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A B S T R A C T

As vertically perforated clay block masonry advances into more demanding building categories, knowledge
of the effective masonry strength under different loading states becomes crucial. However, experimentally
identifying macroscopic failure surfaces for such masonry requires a massive effort. In this study, we propose
a FEM-based simulation concept to predict failure stress states of masonry under arbitrary in-plane loading.
The proposed concept is validated using seven experiments from the literature. Subsequently, subjecting the
validated model to various load cases allows for deriving a failure surface comparable to the Rankine–Hill
surface. Thus, by applying the presented concept, we can effectively generate macroscopic failure surfaces for
any perforated clay block design.
. Introduction

Being one of the oldest materials in human history, clay block
asonry remains a popular material for its low thermal conductivity,
urability, fire resistance, and ease of construction, particularly in
esidential and low-rise buildings. In recent years, the construction
ndustry has increasingly focused on reducing its carbon footprint,
hich has highlighted the challenge of reducing CO2 emissions in

he fabrication process of fired clay blocks. Therefore, new ways to
ptimize the production process and the products themselves are being
onsidered [1–4].

Moreover, although masonry offers numerous benefits, it has re-
ently fallen behind other traditional materials, such as steel and
oncrete, when it comes to the accessibility and simplicity of structural
nalysis using finite element (FE) software. This is partly due to the
hallenge of acquiring effective strength parameters under different
oading conditions for the great variety of modern masonry products.
s an increasing number of structural engineers depend on the conve-
iences provided by modern FE software, it is crucial to develop new
ethods for obtaining these strength parameters to calibrate effective

ailure surfaces.
Although there are several approaches for defining failure surfaces

or masonry, only a few of them apply to vertically perforated clay
lock masonry. One of these surfaces was proposed by Ganz [5], who
nalytically defined twelve failure criteria (see Appendix A). Thereby,
e considered different failure mechanisms typically occurring in ma-
onry structures and derived criteria from the geometry of the blocks

∗ Corresponding author.
E-mail address: raphael.reismueller@tuwien.ac.at (R. Reismüller).

and the material properties. Another approach is the Rankine–Hill
surface developed by Lourenço [6], which is one of the most widely
used approaches for simulating the behavior of masonry structures
under different loading conditions (refer to [7–14]). The Rankine–
Hill surface consists of two parts: a Hill-type criterion for compressive
failure and a Rankine-type criterion for shear and tensile failure (see
Appendix B). Both criteria were developed to qualitatively model the
experimentally observed failure behavior of a masonry wall without
considering specific failure mechanisms.

To calibrate such failure surfaces, macroscopic experiments that
characterize the material’s behavior under different loading conditions
are required. This is already a complex task for a few selected load-
ing states. In addition, the product palette of masonry is becoming
increasingly diverse, thus, making an experimental identification of the
failure surfaces impossible. One solution to this challenge is the use of
reliable numerical models to simulate the needed macroscopic exper-
iments for the calibration of the surfaces. Such accurate simulations
of the masonry’s behavior under different loading conditions provide
a more efficient and cost-effective alternative to conducting physical
experiments.

Using computational methods for predicting the behavior of ma-
sonry is getting more and more attention [15–22]. Recently, Kiefer
et al. [23] proposed an FE-based approach to predict the compres-
sive strength of vertically perforated clay block masonry. Using the
eXtended Finite Element Method (XFEM) [24] and the orthotropic
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Hoffman criterion [25] in combination with a unit cell approach and
periodic boundary conditions, they were able to accurately predict the
vertical compressive strength of eight different block designs. In this
study, we enhance this numerical model by adding additional fail-
ure mechanisms to depict the failure under arbitrary in-plane loading
scenarios.

For validation of the numerical model, a set of experiments is nec-
essary. Recently, Bitterli and Salmanpour [26,27] published a suitable
experimental study for vertically perforated clay block masonry, in
which they did seven compressive tests on wall specimens with inclined
bed joints. Although the specimens were loaded uniaxially, changing
the incline angle from 0° to 90° in steps of 15° led to different combina-
tions of compressive and shear stresses orthogonal to the joint system.
In these experiments, they identified the key failure mechanisms under
combined compressive and shear loads and a relation between the
bed joint incline and the obtainable peak stress. Thus, we used these
experiments for the validation of the presented numerical model.

The outline of the work is as follows: First, we enhanced the nu-
merical model developed by Kiefer et al. [23] by introducing a failure
criterion for the mortar joints. For this, we back-calculated the damage
properties of the mortar joints by simulating shear tests on masonry
triplets [26,27]. Secondly, we validated the model by simulating the
experiments conducted by Bitterli and Salmanpour [26,27] using the
FE software Abaqus. The numerically obtained failure stress states
matched the experimental results and the key failure mechanisms could
be replicated in our simulations. After proving the validity of the model,
we simulated additional loading combinations on the same model to
calibrate the failure surfaces following Ganz [5] and Lourenço [6]. The
obtained failure surfaces showed good agreement with the simulations
used for validation. Therefore, the model has the potential to substitute
experiments for calibrating failure surfaces.

Section 2 contains an overview of the applied modeling strategies
and the numerical model. The application of these modeling strategies
for simulating the verification experiments is provided in Section 3. Af-
terward, the results are explained and discussed in Section 4, followed
by conclusions in Section 5.

2. Modeling strategies

While solid clay block masonry was already used 5000 years ago,
vertically perforated clay blocks are nowadays commonly used in Central
Europe because of their improved properties and material efficiency. A
pattern of vertical cavities is introduced to the solid clay block, which
creates a network of slender, plate-like webs. These webs are mostly
orthogonal and can be categorized by their orientation (see also Fig. 1):

• Longitudinal webs are oriented parallel to the wall surface (𝑥 −
𝑧-plane),

• Transversal webs are oriented perpendicular to the wall surface
(𝑦 − 𝑧-plane).

In general, masonry is constructed by putting prefabricated blocks
together in a regular pattern, joined by an adhesive material between
these blocks, to ensure a sufficient tensile and shear strength of the
resulting structure. Traditionally, mortar was used for this purpose.
Nowadays, other materials like polyurethane glue simplify the produc-
tion process. Horizontal joints are referred to as bed joints, vertical
ones as head joints. In terms of strength, these joints are a structural
weakness; however, they are necessary for the structure’s ductility,
required to withstand cyclic shear loads e.g., during earthquakes.

2.1. Utilizing the periodicity of masonry — unit cell concept

Since vertically perforated clay block masonry is commonly built
up in a periodic pattern, the use of a unit cell approach with periodic
boundary conditions is possible. Hence, a unit cell concept was imple-
2

mented, which was proposed by Kiefer et al. [23] and applied with
Fig. 1. Parts of a vertically perforated clay block and material orientation represented
by the L-T-Z coordinate system (from [28]). While the Z-axis coincides with the 𝑧-axis,
the L- and 𝑇 -axis follow the orientation of the webs.

minor adaptions in [19]. Using this concept we can approximate the
response of the entire specimen by modeling only a small part of the
structure, the so-called repeating unit cell. Hence, the computation times
can be kept short, although complex non-linear material models are
used.

2.1.1. Defining a repeating unit cell
For simplifying the definition of the periodic boundary conditions

within the FEM framework, a cuboid unit cell was chosen. The smallest
cuboid unit cell found in a masonry wall with an offset of half a block’s
width is two blocks high and one block wide (see Fig. 2).

The following convention was used for referring to the surfaces,
edges, and vertices of the unit cell [29]:

• Surfaces are denoted North, South, East , West , Top, and Bottom.
• The names of the edges and vertices consist of the first letters of

the intersecting surfaces (e. g.NW and SWB).

The unit cell consists of six parts, which are segments of two full clay
blocks. The dimensions of each part P1 to P6 are shown in Fig. 2(b).
For modeling the mortar joints we decided to use a simplified micro-
modeling approach [6]. Therefore, we modeled the blocks in full detail,
while reducing the mortar joints to 2D interfaces between those blocks.
When reducing the mortar joints to interfaces, the total dimensions of
the unit cell can be kept constant by evenly distributing the thickness of
each joint to the dimensions of the adjacent blocks [6]. Since increasing
the web thickness would have a significant effect on the structural
behavior, the thickness of the head joint was evenly distributed to
the length of each cavity. The interaction properties for considering
the mortar joints (see Section 2.2.2) were imposed on each surface in
contact with another surface.

2.1.2. Periodic boundary conditions and homogenization
The repeating unit cell is two-dimensionally periodic, i. e., in 𝑥- and

𝑧-direction, using the same coordinate system as shown in Fig. 1. The
vectors 𝐜𝑥 and 𝐜𝑧 describe this periodicity and contain essentially the
dimension of the unit cell in the given direction. To ensure geometric
compatibility between the neighboring instances of the unit cell in the
deformed state, periodic boundary conditions were applied on the peri-
odic surfaces. These periodic boundary conditions are linear equations,
which couple the displacements of each pair of corresponding points
on opposing surfaces to the displacements of the primary nodes of
the unit cell. Hence, the displacement of a point 𝐴 on surface South
is coupled to the displacement of the opposing point 𝐵 on surface
North and the displacements of the primary nodes. The same applies
to each point on surface East and the opposing point on surface West .
In contrast, the surfaces Top and Bottom may deform freely. A more



Engineering Structures 293 (2023) 116557R. Reismüller et al.
Fig. 2. Composition and geometry of the chosen repeating unit cell as part of the entire structure (a) and dimensions of the six fired clay parts (b). The naming convention in
(a) is based on the suggestions from Böhm [29].
Table 1
Primary node displacements for imposing effective strain states.

Strain state Primary node displacement

LC1
[

𝜀𝑥𝑥 0
0 0

]

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
𝑢𝑆𝐸𝐵
𝑥 = �̄�𝑥𝑥 ⋅ 𝑙𝑥 , 𝑢𝑆𝐸𝑇

𝑥 = �̄�𝑥𝑥 ⋅ 𝑙𝑥

LC2
[

0 0
0 �̄�𝑧𝑧

]

𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
𝑢𝑁𝑊𝐵
𝑧 = �̄�𝑧𝑧 ⋅ 𝑙𝑧 , 𝑢𝑁𝑊 𝑇

𝑧 = �̄�𝑧𝑧 ⋅ 𝑙𝑧

LC3
[

0 �̄�𝑥𝑧
�̄�𝑥𝑧 0

] 𝑃𝑢𝑟𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
𝑢𝑆𝐸𝐵
𝑧 = �̄�𝑥𝑧 ⋅ 𝑙𝑥 , 𝑢𝑆𝐸𝑇

𝑧 = �̄�𝑥𝑧 ⋅ 𝑙𝑥
𝑢𝑁𝑊𝐵
𝑥 = �̄�𝑥𝑧 ⋅ 𝑙𝑧 , 𝑢𝑁𝑊 𝑇

𝑥 = �̄�𝑥𝑧 ⋅ 𝑙𝑧

The following primary node displacements were imposed in each case:
𝑢𝑆𝑊 𝐵
𝑥 = 𝑢𝑆𝑊 𝐵

𝑦 = 𝑢𝑆𝑊 𝐵
𝑧 = 0, 𝑢𝑆𝑊 𝑇

𝑥 = 𝑢𝑆𝑊 𝑇
𝑧 = 0, 𝑢𝑆𝐸𝐵

𝑦 = 0, 𝑢𝑁𝑊𝐵
𝑦 = 0.

detailed explanation of the implementation of the periodic boundary
conditions is given in Suda et al. [19].

Using periodic boundary conditions, the deformation difference
𝜟𝒖 between two surfaces is constant [30]. Hence, for prescribing a
deformation-controlled loading on the repeating unit cell, this defor-
mation difference has to be defined for only two pairs of nodes per
periodicity direction: the primary nodes (e. g., SWB-NWB and SWT -
NWT in 𝑧-direction). By systematically controlling these deformation
differences, we can impose effective in-plane strain states on the unit
cell (see Table 1). Thus, we can simulate arbitrary macroscopic in-
plane strain states �̄� by combining the load cases in Table 1. These
macroscopic strains applied to the FE model enable the identification of
microscopic strains 𝜺 on the detailed geometry. The microscopic strains
lead to microscopic stresses 𝝈 in the FE model, which we homogenize
to macroscopic stresses �̄�.

The deformation difference ∆𝒖𝑖 is related to the macroscopic strain
state �̄� through the periodicity vector 𝒄𝑖:

𝛥𝒖𝑥 = �̄� ⋅ 𝒄𝑥 =
⎛

⎜

⎜

⎝

�̄�𝑥𝑥 ⋅ 𝑙𝑥
�̄�𝑥𝑦 ⋅ 𝑙𝑥
�̄�𝑥𝑧 ⋅ 𝑙𝑥

⎞

⎟

⎟

⎠

and 𝛥𝒖𝑧 = �̄� ⋅ 𝒄𝑧 =
⎛

⎜

⎜

⎝

�̄�𝑥𝑧 ⋅ 𝑙𝑧
�̄�𝑦𝑧 ⋅ 𝑙𝑧
�̄�𝑧𝑧 ⋅ 𝑙𝑧

⎞

⎟

⎟

⎠

, (1)

with the dimensions of the repeating unit cell in 𝑥- and 𝑧-direction, 𝑙𝑥
and 𝑙𝑧, respectively. Prescribing zero displacements at primary nodes
SWB and SWT allows us to fully prescribe the calculated deformation
difference at the opposing node, which leads to the relations in Table 1.

2.1.3. Stress homogenization
The macroscopic stress state is the main result we wanted to obtain

from the simulations. In each point on the surface of the unit cell,
3

multiplying the macroscopic stress tensor �̄� with the surface normal
vector 𝒏(𝒙) leads to the traction stress vector 𝒕(𝒙). Since the macroscopic
stresses are considered constant over the repeating unit cell, these
traction stresses are also constant for points with the same surface
normal vector. Integrating the macroscopic traction stresses 𝒕 over one
surface 𝑆𝑖 of the repeating unit cell leads to the total amount of forces
acting on this surface:

𝑭 𝑖 = ∫𝑆𝑖

�̄� ⋅ 𝒏𝑖 𝑑𝑆 = �̄� ⋅ 𝒏𝑖 ⋅ 𝐴𝑖. (2)

Since the displacements are only prescribed at the primary nodes,
the traction forces for a surface are essentially the sum of reaction
forces occurring at the primary nodes located on this surface. Evalu-
ating Eq. (2) for surfaces East with 𝒏 pointing in positive 𝑥-direction,
and North with 𝒏 pointing in positive 𝑧-direction leads to the following
relations:

𝑭𝐸 = 𝑭 𝑆𝐸𝐵 + 𝑭 𝑆𝐸𝑇 =
⎛

⎜

⎜

⎝

�̄�𝑥𝑥
�̄�𝑥𝑦
�̄�𝑥𝑧

⎞

⎟

⎟

⎠

⋅ 𝐴𝐸 and (3)

𝑭𝑁 = 𝑭𝑁𝑊𝐵 + 𝑭𝑁𝑊 𝑇 =
⎛

⎜

⎜

⎝

�̄�𝑥𝑧
�̄�𝑦𝑧
�̄�𝑧𝑧

⎞

⎟

⎟

⎠

⋅ 𝐴𝑁 . (4)

Hence, the macroscopic stress tensor can be obtained from the reaction
forces at the primary nodes as

�̄� =

⎡

⎢

⎢

⎢

⎣

𝐹𝑆𝐸𝐵
𝑥 +𝐹𝑆𝐸𝑇

𝑥
𝐴𝐸

𝐹𝑆𝐸𝐵
𝑧 +𝐹𝑆𝐸𝑇

𝑧
𝐴𝐸

𝐹𝑁𝑊𝐵
𝑥 +𝐹𝑁𝑊 𝑇

𝑥
𝐴𝑁

𝐹𝑁𝑊𝐵
𝑧 +𝐹𝑁𝑊 𝑇

𝑧
𝐴𝑁

⎤

⎥

⎥

⎥

⎦

. (5)

It is important to note that the unit cell concept and the homoge-
nization procedure require a homogeneous stress state across the unit
cell’s dimensions. Consequently, the applicability of these methods is
primarily limited to larger masonry walls where this condition can be
met. Conversely, when dealing with smaller structures, it is advisable
to consider a more detailed micro-modeling approach.

2.2. Failure mechanisms implemented in the finite element model

Both clay block failure and joint failure are relevant for the struc-
tural collapse of vertically perforated clay block masonry under in-
plane loading. The clay blocks mostly fail due to tensile cracks in
the transversal or longitudinal webs [19,23,31]. For the mortar joints,
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shear failure or tensile failure (or a combination of both) can be
relevant, depending on the stress component perpendicular to the
joint [32]. Based on these observations, the following failure mecha-
nisms were implemented in the numerical model.

2.2.1. Brittle failure of fired clay
For the brittle failure of the fired-clay blocks a combination of

the XFEM [24], the orthotropic Hoffman criterion [25], and the Vir-
tual Crack Closure Technique (VCCT) [33,34] was used. This strategy
was proposed by Kiefer et al. [23] and was successfully applied in
another study [19]. The XFEM approach uses special displacement
functions at so-called enriched nodes, which allow the modeling of dis-
rete propagating cracks without re-meshing. For initiating such cracks,
he orthotropic Hoffman criterion is used, which takes into account the
aterial’s tensile, compressive, and shear strengths (see C). Using this

ormulation, the failure criterion cannot capture triaxial compressive
ailure. Since the webs can be considered plate-like structures, which
re not loaded perpendicular to their surface, the stress state in the
ebs is nearly plane. Therefore, triaxial compressive failure is not

elevant in this case. After a crack is initiated, a crack evolution criterion,
n our case the VCCT, depicts the onset of the crack. Details on the
mplementation of XFEM and VCCT in Abaqus can be found in the
baqus Online Documentation [35].

Considering orthotropic material behavior is essential for vertically
erforated clay blocks, due to the orthotropic nature of extruded fired
lay [4,36,37]. This orthotropy originates in the manufacturing process,
here the raw material is extruded and cut into blocks. During the
xtrusion process, the flat clay minerals align parallel to the surface of
he given part [36], leading to a locally changing coordinate system (L-
-Z) on the material level (see Fig. 1). Hence, the stiffness in T-direction

s approximately 37% to 60% of the stiffness in Z-direction (see Buchner
t al. [1]). Since the stiffness in L-direction is only insignificantly below
he stiffness in Z-direction, considering the material as transversally
sotropic is a reasonable approximation, as Buchner et al. [1] showed.
hus, the material’s stiffness and strength were considered transversally

sotropic in this work (see Tables 3 and 4).
The application of the VCCT is based on linear elastic fracture

echanics, which allows a good approximation of the brittle failure of
ired clay. The main assumption of the VCCT is. that the strain energy
eleased when opening a crack is equal to the strain energy needed
o close the same crack [38]. Based on this assumption, the energy
elease rate 𝐺 is calculated and compared to a critical value 𝐺c. In the
umerical model, a power law was used to consider all three failure
odes:

= 𝐺
𝐺c

=
(

𝐺I
𝐺I,c

)𝑎
+
(

𝐺II
𝐺II,c

)𝑏
+
(

𝐺III
𝐺III,c

)𝑐
= 1. (6)

onsidering the findings of Bocca et al. [39], Hannawald [40], as well
s Eis and Vassilev [41], lower and upper limits for the mode-I fracture
nergy are 𝐺min

I,c = 0.01 J∕mm2 and 𝐺max
I,c = 0.05 J∕mm2. Since mode-

failure is governing, the fracture energies for modes II and III were
hosen 20 times larger, following Kiefer et al. [23]. The superscripts 𝑎,
, and 𝑐 were all set to 1.

.2.2. Failure of the mortar joints
The shear behavior of mortar joints was thoroughly analyzed by

an der Pluijm [42]. He not only published comprehensive testing data
n the strengths but also on the post-peak behavior including fracture
nergy values. According to Van der Pluijm [42] the shear strength 𝜏m,f
f a mortar joint follows a Mohr–Coulomb law:

m,f = 𝜏m,ini − 𝜇m ⋅ 𝜎⟂, (7)

ith the initial shear strength 𝜏m,ini, the frictional parameter 𝜇m, and
he stress component perpendicular to the joint, 𝜎⟂. Hence, the shear
trength increases with increasing compressive stresses perpendicular
4

o the joint and decreases vice versa. With increasing tensile stresses
he shear strength eventually reaches zero.

In displacement-controlled shear tests Van der Pluijm [42] observed
damage evolution, which can be sufficiently described by an exponen-

ial relation. Furthermore, the remaining shear strength decreases until
t reaches a constant residual strength value depending on the stress
erpendicular to the joint.

We modeled the joints as interfaces using a surface-to-surface con-
act formulation [43,44]. For recreating the joint behavior we deployed

cohesive behavior approach in combination with frictional proper-
ies, a quadratic stress interaction damage criterion, and exponential
amage evolution. A similar approach has been previously used by
olhassani et al. [43] as well as Thamboo and Dhanasekar [44] for
oncrete block masonry. In line with Bolhassani et al., we combined the
ailure mechanisms of both the mortar and the interface into a single
nterface criterion. Consequently, the calibrated interface damage prop-
rties reproduce the decisive failure mechanism. Conversely, Thamboo
nd Dhanasekar modeled the mortar joints as three-dimensional con-
inua, employing Concrete Damaged Plasticity for modeling mortar
ailure and the cohesive approach solely for considering interface fail-
re. We opted for the simplified micro-modeling approach for several
easons. Notably, modeling a typical thin-layer mortar joint with a
mm thickness would necessitate an exceedingly fine mesh to maintain
iable element aspect ratios. Additionally, this approach also allows
or modeling modern joints bonded with polyurethane adhesives with
inor adaptions.

The stiffness of the mortar joint is defined through the parameters
𝑛𝑛, 𝐾𝑠𝑠, and 𝐾𝑡𝑡. These stiffness parameters control the relationship
etween the traction stresses 𝑡𝑖 and the separations 𝛿𝑖 between the
urfaces as

𝑖 = 𝐾𝑖𝑖𝛿𝑖, ∀𝑖 ∈ {𝑛, 𝑠, 𝑡} . (8)

hereby, 𝑛, 𝑠, and 𝑡 define an orthogonal coordinate system with 𝑛
ointing perpendicular to the joint. Thus, the 𝑠−𝑡 plane is parallel to the
oint. Considering isotropic material behavior, the stiffness parameters
ere derived from the Young’s modulus 𝐸m and the shear modulus 𝐺m
y multiplication with the joint thickness 𝑡m:

𝑛𝑛 = 𝐸m ⋅ 𝑡m, and 𝐾𝑠𝑠 = 𝐾𝑡𝑡 = 𝐺m ⋅ 𝑡m =
𝐸m

2 ⋅ (1 + 𝜈m)
⋅ 𝑡m. (9)

Notably, Eq. (8) only holds for positive contact clearance (see
lso the definition in the Abaqus Documentation [35]). For negative
learance (i. e. mortar deformations under compressive stresses) a tab-
lar pressure-overclosure formulation was defined (see Fig. 3). Until
eaching the compressive strength, tabular definition delivers the same
ressure values as with the stiffness parameter 𝐾𝑛𝑛. At the compres-

sive strength of the mortar, a plateau is modeled. Since compressive
mortar failure was only relevant in some small regions of the model
for a limited number of cases, this simplified approach was sufficient
to consider non-linear mortar behavior under compressive loads. An
insignificant contact pressure at zero overclosure was implemented to
overcome numerical problems when initiating contact.

Within the framework of cohesive behavior, the following quadratic
stress interaction was used as a damage criterion:
(

⟨𝑡𝑛⟩
𝑡f,𝑛

)2
+
(

𝑡𝑠
𝑡f,𝑠

)2
+
(

𝑡𝑡
𝑡f,𝑡

)2
= 1, (10)

ith the traction stresses 𝑡𝑖 and the traction strengths 𝑡f,𝑖. In compres-
ion, only the interaction of the shear stresses is considered since ⟨𝑡𝑛⟩
s zero for negative tractions 𝑡𝑛. For implementing a similar relation
s depicted by Van der Pluijm [42], we used an additional frictional
arameter. With this frictional parameter the shear strengths in Eq. (10)
re calculated using a Mohr–Coulomb relation and the contact pressure,
eading to the following equation:

⟨𝑡𝑛⟩
)2

+
(

𝑡𝑠
)2

+
(

𝑡𝑡
)2

= 1, (11)

𝑡f,𝑜 𝑡f,𝑜 − 𝜇m ⋅ 𝑡𝑛 𝑡f,𝑡 − 𝜇m ⋅ 𝑡𝑛
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Fig. 3. Tabular pressure-overclosure formulation used for modeling the mortar joints in the simulations. A small artificial contact pressure at zero overclosure was implemented
to overcome numerical problems when initiating contact.
which is simplified to
(

⟨𝜎⟂⟩
𝜎f,⟂

)2
+ 𝜏2

(

𝜏m,ini − 𝜇m ⋅ 𝜎⟂
)2

= 1, (12)

with equal shear strengths 𝑡0𝑠 = 𝑡0𝑡 = 𝜏ini and the total shear stress 𝜏2 =
𝑡2𝑠 + 𝑡2𝑡 . Additionally, the traction in 𝑛-direction, 𝑡𝑛, and the correspond-
ing strength 𝑡f,𝑛 were replaced by the stress component perpendicular
to the joint, 𝜎⟂, and the tensile strength 𝜎f,⟂. The material parameters
used in the simulations, i. e. peak strengths 𝜏𝑚,𝑖𝑛𝑖 and 𝜎f,⟂ as well as the
friction coefficient 𝜇m, were back-calculated from shear tests and can
be found in Section 3.

The exponential post-peak behavior observed by Van der Pluijm [42]
was modeled by using a displacement-type exponential damage evolu-
tion within the cohesive-behavior property (see [35]). Here, two input
parameters are necessary: the maximum displacement 𝛿max

𝑚 at which
the strength reaches its minimum and an exponential parameter 𝛼. The
maximum displacement was chosen with 𝛿max

𝑚 = 0.15mm leading to
a fracture energy of 0.088 J∕mm2, matching the findings by Van der
Pluijm [42]. The exponential parameter was set to 𝛼 = 5.

2.3. Failure criterion

For identifying peak stresses for an arbitrary macroscopic strain
state a two-condition failure criterion was used. At the macroscopic
scale, the stress state before the first significant decrease of a stress
component was considered as macroscopic peak stress state �̄�f. This
criterion was relevant, especially for joint failure, which occurs much
more ductile than block failure. Furthermore, a second criterion con-
sidering the first crack within the blocks was defined to capture block
failure. This was necessary, since some of the simulations, where block
failure was relevant, did not produce a significant drop in stresses.
Instead, these simulations aborted when the first crack opened. Con-
sidering the findings of Kiefer et al. [23] and Suda et al. [19], this is
a good approximation, since there, the first crack also occurred just
before the peak stress was reached.

3. Experiments and simulations

3.1. Experiments used for validation

For validating the numerical model we used an experimental study
conducted by Bitterli and Salmanpour [26,27] (see Fig. 4). In the
study, they did uniaxial compression tests on seven masonry specimens
with inclined bed joints to investigate the behavior of vertically per-
forated block masonry under combined compressive and shear loads.
The specimens were 1.20m high and 1.20m long (see Fig. 5(a)); the
bed joint incline was varied from 0° (vertical compression) to 90°
(horizontal compression) in increments of 15°. Within this study Bitterli
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and Salmanpour obtained material strength and stiffness parameters
depending on the bed joint incline and also described the changes in
failure mechanisms. Each experiment is referred to by the angle of
incline and a preceding “E”, i. e., “E75” refers to the experiment with
75° incline.

Additionally, Bitterli and Salmanpour [26,27] conducted three shear
tests on masonry triplets according to EN 1052-3 [46]. These tests
were performed with three different levels of pre-compression. Hence,
assuming the joint behavior follows a Mohr–Coulomb law, the initial
shear strength 𝜏m,ini and the friction parameter 𝜇m could be obtained
from the results.

Typical vertically perforated clay blocks (Swissmodul B15/19) from
a Swiss manufacturer were used for the experiments (see Fig. 5(b)).
These blocks were 290mm long, 190mm high, and 150mm wide, with a
void ratio of 42%. In compressive tests according to EN 772-1 [47], they
obtained a compressive block strength of 𝑓b = 26.3MPa. The mortar
used (“Weber mur 920 M15”) is a ready-mixed general-purpose cement
mortar. In flexural and compressive tests according to EN 1015-11 [48],
Salmanpour [27] obtained a compressive strength of 𝑓m = 10.5MPa and
a flexural strength of 𝑓mq = 2.8MPa.

Each specimen was loaded cyclically with displacement-controlled
loading phases and force-controlled unloading phases until the peak
stress was reached. The loads were introduced by hydraulic jacks and
distributed by two large spreader beams at the top and bottom of the
specimen. Gypsum layers were placed between the spreader beams and
the specimen to compensate for surface irregularities. On one surface
of the specimen, digital image correlation (DIC) was used for obtaining
strain information. On the opposite surface, the deformations were
captured by five linear variable differential transformers (LVDTs). The
forces used to calculate the resulting stresses were obtained from the
testing machine.

The peak stresses obtained by Bitterli and Salmanpour [26,27] are
plotted against the bed joint incline in Fig. 6. The vertical compressive
strength 𝑓mz (E00) was 5.35MPa. With increasing incline, the compres-
sive strength decreased drastically to 25% of 𝑓mz at E45, whereafter
it stayed nearly constant until E75. For E90 the compressive strength
increased again to 38% of the vertical compressive strength. Hence,
the largest peak stresses were obtained with predominant compressive
loading perpendicular to the bed joint, while the smallest values were
observed when the shear stresses reach their maximum.

Besides the peak stresses Bitterli and Salmanpour [26,27] also ana-
lyzed the crack patterns, failure mechanisms and stress–strain-relations.
According to their observations, the behavior changed significantly
with the bed joint incline. Specimens E00 and E15 failed very brit-
tle, due to cracks in the transversal webs, leading to spalling of the
outermost longitudinal webs. The stress–strain relation in 𝑧-direction
was linear almost until collapse (see Fig. 14). Specimen E30 showed
both cracks in the blocks and the joints and the failure was more
ductile. In experiments E45, E60, and E75, joint failure was triggering
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Fig. 4. Overview of the modeling procedure.

Fig. 5. Experiments conducted by Bitterli and Salmanpour [26,27]: (a) experimental setup for E15 and (b) used clay block Swissmodul B15/19.
Source: (Image from [45]).

Fig. 6. Experimentally obtained peak stresses with varying bed joint incline taken from Bitterli and Salmanpour [26,27].
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Fig. 7. Unit cell finite element model used for the validation simulations (see also
Fig. 4). The middle layer is colored differently to emphasize the different block layers
with mortar interfaces in between.

collapse, as gliding planes in the bed joints started to form. The failure
occurred even more ductile than for E30 and after the peak stress
was reached, large strain values could be observed before collapse (see
Fig. 14). Specimen E90 again failed brittly, showing tensile cracks in
the transversal webs.

3.2. Simulation program

For validating the numerical model described in Section 2 we mod-
eled each of the experimental setups described above. While Bitterli
and Salmanpour [26,27] investigated the influence of the bed joint
incline in increments of 15°, we did simulations in increments of 5°
(see Fig. 4). Additionally, we defined upper and lower bounds for the
material properties (see Section 3.2.3). Hence, a total of 38 simulations
were performed in the FE software Abaqus. Similar to the naming
convention of the experiments, we refer to the simulations with a prefix
“S” to the incline angle. Additionally, “-max” or “-min” is appended to
clarify, if the upper or lower bounds of the material properties were
used. We derived the geometry, boundary conditions, and material
properties for the numerical models from the experimental study, as
shown next.

3.2.1. Geometry and mesh
The geometric definition of the FE model follows the unit-cell

concept described in Section 2.1. Hence, a cuboid part, which is two
blocks high and one block wide, was extracted from the specimen (see
Fig. 7). The FE model consists of six block parts, with an offset of half
a block width. These parts are connected with the previously described
interface properties in the head joints and the bed joints (see Fig. 7).
Notably, in the bed joints the transversal webs are mostly not on top
of each other due to the horizontal offset. Thus, the surfaces are only
connected, where webs were directly on top of each other, leading to
a total contact ratio of 64% in the bed joints. In contrast, the surfaces
in the head joints are fully in contact.

The model consists of 107 326 linear eight-node brick elements
(C3D8) and 146 646 nodes. In the framework of the XFEM, cracks were
allowed to form anywhere in the model, with one restriction: no crack
was allowed to initiate within a radius of 20mm from an existing crack
tip.
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3.2.2. Boundary conditions
Although each simulation has a different bed joint incline, the

geometry and the mesh remain constant for each simulation. Instead of
changing the geometry, the boundary conditions were adapted to ob-
tain the desired macroscopic stress state. Therefore, the loading had to
be rotated and split up into its components parallel and perpendicular
to the bed joints.

We defined two coordinate systems to distinguish between two
levels of observation: the global coordinates 1 − 2 − 3, which follow the
orthogonal boundaries of the specimen, and the local coordinates 𝑥−𝑦−𝑧,
which follow the orthogonal system of mortar joints and are already
shown in Figs. 1 and 2 (see Fig. 8). In the global coordinate system,
the 3-direction is parallel to the uniaxial loading direction (vertical).
The plane spanned by the 1- and 3-axis is parallel to the wall’s surface.
Hence, the 2-axis is perpendicular to this surface. While the global
coordinate system is similar in each specimen, the local coordinate
system depends on the bed joint incline. It is obtained by rotating the
global coordinate system around the 2-axis by the bed joint incline,
leading to the 𝑥-axis being parallel to the bed joints, the 𝑧-axis being
parallel to the head joints, and the 𝑦-axis coinciding with the 2-axis.

Considering the experimental setup, in the global coordinate system
a uniaxial stress state can be assumed in the middle of the specimen.
This stress state was rotated by the angle of incline to obtain the
equivalent macroscopic stress state in local coordinates:

�̄�local = 𝑹(𝛼) ⋅ �̄�global ⋅𝑹T(𝛼)

=
[

cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

]

⋅
[

0 0
0 �̄�33

]

⋅
[

cos(𝛼) sin(𝛼)
− sin(𝛼) cos(𝛼)

]

, (13)

with the rotation matrix 𝑹.
Knowing the desired local macroscopic stress state, the related local

macroscopic strain tensor �̄�local was calculated according to Hooke’s law
as

�̄�local = C̄−1
local ∶ �̄�local, (14)

with the local macroscopic stiffness tensor C̄local. This stiffness tensor
was found by a numerical stiffness homogenization procedure, utilizing
the unit cell approach. The five necessary components of the stiffness
tensor could be derived by deliberately eliminating strain components
in Hooke’s law. Hence, simulating the three strain states LC1–LC3 in
Table 1 was sufficient for deriving the local macroscopic stiffness tensor
as

C̄local =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̄�LC1
𝑥𝑥
�̄�LC1
𝑥𝑥

�̄�LC2
𝑥𝑥
�̄�LC2
𝑧𝑧

0

�̄�LC1
𝑧𝑧
�̄�LC1
𝑥𝑥

�̄�LC2
𝑧𝑧
�̄�LC2
𝑧𝑧

0

0 0 �̄�LC3
𝑥𝑧
�̄�LC3
𝑥𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

After calculating the local macroscopic strain components with
Eq. (14), the primary node displacements for each simulation could
be derived by a linear combination of the three cases in Table 1.
Table 2 gives an overview of the calculated components for the seven
experiments conducted by Bitterli and Salmanpour [26,27].

3.2.3. Material parameters
Fired clay blocks

For defining the orthotropic stiffness behavior, we used nine in-
dependent parameters, given in the material orientation L-T-Z: the
Young’s moduli 𝐸LL, 𝐸TT, 𝐸ZZ, the Poisson’s ratios 𝜈TZ, 𝜈LZ, 𝜈LT, and
the shear moduli 𝐺TZ, 𝐺LZ, 𝐺LT (see Table 3). The Young’s modulus
in Z-direction, 𝐸ZZ, could be back-calculated from single-block exper-
iments. With this value as a basis, the other Young’s moduli, as well
as the shear moduli, were scaled by the ratios obtained from Buchner
et al. [1], considering transversally isotropic material behavior. The
Poisson’s ratios were estimated with the experimentally obtained data
from Hannawald [40]. Note, that the parameters refer to the local L-T-Z
coordinate system shown in Fig. 1.
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Fig. 8. Definition of the local and global coordinate system. Rotating the global coordinate system around the 𝑦-axis by the angle of incline 𝛼 leads to the local coordinate system.
The dashed line marks the boundaries of the repeating unit cell, which was used for defining the FE model in Fig. 7.
Table 2
Prescribed stresses and strains for the simulated experiments.

ID 𝛼 �̄�𝑥𝑥 �̄�𝑧𝑧 �̄�𝑥𝑧 �̄�𝑥𝑥 �̄�𝑧𝑧 �̄�𝑥𝑧
S00 0° 0.00MPa −10.00MPa 0.00MPa 0.14 × 10−3 −1.69 × 10−3 0.00
S15 15° −0.67MPa −9.33MPa −2.50MPa −0.07 × 10−3 −1.57 × 10−3 −0.83 × 10−3

S30 30° −2.50MPa −7.50MPa −4.33MPa −0.63 × 10−3 −1.23 × 10−3 −1.45 × 10−3

S45 45° −5.00MPa −5.00MPa −5.00MPa −1.40 × 10−3 −0.78 × 10−3 −1.67 × 10−3

S60 60° −7.50MPa −2.50MPa −4.33MPa −2.17 × 10−3 −0.32 × 10−3 −1.45 × 10−3

S75 75° −9.33MPa −0.67MPa −2.50MPa −2.74 × 10−3 0.02 × 10−3 −0.83 × 10−3

S90 90° −10.00MPa 0.00MPa 0.00MPa −2.94 × 10−3 0.14 × 10−3 0.00
Table 3
Transversally isotropic stiffness parameters for fired clay and the interface stiffness parameters mortar.

Fired clay Mortar joints

𝐸LL = 𝐸ZZ 𝐸TT 𝜈TZ = 𝜈LZ = 𝜈LT 𝐺TZ = 𝐺LT 𝐺TZ 𝐾𝑛𝑛 𝐾𝑠𝑠 = 𝐾𝑡𝑡

13 500MPa 8738MPa 0.2 3500MPa 5500MPa 660N∕mm 275N∕mm
The nine strength parameters for defining the Hoffman criterion, the
compressive strengths 𝜎c,L, 𝜎c,T, 𝜎c,Z, the tensile strengths 𝜎t,L, 𝜎t,T, 𝜎t,Z,
and the shear strengths 𝜎s,L, 𝜎s,T, 𝜎s,Z, were found similar to the stiffness
parameters. Salmanpour [27] obtained the compressive strength in
Z-direction from compressive tests on single blocks according to EN
772-1 [47]. Using this parameter as a basis, the other compressive
strengths, as well as the tensile strengths were scaled according to
typical ratios for fired clay provided by Kiefer et al. [23] (see Table 4).
Considering the standard deviation of the compressive strength in
Z-direction [27], minimum and maximum values were defined. For
estimating each shear strength 𝜏𝑖𝑗 an upper and lower bound was found
from the corresponding tensile strengths, 𝜎t,𝑖 and 𝜎t,𝑗 , and compressive
strengths 𝜎c,𝑖 and 𝜎c,𝑗 [19] as

𝜏𝑖𝑗,min =
𝜎t,𝑖 + 𝜎t,𝑗

2
and 𝜏𝑖𝑗,max =

𝜎c,𝑖 + 𝜎c,𝑗
4

. (16)

The mean value of these bound values was used as shear strength for
the simulations.

Mortar joints
From experiments on mortar prisms according to EN 1015-11 [48],

Salmanpour [27] obtained the compressive strength 𝑓m = 10.5MPa and
flexural strength 𝑓mq = 2.8MPa. Additionally, he found the Young’s
modulus of the mortar, 𝐸m = 6600MPa, in non-destructive compres-
sion tests. Hence, the stiffness parameters for the cohesive behavior
8

Table 4
Transversally isotropic strength parameters for fired clay in MPa.

Tension Compression Shear

𝜎t,L 𝜎t,T 𝜎t,Z 𝜎c,L 𝜎c,T 𝜎c,Z 𝜎s,TZ 𝜎s,LZ 𝜎s,LT

% of 𝜎c,Z 29.0 20.0 29.0 100.0 77.0 100.0a 34.4b 39.5b 34.4b

Min in (MPa) 7.009 4.834 7.009 24.17 18.61 24.17 8.308 9.547 8.308
Max in (MPa) 8.245 5.686 8.245 28.43 21.89 28.43 9.773 11.23 9.773

aReference value experimentally obtained by [27].
bCalculated according to Eq. (16).

approach were calculated as 𝐾𝑛𝑛 = 660N∕mm, and 𝐾𝑠𝑠 = 𝐾𝑡𝑡 = 275MPa,
using Eq. (9) with a joint thickness 𝑡 = 10mm and Poisson’s ratio
𝜈 = 0.2. Additionally, the pressure-overclosure formulation in Fig. 3
was calibrated with the Young’s modulus and compressive strength.

The strength parameters for the cohesive surfaces, the initial shear
strength 𝜏m,ini and the tensile strength 𝜎f,⟂, and the friction parameter
𝜇m, were back-calculated from shear tests on masonry triplets (see
Fig. 9b) [26,27] with an additional FE model, as discussed next. Con-
sidering the symmetry plane in the middle of the triplet, the model
consisted of one full clay block, one half clay block, and two steel
plates (see Fig. 9a). The lower steel plate was fixed in 𝑥-, 𝑦- and 𝑧-
direction along a line parallel to the 𝑦-axis, allowing rotations around
this direction. Additionally, a displacement symmetry condition was
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Fig. 9. The strength parameters for the mortar joints were derived by simulating shear tests on masonry triplets [26,27]. (a) Finite element model, (b) experimental setup
(from [26,27]), and (c) comparison of numerically and experimentally obtained results.
applied to the surface in the middle block, acting as a symmetry plane.
The loads were applied in the following two steps: In the first step,
we applied a pressure perpendicular to the bed joint (𝑧-direction). In
the second step, we fixed this pressure and applied a displacement in
𝑥-direction to the upper steel plate, eventually leading to a peak shear
stress of the joint under the given pressure in 𝑧-direction.

Following this procedure we created four models with different
pressure in 𝑧-direction, i. e. 0.0MPa, 0.2MPa, 0.6MPa, as well as 1.0MPa,
and optimized the parameters of the interface damage criterion (Sec-
tion 2.2.2) to obtain peak shear stresses in good agreement with the
experiments performed by Bitterli and Salmanpour [26,27]. Hence,
these parameters were chosen with 𝜇m = 0.3, 𝜎f,⟂ = 0.3MPa and
𝜏m,ini = 1.4MPa, leading to the results in Fig. 9c.

Salmanpour [27] also provided a standard deviation of 13.2% for
the flexural strength. This value was used to define lower and upper
bound values for the strength parameters similar to the fired clay blocks
(see Table 4) considering a normal distribution.

3.2.4. Computational aspects
For overcoming numerical problems related to the initiation of

contact between two surfaces, an additional step was introduced at the
beginning of the calculation. In this step, the displacements of each
primary node were set to zero. Due to the chosen pressure-overclosure
formulation with an insignificant compressive contact stress at zero dis-
tance between the surfaces, contact could be ensured in each relevant
point, before the displacement-controlled loading was applied in the
following step.

The simulations were performed on a high-performance computing
cluster with 168 CPUs in total. Using eight CPU cores in parallel, one
simulation took approximately 700minutes on average to finish.

4. Results and discussion

Using the presented numerical approach we were able to identify
not only the peak stresses but also the relations between the loading
direction and occurring stresses, as well as three key mechanisms lead-
ing to failure (see Figs. 10 to 12 and Table 5). We begin by describing
these results and comparing them to the experimental observations
from Bitterli and Salmanpour [26,27].
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A vertical compressive load leads to vertical compressive stresses
in the longitudinal webs, compressive stresses perpendicular to the bed
joint, and tensile horizontal stresses in the transversal webs. The reason
for these horizontal stresses, which are critical for failure, lies in the
structural composition of the blocks and was described in [19]: Due to
the offset of the blocks, some of the transversal webs are positioned
not directly on top of each other. Therefore, the vertical compressive
stresses are redistributed to the longitudinal webs, leading to tensile
stresses in the transversal webs. Thus, under mainly vertical compres-
sive loading (S00, S15, and S30), tensile cracks in the transversal webs
led to failure (mechanism I, see Fig. 10a). Failure in the corresponding
experiments (E00, E15, and E30) was governed by vertical cracks
beginning in the head joints and spalling of the outermost longitudinal
webs (see Fig. 10b). The observed spalling can be traced back to the
tensile cracks mentioned above, as Kiefer et al. [23] stated.

Shear loads lead to shear stresses in the joints as well as the
longitudinal webs. Due to the inhomogeneous nature of a masonry wall,
shear loads additionally lead to a rotation of the blocks within the
wall, introducing bending moments in the joints [49]. These bending
moments induce stresses perpendicular to the joints, i. e., tension on
one side of the block and compression on the other side, leading again
to horizontal stresses in the transversal webs, as described above. In
combination with large vertical compressive loads, the stresses perpen-
dicular to the bed joint are entirely compressive. In contrast, for smaller
vertical compressive loads tensile stresses perpendicular to the bed
joints may be crucial for joint failure. Additionally, the shear strength
of the mortar increases with compressive stresses perpendicular to the
joint. Hence, for shear loads, the failure mechanism strongly depends
on the load magnitude in the local 𝑧-direction.

With increasing shear and decreasing vertical compressive stresses
(S30, S45, S60, and S75), shear failure of the bed joints was the
governing failure mechanism, manifesting in a sliding deformation
along the bed joint (mechanism II, see Fig. 11a). The same mechanism
could be observed in the corresponding experiments (see Fig. 11b). S75
showed a slightly different mechanism from the other simulations: Due
to the small amount of vertical compressive stresses, tensile stresses
introduced damage to the mortar joints. This damage led to a reduced
contact area between the blocks, which again triggered shear failure
of the joints. Hence, with larger vertical compressive forces, pure
shear failure occurred, while with lower vertical compressive forces a
combination of tensile and shear failure was relevant.
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Fig. 10. Failure mechanism I – Failure under vertical compressive loading was governed by tensile cracks in the transversal webs and subsequent spalling of the outermost
longitudinal webs.
Fig. 11. Failure mechanism II — Failure under shear loads was governed by shear failure of the mortar joints. The dashed red lines in (b) mark the regions, where shear failure
occurred in the experiments.
Horizontal compressive loads are mostly transferred via horizontal
compressive stresses in the longitudinal webs and horizontal compres-
sive stresses in the head joints. These compressive stresses lead to
deformations in the mortar head joint in local 𝑥-direction, which are
larger at the outermost longitudinal webs. This deformation difference
between the outermost longitudinal webs and their direct neighbors in-
troduces bending moments in the connecting transversal webs, leading
to critical tensile stresses in the connection between transversal and
longitudinal webs. Thus, under horizontal compressive loading (S90)
tensile cracks in the connection between transversal and longitudinal
webs led to failure (mechanism III, see Fig. 12a). Again, in the corre-
sponding Experiment (E90) spalling of the outermost longitudinal web
was observed in some areas, indicating detachment of these webs. On
the left and right sides of the specimen, cracks could be found in similar
locations as the simulation predicted (see Fig. 12b).

Next, we are going to compare the numerically obtained peak
stresses with the experimental results. Therefore, we rotated the eval-
uated peak stress state �̄�f,𝛼

local from the local scope back to the global
scope with Eq. (13) and the negative value of bed joint incline 𝛼. While,
theoretically, only the stress component �̄�f,𝛼

33 should be non-zero after
rotation, the non-linearities in the calculations led to other components
also being non-zero. Nevertheless, these components were significantly
smaller than the desired macroscopic global stress in the 3-direction.
Hence, for each simulation the component �̄�f,𝛼

33 is compared to the
corresponding experimentally obtained peak stress (𝑓m𝛼 in Fig. 6) in
Fig. 13 and Table 5.

While each green circle in Fig. 13 denotes the peak stress of one
experiment, the gray area represents the range between the upper and
10
Table 5
Comparison of numerically and experimentally obtained global macroscopic peak
stresses �̄�f,𝛼

33 and observed failure mechanisms.

Simulations Experiments [26,27]

Peak stress (MPa) Failure Peak stress Failure

Min Max mechanism (MPa) mechanism

S00 4.35 5.46 I E00 5.35 I
S15 3.90 4.90 I E15 4.13 I
S30 2.53 3.03 I, II E30 2.19 I, II
S45 1.22 1.54 II E45 1.35 II
S60 1.16 1.45 II E60 1.22 II
S75 1.87 2.54 II E75 1.19 II
S90 2.81 3.61 III E90 2.03 III

I . . . Tensile cracks in the transversal webs leading to spalling of outermost longitudinal
webs (Fig. 10).
II . . . Shear failure of the bed joints (Fig. 11).
III . . . Tensile cracks in the transversal webs due to bending of these webs (Fig. 12).

lower boundary of the numerically obtained results. Hence, four out
of seven experimentally obtained peak stresses (E00, E15, E45, and
E60) are within the upper and lower bounds of the simulation results.
E30 delivers a peak stress 13% below S30-min, which is still acceptably
close to the simulation results.

The simulations exhibit the most significant deviations from the
experimental results at S75 and S90, with discrepancies of 57% and
38%. One possible explanation for this variation is the drying stage
that freshly extruded blocks undergo before firing. During this drying
process, the intersections between the webs require more time to dry
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Fig. 12. Failure mechanism III — Failure under horizontal compressive loads was governed by tensile cracks in the connection between transversal and longitudinal webs. The
image in (b) shows the side view of the specimen. The red lines mark where cracks occurred.
Fig. 13. Comparison of numerically and experimentally obtained peak stresses. We
obtained the lower and upper bounds of the simulations by using the minimum and
maximum material properties defined in Sections 2.2.1 and 3.2.3.

due to the reduced ratio of surface area to clay mass. Consequently, the
difference in material shrinkage increases the likelihood of microstruc-
tural defects in these intersections [50], which we did not account for
in our analysis.

However, this deviation leads to a less distinct material anisotropy
in the simulations compared to the experimentally obtained peak
stresses. This anisotropy can be captured by the ratio of the horizontal
compressive masonry strength to the vertical counterpart, 𝑓m,𝑥∕𝑓m,𝑧,
which is 0.661 in the simulations and 0.379 in the experiments. For
different types of vertically perforated block masonry, this value ranges
approximately from 0.25 up to 0.63, depending on the amount and
position of cavities in the block design [6]. Thus, the model un-
derestimates the material anisotropy for this case and would benefit
from implementing the discussed strength reduction due to the drying
process.

Overall, the numerically obtained peak stresses follow a similar
trend as the experimental results. Notably, the lowest peak stress for
shear failure occurs at around 𝛼 = 60°, although the largest shear stress
component occurs at 𝛼 = 45° (see also Table 2). The reason for that
is the dependency of the shear strength on the compressive stresses
perpendicular to the bed joints: While the amount of shear loads is
decreasing from S45 to S60, the vertical compressive stresses are also
decreasing, leading to a smaller shear strength.

Last but not least, we compare the numerically obtained stress–
strain relations (�̄� –�̄� ) with the experimental results (see Fig. 14).
11

33 33
Fig. 14. Numerically obtained stress–strain relations (solid lines) compared to the
experimental results (dashed lines) for 𝛼 ∈ [15°, 60°, 90°]. The upper bound of the
simulation results was used (max).

Thereby, we focus on the results of the three simulations S15, S60, and
S90, each representative of one failure mechanism.

Simulation S15 behaved linearly until the peak stress was reached,
followed by an abrupt drop in stresses. The corresponding experiment
E15 showed a lower stiffness than the simulation in the beginning, with
a gradually increasing gradient afterward. After the gradient increased
to a constant value, the experimentally obtained curve is almost parallel
to the numerically obtained curve. Hence, the effective vertical stiffness
of the unit cell is comparable to the real stiffness properties.

Simulation S60 behaved nearly linear until the peak stress, showing
a minor decrease of the gradient starting at 60% of the peak stress. The
stress decrease after the peak stress was reached is less abrupt than at
S15. After a 13.5% decrease the stress increased again linearly, because
of the frictional properties of the interface and the still increasing
stress perpendicular to the bed joint. Compared to the corresponding
experiment E60, the simulation behaved slightly softer before the peak
stress was reached and less ductile afterward.

Simulation S90 behaved linearly until the peak stress was reached,
followed by an abrupt drop in stresses, similar to simulation S15. The
corresponding experiment E90 showed an approximately 23% lower
stiffness than the simulation and significantly more ductile post-peak
behavior.

Notably, our simulations showed markedly fewer pre-peak nonlin-
earities compared to the experimental results. The root of this dis-
crepancy lies in the inherent nature of the unit cell approach. In an
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Fig. 15. Local macroscopic peak stress states for 34 simulations with different in-
plane loading (circles and squares ) compared to a Rankine–Hill surface gained
from simulating seven load combinations (squares ) proposed by Lourenço [6] (see
Appendix B). The upper material limits (max) were used. The stresses are given in local
coordinates 𝑥 − 𝑦 − 𝑧.

experimental setting, if damage occurs at one point, the load can be
redistributed to the intact portions of the specimen. However, due to
the periodic boundary conditions of the unit cell approach, any failure-
inducing mechanism is subsequently repeated, which contrasts with the
resilience observed in real-world experiments.

Motivated by the good agreement of the failure mechanisms and
the peak stresses with the experimental results, we simulated additional
loading combinations to obtain enough results for fitting a Rankine–Hill
surface. Lourenço [6] proposed seven loading combinations for easily
defining the failure surface. Two of these loading combinations, hori-
zontal and vertical uniaxial compression (S90 and S00, respectively),
are already included in the simulations presented above. Applying
the remaining five loading combinations on the numerical model and
evaluating the peak stresses with the same failure criterion as above, led
to the parameters for the Rankine–Hill surface displayed in Fig. 15 (see
also Appendix B). The coefficient of determination of the surface com-
pared to the simulations is 0.76. Comparing the peak stresses obtained
from simulations S00–S90 to the corresponding load combinations on
the Rankine–Hill surface, a good agreement can also be seen (Fig. 16(a),
green circles). Notably, the first significant decrease of the peak stress
occurs earlier and the plateau at a larger joint incline is also reached
earlier. Hence, the smallest peak stress occurs around 𝛼 = 50° instead
of 𝛼 = 60°.

While each simulation in the compression regime failed in one of
the previously discussed failure mechanisms (i. e., I, II, and III), two
simulations in the tensile regime showed another mechanism: tensile
failure perpendicular to the joints. Since none of the experiments
conducted by Bitterli and Salmanpour [26,27] showed a comparable
loading or failure mechanism, we were not able to validate these two
results. However, these simulations only have a minor impact on the
overall fit of the surface.

The Rankine–Hill surface is capable of qualitatively capturing the
failure envelope of masonry in general [6]. Therefore, the good agree-
ment with the simulations underlines the validity of the obtained peak
stresses with different loading combinations.

In addition to the fitted Rankine–Hill surface, Fig. 16 contains
further failure surfaces (Fig. 16(a)) and experiments (Fig. 16(b)) from
literature, compared to the simulation results. Another failure surface
beside the Rankine–Hill surface, which is applicable for vertically
perforated clay block masonry, is the surface developed by Ganz [5].
He analytically defined each part of the failure envelope as a function
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of geometry and material properties. Calibrated with the block geom-
etry and simulation results (see Appendix A), the failure surface after
Ganz [5] is also similar to the simulation results (Fig. 16(a), orange
crosses). Additionally, we approximated the envelope for shear failure
of the bed joint as a function of the incline angle 𝛼 and the results
of the shear tests on masonry triplets (𝜏m,ini and 𝜇m). Therefore, we
calculated the macroscopic shear stress from the incline angle 𝛼 and
compared it to the shear strength, obtained from the shear test results
using a Mohr–Coulomb criterion, leading to the following relation for
calculating the peak stress:

�̄�f,𝛼
33 =

2 ⋅ 𝜏m,ini ⋅ sin (𝛼) ⋅ cos (𝛼)

1 − sin4 (𝛼) + 2 ⋅ 𝜇m ⋅ cos3 (𝛼) ⋅ sin (𝛼) + cos4 (𝛼)
. (17)

Notably, each of the curves in Fig. 16(a) has the same overall shape,
where the first part before the sudden drop is governed by block failure,
the second part from the drop to reaching the plateau is governed by
shear failure, and the third part is again governed by block failure.

The simulation results are compared with three sets of experimental
data in Fig. 16(b). To facilitate a better comparison, the values of each
series were normalized by their global peak stress at 𝛼 = 0°. Dialer [51]
and Page [52] performed uniaxial and biaxial tests on solid clay block
masonry with different angles of bed joint incline. Additionally, we
found a similar relation for experiments on layered rock [53]. Although
the curves are quite different, they all share the same overall trend:
a decreasing peak stress with increasing bed joint incline, with a
minimum between 45° and 75°, followed by an increasing peak stress.

5. Conclusion and outlook

This work describes the development of a numerical model for
computing the peak stress of vertically perforated clay block masonry
under arbitrary in-plane loads. The previously published model [19,23]
was extended by introducing a realistic material model for the mortar
joints. These modeling strategies were combined to simulate a series of
experiments with different combinations of biaxial compressive loading
and shear loading [27]. The obtained peak stresses were mostly in
good agreement with the experimental results. Solely under horizontal
compression, the model yielded larger peak stresses, resulting in a
less distinct anisotropy, compared to the experiments. Additionally,
the three main failure mechanisms observed in the experiments could
be realistically replicated with the numerical model. While the failure
mechanisms under vertical compression and shear were already pub-
lished in the literature (e. g. [19,23,42,52]), for the first time the failure
under horizontal compressive loading could be linked to deformation
differences in the head joint.

After the validation, a Rankine–Hill surface for the given clay
block masonry could be fitted by simulating the seven load combi-
nations proposed by Lourenço [6]. This surface nicely matched the
numerically obtained peak stresses with the loading combinations in-
vestigated by Bitterli and Salmanpour [26,27]. Additionally, the failure
surface proposed by Ganz [5], a criterion for shear failure derived
from the mortar parameters, and various experimental series showed
qualitatively similar behavior to the numerical results, showcasing their
validity.

Thus, the model can be used to generate failure surfaces for different
masonry products to be used as a macroscopic failure criterion within
FE software. Another application is a parameter study on different
geometrical features or material properties, to find the most signifi-
cant parameters for increasing the macroscopic strength under given
boundary conditions. This helps to gain a deeper understanding of the
behavior of clay block masonry under in-plane loading.

Although the presented FE model provided valuable insights, the
model would benefit from further improvements to better capture
the anisotropic behavior. One potential enhancement lies in incorpo-
rating reduced strengths in the connection between longitudinal and

transversal webs. This adjustment is particularly relevant as mechanical
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Fig. 16. Comparison of the numerically obtained peak stresses with other findings: (a) failure surfaces for the upper bound of material properties, (b) normalized experimental
data [26,27,51–53].
defects are prone to occur in these regions during the drying process.
Future research should focus on refining the FE model to effectively
account for these localized effects and improve the overall predictive
capabilities in this context.

For future studies, another interesting modification of the model
would be the adoption of the phase field method (refer e. g. to Miehe
et al. [54]) as an alternative to XFEM. In contrast to XFEM, the
phase field method offers notable advantages by utilizing a diffusive
representation of cracks instead of introducing sharp discontinuities.
This approach is known to be very stable, even for complex crack
topologies, as e. g. Pech et al. showed for complex wood structures with
anisotropic material behavior [55,56].

Overall, the presented model exhibits great potential for optimizing
existing products or developing new block designs, making it a valuable
tool for enhancing structural performance in the field of clay block
masonry.
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Appendix A. Calibration of the failure surface after Ganz

Ganz [5] proposed a failure surface for masonry with tensile stren-
gth, consisting of the following 12 failure criteria:

𝛷1a = �̄�2𝑥𝑧 −
(

𝜔m ⋅ 𝑓m,𝑥 − �̄�𝑥𝑥
) (

2𝜔m ⋅ 𝑓m,𝑧 − �̄�𝑧𝑧
)

≤ 0. (A.1)

𝛷1b =
(

1 + 𝜔m
)2

⋅ �̄�2𝑥𝑧 +
[

𝜔m ⋅
(

�̄�𝑧𝑧 + 𝑓m,𝑧
)

− �̄�𝑥𝑥
]

×
[

�̄�𝑧𝑧 + 𝑓m,𝑧 − 𝑓m,𝑥 − 𝜔m ⋅
(

�̄�𝑥𝑥 + 𝑓m,𝑥
)]

≤ 0. (A.2)

𝛷1c =
(

1 + 𝜔m
)2

⋅ �̄�2𝑥𝑧 +
[

𝜔m ⋅
(

�̄�𝑧𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 + 𝑓m,𝑥 ⋅
(

1 + 𝜔m
))

− �̄�𝑥𝑥
]

×
[

�̄�𝑧𝑧 − 2𝜔m ⋅ 𝑓m,𝑧 − 𝜔m ⋅ 𝑓m,𝑥
]

≤ 0. (A.3)

𝛷2 = �̄�2𝑥𝑧 −
(

�̄�𝑥𝑥 + 𝑓m,𝑥
)

⋅
(

�̄�𝑧𝑧 + 𝑓m,𝑧
)

≤ 0. (A.4)

𝛷3ab = �̄�2𝑥𝑧 + �̄�𝑥𝑥 ⋅
(

�̄�𝑥𝑥 + 𝑓m,𝑥
)

≤ 0. (A.5)

𝛷3c = �̄�2𝑥𝑧 + �̄�𝑥𝑥 ⋅
(

�̄�𝑥𝑥 − 𝜔m ⋅ 𝑓m,𝑥
)

≤ 0. (A.6)

𝛷3d = 4𝜔m ⋅ �̄�2𝑥𝑧 −
[

𝜔m ⋅ 𝑓m,𝑥 − �̄�𝑥𝑥 ⋅
(

1 − 𝜔m
)]2 ≤ 0. (A.7)

𝛷4a = �̄�2𝑥𝑧 −
(

𝑐 − �̄�𝑧𝑧 ⋅ tan (𝜑)
)2 ≤ 0. (A.8)

𝛷4b = �̄�2𝑥𝑧 +
(

�̄�𝑧𝑧 − 𝑓t,𝑧 + 𝑅b
)2 − 𝑅2

b ≤ 0. (A.9)

𝛷4c = �̄�2𝑥𝑧 +
[

�̄�𝑧𝑧 − 𝑓 ′
t,𝑧 ⋅

(

�̄�𝑥𝑥
𝜇 ⋅ 𝑓m,𝑥

+ 1
)

+ 𝑅c

]2
− 𝑅2

c ≤ 0. (A.10)

𝛷4d = �̄�2𝑥𝑧 ⋅
(

1 +
2 ⋅ 𝑎L
𝑎S

⋅ tan (𝜑)
)2

−
(

�̄�𝑧𝑧 ⋅ tan (𝜑) + �̄�𝑥𝑥 ⋅
2 ⋅ 𝑎L
𝑎s

− 𝑐
)2

≤ 0.

(A.11)

𝛷4e =
(

|

|

�̄�𝑥𝑧|| +
2𝑎L
𝑎S

⋅ �̄�𝑥𝑥

)2
+
(

�̄�𝑧𝑧 + |�̄�𝑥𝑧| ⋅
2𝑎L
𝑎S

− 𝑓t,𝑧 + 𝑅b

)2
− 𝑅2

b ≤ 0.

(A.12)

𝑅b = 𝑐 ⋅ tan
(𝜋
4
+

𝜑
2

)

− 𝑓t,𝑧 ⋅
sin (𝜑)

1 − sin (𝜑)
(A.13)

𝑅c = 𝑐 ⋅ tan
(𝜋
4
+

𝜑
2

)

− 𝑓 ′
t,𝑧 ⋅

(

�̄�𝑥𝑥
𝜇 ⋅ 𝑓m,𝑥

+ 1
)

⋅
sin (𝜑)

1 − sin (𝜑)
(A.14)
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Thereby, �̄�𝑥𝑥, �̄�𝑧𝑧, and �̄�𝑥𝑧 are the in-plane components of the local
macroscopic stress tensor. Note, that the indices are different than in
the original publication. While Ganz [5] refers to the vertical direction
with 𝑥 and the horizontal direction with 𝑦, we use 𝑥 for the horizontal
direction and 𝑧 for the vertical direction, which is consistent with the
local coordinate system used within this work.

For calibration of the surface, 10 parameters are needed, i. e. the
uniaxial compressive masonry strengths, 𝑓m,𝑥 and 𝑓m,𝑧, the ratio of
the tensile strengths to their compressive counterparts, 𝜔m, the vertical
uniaxial tensile masonry strength 𝑓t,𝑧, the distance of the bed joints,
𝑎L, the distance of the head joints, 𝑎S, the cohesion shear stress and
the frictional angle of the joints, 𝑐 and 𝜑, the tensile strength of the
joints, 𝑓 ′

t,𝑥, and an additional parameter 𝜇. For a detailed description
of these properties, we refer to the original publication [5]. We derived
the strength parameters from the simulation results as 𝑓m,𝑥 = 3.61MPa,
𝑓m,𝑧 = 5.54MPa, 𝑓t,𝑧 = 0.12MPa, 𝑓 ′

t,𝑧 = 0.12MPa, and 𝜔m = 0.94.
Furthermore, we gained 𝑎L = 200mm and 𝑎S = 300mm from the block
geometry, 𝑐 = 0.26MPa and 𝜑 = 0.48 from the simulation of the shear
tests, and set the additional parameter to 𝜇 = 1.

Appendix B. Calibration of the Rankine–Hill surface

The Rankine–Hill surface consists of two failure criteria: a Rankine-
type criterion and a Hill-type criterion. The Rankine-type surface is
defined in the following manner:

𝑓1 =
(�̄�𝑥𝑥 − 𝑓t,𝑥) + (�̄�𝑧𝑧 − 𝑓t,𝑧)

2
+

√

( (�̄�𝑥𝑥 − 𝑓t,𝑥) − (�̄�𝑧𝑧 − 𝑓t,𝑧)
2

)2

+ 𝛼�̄�2𝑥𝑧

= 0, (B.1)

with the parameter 𝛼, which defines the size of the attainable shear
strength for the Rankine-type surface, the uniaxial tensile strengths 𝑓t,𝑥
and 𝑓t,𝑧, and the in-plane components of the local macroscopic stress
tensor, �̄�𝑥𝑥, �̄�𝑧𝑧, and �̄�𝑥𝑧.

The Hill-type surface forms a rotated centered ellipsoid, which reads
as

𝑓2 = 𝐴 ⋅ �̄�2𝑥𝑥 + 𝐵 ⋅ �̄�𝑥𝑥 ⋅ �̄�𝑧𝑧 + 𝐶 ⋅ �̄�2𝑧𝑧 +𝐷 ⋅ �̄�2𝑥𝑧 − 1 = 0. (B.2)

The four parameters 𝐴, 𝐵, 𝐶, and 𝐷 can be derived from the material’s
tensile strengths, 𝑓t,𝑥 and 𝑓t,𝑧, and compressive strengths, 𝑓m,𝑥 and 𝑓m,𝑧,
in the following way:

𝐴 = 1
(

𝑓m,𝑥
)2

, 𝐵 =
𝛽

𝑓m,𝑥 ⋅ 𝑓m,𝑧
, 𝐶 = 1

(

𝑓m,𝑧
)2

, and 𝐷 =
𝛾

𝑓m,𝑥 ⋅ 𝑓m,𝑧
, (B.3)

with the parameter 𝛽, which defines the interaction of axial stresses �̄�𝑥𝑥
and �̄�𝑧𝑧 in the compressive regime, and the parameter 𝛾, which defines
the size of the attainable shear strength for the Hill-type surface.

Thus, seven parameters are needed to fully calibrate the Rankine–
Hill surface, i. e. the uniaxial strengths 𝑓 , 𝑓 , 𝑓 , and 𝑓 , as well
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t,𝑥 t,𝑧 m,𝑥 m,𝑧
as the parameters 𝛼, 𝛽, and 𝛾. While we obtained the uniaxial strengths
from applying the corresponding uniaxial loading to the FE model,
we derived the remaining parameters from simulating three additional
loading combinations proposed by Lourenço [6] (see Fig. B.17) using
the following equations:

𝛼 = 1
9
⋅
(

1 + 4
𝑓t,𝑥
𝑓𝛼

)

⋅
(

1 + 4
𝑓t,𝑧
𝑓𝛼

)

, (B.4)

𝛽 =

[

1
𝑓 2
𝛽

− 1
𝑓 2

m,𝑥
− 1

𝑓 2
m,𝑧

]

⋅ 𝑓m,𝑥𝑓m,𝑧, and (B.5)

𝛾 =

[

16
𝑓𝛾

− 9 ⋅

(

1
𝑓 2

m,𝑥
+

𝛽
𝑓m,𝑥 ⋅ 𝑓m,𝑧

+ 1
𝑓 2

m,𝑧

)]

. (B.6)

Hence, we obtained the following parameters for the Rankine–Hill
surface: 𝑓t,𝑥 = 0.34MPa, 𝑓t,𝑧 = 0.12MPa, 𝑓m,𝑥 = 3.61MPa, 𝑓m,𝑧 =
5.46MPa, 𝛼 = 1.591, 𝛽 = −0.764, and 𝛾 = 6.219.

Appendix C. Orthotropic Hoffman criterion

The Hoffman criterion uses all six independent components of the
stress tensor and is defined as follows:
𝑓 (𝝈) = 𝐶1 ⋅ (𝜎TT − 𝜎ZZ)2 + 𝐶2 ⋅ (𝜎ZZ − 𝜎LL)2 + 𝐶3 ⋅ (𝜎LL − 𝜎TT)2

+ 𝐶4 ⋅ 𝜎LL + 𝐶5 ⋅ 𝜎TT + 𝐶6 ⋅ 𝜎ZZ

+ 𝐶7 ⋅ (𝜎LT)2 + 𝐶8 ⋅ (𝜎TZ)2 + 𝐶9 ⋅ (𝜎LZ)2,

(C.1)

Hereby, 𝜎𝑖𝑗 are the components of the stress tensor given in the ma-
terial orientation L-T-Z (shown in Fig. 1), and 𝐶1 to 𝐶9 are constants,
which are derived from the material’s tensile, compressive, and shear
strengths, 𝜎t,𝑖, 𝜎c,𝑖, and 𝜎s,𝑖𝑗 , respectively:

𝐶1 =
1
2

[

(

𝜎t,T ⋅ 𝜎c,T
)−1 +

(

𝜎t,Z ⋅ 𝜎c,Z
)−1 −

(

𝜎t,L ⋅ 𝜎c,L
)−1

]

, (C.2)

𝐶2 and 𝐶3 by permutation of indices L, T, Z,

𝐶4 =
(

𝜎t,L
)−1 −

(

𝜎c,L
)−1 , (C.3)

𝐶5 and 𝐶6 by permutation of indices L, T, Z,

𝐶7 =
(

𝜎s,TZ
)−2 , (C.4)

𝐶8 and 𝐶9 by permutation of indices L, T, Z..

The Hoffman criterion was implemented using a user subroutine,
which can be found in the supplementary material.

Appendix D. Supplementary data

Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.engstruct.2023.116557.
Fig. B.17. Additional loading combinations proposed by Lourenço [6]. The dashed line marks the boundaries of the repeating unit cell, which was used for defining the FE model
in Fig. 7.

https://doi.org/10.1016/j.engstruct.2023.116557
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