3, we finally get the formula we have already introduced in Section 3.2.
In Chapter 6, we want to provide some practical implications of the Covid-19

1



1 Introduction

pandemic for insurance companies. We begin with a short introduction to actuarial
mathematics and discuss mortality shock in general. Then, we discuss the mortality
shock of the pandemic and the additional shock at an infection. Further, we study
how life expectancy changed with the pandemic and how many years of life were
lost due to Covid-19 as additional measure beside the total number of deaths. We
also outline the difference for women and men. Finally, we examine the effect on life
expectancy and annuity prices.
To conclude, it is a clear aim of this thesis to combine the theoretical background

(Chapter 4), the model and estimation process (Chapter 2, 3 and 5) and the practical
implications of the results (Chapter 6). This thesis will try to make an objective
contribution to an important discussion that is often driven by emotions and ideology.
As the Covid-19 pandemic offers enormous possibilities to do research on and poses

innumerable questions, this thesis is far away from covering all areas and therefore
does not claim to be complete. Moreover, the level of relevance for certain areas has
changed in the course of this pandemic. In order to give the interested reader the
opportunity to continue working on the topic, we raise open questions and ideas for
further research in Chapter 7.

2



2 The Estimation of the Serial
Interval

The aim of this chapter is to examine several time periods related to the spread of an
infectious disease. We will begin defining these time frames and displaying them in a
mathematical model. As we are interested in estimating the length of these periods,
we are required to discuss which of the occurring variables can actually be observed.
Moreover, the mathematical methods will be explained and their adequacy will be
discussed.
For the estimation of the corresponding distributions, we will use the data from

[12] as well as from [6]. We will critically review the methodology for the estimation
of the serial interval used by the AGES1, described in [22], and discuss possible
improvements. This is of major importance, because it is the foundation for the
computation of the basic reproduction number in the model of the Austrian authority.
The relevance of this chapter, on the one hand, lies in the necessity of having a

best-estimate for further computations in the following chapters. On the other hand,
those time spans are epidemiologic key figures, which have to be known to determine
the appropriateness and efficiency of policies.

2.1 Set Up of the Model

We start with discussing viral infections, transmissions and symptoms. After a viral
transmission from person A to person B, there are the following three possibilities
how the body of person B can react:

(1) Virus transmission is instantly fended off by the immune system. It is not
possible to infect a third person.

(2) Virus transmission does not lead to symptoms, but it is possible to infect a
third person.

(3) Virus transmission leads to symptoms.

In the epidemiological literature, an infection begins “when infectious virus particles
(virions) attach to and enter susceptible cells”2. However, here we say person B is

1Agentur für Gesundheit und Ernährungssicherheit (agency for health and food security)
2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479527/, accessed on August 25, 2020
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2 The Estimation of the Serial Interval

infected if this person gets infectious itself, so if (2) or (3) is the case. Possibility (2)
is called an asymptomatic case.

In this chapter, we take a look at pairs of consecutive infections with both persons
developing symptoms. Thus, we only consider case (3), because this can be observed
more easily than asymptomatic transmissions. In Section 3.5, we get back to this
problem of omitting asymptomatic transmissions and discuss the consequences for
the estimation of the reproduction number.

Having such a pair of consecutive infections, we define some important points in
time. Let i0, i1 denote the time of infection and s0, s1 the corresponding clinical
onset3 of these two cases. For s0 and s1 being well-defined, it is important that both
persons get symptoms, that is why we only consider case (3). We treat all four of
them as random variables for a certain pair of consecutive cases.

These four variables help us expressing the following time frames. We define the
generation time G as the duration from the infection of one person to the point in
time, when this person infects the next one, so G := i1 − i0. The focus lies on this
number, because it contributes to the spreading speed of the pandemic. However, it
is difficult to measure, because, in general, the time of infection cannot be observed.

The length of the serial interval S is the time between the clinical onset of
consecutive cases, thus S := s1 − s0. To be in line with the epidemiological literature,
we say serial interval instead of serial interval length in the following, although it
is not an interval but a real number. The advantage of this period is that it can be
observed explicitly in most cases. However, it may not be clear if someone suffers
from two different infections at the same time.

What distinguishes the serial interval from the generation time is the incubation
time for both cases I0, I1, which denotes the duration from the infection to the clinical
onset for both cases and are defined as I0 = s0 − i0 and I1 = s1 − i1, respectively.
That makes it difficult to deduce the serial interval from the generation time, as we
have additional uncertainty, which comes from the incubation time not being a fixed
number. The incubation time is of concrete practical use, as it defines how long
somebody should be put under quarantine after a possible contact with an infected
person, for example in a foreign country.

Last but not least, we are interested in the time between the symptom onset of
the first person and the transmission. We call this transmission time and define it
as T = i1 − s0. We notice that T < 0 is possible, because a transmission can also
happen before symptoms occur. It helps to decide how long an infected person should
be put in quarantine after clinical onset.

3The term clinical onset is the technical term for the beginning of the symptoms.
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2.2 Data Issues

We summarize the definitions above:

generation time G := i1 − i0
serial interval S := s1 − s0

incubation time I0 := s0 − i0, I1 := s1 − i1
transmission time T := i1 − s0

(2.1)

We make the following (trivial) assumptions on the time points. Firstly, symptoms
cannot occur before this person is infected, so i0 ≤ s0 and i1 ≤ s1. Per definition
person 0 is the first who is infected, which leads to i0 ≤ i1. Hence, there remain
three possible orders: (i0, i1, s0, s1), (i0, i1, s1, s0), (i0, s0, i1, s1). We see that the serial
interval can be negative whereas the generation time is non-negative. In the following
i0, i1, s0, s1 are dates, thus all periods are integers. In detail, G, I0, I1 take values in N
and S, T take values in Z. Furthermore, we notice that the following equalities hold
by definition:4

S = G+ (I1 − I0), T = S − I1, T = G− I0. (2.2)

Additionally, we make a non-trivial assumption for the whole chapter. Let J :=
{1, . . . , N} be an index set of N ∈ N∗ pairs of infected persons, then we assume
that the random vectors ((G, S, I0, I1, T )

i)i∈J are identically distributed. We need
this assumption to estimate the distributions, or at least mean and variance, of
these random variables. Although there might be some interesting differences in the
distributions of these periods for criteria like age or sex, we estimate one distribution
for all people disregarding these characteristics, because there are too few data
points for separate estimations according to these criteria. If the estimation is not
independent from a certain criteria like age, it would be imprecise to use the estimation
for one population also for another one with a different age structure.
In addition, in Section 2.5, we need to make some further assumptions on the

correlation and dependence of these five time periods in order to get some meaningful
results.

2.2 Data Issues

When it comes to the estimation of the distribution of those random variables, the
first question is: Which data is available? If we consider only pairs (and not chains)
of consecutive cases, it is impossible to observe i0. Also i1 is difficult to identify, but
it can be restricted to an interval where the two individuals could have had contact.
Therefore, we introduce two new points in time a, b, which determine the exposure
time. Thus, it follows that i0 ≤ a ≤ i1 ≤ b ≤ s1. We additionally assume that an

4These equations in combination with I0
d
= I1 do not imply G

d
= S, because T is not independent

from I0 or I1.
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2 The Estimation of the Serial Interval

infected person knows when symptoms have started, so that we can observe s0, s1
exactly. To sum up, we got four variables for each pair: (si0, s

i
1, a

i, bi) for i ∈ J . Thus,
we can work with the data from [12] in our model, which contains all four variables
for N = 35 observations. For the cases where b is unknown, we set b = s1, as this is
the upper bound for exposure time.
For the estimation of the serial interval, we will use the data from [6] because we

have N = 468 data points, but only (si0, s
i
1) is available.

Most papers use data from publicly available reports, where many cases have to be
excluded due to missing information. The question whether these two steps would lead
to a selection bias was addressed by [16, p. 11], but they found that the distribution
of age and sex is similar to the original cases for their data. Another problem comes
with transmission clusters, which are often the major part of the data. As the correct
order is more difficult to distinguish, the transmission chain was build up by the order
of symptom onset, which ignores that incubation time is not deterministic. As the
order is crucial for the estimation of the epidemiological key figures, this leads to a
problem, which is made even worse by asymptomatic transmissions. They are hard to
find and therefore pose a high risk, because there are no appropriate control measures,
as [16, p. 4] suggests.
For different families of distributions, we estimate the necessary parameters with

parametric methods like the method of moments (MOM) and maximum-likelihood
estimation (MLE). More details about these methods can be found in [13, p. 326-334].
For all our estimations, we need independent and identically distributed observations.
Therefore, we add this assumption for both datasets, which could be problematic due
to superspreading events.

2.3 Serial Interval

We start with the serial interval S because it can be extracted directly from our data.
Let J be an index set, then we get Ŝi = si1 − si0 for i ∈ J and collect them in a vector
Ŝ = (Ŝi)i∈J . To get a first feeling for the data from [6], we see a box plot in Figure
2.1.
Although the data is discrete, we want to approximate it with a continuous

distribution. Due to the fact that also negative values are possible, we do not want
to use some of the common distributions like gamma, Weibull or log-normal. The
problem that many estimations of the serial interval use these distributions, ignoring
the negative values, for example in [22, p. 1] and [18, p. 285], is also mentioned by
[6, p. 1341] and [16, p. 7]. In addition, in the appendix of [6], the fits for shifted,
truncated and the original data are compared for gamma, Weibull and log-normal
distribution for the positive datasets and normal distribution for all datasets. They
found that the normal distribution fits best for the original, as well as for the shifted
data.

6



2.3 Serial Interval

-10 -5 0 5 10 15 20

Box Plot of the Data for the Serial Interval

Length of Serial Interval in Days

Figure 2.1: We see a box plot for the length of the serial interval with the data from [6]. How box
plots are defined can be found in [13, p. 81].

If we disregarded negative values, we would neglect an important part of the
distribution, because transmission is also possible before clinical onset. Therefore, we
use a generalisation of the normal distribution which can deal with skewness, namely
the skew-normal distribution, in order to have more freedom than with a classical
normal distribution. Given a location parameter ξ ∈ R, a scale parameter ω > 0 and
a shape parameter α ∈ R, the skew-normal distribution is defined by its density:

f(x|ξ, ω, α) = 2

ω
ϕ

�
x− ξ

ω

�
Φ

�
α
x− ξ

ω

�
, x ∈ R, (2.3)

where ϕ and Φ are the density and distribution function of the standard normal
distribution, respectively. For ξ = 0 and ω = 1, we call this distribution standard
skew-normal. For these parameters, it is easy to see that f is really a density. We see
that f is positive and that� ∞

−∞
f(x) dx =

� ∞

−∞
2ϕ(x)

� αx

−∞
ϕ(y) dy dx = 2

� ∞

−∞

� αx

−∞
ϕ(x)ϕ(y) dy dx

= 2

�� 0

−∞

� αx

−∞
ϕ(x)ϕ(y) dy dx+

� ∞

0

� αx

−∞
ϕ(x)ϕ(y) dy dx

�
= 2

�� ∞

0

� −αx

−∞
ϕ(−x)ϕ(y) dy dx+

� ∞

0

� ∞

−αx

ϕ(x)ϕ(−y) dy dx

�
= 2

� ∞

0

� ∞

−∞
ϕ(x)ϕ(y) dy dx = 2

� ∞

0

ϕ(x) dx = 1.

Therefore, f is a density, where we can add a location and scale parameter. For
α = 0, we have a normal distribution with mean ξ and variance ω2. For fitting
this distribution to the data from [12], we try two different methods, namely the
method of moments and maximum-likelihood estimation. For both methods, we need
independent and identically distributed random variables.
Firstly, we try the method of moments. For a random variable X that is standard

skew-normal distributed, we get the formulas for the first moment and the second

7



2 The Estimation of the Serial Interval

and third central moment from [3, p. 342]. So, with

m =
α√

1 + α2

�
2
π
,

we have

E[X] = m,

E[(X − E[X])2] = 1−m2,

E[(X − E[X])3] =
4− π

2
m3.

For a skew-normal distributed random variable Y , we can adjust these formulas with
the location parameter ξ and scale parameter ω, so we get

m1 := E[Y ] = ξ + ωm,

m2 := E[(Y − E[Y ])2] = ω2(1−m2),

m3 := E[(Y − E[Y ])3] =
4− π

2
ω3m3.

If we now estimate the moments for our data, we can solve these equations, and
calculate the parameters ξ, ω, α.
Secondly, we conduct a maximum-likelihood estimation. Therefore, we need to

maximize the likelihood function:

L(ξ, ω, α|Ŝ) :=
�
i∈J

f(Ŝi|ξ, ω, α), (2.4)

which is defined on R × R+ × R As we cannot do this explicitly, we maximize it
numerically.
These estimation processes were implemented in R using the function sn.mple()

from the package sn, where all necessary functions regarding the skew-normal distri-
bution are implemented, and lead to the following results:

ξ ω α
MOM −0.60 6.58 1.75
MLE −0.49 6.50 1.69

(2.5)

Further, we are interested in the mean and variance as well as in the 2.5%- and
97.5%-quantile of the data and our estimations, which are printed in the following
table:

E Var q2.5% q97.5%
data 3.96 22.5 −5 15

MOM-fit 3.96 22.5 −4.5 14.1
MLE-fit 3.97 22.3 −4.5 14.1

(2.6)

8



2.3 Serial Interval

Trivially, the mean and variance for the method of moments parameters is the same
as for the data. We observe that both estimations lead to similar results.
We want to display our data using a kernel density function, which is the average

over the density functions of normal distributions around each data point with a
certain standard deviation σ ∈ R+. So, we define the kernel density function as

k(x) :=
1

N

N�
i=1

ϕ

�
x− Ŝi

σ

�
, x ∈ R. (2.7)

Here and in the following, the kernel density is computed using the function density()

from the package stats in R.
In Figure 2.2, we see a comparison between the kernel density and the two fitted

skew-normal distributions. We observe that the two estimated distributions are so
similar that it is not possible to visually distinguish between them.
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Figure 2.2: We see the kernel density with the underlying kernel density function defined in (2.7)
and the skew-normal fit with the parameters from MLE and MOM for the length of the
serial interval from (2.5).

In [12, p. 674], they mention the possible problem that the estimation of the serial
interval relies on whether the patient can recall the date of clinical onset correctly.
But if these biases do not differ systematically within patients, this inaccuracy have
almost no influence. Furthermore, a potential selection bias brought up by [30, p. 14]
is that transmission pairs with a shorter serial interval can be found easier and earlier.
That implies that the estimated serial interval is too small. Additionally, [30, p. 10]
proposes that possibly leaving out an intermediary in the transmission chain would
imply an overestimation of the serial interval. This problem occurs especially when
working with cluster data.
Besides, [6, p. 1342] argues that the serial interval changes over time: The more

people are infected, the shorter will the serial interval be, as “a susceptible person is
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2 The Estimation of the Serial Interval

likely to become infected more quickly if they are surrounded by 2 infected persons
instead of 1”. However, this statement can be doubted. It is just more likely that a
susceptible person is infected, but the serial interval measures the time till another one
gets infected and that does not change as long as the contact intensity to susceptible
people does not change. Further, the serial interval reacts to policies. If people are
immediately isolated after symptom onset, the serial interval gets smaller, as no
further people can be infected, who would lead to a greater serial interval. In contrast,
social distancing measures have no influence on the length of the serial interval, but
on the number of transmissions per person.

To conclude, our calculations suggest a much higher variance of the serial interval
than in [22, p. 1] and the presence of negative values. We will examine the impact of
the serial interval on the estimation of the basic reproduction number in Section 3.7.

2.4 Incubation Time

The incubation time is more difficult to estimate, as we know neither i0 nor i1. But
if we use x, y, we can at least estimate the incubation time for the second person
I1. If we assume that every infected individual has exactly one infector5, there is a
bijection between the pairs and the infected persons. Therefore, a random choice of
pairs is also a random choice of infected persons.6 Thus, if I denotes the incubation

time for a random case, we have7 I1
d
= I. We will try to fit a gamma, log-normal and

Weibull distribution, since the data is non-negative and those are frequently used in
literature. However, we will also estimate a negative binomial distribution, because
the underlying data from [12] is discrete.

For all estimations, we want to use the maximum-likelihood approach, so we need
independent and identically distributed random variables. The problem is that we
cannot observe i1 directly, so we cannot use the standard method. However, we know
that i1 ∈ {a, a+ 1, . . . , b}, and therefore, I1 conditional on s1, a and b,8 takes values
in K := {s1 − b, s1 − b+ 1, . . . , s1 − a}.
For the discrete case, we notice that

P(I1 ∈ K|θ) =
b�

k=a

f(s1 − k|θ),

5This should be true for most of the cases. If someone was exposed to viral transmission from more
than one person, we say that the last one is the infector.

6In general, this is not true for I0, because people who infect more other people and are therefore
overrepresented in the first cases of a random sample of pairs, can have a different incubation
time than those who infect less other people.

7For two random variables X,Y , X
d
= Y means that X and Y are equal in distribution.

8That is a reasonable approach, as we know these variables in the specific case.
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2.4 Incubation Time

where f is the probability mass function of the chosen distribution with parameter
vector θ. So, we can expand the concept of maximum-likelihood estimation by
changing the likelihood function into a product of sums of probabilities given θ, what
is also mentioned in [33]:

L(θ|(s1, a, b)) =
n�

i=1

bi�
k=ai

f(si1 − k|θ). (2.8)

This means that we do not have to assume a certain probability distribution of I1
(conditional on s1, a and b) on the value set K.

For the continuous case, we need an integral instead of the sum and we have to
integrate over [a− 0.5, b+ 0.5], so that the time frame has the same length as in the
discrete case. Then, we get

L(θ|(s1, a, b))) =
n�

i=1

� bi+0.5

ai−0.5

f(si1 − z|θ)dz, (2.9)

where f is a density function of the chosen distribution with parameter vector θ.
We found the maximum of all likelihood functions numerically using the functions
integrate() and optim() from the package stats in R.
As comparison for these estimated distributions, we want to build a probability

mass function similar to the kernel density function from Section 2.3. Therefore, we
assume that i1 is equally distributed in {a, a + 1, . . . , b} and so I1 (conditional on
s1, a and b) is equally distributed in K. Now, we can take the average over these
probability mass functions of discrete uniform distributions. So, we have

p(k) :=
1

N

N�
i=1

1

bi − ai + 1
· 1k∈Ki , k ∈ N. (2.10)

In the following table, we see the results for the estimated parameters for the
different distributions:

negative-binomial size= 4.772, prob= 0.438
gamma shape= 2.45, scale= 2.50

log-normal µ = 1.58, σ = 0.72
Weibull shape= 1.78, scale= 6.94

(2.11)

Further, we are interested in the mean and variance as well as in the 95%-quantile of
p and our estimations. These numbers are printed in the following table:

E Var q95%
p 6.17 16.0 13

negative-binomial 6.12 14.0 13
gamma 6.12 15.3 13.6

log-normal 6.29 26.8 15.8
Weibull 6.17 12.8 12.8
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2 The Estimation of the Serial Interval

The estimated distributions and p are plotted in Figure 2.3. We observe that a
quarantine of 14 days is appropriate.
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Figure 2.3: For the incubation time, we see p as defined in (2.10) and estimated negative binomial,
gamma, log-normal and Weibull distribution with the parameters from (2.11).

A potential bias of the estimation of the incubation time, mentioned by [12, p.
674], is that there might be a delay in recognizing first symptoms. That would lead
to an overestimated incubation period. Similar as for the serial interval, [30, p. 10]
pointed out that skipping a possible intermediary in the chain of transmissions would
lead to a further overestimation of the incubation time. Additionally, [16, p. 2]
proposes that the incubation time is longer for cases with a less severe course of the
disease, which would lead to an underestimation if the severe cases are overrepresented,
what is suggested. Further, an asymptomatic infection cannot be captured by these
considerations since only symptomatic cases have an incubation time.
To summarize, our results confirm that it is reasonable to put people under

quarantine for two weeks if they might have had contact with infected subjects, for
example if they come from countries that have many cases or are in near social
environment of positive tested people. The long and highly-variable incubation time
is a fact that sets Covid-19 apart from influenza and makes it hard to contain the
pandemic, which is also stated by [7, p. 1].

2.5 Generation Time

As we do not have any information about i0, we cannot estimate the distribution,
mean or variance of the generation time without additional non-trivial assumptions.
Within this section, we assume the following:

(1) I0
d
= I1,
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2.5 Generation Time

(2) I0 and I1 are uncorrelated,

(3) G and I1 are uncorrelated.

Before we take a look at the results under these assumptions, we want to discuss
their limitations and which possible cases or scenarios are excluded by them. As
already mentioned in Section 2.4, assumption (1) is not straightforward. Thereby,
we exclude the possibility that the number of infection an individual generates is
dependent on the incubation time. Although this dependency is not proven yet, it
seems plausible. Nevertheless, we want to see which information about the generation
time can be deduced with this assumption.
With assumption (2), we assume that the second incubation time is not influenced

by the first one, so we disregard the following: It could be possible that the length of
the incubation time has an impact on the size of the viral load with which the second
person is infected, which can influence the length of the second incubation time.
A similar problem comes up with assumption (3), because the size of the viral load

could also depend on the length of the generation time. However, we disregard this
possibility.
To conclude, all three assumptions are based on the idea that every infection is

equivalent in the sense that it is not distinguished between a small or big viral load
or a slight or heavy infection. Also, the course of the disease is only determined
by properties of the body of the infected person and not by characteristics of the
infection. Although we would even get the independence for assumption (2) and (3)
with this idea, the uncorrelatedness is enough for our propose.

Using these assumptions, we can calculate some values regarding the distribution
of the generation time. Using equation (2.2), assumption (1) and the results from
Section 2.3, we obtain that

E[G] = E[S] = 4.0.

If we transform equation (2.2) to G+ I1 = S + I0 and calculate the variance of both
sides, we get

Var(G) + Var(I1) + 2Cov(G, I1) = Var(S) + Var(I0) + 2Cov(S, I0).

Subtracting Var(I1) = Var(I0) due to assumption (1) and using assumption (3), leads
to

Var(G) = Var(S) + 2Cov(S, I0). (2.12)

With equation (2.2) and assumption (2), we additionally get the following relation

Cov(S, I0) = Cov(I1, I0) + Cov(T, I0) = Cov(T, I0) = Cov(G, I0)− Var(I0). (2.13)

To get a more meaningful result, we can take a look at two possible scenarios about
the infectiousness. At first, we assume that the infectiousness of a person depends
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2 The Estimation of the Serial Interval

solely on the date of the clinical onset and not on the date of the own infection. This
implies that T and I0 are uncorrelated, because the length of the first incubation time
I0 has no impact on the infectiousness and therefore on the infection of the second
person i1. Combining this information with the equations (2.12) and (2.13), leads to

Var(G) = Var(S).

The second possible case we take a look at is that the infectiousness of a person
depends only on the date of the own infection and not on the beginning of the
symptoms, therefore the lengths of the periods from i0 to s0 and from i0 to i1 are
uncorrelated. That implies that Cov(G, I0) = 0 and together with the equations
(2.12) and (2.13), we have

Var(G) = Var(S)− 2Var(I0) < Var(S).

The relation Var(G) < Var(S) is also proposed by [10, p. 2].
Looking at the results from the previous sections, we see that the second assumption

has to be rejected in our setting with the data from [12], as the indicated variance
would be negative. Thereby, we can deduce that the date of the symptom onset is
positively correlated to the date of the infection of the next person. Additionally,
this justifies the definition of the transmission time T as something useful. We will
elaborate more on that in Section 2.6.
However, it seems pretty unlikely that Cov(G, I0) < 0 or that Cov(T, I0) > 0. Thus,

if Cov(G, I0) ≥ 0 and Cov(T, I0) ≤ 0 hold true, we have a lower and upper bound for
the variance of the generation time, namely Var(G) ∈ [Var(S) − 2Var(I0),Var(S)].
For our results from the previous sections for the skew-normal and negative binomial
MLE, we get Var(G) ∈ [−5.7, 22.3].
To conclude this section, it is impossible to estimate the distribution of the genera-

tion time given only transmission pairs. Even the variance is not straightforward and
requires additional assumptions. Thus, whenever an estimation for the generation
time is stated, there are significant limitations due to critical assumptions. Also,
using the serial interval as a proxy for the generation time is difficult, as it requires
the incubation time to be constant or at least equal within the transmission pairs.

2.6 Transmission Time

Now, we want to examine the infectiousness with respect to the clinical onset. By
identifying at which stage of the disease other people are infected, it is possible to
optimize isolation policies. According to the definition in (2.1), and as we have only a
and b to estimate i1 in the data from [12], we conduct an extended maximum-likelihood
estimation as for the incubation time in Section 2.4. It might also be interesting which
portion of transmissions occur pre-symptomatic, in order to evaluate the accuracy
and the success of current policies.
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2.6 Transmission Time

For estimating the distribution of T , we choose again the skew-normal distribution
(compare Section 2.3), because we want to model skewed data and might have
(theoretically unlimited) negative values. As our data is discrete, we need a continuity
correction. So, we have the likelihood function

L(θ|(s0, a, b))) =
n�

i=1

� bi+0.5

ai−0.5

f(z − si0|θ)dz, (2.14)

where f is the density of the skew-normal distribution and θ = (ξ, ω, α), compare equa-
tion (2.3). We maximized this function numerically with the functions integrate()
and optim() from the package stats in R and got the results ξ = −4.45, ω = 5.93,
α = 1.83.
As in equation (2.10), we define a naive estimation by taking the average over

the probability mass functions of uniform distributions in Ki := {ai − si0, a
i − si0 +

1, . . . , bi − si0} for i ∈ {1, . . . , N}, so

p(k) :=
1

N

N�
i=1

1

bi − ai + 1
· 1k∈Ki , k ∈ Z. (2.15)

For the portion of pre-symptomatic transmissions, we look at P(T < 0). In the
following table, we see the results:

E Var q2.5% q97.5% P(T < 0)
p −0.30 20.6 −10 11 59.7%

skew-normal MLE −0.30 17.9 −7.8 8.8 55.7%

In Figure 2.4, we see the comparison of the density function of the estimated skew-
normal distribution and the naive estimation p, which is not smooth because of too
few data points.
We see that more than half of all transmissions are earlier than the clinical on-

set. However, there are not only virological reasons for the significant ratio of
pre-symptomatic transmissions like the size of the viral load, but also behavioural
ones, because the major part of the people changes their behaviour after the begin-
ning of the symptoms. In [12, p. 672], [30, p. 1] and [18, p. 285], it is proposed
that E[S] < E[I] is a simple indicator for a significant portion of pre-symptomatic
transmissions. This is consistent with our model, as E[S] < E[I] is with equation
(2.2) equivalent to E[T ] < 0, which means that on average a transmission takes place
before infector’s symptom onset. For our estimates, E[S] < E[I] is true, because of
4.0 < 6.1, so we are in line with literature.

The potential bias of overestimating the incubation time due to a delay in recognizing
first symptoms mentioned in [12, p. 674] would imply an underestimated transmission
time, which means that the portion of pre-symptomatic transmissions is actually
smaller.
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Figure 2.4: For the transmission time, we see p as defined in (2.15) and a density of the skew-normal
distribution with the parameters estimated with MLE.

We want to conclude this section talking about the practical implications. As
[10, p. 7] suggests, physical distancing is the most important policy, because also
pre-symptomatic transmissions can be avoided. Compared to contact tracing and
quarantine measures, it is therefore much more efficient. This inefficiency of the
isolation policies is also mentioned by [12, p. 672] and [18, p. 286]. However, it can
also be argued that post-symptomatic transmissions are so low just because of these
isolation measures. This argument is supported by [30, p. 7], which found that the
transmission time decreases in the course of the pandemic.

2.7 Discussion of the AGES Methodology

In this section, we want to discuss [22], a paper on the estimation of the serial interval
published by the AGES, which is part of the Austrian Ministry of Health. It is of
specific interest to check the model risk of this estimation, because it contributes
to the model risk of the reproduction number, which uses the serial interval in its
calculation.
In [22, p. 3], two other papers were compared to their results, namely [6] and [18].

In the following table we analyse the results.

distribution mean sd q2.5% q97.5% S ∈
here skew-normal(ξ = −0.49, ω = 6.50, α = 1.69) 4.0 4.7 −4.5 14.1 R
[22] gamma(shape = 2.88, scale = 1.55) 4.5 2.6 0.9 10.9 R+

[6] normal(µ = 3.96, σ2 = 22.56) 4.0 4.8 −5.3 13.3 R
[18] log-normal(µ = 1.39, σ2 = 0.32) 4.7 2.9 1.3 12.2 R+

It can be observed that those estimations where S is constrained on R+ have a
significantly lower standard deviation, which is supported by Figure 2.5, where the
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2.7 Discussion of the AGES Methodology

densities of the estimated distributions are plotted. This implies that dropping
negative values has a strong impact and might lead to wrong results as negative serial
intervals are treated as a measurement error, but are naturally occurring. Additionally,
longer serial intervals are underrepresented, because they are more difficult to find.
These effects lead to a smaller standard deviation. Further, the mean is larger for the
constrained distributions. That is important for the measurement of the speed of the
pandemic spread, which we will discuss in Section 3.1.
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Figure 2.5: For the length of the serial interval, we see a comparison of the results for the estimated
densities from the different papers and our approach.

To conclude, distribution families only defined on R+ are not suitable for the
serial interval, as it may take negative values due to a not constant incubation time,
which is confirmed by [6, p. 1343]. Besides, one have to be cautious with a low
standard deviation, because there might be more uncertainty in the serial interval
than estimated. We discuss the implications of these mistakes in Section 3.7.
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3 The Estimation of the Reproduction
Number

We want to continue our estimation of epidemiological key figures with the reproduction
number R. According to [21, p. 18], the basic reproductive rate is defined as “the
number of infections produced, on average, by an infected individual in the early
stages of a pandemic, when virtually all contacts are susceptible”. However, R is
dimensionless and therefore formally not a rate. It is also controversial, how many
people have already been infected or had antibodies before the outbreak. Furthermore,
it is not scientifically proven that surviving an infection makes someone immune
against a second infection. Additionally, from the definition above, it is not clear if
“the number of infections produced” counts only those who were directly infected by
the individual or if it counts all infections that took place because of this individual,
so subsequent infections in the transmission chains. Besides, it varies in scientific
literature whether the reproduction number is fixed for a certain disease or time-
dependent.
It is difficult to define a time-dependent reproduction number so that it is mathemat-

ically well defined. We can define it as the ratio between two consecutive generations.
However, as the generation time is not constant, we cannot observe the size of both
generations and need an estimation for one them. One of these two generations can
be fixed as the number of new infection at a day. We can either fix the first generation
and estimate the size of the second or vice-versa. If we fix the first generation, we
can theoretically define the consecutive generations as the number of people that
were infected by the first generation, but we cannot observe that exactly. If we
fix the second generation, we see that it is not possible to get a well defined first
generation: It is clear that all infectors of the second generation have to be part
of the first generation. However, we do not know how to deal with the cases that
have not generated an infection on that day. The advantage of fixing the second
generation is that we get a more current number, which is important for the handling
of a pandemic.
That is the reason, why we will use the number of incident cases of a day as the

second generation and an estimation for the first described in Section 3.2, whenever
we work with real data. We can interpret the reproduction number Rt as the
average number of infections generated by one infected individual at day t. That is
mathematically not well-defined, because we cannot specify from which sample we
take the average, but it helps to understand the meaning of this number.
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Allowing the reproduction number to vary over time, gives us the chance to model
the course of a pandemic spread in a certain population. It mainly depends on
the number of people who are immune, the number of physical contacts and the
infectiousness of each individual.

The reproduction number is not only of scientific interest, but also important for
political decisions like physical distancing, exit restrictions or the closing of schools and
stores. In Spring 2020, after the shutdown of the Austrian economy, the reproduction
number was the most important measure of the development of the pandemic and
easing measures were promised conditioned on it.

The estimation of this important number is not straightforward and requires the
construction of a model. Therefore, the result is exposed to model risk. There are
a lot of assumptions which have to be made in order to be able to estimate the
reproduction number and corresponding confidence bounds. Some of those might
be unrealistic or too restrictive. We will discuss which assumptions are required to
conduct the calculation and which consequences they have on the result. Furthermore,
we will explain which of them can be softened or changed to get a more precise result.

However, it is not only a matter of precision, but also a question of time. To
minimize the number of infected people, it is important to identify an upward trend
in the reproduction number as early as possible. On the other hand, easing measures
can be implemented earlier, if we find a way to let the reproduction number react
faster on the infection dynamic.

This chapter puts a special emphasis on the estimation used by the AGES, which
is a part of the Austrian Ministry of Health and is responsible for the monitoring of
the pandemic and the estimation of the reproduction number. The methodology is
described in [23].

3.1 The Interpretation of the Reproduction Number
and its Connection to the Serial Interval

As the reproduction number is the ratio between two generations, it follows that
Rt > 1 for t ∈ {t0, t0 + 1, . . . , t1} means that the pandemic expands between t0 and
t1 and Rt < 1 that it goes back. However, Rt alone does not tell us, how fast the
virus spreads. This can only be observed in combination with the serial interval or
the generation time, which were discussed in the previous chapter. As the generation
time is the time difference between the infections of a transmission pair, the next
generation of infected people arises on average after E[G] days. From Section 2.5, we
remember that E[G] = E[S], which is important because S can be observed, but G
not.

We want to combine the reproduction number and the generation time to get a
measure for the speed of the spread, namely the doubling time. We first assume
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that the reproduction number is constant over time. If N1, N2 ∈ N are the sizes of
two consecutive generations of infected people and R ∈ R+ the reproduction number
between these generations, then

N2 = N1 ·R.

Thus, if we want to know how many generations it takes for the size of the infected
population to double, we calculate τ ∈ R from

2 = Rτ ⇔ τ =
log(2)

log(R)
.

So, after τ generation times the generation size has doubled. If we multiply this with
the average generation time, we get

T :=
log(2)

log(R)
E[G], (3.1)

which gives us the doubling time in days. For a constant reproduction number, we
get an exponential process with growth factor R1/E[G].
If we drop the assumption of R being constant, we can use the Rt for one day and

calculate the instantaneous doubling time, but we can also take the geometric mean
for the last days in order to get a smoother result.
The doubling time does not additionally depend on the time to recovery. This

effect is already incorporated in the generation time. However, a problem arises
when the generation time changes in the course of the pandemic. This could happen
due to isolation and contact tracing measures, as already mentioned in Section 2.3.
That makes the resulting reproduction numbers incomparable, because if we assume
that the doubling time is fixed, we observe that a shorter generation time and serial
interval leads to a lower R, which is also mentioned by [30, p. 2] and [9, p. 6].

3.2 Replication of the Official Methodology

We want to start our calculations with understanding the model in [23] and recon-
structing the official results. In the following, we want to emphasize the assumptions
that were made.
For each t ∈ N∗, let Yt be a random variable describing the number of incident

cases on day t. We assume that Yt conditional on (Ys)s<t is Poisson distributed with
parameter λt, compare equation (3.2). Further, for a fixed T ∈ N∗ let S = {1, 2, . . . , T}
and for each s ∈ S let ws be the probability that a new case is generated s days after
the infection of the infector. So,

�
s∈S ws = 1 if we assume that an infector can only

generate a case within T days after the own infection. The (ws)s∈S are deterministic
weights and are supposed to represent the distribution of the serial interval. It follows
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that the number of infected people at time t−s contributes with Rt ·ws to the number
of infected people at time t. This leads to

E[Yt|Yt−s, s ∈ S] = λt = Rt ·
T�

s=1

Yt−sws, t ∈ N∗, (3.2)

where we assume that Yk = 0 for k ≤ 0. In Section 4.3, we get the same equation
using an extended Galton–Watson process. We notice that this sum is the estimation
for the size of the previous generation mentioned in the beginning of this chapter.
Given τ = 13 and a t ≥ τ , suppose that Rt is constant for the period {t−τ+1, . . . , t}.

Now, we use Bayes inference to estimate Rt. Therefore, we take a Gamma(a, b) as
the a-priori-distribution, which has the density

p(x) =
xa−1e−x/b

baΓ(a)
, x > 0.

Further, we need the likelihood function for the Poisson distribution, which is given
by

L(y;Rt) =
t�

i=t−τ+1



Rt

T�
s=1

yi−sws

�yi

exp



−Rt

T�
s=1

yi−sws

�
1

yi!

given that Yk = yk for k ≤ t and yk = 0 for k ≤ 0. To get the resulting a-posteriori-
density of Rt, we multiply the a-priori-density with the likelihood function and scale
it in order to get a function with integral 1:

p(Rt; y) =
p(Rt)L(y;Rt)�
p(x)L(y; x)dx

= k(y, t, a, b) ·Ra−1
t e−Rt/b ·

t�
i=t−τ+1

Ryi
t exp

�
−Rt

T�
s=1

yi−sws

�

= k(y, t, a, b) ·Ra−1+
�t

i=t−τ+1 yi
t exp

�
−Rt

�
1

b
+

t�
i=t−τ+1

T�
s=1

yi−sws

��
,

(3.3)

where k(y, t, a, b) combines all factors that do not depend on Rt. Thus, the a-posteriori-
distribution of Rt given that Yk = yk for k ≤ t is

Gamma



ã = a+

t�
i=t−τ+1

yi, b̃ =
1

1
b
+
�t

i=t−τ+1

�T
s=1 yi−sws

�
. (3.4)

The mean of the gamma distribution of Rt is given by ã · b̃, therefore our estimator
for the reproduction number is

R̂t =
a+

�t
i=t−τ+1 yi

1
b
+
�t

i=t−τ+1

�T
s=1 yi−sws

(3.5)
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The 95%-confidence interval is calculated by the 2.5%- and the 97.5%-percentile. In
[23, p. 3], they suggest a Gamma(a = 1, b = 5) as a-priori-distribution.

In [23, p. 2], the weights (ws)s∈S are chosen as

ws =
f(s)�
r∈S f(r)

, f(s) =
sa−1e−s/b

baΓ(a)
, s ∈ S,

with f being a density function of a Gamma(a = 2.88, b = 1.55) distribution estimated
in [22, p. 1].

To sum up, the following assumptions were made:

(1) Yt is conditionally Poisson distributed,

(2) yt is the correct number of incident cases,

(3) the serial interval is a good proxy for the weights ws,

(4) the estimation of the serial interval is reasonable,

(5) the reproduction number is constant in {t− τ + 1, . . . , t},

(6) the a-priori-distribution from Rt is a gamma distribution with coefficients a, b.

The result is only correct if all of these assumptions are fulfilled. We will discuss the
appropriateness and relevance of those in the following sections.

The official reproduction number for Austria for each day is published on the
website of the AGES1. It is accompanied by the two-sided 95%-confidence bound.
Those values are plotted in Figure 3.1. We observe that the uncertainty increases if
we have fewer cases, which can be seen in the beginning of the crises and since May.
Moreover, this connection is a direct implication of the posterior distribution in (3.4).

In Figure 3.2, we see the comparison of the official results and the replication using
formula (3.5) and the statistic of incident cases from [1]. The deviation might come
from a change of the incident cases afterwards, which can occur if the symptom
onset date emerges later, as stated in the explanations of the dashboard.2 This slight
difference can also be observed in the replication of the confidence bounds, which are
not plotted.

These replicated results will be used in the following sections to compare the AGES
approach with modifications of this model.

1https://www.ages.at/
2https://www.sozialministerium.at/Informationen-zum-Coronavirus/Dashboard.html,
accessed on December 12, 2020.
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Figure 3.1: We see the official reproduction numbers published by the AGES together with the
95%-confidence bounds from March to November 2020.
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Figure 3.2: By comparing the official reproduction number and our replication, we see that we
managed to replicate the published reproduction number with the methods described
from March to November 2020.
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3.3 Superspreaders

3.3 Superspreaders

The aim of this section is to question assumption (1), which supposes a conditional
Poisson distribution for the number of incident cases. The advantage of assuming
that is that the Poisson distribution needs only one parameter, but therefore it
is rather inflexible. If X is Poisson(λ) distributed, then we know that E[X] = λ
and Var(X) = λ. So, we see that we cannot choose mean and variance separately.
If we assume that each individual of the previous generation infects other people
independently, we see that the mean value as well as the variance for a single person is
Rt. We now have to discuss whether Rt is also an appropriate value for the variance.
An important characteristic of the Covid-19 pandemic is the significance of so-called

superspreaders. We therefore observe that a variance of around 1 is unlikely. Choosing
a variance that is significantly too low, leads to confidence bounds of the estimation
of the reproduction number that are too narrow. In Section 3.8, we will see what
happens if we follow a deterministic approach, which means setting the variance to
zero. We then can calculate the reproduction number directly, but we do not know
anything about accuracy of the calculation. When using a Poisson distribution, we get
confidence bounds, but the high accuracy, which is stated by the confidence bounds,
is misleading.
To overcome this problem, we can assume that Yt conditional on {Yt−1, . . . , Yt−T}

is negative binomial distributed. Then, we have the possibility to choose mean and
variance separately. This distribution family might be more suitable, because the
variance is likely to be significantly higher than the mean value. The probability mass
function of a negative binomial distribution with parameters (α, p) ∈ R+ × (0, 1) is
given by

f(k) =

�
k + α− 1

k

�
(1− p)αpk, k ∈ N.

The parameter α is referred to as the dispersion parameter. If X ∼ NB(α1, p) and
Y ∼ NB(α2, p), then X+Y ∼ NB(α1+α2, p). Thus, we suppose that every individual
of the previous generation infects other people on day t ∈ N∗ according to a negative
binomial distribution NB(α, pt) with mean value

αpt
1− pt

= Rt ⇔ pt =
Rt

Rt + α
.

Thereby, Rt is the mean of infected people by one case, which is the interpretation
that we want. The size of the previous generation is, like in Section 3.2, given by

Zt =
T�

s=1

Yt−sws, t ∈ N∗.

If we assume that these individuals infect others independently, the sum of these
negative binomial distribution is conditional on {Yt−1, . . . , Yt−T} as well negative
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3 The Estimation of the Reproduction Number

binomial distributed, so

Yt|{Yt−1, . . . , Yt−T} ∼ NB(αZt, pt), t ∈ N∗.

For a day t ∈ N∗, we can now proceed with a Bayes estimation. We take the same
a-priori distribution as in Section 3.2, namely

p(x) =
xa−1e−x/b

baΓ(a)
, x > 0.

To make the results comparable, we set τ = 13 and assume that Rt is constant in
{t− τ + 1, . . . , t}. So, we get for the likelihood function

L(Rt) =
t�

s=t−τ+1

�
Ys + αZs − 1

Ys

��
Rt

Rt + α

�αZs
�

α

Rt + α

�Ys

.

A density of the a-posteriori distribution is given by the product of the a-priori density
and the likelihood function normed to an integral of 1. Combining all factors that are
not driven by Rt, given that

�t
s=t−τ+1 Zs = zt and

�t
s=t−τ+1 Ys = yt, we get

p(Rt; yt, zt) = (Rt + α)−(αzt+yt)Ra−1+αzt
t e−Rt/bk(yt, zt, α, a, b)

for a density of the a-posteriori distribution.
We calculated the mean, which will be our estimate for the reproduction number,

and confidence bounds numerically in R. In Figure 3.3, we see the comparison between
the Poisson based estimate from [23, p. 2] and the negative binomial based estimate
described above. We can observe that the negative binomial distribution gives us a
slightly higher estimate for the reproduction number than the Poisson distribution.
However, there is a big difference when it comes to confidence bounds. The wider
confidence bounds of the negative binomial estimate reflect the higher uncertainty
of the reproduction number because of the higher variance of the number of new
infections per infector. We observe that the confidence bounds are wider with low
infection numbers. In particular, the upper bound is important because policymakers
tend to be cautious, as described in [29, p. 9].
Let X ∼ NB(α, pt) and let Rt be its mean, then

Var(X) =
αpt

(1− pt)2
= Rt

�
Rt

α
+ 1

�
,

which strictly dominates the variance of the Poisson model, which is Rt. So, a lower
α leads to a higher variance. Therefore, the correct choice of α requires data about
the variance of new infections generated by one case. Here, we want to show the
results for different values of α. In Figure 3.4, we observe that a higher variance in
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3.3 Superspreaders

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Comparison between Poisson and Negative Binomial

Date

R
ep

ro
du

ct
io

n 
N

um
be

r

P Estimation
P Confidence Bounds
NB Estimation
NB Confidence Bounds

Mar 01 May 01 Jul 01 Sep 01 Nov 01

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 3.3: We see the comparison between the reproduction number using a Poisson approach (P)
and a negative binomial approach (NB) with α = 0.1 with the corresponding confidence
bounds from March to November 2020.
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Figure 3.4: We see the reproduction number and corresponding confidence bounds for α =
0.2, 0.1, 0.05 from March to November 2020. Under the negative binomial approach, the
corresponding variance of new infections generated by one case for Rt = 1 is 6, 11, 21
compared to a variance of 1 at the Poisson model.

the number of new infections by one case (a lower α), leads also to higher uncertainty
in the estimation of the reproduction number and to a slightly higher estimate.
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3 The Estimation of the Reproduction Number

However, a high heterogeneity in infectiousness, and therefore a higher variance, is
actually easier to control, because there are many people who do not infect anybody
at all and most infections arise from superspreading events. This argument is also
explained in [11, p. 2]. Nevertheless, they state that the majority of transmissions
do not emerge from superspreading events, so Covid-19 has a low dispersion, which
makes this pandemic hard to control. In [15, p. 4], they additionally find that the
heterogeneity in infectiousness increases with the age. Thus, additional to the fact that
young people are often infected asymptomatically, they are a significant risk factor of
this pandemic. The authors recommend that young people should be screened more.

3.4 The Number of Incident Cases

In this section, we want to discuss the assumption (3) and parts of (2). Therefore, we
first have to specify what the incident cases Yt are exactly. We distinguish between
two possibilities.
Firstly, we can define the incident cases as the number of new infections on a certain

day. In this case, the weights (ws) should be the generation time. Unfortunately, it is
much more difficult to estimate the generation time instead of the serial interval, so
we would have to use the serial interval as a proxy for the generation time. As already
stated in Section 2.5, there are several reasons why this could be problematic. The
two most obvious are that the serial interval can be negative, whereas the generation
time is strictly positive, and the serial interval is likely to have a higher variance.
Additionally, there are some biases in the estimation of the serial interval discussed
in Section 2.3.
In practice, we have the problem that we would have a time delay, because usually

infections can only be observed, when symptoms are developed. Even if we consider
to assign an infection to a past day, it would be difficult to find out the exact day of
the infection. Additionally, we usually can only find a small part of the significant
number of asymptomatic cases. We will discuss this problem in Section 3.5.
Secondly, we can define the incident cases as the number of symptom onsets on

a certain day. Then the serial interval would be the correct choice for the weights
(ws)s∈S. However, we then have to extend S by some negative integers, as the serial
interval can also be negative. Although including weights with a non-positive index
is not a problem for formula (3.5), where we estimate R, we cannot define Yt as
conditional Poisson distributed anymore, because we would have to condition Yt on
itself and the future, which is not possible. Besides, we could only estimate R with
a delay of −min(S) days, which will be problematic, when the pandemic has to be
analysed urgently because of political decisions.
When it comes to practice, it is not difficult to extract the symptomatic out of

all arising cases and date them back to the symptom onset date. However, as the
incubation time is not deterministic, this would lead to additional uncertainty, as it
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3.5 Unreported and Asymptomatic Cases and the Number of Tests

is also stated in [29, p. 9]. We can also assume that the significant majority of people
with symptoms would make a test, so they can be observed. However, here we ignore
asymptomatic cases completely, which will also be discussed in Section 3.5.
To conclude, both options have advantages and downturns and need assumptions,

which do not necessarily hold. How much the approaches differ depends mainly on
the number of tests and asymptomatic cases.

3.5 Unreported and Asymptomatic Cases and the
Number of Tests

A significant problem when trying to measure and control pandemic dynamics are
unreported and asymptomatic cases. We define an unreported case as an infected
person with symptoms that is not recorded by the number of incident cases for any
day. Unreported and asymptomatic cases, both contribute to yt not being the correct
number of incident cases and thus causing a conflict with assumption (2).
Whereas asymptomatic cases exist naturally, unreported cases are subject to human

behaviour. As the nature of the non-mutated virus3 is not expected to have changed
over time, the assumption that the portion of asymptomatic cases remains constant
is reasonable. For the portion of unreported cases, it is more difficult. One might
assume, that it is likely to have decreased fast in the beginning of the pandemic as the
awareness and fear increased. Afterwards it might have remained at a quite constant
level, and maybe increased with the relaxation of the lockdown as the fear decreased.
We start with examining how the reproduction number is influenced by the number

of undetected cases, which we define as all cases that are not recorded by the number
of incident cases for any day. Therefore, let p1, p2 ∈ [0, 1] be the portions of cases that
are detected in two consecutive generations. The detected and undetected cases might
have different reproduction numbers, because people who do not know that they are
infected might act differently, probably less cautious. So, let Ra, Rb be the actual
reproduction numbers of detected and undetected cases between those two generations
respectively. If N1, N2 denote the number of infections in the corresponding generation,
the following equation is implied:

N2 = RaN1p1 +RbN1(1− p1).

The observed reproduction number R̂ is then given by

R̂ =
N2p2
N1p1

=
(Rap1 +Rb(1− p1)) · p2

p1
,

while the actual reproduction number R is calculated by

R =
N2

N1

= Rap1 +Rb(1− p1) = R̂ · p1
p2
.

3This variant of the virus was dominant in Austria till December 2020.
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3 The Estimation of the Reproduction Number

We can conclude that the reproduction number is not influenced by the portion of
detected cases and is therefore calculated correctly, R = R̂, if and only if the portion
stays constant. That is also mentioned by [29, p. 9]. If the portion of detected cases
increases, then R < R̂, so the actual reproduction number is overestimated, and
respectively for a decreasing portion. Furthermore, a different reproduction number
of the two groups does not have an impact at all.
If we reconsider the thought from above, that the portion of detected cases might

have increased in the beginning of the pandemic, this would imply that the reproduc-
tion number was overestimated in the beginning. Ex post, this raises the question if
the success of the lockdown policies is overestimated as well. Maybe the rapid rise of
incident cases in the beginning is also significantly driven by an increase in awareness
and detection, and thus not as steep as it looks like. This problem is also addressed
by [14, p. 11] and will be explained below.
An interesting role is played by the number of tests, which has increased on average,

especially in the beginning. It is clear that more tests lead to a higher ratio of detected
cases and that the number of tests needed for a further detection increase with the
number of tests.
Upon these considerations, we try to build a model. Let yt ∈ N be the true

number of new infections at time t and zt ∈ N the number of detected cases. For the
undetected cases, we distinguish between those who have symptoms, but do not make
a test, and those who are asymptomatic, st ∈ N and at ∈ N respectively. Obviously
the following equation holds:

yt = zt + st + at. (3.6)

We assume that the portion of asymptomatic cases q ∈ [0, 1] remains constant over
time and that st, at are linearly dependent on yt. Moreover, st is dependent on the
awareness of the population, so let f(t) ∈ [0, 1] be the portion of unaware people at
day t. By assuming that everybody who shows symptoms can get a test, it is clear
that st does not depend on the number of tests. However, at does, because the more
tests are conducted, the more asymptomatic cases can be found, for example in the
social environment of a detected case. Therefore, let g(x) ∈ [0, 1] be the portion of
undetected asymptomatic from all asymptomatic cases for x ∈ N tests. Let bt denote
the number of tests at day t. That leads to

st = yt(1− q)f(t), at = ytqg(bt). (3.7)

Inserting the formulas (3.7) in equation (3.6), we find the following formula to estimate
the true number of infections from the observed number:

yt = zt · 1

1− (1− q)f(t)− qg(bt)
. (3.8)

Now, we want to give an example for the functions f and g. For f , we therefore
assume that there is a constant portion of people who will never test themselves, and
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3.5 Unreported and Asymptomatic Cases and the Number of Tests

that the rest can be modelled by a exponential decline, due to more information,
more news and therefore a higher awareness. For g, according to the comments above,
we need a decreasing, convex function with values in [0, 1]. Thus, we define

f(t) = c1 + c2e
−c3t, g(x) = min

	
1,

c4
xc5


, (3.9)

with suitable constants c1, . . . , c5, which fulfil c1, c2, c5 ∈ [0, 1), c3, c4 ∈ R+, c1 + c2 ∈
[0, 1).
In Figure 3.5, we see the comparison between the calculated R from the observed

numbers of infections and the result of R when we estimate the true number of
infections using the functions above. We observe what we already stated before: In
the beginning the reproduction number was overestimated4. Since April 2020, the
difference is no longer visible.
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Figure 3.5: We see the number of tests on each day (right axis) from March to May 2020. We
compare the official reproduction number to an estimate considering the number of tests
(left axis). We used the functions defined in formula (3.9) with the following parameters:
q = 0.5, c1 = 0.05, c2 = 0.65, c3 = 0.1, c4 = 2.5, c5 = 0.2.

When using the number of tests to recalculate the incident cases on a daily basis,
there are some problems, which will also be explained in Section 3.9. Firstly, some
tests are registered in the EMS5 a few days later, than they were conducted. This
can be observed on April 02, 2020, where a lot of tests were added. Secondly, if
it is possible, the incident cases are backdated to the date of symptom onset. We
furthermore observe that there are less tests on Mondays.
In [14], it is stated that the growth rate of incident cases is overestimated, because

of a simultaneous increase of tests. It is claimed that more tests lead to a higher
portion of detected cases. Similar to our argument, this increase in detection leads

4The size of the overestimation depends on the choice of the functions and parameters.
5Epidemiologisches Meldesystem (epidemiological reporting system)
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3 The Estimation of the Reproduction Number

to overestimating the speed at which the pandemic spreads. Therefore, the number
of incident cases is normalized by the number of tests, which has the underlying
assumption that there is a direct proportionality between the number of tests and
the number of detected infections. However, a problem with this assumption is that
it would only hold if people are tested randomly. But that is not the case: Apart
from the symptomatic cases, people at high risk of infection, for example in the social
environment of a case, are tested preferentially. Thus, the probability of finding
an infected person is decreasing with the number of tests and is not, as assumed,
constant.

3.6 Imported Cases

A similar problem addressing assumption (2) arises from imported cases. When
we want to talk about this issue, we first have to split our population into sub-
populations. When looking at one sub-population, we can define an imported case
as an individual of our sub-population that has been infected by an individual from
another sub-population. If we assign a territory to each sub-population, we can
distinguish whether this infection has taken place on the own territory or abroad.

In the setting of Section 3.2, an imported case at time t is recorded by yt, but
the infector of this individual is not by any ys, s ∈ N∗. This is inconsistent with our
model, especially with equation (3.2), because there are cases that are generated out
of nowhere.

So, if yt denotes the total number of incident cases and pt the number of imported
cases on day t, then the modified reproduction number R

(p)
t can be approximated by

R
(p)
t = Rt · yt − pt

yt
= Rt ·

�
1− pt

yt

�
,

so, for pt > 0, the reproduction number is smaller when we take imported cases into
account. With respect to measures, it follows that if pt

yt
is small, social distancing is

necessary, whereas if pt
yt

is high, travel restrictions are more important to reduce the
spread.

However, if we do not adapt the model and ignore this mistake, this leads to an
overestimation of the reproduction number, which is also described in [29, p. 3].
Alternatively, we could change the definition of the reproduction number from average
number of new infections that are directly infected by one case to ratio of the number
cases in two consecutive generations. This might even be the more interesting number.

As stated by [9, p. 6], especially in the beginning of the pandemic in our population,
imported cases play a crucial role as they are a significant part of the incident cases.
For this reason, the estimation of the reproduction number has a higher uncertainty
in the beginning.
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3.7 Impact of the Weights

Of course, also exported cases play an important role in the global setting. However,
they have no influence on the local reproduction number, no matter how it is defined.

3.7 Impact of the Weights

As the weights ws have a significant impact on the estimation of the reproduction
number, we focus in this section on the assumptions (3) and (4). In Section 2.7, we
already pointed out the problems with the estimation of the serial interval in [22,
p. 1], which is used in [23, p. 2]. This addresses both assumptions. Thus, we want
to determine how the reproduction number is influenced by a change in the weights
ws and therefore by a possible estimation mistake. Subsequently, we will discuss
the impact of weights with a negative index and look at the reproduction number
resulting when using our estimation for the serial interval from Section 2.3.
We remember that ws is the probability mass at s in the (discrete) distribution of

the serial interval. For two different scenarios, let Sa, Sb describe the serial interval
and Ra, Rb the corresponding reproduction numbers between two generations. From
equation (3.1), assuming that the doubling time is fix, we get

log(2)

log(Ra)
E[Sa] =

log(2)

log(Rb)
E[Sb],

which simplifies to

Rb = (Ra)E[Sb]/E[Sa].

This would imply that the reproduction number is dependent on the mean of the
serial interval. In Figure 3.6, we see the comparison of the resulting reproduction
number between a serial interval with the gamma distribution from [22, p. 1] and
a gamma distribution with a different mean. Let the quotient of the means be
c := E[Sb]/E[Sa]. We also see a third line, namely (Rb)1/c, which is very close to the
line of Ra. For those time points where we observed a fast changing doubling time,
these lines do not coincide perfectly, as our assumption of a constant reproduction
number between two generations does not hold.
The accuracy of the assumption of a constant doubling time is dependent on the

variation of the rate of spread and the variance of the serial interval. For example, if
we have a deterministic serial interval the assumption is perfectly correct. In Figure
3.7, the underlying serial intervals follow a gamma distribution, which all have the
same mean but different variances. We observe that they only lead to a different
reproduction number in the beginning of the pandemic, where the doubling time
changed rapidly with a clear upward trend.
For the four different distributions for the serial interval in Section 2.7, the resulting

reproduction number is plotted in Figure 3.8. The graphs with the serial interval
from [22, p. 1] (gamma) and [18, p. 285] (log-normal) are nearly identical, as well as
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distribution with a c = 0.72 times higher mean and a corrected version where we take
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Figure 3.7: We see the original reproduction number from March to November 2020. Further, we
see an estimate for the reproduction number using weights that come from a gamma
distribution with half of the variance and the doubled variance.

our estimate (skew-normal) and [6, p. 1341] (normal). So, we see a clear difference
between the distributions that include negative values and those only defined on
R+. Possible explanations are the slightly lower mean (compare Figure 3.6) and the
significantly higher variance (compare Figure 3.7). In the density plot, Figure 2.5,
we observe that the normal and skew-normal distribution have considerably much
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3.8 Reproduction Number for a Single Day

mass on R−, which is another possible explanation for the different shape of the
reproduction number.
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Figure 3.8: We see several estimations for the reproduction number based on the four different
weighting schemes following the four distributions from Section 2.7 from March to
November 2020.

However, we must not forget that the distribution of the serial interval is estimated
itself and that the uncertainty from this estimation process adds to the uncertainty
arising from the model for the reproduction number. In [29, p. 8], they estimate
both numbers together to get an accurate quantification of the uncertainty, but that
requires a lot of data that is hard to observe. Nevertheless, as the uncertainty coming
from the serial interval decreases over time, the uncertainty for the reproduction
number declines as well.

3.8 Reproduction Number for a Single Day

We continue with questioning assumption (5), which is necessary for the Bayes
approach. If we do not consider the number of incident cases as a random variable,
but follow a deterministic approach, equation (3.2) can be transformed so that the
reproduction number can be calculated directly. It follows that

Rt =
yt�T

s=1 yt−sws

,

which also makes assumption (1) unnecessary.

We recognize that this formula is quite similar to equation (3.5) for τ = 1. In order
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3 The Estimation of the Reproduction Number

to smooth those values, we can calculate a moving average using the last n ∈ N∗ days:

RMA
t =

n�
i=1

Rt−i+1wi.

But now we are free to set the weights as we want to, they do not have to be constant
anymore. For example, we can assign linear weights:

wi =
n− i+ 1

n(n+1)
2

, i ∈ {1, . . . , n}.

In Figure 3.9, we can see the results for the single-day reproduction number and a
moving average with linear weights for the last 7 days in order to account for weekday
specific differences, compared to the official reproduction number.
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Figure 3.9: We see the official reproduction number in comparison with the single-day approach and
a corresponding 7-days linear moving average.

Taking fewer days into account has got advantages as well as drawbacks. On the
one hand, the curve is less smooth and more vulnerable to spikes or clusters. But,
trends are visible earlier, on the other hand. This can help to react more quickly in
case of a sudden increase.

3.9 Delay in Reporting

Another problem that gets in conflict with assumption (2) is the delay in reporting,
which was especially significant in the beginning of the pandemic. So, yt is not the
number of symptom onsets on date t, but the number of reported cases on that
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3.9 Delay in Reporting

day. This implies that yt is lagged. For example, if every case is reported five days
after symptom onset, yt gives the symptom onsets for t − 5. Therefore, also the
reproduction number is lagged.
We take a look at the German data from the RKI ([24]). For every case, they

have the reporting date (Meldedatum) and the reference date (Referenzdatum). The
difference of these is the delay in reporting, which is a non-negative integer for those
people who are tested because of symptoms. However, in some cases this difference is
negative, for example if someone is tested positive before that person shows symptoms.
To analyse this delay, we start looking at its empirical distribution. We see the

ratio of delays smaller or equal to 0 for the months March to July 2020. We observe
that it is increasing every month, especially from April to May, which is an indicator
for a constantly better handling of the pandemic. The kernel density estimate of those
cases that have a positive delay is plotted in Figure 3.10, where we can also see that
the delay is decreasing significantly from March to May and remains approximately
constant since then.
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Figure 3.10: We see a kernel density estimate as approximation for the distribution of the delay
given that the delay is positive for March to July 2020.

Focussing on the development of the delay, we see the daily and weekly averages in
Figure 3.11. One can observe a strong positive correlation between the delay and the
number of incident cases, which can be explained with limited test and organisational
capacities in the beginning of the pandemic.
In [25, p. 2726-2737], it is stated that the delay in detection leads to more infections

and that infectious people with a delay are the main driver of the pandemic spread.
They conclude that it would be a big mistake to only test suspected cases.
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Figure 3.11: We see the mean of the delay per day and per week for March to July 2020.

Finally, when it comes to the estimation of the growth rate and the reproduction
number, it turns out that the delay in reporting itself only leads to a time-lagged
result, but does not imply a misestimation. However, if the delay changes over time,
we observe a bias. That is an underestimation of the current trend (i.e. the correct
reproduction number is further away from 1 than the estimated) if the delay decreases
and an overestimation if the delay increases. If we obtain a more or less constant
number of incident cases, this change of delay does not have an impact.
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4 Galton–Watson Process

An important characteristic of the Covid-19 pandemic is the high variance of the
number of infections that are directly infected by a certain case. Individuals that infect
a high number of other people are so-called superspreaders and play a significant role
in this pandemic as already explained in Section 3.3. To provide a mathematical model
that describes the dynamic of the spread of a pandemic, we study the Galton–Watson
process. After calculating some basic properties of this process, where we also proof
general probabilistic theorems, we focus on the extinction probability. Therefore, we
will not only proof the corresponding theorems, but also give a formula for an upper
and lower bound and give examples for certain distributions that are interesting for
us like the negative binomial. In Section 4.3, we extend the Galton–Watson process
in a way that it can describe the Covid-19 pandemic. We finally get the formula that
is used in [23] and in Section 3.2.

4.1 Basic Properties

Let Yn be an N-valued random variable that describes the number of cases in generation
n ∈ N. For i ∈ {1, 2, . . . , Yn−1}, n ∈ N∗, let Xn

i be an N-valued random variable that
denotes the offspring that is the number of infections generated by the i-th individual
in the (n− 1)-th generation. Starting with Y0 = y0 ∈ N∗, we can recursively define

Yn :=

Yn−1�
i=1

Xn
i , n ∈ N∗.

We assume that (Xn
i )i,n∈N∗ are independent and for every fixed n ∈ N∗ that (Xn

i )i∈N∗

are identically distributed. We will refer to that as the offspring distribution. If
the first moment of the offspring distribution exists for n ∈ N∗, then we have
E[Xn

i ] = Rn < ∞ for all i ∈ N∗ with Rn denoting the deterministic reproduction
number from generation n − 1 to generation n according to the definition of the
reproduction number discussed in Chapter 3. If also the second moment exists for
n ∈ N∗, we define σ2

n := Var(Xn
i ) < ∞ for all i ∈ N∗. Since the distribution of Yn is

determined only by the last value Yn−1 and not dependent on the entire past, Yn is a
Markov process.

For an N-valued random variable Z, we define the probability generating function
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4 Galton–Watson Process

as

gZ(t) = E[tZ ] =
∞�
n=0

tnP(Z = n), t ∈ C,

which converges absolutely for |t| ≤ r ∈ R+. The radius of convergence r is at least 1,
because for |t| ≤ 1 we have���� ∞�

n=0

tnP(Z = n)

���� ≤ ∞�
n=0

|tnP(Z = n)| ≤
∞�
n=0

P(Z = n) = 1. (4.1)

As the probability generating function is a power series, it inherits all properties a
the power series within the radius of convergence. So, it is continuous on [0, r] by
Abel’s theorem and infinitely often continuously differentiable on [0, r) by dominated
convergence theorem. As the coefficients are all non-negative, it is also monotone
increasing and convex. With monotone convergence, we have

g′Z(1) = E[Z],

g′′Z(1) = E[Z(Z − 1)],
(4.2)

where g′Z(1) and g′′Z(1) may be the left-sided limit in case gZ is not differentiable at 1.
If either the first or second moment does not exist, we have g′Z(1) = E[Z] = ∞ or
g′′Z(1) = E[Z(Z − 1)] = ∞, respectively. If the first and second moment exist, we can
express the variance of Z by

Var(Z) = g′′Z(1) + g′Z(1)− (g′Z(1))
2. (4.3)

Before we can do further calculations, we need an auxiliary theorem for random
sums.

Theorem 4.1. Let (Xk)k∈N∗ be a sequence of real-valued, independent and identi-
cally distributed random variables and let N be an N-valued random variable that
is independent from (Xk)k∈N∗. We define the random sum S :=

�N
k=1Xk. Further,

let gS, gN and gX denote the probability generating function for S, N and (Xk)k∈N∗,
respectively. For (b) and (c), we assume the existence of the first and second moment
of N and (Xk)k∈N∗ respectively. Then we have

(a) gS(t) = gN(gX(t)) for t ∈ C, |t| ≤ 1,

(b) E[S] = E[N ]E[X1], (Wald’s equation)

(c) Var(S) = E[N ] Var(X1) + Var(N)(E[X1])
2. (Blackwell-Girshick equation)

Proof. (a) Using the assumption that the random variables (Xk)k∈N∗ are independent
and identically distributed, we have, for an n ∈ N, that

E[t
�n

k=1 Xk ] =
n�

k=1

E[tXk ] = (E[tX1 ])n = (gX(t))
n,
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4.1 Basic Properties

for |t| ≤ 1. Using the dominated convergence theorem and the independence of�n
k=1Xk from the event {N = n}, we get

gS(t) = E[t
�N

k=1 Xk ] =
∞�
n=0

E[t
�n

k=1 Xk1{N=n}] =
∞�
n=0

E[t
�n

k=1 Xk ]E[1{N=n}]

=
∞�
n=0

(gX(t))
nP(N = n) = gN(gX(t)),

for |t| ≤ 1, which concludes this part.
(b) We derive the equation from (a), then we have

g′S(t) = g′N(gX(t))g
′
X(t), |t| < 1.

We take the left-sided limit at 1 and since gX(1) = 1, we have

g′S(1) = g′N(1)g
′
X(1).

With equation (4.2), we have the desired result.
(c) We derive the equation from (a) a second time, which leads to

g′′S(t) = g′N(gX(t))g
′′
X(t) + g′′N(gX(t))(g

′
X(t))

2, |t| < 1.

Again, we take the left-sided limit at 1 and since gX(1) = 1, we have

g′′S(1) = g′N(1)g
′′
X(1) + g′′N(1)(g

′
X(1))

2.

With equation (4.2) and (4.3) and those for g′S(1) and g′′S(1), we get

Var(S) = g′′S(1) + g′S(1)− (g′S(1))
2

= g′N(1)g
′′
X(1) + g′′N(1)(g

′
X(1))

2 + g′N(1)g
′
X(1)− (g′N(1)g

′
X(1))

2

= g′N(1)
�
g′′X(1) + g′X(1)− (g′X(1))

2
�
+
�
g′N(1) + g′′N(1)− (g′N(1))

2
�
(g′X(1))

2

= E[N ] Var(X1) + Var(N)(E[X1])
2,

which concludes the proof.

Now, we can easily compute the expected value of the Galton–Watson process Yn

for n ∈ N∗. Therefore, we assume that the first moment of the offspring distribution
exists. With Theorem 4.1(b), we get

E[Yn] = E[Yn−1]Rn,

and with mathematical induction, it follows that

E[Yn] = y0

n�
i=1

Ri. (4.4)

41



4 Galton–Watson Process

In case of a constant reproduction number R, this simplifies to

E[Yn] = y0R
n. (4.5)

We continue with looking at the variance of Yn for n ∈ N∗. Therefore, we assume
that the first and second moment of the offspring distribution exist. Using equation
(4.4) and Theorem 4.1(c), we get

Var(Yn) = σ2
ny0

n−1�
i=1

Ri +R2
n Var(Yn−1).

If we have a recursively defined real-valued sequence zm = am+bmzm−1 for m ∈ N∗, we
get zm = z0

�m
k=1 bk +

�m
k=1 ak

�m
j=k+1 bj by repeated substitution. With Var(Y0) = 0,

we therefore get

Var(Yn) = y0

n�
k=1

σ2
k

� k−1�
i=1

Ri

�� n�
j=k+1

R2
j

�
.

If there exists a k ∈ {1, . . . , n} such that Rk = 0, then we have E[Yn] = 0 and
Var(Yn) = 0. If Rk > 0 for all k ∈ {1, . . . , n}, then we can simplify the formula for
the variance further to

Var(Yn) = E[Yn]
n�

k=1

σ2
k

Rk

n�
j=k+1

Rj.

For a constant reproduction number Rk = R for all k ∈ {1, . . . , n}, this simplifies to

Var(Yn) = y0R
n−1

n�
k=1

σ2
kR

n−1−k.

If we additionally assume that σ2
k = σ2 for all k ∈ {1, . . . , n}, we get

Var(Yn) =

�
y0σ

2Rn−1Rn−1
R−1

, if R ̸= 1,

y0σ
2n, if R = 1.

We now want to look at the covariance. With the existence of the second moment
and Cauchy–Schwarz equation, we know that E[YmYn] exists for m,n ∈ N,m < n.
As (Yn)n∈N is a Markov process, we know that Ym is Yn−1-measurable. With a similar
argument like in the proof of Theorem 4.1(a), we have

E[YmYn|Yn−1] = Ym E

� Yn−1�
i=1

Xn
i

����Yn−1

�
= YmYn−1Rn.

With the defining property of the conditional expectation, it follows that

E[YmYn] = E[YmYn−1]Rn,
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4.1 Basic Properties

which we iterate till we have

E[YmYn] = E[Y 2
m]

n�
k=m+1

Rk.

Using this equation and the recursive formula for the expected value, we can compute
the covariance by

Cov(Ym, Yn) = E[YmYn]− E[Ym]E[Yn] = E[Y 2
m]

n�
k=m+1

Rk − (E[Ym])
2

n�
k=m+1

Rk

= Var(Ym)
n�

k=m+1

Rk.

For an n ∈ N∗ and each m ∈ {1, . . . , n}, let gYn and gXm denote the probability
generating functions for Yn and (Xm

k )k∈N∗ , respectively. Inductively applying Theorem
4.1(a) and using gY0(t) = ty0 , shows that

gYn = gY0 ◦ gX1 ◦ gX2 ◦ · · · ◦ gXn = (gX1 ◦ gX2 ◦ · · · ◦ gXn)y0 . (4.6)

We know that a probability generating function uniquely defines a random variable.
We use this for the following theorem.

Theorem 4.2. The sum of two independent Galton–Watson processes Ŷ and Ỹ with
the same family of offspring distributions (Xm

k )k,m∈N∗ and starting values ŷ0, ỹ0 ∈ N is
again a Galton–Watson process Y with this offspring distribution and starting value
y0 = ŷ0 + ỹ0. Also, a Galton–Watson process Z with starting value z0 can be split
into a sum of z0 independent Galton–Watson processes (Z(i))i∈{1,...,z0} with the same
offspring distribution and starting value 1.

Proof. For arbitrary m,n ∈ N∗, let gŶn
, gỸn

, gYn and gXm denote the probability

generating functions of Ŷn, Ỹn, Yn and (Xm
k )k∈N∗ respectively. Using the independence

of Ŷn and Ỹn and equation (4.6), we have

gYn(t) = E[tYn ] = E[tŶn+Ỹn ] = E[tŶn ]E[tỸn ]

= gŶn
(t)gỸn

(t) = ((gX1 ◦ gX2 ◦ · · · ◦ gXn)(t))ŷ0+ỹ0 .

Thus, Y is a Galton–Watson process with the same family of offspring distributions
and starting value y0 = ŷ0 + ỹ0, because the probability generating function of a
random variable uniquely defines its distribution.
With equation (4.6), for an arbitrary n ∈ N∗, we have

gZn(t) = ((gX1 ◦ gX2 ◦ · · · ◦ gXn)(t))z0 =

z0�
i=1

(gX1 ◦ gX2 ◦ · · · ◦ gXn)(t) =

z0�
i=1

g
Z

(i)
n
(t),
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4 Galton–Watson Process

where (Z(i))i∈{1,...,z0} is a family of independent Galton–Watson processes with the same
offspring distributions and starting value 1. Since a probability generating function of
a random variable uniquely defines its distribution, it follows that Z =

�z0
i=1 Z

(i).

In the following theorem, we see that a normed Galton–Watson process is a
martingale.

Theorem 4.3. Let I := {n ∈ N | ∀k ∈ {1, . . . , n} : Rk ∈ R+} be an index set. Then,
the stochastic process

Mn := Yn

n�
k=1

R−1
k , n ∈ I,

is a martingale with respect to the generated filtration (Fn)n∈I .

Proof. (Mn)n∈I is trivially adapted to the generated filtration. Let n ∈ I, then

E[|Mn|] = E[Yn]
n�

k=1

R−1
k = y0 < ∞

shows the integrability. Further, since (Yn)n∈I is a Markov process, we have

E[Yn|Fn−1] = E[Yn|Yn−1] n ∈ I, n ≥ 1. (4.7)

For each k ∈ N, with P(Yn−1 = k) > 0, we have

E[Yn|Yn−1 = k] = E

� k�
i=1

Xn
i

����Yn−1 = k

�
=

k�
i=1

E[Xn
i |Yn−1 = k] = kE[Xn

1 ], (4.8)

where the last equation holds, because the random variables (Xk)k∈N∗ are independent
and identically distributed and independent from the event {Yn−1 = k}. It follows
that

E[Yn|Yn−1] = Yn−1E[X
n
1 ] = Yn−1Rn. (4.9)

Combining the equations (4.7) and (4.9), and multiplying with
�n

k=1R
−1
k , leads to

E[Mn|Fn−1] = Mn−1,

which proves the martingale property.

For I = N, as (Mn)n∈N is a non-negative martingale, we know with Doob’s almost
sure convergence theorem that there exists an F∞-measurable random variable M∞
such that M∞ = limn→∞Mn almost surely, compare [32, p. 109]. With Fatou’s
lemma, we get

E[M∞] = E

�
lim
n→∞

Mn

�
≤ lim

n→∞
E[Mn] = E[M0] = y0.
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4.2 Extinction Probability

We have equality if and only if the martingale is uniformly integrable, according to
the Vitali convergence theorem, compare [32, p. 131-132].
If we now assume that Rk ≥ 1 for all k ∈ N∗, then (Yn)n∈N is a submartingale,

because, for n ∈ N∗, we get

E[Yn|Fn−1] = Yn−1E[X
n
1 |Fn−1] = Yn−1E[X

n
1 ] = Yn−1Rn ≥ Yn−1.

Similarly, if Rk ≤ 1 for all k ∈ N∗, then (Yn)n∈N is a supermartingale.

4.2 Extinction Probability

The Galton–Watson process was originally intended to compute the extinction proba-
bility of family names in the 19th century. We can transfer this result to compute
the probability that a pandemic vanishes. Throughout this section, we assume that
(Xn

i )i,n∈N∗ are independent and identically distributed, and call the corresponding
Galton–Watson process time-homogeneous. Note that this is a stricter definition than
in Section 4.1. So, for each i, n ∈ N∗, we can set pk := P(Xn

i = k) for k ∈ N and
R := E[Xn

i ] ≥ 0 for the offspring. Note that it is not necessary that the first moment
exists, so R = ∞ is possible. This section is inspired by [2].
The following theorem helps us to find the extinction probability, when we know

the distribution of the offspring.

Theorem 4.4. Let (Yn)n∈N be a time-homogeneous Galton–Watson process with
y0 = 1, and (Xn

i )i,n∈N∗ its offspring. Then, the extinction probability q is the smallest
fixed point of the probability generating function gX of Xn

i in [0, 1] and

q = 0, if p0 = 0,
q ∈ (0, 1), if p0 > 0 and R > 1,
q = 1, if p0 > 0 and R ≤ 1.

Proof. For every N-valued random variable Z, the probability generating function
gZ exists, is continuous in [0, 1], compare equation (4.1), and has at least one fixed
point at 1 = E[1Z ] = gZ(1). So, there is a smallest fixed point. Besides, we notice
that gZ(0) = P(Z = 0) and that gZ is strictly increasing as long as P(Z = 0) < 1.
For each n ∈ N, let gYn be the probability generating function of Yn. We define the

extinction probability q as

P

� �
k∈N

{Yk = 0}
�
.

If the process is extinct at time n ∈ N, then it is certain that it is extinct at time
n+1, so we know that {Yn = 0} ⊂ {Yn+1 = 0} for each n. As the probability measure
P is continuous from below, it follows that

q = P

� �
k∈N

{Yk = 0}
�

= lim
n→∞

P

� n�
k=1

{Yk = 0}
�

= lim
n→∞

P(Yn = 0) = lim
n→∞

gYn(0).
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4 Galton–Watson Process

As the sequence (gYn(0))n∈N is growing and limited, and since R is complete, we know
that the limit exists. For n ∈ N, let gYn denote the probability generating function
of Yn. From Theorem 4.1(a), we know that gYn+1 = gYn ◦ gX . Since y0 = 1 and the
offspring distribution is the same for every generation, we see with equation (4.6) that
also gYn+1 = gX ◦ gYn is true. As gYn is continuous, it follows that

gX(q) = gX

	
lim
n→∞

gYn(0)

= lim

n→∞
gX(gYn(0)) = lim

n→∞
gYn+1(0) = q,

so q is a fixed point. For an arbitrary fixed point a ∈ [0, 1], we have

a = gX(a) = gYn(a) ≥ gYn(0),

because gYn is monotone increasing. Taking the limit on the right-hand side for
n → ∞, we get a ≥ q, so q is the smallest fixed point.
If p0 = gX(0) = 0, the smallest fixed point is q = 0, because it is impossible to get

extinct when every individual has at least one offspring.
Assume from now on that p0 > 0. If p0 + p1 = 1, we have R ≤ 1 and we know

that gX(t) = p0 + tp1, so gX is an affine function. Since p0 > 0, we know that gX has
exactly one fixed point, so q = 1.
So, we can assume from now on that p0 + p1 < 1. Since we then have g′′X(t) =

E[X(X − 1)tX−2] > 0 for t ∈ (0, 1), it follows that g′X is strictly increasing and gX is
strictly convex on [0, 1]. If gX had three fixed points t1 < t2 < t3 in [0, 1], then for
λ = t2−t1

t3−t1
, we would have

gX(λt3 + (1− λ)t1) = gX(t2) = t2 = λt3 + (1− λ)t1 = λgX(t3) + (1− λ)gX(t1),

which is not possible for a strictly convex function. Hence, gX has at most two
fixed points. We know that gX(0) > 0, gX(1) = 1 and g′X(1

−) = R (which denotes
the left-hand limit). If R > 1, there exists s ∈ (0, 1) with gX(s) < s. So, by the
intermediate value theorem and because gX(0) = p0 > 0, there is a second fixed point
in (p0, 1) and q < 1. Otherwise, if R ≤ 1, then gX(t) > t for t ∈ (0, 1), so q = 1.

For y0 > 1, we see that every starting individual reproduces independently, because
we can split this process into y0 independent processes, according to Theorem 4.2.
Therefore, the extinction probability with starting value y0 is the probability that
each of the y0 families get extinct, so it is qy0 .
To continue, we can set bounds for q with the following theorem, which is an

exercise in [2, p. 12].

Theorem 4.5. Let q be the extinction probability of a time-homogeneous Galton–
Watson process (Yn)n∈N with offspring (Xn

i )i,n∈N∗ and y0 = 1. Assume that q < 1 and
p1 ̸= 1 (otherwise q is trivial), then we get the following bounds

b1 :=
p0

1− p1
≤ q ≤ p0

1− p0 − p1
=: b2.
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4.2 Extinction Probability

Proof. Let gX denote the probability generating function of the offspring distribution.
With the formula for finite geometric sums and the definition of the probability
generating function, we get

∞�
n=0

P(X1
1 > n)sn =

∞�
n=0

∞�
k=n+1

pks
n =

∞�
k=1

k−1�
n=0

pks
n =

∞�
k=1

pk
1− sk

1− s

=
1

1− s

� ∞�
k=1

pk −
∞�
k=1

pks
k

�
=

1

1− s

�
1− p0 − (gX(s)− p0)

�
=

1− gX(s)

1− s
,

for |s| < 1. Note that the sum is absolute convergent and we can therefore change
the order of summation. From Theorem 4.4, we know that gX(q) = q, so we have

∞�
n=0

P(X1
1 > n)qn = 1. (4.10)

By just considering the first two summands, it follows that

(1− p0) + (1− p0 − p1)q ≤ 1,

because all summands are non-negative. As q < 1 and p1 ̸= 1 guarantee that
1− p0 − p1 > 0, we get

q ≤ p0
1− p0 − p1

,

which proves the upper bound. Using equation (4.10) and P(X1
1 > n) ≤ P(X1

1 > 1)
for all n ∈ N∗, it follows that

1 =
∞�
n=0

P(X1
1 > n)qn ≤ (1− p0) +

∞�
n=1

P(X1
1 > 1)qn

= (1− p0) + (1− p0 − p1)
∞�
n=1

qn = (1− p0) +
(1− p0 − p1)q

1− q
.

By multiplying with (1− q) and simplifying, we get

1− q ≤ 1− p0 − p1q ⇔ q ≥ p0
1− p1

,

which finishes the proof.

We want to calculate this extinction probability explicitly for the case that the
offspring has a geometric distribution and numerically for a negative binomial distri-
bution in the following two examples.
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4 Galton–Watson Process

Example 4.6. We parametrize the geometric distribution by its mean R ∈ R+. Then,
the probability mass function is given by

pk =
1

R + 1

�
R

R + 1

�k

, k ∈ N.

At first, we calculate the probability generating function for |t| < 1 + 1
R
by

gX(t) =
∞�
k=0

tk
1

R + 1

�
R

R + 1

�k

=
1

R + 1

∞�
k=0

�
tR

R + 1

�k

=
1

R + 1
· 1

1− tR
R+1

=
1

R + 1− tR
.

(4.11)

Then, we want to compute the fixed points and therefore look at gX(t) = t, which
leads to the quadratic equation

1

R + 1− tR
= t

⇔ t2R + t(−R− 1) + 1 = 0.
(4.12)

That gives us the fixed points t1 = 1 and t2 = 1
R
, so the extinction probability is

q = min(1, 1
R
) according to Theorem 4.4. For the bounds b1, b2 from Theorem 4.5, we

get

b1 =
1

R+1

1− R
(R+1)2

=
R + 1

(R2 + 2R + 1)−R
=

R + 1

R2 +R + 1
< q,

b2 =
1

R+1

1− 1
R+1

− R
(R+1)2

=
R + 1

(R2 + 2R + 1)− (R + 1)−R
=

R + 1

R2
> q.

Example 4.7. As explained in Section 3.3, the negative binomial distribution for the
offspring is especially interesting in this case. For α > 0 and p ∈ (0, 1), its probability
mass function is given by

pk =

�
k + α− 1

k

�
(1− p)αpk, k ∈ N.

For the negative binomial distribution, the probability generating function for t ∈ [0, 1
p
)

is

gX(t) =
∞�
k=0

tk
�
k + α− 1

k

�
(1− p)αpk

=
(1− p)α

(1− tp)α

∞�
k=0

�
k + α− 1

k

�
(1− tp)α(tp)k

=

�
1− p

1− tp

�α

,
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4.2 Extinction Probability

because the last sum is over another probability mass function and therefore equals 1.
In general, solving the equation �

1− p

1− tp

�α

= t

is only possible numerically. However, for α ∈ {1
2
, 1, 2}, we can calculate the extinction

probability algebraically. For α = 1
2
, we get the equation

t3p− t2 + (1− p) = 0.

Since we know that t1 = 1 is a solution, we can factorize the left side by polynomial
division, so we get

(t− 1)
�
t2p− t(1− p)− (1− p)

�
= 0.

Thus, the remaining solutions are

t2,3 =
1− p±�

1 + 2p− 3p2

2p
,

where t2 > 0 and t3 < 0 for each p ∈ (0, 1). Note that t2 < 1 if and only if p > 2
3
, so

q =

�
1, if p ≤ 2

3
.

1−p+
√

1+2p−3p2

2p
, if p > 2

3
,

For α = 1, this is the geometric distribution from Example 4.6. For α = 2, we get
with similar considerations that

q =

�
1, if p ≤ 1

3
.

2−p−
√

4p−3p2

2p
, if p > 1

3
,

For all α > 0, we can calculate the bounds from Theorem 4.5, so

b1 =
(1− p)α

1− α(1− p)αp
, b2 =

(1− p)α

1− (1− p)α − α(1− p)αp
.

In Figure 4.1, we see the extinction probability for a negative binomial distribution
plotted in a heatmap depending on mean and variance. We observe that it decreases
for increasing mean and decreasing variance. For the numerical computation of q,
we used the iteration from Theorem 4.4, where we build the sequence (qn)n∈N with
q0 = 0 and qn+1 = gX(qn) for n ∈ N, and iterate it until |gX(qn)− qn| < 10−7. Note
that a classic bisection does not work for all parameter pairs, because we might have
gX(t) ≥ t for all t ∈ [0, 1

p
). This is the case when R = g′X(1) = 1 ⇔ α = 1−p

p
.

We continue with the extinction–explosion principle.
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4 Galton–Watson Process

Figure 4.1: We see a heatmap showing the extinction probability for a negative binomial distribution
depending on the mean (x-axis) and on the variance (y-axis).

Theorem 4.8 (Extinction–explosion principle). Let (Yn)n∈N be a Galton–Watson
process and let (Xn

i )i,n∈N∗ be its offspring. Additionally, assume that p1 ̸= 1. Then,
we have almost surely extinction or explosion, so

P

� �
k∈N

{Yk = 0}
�
+ P (Yn → ∞) = 1.

Proof. As the transition probabilities only depend on the current state and not on the
entire history, the Galton–Watson process is a homogeneous Markov chain. Therefore,
we consider this problem in the framework of Markov chains. We observe that 0 is an
absorbing state and show that every k ∈ N∗ is a transient state. We fix a k ∈ N∗ and
assume that y0 = k, so it follows that

k�
j=1

{X1
j = 0} ⊂

�
n∈N∗

{Yn ̸= k}.

However, for p0 = 0, the left side is just the empty set. We see that for this case, we
have additionally � k�

j=1

{X1
j = 1}

�C

⊂
�
n∈N∗

{Yn ̸= k}.
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4.2 Extinction Probability

Combined, we know that

P

� �
n∈N∗

{Yn ̸= k}
�

≥
�

pk0, if p0 > 0
1− pk1, if p0 = 0

�
> 0,

which proves that if the process starts in state k there is a positive chance that we
will never return. So, we have proven the transience of state k. Thus, the process
either gets absorbed by the state 0 or goes to infinity.

Figure 4.2 illustrates Theorem 4.4 and 4.8. It shows 30 Monte Carlo simulations
for different offspring means. The population starts with y0 = 100 and we consider 50
generations. On the basis of Section 3.3, we chose a negative binomial distribution
with α = 0.1 and mean value R for the offspring. At the top, we see that R = 0.9
implies extinction as it was stated by Theorem 4.4. In the middle, for R = 1, we have
also almost surely extinction, but not as fast as in the first plot. At the bottom with
R = 1.1, we observe a positive chance of survival according to Theorem 4.4 and the
explosion for those that survived like it was described in Theorem 4.8. Besides, we
recognize an approximately exponential behaviour of the trajectories, which we have
also seen in formula (4.5), where we computed the mean value of such a process.
For the next theorem, we remember the martingale (Mn)n∈N defined in Theorem

4.3, which simplifies in this section to Mn = YnR
−n for n ∈ N.

Theorem 4.9. Let (Yn)n∈N be a time-homogeneous Galton–Watson process with
p1 ̸= 1, R ∈ R+ and y0 ∈ N∗. Let M∞ be the limit of the martingale from Theorem
4.3. Then, it holds true that either M∞ = 0 almost surely or

P(M∞ > 0) = P(Yn → ∞).

Proof. For R ≤ 1, using p1 ≠ 1, we get with Theorem 4.4 that q = 1. Using
{Yn = 0} = {Mn = 0} for all n ∈ N and

�
n∈N{Mn = 0} ⊂ {M∞ = 0} implies that

1 = q = P

� �
n∈N

{Yn = 0}
�

= P

� �
n∈N

{Mn = 0}
�

≤ P(M∞ = 0) ≤ 1,

so the first alternative, M∞ = 0 almost surely, is true.
From now on, assume that R > 1. It is clear that {M∞ > 0} ⊂ {Yn → ∞}. Let

πy0 := P(M∞ = 0) for M0 = y0. With Theorem 4.8, it remains to show that πy0

either equals P
��

n∈N{Yn = 0}� = qy0 or 1. Using Theorem 4.2, we have πy0 = πy0
1 .

Therefore, without loss of generality, we can assume that y0 = 1 and show that
π1 ∈ {q, 1}.
We notice that there are Y1 = X1

1 individuals in the first generation and each of them

starts a new Galton–Watson process. For k ∈ N∗, let (Y (k)
n )n∈N be an independent
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Figure 4.2: We see 30 simulations of the size of the population for R = 0.9, 1, 1.1, y0 = 100 and

α = 0.1.

copy of (Yn)n∈N, so a Galton–Watson process with y
(k)
0 = 1 and the same offspring

distribution. Let these processes be independent, then it follows that

Yn+1 =

X1
1�

k=1

Y (k)
n , n ∈ N.

We normalize this equation by dividing by R−(n+1), so we get

Mn+1 =
1

R

X1
1�

k=1

M (k)
n , n ∈ N,

where (M
(k)
n )n∈N denotes the martingale generated by (Y

(k)
n )n∈N for k ∈ N∗. We take
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4.3 Extended Galton–Watson Process

the a.s.-limit on both sides and get

M∞ =
1

R

X1
1�

k=1

M (k)
∞ ,

where the random variables (M
(k)
∞ )k∈N∗ are independent copies of M∞. Since M

(k)
∞ is

independent from X1
1 for all k ∈ N∗, it follows that

π1 = P(M∞ = 0) = P(M (k)
∞ = 0 for all k ∈ {1, 2, . . . , X1

1})

=
∞�
n=0

P(X1
1 = n)P(M (k)

∞ = 0 for all k ∈ {1, 2, . . . , n})

=
∞�
n=0

pnP(M∞ = 0)n =
∞�
n=0

pnπ
n
1 = gX(π1),

where gX denotes the probability generating function of the offspring distribution.
We see that π1 is a fixed point and with Theorem 4.4, it follows that π1 ∈ {q, 1},
which concludes the proof.

4.3 Extended Galton–Watson Process

If we want to use the Galton–Watson process as defined in Section 4.1 for modelling the
Covid-19 pandemic, there is one main problem. The difficulty when mathematically
defining the reproduction number is that the generation time is not deterministic and
therefore, it is not easy to clearly define what a generation is (compare the remarks
in the beginning of Chapter 3). However, we can overcome this problem by extending
the Galton–Watson process.
Therefore, let (Yn)n∈N be a stochastic process denoting the number of new infections

on each day. For k,m ∈ N with k < m, let (Xk,m
i )i∈N∗ denote the number of people

that are infected on day m by the i-th new case from day k. Let Y0 = y0 and set
Yj = 0 for j ∈ Z−, then it follows that

Yn =
T�

k=1

Yn−k�
i=1

Xn−k,n
i ,

where T is the maximum length of the generation time. We assume that all infections
happen independently, so the random variables (Xk,m

i )k,m∈N,k<m,i∈N∗ are independent.

For fixed k,m ∈ N, k < m, the set (Xk,m
i )i∈N∗ is assumed to be identically distributed.

Further, we assume that these random variables are integrable with E[Xk,m
i ] =

Rmwm−k, where Rm is the reproduction number on day m. For j ∈ {1, 2, . . . , T}, the
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4 Galton–Watson Process

weight wj denotes the probability that the generation time is j days. Further, define

σk,m := Var(Xk,m
i ) for all i ∈ N∗.

With similar considerations as in equation (4.8), we get

E[Yn|Yn−1, . . . , Yn−T ] = Rn

T�
k=1

Yn−kwk, (4.13)

which is exactly formula (3.2) used for the estimation of the reproduction number in
Section 3.2. With this equation, we get

E[Yn] = Rn

T�
k=1

E[Yn−k]wk,

which is a recursive formula for the expectation that cannot be well displayed explicitly.
From [31, p. 385-386], we know that

Var(S) = E[Var(S|N)] + Var(E[S|N ]),

which is called the law of total variance. With equation (4.13) and the fact that
(Xk,m

i )i∈N∗ are independent and identically distributed for fixed k,m ∈ N with k < m,
we have

Var(Yn) = Var(E[Yn|Yn−1, . . . , Yn−T ]) + E[Var(Yn|Yn−1, . . . , Yn−T )]

= Var

�
Rn

T�
k=1

Yn−kwk

�
+ E

� T�
k=1

Yn−kσn−k,n

�

= R2
nVar

� T�
k=1

Yn−kwk

�
+

T�
k=1

E[Yn−k]σn−k,n,

which cannot be simplified further, because the set (Yn−k)
T
k=1 is not uncorrelated.
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5 Case Fatality Rate

One of the major epidemological key figures is mortality, so we want to raise the
question, which portion has died after an infection with the coronavirus. We examine
several approaches how to measure this number and whether it has changed over the
course of the pandemic. Further, we investigate the impact of some characteristics on
the probability of dying. We find that men are significantly more likely to die and
that the case fatality rate increase heavily with age. For all these computations, we
use Austrian data from [4], where we have the age, sex, date of infection and date of
death or recovery for each infected individual. After that, we take a look at the global
situation and investigate why the case fatality rate differs so much across countries.

5.1 Estimation Approaches

To begin, we want to examine how to estimate the case fatality rate in the beginning
of a pandemic. The major problem we have to deal with is that deaths come up
later than infections. Therefore, it is not correct to compare the total number of
infections with the total number of deaths at a certain point in time. Thus, as long
as the pandemic is going on, it is not possible to tell the correct case fatality rate of a
population. For this section, we assume that the case fatality rate is constant over
the course of the pandemic in a certain population.
For t ∈ N∗, let Yt ∈ N be the total number of infections, Dt ∈ N the total number

of deaths and Ct ∈ N the total number of recoveries up to time t. At time t, let
Kt ∈ N be the number of current infections and Gt ∈ N be a random variable denoting
the number of current infections that will end with death. Thus, Gt takes values in
{0, 1, . . . , Kt}. It can be easily seen that Yt = Ct +Dt +Kt. At time t, the current
estimate of the case fatality rate Ft ∈ [0, 1] fulfils

Ft =
Dt + E[Gt]

Yt

.

Using that Gt is bounded, we can calculate a lower and an upper naive bound
lt, ut ∈ [0, 1] for the case fatality rate by

lt =
Dt

Yt

, ut =
Dt +Kt

Yt

. (5.1)

For the Austrian infection data, these bounds are plotted in Figure 5.1. We see a
high level of uncertainty in March, since the range for the case fatality rate is nearly
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5 Case Fatality Rate

the entire [0, 1]-interval. When the number of incident cases began to decrease in
the end of March, the upper bound dropped fast, whereas the lower bound increased
constantly till the end of April. The width of the bounded region is given by Kt

Yt
and

is therefore determined by the total number of infections and the number of currently
infected people. That explains why the two bounds were very close in June, when
there were few incident but a lot of old cases, and widened again in autumn, when
the number of incident cases was very high.
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Figure 5.1: According to equation (5.1), we see the upper and lower bound for the case fatality rate
from March to November 2020.

As a next step, we try to estimate the case fatality rate using two different
approaches. For the first one, we assume that Gt is a sum of Kt random variables
that are independent and identically Bernoulli distributed. We suppose that the
probability of dying is given by Ft. Then, Gt is binomial distributed with parameters
(n = Kt, p = Ft), so we have E[Gt] = KtFt. Substituting that into the definition of
the case fatality rate, gives us

Ft =
Dt +KtFt

Yt

⇔ Ft =
Dt

Yt −Kt

=
Dt

Dt + Ct

. (5.2)

We can extend this approach by dropping the assumption of identical distributions.
Instead, we can assign an individual probability of dying to every person that is
currently infected. This parameter can depend on the age and sex of the person,
pre-existing illnesses or the time since the infection. For a time t and a individual
i ∈ {1, 2, . . . , Kt}, let q(i)t be the probability that person i will die from this infection.
So, we get

Ft =
Dt +

�Kt

i=1 q
(i)
t

Yt

. (5.3)
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5.2 Case Fatality Rate in the Course of the Pandemic

However, this extension is not very useful, because it requires detailed data over a
longer period of time. However, here, we are interested in estimating the case fatality
rate at an early stage of a pandemic, where these data are not available.
So, we return to formula (5.2). It is quite natural to simply consider only those

people for whom it is already clear whether they die or recover. However, the reason
why this is not perfectly correct is that the distributions of the length of the period
from infection to recovery and from infection to death do not have to be the same. In
fact, for Covid-19, the data from [4] show that the mean is approximately the same,
but the standard deviation of the time to death is twice as large as the standard
deviation of the time to recovery.
The second approach deals with this problem. We build up on the first approach,

but, instead of Dt+Ct, we take a different basic set over which we want to calculate the
probability of dying, namely the portion of infected people that would have already died
conditioned on that their death is certain. For an infected person i, let Xi be a random
variable that can take values in {recover} ∪ {die after k days | k ∈ {0, 1, . . . , kmax}},
and let (Xi)i be independent and identically distributed. For k ∈ {0, 1, . . . , kmax}
define pk := P(X1 is dead after k days | X1 dies). For k > kmax, we set pk = 1. It
is easy to estimate pk with the data from [4], as we just need a distribution of the
duration from infection to death. Let yt be the number of incident cases on day t,
so Yt =

�t
s=1 ys. At time t, the above described portion is then

�t−1
k=0 pkyt−k ≤ Yt.

Thus, we have

Ft =
Dt�t−1

k=0 pkyt−k

. (5.4)

We use all past values for the estimation of pk, so these weights can change a bit over
time.
In Figure 5.2, we see the naive bounds as well as the two methods to find the case

fatality rate. For each day, the plot shows the average case fatality rate up to that
day. We observe that our estimates differ a lot in the first month of the Covid-19
pandemic, but are very close since mid April. We see that the case fatality rate
is decreasing from July to November, which is probably because of better medical
treatment. According to [8, p. 2], it can be observed in most countries that the case
fatality rate reduced from the first to the second wave.

5.2 Case Fatality Rate in the Course of the Pandemic

If we analyse a pandemic ex-post, we can examine whether the case fatality rate has
changed over time. This could be due to a limited number of intensive care beds,
better medication or vaccination. When we want to measure the case fatality rate for
a certain day, there are at least three different approaches.
Let t be an arbitrary day. We have to assign a certain subset of cases to day t.

Firstly, we can take all incident cases on day t as our sample. Secondly, we can
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Figure 5.2: In addition to the bounds from Figure 5.1, we see the results of the two approaches
described in equation (5.2) and (5.4) with kmax = 60.

consider all cases that ended on day t, either with death or recovery. Thirdly, we
can take all cases into account that are infected on day t. For each approach, we
then calculate the proportion of cases that ended with death from the corresponding
sample.

If the duration of the infections were constant, then the first and the second
approach would give the same graph, but just lagged by this duration. The third
approach would then be a moving average of the first one. However, this is not
the case. That rises a problem for the third method: Cases with a longer infection
duration contribute more the case fatality rate than cases with a shorter infection
duration, whereas for the first and second method every case is used exactly once. If
longer infections have a different dying probability than shorter ones, we get a biased
estimate with the third approach.

With the data from [4], the courses of the case fatality rate for the three approaches
are plotted in Figure 5.3. Although the estimated case fatality rates are quite different,
we observe a common significant decline in July 2020, which could be due to better
medication and a lower average age of the infected people. In October 2020, we then
see a slight increase as the average age increases again. In Section 5.3, we will take a
look this change of the average age of infected people. The high case fatality rate in
the beginning might also come from a smaller number of tests and a therefore higher
portion of deaths, because many infections were undetected. However, in [8, p. 3],
it is stated that the age structure has changed because young people have a higher
mobility and are therefore more affected in the second wave than in the first one.
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Figure 5.3: For the three approaches described, we see the case fatality rate for every single day in
the course of the pandemic from March to November 2020.

5.3 Differences for Age and Sex

We start with taking a look at the impact of the age on the case fatality rate. It is a
well-known fact that older people have a higher risk of dying from a Covid-19 infection.
The case fatality rate for each age is plotted in Figure 5.4, where we considered all
cases that are either dead or recovered but ignore ongoing infections. Below the age
of 50, the absolute number of deaths is near 0 for each age. At the age of 62 the
case fatality rate is the first time greater than 1% and at the age of 79 the first time
greater than 10%. From that point, it rises more or less linearly up to 45% at the age
of 100. Thereafter, there are too few infections to calculate a reliable case fatality
rate.

Besides, we want to investigate whether the age of the deaths vary over time.
The results plotted in Figure 5.5 show no long-term trend. We only observe higher
fluctuations at lower numbers of new infections.

Then, we want to examine whether the sex influences the case fatality rate. So, we
conducted a two-sample t-test to see whether the difference in the case fatality rate is
statistical significant. The null hypothesis is that women have a higher or equal case
fatality rate. We consider only cases that have already died or recovered till November
2020. We can then reject the null hypothesis with a p-value of approximately 10−12.
From the beginning of the pandemic up till November, we get a case fatality rate for
men of 2.16% and for women of 1.75% considering all infections that ended. That is
interesting, because at high ages, where the most people die, the portion of women is
higher.

Therefore, we want to combine these two characteristics. In Figure 5.6, we see that
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Figure 5.4: Considering all deaths and recoveries till November 2020, we see the case fatality rate
for each age.
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Figure 5.5: We see the average age of people died in the last 14 days from March to November 2020.
In pink, we see the overall average at an age of 81.8.

for all ages from 65, men have a higher case fatality rate. We can also observe that
till the age of 83 the portion of male and female is approximately equal. From that
point the female portion increases steadily.
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Figure 5.6: For each age from 60 to 100, we see the case fatality rate for male and female separately
considering all deaths and recoveries till November 2020.

5.4 Comparison over Different Countries

In this section, we want to examine the case fatality rate in different countries to find
its main drivers. We will run a linear regression on the most important factors to
show a significant dependency of the case fatality rate on these factors. Finally, we
will discuss the limitations of this analysis. In Figure 5.7, we see a map showing the
case fatality rate in each country till November 2020.

Case Fatality Rate per Country
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Figure 5.7: We see a map showing the case fatality rate for each country considering all deaths and
recoveries till November 2020.

Let I be the set of all countries with Covid-19 cases where the necessary data
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5 Case Fatality Rate

points are available (n = 158). For i ∈ I, let Fi be the case fatality rate, Ai be the
ratio of people who are older than 65 years and Bi be the number of hospital beds
per thousand people in country i. Let α, β1, β2 ∈ R and let ϵi be the error term for
country i. Then, we can set up the following equation:

Fi = α + β1Ai + β2Bi + ϵi, i ∈ I. (5.5)

Using the data from [20] and the function lm() from the package stats, we can
conduct a linear regression on these factors in R to see if a dependency is empirically
valid. We observe for both factors a highly significant dependency. Firstly, the ratio
of people older than 65 years has a positive influence on the case fatality rate, which
is also confirmed by the results in Section 5.3. Secondly, a higher number of hospital
beds leads on average to a lower case fatality rate.

Estimate Std. Error t value Pr(>|t|)
α (Intercept) 0.01839 0.00453 4.06332 0.00008

β1 (ratio of age 65 or older) 0.00385 0.00075 5.16341 0.00000
β2 (hospital beds per thousand) −0.00408 0.00150 −2.72564 0.00716

However, we face some problems, when trying to compare the case fatality rates in
countries all over the world. Firstly, a uniform definition of a Covid-19 death poses
difficulties. To solve this problem, the WHO has implemented a definition in [19, p.
15]:

COVID-19 death is defined for surveillance purposes as a death resulting
from a clinically compatible illness in a probable or confirmed COVID-19
case, unless there is a clear alternative cause of death that cannot be related
to COVID disease (e.g. trauma). There should be no period of complete
recovery between the illness and death.

Additionally, also the number of tests is important: If the relative number of tests
in a country is lower, the number of cases is more underestimated, which leads to a
higher ratio of deaths.
Last but not least, the progress in the course of the pandemic is also relevant,

especially in the beginning. As the number of deaths is lagged a couple of days behind
the number of infections, countries have a lower case fatality rate in the beginning of
the spread than later. However, this effect disappears gradually.
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6 Covid-19 as Mortality Shock

As this pandemic leads to a significant disruption of mortality rates all over the world,
we want to examine how they are affected. Therefore, we will introduce the term
structure of mortality, which is a name that is related to finance, where the term
structure of interest rates describes the yield curve. What happens if an event like a
pandemic suddenly changes the term structure of mortality? One example for a shock
is a parallel shock. We further analyse empirically if the Covid-19 pandemic leads to
such a parallel shock in the term structure of mortality and discuss consequences for
life expectancy and annuity prices.
As in Chapter 5, Covid-19 death rates play a major role. In addition to Section

5.3, we will discuss whether the probability of death has increased proportionally for
every age.
We follow the approach from [17] and build up on it. We support our theoretical

analysis by some empirical calculations on Austrian data. We will use the life table
from [28], the age distribution of the Austrian population from [26, 27] and the
Austrian Covid-19 data from [4].

6.1 Mortality Shocks

We start with a short introduction to actuarial notation. Let µx ≥ 0 be the mortality
rate of a person at age x ∈ R+. For a person at age x, let tpx be the chance of
surviving t years and tqx the probability of dying within the next t years. It holds
that tpx + tqx = 1. For t = 1, we simply write qx and px. We know that

tpx = exp

�
−
� t

0

µx+sds

�
.

If we distinguish between men and women, we write tq
(m)
x , tp

(m)
x , µ

(m)
x , tq

(f)
x , tp

(f)
x , µ

(f)
x

respectively. Furthermore, it is important to distinguish between cohort life tables
and period life tables. The cohort life table measures how many people die from
a generation, so it tracks the whole life of fixed individuals that are born during
the same specific time frame. However, a period life table considers people that life
during the same specific time frame and measures the survival ratios within this time
frame, it is also called a generation life table. Therefore, a period life table is easier
to observe, whereas the cohort life table gives the true survival ratios for the selected

63



6 Covid-19 as Mortality Shock

generation. They are in particular different if the mortality changes over time. Our
life table [28] is a period life table.

For a person at age x, we have an accidental mortality rate λx ≥ 0 and a natural
mortality rate θx ≥ 0 with λx + θx = µx. From that, the term structure of mortality
is defined as (log(θx))x. An event that suddenly changes the mortality rate from µx

to µ̃x, is called a mortality shock, in contrast to a long-term trend. When we observe
such a shock, we want to find the mortality risk-adjusted age, that means, for an
age x, we want to find the age y, so that µ̃x = µy. If there is no such y, we take
argminy |µ̃x − µy|.
Furthermore, we want to discuss shocks in a certain model for mortality. In 1825,

Benjamin Gompertz developed a law of human mortality, which assumes that the
natural mortality rate increases exponentially with age. If we set the accidental
mortality rate λx = λ for all x, we get the Gompertz–Makeham law of mortality,
which states that the mortality rate is given by

µx = λ+ hegx, x ∈ R+,

with growth rate g > 0 and starting value h > 0. With the definitions and equations
above, for x, t ∈ R+, it follows that

tqx = 1− tpx = 1− exp

�
−
� t

0

µx+sds

�
= 1− exp

�
−
� t

0

λ+ heg(x+s)ds

�
= 1− exp

�
−λt− hegx

egt − 1

g

�
,

under Gompertz–Makeham. So, for the one year death probabilities, we get

qx = 1− exp

�
−λ− hegx

eg − 1

g

�
. (6.1)

This law does not work for x < 35, but it is a good approximation for x ≥ 35, which
we denote as Gompertzian age range. This is also supported by Figure 6.1, where we
see the observed dying probabilities from the period life table [28] for male and female,
and a maximum-likelihood estimation of the Gompertz–Makeham parameters for
λ = 0. The maximum-likelihood estimation works as described in the following. For
an age x, let Nx be the size of the population with age x and let Dx be the number of
observed deaths at age x within one year. Then, the dying probabilities in the period
life table are estimated by q̂x = Dx

Nx
. If we assume that Dx is Poisson-distributed with

parameter qxNx, we get

L(g, h, λ|Dx) =
99�

x=35

e−qxNx
(qxNx)

Dx

Dx!
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for the likelihood function. If we substitute qx from equation (6.1) and take the
logarithm, we get the log-likelihood function

l(g, h, λ|Dx) =
99�

x=35

−Nx

�
1− exp(−λ− hegx eg−1

g
)
�

+Dx log
�
Nx(1− exp(−λ− hegx eg−1

g
))
�− log(Dx!).

(6.2)

As we cannot compute its maximum directly, we approximate the result numerically
using the function optim() from the package stats in R.
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Figure 6.1: We see the dying probability from [28] and the estimation by Gompertz–Makeham law
with λ = 0. We conducted a maximum-likelihood estimation for x ≥ 35. The resulting
parameters are g = 0.1178, h = 3.405 · 10−6 for female and g = 0.0990, h = 2.280 · 10−5

for male.

In the Gompertz–Makeham framework, the term structure of mortality for the
Gompertzian age range is

log(µx − λ) = log(h) + gx. (6.3)

If an event like a pandemic impacts death rates, the term structure changes. One
example for such a change is a parallel shock of the log mortality rate, which is defined
as an additive increase (or decrease) by a constant u ∈ R for all x in the Gompertzian
age range, so equation (6.3) changes to

log(µ̃x − λ̃) = log(h) + gx+ u. (6.4)

Assuming an unchanged accidental death rate λ̃ = λ, we observe that with a parallel
shock the new natural mortality is proportional to the old, so the natural death rate
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6 Covid-19 as Mortality Shock

is multiplied with the same factor, eu, for all x in the Gompertzian age range, but
the mortality growth rate stays the same.

The interpretation of a parallel shock in the term structure of mortality is that
people at every age are equally affected in the sense that the probability of death
has increased for everyone by the same factor. This was, for example, not the case
for the Spanish flue pandemic in 1918, where people at younger ages were affected
disproportionately higher.

An alternative to a parallel shock is a constant shock, where we assume that the
new mortality rate must be equal to the old at some age x∗, so we need µ̃x∗ = µx∗ .
Thus, a shock u > 0 requires a decline in the mortality growth rate g in order to
compensate for the increased mortality. We define gu as the adjusted slope and
substitute in our assumption µ̃x∗ = µx∗ . This gives us

log(h) + gux
∗ + u = log(h) + gx∗,

so we need gu = g − u
x∗ < g to fulfil the condition. The comparison of a parallel and

a constant shock to the term structure of mortality is plotted in Figure 6.2.
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Figure 6.2: For the ages 40 to 100, we compare the original log mortality rate to the log mortality
rate after a parallel shock and after a constant shock with x∗ = 99.

6.2 Is Covid-19 a Parallel Shock?

Now, we want to determine whether Covid-19 was a parallel shock to the Austrian
term structure of mortality. Given x ∈ {0, 1, 2, . . . , 99}, let qx ∈ [0, 1] be the chance of
death for an Austrian individual within the next year at age x before Covid-19, using
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6.2 Is Covid-19 a Parallel Shock?

the data from [28]. We assume that the mortality rate is constant within one year.
So, for t ∈ [0, 1), we assume µx+t = µx. Thus, we have qx = 1− e−µx . It follows that

µx = − log(1− qx).

Let µC
x be the Covid-19 mortality rate and suppose that the non-Covid-19 mortality

rate µx is unchanged. Then, the mortality rate in the presence of this disease is
µC
x + µx. Suppose that the time frame under consideration is t ∈ N∗, t ≤ 365 days

long, let Dt
x ∈ N be the number of Covid-19 deaths at the age x in this time frame,

using the data from [4], and Nx ∈ N∗ the size of the population with age x, using the
data from [26, 27]. So, the probability of dying from Covid-19 in this time frame is

�
1− exp(− t

365
(µC

x + µx))
� · µC

x

µx + µC
x

.

Now, we estimate this probability by observing which portion of the population
actually died from Covid-19. Then, we can find the Covid-19 mortality rate µC

x , by
solving the equation

�
1− exp(− t

365
(µC

x + µx))
� · µC

x

µx + µC
x

=
Dt

x

Nx

(6.5)

numerically for each x.
Since we know that µ̃x = µC

x + µx is the total mortality rate in the presence of
Covid-19, we can now find the mortality risk-adjusted age as described in Section 6.1.
As we assumed a constant mortality rate within one year, we approximate the results
by linear interpolation. The results of this mapping are plotted in Figure 6.3: We see
how much the mortality risk-adjusted age is higher than the original age for female
and male separately.
Furthermore, we want to discuss whether Covid-19 is a parallel shock. If we assume

that the accidental death rate is 0, we have to check if the excess factor

log

�
µC
x + µx

µx

�
(6.6)

is approximately equal for all x. In Figure 6.4, we see this term for each x for
female and male separately. We observe that the shock is not parallel, since it rises
with increasing age, and that the shock size is u ∈ [0, 0.16]. Only for the ages
80 to 100, it is approximately constant. It can be concluded that not everyone is
affected proportionally to the dying probability, but that older people are affected
disproportionally higher. Further, we can see that the dying probability of men has
increased disproportionally more than for women, although they already had a higher
probability of death before Covid-19. This extends the results from Section 5.3, where
we showed that men have a higher case fatality rate than women.
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Figure 6.3: We see the absolute difference between the mortality-risk-adjusted age and the true age
for Austrian data considering all deaths till November 2020 with population data from
January 01, 2020.

40 50 60 70 80 90 100

Excess Factor of Mortality Rates due to Covid-19

Age

E
xc

es
s 

F
ac

to
r

Female
Male

0.
00

0.
04

0.
08

0.
12

0.
16

0.
00

0.
04

0.
08

0.
12

0.
16

Figure 6.4: For the age 40 to 100, we see the excess factor of mortality rates from formula (6.6) to
check whether Covid-19 is a parallel shock.

6.3 Shock at an Infection

Another interesting question is: How much does the mortality rate increase, if a
person is infected? Is the factor of this shock equal for all ages? Therefore, we need
to estimate the mortality rate for an infected individual. Analogous to the procedure
in Section 6.2, consider a time frame with a length of t ∈ N∗, t ≤ 365 days. For
each age x, let I tx ∈ N and Dt

x ∈ N be the number of Covid-19 deaths and infections
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respectively, at the age x in this time frame. Let µ̃x and µI
x be the mortality rate in

general in the presence of Covid-19 and for infected people respectively. Analogous
to equation (6.5), we can estimate the mortality rate for infected people by solving
the equation �

1− exp(− t
365

(µI
x + µ̃x))

� · µI
x

µ̃x + µI
x

=
Dt

x

I tx
, (6.7)

and the size of the shock for each age, that is the relative increase of the mortality
rate, is given by

log

�
µI
x + µ̃x

µ̃x

�
. (6.8)

In Figure 6.5, we see the difference between the true age and the mortality risk-
adjusted age after an infection. That means, for example, that if a 70-year-old man is
infected, he suddenly has a biological age of 79 according to the mortality rate. We
can observe that women are less affected than men.
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Figure 6.5: For the age 40 to 100, we see the absolute difference between the mortality-risk-adjusted
age at an infection and the true age separately for male and female.

The excess factor is plotted in Figure 6.6. We see that the rise in mortality rate
increases till the age of 70 where it peaks. After this point it declines.

To be precise, since the true infection numbers cannot be observed, but only
the number of positive tests, the resulting mortality rates refer to a positive test.

Additionally, we know from Chapter 5 that Dt
x

Itx
is just an approximation for the

case-fatality-rate, because deaths are time-lagged.
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Figure 6.6: For the age 40 to 100, separately for male and female, we see the additional excess factor
of mortality rates from formula (6.8) after a person gets infected.

6.4 Effect on Life Expectancy

In this section, we want to find empirical answers to some questions related to life
expectancy.

One of the main arguments of policy makers for Covid-19 measures, especially
lockdowns, is saving lives by reducing the number of incident cases or keeping the
intensive care beds free. Critics argue that we protect people who would have died
soon anyway. In any case, it would be beneficial for the discussion to only talk about
the number of people who died, but also take the number of years of life lost into
account. A bias of the following considerations is that people who die from Covid-19
are likely to have a significant lower life expectancy than other people of that age
because of pre-existing illnesses that favour death after an infection, compare [5, p.
7]. Nevertheless, we assume that people who died from Covid-19 have on average the
same life expectancy like the whole population.

For an age x, let dx ∈ N be the number of Covid-19 deaths and ex ∈ R+ be the
truncated life expectancy at age x. If we multiply these two and sum over all x, we
get the total number of lost years of life

L :=
99�
x=0

dxex.

Let Tx be a random variable denoting the number of years a person at the age of x is
still alive. Then, the truncated life expectancy can be calculated in a discrete setting
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with the final age ω = 100 by

ex = E[Tx] =
ω−x�
n=1

n npx qx+n =
ω−x�
n=1

n�
k=1

npx qx+n =
ω−x�
k=1

ω−x�
n=k

npx qx+n =
ω−x�
k=1

kpx.

A similar formula works for the continuous case, where we need an integral instead of
the sum, and can calculate the true life expectancy instead of the truncated.

We can also add a time dependence to see how the loss of years of life develop over
the different phases of the pandemic. Let dx,t be the number of people died at age x
on day t of the pandemic. Then

Lt :=
99�
x=0

dx,tex

is the number of years of life lost on day t. This time series is plotted in Figure
6.7 together with the daily number of incident cases. Comparing the first and the
second wave, we observe that within the first wave many more years of life were lost in
relation to the number of incident cases than during the second wave. That supports
the thesis that medical treatment was improved and older people were protected
better after the first wave. We also see that the time lag of the peaks between the
two curves increases from 10 in the first wave to 20 in the second wave.
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Figure 6.7: We see the number of years of life lost per day (left axis) compared to the number of
incident cases (right axis) from March to December 2020.

However, the number of deaths in other areas decreased due to lockdowns and
other Covid-19 measures. On the one hand, fewer deaths caused by the flu lowered

71



6 Covid-19 as Mortality Shock

the natural mortality rate.1 On the other hand, there have been avoided a lot of
accidental deaths because of less traffic and limited possibilities of spending free time.
Thus, the accidental death rate decreased, so λ̃ < λ. In the UK, for example, the
accidental death rate declined by 50-70%. However, after lockdowns the accidental
death rate increased almost up to its normal level.2 Similar results were observed in
other countries all over the world. Besides, there might have also been deaths which
are indirectly related to the pandemic like suicides or because there are less intensive
care beds available. However, it seems that there are actually less suicides since the
pandemic outbreak in March.3 An analysis by the Cambridge University shows that
the death rates of 20 to 24 year old men declined during the lockdown. The mortality
rate of this group is usually higher than the age suggests, because of risk-taking
behaviour. The total death rates are suggested to have reduced by 30%.4 To sum up,
there are a lot of direct and indirect effects, which work in different directions. In our
analysis, we want to focus on the increase in death probability because of a Covid-19
infection and assume that the other effects play a minor role or equalize.

In [5, p. 7], it is stated that those who die from a Covid-19 infection have already a
lower life expectancy than the average. This would indicate that the number of years
of life lost is actually smaller. It also implies that those who survive this pandemic
are healthier and will probably live longer. This will lead to lower death rates in the
next years compared to pre-Covid-19. Thus, one should be cautious when using life
tables without adjusting them, as prices of annuities might be too low.

6.5 Effect on Annuity Prices

We want to use the results from the previous sections to derive some implications
an important insurance product, the annuity. We distinguish between a temporary
(one year) and a permanent shock, but only consider positive shocks. We will discuss
parallel shocks in general in the Gompertz–Makeham framework, look particular at
the Covid-19 shock and examine its impact on annuity prices. Further, we will outline
the role of interest rates.

Let r > −1 be the interest rate, then the discount factor is denoted by v = 1
1+r

.
We define an annuity as an insurance product that pays 1 unit each year as long as

1https://www.tagesspiegel.de/wissen/wenige-influenza-tote-haben-die-corona-

massnahmen-die-grippewelle-beendet/25782934.html, accessed on November 08, 2020
2https://fleetworld.co.uk/car-accident-rates-climb-sharply-after-decline-in-

lockdown/, accessed on November 08, 2020
3https://www.aerzteblatt.de/nachrichten/117216/Moeglicherweise-weniger-Suizide-

seit-Corona, accessed on November 08, 2020
4https://www.telegraph.co.uk/news/2020/05/28/deaths-young-men-have-fallen-

lockdown-cambridge-study-shows/, accessed on November 08, 2020
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the underlying person is alive. Then, the present value of an annuity ax is given by

ax :=
ω−x�
k=1

vkkpx,

where kpx is probability to survive for k years at age x. For a positive shock of
mortality rates, the adjusted survival probability kp̃x is smaller than the original one,
so kp̃x ≤ kpx for all k, x ∈ N. Therefore, the new price of an annuity ãx is cheaper, so
ãx ≤ ax for each age x. However, if the shock is only temporary (one year), we can
directly derive that

ãx =
ω−x�
k=1

vkp̃x · k−1px+1 = p̃xv
ω−x−1�
k=0

vkkpx+1 = p̃xv(1 + ax+1).

Furthermore, mortality shocks, which make annuities cheaper, can be compensated
by a decline in interest rates. Thus, we are interested in finding a ṽ = 1

1+r̃
that solves

the equation
ω−x�
k=1

vkkpx =
ω−x�
k=1

ṽkkp̃x

for permanent shocks. However, this equation has no algebraic solution, so we will
compute it numerically using the function uniroot() from the package stats in R.
Now, we want to take a look at the results for permanent parallel shocks in the

Gompertz–Makeham framework in general, firstly. For the Gompertz–Makeham
parameters, we take the results presented in Figure 6.1. As these parameters were
estimated from a period life table, we have to assume in the following that mortality
rates will not change in the future. The annuity prices for women are plotted in
Figure 6.8. We remember the size of the parallel shock u from equation (6.4). We
see a decline in annuity prices for positive parallel shocks, which vanishes towards
the end of life. For each further shock, we observe approximately the same absolute
decline in price. For comparison, we remember from Figure 6.4 that Covid-19 has a
shock size of u ∈ [0, 0.16].
For different shock sizes u, we see how the interest rates have to be modified to get

the same price for the annuity for women with r = 3%. We observe that r̃ declines
faster with higher age.

u r̃
x = 40 x = 60 x = 80

0 3.00% 3.00% 3.00%
0.2 2.88% 2.60% 1.22%
0.4 2.75% 2.15% −0.85%
0.6 2.60% 1.63% −3.27%
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Figure 6.8: For female, for age 40 to 100, we see the annuity prices after a parallel shocks of size
u = 0, 0.2, 0.4, 0.6 with an interest rate of r=1%.

Secondly, we want to compare the annuity prices before Covid-19 and for the
adjusted mortality rates under the assumption that the shock is permanent. We again
have to assume that these mortality rates will not change in the future. In Figure 6.9,
we see the size of the relative decline of the prices for annuities, separately for male
and female. We observe that the drop for men is more significant than for women.
Further, we notice that annuities for older people are relatively more affected.
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Figure 6.9: For the age 40 to 100, separately for male and female, we see the relative decline in
annuity prices because of Covid-19 with an interest rate of r=1%.

Additionally, we see how the interest rates need to be modified after the Covid-19
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6.5 Effect on Annuity Prices

shock, so that there is no change in annuity prices. Starting with r = 3%, the new
interest rates are calculated for several ages and separately for male and female using
the function uniroot() from the package stats in R. We notice that the interest
rate has to be cut more for men than for women and that it decreases faster with
higher ages, what we already observed above.

x 40 50 60 70 80

r̃(f) 2.96% 2.94% 2.87% 2.72% 2.27%
r̃(m) 2.94% 2.90% 2.79% 2.52% 1.79%
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7 Open Questions

We want to close the thesis with an outlook on further questions concerning Covid-19.
As there are way more important problems can be addressed in this thesis, we want
to encourage the interested reader to further research on open questions. However,
this chapter does not claim to be complete.

In Section 2.1, we stated that the epidemiological time frames do not have to be
equal for each age and sex. If enough data for infection pairs is available, one can
estimate these distributions separately and test whether there are differences. Further,
it would be interesting to examine the impact of certain scenarios, for example a
completely lockdown or mask requirements, on the serial interval.

From the list of assumptions in Section 3.2, we have not discussed the a-priori
distribution of the Bayes approach (assumption (6)). Besides, if the necessary data
is available, we need to estimate the variance of the generated cases by one infector
in order to show that the Poisson based approach from [23] is inappropriate and to
justify the negative binomial approach from Section 3.3. Analogous to the serial
interval, one can try to determine the impact of Covid-19 measures like lockdowns or
mask requirements on the reproduction number to evaluate the costs and benefits of
these measure objectively in order to find the most efficient.

With respect to the role of tests, described in Section 3.5, it would be interesting
to examine how the number of tests is related to the number of infections, under
the assumption that people are tested according to the probability of infection. If
we estimate a function for this relation, especially the slope and curvature will be
important to answer questions like: What is the optimal number of tests (if we have
an underlying utility function)? Another point that we do not discuss in this thesis is
the role of wrong-positive and wrong-negative tests and how long a test result should
be valid.

For the Galton–Watson process, there are further possibilities to extend the model
or to calculate properties as well. Firstly, one can assume a stochastic starting value Y0

and discuss the consequences for the presented theorems. Secondly, one can study the
expected time to extinction and calculate it explicitly or at least find bounds. Further,
it might be interesting how it depends on the mean of the offspring distribution.
So, in the setting of a pandemic, we would like to answer the question: How long
does it take to defeat the pandemic given a certain reproduction number? Then,
given all necessary parameters, the duration and amount of contact reduction can be
optimized. Thirdly, one can incorporate the possibility of immigration. So, the new
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process would be defined as

Yn+1 :=
Yn�
i=1

Xn
i + Jn+1,

where Jn+1 denotes a random variable describing the number of imported cases in
generation n+1. Analogous to Section 4.1, one can calculate some basic properties of
this process like the mean, variance, covariance or the probability generating function.
As it reflects the risk of imported cases, this extension is also a resumption of Section
3.6.

For the country comparison in Section 5.4, it would also be interesting to study the
impact of test capacities and lockdown policies on the case fatality rate. Besides, in
Chapter 6, one can discuss the impact on other insurance products like life insurance
or health insurance. Moreover, there are a lot of economical implications due to
Covid-19 from other business sectors that can be further studied. However, there
are of course also a lot of scientific problems from other areas, for example biological
questions regarding immunity or asymptomatic transmission probability. Another
interesting topic is the dynamic of viral loads indoor and outdoor: What is the risk
of infection indoor dependent on the volume of the room and the amount of viral
particles submitted from an infected person? And how much time does a room need
to be virus-free again?
A topic that is completely left out in this thesis is vaccination. As there are many

questions that want to be answered, we only outline some short ideas. Firstly, one
can take a look at the vaccination protection dependent on the time since complete
vaccination. Secondly, one can calculate the optimal duration between the two
vaccination parts when vaccines are in short supply. That depends, among other
things, on future supply and on the vaccination protection after the first and after
the second vaccination part. Thirdly, as also vaccinated people can be infected, it is
possible to calculate all the epidemiological key figures described in this thesis for the
subset of vaccinated and unvaccinated people respectively. Fourthly, all topics above
can be analysed and compared for different vaccines or virus variants.
I hope that this thesis can be a starting point for further research and critical

analysis of models and underlying assumptions.
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Appendix: R Codes

In this chapter, you can find exemplary R codes, which were used to process the data,
implement the estimations, calculate the results and generate the plots. All codes
were written and run under R version 3.6.3. The following packages were used apart
from the standard packages:

❼ We used readxl and lubridate to read and process data.

❼ We used fitdistrplus and sn to work with distributions.

❼ We used extrafont, xtable, plotly and rworldmap to generate plots and
tables.

Estimation of the Serial Interval

1 l ibrary ( r eadx l )
2 l ibrary ( sn )
3

4 data <❂ read ex c e l ( ”data468 . x l sx ” , range = ”Q2 : Q470” )✩d i f f
5

6 # Maximum Like l i hood
7 start . sn <❂ c (❂1 ,7 ,3)
8 par . sn . mle <❂ cp2dp ( sn . mple ( y=data , cp=dp2cp ( start . sn , ”SN” ) )✩cp , ”SN” )
9

10 # Method o f Moments
11 m1 <❂ mean(data )
12 m2 <❂ var (data )
13 m3 <❂ mean( (data❂m1) ˆ3)
14

15 de l t a <❂ uniroot ( function (d) (4❂pi )/2✯ (d✯sqrt (2/pi ) ) ˆ3/(1❂2✯dˆ2/pi ) ˆ(3/2)❂m3/m2ˆ(3/
2) , i n t e r v a l=c (❂1 ,1) )✩ root

16 alpha <❂ de l t a/sqrt(1❂de l t a ˆ2)
17 omega <❂ uniroot ( function (w) wˆ2✯(1❂2✯de l t a ˆ2/pi )❂m2, i n t e r v a l=c (0 ,100) )✩ root
18 x s i <❂ uniroot ( function ( e ) e+omega✯de l t a✯sqrt (2/pi )❂m1, i n t e r v a l=c (❂10 ,10) )✩ root
19

20 # Basic Proper t i e s
21

22 sort (data ) [ length (data )✯ 0 . 0 2 5 ]
23 sort (data ) [ length (data )✯ 0 . 9 7 5 ]
24 qsn (c ( 0 . 0 2 5 , 0 . 9 7 5 ) , xs i , omega , alpha )
25 qsn (c ( 0 . 0 2 5 , 0 . 9 7 5 ) , par . sn . mle [ 1 ] , par . sn . mle [ 2 ] , par . sn . mle [ 3 ] )
26

27 par . sn . mle [1 ]+par . sn . mle [ 2 ] ✯par . sn . mle [ 3 ] /sqrt(1+par . sn . mle [ 3 ] ˆ 2 ) ✯sqrt (2/pi )
28 (par . sn . mle [ 2 ] ✯sqrt (1❂2/pi✯par . sn . mle [ 3 ] ˆ 2/(1+par . sn . mle [ 3 ] ˆ 2 ) ) ) ˆ2
29

30 # Discuss ion o f AGES Methodology
31
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32 qgamma(c ( 0 . 0 2 5 , 0 . 9 7 5 ) , 2 . 88 , scale=1.55)
33 qnorm(c ( 0 . 0 2 5 , 0 . 9 7 5 ) , 3 . 96 , sqrt ( 2 2 . 5 6 ) )
34 qlnorm(c ( 0 . 0 2 5 , 0 . 9 7 5 ) , log ( 4 . 7 )❂log (1+2.9ˆ2/4 . 7ˆ2 )/2 , sqrt ( log (1+2.9ˆ2/4 . 7ˆ2 ) ) )

Replication of the Official Reproduction Number

1 download . f i l e ( ” https : // i n f o . ge sundhe i t smin i s t e r ium . at/data/data . z ip ” ,
2 ”data . z ip ” , mode = ”wb” ) # downloaded on Jan 04 , 2021
3

4 download . f i l e ( ” https : //www. ages . at/ f i l e admin/AGES2015/Wissen❂Aktue l l/COVID19/R e f f .
csv ” ,

5 ”R ages . csv ” , mode = ”wb” ) # downloaded on Jan 04 , 2021
6

7 R. of f <❂ read . csv2 ( ”R ages . csv ” ) # O f f i c i a l Reproduction Number
8 posTest <❂ read . csv2 ( unz ( ”data . z ip ” , ”Epikurve . csv ” ) ) [ , 1 : 2 ]
9

10 n <❂ length ( posTest [ , 1 ] )
11 y <❂ posTest [ , 2 ]
12

13 a <❂ 1
14 b <❂ 5
15 tau <❂ 13
16 m <❂ 21
17

18 w0 <❂ dgamma( 1 :m, shape=2.88 , scale=1.55)
19 w <❂ w0/sum(w0)
20

21 d <❂ 1 : n✯NA
22 for ( i in 2 : n ) {
23 d [ i ] <❂ sum(w [ 1 :min( i ❂1,m) ] ✯ y [ ( i ❂1) : (max(1 , i❂m) ) ] )
24 }
25

26 R. rep <❂ R. rep . l q <❂ R. rep . uq <❂ 1 : n✯NA # Rep l i ca t i on o f the Reproduction Number &
Bounds

27 for ( t in 13 : n ) {
28 R. rep [ t ] <❂ ( a+sum( y [ ( t❂tau+1) : t ] ) ) / (1/b+sum(d [ ( t❂tau+1) : t ] ) )
29 R. rep . l q [ t ] <❂ qgamma( 0 . 025 , shape=(a+sum( y [ ( t❂tau+1) : t ] ) ) , scale=1/(1/b+sum(d [ ( t❂

tau+1) : t ] ) ) )
30 R. rep . uq [ t ] <❂ qgamma( 0 . 975 , shape=(a+sum( y [ ( t❂tau+1) : t ] ) ) , scale=1/(1/b+sum(d [ ( t❂

tau+1) : t ] ) ) )
31 }

Galton–Watson Process

1 ## Simulat ion
2

3 X0 <❂ 100
4 R0 <❂ c ( 0 . 9 , 1 , 1 . 1 )
5 r <❂ 0 .1
6 N <❂ 30 # Number o f S imula t ions
7 M<❂ 51 # Length o f S imula t ions
8

9 MC1 <❂ MC2 <❂ MC3 <❂ matrix (NA, ncol=N, nrow=M)
10 MC1[ 1 , ] <❂ MC2[ 1 , ] <❂ MC3[ 1 , ] <❂ X0
11 for (n in 1 :N) {
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12 for (m in 2 :M) {
13 MC1[m, n ] <❂ sum(rnbinom(MC1[m❂1,n ] , s i z e=r , mu=R0 [ 1 ] ) )
14 MC2[m, n ] <❂ sum(rnbinom(MC2[m❂1,n ] , s i z e=r , mu=R0 [ 2 ] ) )
15 MC3[m, n ] <❂ sum(rnbinom(MC3[m❂1,n ] , s i z e=r , mu=R0 [ 3 ] ) )
16 }
17 }
18

19 ## Ext inc t i on Pro b a b i l i t y f o r NB
20

21 l ibrary ( p l o t l y )
22

23 m1 <❂ 0 :50/10 # mean
24 m2 <❂ 0 :400/10 # variance
25

26 f <❂ function ( t , r , p ) ((1❂p)/(1❂t✯p) ) ˆt ( r )❂t
27 g <❂ function ( t , r , p ) ((1❂p)/(1❂t✯p) ) ˆ r
28

29 q <❂ matrix (NA, nrow=length (m1) , ncol=length (m2) )
30 for ( i in 2 : length (m1) ) {
31 for ( j in 2 : length (m2) ) {
32 a <❂ m1[ i ] ˆ2/ (m2[ j ]❂m1[ i ] )
33 p <❂ 1❂m1[ i ] /m2[ j ]
34 i f ( a>=0 & p>=0) {
35 count <❂ 0
36 x <❂ 0
37 while (abs ( f (x , a , p ) )>10ˆ❂7) {
38 x <❂ g (x , a , p )
39 count <❂ count+1
40 }
41 q [ i , j ] <❂ x
42 }
43 }
44 }
45

46 plot l y ( x=m1, y = m2, z = t (q) ) %>% add heatmap ( )

Case Fatality Rate

1 download . f i l e ( ” https : // i n f o . ge sundhe i t smin i s t e r ium . at/data/data . z ip ” ,
2 ”data . z ip ” , mode = ”wb” ) # downloaded on Jan , 4 th 2021
3

4 posTest <❂ read . csv2 ( unz ( ”data . z ip ” , ”Epikurve . csv ” ) ) [ , 1 : 2 ]
5 genesen .kum <❂ read . csv2 ( unz ( ”data . z ip ” , ”GenesenTimeline . csv ” ) ) [ , 1 : 2 ]
6 tod .kum <❂ read . csv2 ( unz ( ”data . z ip ” , ” Tode s f a e l l eT ime l i n e . csv ” ) ) [ , 1 : 2 ]
7

8 n <❂ min(c ( length ( posTest [ , 1 ] ) , length ( genesen .kum [ , 1 ] ) , length ( tod .kum [ , 1 ] ) ) )
9

10 M<❂ cbind ( posTest [ 1 : n , ] , cumsum( posTest [ 1 : n , 2 ] ) , genesen .kum [ 1 : n , 2 ] , tod .kum [ 1 : n
, 2 ] )

11 M<❂ cbind (M, M[ ,3 ]❂M[ ,4]❂M[ , 5 ] )
12 names(M) <❂ c ( ” date ” , ” posTest ” , ” posTest . kum” , ” genesen .kum” , ” tod .kum” , ”krank” )
13

14 M[ , 1 ] <❂ as . Date (M[ , 1 ] , ”%d.%m.%y” )
15

16 ## Estimation Approaches
17

18 l ibrary ( r eadx l )
19 p lat t fo rm <❂ read ex c e l ( ” . . / . . /Datenplatt form/Datenplatt form Antrag 37 #3. x l sx ” ,
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20 col types = c ( ”numeric ” , ” date ” , ” date ” , ” date ” , ” date ” , ”
date ” , ” date ” , ” t ext ” , ” date ” , ” date ” , ” t ext ” ) )

21 p lat t fo rm✩TodesDatum <❂ as . POSIXct ( p la t t fo rm✩TodesDatum , tz=”UTC” )
22

23 max( p la t t fo rm✩DatumGeheilt , na .rm=TRUE)
24

25 p lat t fo rm . d <❂ p lat t fo rm [ ! i s .na( p la t t fo rm✩TodesDatum) , ]
26

27 InfToDeath . rh <❂ matrix (NA, nrow=n , ncol=61)
28 for ( j in 1 8 : ( n❂1) ) {
29 p lat t fo rm . d1 <❂ p lat t fo rm . d [ as . Date ( p la t t fo rm . d✩TodesDatum)<=as . Date ( ”2020❂02❂25” )

+j , ]
30

31 InfToDeath <❂ as .numeric (na . omit ( ( p la t t fo rm . d1✩TodesDatum❂p lat t fo rm . d1✩
DiagnoseDatum )/60/60/24) )

32 InfToDeath . ah <❂ 0 :60✯NA
33 for ( i in 0 : 60 ) {
34 InfToDeath . ah [ i +1] <❂ sum( InfToDeath==i )
35 }
36 InfToDeath . rh [ j +1 ,] <❂ InfToDeath . ah/sum( InfToDeath . ah )
37 print ( length ( p la t t fo rm . d1✩TodesDatum)❂sum( InfToDeath . ah ) ) #exc luded
38 }
39 plot ( 0 : 6 0 , InfToDeath . rh [ n , ] , type=”h” )
40

41 p lat t fo rm . r <❂ p lat t fo rm [ ! i s .na( p la t t fo rm✩DatumGeheilt ) , ]
42 InfToRecover <❂ as .numeric (na . omit ( ( p la t t fo rm . r✩DatumGeheilt❂p lat t fo rm . r✩

DiagnoseDatum )/60/60/24) )
43 InfToRecover . ah <❂ 0 :60✯NA
44 for ( i in 0 : 60 ) {
45 InfToRecover . ah [ i +1] <❂ sum( InfToRecover==i )
46 }
47 InfToRecover . rh <❂ InfToRecover . ah/sum( InfToRecover . ah )
48 plot ( 0 : 6 0 , InfToRecover . rh , type=”h” )
49 length ( p la t t fo rm . r✩DatumGeheilt )❂sum( InfToRecover . ah ) #exc luded
50

51 # Di f f e r en t SD
52 sd ( InfToDeath )
53 sd ( InfToRecover )
54

55 InfToRecover [ InfToRecover >50]
56

57 p lat t fo rm✩DatumGeheilt [max( p la t t fo rm✩DatumGeheilt , na .rm=TRUE) ]
58

59 # Bounds
60 lowerbound <❂ M✩tod .kum/M✩posTest . kum
61 upperbound <❂ (M✩tod .kum+M✩krank )/M✩posTest . kum
62

63 # Estimate 1
64 e s t1 <❂ M✩tod .kum/ (M✩genesen .kum+M✩tod .kum)
65

66 # Estimate 2
67 Y <❂ 1 : n✯NA
68 for ( i in 18 : n) {
69 pk <❂ cumsum( InfToDeath . rh [ i , ] )
70 Y[ i ] <❂ sum(M✩posTest [ 1 : i ] ✯ c ( rep (1 ,max(0 , i ❂61) ) , pk [min( i , 6 1 ) : 1 ] ) )
71 }
72 e s t2 <❂ M✩tod .kum/Y
73

74 ## Course o f the Pandemic
75

76 CFR. course1 <❂ CFR. course2 <❂ CFR. course3 <❂ 1 : n✯NA
77 for ( j in 1 8 : ( n❂1) ) {
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78 plat t fo rm1 <❂ p lat t fo rm [ as . Date ( p la t t fo rm✩DiagnoseDatum )<=as . Date ( ”2020❂03❂01” )+j
& as . Date ( p la t t fo rm✩DiagnoseDatum )>as . Date ( ”2020❂03❂01” )+j ❂7 ,]

79 CFR. course1 [ j ] <❂ sum( ! i s .na( p la t t fo rm1✩TodesDatum) )/sum( ! i s .na( p la t t fo rm1✩
DatumGeheilt ) | ! i s .na( p la t t fo rm1✩TodesDatum) )

80

81 plat t fo rm1 <❂ p lat t fo rm [ ( as . Date ( p la t t fo rm✩DatumGeheilt )<=as . Date ( ”2020❂03❂01” )+j
| as . Date ( p la t t fo rm✩TodesDatum)<=as . Date ( ”2020❂03❂01” )+j ) & (as . Date ( p la t t fo rm
✩DatumGeheilt )>as . Date ( ”2020❂03❂01” )+j❂7 | as . Date ( p la t t fo rm✩TodesDatum)>as .
Date ( ”2020❂03❂01” )+j❂7) , ]

82 CFR. course2 [ j ] <❂ sum( ! i s .na( p la t t fo rm1✩TodesDatum) )/sum( ! i s .na( p la t t fo rm1✩
DatumGeheilt ) | ! i s .na( p la t t fo rm1✩TodesDatum) )

83

84 plat t fo rm1 <❂ p lat t fo rm [ ( as . Date ( p la t t fo rm✩DatumGeheilt )>=as . Date ( ”2020❂03❂01” )+j
| as . Date ( p la t t fo rm✩TodesDatum)>=as . Date ( ”2020❂03❂01” )+j ) & as . Date (

p la t t fo rm✩DiagnoseDatum )<=as . Date ( ”2020❂03❂01” )+j , ]
85 CFR. course3 [ j ] <❂ sum( ! i s .na( p la t t fo rm1✩TodesDatum) )/sum( ! i s .na( p la t t fo rm1✩

DatumGeheilt ) | ! i s .na( p la t t fo rm1✩TodesDatum) )
86 }
87

88 ## Sex and Age
89

90 t . t e s t (as .numeric ( ! i s .na( p la t t fo rm .m1✩TodesDatum) ) , as .numeric ( ! i s .na( p la t t fo rm . f 1✩
TodesDatum) ) , a l t e r n a t i v e=” g r e a t e r ” )

91

92 p lat t fo rm . x <❂ p lat t fo rm [ ! i s .na( p la t t fo rm✩TodesDatum) | ! i s .na( p la t t fo rm✩
DatumGeheilt ) , ]

93

94 CFR. age <❂ CFR. age .m <❂ CFR. age . f <❂ 1 :100✯NA
95 for ( i in 1 : 100 ) {
96 CFR. age [ i ] <❂ mean(as .numeric ( ! i s .na( p la t t fo rm . x✩TodesDatum [ p la t t fo rm . x✩Alter==i ] )

) )
97 CFR. age .m[ i ] <❂ mean(as .numeric ( ! i s .na( p la t t fo rm . x✩TodesDatum [ p la t t fo rm . x✩Alte r==i

& p lat t fo rm . x✩Geschl==”M” ] ) ) )
98 CFR. age . f [ i ] <❂ mean(as .numeric ( ! i s .na( p la t t fo rm . x✩TodesDatum [ p la t t fo rm . x✩Alte r==i

& p lat t fo rm . x✩Geschl==”W” ] ) ) )
99 }

100

101 a l t e r s s c h n i t t <❂ 1 : n✯NA
102 for ( i in 25 : n) {
103 a l t e r s s c h n i t t [ i ] <❂ mean( p la t t fo rm . d✩Alter [ as . Date ( p la t t fo rm . d✩TodesDatum)<=as .

Date ( ”2020❂03❂01” )+i & as . Date ( p la t t fo rm . d✩TodesDatum)>as . Date ( ”2020❂03❂01” )+i
❂14])

104 }

Mortality Shock

1 l ibrary ( r eadx l )
2 l ibrary ( l ub r i d a t e )
3

4 data <❂ read ex c e l ( ” s t e r b l i c h k e i t . x l sx ” , col names = FALSE, sk ip = 4)
5 names(data ) <❂ c ( ”age” , ”q m” , ”q f ” , ”q” , ”n m” , ”n f ” , ”n” )
6

7 p lat t fo rm <❂ read ex c e l ( ” . . / . . /Datenplatt form/2021 02 01 Antrag 37 #4. x l sx ” ,
8 col types = c ( ” t ex t ” , ” date ” , ” date ” , ” date ” , ” date ” , ” date

” , ” date ” , ” date ” , ” date ” , ”numeric ” , ” date ” ) )
9

10 data✩ c i m <❂ data✩ c i f <❂ data✩cd m <❂ data✩cd f <❂ data✩age✯NA
11 for ( i in 1 : length (data✩age ) ) {
12 data✩ c i m[ i ] <❂ sum( p la t t fo rm✩Alter==data✩age [ i ] & p lat t fo rm✩Geschl==”M” )
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13 data✩ c i f [ i ] <❂ sum( p la t t fo rm✩Alter==data✩age [ i ] & p lat t fo rm✩Geschl==”W”)
14 data✩cd m[ i ] <❂ sum( p la t t fo rm✩Alter==data✩age [ i ] & p lat t fo rm✩Geschl==”M” & ! i s .na(

p la t t fo rm✩TodesDatum) )
15 data✩cd f [ i ] <❂ sum( p la t t fo rm✩Alter==data✩age [ i ] & p lat t fo rm✩Geschl==”W” & ! i s .na(

p la t t fo rm✩TodesDatum) )
16 }
17 data✩ c i <❂ data✩ c i m+data✩ c i f
18 data✩cd <❂ data✩cd m+data✩cd f
19

20 ## Estimation o f Gompertz
21

22 qx . gompertz <❂ function (x , g , h , lambda=0) {
23 1❂exp(❂lambda+h✯exp( g✯x )✯(1❂exp( g ) )/g )
24 }
25

26 mux. gompertz <❂ function (x , g , h ) {
27 h✯exp( g✯x )
28 }
29

30 mux2 . gompertz <❂ function (x , g , h ) {
31 log (h)+g✯x
32 }
33

34 o l s <❂ function ( gh ) {
35 sum( (data✩q [35:99+1]❂qx . gompertz ( 35 : 99 , gh [ 1 ] , gh [ 2 ] ) ) ˆ2)
36 }
37 gh . opt <❂ optim(c ( 0 . 1 , 0 . 0 0 001 ) , o l s )✩par
38

39 mle . gompertz . poisson . f <❂ function (par , lambda=0.0000) { #c ( lambda , g , h ) male
:10ˆ❂5 , female :2✯10ˆ❂5

40 ❂sum(data✩n f [ 35 :99+1 ]✯(❂1+exp(❂lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/
par [ 1 ] )+data✩q f [ 35 : 99+1 ]✯log (data✩n f [ 35 :99+1 ]✯(1❂exp((❂ lambda❂par [ 2 ] ✯exp(par
[ 1 ] ✯35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/par [ 1 ] ) ) ) ) ) )

41 }
42 mle . gompertz . binom . f <❂ function (par , lambda=0.000) { #c ( lambda , g , h ) male :10ˆ❂5 ,

female :2✯10ˆ❂5
43 ❂sum(data✩n f [ 35 :99+1 ]✯((1❂data✩q f [ 3 5 : 99+1 ] )✯(❂lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯35 : 99 )✯ (

exp(par [ 1 ] ) ❂1)/par [ 1 ] )+data✩q f [ 35 :99+1 ]✯log(1❂exp((❂ lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯
35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/par [ 1 ] ) ) ) ) )

44 }
45 mle . gompertz . poisson .m <❂ function (par , lambda=0.0000) { #c ( lambda , g , h ) male

:10ˆ❂5 , female :2✯10ˆ❂5
46 ❂sum(data✩n m[35 :99+1 ]✯(❂1+exp(❂lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/

par [ 1 ] )+data✩q m[35 :99+1 ]✯log (data✩n m[35 :99+1 ]✯(1❂exp((❂ lambda❂par [ 2 ] ✯exp(par
[ 1 ] ✯35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/par [ 1 ] ) ) ) ) ) )

47 }
48 mle . gompertz . binom .m <❂ function (par , lambda=0.000) { #c ( lambda , g , h ) male :10ˆ❂5 ,

female :2✯10ˆ❂5
49 ❂sum(data✩n m[35 :99+1 ]✯((1❂data✩q m[35 : 99+1 ] )✯(❂lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯35 : 99 )✯ (

exp(par [ 1 ] ) ❂1)/par [ 1 ] )+data✩q m[35 :99+1 ]✯log(1❂exp((❂ lambda❂par [ 2 ] ✯exp(par [ 1 ] ✯
35 : 99 )✯ (exp(par [ 1 ] ) ❂1)/par [ 1 ] ) ) ) ) )

50 }
51

52 gh .m <❂ optim(c ( 0 . 1 , 0 . 0 0 001 ) , mle . gompertz . poisson .m)✩par
53 gh . f <❂ optim(c ( 0 . 1 , 0 . 0 0 001 ) , mle . gompertz . poisson . f )✩par
54

55 ## Par a l l e l & Constant Shock
56

57 v <❂ 1
58 x0 <❂ 99
59 # daphie4eva
60

61 ## Morta l i t y Risk❂ad jus t ed Age & Excess Factor
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62

63 t <❂ as .numeric (as . Date ( ”2021❂01❂29” )❂as . Date ( ”2020❂02❂28” ) )
64

65 mux. f <❂ ❂log(1❂data✩q f ) [ 0 : 99+1 ]
66 mux.m <❂ ❂log(1❂data✩q m) [0 : 99+1 ]
67 mux. f .C <❂ mux.m.C <❂ 0 :99✯NA
68 for ( i in 0:99+1) {
69 mux. f .C[ i ] <❂ uniroot ( function ( x ) (1❂exp(❂t/365✯ ( x+mux . f [ i ] ) ) )✯x/ ( x+mux . f [ i ] )❂data

✩cd f [ i ] /data✩n f [ i ] , c ( 0 , 1 ) , t o l =10ˆ❂12)✩ root
70 mux.m.C[ i ] <❂ uniroot ( function ( x ) (1❂exp(❂t/365✯ ( x+mux .m[ i ] ) ) )✯x/ ( x+mux .m[ i ] )❂data

✩cd m[ i ] /data✩n m[ i ] , c ( 0 , 1 ) , t o l =10ˆ❂12)✩ root
71 }
72

73 adj . age . f <❂ adj . age .m <❂ 0 :99✯NA
74 for ( i in 0:99+1) {
75 adj . age . f [ i ] <❂ (mux . f [ i ]+mux . f .C[ i ]❂mux. f [ i ] ) / (mux . f [ i +1]❂mux. f [ i ] )
76 adj . age .m[ i ] <❂ (mux .m[ i ]+mux .m.C[ i ]❂mux.m[ i ] ) / (mux .m[ i +1]❂mux.m[ i ] )
77 }
78

79 ux .m <❂ log ( (mux .m+mux .m.C)/mux.m)
80 ux . f <❂ log ( (mux . f+mux . f .C)/mux. f )
81

82 ## Shock at I n f e c t i on
83

84 mux. t i l d e . f <❂ mux. f+mux . f .C
85 mux. t i l d e .m <❂ mux.m+mux .m.C
86 mux. f . I <❂ mux.m. I <❂ 0 :99✯NA
87 for ( i in 0:99+1) {
88 mux. f . I [ i ] <❂ uniroot ( function ( x ) (1❂exp(❂t/365✯ ( x+mux . t i l d e . f [ i ] ) ) )✯x/ ( x+mux .

t i l d e . f [ i ] )❂data✩cd f [ i ] /data✩ c i f [ i ] , c ( 0 , 1 ) , t o l =10ˆ❂12)✩ root
89 mux.m. I [ i ] <❂ uniroot ( function ( x ) (1❂exp(❂t/365✯ ( x+mux . t i l d e .m[ i ] ) ) )✯x/ ( x+mux .

t i l d e .m[ i ] )❂data✩cd m[ i ] /data✩ c i m[ i ] , c ( 0 , 1 ) , t o l =10ˆ❂12)✩ root
90 }
91

92 adj . age . I . f <❂ adj . age . I .m <❂ 0 :99✯NA
93 for ( i in 0:99+1) {
94 adj . age . I . f [ i ] <❂ which .min(abs (mux . f . I [ i ]❂mux. t i l d e . f [ i : 1 0 0 ] ) )❂1
95 adj . age . I .m[ i ] <❂ which .min(abs (mux .m. I [ i ]❂mux. t i l d e .m[ i : 1 0 0 ] ) )❂1
96 }
97

98 ux . I .m <❂ log ( (mux . t i l d e .m+mux .m. I )/mux. t i l d e .m)
99 ux . I . f <❂ log ( (mux . t i l d e . f+mux . f . I )/mux. t i l d e . f )

100

101 ## Li f e Expectancy
102

103 D<❂ matrix (NA, ncol=100 , nrow=366) #d {x , t } Tote pro Tag pro Al ter
104

105 p lat t fo rm . d <❂ p lat t fo rm [ ! i s .na( p la t t fo rm✩TodesDatum) , ]
106

107 for ( i in 1 : 366 ) {
108 p lat t fo rm . day <❂ p lat t fo rm . d [ as . Date ( p la t t fo rm . d✩TodesDatum)==as . Date ( ”2020❂03❂01”

)+i ❂1 ,]
109 for ( j in 1 : 100 ) {
110 D[ i , j ] <❂ sum( p la t t fo rm . day✩Alter==data✩age [ j ] ) # & p l a t t f o rm✩Geschl==”M”
111 }
112 }
113

114 e <❂ 0 :99✯NA
115 for ( i in 0 : 99 ) {
116 kpx <❂ 1 :99✯0
117 for ( j in 1:(99❂ i ) ) {
118 kpx [ j ] <❂ prod(1❂data✩q [ i : ( i+j❂1)+1])
119 }
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7 Open Questions

120 e [ i +1] <❂ sum( kpx )
121 }
122 L <❂ as . vector (D%✯%e )
123

124 ## Annuity Prices
125

126 tpx <❂ function ( t , x , g , h , u ) {
127 exp(❂h✯exp(u)✯exp( g✯x )✯ (exp( g✯t )❂1)/g )
128 }
129

130 AP. ps <❂ function (u , r , g , h ) {
131 ap <❂ 1 :100✯NA
132 for ( x in 1 : 99 ) {
133 ap [ x ] <❂ sum( (1/(1+r ) ) ˆ(1:(100❂x ) ) ✯ tpx (1:(100❂x ) ,x , g , h , u ) )
134 }
135 ap
136 }
137

138 AP. real <❂ function ( r ,q) {
139 ap <❂ 1 :100✯NA
140 for ( x in 1 : 99 ) {
141 ap [ x ] <❂ sum( (1/(1+r ) ) ˆ(1:(100❂x ) ) ✯ cumprod(1❂q [ x : 9 9 ] ) )
142 }
143 ap
144 }
145

146 qx .C. f <❂ 1❂exp(❂(mux . t i l d e . f ) )
147 qx .C.m <❂ 1❂exp(❂(mux . t i l d e .m) )
148

149 r . ps <❂ matrix (NA, ncol=3, nrow=4)
150 for ( i in 1 : 4 ) {
151 for ( j in 1 : 3 ) {
152 r . ps [ i , j ] <❂ uniroot ( function ( x ) AP. ps ( 0 , 0 . 0 3 , gh . f [ 1 ] , gh . f [ 2 ] ) [ 20✯ ( j +1)]❂AP. ps

( 0 . 2✯ ( i ❂1) ,x , gh . f [ 1 ] , gh . f [ 2 ] ) [ 20✯ ( j +1) ] , c (❂1 ,1) , t o l =10ˆ❂10)✩ root
153 }
154 }
155 r . ps✯100
156

157 r . cov id . f <❂ r . cov id .m <❂ 1 :5✯NA
158 for ( i in 1 : 5 ) {
159 r . cov id . f [ i ] <❂ uniroot ( function ( x ) AP. real ( 0 . 0 3 ,data✩q f ) [30+10✯ i ]❂AP. real (x , qx .C

. f ) [30+10✯ i ] , c (❂1 ,1) , t o l =10ˆ❂10)✩ root
160 r . cov id .m[ i ] <❂ uniroot ( function ( x ) AP. real ( 0 . 0 3 ,data✩q m) [30+10✯ i ]❂AP. real (x , qx .C

.m) [30+10✯ i ] , c (❂1 ,1) , t o l =10ˆ❂10)✩ root
161 }
162 r . cov id . f✯100
163 r . cov id .m✯100
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Conventions & Abbreviations

Conventions

❼ N = {0, 1, 2, . . . } are the natural numbers.

❼ N∗ = N\{0} are the natural numbers without 0.

❼ The empty sum is 0.

❼ The empty product is 1.

❼ 00 = 1

❼ log(·) denotes the natural logarithm (with basis e).

❼ The subset relation “⊂” includes the equality of both sets.
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89





Bibliography

[1] AGES, Dashboard COVID19, https://info.gesundheitsministerium.at/

data/data.zip, January 2021. 23

[2] Gerold Alsmeyer, Part I, The simple Galton-Watson process: Classical
approach, Uni Münster, https://www.uni-muenster.de/Stochastik/lehre/
WS1011/SpezielleStochastischeProzesse/Ch_1.pdf, January 2011. 45, 46

[3] Samir K. Ashour and Mahmood A. Abdel-hameed, Approximate skew normal
distribution, Journal of Advanced Research 1 (2010), no. 4, 341–350. 8

[4] Austrian National Public Health Institute (Gesundheit Österreich GmbH),
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