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a b s t r a c t

Linear mixed models (LMMs) are suitable for clustered data and are common in
biometrics, medicine, survey statistics, and many other fields. In those applications,
it is essential to carry out valid inference after selecting a subset of the available
variables. We construct confidence sets for the fixed effects in Gaussian LMMs that
are based on Lasso-type estimators. Aside from providing confidence regions, this
also allows for quantification of the joint uncertainty of both variable selection and
parameter estimation in the procedure. To show that the resulting confidence sets for
the fixed effects are uniformly valid over the parameter spaces of both the regression
coefficients and the covariance parameters, we also prove the novel result on uniform
Cramér consistency of the restricted maximum likelihood (REML) estimators of the
covariance parameters. The superiority of the constructed confidence sets to naïve post-
selection procedures is validated in simulations and illustrated with a study of the
acid-neutralization capacity of lakes in the United States.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Linear mixed models (LMMs) are regression models that incorporate dependency structures that occur in clustered
ata. They are widely applied in many empirical sciences ranging from genetics [11] to survey statistics [28] and many
ore. Comprehensive reviews can be found in [8,29]. The standard LMM can be written as

yi = Xiβ0 + Zivi + εi, i ∈ {1, . . . ,m}, εi ∼ Nni{0ni ,Ω i(θ0)}, vi ∼ Nq{0q,Ψ (θ0)}, (1)

with observations yi ∈ Rni , known fixed covariates Xi ∈ Rni×p, Zi ∈ Rni×q, and vi ∈ Rq and εi ∈ Rni being independent
random variables and each independently distributed for all clusters i ∈ {1, . . . ,m}. The regression coefficient vector
β0 is referred to as fixed effects, whereas vi are the random effects. While all observations share the same regression
coefficients in the fixed effects, only ni observations in each cluster share the same realization of vi in the random effects.
The latter can be associated, e.g., with subject-specific effects in medical trials or group effects in longitudinal studies.
The regression coefficients β0 ∈ Rp and covariance parameters θ0 ∈ Θ ⊂ Rr

>0 are unknown and have to be estimated.
Consistency of parameter estimators for β0 and θ0 is ensured if the number of clusters m tends to infinity, whereas the
sample size per cluster ni may stay bounded or grow as well [8, Section 3.6.2].
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In practice, often both model selection and estimation need to be performed. Naïve two-stage methods for inference
n regression models consist of a variable selection step, which is based, e.g., on an information criterion, and subsequent
stimation of the parameters and inference in the obtained model in a second step. However, this naïve inferential theory
gnores the first model selection step and does not account for the additional uncertainty introduced by the selection
rocedure. This issue has been laid out in detail in [30]. In recent years, different approaches to this problem have
merged in the literature. The PoSi or post-selection inference framework of [1] provides a general procedure to construct
onfidence regions for a best-approximation parameter that depends on the selected model. In that regard, a similar
erspective was taken by [18] who also aim to cover this surrogate quantity rather than a ‘true’ parameter and introduce
he idea of selective inference with a focus on the Lasso. This selective inference approach, where the coverage holds
onditionally on the selected model, is followed in [34] specifically for LMMs. Following a similar paradigm in the sense
f conditional inference, [4] suggest an approach based on the Akaike Information Criterion (AIC) which is carried out for
MMs in [5]. Contrasting this, a more classical perspective is taken in the general debiasing approach of [39] and related
rticles, e.g., [21] for LMMs, where the target is (a sub-vector of) the true parameter and the coverage probability holds
nconditionally. We follow this classical approach in that we also consider unconditional inference with the aim to cover
he true parameter. All the methods listed above are motivated from a high-dimensional perspective. In our work, we
ocus on a low-dimensional setting, that is, when the number of variables is smaller than the number of observations.

In this work, we employ the least absolute shrinkage and selection operator (Lasso) [37], which offers a single step
pproach to simultaneous variable selection and estimation for the regression coefficients. Although in the context of the
inear mixed models, the Lasso can be applied to the selection of both fixed and random effects [2,13,25,27], we consider
election and inference for β0 only. Selection of covariates β0 is fundamental to interpreting the association between the
et of covariates and the response, which is of high relevance in most practical problems.
The usefulness and wide application of Lasso sparked interest in how to construct confidence intervals based on

he resulting Lasso estimators. Not too surprisingly, the model selection step inherent to the Lasso estimator leads to
hallenges with respect to inference. For the Lasso and related estimators, this manifests in the general difficulty that
ts finite sample and, in an appropriate framework, also the asymptotic distribution depends on the unknown coefficient
arameters β0 in an intricate manner [32]. This is problematic since honest confidence sets in the sense of [20] have to
ttain nominal coverage over the whole parameter space, which has been investigated in detail for the Lasso in the case
f orthogonal covariates in [33]. For a general low-dimensional framework, where the number of parameters is smaller
han the sample size, [9] have obtained exact and uniformly valid confidence sets. All these references consider ordinary
inear models and do not cover the case of linear mixed models.

The contribution of the present article to the LMM framework is two-fold. First, we show that the covariance parameter
0 can be estimated Cramér-consistently in a uniform manner. Second, we construct confidence regions for β0 based on
he Lasso which are uniformly valid over the space of coefficient and covariance parameters. Unlike an ordinary linear
odel, an LMM requires the estimation of covariance parameters θ0 in addition to the coefficient parameters β0. The
ey idea is to estimate the former with restricted maximum likelihood (REML) as this procedure allows to separate the
stimation of θ0 and β0. A novel uniform consistency result for the REML estimators is established, extending the previous
esult of [41]. This new result is crucial to non-trivially extend the reasoning of [9] to construct confidence sets for β0
hat hold the coverage not only uniformly over the space of coefficient parameters but also over the space of covariance
arameters. Thus, researchers are provided with a method that allows valid inference based on the Lasso in LMMs. Our
nalysis is provided within a low-dimensional framework where p < n.
The remainder of the article is structured as follows. First, we specify the setting and regularity conditions and state

he estimation procedure for the fixed effects β0 in Section 2. Next, in Section 3, the estimation of covariance parameters
0 is discussed and its uniform consistency is established. In Section 4, the confidence regions for β0 based on the Lasso
re presented. Their usefulness and limitations, and, in particular, their superiority to naïve approaches is demonstrated
n a simulation study in Section 5. A real data example is provided in Section 6. The article concludes with a discussion
n Section 7.

Throughout the remainder of the article, we use the following notation. For a matrix A, tr(A) and rk(A) denote
the trace and rank of A, respectively. By ηi(A), we refer to the ith eigenvalue of A, sorted in descending order. The
symbol ∥A∥ denotes the Frobenius norm, i.e., ∥A∥

2
= tr(A⊤A). Finally, for Ai ∈ Rni×mi , blockdiag(Ai)ni=1 denotes the

(
∑n

i=1 ni ×
∑n

i=1 mi)-dimensional block-diagonal matrix with Ai along the diagonal block and zeros elsewhere.

2. Setting and regularity conditions

Consider a linear model with n ∈ N dependent observations and model equation

y = Xβ0 + ϵ, ϵ ∼ Nn
{
0n,V(θ0)

}
. (2)

The covariance matrix V(·) ∈ Rn×n models the dependency amongst the observations. The vectors β0 ∈ Rp as well as
θ ∈ Θ ⊂ Rr are unknown and remain to be estimated. Model (1) can be represented as (2) with n =

∑m n ,
0 >0 i=1 i

2
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y = (yn1 , . . . , ynm )
⊤, X = (X⊤

1 , . . . ,X⊤
m)

⊤ and V(θ0) = blockdiag{ZiΨ (θ0)Z⊤

i + Ω i(θ0)}mi=1. For given tuning parameters
1, . . . , λp and a REML estimator θ̂ for θ0 (defined by (5) in Section 3), consider the Lasso estimator

β̂L = argmin
β∈Rp

⎧⎨⎩V(θ̂)−1/2 (y − Xβ)

2 + 2
p∑

j=1

λj
⏐⏐βj
⏐⏐⎫⎬⎭ (3)

or β0. If θ̂ in (3) were replaced by the true parameter θ0, the objective function would reduce to the standard
1-penalization of the Lasso. Note that β̂L simultaneously performs estimation and variable selection.
This paper aims to provide confidence regions based on β̂L for the fixed effects β0, which hold their coverage

robability uniformly over the space of coefficient and covariance parameters. Formally, we find a set M ⊂ Rp such
hat infβ0,θ0 Prβ0,θ0{

√
n(β̂L − β0) ∈ M} ≈ 1 − α for some nominal level α ∈ (0, 1), which is attained uniformly over

β0 ∈ Rp and θ0 ∈ Θ . We borrow and adapt the notation of [9]. The key idea of that article is the following: Instead of
treating β̂L with its intractable distribution directly, one considers limiting versions of the objective function in (3), in
which each component of β0 tends to infinity in absolute value. This process gives 2p minimizers. One can choose M such
hat it contains each of these minimizers with a probability of at least 1 − α. It can be shown that this procedure does
ield exact and uniformly valid confidence sets for ordinary linear models. For the model in (2) and optimization problem
n (3), this gives the 2p minimizers

ûd = argmin
u∈Rp

u⊤Ĉu − 2u⊤ŵ + 2u⊤Λd = Ĉ−1
(
ŵ − Λd

)
, (4)

here Ĉ = n−1X⊤V(θ̂)−1X, ŵ = n−1/2X⊤V(θ̂)−1(y − Xβ0), Λ = n−1/2diag(λ1, . . . , λp) and d ∈ {−1, 1}p. The latter plays
he role of representing the signs of the coefficients. The contribution of the current paper is to prove that a similar
dea can be used for LMMs, for which the main challenge is to show that the uniform coverage carries over to the
ovariance parameters and that the estimation of these parameters does not interfere with the required uniformity over
he coefficient parameters.

Subsequently, we will denote by ud, C and w the counterparts of ûd, Ĉ and ŵ, with θ̂ replaced by θ0. As the distribution
f ûd is not analytically available, the proofs use that ud ∼ Np(−C−1Λd, C−1). We only consider confidence sets of
llipsoidal shape, that is, M will be set to E(Ĉ, t) = {z ∈ Rp

| z⊤Ĉz ≤ t}, t > 0. Their specific form is used in Lemma 3 to
stablish the minimal coverage probability over θ0.
The following regularity conditions on the model (2) are imposed.

(A) For a constant c ∈ (1, ∞), θ0 ∈ Θ =
{
θ ∈ Rr

>0 | max(θ)/min(θ) ≤ c
}
.

(B) V(θ0) =
∑r

k=1 θ0,kHk with Hk, k ∈ {1, . . . , r − 1}, positive semi-definite and Hr positive definite. Further, m =

mink∈{1,...,r} rk(Hk) → ∞.
(C) rk(X) = p < n and for all θ0 ∈ Θ: C = n−1X⊤V(θ0)−1X → C̃ pointwise for finite and positive definite C̃ as n → ∞.
(D) For constants 0 < ω ≤ ω < ∞ it holds that ω ≤ tr{(

∑r
l=1 Hl)−1Hk}/rk(Hk) ≤ ω and

∑p
j=1 ηj{(

∑r
l=1 Hl)−1Hk} = O(1),

k ∈ {1, . . . , r}.
(E) For P(θ, a) = V(θ)−1

− aV(θ)−1X
{
X⊤V(θ)−1X

}−1X⊤V(θ)−1
∈ Rn×n, a ≥ 1 and K ∈ Rr×r with entries (K)ij =

tr{P(1r , c)HiP(1r , c)Hj}/
√
rk(Hi)rk(Hj) it holds that ηr (K) ≥ b, for b > 0 constant.

First, (A) imposes restrictions on θ0. It encompasses the conditions of positive covariance parameters and non-
egenerativity as introduced by [14]. The condition max(θ)/min(θ) ≤ c allows for all components of θ0 to be either

arbitrarily small or large, but not both. Condition (B) ensures that the covariance matrix is not singular and that θ0 can be
estimated consistently. Next, (C) corresponds to [8, Eq. (3.47)] and ensures that β0 can be estimated consistently, which is
the key advantage in the low-dimensional setting, that is for p < n. An extension to the case n ≤ p is discussed in Section 7.
Furthermore, (D) ensures that the normalizing sequence in Theorem 1 bounds the REML estimator for θ0 uniformly. Finally,
(E) relates to the estimator of the covariance parameters θ0. It encompasses the condition that Hk ∈ Rn×n, k ∈ {1, . . . , r},
are linearly independent, which corresponds to the condition of identifiability of covariance parameters from [14]. Since
all involved matrices are known, the last two conditions are typically easy to verify, as the next two examples show.

Example 1. Consider a linear mixed model (1) with Xi = Zi = 1ni , Ψ (θ0) = σ 2
v and Ω i(θ0) = σ 2

e Ini , so that V(θ0) =

σ 2
v H1 + σ 2

e H2, with H1 = blockdiag(1n11
⊤
n1 , . . . , 1nm1⊤

nm ), m > 1, H2 = In and θ0 = (σ 2
v , σ 2

e )
⊤. Here m = mink∈{1,...,r} rk(Hk)

translates to the number of clusters in the LMM. It is well known that the ratio of the entries in θ0 is influential for its
estimation, see [16]. In this LMM the intraclass correlation ratio

γi =
σ 2

v

σ 2
v + σ 2

e /ni

measures the class variability relative to the total variability. If γi ≈ 0, σ 2
v cannot be estimated reliably. Condition (A)

ranslates into a positive lower bound for γ . Further, H ≥ 0 and H > 0, which corresponds to condition (B). Condition (C)
i 1 2

3
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is trivially satisfied. Next, (D) and (E) can be verified directly, since all quantities involved are known. For, e.g., c = 1,
n1 = · · · = nm = 2, this gives ω = 1/3 and ω = 2/3 and

K =
1
9

(
4m−1

m

√
2m−1

m√
2m−1

m
10m−1

2m

)
,

or which b = 1/5. Note that condition (D) includes cases in which ni is bounded as well as cases where ni is unbounded,
∈ {1, . . . ,m}. This has implications at which rate θ0 and in turn β0 are estimated. For instance, the rate in which σ 2

v

s estimated via REML is governed by m, rather than the total number of observations n =
∑m

i=1 ni. Clearly, if all ni,
∈ {1, . . . ,m} are bounded, m = O(n). Since (D) holds for both asymptotic scenarios and for balanced (n1 = · · · = nm) as
ell as unbalanced (ni ̸= nj) LMMs, the condition is sufficiently general for most applications.

xample 2. Eq. (2) allows for more general covariance structures than (1) in which the observations are not necessarily
lustered as independent blocks. Assume a model with two random effects v ∈ Rm and ṽ ∈ Rm̃

y = Xβ0 + Zv + Z̃ṽ + ε,

here Z = blockdiag(1ni )
m
i=1, Z̃ = blockdiag(1ñj )

m̃
j=1. Condition (B) is fulfilled if H1 = ZZ⊤ and H2 = Z̃Z̃⊤. However, if

= m̃ and ni = ñi for all i ∈ {1, . . . ,m}, (E) is not satisfied. A variation of such a model is discussed in Section 6.

. Uniform Cramér consistency of the covariance parameters

The key idea in deriving uniformly valid confidence sets in LMMs is that the estimation of β0 and θ0 can be separated.
he virtue of restricted maximum likelihood (REML) lies in estimating the covariance parameters, while accounting for
he loss of degrees of freedom from estimation of β0 [36]. The REML estimator for θ0 is a maximizer of

ℓR(θ) = −
1
2
ln |V(θ)| −

1
2
ln |X⊤V(θ)−1X| −

1
2
y⊤P(θ)y, (5)

where P(θ) = P(θ, 1), as defined in (E) [17]. By construction, ℓR is constant with respect to β0 as P(θ)Xβ0 = 0n.
As interest lies in uniformly valid inference, uniform consistency of the REML estimator for θ0 is required. Consistency

of general maximum likelihood estimators (MLE) was first shown by [40], and uniform MLE consistency by [24]. Both
required the parameter space to be compact, as well as independently drawn observations. A consistency (but not uniform
consistency) result that relaxes those assumptions was first given by [41,42]. [23] extended Weiss’s results for MLEs in
LMMs, while [6,7] did so for REML estimators. [14] considered the REML estimator under non-normal LMMs and for
unbounded p. However, to the best of our knowledge, uniform consistency of REML estimators in LMMs has not been
treated.

In the following theorem, we prove the Cramér-type uniform consistency over Θ for REML estimators in LMMs. That
is, the uniform consistency is shown for a sequence of local maximizers of (5), but this sequence does not have to be
unique. In fact, for unbalanced panels in LMMs, that is if ni ̸= nj, for i ̸= j in (1), it cannot be guaranteed that a maximizer
f (5) is unique [15].

heorem 1. Let model (2) and (A)–(E) hold and let νk(θ0) = rk(Hk)−1/2tr{V(θ0)−1Hk} for k ∈ {1, . . . , r} and m =

ink∈{1,...,r}{rk(Hk)} → ∞. Then, there exists a sequence θ̂ of local maximizers of (5), such that

νk(θ0)
⏐⏐⏐θ̂k − θ0,k

⏐⏐⏐ = OP

niformly over θ0 ∈ Θ .

Throughout the paper, the notation Zm = OP (a) for a sequence of random variables Zm, m ∈ N, is understood to
old uniformly. More concretely, it is defined that for all ε > 0, there exist constants Mε,Nε such that for all m > Nε:

infθ0∈Θ Prθ0 (Zm ≤ Mε) ≥ 1 − ε. Regarding the normalizing sequence νk(θ0), note that −Eθ0{∂
2ℓR(θ)/∂θ2

k |θ0} = O{νk(θ0)2},
ee (14) for details. The proof of Theorem 1 follows the lines of [24,41]. We extend their reasoning to account for a
niformity argument over Θ by the construction of the normalizing sequence νk(θ0). If θ0 were fixed, the normalizing
equence would reduce to

√
rk(Hk), which corresponds to the parametric rate in classical linear models [14]. However,

the specific choice of νk(θ0) allows to prove uniform consistency with the help of the auxiliary result given in Lemma 1
in Section 8.

4. Uniform confidence regions for the coefficient parameters

Now we can derive a uniform confidence region for the parameter β0, based on the Lasso estimator. For linear models,
it is known that the minimal (infimal) coverage for Lasso-based confidence sets over the space of coefficient parameters
occurs when the parameter values are large in absolute value, depending only on the sign of the entries of β0. This finding
carries over to infimal coverage over the space of coefficient and covariance parameters, as the latter, when estimated
with REML, do not depend on the fixed effects.
4



P. Kramlinger, U. Schneider and T. Krivobokova Journal of Multivariate Analysis 198 (2023) 105230

u

e
C
β

Proposition 1. Let model (2) and (A)–(E) hold. Then there exists a sequence θ̂ of local maximizers of (5) such that

inf
β0∈Rp
θ0∈Θ

Prβ0,θ0

{√
n
(
β̂L − β0

)
∈ E

(
Ĉ, t

)}
= inf

d∈{−1,1}p
θ0∈Θ

Prθ0
{
ûd ∈ E

(
Ĉ, t

)}
.

The proof follows from [9, Theorem 1] as θ̂ is independent from β0 by construction. Instead of evaluating the infimum
for β0 directly, the result states that a much simpler minimization over a discrete set is sufficient to evaluate the
probability. In the context of LMMs, the key consequence of Proposition 1 is that, due to the orthogonality of θ̂ and β0,
the uniform coverage probability can be separately evaluated for β0 and θ0. For the latter, Theorem 1 allows to replace θ̂
by θ0 at a cost of an error term with a tractable dependency on θ0. Eventually, this leads to the following result.

Theorem 2. Let model (2) and (A)–(E) hold and m = mink∈{1,...,r}{rk(Hk)} → ∞. Then, there exists a sequence θ̂ of local
maximizers of (5) such that

τ̂ = max
d∈{−1,1}p

χ2
p,1−α

(Ĉ−1/2Λd
2)

the quantile of the non-central χ2
p -distribution, and it holds for all θ0 ∈ Θ that

inf
β0∈Rp
θ0∈Θ

Prβ0,θ0

{√
n
(
β̂L − β0

)
∈ E

(
Ĉ, τ̂

)}
= 1 − α + O

(
1

√
m

)
.

The result differs from Proposition 1 in two aspects. First, the minimization over d ∈ {−1, 1}p has been shifted to
the choice of the non-centrality parameter of the χ2-distribution, based on Propositions 4 and 5 from [9]. Second, the
estimation of θ0 only contributes to an error term of uniformly vanishing, parametric order m−1/2. The rate is given by
the m observations that contribute to the estimation of θ0,k′ , k′

= argmink∈{1,...,r} rk(Hk). The crucial finding is that the
error terms that occur in the estimation of both β0 and θ0 and which depend on θ0 eventually translate to an error term
niformly independent of θ0. As a consequence of this result, it follows that the Lasso-based confidence ellipsoid

M =

{
β ∈ Rp: n

Ĉ1/2
(
β̂L − β

)2 ≤ τ̂

}
(6)

attains nominal coverage uniformly up to an error of a parametric rate. By separating the estimation of β0 with
penalization and θ0 without it, the result allows to infer about the fixed effects for data with a complex dependency
structure. From the orthogonality argument, it is clear that the penalization on β0 does not interfere with inference based
on θ̂, for which existing theory can be applied. Since the REML estimates exhibit no analytically tractable finite sample
distribution, the approximation with a χ2-quantile is only valid asymptotically. Although this implies that the resulting
testing procedure is not of nominal level 1 − α as discussed in [19], the simulation in Section 5 suggests that this error
term has little influence in finite samples. Most importantly, however, is that the error term does not depend on β0 and
θ0 and the stated coverage probability is attained uniformly over both the space of regression coefficients and covariance
parameters. Nevertheless, the precise coverage probability depends on the sign of the entries of β0. Specifically, all but
two orthants exhibit an overcoverage. This effect is visualized and discussed in Fig. 1 in Section 5.

When compared to standard confidence sets based on estimation procedures without variable selection, it is well-
known that the confidence set M is larger [31]. In many applications, however, smaller models and thus selection of
covariates is preferred. In such cases, β̂L and inference based upon it offer an alternative, despite the Lasso’s difficult
distributional properties.

5. Simulations

In this section, the finite sample coverage probabilities of the confidence set (6) are compared with several alternatives.
First, with a least-squares-based approach, which offers uniform coverage but no selection. Second, with a least-squares-
based approach after selecting a model with AIC, resulting in type-I-error inflation. And finally, we demonstrate that a
least-squares-based confidence set centered at β̂L does not meet the nominal level. For visualization, we use the following
simulation design for two coefficient parameters. Consider the ‘random intercept model’, a special case of the model (1),

yij = x⊤

ij β0 + vi + uij, i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}, uij
i.i.d.
∼ N (0, σ 2

u ), vi
i.i.d.
∼ N (0, σ 2

v ). (7)

We fix the parameters to m = 20, n = 400, ni = 20, σu = σv = 4. Note that the parameter m that determines the
convergence rate is quite small. For visualization purposes, we restrict the simulation to p = 2 parameters. The tuning
parameters are chosen to be λi = n1/2/2 for i ∈ {1, 2}, which corresponds to a conservative tuning regime. The entries
xij = (x1ij, x2ij)⊤ of the matrix of covariables are independently drawn once from N (0, 4) so that the fixed and random
ffects are of a comparable magnitude. For each β0 ∈ [−4, 4] × [−4, 4] on an equidistant grid of 81 × 81, 2, 000 Monte
arlo simulations were carried out. For each simulation, the empirical coverage probability is computed by checking if

∈ M , for M with α = 0.05 from (6). Fig. 1 shows the results.
0

5
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c

Fig. 1. Only confidence sets based on the Lasso as in (6) or WLS estimator (left column) achieve a nominal level over the whole parameter space.
The former is conservative around the origin and axes. Naïvely applying WLS sets to the Lasso or WLS estimator after AIC variable selection (right
column) yields undercoverage.

The probabilities shown are average empirical coverages for all configurations of β0. First consider the classical
onfidence sets based on the weighted least-squares (WLS) estimator β̂WLS = {X⊤V(θ̂)−1X}

−1X⊤V(θ̂)−1y (bottom left), with
no variable selection involved. As the distribution of β̂WLS −β0 is independent of β0, the coverage based on its confidence
set is attained uniformly over the space of coefficient parameters. One finds that no deviations from the nominal level of
95% can be observed in the simulation. Next, consider the confidence set based on the Lasso as given in (6) (upper left).
No undercoverage is observed over the entire parameter space. Nominal coverage, up to an error of order O(m−1/2) due
to the estimation of random effects, is attained for sign(β1) = −sign(β2). The other orthants exhibit a slight overcoverage
(light blue), whereas a significant overcoverage (white) occurs at the axes and around the origin. The latter effects are
due to the event of variable selection when a component in β̂L is set to zero. Hence, at the axes, a coverage close to 100%
is achieved, and the 95%-confidence sets prove to be too wide. These findings are in line with the example of the linear
regression model from [9, Fig. 4].

The overcoverage in all but two orthants is a consequence of Lemma 4. The confidence sets are based on the minimizers
in (4), which depend on d, the signs of the coefficient parameters. The nominal coverage probability is attained at the
orthants specified by d∗

= argmaxd∈{−1,1}p
C−1/2Λd

2, corresponding to the upper left and lower right orthants in Fig. 1
(upper left). In these, the coverage probabilities vary between 93.4% and 95.8%, which is close to the nominal level of 95%.
This indicates that the additional uncertainty induced by the estimation of θ0 is not substantial even if m is small. If the
coefficient signs of β1 and β2 differ from d∗, the corresponding confidence sets are conservative. In Fig. 1 (upper left), the
coverage probabilities vary between 94.6% and 96.8% in such orthants, which is close to the nominal level, too.

In contrast to the methods on the left column in Fig. 1, which meet the nominal level thoroughly, but without variable
selection (bottom left) or conservatively, but with selection (upper left), two additional naïve approaches are displayed
on the right column. First, one observes that naïvely applying classical WLS confidence sets around a WLS estimator
6
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β̂WLS after performing variable selection with AIC (bottom right) yields inconsistent coverages over the parameter space.
Type-I-error inflation [1] occurs in regions with undercoverage (red) in the event of variable selection at the axes. Another
approach is applying a WLS confidence set around the estimator β̂L (upper right). Again, these sets are not theoretically
ustified and indeed, an overcoverage occurs at the origin, whereas a severe undercoverage over the rest of the coefficient
arameter space. Both naïve approaches thus yield misleading confidence sets, and their use is inadvisable.
We have also experimented with more complex covariance matrices, e.g., taking serially dependent observations within

cluster. While this increases the computational burden, the overall conclusion remains the same. Similarly, if more than
wo covariates are considered (p > 2), the confidence sets will meet nominal level in two out of 2p orthants, and show a
slight overcoverage in the remaining 2p−1. If β0 has close to zero entries, the confidence sets are very conservative, and
the coverage probabilities close to one.

6. Application

We demonstrate the performance of the confidence sets based on the Lasso and WLS with no variable selection on
a data set on the ecological status of lakes in the northeastern United States collected by the [38]. The set has been
thoroughly investigated in previous studies [3,26]. The model of interest is given by

y = 1nβ1 + xβ2 + Zv + Du + ϵ, v ∼ N (0m, σ 2
v Im), u ∼ N (0K , σ 2

u IK ), ϵ ∼ N (0n, σ
2
e In).

The response variable of interest is the acid-neutralizing capacity in equivalents per liter, which indicates the lake’s
environmental state. It is related to a design matrix that includes an intercept and the respective elevation in meters.
In total, the n = 551 lakes are partitioned via m = 19 hydrological unit codes with 1 ≤ ni ≤ 13, which enter the model
as random effect intercept, i.e., Z = blockdiag(1ni )

m
i=1. Finally, a penalized spline with K = 80 knots accounts for spatial

proximity effects. It is included as a second random effect, for which D is a transformed radial basis as described by [26].
The penalization parameters for the Lasso are set to λ1 = λ2 = 16.9 by leave-one-out- cross-validation obtained with

the R-function glmnet. This value is close to
√
n/2 ≈ 11.74, which corresponds to a conservative tuning regime. The

fitted model does not indicate any deviation from regularity conditions (A)–(E). In particular, max(θ̂)/min(θ̂) ≈ 9.99. The
estimated fixed effects are given as

β̂L = (0, −0.0010)⊤, β̂WLS = (−0.5589, −0.0011)⊤.

In previous studies, the intercept has been deemed insignificant [26]. Indeed, the estimated standard deviations are given
by s(β̂WLS,1) = 2.2130 and s(β̂WLS,2) = 0.0001. Consequently, the Lasso estimator sets the intercept equal to zero. This
corresponds to a selection event on the axes in Fig. 1 (upper left). Such suffers from severe overcoverage. A 99%-confidence
set ML based on the Lasso is given by M from (6), with τ̂ = χ2

2,0.99(1398) ≈ 1578. The WLS based set MWLS is given as
M , but β̂L replaced with β̂WLS and τ̂ with χ2

2,0.99 ≈ 9. The Lasso-based confidence ellipse is much larger than the WLS-
based confidence ellipse. This does not indicate that the former are useless, however. Much of their additional volume is
distributed along the axis of the non-included intercept.

The additional uncertainty induced by the Lasso in case of no selection event can be assessed by performing inference
on β2 only. This gives confidence intervals for the elevation coefficient

ML(β2) = [−14.80, −7.13] × 10−4, MWLS(β2) = [−13.73, −6.06] × 10−4.

Both sets are constructed similarly. While for ML, the corresponding quantile is from the non-central χ2
1 -distribution with

a non-centrality parameter close to zero, MWLS is based upon a central χ2
1 -quantile. Therefore, the respective interval

lengths are almost equal, with ML being narrowly wider by the sixth decimal place. However, both intervals differ in
location. The Lasso based ML(β2) is centered around β̂L,2 and thus covers a different part of the real line than the WLS
based MWLS(β2). Consequently, although both intervals are of almost equal length, inference based on the Lasso indeed
differs from WLS-based inference, even in the case of no selection event. The conclusions of this analysis remain valid if
tuning parameters are set to the theoretical value λ1 = λ2 =

√
n/2 ≈ 11.74.

Altogether, this case example confirms that if interest lies in narrow confidence sets, WLS sets are smaller and should
e employed. Simultaneously performing variable selection with the Lasso always evokes uncertainty. Nevertheless,
onfidence sets based on the Lasso are not always much larger than their WLS counterparts. When smaller models are
referable, those sets can be useful for assessing uncertainty and hypothesis testing.

. Discussion

This contribution presents a solution for inference in a low-dimensional LMM in which the fixed effects are estimated
ith a Lasso-type penalization. The uniformly valid confidence sets for the fixed effects based on a Lasso estimator, which
erforms estimation and model selection simultaneously, have been constructed. We suggest a two-stage estimation
rocedure, where the covariance parameters are estimated via a REML estimator θ̂ first, and the coefficient parameters β0
ith θ̂ plugged in second. In particular, this allows to treat regression coefficients and covariance parameters separately.
sing this approach, we decisively simplify the verification of the theoretical properties of parameter estimators. Finally,
7
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it can be shown that the resulting confidence sets are uniformly valid over both the coefficient and covariance parameters
spaces.

It is well known that employing standard WLS-based confidence sets without model selection will always yield
maller confidence sets than post-selection inference [31]. However, selecting parsimonious models is often a key concern
or practitioners. Although resulting post-selection confidence sets will include additional uncertainty due to variable
election, Sections 5 and 6 indicate that derived confidence sets are useful. Moreover, our results provide information
bout the joint estimation and variable selection uncertainty of the Lasso in the context of LMMs by quantifying the
robability with which the estimation error β̂L − β0 lies in the proposed ellipse.
The novelty of our method is that, to the best of our knowledge, this work is the first that considers uniform inference

ased on the Lasso for an elaborate covariance structure, as given in LMMs. Another new important theoretical result of
his article is the proof of uniform consistency of Cramér type for the REML estimators of the covariance parameters. We
xpect that our approach can serve as a basis for proper inference for an estimation procedure that penalizes both fixed
nd random effects.
The derived confidence regions are based on the Lasso selection procedure, but are valid regardless of the selected

odel. In this, our methodology differs from selective inference methods for LMMs as proposed by [34].
It is important to note that the proposed method does not account for any stochastic selection of the tuning parameter

. Instead, the result in Theorem 2 is a finite sample result that holds for any a-priori choice of λ. Setting λ = n1/2/2 as
n Section 5 ensures conservative model selection and uniformly valid inference. If λ is estimated or determined with
ny data-driven procedure, it emits additional volatility that has to be quantified. This holds a fortiori for procedures
uch as the adaptive Lasso where even the penalty term itself is random. While the penalty term of the smoothly clipped
bsolute deviations estimator (SCAD) [10] does not exhibit this property, it is particularly intricate to treat and leads to
non-convex objective function. Therefore, while these methods behave similarly to the ordinary Lasso, an extension of
ur findings for them requires substantial additional research, which is out of the scope of the current work. It should be
oted that among Lasso, adaptive Lasso, and SCAD, [33] show that in the case of orthogonal regressors, using the Lasso
eads to the shortest intervals in finite samples, strengthening our approach.

In high dimensions (p ≥ n), confidence sets in connection with the Lasso penalization have been addressed, e.g., by
he de-biasing approach of [39] and related works. For such settings, the ansatz of [9] is not applicable as the matrix C is
ot invertible. Moreover, the classical REML methodology is defined in a low-dimensional setting only, as θ0 is estimated
y the data projected onto the space orthogonal to the columns of X. Extensions for REML to higher dimensions lose the
roperty that θ̂ is independent of β0 [35].

. Proofs

To prove Theorem 1, we first derive the following lemma.

emma 1. Let conditions (A)–(E) hold, m = min{rk(H1), . . . , rk(Hr )} and let K be a finite set drawn with replacement from
1, . . . , r} with |K | > 1. Then, for any θ ∈ Θ ,

tr

{∏
k∈K

P(θ)Hk

}
≤

(
c
ω

)|K |−1

m1−|K |/2
∏
k∈K

νk(θ). (8)

The result is shown using that the eigenvalues of the matrices of interest are smaller or equal to one and subsequently
employing regularity condition (D).

Proof. Consider the symmetric and positive semi-definite matrices

Ak = Ak(θ) = V(θ)−1/2HkV(θ)−1/2, k ∈ {1, . . . , r},

B = B(θ) = In − V(θ)−1/2X{X⊤V(θ)−1X}
−1X⊤V(θ)−1/2,

(9)

so that tr{
∏

k∈K P(θ)Hk} = tr{
∏

k∈K AkB}. Since B is a projection matrix with eigenvalues zero or one, proceeding as in the
proof of Theorem 1.1 (Hölder inequality) from [22] gives

tr

(∏
k∈K

AkB

)
≤

n∑
i=1

∏
k∈K

{ηi(Ak)ηi(B)} ≤

n∑
i=1

∏
k∈K

ηi(Ak) ≤

∏
k∈K

tr
(
A|K |

k

)1/|K |

. (10)

We continue by evaluating tr(A|K |

k ). First note that conditions (A) and (D) imply

c−1ω ≤ θk
tr(Ak)
rk(Hk)

≤ c ω. (11)
8
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For k = r , let η′

i = ηi(H−1
r
∑r−1

l=1 θl/θrHl) ≥ 0. Then, the above inequality yields

tr
(
A|K |

r

)
=

1

θ
|K |

r
tr

⎧⎨⎩
(
In + H−1

r

r−1∑
l=1

θl

θr
Hk

)−|K |
⎫⎬⎭ =

1

θ
|K |

r

n∑
i=1

1
(1 + η′

i)|K |
≤

1

θ
|K |

r

n∑
i=1

1
1 + η′

i
=

tr(Ar )

θ
|K |−1
r

≤

(
c
ω

)|K |−1 tr(Ar )|K |

rk(Hr )|K |−1 ,

and, similarly for k ∈ {1, . . . , r − 1}, let η′′

i = ηi
{(∑

l̸=k θl/θkHl
)−1Hk

}
≥ 0. This gives

tr(A|K |

k ) =
1

θ
|K |

k

tr

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝In −

⎡⎢⎣In +

⎛⎝∑
l̸=k

θl

θk
Hl

⎞⎠−1

Hk

⎤⎥⎦
−1⎞⎟⎠

|K |
⎫⎪⎪⎬⎪⎪⎭ =

1

θ
|K |

k

n∑
i=1

(
η′′

i

1 + η′′

i

)|K |

≤
1

θ
|K |

k

n∑
i=1

η′′

i

1 + η′′

i
=

tr(Ak)

θ
|K |−1
k

≤

(
c
ω

)|K |−1 tr(Ak)|K |

tr(Hk)|K |−1 .

Altogether, for k ∈ {1, . . . , r}, this gives

tr(A|K |

k ) ≤
c |K |−1

ω|K |−1

tr(Ak)|K |

rk(Hk)|K |−1 . (12)

lugging this into (10) yields∏
k∈K

tr
(
A|K |

k

)1/|K |

≤

∏
k∈K

(
c
ω

) |K |−1
|K | νk(θ)

rk(Hk)
|K |−2
2|K |

≤

(
c
ω

)|K |−1

m1−|K |/2
∏
k∈K

νk(θ),

which gives the claim. □

Note that under the conditions of Lemma 1 but with |K | = 1, (10) implies that

tr {P(θ)Hk} ≤ tr {Ak(θ)} . (13)

Before getting into the proof of Theorem 1, we denote from now on Qi(θ) = P(θ)Hi, Qij(θ) =
∏

l∈{i,j} P(θ)Hl, Qijk(θ) =

l∈{i,j,k} P(θ)Hl to facilitate notation. In particular, Lemma 1 implies that

− Eθ0

{
∂2ℓR

∂θ2
i
(θ)
⏐⏐⏐⏐
θ0

}
=

1
2
tr {Qii(θ0)} = O{νi(θ0)2}. (14)

It is straightforward to adapt Lemma 1 to the case in which P(θ) is replaced by V(θ)−1:

orollary 1. Let model (2) and (A)–(E) hold and let K be a set drawn with replacement from {1, . . . , r} with |K | > 1. Then,
or θ ∈ Θ ,

tr

{∏
k∈K

V(θ)−1Hi

}
≤

(
c
ω

)|K |−1∏
k∈K

νi(θ)

rk(Hi)
|K |−2
2|K |

. (15)

Above results are related to the reverse inequality from [12, p. 232, Problem 4.1.P13], namely that for a positive definite
matrix Z ∈ Rn×n, n ∈ N, it holds

tr(Z2) ≥
tr(Z)2

rk(Z)
. (16)

roof of Theorem 1. This proof is adapted to account for uniformity w.r.t. θ0 from Lemma 7.2 (i) from [14] and closely
ollows the lines of [41]. The four boundedness properties below on the derivatives of the log-likelihood are surrogates
f the boundedness conditions imposed on the log-likelihood directly by [24,40]. By a Taylor expansion, the conditions
elow also include the boundedness of the log-likelihood. They are further required to omit the compactness condition
f Θ , by constructing a compact set Θ ′

ϵ , see details below. For all i, j ∈ {1, . . . , r}, it holds for any θ0 that

(i) Eθ0

{
∂ℓR

∂θi
(θ)
⏐⏐⏐⏐
θ0

}
= 0,

(ii)
1 ∂ℓR (θ)

⏐⏐⏐⏐ = OP (1),

νi(θ0) ∂θi θ0

9
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(iii) For J(θ0) with Jij(θ0) = −
1

νi(θ0)νj(θ0)
Eθ0

{
∂2ℓR

∂θiθj
(θ)
⏐⏐⏐⏐
θ0

}
it holds that ηr{J(θ0)} ≥ c ′ > 0, for some constant c ′ > 0.

(iv) ζ (θ, θ0) =
1

νi(θ0)νj(θ0)
∂2ℓR

∂θi∂θj
(θ) + Jij(θ0) = OP

(
q

√
m

)
for θ ∈ Θq = {θ : νi(θ0)|θi − θ0,i| ≤ q},

where q = m1/(6+δ) for some δ > 0 and m = mink∈{1,...,r} rk(Hi). For readability, suppress the dependency from θ when
the argument is clear from the context. Now, (i)–(iv) are shown.

(i) Note that ∂P/∂θi = −PHiP and PVP = P, as well as

∂ℓR

∂θi

⏐⏐⏐⏐
θ0

=
1
2
y⊤PHiPy −

1
2
tr (PHi) .

The claim now follows after taking expectations.
(ii) As E(∂ℓR/∂θi|θ0 ) = 0 by (i), Chebyshev’s inequality can be applied, it holds uniformly and gives that for any ϵ > 0

there exists k > 0, such that

sup
θ0∈Θ

Prθ0

⎧⎨⎩Varθ0

(
∂ℓR

∂θi

⏐⏐⏐⏐
θ0

)−1/2 ⏐⏐⏐⏐⏐∂ℓR

∂θi

⏐⏐⏐⏐
θ0

⏐⏐⏐⏐⏐ ≥ k

⎫⎬⎭ ≤
1
k2

< ϵ,

and thus

∂ℓR

∂θi

⏐⏐⏐⏐θ0 = OP

{
Varθ0

(
∂ℓR

∂θi

⏐⏐⏐⏐θ0)1/2
}

= OP (νi),

where the last equation follows by Varθ0 (∂ℓR/∂θi|θ0 ) = −Eθ0{∂
2ℓR/∂θ2

i |θ0} and (14).
(iii) By (11), for all i, j ∈ {1, . . . , r},

Jij =
tr(Qij)
2νiνj

≥
θ0,iθ0,jtr(Qij)

2c2ω2√rk(Hi)rk(Hj)
.

By a similar argument,

θ0,iθ0,jtr(Qij) = θ0,iθ0,jtr
[
V(θ0)−1

[In − X{X⊤V(θ0)−1X}
−1X⊤V(θ0)−1

]HiP(θ0)Hj
]

≥ θ0,j
min(θ)
max(θ)

tr
[
V(1r )−1

[In − X{X⊤V(θ0)−1X}
−1X⊤V(θ0)−1

]HiP(θ0)Hj
]

≥
θ0,j

c
tr
[
V(1r )−1

[In − cX{X⊤V(1r )−1X}
−1X⊤V(1r )−1

]HiP(θ0)Hj
]

≥
1
c2

tr{P(1r , c)HiP(1r , c)Hj}

It follows that

Jij(θ0) ≥
tr{P(1r , c)HiP(1r , c)Hj}

2c4ω2√rk(Hi)rk(Hj)
.

Now, for a ∈ Rr with a⊤a = 1 eigenvector to ηr{J(θ0)},

ηr{J(θ0)} = a⊤J(θ0)a =

r∑
i=1

r∑
j=1

aiajJij(θ0) ≥
ηr{K}

2c4ω2 ≥
b

2c4ω2 > 0.

(iv) First, note that for θ ∈ Θq, (11) gives

ω
√
rk(Hi)
cθi

≤ νi(θ) ≤
cω

√
rk(Hi)
θi

.

For any t ∈ [0, 1] and θ̃ = θ0 + t(θ − θ0) this implies with (D) and Corollary 1 that

tr
{
V(θ̃)−1HjV(θ̃)−1Hi

}
≤

c
θ0,jθ0,i

tr
{
V(1r )−1HjV(1r )−1Hi

}
≤

c2

ω

tr
{
V(1r )−1Hj

}
tr
{
V(1r )−1Hi

}
θ0,jθ0,i

√
rk(Hj)rk(Hi)

≤
c2ω2

ω

√
rk(Hj)rk(Hi)

θ0,jθ0,i
≤ c3

ω2

ω2 νi(θ)νj(θ).
10
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w

A Taylor expansion around θ0 yields

νi(θ) = νi(θ0) +
1

√
rk(Hi)

r∑
j=1

(θj − θ0,j)tr
{
V(θ̃)−1HjV(θ̃)−1Hi

}
≤ νi(θ0)

⎧⎨⎩1 +
ω2c3

ω2
√
m

r∑
j=1

νj(θ)(θj − θ0,j)

⎫⎬⎭
≤ νi(θ0)

{
1 +

rω2c3q
ω2

√
m

}
.

(17)

Below, abbreviate the constant c ′
= rω2c3/ω2 and note that q/

√
m → 0. This implies that

θ ∈ Θq ⇒ νi(θ)|θi − θ0,i| ≤ q
(
1 + c ′

q
√
m

)
. (18)

Now, by (18), it follows for θ ∈ Θq:

V(θ0) = V(θ) +

r∑
k=1

(θ0,k − θk)Hk ≤ V(θ) +

r∑
k=1

Hk
q

νk(θ)

(
1 + c ′

q
√
m

)
.

With Lemma 1, this gives

Eθ0

{
−

1
νi(θ0)νj(θ0)

∂2ℓR

∂θi∂θj
(θ)
}

= −
tr{Qij(θ)}/2 − tr

{
Qij(θ)P(θ)V(θ0)

}
νi(θ0)νj(θ0)

≤
tr{Qij(θ)}

2νi(θ0)νj(θ0)
+

r∑
k=1

q
tr{Qijk(θ)}

νi(θ)νj(θ)νk(θ)

(
1 + c ′

q
√
m

)3

=
tr{Qij(θ)}

2νi(θ0)νj(θ0)
+ O

(
q

√
m

)
,

for m = mink∈{1,...,r} rk(Hi) and all θ ∈ Θq. Similarly, now dropping the argument for all quantities depending on
θ ∈ Θq for the sake of readability, i.e. νi = νi(θ),

Varθ0

{
−

1
νi(θ0)νj(θ0)

∂2ℓR

∂θi∂θj

}
= 2

tr
{
QijPV(θ0)QijPV(θ0)

}
νi(θ0)2νj(θ0)2

+ O
(
q2

m

)
= O

{
tr(QijQij)

ν2
i ν

2
j

+ 2q
r∑

k=1

tr(QijQijk)
ν2
i ν

2
j νk

+ q2
r∑

k,l=1

tr(QijkQijl)
ν2
i ν

2
j νlνk

+
q2

m

}

= O
(

1
m1/2 +

2q
m3/2 +

q2

m2 +
q2

m

)
= O

(
q2

m

)
.

Putting the previous two results together and proceeding as in (ii) with Chebyshev’s inequality, this gives that for
any θ0 it holds

−
1

νi(θ0)νj(θ0)
∂2ℓR

∂θi∂θj
(θ) =

tr{Qij(θ)}
2νi(θ0)νj(θ0)

+ OP

(
q

√
m

)
for θ ∈ Θq. To prove (iv), this must hold for θ0 on the right-hand side. Again, let t ∈ [0, 1] and θ̃ = θ0 + t(θ − θ0).
A Taylor expansion of tr{Qij(θ)} around tr{Qij(θ0)} gives

tr{Qij(θ)}
2νi(θ0)νj(θ0)

=
tr{Qij(θ0)}

2νi(θ0)νj(θ0)
+

r∑
k=1

(θ0,k − θk)
tr{Qijk(θ̃) + Qikj(θ̃)}

νi(θ0)νj(θ0)
≤ Jij(θ0) + q

tr{Qijk(θ̃) + Qikj(θ̃)}
νk(θ0)νi(θ0)νj(θ0)

≤ Jij(θ0) + q
tr{Qijk(θ̃) + Qikj(θ̃)}

νk(θ̃)νi(θ̃)νj(θ̃)

(
1 + c ′

q
√
m

)3

= Jij(θ0) + O
(

q
√
m

)
Altogether,

−
1

νi(θ0)νj(θ0)
∂2ℓR

∂θi∂θj
(θ) = Jij(θ0) + OP

(
q

√
m

)
.

The second part of the proof mimics the reasoning of [41]. Let J(θ0) = {Jij(θ0)}ij and s(θ0) = {s1(θ0), s2(θ0), . . . , sr (θ0)}⊤
ith si(θ0) = νi(θ0)−1∂ℓR/∂θi|θ0 and define θ′ such that

ν(θ ) ◦ (θ′
− θ ) = J(θ )−1s(θ ).
0 0 0 0

11
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We will show that there exists a θ̂ so that

νi(θ0)|θ̂i − θ0,i| ≤ νi(θ0)|θ̂i − θ ′

i | + νi(θ0)|θ ′

i − θ0,i|

By (ii) and (iii), the last term is νi(θ0)|θ ′

i − θ0,i| = OP (1). It remains to show that νi(θ0)|θ̂i − θ ′

i | = OP (1). This is shown by
proving that a maximum of (5) is attained in a region close to θ′.

Now, for any θ ∈ Θq,

ℓR(θ) = ℓR(θ0) +

r∑
i=1

νi(θ0)(θi − θ0,i)si(θ0) −
1
2

r∑
i=1

r∑
j=1

νi(θ0)(θi − θ0,i)νj(θ0)(θj − θ0,j)Jij(θ0) + R(θ, θ̃)

= ℓR(θ0) +
1
2
s(θ0)⊤J(θ0)−1s(θ0) −

1
2

r∑
i=1

r∑
j=1

νi(θ0)(θ ′

i − θi)νj(θ0)(θ ′

j − θj)Jij(θ0) + R(θ, θ̃),

(19)

here R(θ, θ̃) = −
1
2

∑r
i=1
∑r

j=1 νi(θ0)(θi − θ0,i)νj(θ0)(θj − θ0,j)ζ (θ̃, θ0) for some θ̃i = θ0,i + t(θi − θ0,i) where t ∈ [0, 1]. Now
consider the set Θ ′

ϵn
=
{
θ : νi(θ0)|θi − θ ′

i | < ϵn
}
and its boundary ∂Θ ′

ϵn
and Θ

′

ϵn
= Θ ′

ϵn
∪ ∂Θ ′

ϵn
. For any θ ∈ Θ

′

ϵn
with

n → 0,

νi(θ0)|θi − θ0,i| ≤ νi(θ0)|θi − θ ′

i | + νi(θ0)|θ ′

i − θ0,i| = OP (1),

hat is for all ε > 0 there exists a constant C and Nε such that for all n ≥ Nε: 1 − ε ≤ infθ0∈Θ Prθ0{νi(θ0)|θi − θ ′

i | < C}.
ince q → ∞, there exists N ≥ Nε such that q > C . Together, for any θ ∈ Θ

′

ϵn
and any ε > 0 there exists N ∈ N, such

hat for all n ≥ N:

1 − ε ≤ inf
θ0∈Θ

Prθ0
{
νi(θ0)|θi − θ ′

i | < C
}

≤ inf
θ0∈Θ

Prθ0
{
νi(θ0)|θi − θ ′

i | < q
}
,

.e., infθ0∈Θ Prθ0 (Θ
′

ϵn
⊂ Θq) → 1. This implies that

inf
θ0∈Θ

Prθ0

{
sup

θ∈∂Θ ′
ϵn

|R(θ, θ̃)| ≤ sup
θ∈Θq

|R(θ, θ̃)|

}

≥ inf
θ0∈Θ

Prθ0

{
sup

θ∈∂Θ ′
ϵn

|R(θ, θ̃)| ≤ sup
θ∈Θq

|R(θ, θ̃)|
⏐⏐⏐⏐ ∂Θ ′

ϵn
⊂ Θq

}
inf

θ0∈Θ
Prθ0

(
∂Θ ′

ϵn
⊂ Θq

)
+ inf

θ0∈Θ
Prθ0

{
sup

θ∈∂Θ ′
ϵn

|R(θ, θ̃)| ≤ sup
θ∈Θq

|R(θ, θ̃)|
⏐⏐⏐⏐ ∂Θ ′

ϵn
̸⊂ Θq

}
inf

θ0∈Θ
Prθ0

(
∂Θ ′

ϵn
̸⊂ Θq

)
→ 1.

econd-to-last, consider

δ(ϵn) = min
θ∈∂Θ ′

ϵn

1
2

r∑
i=1

r∑
j=1

νi(θ0)(θ ′

i − θi)νj(θ0)(θ ′

j − θj)Jij(θ0) =
ϵ2
n

2
1⊤

r J(θ0)1r ≥ c ′
rϵ2

n

2
> 0

by (iii). Note that δ(ϵn) is not stochastic, increasing in ϵn and δ(0) = 0. Further, by (iv), 2 supθ∈Θq |R(θ, θ̃)| =

P (q3/
√
m), i.e., for all ε > 0 there exists a constant C ′ and N ′

ε such that for all n ≥ N ′
ε it holds that 1 − ε ≤

infθ0∈Θ Prθ0{2 supθ∈Θq |R(θ, θ̃)| < C ′q3/
√
m}. Now set ϵn → 0 so that it exists N ′ > N ′

ε such that for all n > N ′
: ϵ2

n rc
′/2 >

C ′q3/
√
m. This gives that for all n > N ′:

1 − ε ≤ inf
θ0∈Θ

Prθ0

{
2 sup

θ∈Θq

|R(θ, θ̃)| < C ′
q3

√
m

}
≤ inf

θ0∈Θ
Prθ0

{
2 sup

θ∈Θq

|R(θ, θ̃)| < c ′
rϵ2

n

2

}

≤ inf
θ0∈Θ

Prθ0

{
2 sup

θ∈Θq

|R(θ, θ̃)| < δ(ϵn)

}
.

Finally, this implies that for θ′
∈ Θq and by (19)

lim
n→∞

inf
θ0∈Θ

Prθ0

{
ℓR(θ′) > max

θ∈∂Θ ′
ϵn

ℓR(θ)

}
= lim

n→∞
inf

θ0∈Θ
Prθ0

{
δ(ϵn) > max

θ∈∂Θ ′
ϵn

R(θ, θ̃) − R(θ′, θ̃
′

)

}

≥ lim
n→∞

inf
θ0∈Θ

Prθ0

{
δ(ϵn) > 2 sup

θ∈Θq

|R(θ, θ̃)|

}
= 1,

i.e., with probability going to one, ℓR attains a local maximum in Θ ′
ϵn
. Denote θ̂ as a local maximum of ℓR in Θ ′

ϵn
if one

exists and set θ̂ ̸∈ Θ ′ otherwise. Then, above statement gives that for all ε > 0 there exists N ′′ such that for all n ≥ N ′′:
ϵn ε ε

12
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infθ0∈Θ Prθ0 (θ̂ ∈ Θ ′
ϵn
) ≥ 1 − ε. Now, for any constant C ′′ > 0 and any ε > 0 let N ′′ be such that C ′′ > ϵN ′′ and N ′′ > N ′′

ε .
hen, for all n > N ′′,

sup
θ0∈Θ

Prθ0
{
νi(θ0)|θ̂i − θ ′

i | ≥ C ′′

}
≤ sup

θ0∈Θ

Prθ0
{
νi(θ0)|θ̂i − θ ′

i | ≥ C ′′, θ̂ ∈ Θ ′

ϵn

}
+ sup

θ0∈Θ

Prθ0
{
νi(θ0)|θ̂i − θ ′

i | ≥ C ′′, θ̂ ̸∈ Θ ′

ϵn

}
≤ sup

θ0∈Θ

Prθ0
{
θ̂ ̸∈ Θ ′

ϵn

}
≤ ϵ,

that is νi(θ0)|θ̂0,i − θ ′

i | = OP (1). □

To address the infimum over Θ , we use the following result.

Lemma 2. For n ∈ N, let (Xn) and (Yn) be sequences of real-valued continuous random variables with finite variances, in x and
y uniformly bounded conditional density pXn|Yn=y(x) = O(1) and Xn = OP (an) and Yn = OP (anbn) with sequences (an), (bn) ∈ R
with bn = o(1). Then, as n → ∞,

Pr
(
Xn + Yn ≤ an

)
= Pr(Xn ≤ an) + O(bn).

The asymptotic result is clear as convergence in probability implies convergence in distribution. The above result
further specifies the rate of convergence.

Proof. First, let φ(s, t) = P(Xn + s ≤ an|Yn = t) and consider a Taylor expansion for f (x) = P(Xn/an + x ≤ 1|Yn = t)
around x = 0, which gives φ(s, t) = φ(0, t)+ O(s/an). This implies

∫ an
an−t pXn|Yn=t (z) dz = φ(0, t)− φ(t, t) = O(t/an). Using

convolution the formula we obtain

Pr
(
Xn + Yn ≤ an

)
=

∫ an

−∞

pXn+Yn (z) dz =

∫ an

−∞

∫
∞

−∞

pXn,Yn (z − t, t) dt dz =

∫ an

−∞

∫
∞

−∞

pXn|Yn=t (z − t)pYn (t) dt dz

=

∫
∞

−∞

pYn (t)
∫ an−t

−∞

pXn|Yn=t (z) dz dt =

∫
∞

−∞

pYn (t)
{∫ an

−∞

pXn|Yn=t (z) dz +

∫ an

an−t
pXn|Yn=t (z) dz

}
dt

=

∫
∞

−∞

pYn (t)
{∫ an

−∞

pXn|Yn=t (z) dz + O
(

t
an

)}
dt =

∫
∞

−∞

∫ an

−∞

pXn,Yn (z, t) dz dt + O
{
E
(
Yn

an

)}
=

∫
∞

−∞

∫ an

−∞

pXn (z)pYn|Xn=z(t) dz dt + O(bn) = Pr(Xn ≤ an) + O(bn),

(20)

hich gives the claim. □

The next two results are helpful to prove Theorem 2.

emma 3. Let model (2) and (A)–(E) hold and set m = min{rk(H1), . . . , rk(Hr )} → ∞ and t̂ = t + ω > 0 with

t = O
(
p +

C−1/2Λd
2) , ω = OP

(
1

√
m

C−1/2Λd
2) .

hen, there exists a sequence of local maximizers θ̂ of (5) such that

inf
d∈{−1,1}p

θ0∈Θ

Prθ0
{
ûd ∈ E

(
Ĉ, t̂

)}
= inf

d∈{−1,1}p
θ0∈Θ

Prθ0 {ud ∈ E (C, t)} + O
(

1
√
m

)
niformly over θ0 ∈ Θ .

roof. First, let ξ = ∥C−1/2Λd∥
2 and observe that ∥C1/2ud∥

2
∼ χ2

p (ξ ). This implies that ∥C1/2ud∥
2

= OP (1 + ξ ) for all θ0.
ow, consider its derivative with respect to θi, i ∈ {1, . . . , r}.

∂

∂θi
∥C1/2ud∥

2
= ∥Ω

1/2
i (w − Λd)∥2

+ 2(w − Λd)⊤C−1 ∂w
∂θi

,

here Ω i = C−1X⊤V−1HiV−1XC−1/n as ∂C−1/∂θi = Ω i. Now,

E
(

∂
∥C1/2ud∥

2
)

= ∥Ω
1/2
i Λd∥

2
− tr(CΩ i) ≤ ∥Ω

1/2
i Λd∥

2
+ tr(CΩ i).
∂θi

13
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Let Ai = V−1/2HiV−1/2 and B = V−1/2XC−1(Λdd⊤Λ + C)C−1X⊤V−1/2/n. Both Ai and B are positive semi-definite. Since
rk(B) = p and η1(B) = O(1 + ξ ),

E
(

∂

∂θi
∥C1/2ud∥

2
)

≤ tr(AiB) ≤

p∑
j=1

ηj(Ai)ηj(B) = O

⎧⎨⎩(1 + ξ )
p∑

j=1

ηj(Ai)

⎫⎬⎭
for all θ0. Similarly, lengthy calculations give that

Var
(

∂

∂θi
∥C1/2ud∥

2
)

= 2tr(Ω iCΩ iC) − 4
C1/2Ω iΛd

2 +
4
n

V−1/2HiV−1XC−1Λd
2

≤ 2tr(Ω iCΩ iC) + 4
C1/2Ω iΛd

2 +
4
n

V−1/2HiV−1XC−1Λd
2 .

roceeding as above, for all θ0,

Var
(

∂

∂θi
∥C1/2ud∥

2
)

= O

⎡⎢⎣(1 + ξ )

⎧⎨⎩
p∑

j=1

ηj(Ai)

⎫⎬⎭
2
⎤⎥⎦ .

Noting that cηj{Ai(1r )} ≥ θ0,iηj{Ai(θ0)} ≥ c−1ηj{Ai(1r )}, j ∈ {1, . . . , n}, Chebyshev’s inequality gives the representation

∂

∂θi

C1/2ud
2 = OP

{
∥C1/2ud∥

2

θ0,i

}
= OP

{
∥C1/2ud∥

2 νi
√
m

}
, (21)

or all θ0. By Theorem 1, a Taylor expansion for ∥Ĉ1/2ûd∥
2 around θ0 givesĈ1/2ûd

2 =
C1/2ud

2 + OP

{(
θ̂ − θ0

)⊤ ∂

∂θ

C1/2ud
2} =

C1/2ud
2{1 + OP (m−1/2)

}
,

hich holds for all θ0. Eventually, let Xn = ∥C1/2ud∥
2/(1 + ξ ), Yn = OP {m−1/2Xn + m−1/2ξ/(1 + ξ )} = OP {bnXn} for all θ0

with bn = m−1/2 and an = t(1 + ξ )−1. Then,

inf
θ0∈Θ

Prθ0
(Ĉ1/2ûd

2 ≤ t̂
)

= inf
θ0∈Θ

Prθ0 {Xn + Yn ≤ an} .

Finally, Lemma 2 gives the claim. □

Lemma 4. Let model (2) and (A)–(B) hold. Then, for t > 0,

argmin
d∈{−1,1}p

Prθ0
{
ud ∈ E

(
C, t

)}
= argmax

d∈{−1,1}p

C−1/2Λd
2.

This result is given in [9, Prop. 4].

Proof of Theorem 2. Consider τ = maxd χ2
p,1−α(ξ ) with ξ = ∥C−1/2Λd∥

2. Since for X ∼ χ2
p (ξ ) it holds X = OP (1+ ξ ) for

ll θ0 and by the definition of the quantile Pr(X ≤ τ ) = 1 − α it follows that τ = O(1 + ξ ) for all θ0 as well.
Now we proceed similarly to the proof of Lemma 3. A Taylor expansion for ∥Ĉ−1/2Λd∥

2 around θ0 gives for Ω i =
−1X⊤V−1HiV−1XC−1/n that

∥Ĉ−1/2Λd∥
2

= ∥C−1/2Λd∥
2
+ OP

{ p∑
i=1

(
θ̂i − θ0,i

) Ω1/2
i Λd

2} = ∥C−1/2Λd∥
2
+ OP

(
m−1/2ξ

)
or all θ0 and together with the first argument it follows that τ̂ = τ + OP (m−1/2ξ ) for all θ0. By Lemma 3 it is ensured
hat the coverage is attained uniformly for both β0 and θ0,

inf
β0∈Rp
θ0∈Θ

Prβ0,θ0

{√
n
(
β̂L − β0

)
∈ E

(
Ĉ, τ̂

)}
= inf

d∈{−1,1}p
θ0∈Θ

Prθ0 {ud ∈ E (C, τ )} + O(m−1/2).

y Lemma 4, this minimum is in fact attained for the d ∈ {−1, 1}p for which τ ensures nominal coverage, since
C1/2ud∥

2
∼ χ2

p (ξ ). This proves the claim. □
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