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A B S T R A C T   

Chain-like and cyclic structures of compounds with a ⋯Ti–O–Ti–O⋯ backbone are reviewed, that is, compounds 
in which the coordination octahedra of the titanium atoms share corners by means of μ2-O atoms. The charge of 
the TiO2+ unit is balanced by organic or inorganic ligands which additionally complete the coordination sphere 
of the titanium atoms. Typical substitution patterns are two mono-anionic bidentate ligands, two monodentate 
anionic plus two neutral ligands, or one tetradentate dianionic ligand. While only few examples of polymeric 
chain structures, or segments thereof, were structurally characterized, several types of cyclic compounds are 
known. This includes rings in which the Ti polyhedra are only linked via the μ2-O atoms, capped rings, or rings in 
which the titanium octahedra are additionally bridged by organic ligands.   

1. Introduction 

The structures of oligo- or poly(dialkylsiloxanes), (R2SiO)n/∞, are 
composed of corner-sharing [R2SiO2] tetrahedra, where each oxygen 
atom bridges two silicon atoms (μ2-O). Polysiloxane chains (silicones) or 
cyclic oligomers are formed in this manner. Fig. 1 (left) shows the 
structure of the cyclic tetramer (Me2SiO)4 (“D4”) [1] as a typical 
example. 

The Ti(IV) analogue of siloxanes are titanyl compounds, i.e., com-
pounds containing the TiO2+ unit. Contrary to silicon, Ti(IV) prefers 
higher coordination numbers, typically an octahedral coordination. 
Formation of structures analogous to that of poly- and oligosiloxanes, 
but with corner-sharing octahedral repeat units, thus requires the coor-
dination of groups which balance the charge of the TiO2+ unit, but 
occupy four coordination sites. The composition of uncharged com-
pounds is thus [TiOL4]n/∞, where the ligands can, for example, be two 
bidentate monoanions, one mono- plus one tridentate anion, or a tet-
radentate dianion, as will be discussed in detail in hereafter. The ß- 
diketonate complex [TiO(thd)2]4 (thd = tBuC(O)–CH-C(O)tBu) [2] 
(Fig. 1, right), as an example, is thus the structural titanyl analogue to 
(Me2SiO)4. The analogy of R2SiO and titanyl units with chelating ligands 
is also supported by ring systems containing both units [3]. 

In this article, the structures of such chain-like or cyclic titanyl 
compounds are reviewed, i.e., homometallic compounds with a 
⋯Ti–O–Ti–O⋯ backbone (excluding dimeric compounds with Ti–O–Ti 
or Ti2O2 linkages) and a O:Ti ratio of 1. It complements early reviews 
where the structural chemistry of such compounds was a partial aspect, 
such as Ref. [4]. Titanium oxo compounds with μ3- or μ4-O linkages 
(titanium oxo clusters) are not subject of the current article. Also 
excluded are structures in which each titanium atom is bonded to more 
than two μ2-O, i.e., where the O:Ti ratio is > 1 (as in [Ti8O12(H2O)24]8+

with a cubic Ti8O12 core [5], a structural analogue to the silsesquioxanes 
R8Si8O12). 

2. Chains and chain segments 

There are only few structurally characterized examples of polymers 
with a ⋯Ti–O–Ti–O⋯ backbone. This does not mean that they do not 
exist, but such compounds may be difficult to crystallize. 

The leading structure is that of titanyl sulfate hydrate, TiO(SO4)⋅H2O 
(Fig. 2), with zigzag chains of corner-sharing [TiO6] octahedra [6]. The 
sulfate groups bridge every first and third Ti atom within the chains and 
additionally crosslink the TiO chains. Each Ti atom is thus surrounded 
by two μ2-O, one water molecule, and the oxygen atoms of three 
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bridging sulfate ions. The structure of anhydrous TiO(SO4) is similar. 
Several polymorphs of potassium and sodium titanyl phosphate, 

M[TiO(PO4)], with a TiO backbone are known [7], where the 
PO4

3− groups also bridge the titanium atoms within the chains and 
crosslink the chains, just as the sulfate groups in titanyl sulfate. The 
polymorphs differ by different crosslinking of the TiO chains. In zwit-
terionic H3NCH2CH2NH2-TiO(PO4) [8], one Ti coordination site is 
occupied by the nitrogen atom of ethylene diamine instead of a phos-
phate oxygen, but otherwise the structure is like that of the titanyl 
phosphates. The crystal structure of [TiO(PO4)2]4− consists of infinite 
spirals of [TiO6] octahedra, where the μ2-O atoms are either cis or trans 
to each other [9]. Two adjacent Ti atoms in the chain are bridged by two 
PO4

3− groups each, whereby each Ti atom gets octahedrally coordinated. 
Two oxygen atoms of each PO4

3− group are not coordinated and thus 
carry the negative charges. 

Tetradentate dianionic organic ligands would be well suited for the 
formation of coordination polymers with a TiO backbone. Porphyrins, 
however, as an example for such ligands, only form monomeric 
TiO(porphyrin) complexes with 5-coordinate Ti. A tetradentate ligand 
with a more adaptable geometry is the dianion of bis(salicylidene)eth-
ylenediamine (salen) and related compounds. No coordination polymers 
have been documented, but segments thereof. In the compounds 
[TinOn-1(salen or acacen)nL2]2+ (n = 3 or 4, acacen = dianion of bis 
(acetyl-acetone)ethylenediamine) the tetradentate dianions coordinate 
to the equatorial positions of the TiO4N2 octahedron with the 
μ2-O perpendicular to this plane. This results in linear chain fragments 
of corner-sharing octahedra, which are terminated by two 
uncharged Lewis base molecules (L) [10]. The structure of 
[Ti4O3(acacen)4(THF)2]2+ is shown in Fig. 3 as an example. In 
[Ti4O3(salen)4(H2O)(OSO2OEt)]+ one end of the chain is terminated by 
an aqua ligand and the other by an anionic sulfonate group [11]. 

In Ti4O3Cl2(η5-C5Me4SiMe2O)4, a Ti4O3 segment is terminated by Cl 
atoms [12]. The Ti atoms are pairwise coordinated by the cyclo-
pentadienylsilanolate ligands in a way that each Ti atom is bonded to a 
η5-C5R5 ring and the neighboring Ti atom to a silanolate oxygen. A 
special case is Ti4O3Se2Cp6 (Cp = η5-C5H5). The backbone is a Ti4O3 
chain, but the outer two Ti–O–Ti groups are additionally bridged by a μ2- 
Se each [13]. The terminal Ti atoms of the Ti4O3 unit are coordinated by 
two Cp ligands, and the inner Ti atoms by just one. 

A Ti3O2 segment is stabilized by organic ligands in the compound 
Ti3O2(NMe2)3[4,5-(Ph2SeP)2C2N3]5 (H3C2N3 = triazole) [14]. The tri-
azolyl groups coordinate unsymmetrically in a rather complex manner 
as mono-, di and tridentate (bridging and terminal) ligands. Each Ti 
atom is also coordinated by a dimethylamide ligand. The μ2-O are cis to 

each other at the central Ti atom, i.e., the Ti3O2 unit is bent. 
A section of the titanyl phosphate structures is found in 

[Ti3O2(HPO4)2(PO4)2]2− [15,16]. The HPO4
2− and PO4

3− ions in this 
compound bridge the Ti atoms of the Ti3O2 string (Ti–O–Ti–O–Ti unit) 
and connect the Ti3O2 units with each other. 

3. Rings 

It is well known from polysiloxane chemistry that rings are ther-
modynamically more stable than chains, because of less steric interac-
tion of the organic substituents. It is therefore not surprising that more 
ring than chain structures were also found for titanyl compounds, with 
3, 4, 6 or 8 μ2-O-bridged polyhedra forming the rings. 

3.1. Rings without additional organic bridges 

The structurally simplest case are cyclic compounds in which the Ti 
polyhedra are only connected by the μ2-O (as in the example in Fig. 1, 
right). There are several possibilities, how the four remaining coordi-
nation sites of octahedrally coordinated Ti atoms can be occupied. 

The longest known and best investigated examples are the com-
pounds [TiO(C5R5)X]n with various cyclopentadienyl ligands (C5R5

− ) 
and monodentate anionic groups X, which are mainly derived from 
partial hydrolysis of (C5R5)TiX3 (an η5-cyclopentadienyl ring formally 
occupies three coordination sites). Structurally characterized examples 
of six-membered rings (three corner-sharing octahedra) are 
Ti3O3Cp*3X3 (Cp* = C5Me5, X  = Cl [17], Br [18], Me [19], CH2CH=CH2 
[20]) and Ti3O3(1,3-tBu2C5H3)3Cl3 [21]. Two groups X are on one side 
of the approximately planar Ti3O3 ring, and the third on the opposite 
side. 

A great variety of eight-membered ring structures (four corner- 
sharing octahedra) of [TiO(C5R5)X]4 is known, with the groups X 
alternately above and below the plane of the roughly planar Ti4O4 ring 
(up-down-up-down), as shown in Fig. 4, left, as a typical example:  

- Ti4O4(Cp)4X4: X  = Cl [22], O(2,4,6-Me3C6H2) [23],  
- Ti4O4(Cp’)4X4 (Cp’ = C5H4Me): X  = Cl [24], I [25]),  
- Ti4O4(C5HMe4)4Br4 [18],  
- Ti4O4Cp*4X4 (X = F [26] (Fig. 4, left), Br [27]),  
- Ti4O4(C5H4Y)4X4 (Y = SiMe3, X  = NCS [17]; Y = CH2CH2Br, X  = Br 

[28]).  
- Ti4O4(Ind)4Cl4 (Ind = η5-indenyl) [29,30]. 

The up-down-up-down positioning of the X ligands changes to up-up- 

Fig. 1. Left: structure of (Me2SiO)4 without hydrogen atoms; right: structure of [TiO(thd)2]4 without CH3 groups (red: O; grey: C; the Si or Ti atoms are in the center 
of the polyhedra). 
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down-down, when two adjacent Cp rings are connected with each other, 
as in Ti4O4Cl4(C5H4-SiMe2-C5H4)2 (Fig. 4, right) [31] or 
Ti4O4Cl4[C5H3(SiMe2)2C5H3]2 [32]. 

When the positive charges of the TiO2+ unit are compensated by two 
anionic monodentate groups X, two uncharged donor atoms must addi-
tionally be coordinated to reach an octahedral coordination of the Ti 
atoms, i.e., the rings must have the composition [TiOL2X2]x (L = un-
charged ligand). There are only few examples of this structure type, with 
Ti3O3Cl6(THF)6 as a prototypical case (Fig. 5) [33,34]. Two Cl sub-
stituents are in the ring plane, two above and two below the plane, 
rendering the substitution pattern of the Ti3O3 ring unsymmetrical. The 
two THF ligands coordinated to each Ti atom are cis. In 
[Ti3O3Cl8(H2O)4]2− [35], two neutral ligands are replaced by additional 
chloride ligands. In the resulting anionic heterocycle, six Cl are above 
and below the ring plane and the other two Cl share the in-plane posi-
tions with the four aqua ligands. In the analogous compound 
Ti4O4Cl8(MeCN)8, four Cl− are in the Ti4O4 plane and the other four 
alternately above and below the ring plane [36]. 

Each Ti atom in the two compounds Ti4O4Cl4L’4(iPrOH)4 (L‘ = 4- 
bromo-2-(chloromethyl)-6-methoxyphenolate) [37] and Ti4O4Cl4L”4 
(L” = Et2N-C2H4-NH-CMe-CH-CMe-O− ) [38] is substituted by only one 
chloride each. The second negatively charged group is the oxygen atom 
of the bi- or tridentate organic ligand. A coordinated alcohol molecule 
and the OMe group complete the Ti coordination octahedron in 
Ti4O4Cl4L’4(iPrOH)4, and the NH and NEt2 groups in Ti4O4Cl4L”4. The 
chlorine atoms in Ti4O4Cl4L’4(iPrOH)4 are alternately arranged above 
and below the Ti4O4 ring plane as in the Ti4O4Cp4X4 derivatives. In 
Ti4O4Cl4L”4, this position is taken by the oxygen atoms of L”, due to the 
meridional coordination of L”. The chelating phenolate ligands in 
Ti4O4Cl4L’4(iPrOH)4 are approximately coplanar with the Ti4O4 ring. 

Another possibility for compensating the positive charges of the 
TiO2+ unit and, all at once, filling all coordination sites of Ti are two 
anionic bidentate chelating ligands (CL), as in the titanyl ß-diketonate in 
Fig. 1, right. The rings then have the composition [TiO(CL)2]3 or 4. For 
Ti3O3 rings, such structures have been found with CL = phenyl-
hydroxamate (ON-CPh-O) [39], diphenylacetamidinate (PhN-CMe-NPh) 
[40], bis(ferrocenyldiketonate) [41] and N-phenylsalicylideneiminate 
(OC6H4CH = NPh) [42] ligands. CL ligands in [TiO(CL)2]4 compounds 
are oxalate (“titanyl oxalate” [Ti4O4(C2O4)8]8− , where one oxygen atom 
per COO group is coordinated [43]), ß-diketonates OC(R)–CH-C(R)O (R 
= tBu [2], Fig. 1, right; Ph/CF3 [44]), o-methoxyphenolate [45], 1- 
phenyl-3-methyl-4-benzoylpyrazol-5-onate [46] and a combination of 
5-sulfosalicylate and 1,10-phenanthroline [47]. 

A hybrid between the [TiOL2X2]4 and [TiO(CL)2]4 structures is 
[Ti4O4(OMe)2(acac)4L2]2+ (L = 1,4,7-trimethyl-1,4,7-triazacyclononane), 
where the titanium atoms are alternately substituted either by two acac 
ligands or by an OMe and L ligand [48]. 

A final possibility is the coordination of one dianionic tetradentate 
ligand, TiO(TL). Trans position of the two coordination sites left blank by 
the TL ligand results in chain structures, as discussed in Section 2; they 
must be cis for ring formation. An illustrative example is 
[Ti4O4(nitrilotriacetate)4]4− (Fig. 6) [49]. [Ti4O4(dpta)2]2

4− (dpta = 2- 
hydroxypropane-1,3-diamine-N,N,N’,N’-tetraacetate) has the same 
structure, where, however, the dpta ligands additionally connect two 
Ti4O4 rings [50]. Other TL ligands in Ti4O4 rings are (pyridin-2- 
ylmethyl)amino diacetate [51] and cyclohexyldiaminobis(phenolate) 
[52]. Tetradentate ligands in Ti3O3 rings are salen [53,54], Schiff base 
[55], piperidine [56] or semi-crown derivatives [57] with complex 
compositions. 

A special case is a Ti4O4L4 ring with tridentate dianionic ligands [S- 
C6H4-N=CH–(Me-tBu-C4H4)-O]2− [58], resulting in the rare case of a 
structure with 5-coordinate Ti(IV). 

3.2. Capped rings 

The monodentate anionic substituents X in the approximately planar 
Ti3O3 and Ti4O4 ring systems discussed in Section 3.1 are located above 
or below the ring plane, with more or less parallel Ti-X axes. This allows 
pairwise replacement of two neighboring X groups by bridging dianionic 
groups (Section 3.3) or, if all X are located at the same side of the ring, by 
appropriately charged tri- or tetradentate ligands. The rings are then 
capped by the multidentate ligands. Retention of the basic ring structure 
is possible, if the distance between the donor atoms in the multidentate 
ligands is approximately the same as the X-X distance in TinOn rings. 
There is some flexibility, however, because the corner-sharing Ti octa-
hedra can be tilted relative to each other to some degree, i.e., the rings 
can adopt a chair conformation. 

Two cases have been found for Ti3O3 rings. The first is that the Ti3 
unit is capped by a single atom, viz. derivatives of the type 
Ti3O3(C5R5)3(μ3-X). A prototypical example is Ti3O3Cp*3(μ3-N) shown 
in Fig. 7, left [59]. Note that the Ti3O3 ring is no longer planar, i.e., the Ti 
octahedra share O⋯X edges. Other examples for such structures are 
Ti3O3Cp*3(μ3-X) with X  = CH [60] or CMe [61]. 

An alternative possibility for capping a Ti3O3 ring is by means of a 
three-legged ligand, as the phosphate group in Ti3O3(tripod)3(PO4) [62] 
(Fig. 7, right). Since the Kläui tripod ligand, CpCo[PO(OEt)2]3

− , is 

Fig. 2. Section from the crystal structure of TiO(SO4)⋅H2O (bright red: S).  
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equivalent to an η5-C5R5
− ligand from a coordination point of view, 

Ti3O3Cp*3(O3SiR) has the same structure, with a RSiO3 group (R = tBu 
[63], N(SiMe3)-C6H3iPr2 [64]) symmetrically capping the Ti3O3Cp*3 
ring system. The Ti3O3 ring in both compounds is slightly puckered to 
adjust to the three-legged capping ligand. Tridentate ligands unsym-
metrically capping Ti3O3Cp*3 ring systems are [MesN-C-CMe-C- 
NMes]3− (each NC unit is coordinated to one Ti, and the central allyl 

Fig. 3. The molecular structure of [Ti4O3(acacen)4(THF)2]2+ (blue: N).  

Fig. 4. Left: Structure of Ti4O4Cp*4F4 (the CH3 substituents of the Cp ring were not drawn for clarity; yellow: F). Right: Structure of Ti4O4Cl4(C5H4-SiMe2-C5H4)2 
(green: Cl). 

Fig. 5. Structure of Ti3O3Cl6(THF)6 (only the coordinated oxygen atoms [red] 
of the THF molecules are drawn for clarity). 

Fig. 6. The molecular structure of [Ti4O4(nitrilotriacetate)4]4− .  
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unit coordinated to the 3rd) and [C=CMe-NMes]3− (C is bridging two Ti 
atoms and N coordinated to the third) [65]. 

Analogous capping of a Ti4O4 ring requires more extended ligands. 
Deprotonation of tBu-calix[4]arene provides a suitable tetra-anionic and 
tetradentate ligand, where all phenoxy groups of each cone-shaped 
ligand coordinate to the same titanium atom. Since the calixarene 
group in Ti4O4Cp4(calix[4]) [66] completely caps one side of the Ti4O4 
ring, all Cp ligands must be on the other side (i.e., the conformation of 
the Ti4O4Cp4 unit is inherently different to that in the Ti4O4Cp4X4 de-
rivatives, where the Cp ligands are alternately above and below the ring 
plane). 

3.3. Rings with bridging ligands 

The largest ring structures of corner-sharing [TiO6] octahedra with 
bridging ligands (BL) are the titanyl carboxylates Ti8O8(O2CR)16 (=[TiO 
(O2CR)2]8) (R = tBu [67,68], CH2tBu [69], CMe=CH2 [70,71], Ph 
[68,72], C6F5 [73], NEt2 [74]) (Fig. 8). Approximately planar rings of 
eight corner-sharing [TiO6] octahedra are formed, where each titanium 
is linked to both neighboring TiO(O2CR’)2 units by means of a µ2-O and 
two carboxylate bridges each. Each titanium atom is thus coordinated by 

two µ2-O in cis position and four carboxylate oxygen atoms. Eight 
carboxylate ligands are approximately coplanar with the Ti8O8 ring, and 
the other eight alternately above and below the Ti8O8 plane. 
[Ti8O8(SO4)16]8− [72,75,76] has the same ring structure, with the sul-
fate ions in place of the carboxylate groups. In undistorted rings of eight 
[TiO6] units, the O⋯O distance in the ring plane between two neigh-
boring octahedra is in the range 220–230 pm. This distance would be 
larger in rings with a smaller number of [TiO6] units and can no longer 
be spanned by carboxylate ligands. The geometry of the BL thus de-
termines the ring size. 

Cyclic structures may also be formed with one di-anionic tetradentate 
ligand (L) instead of two bidentate, mono-anionic ligands, i.e., if the 
composition is [TiOL]n. This is the case for the cyclopentadienyl- 
silanolate ligand in Ti6O6(C5Me4SiMe2O)6 [12] forming a ring of six Ti 
polyhedra. The C5R5 moiety coordinates to one Ti atom and the silanolate 
oxygen atom to the neighboring titanium atom round the ring. Each ti-
tanium atom is thus coordinated by a Cp ring and three oxygen atoms 
(two µ2-O and the silanolate oxygen). In Ti6O6[(OCH2CH2NMe)2]6, co-
ordination of the dianion of N-methyldiethanolamine results in a similar 
ring system with C6-symmetry. The diethoxomethylamino ligand oc-
cupies four coordination sites because one oxygen is chelating-bridging. 
Two neighboring titanium atoms are thus bridged by a μ2-O and one 
oxygen atom of the diethoxomethylamino group [77]. A Ti6O6 hetero-
cycle is also the central structural unit in [Ti6O6{SiW10O34(OH)3}3]9− , 
where two titanium atoms are pairwise part of each polyoxometallate 
unit [78]. 

Bridging of an edge by typical bidentate ligands is no longer possible in 
rings of four titanium polyhedra (Ti4O4) for geometric reasons, the BL are 
instead positioned perpendicular to the ring plane. The most symmetrical 
case of BL-substituted Ti4O4 rings is that every Ti–O–Ti is bridged by a 
bidentate dianionic ligand. Chain structures of titanyl sulfate, TiO(SO4) 
were discussed in Section 2; the structure of Ti4O4(SO4)4(H2O)8 [35] is a 
cyclic variety, with the bridging SO4

2− groups alternately above and below 
the plane of the puckered Ti4O4 ring (Fig. 9). [Ti4O4Cl2(SO4)4(H2O)6]2−

has the same structure, with two aqua ligands replaced by Cl− [35]. The 
same substitution pattern was found in Ti4O4(η5-C5Me4SiMe2O)4 [79], 
with the cyclopentadienylsilanolate as the dianionic bridging ligand. 

A Ti4O4 ring can also be identified in the structure of [P2W20Ti4O78]10−

where two Keggin-type heteropolyanions [PW10Ti2O39]5− are dimerized 
through two Ti-O-Ti units [80]. Two Ti4O4 rings as well as two 
additional Ti-O-Ti units are also part of the complex [(K2Na)@) 
Ti12O10(GeW9O36)4]25− structure [81]. 

In the Ti3O3(C5R5)3X3 derivatives discussed in Section 3.1, two 
groups X are above the Ti3O3 ring plane, and the third below. The overall 
geometry of the compounds, esp. the ring conformation, thus should 
essentially be the same, if the two groups X located above the ring plane 

Fig. 7. Capped Ti3O3 rings. Left: Ti3O3Cp*3(μ3-N) (the CH3 substituents of the Cp* ring are not drawn for clarity). Right: Ti3O3(tripod)3(PO4) (only the three 
coordinating oxygen atoms of the tripod ligands are drawn) (orange red: P). 

Fig. 8. Polyhedral representation of the structures of Ti8O8(O2CR’)16 (only the 
α-C atoms of the carboxylate groups are drawn for clarity). 
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are replaced by a bridging dianionic ligand, as in Ti3O3Cp*3Cl(SO4) as 
an example (Fig. 10) [82]. In the related compound [Ti3O3Cp*3Cl 
(P3O9)]− , a bridging trimetaphosphate anion is in place of the sulfate 
anion [83]. Other structurally characterized compounds of the compo-
sition Ti3O3Cp*3X(BL) are:  

- BL = CH2, X  = OCPh2R (R = Me, Ph) [84],  
- BL = CHMe, X  = OiPr [84], OtBu [84,85], OSiiPr3 [63], NPh2 [86],  
- BL = O2SiRR‘ (R = OH, R’ = tBu; R, R’ = iPr), X  = Et [63],  
- BL = NPh, X =CH=CHPh [87],  
- BL = Xyl-N-C=C=N-Xyl, X =N=C=N-Xyl (Xyl = C6H3Me2) [88],  
- BL = Xyl-N-C-N-Xyl, X  = CN [88], 

as well as Ti3O3(η5-C5Me4SiMe3)3(OMe)(OC3H4) (C3H4 = cyclo- 
butenyl) [89]. 

4. Conclusions 

Bridging the metal atoms in polymetallic titanium oxo compounds by 
μ3-O or combinations of μ2-O and μ3-O, sometimes even μ4-O, results in 
clusters in which all or part of the titanium polyhedra share edges. 

Subject of this review article are compounds with only μ2-O and a O:Ti 
ratio of 1. The Ti polyhedra in such “titanyl” compounds exclusively 
share corners, resulting in the formation of chains (or fragments thereof) 
or rings. The stabilizing ligands therefore must not only compensate the 
two positive charges of each TiO unit but also fill the four coordination 
sites per Ti atom left vacant by the μ2-O to achieve an octahedral co-
ordination of the titanium atoms. 

The most obvious case is tetradentate, dianionic ligands, with which 
formation of clusters with μ3-O is not possible. Depending on the ligand 
geometry, the unoccupied coordination sites can be cis or trans, resulting 
in cyclic or chain-like structures, respectively. However, such ligands, 
with a suitable arrangement of the four donor atoms for coordination to 
Ti(IV), are rare. 

In compounds of the composition [TiO(BL/CL)2]n the oxygen atoms 
also cannot become μ3. Rings with or without bridged edges are there-
fore formed, depending on the geometry and adaptability of the (mono- 
anionic) bidentate ligands. Typical examples are, as discussed before, 
[TiO(ß-diketonate)2]4 (Fig. 1, right) and [TiO(carboxylate)2]4 (Fig. 8); 
in Ti(IV) compounds, ß-diketonates are almost always chelating and 
carboxylates bridging. Chain structures would also be possible with 
mono-anionic bidentate ligands, but crystalline compounds have not 
been obtained until present (only with di-anionic BL, see Section 2). 

A frequent substitution pattern of titanyl compounds is one nega-
tively charged tridentate ligand, such as C5R5 derivatives, plus one 
mono-anionic, monodentate ligand X. Again, formation of μ3-O is not 
possible with this combination of ligands. Two neighboring groups X 
may be replaced by a single di-anionic bridging ligand, such as SO4

2− , or 
three neighboring groups X by a tri-anionic capping ligand, such as PO4

3−

or RSiO3
3− . 

Only few examples are known, where two monodentate anionic 
ligands X are combined with two neutral ligands L, i.e., compounds 
[Ti(μ2-O)X2L2]n. Instead of coordinating two neutral ligands, conversion 
of a μ2-O into a μ3-O, is conceivable. However, compounds of the 
composition [Ti(μ3-O)X2L]n were not observed so far. The conclusion 
that coordination of a second “external” ligand L was more favorable 
than converting a μ2-O into a μ3-O is nevertheless premature. If the 
combination of an X and a L ligand is replaced by a mono-anionic 
bidentate ligand (BL or CL), cyclic compounds of the composition 
[Ti(μ2-O)(BL/CL)XL]n are not formed, but instead [Ti(μ3-O)(BL/CL)X]n 
clusters. For example, a great number of carboxylate-substituted tita-
nium oxo clusters [Ti(μ3-O)(OOCR’)(OR)]4 or 6 is known, with carbox-
ylates as bridging and alkoxides as terminal ligands [90]. Another 
example is Ti6O6(oximate)6(OR)6 [91]. 

In conclusion, in addition to other parameters, the ligand set has a 
great influence on the composition and structure of titanium oxo 
compounds. 
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