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Abstract

Following previous results the quantization of D-dimensional spherically reduced
Einstein gravity with minimally coupled scalar matter is performed. The grav-
itational variables can be treated exactly using Eddington—Finkelstein gauge in
the path integral leading to a non-local effective action for the matter sector. At
tree-level it is known to generate two sorts of non-local four-point vertices which
lead to finite S-matrix elements if the original spacetime has D = 4. Here, the
stability of the finiteness of this amplitude is investigated for higher dimensions.
After a long computation a first result is reached: For D = 6 the divergent terms
of the highest transcendentality cancel.
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1. Introduction

Whoever makes the universe hides messages in
transcendental numbers...
—Carl Sagan

The long-sought goal of finding a consistent theory of quantum gravity, free
of problems like UV-divergences, non-renormalizability and non-unitarity [1] still
has not been reached. It even remains an open question whether one of the two
most popular candidates today, namely string theory or loop quantum gravity will
be the right one to fill this gap. Despite their strengths in many points both of
them are beset with conceptual or technical difficulties: In string theory one has to
choose a fixed background geometry which the strings are propagating on being in
contradiction with the assumptions of general relativity where no such preferred
background should exist. Loop quantum gravity on the other hand, although
manifestly background independent, still poses problems in defining physical ob-
servables such as an S-matrix and moreover obscures how Einstein gravity emerges
in a semiclassical limit. On top of that, both of them are mathematically rather
complex making it especially hard to obtain explicit results.

It is therefore interesting to have a simplified theory which does allow analytic
computations and to use it as a toy model for gaining intuition about how a general
theory of quantum gravity might behave. This simplification is achieved by taking
the Einstein-massless-Klein-Gordon model (EMKG) which is a classical model of
Einstein gravity in D dimensions minimally coupled to a massless scalar field and
imposing spherical symmetry. The situation is thereby effectively reduced to two
dimensions and is described by a certain model of dilaton gravity non-minimally
coupled to matter [2]. A minimally-coupled version was successfully quantized
in a series of papers [3, 4, [5| using the path integral formalism where it turned
out that the geometric sector can be integrated exactly. Conceptually this is an
important point as it avoids a perturbative treatment of Einstein gravity which is
known to be ill-defined because of its non-renormalizability [6]. Afterwards, per-
turbation theory was applied in the matter sector and a certain S-matrix element
was computed. In this setting it describes the interaction of ingoing matter fields
mediated by gravity where full quantum backreaction is taken into account. In |7,
8] the scattering amplitude was computed at tree-level in the matter loops with
reinstated non-minimal coupling in the reduced model as opposed to the previous
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work and the dimension of the original spacetime was restricted to four. It turned
out that the scattering amplitude at that level of perturbation theory consists of
two diagrams, each of them being rather complicated and even divergent. Only in
the end, when the two diagrams were summed a finite and moreover intriguingly
simple result was found, a situation frequently encountered in other gauge theories
such as Yang—Mills theory. The structure of the problem depends crucially on the
chosen gauge and it might well be that a different gauge leads to a much simpler
way of obtaining the final sum. Because of its practicality when it comes to solving
the path integral one however usually chooses an Eddington-Finkelstein-like gauge
for the geometric sector as was done in the above references and likewise will be
done in this work.

The main goal here is to investigate the stability of the finiteness of this scatter-
ing amplitude when the dimension of the original non-reduced spacetime is higher
than four. It will turn out that there are differences between odd and even dimen-
sions and for computational convenience we will restrict to the even case. Also, as
the length of the expressions becomes a lot harder to handle the higher the dimen-
sion gets the emphasis will be on the first non-trivial case which is D = 6. The
structure of the thesis consists of two parts: Chapter [2| will at first be concerned
with the path integral quantization of the model in the sum over histories ap-
proach [9] which is just a summary of the previous results. It is followed by a brief
look at the effective geometry as predicted by the quantum equations of motion
with certain boundary conditions which turns out to be a virtual Schwarzschild—
Tangherlini black hole |10]. Finally, the tree-level vertex functions for the matter
field are extracted. All these considerations work without having to restrict the
spacetime dimension. In chapter [3| the finiteness of the scattering amplitude for
D = 6 is investigated with some computational methods adopted from [7]. At first
everything will be written out rather explicitly but after a certain point the use
of Mathematica became inevitable making it impractical to show anything more
than the main results because of the sheer size of the expressions. The final re-
sult of this thesis is the cancellation of the divergent terms at the highest level
of transcendentality which is a first step towards showing the full stability of the
scattering amplitude.
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2. Spherically reduced EMKG
model

Consider a spacetime manifold M in D > 3 dimensions with pseudo-Riemannian
metric g, the usual Levi-Civita connection and a minimally coupled massless scalar
field ¢. Let the dynamics of this system be governed by the action

Pl = 5 | "2vi (R+rg”0,00.0+ 1) @1

2K

which is the Einstein-massless-Klein-Gordon (EMKG) model. R is the Ricci scalar
in D dimensions corresponding to the chosen connection and f(¢) represents a
possible self-interaction of the scalar field which will be set to zero in the following.
The units are chosen such that (k)™' = 87G = 1 = ¢ and we will work in east
coast signature (—,+, 4+, ..., +). Assume now that the group SO(D — 1) acts on
M via isometries with the corresponding orbits being round D — 2-dimensional
spheres. In that case the line element can be decomposed as

ds® = gaﬂdxadajﬁ + CI)Z(:UO, $1)dQ§D72 (22)

where o, 3 = 0,1 and dQ%D,2 is the metric of the round S”~2. Here, a new field ®
was introduced which has the geometric interpretation of an area radius. The pos-
sible solutions of the matter field are now restricted to the s-wave sector, meaning
that no dependence on angular coordinates can occur and one can already sup-
pose that the dynamics of the system is described by an effectively two-dimensional
theory with the dynamical variables (g, ®, ). Indeed, if one performs a spherical
reduction, inserting into and integrating out the angular dependenciesﬂ
after several lines one arrives at

Ponnolo. X0 = 5 [ oy (X5 = JUX)OXP +V(X) + 5 00F)

2
(2.3)
where the functions

D-31 D -3 D-4
UX)=—————= V(X)= ———\XD2 2.4
X)=-p5x (X) 2(D - 2) (24)

'For an extensive treatment of this procedure see appendix C of |7].

3
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were introduced and the area radius was redefined in terms of the dilaton-field X
as
o— D 2xo (2.5)
A
The constant A has inverse length dimension 1 and renders the dilaton dimension-
less. From a physical perspective the area radius should be restricted to positive
values which is inherited by the dilaton.

The matterless part of is an example of a two-dimensional dilaton gravity

model [2] described by the functions U and V. It arises on general grounds when
performing a spherical reduction of Einstein gravity and together with the matter
part is the model of interest in this thesis. It should be noted, that the matter field
was minimally coupled in the original action but is now non-minimally coupled to
the dilaton. This has as a consequence that the matter stress energy tensor is not
conserved anymore, it can be shown instead that V#T),, « (9,X). Although this
seems problematic at first sight, one has to keep in mind that this non-minimal
coupling only is an artefact of the two-dimensional description meaning that the
true physical interpretations have to take place in the non-reduced realm where
the stress energy tensor is indeed covariantly conserved.
Regarding the following path integral quantization it is practical to use the first
order formulation of dilaton gravity which promotes the connection to an indepen-
dent dynamical variable. For this one introduces the vielbein €y by g = eZel,jnab
and chooses lightcone gauge ni+ = 1, n+y = 0 for the Lorentz indices. The
connection is represented by a tensor-valued two-form

w“b = e“bw (26)

which has to be antisymmetric in its vielbein-indices and therefore is proportional
to the Levi-Civita tensor in two dimensions. We can now define the gauge-
covariant derivative D and subsequently the torsion two-form

T*:=DAe* =dANe +e"ywAe (2.7)
together with the curvature two-form
Rab =DA w“b = e“bdw. (28)

It can be seen that R%, has only one independent component, which after elimi-
nation of the torsion part of the spin connection can be taken to be dual to the
Ricci scalar of the corresponding second-order action (2.3)). This elimination is
implemented by introducing Lagrange multipliers X* which from the perspective
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of the first-order action are independent dynamical fields. It can be shown
that

Trofetw, X, X+, X7] = (2.92)
1
5/ [X*D/\e’ +X DAet + XdAw—V(X,X5)e” Aet  (2.9b)

Mo

+ F(X)de A *dqs] (2.9¢)

indeed reproduces ([2.3) upon eliminating the fields X* and w by their equations

of motion. To be consistent with the literature, the coupling function F(X) = —2

2
was introduced and the dilaton gravity model dependence is now fully encoded in

the potential function
Vi=V(X)+ XTX U(X). (2.10)

Switching into a coordinate patch on the world-sheet manifold My we can express
the first-order action in a convenient way for starting a Hamiltonian analysis. This
yields

[t = 1/ Ly+ L, d°x (2.11)
2 S,
where
L, =e" [X+(a# —wes + X (8, Fwuet + X@uwy] |V (2.12)
. F(X) ~uv _+ ~KA _—
Ly, = W(e e, Oy > (e e, (%\qb) (2.13)

with € being the Levi-Civita symbo and |e| = \/|g| = eg el — el e the deter-
minant of the Zweibein.

2.1. Hamiltonian analysis

Before turning to the path integral it is important to analyse the dynamical struc-
ture of this system. We already anticipate that there will be some gauge redun-
dancies present as there are still two diffeomorphisms and one local Lorentz boost
to be performed with arbitrary transformation parameters. In fact, eventually the
only physical local degree of freedom left will be the scalar field which goes along

2We use the convention ¢°! = 1 together with e~* = ¢~ = —1. This is consistent with the

usual definitions €, = \/|g|€., and €., = €qp if €, = —eZegeab.
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with the well-known fact that the matterless model of two-dimensional dilaton
gravity is a field theory of topological type , . These gauge redundancies
have to be tackled if one wants to perform the path integral so that gauge equiv-
alent field configurations are not integrated over. There are several ways this can
be done, one of them being the BRST formalism which needs as a starting point
a Hamiltonian analysis. In the spirit of , we define the canonical coordinates
¢ and

q; = (W1>€I>€f) q; = (Wo,ea,eg) (214)
together with their conjugate momenta

L,
oo

and perform the Legendre transformation to the canonical Hamiltonian density

H=mnd+pq—L, (2.16)

= (X, X", X7) p'=0 ™=

(2.15)

where ¢ = Oyq and L = L, + L,,. It can be seen that there are three primary
constraints p° ~ 0 appearing. Following we therefore need the consistency
conditiond’]

P={H}=0 (2.17)

which can be evaluated using the fundamental Poisson brackets

{a:,p""} = 6]6(a" — 2V) (2.18a)
{39} = 6l6(a" — 2" (2.18b)
{¢,7'} = d(z! — 1') (2.18c¢)
and lead to three secondary constraints
Gy =o' +1°gs — PP (2.19a)
F(p') T 12
9,2, .2
Gz = 0 + PP — asV + = - o (pl)} (2.19h)
F(p)) 2
— 9.3 _ .3 _p)
Gz =0p” —p’q1 + @2V 10 [(‘M P )} : (2.19¢)

A short calculation yields that the canonical Hamiltonian density can be expressed
in terms of these secondary constraints as

31’ has to be read as H(x').
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which shows that H vanishes weakly, a well-known feature of a diffeomorphism
invariant theory . Here the algorithm stops as we have

(G, H'}~0. (2.21)

When computing the bracket relations between the constraints one finds

{p",G;} =0 Vi, j (2.22)
{G,. G} = Ci*Gro(at — 2V) (2.23)
where the non-vanishing components of the structure functions C’ijk = —Cjz-k read
oV F’(]Ul)
Cio? = —1 Cos' = ———+ ==L,
12 23 o el ()
Ci3° =1 Cos® = v (2.24)
Op2
oV
O3 = ——.
23 P

As is apparent from —, all six constraints are first class and therefore
generate gauge transformations. The initially 14 phase space degrees of freedom
are therefore reduced by twice the number of first class constraints which yields
two phase space degrees of freedom or respectively one local physical degree of
freedom corresponding to the matter field, just as expected.

One can observe from the form of H in that the g, in fact act like Lagrange
multipliersﬁ enforcing the constraints ;. On the other hand they are canonical
variables whose conjugate momenta p; have to vanish on the constraint surface.
From a BRST-perspective it is therefore possible to regard them as part of the non-
minimal sector and effectively reduce the physical phase space to (¢’, ¢) together
with their momenta. This of course does not change the number of first class
constraints but permits to write the extended Hamiltonian action as

I'p = /quZ + quz + Cbﬂ + E]iGi . (2'25>

We now associate to each constraint a ghost/antighost pair

Gi — (ci,pl) (2.26)
p; — (bi, p}) (2.27)

4To make this explicit in the notation we from now on switch the index of g, — ¢’ and
D' — D
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with the ghosts ¢;, b; being real odd fields and the antighosts p’, p} being imaginary
odd fields so that the graded Poisson bracket relations

{0} = —=6,0(a — 2" (2.28)
{0, p%} = —6i5 (2" — 2V (2.29)

hold. Having defined these the BRST charge €2 can be determined by homological
methods found in [13] and reads

Q= Qmin + Qnonmin (230)
Qmin = CZGZ‘ + 502070“]6]?2 (231)
Qn(mmin = bi_l‘ . (232)

It should be pointed out that although the structure functions are field-dependent
the homological perturbation series stops after one iteration which is normally
only found to hold in ordinary Yang—Mills theory and is thus a non-trivial feature
in this case . As the canonical Hamiltonian in the minimal sector vanishes, its
BRST-invariant extension is exact and can be written in the form

Hprsr = {¥,Q} (2.33)

with the gauge fixing fermion W. In the context of dilaton gravity it became
customary to choose temporal gauge for the geometric variables meaning a
restriction of the components g, to some constants. This can be implemented into
the dynamics of the extended phase space by a gauge fixing fermion of the form
U = pb X + p$g' with appropriate functions X*. However in 7| there was found a
shortcut for evaluating the path integral leading to the same outcome. This choice
reading

U= p; (2.34)

shall be made here as well.

2.2. Path integral quantization

Having introduced the ghost fields and Hgrsr we can write down the gauge fixed
path integral

Z1.jio) = [(DQ) (DP) (D) (D) (DV) (D)
(2.35)

X exp [z / Lot + Jip" + jigi + 0
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with a Lagrangian density on the extended phase space
Lopt = PQ+ 2 + pie’ — {p5. Q) (2.36)

and the triplets Q = (¢;,q',¢), P = (p',p;, ™) together with sources (J;, j;, o) for
the minimal sector. In contrast to the usual choice of sources for the canonical
coordinates there are also introduced sources for the momenta p’ which turn out to
be useful later on when integrating them [3 [5]. The first few integrations over the
non-minimal sector and the ghosts are rather trivial and are done in the following
order:

D — 7 — pf, b — s, . (2.37)

As an important intermediate step we chose three integration constants for the
g'-integrals so that

¢ =(0,1,0)’ (2.38)

which fixes the beforementioned temporal gauge. The path integral now reads

Z13gio) = [ (Da) (Pr) (Do) (D) Det (000 + pa0)
| (2.39)
X exp [% /pl(]Z + 7TQ.5 + Gy + ﬁ(s)}

where the functional determinants arise from integrating out the ghost fields and
L) contains the source terms. There was also reinstated a factor A to to keep
track of the loop order later on. As a next step one performs the Gaussian integral
over the scalar field momentum 7 leading to

ZJi. o] = / (Dg,) (DY) (D6) /s Det (3500 + 1°0)) (2.40)

X exp [% /piqi +@p* — gV + F(80¢81¢ - CI2(80¢)2) + 5(5)]

with another new factor in the measure. It was now argued in , that a
diffeomorphism covariant path integral of a scalar field ¢ is given by

/(Dgp{‘/m) exp[@'/d% (+/Igle) M (y |g|<,0)} = (Det M)~Y/2 (2.41)

where M is some operator. Comparing this with the path integral in our case one
finds that the factor /g2 in the measure should be replaced with /g3 by hand as

in the gauge li we have /|g] = gs.
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In order to perform the g;-integrals next we rewrite this exchanged factor as
JE = / (D) (Du)(Di) exp / (X2 + uit)gs (2.42)
= /(DX)(DU)(DU) exp |:i/hQ3] (2.43)
with the auxiliary fields X having even parity and u,# having odd parity. Now

one can see the strength of the chosen gauge: All the ¢; appear linearly in the
exponent and can thus be integrated exactly yielding three delta functions

oW = 5(80}91 —p?— j1> (2.44a)
5 = 5(aop2 et F(pl)(ao¢)2) (2.44b)
53 = 5((00 + U+ V — hih — j3> (2.44¢)

which in turn can be used to integrate the p’ and leave only the scalar field ¢ in the
path integral. With this integration also the Faddeev—Popov determinant in
cancels. Thus, the whole geometric sector is treated non-perturbatively meaning
that quantum gravitational effects are accounted for to full extent within the range
of the specified boundary conditions for p’ and g; . Following the last reference
these boundary conditions are chosen such that global quantum fluctuations are
excluded from the field space integrated over. This is achieved by choosing the
integration constants properly when solving the differential equations in —
(2.44d) which amounts to a full fixing of the residual gauge freedom [7]. It should
be noted that the differential equations in the delta functions are just the classical
equations of motion for the p’ as determined from the gauge fixed action .
We therefore have

Zdne) = [ (D6) (DX)(Du)(D) \[Frh)

. (2.45)
<exp[ [ Fok)uo0u0 + Lo + L1
where an additional term
Loy = €9 3+ hh — V(p})] (2.46)
with
1 p1
Q') = / U(y) dy (2.47)
10
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was introduced arising from an ambiguity in the source terms J;p,. Its necessity is
discussed at length in [7, 5], essentially it assures a non-trivial action of the scalar
field when J; = j; = 0 which is of course important for investigating scattering
processes involving it. Moreover the integral over the auxiliary field h = X + uu
would only pull a factor proportional to Js in front of the exponential which would
make the whole path integral vanish for vanishing sources. Including L, avoids
this and we get after evaluation of the auxiliary integrals

Zlo] = / (D) \/ F(pl)eQPe)

h

(2.48)

X exp[ /F(p(lzl)(()ogb(?lgb — V(pl))e@we) + aqb}

where J; = j; = 0. The additional factor e@a) in the measure is recognized as
the solution ¢§ of the classical equation of motion determined from .
As it implicitly depends on the matter field through p!; it accounts for the full
backreaction of the scalar field on the geometry [5|. In fact it can be shown that
the other components of ¢; also enter only classically and we generally have

(@) = ¢ ') =y (2.49)

meaning that the geometric sector of our model fulfills the classical equations
of motion as determined from the action in . In fact, a stronger version of
this arises for pure dilaton gravity where computing the quantum effective action
for the geometric variables leads back to the classical action meaning the theory
is locally quantum trivial [3|. The non-trivial loop corrections in the matter case
arise from the effective action of the scalar field and in order to compute the
different vertices one has to find the solutions p;, ¢ and insert them into (2.48)).
For generic matter contributions this task is quite non-trivial and the equations of
motion can only be solved in a weak matter approximation|8, |7, 5| meaning that
the energy of the scalar field is a lot smaller than the Planck mass,

(80¢>2 < Mplanck- (25())

Thus, at this point we have to start working perturbatively in the matter sector
and can employ ordinary QFT methods such as isolating the quadratic terms in
¢ for the propagator and pulling all higher polynomials as interactions in front
of the path integral with ¢ — ?%. The most work however still lies in the
integration of the equations of motion as there are multiple integrals which have
to be done in a certain order to respect boundary conditions implemented by
certain regularizations of the Green functions [5]. As we are only interested in the
tree level vertices of the scalar field we can use a certain trick to extract them

which was first introduced in that last reference.

11
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2.3. Lowest order tree-graphs

As mentioned before, the expectation values of the geometric variables fulfill the
classical equations of motion with sources. We can therefore go back to (2.40) and
switch to a saddle-point approximation for the geometric sector which is exact in
this case

Z{ai)s, (P) 0] = /(D¢) e W l(ai)s ()] (2.51)

where the inverse Legendre transformation of the quantum effective action

W), ('), 0] = /<pi><qi> + () (p*) — {@)V((p")) (2.52a)
+2F((p1) (P1 — (g2)Po) (2.52b)
+ 5i{d’) + Jilpi) + 0o (2.52¢)

and the combinations

By = %(8()@5)2 O, = %(aogb@lgb) (2.53)

were introduced. The factor in the measure of was left out as by a similar
trick as in it would contribute terms of O(h) to W which are of higher loop
order and thus can be neglected. Note, that (g;) and (p’) depend functionally on
the scalar field and the sources which is denoted by the subscripts in the arguments
of the above generating functional. As we are only interested in vertices for the
scalar field we can now set j; = J; = 0. At tree level the generating functional for
¢-vertex functions is just the classical action in ¢ and we can therefore use

W] = /<pi><Qi> +{an)(p*) — @)V (") + 2F((p") (21 — (@) o) (2.54)

to generate two sortﬂ of 4-point vertices by functional differentiation , ,

52w
(4) — 202 v@ o d (4) - 2.
Va /dl’ dy Uq (xay> 0($) 0(y>? Uq (:U>y) 5@0(56)5(1)0(3/) ( 55)
WO = [ s, o) = i (250
b b ’ b 0P (z)P1(y)

It will be seen in the following section that they both are non-local, however with
each pair of outer legs attached to a single point. Also, VY s symmetric under

12
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80 ¢ 80¢ aO (b al ¢

80¢ 60¢ 80¢ ﬁogb

Figure 2.1.: The two lowest-order contributions VY and Vb(4) to the 4-point vertex.
Outer legs with ingoing momenta k, k" and outgoing momenta ¢, ¢’ are
attached.

exchanging the leg pairs whereas ‘/2,(4) is not which can be seen in the diagrams of

figure 2.1}
The trick in [5] consists now in circumventing the functional differentiations
which would need first the solutions {(¢;) and (p*) for generic ¢ but instead assume

the two matter contributions to be localized at a single point, i.e.
Oy(x) = cod(z — y) Oy (z) = c16(x —y) (2.57)

where two constants ¢y, ¢; were introduced. The equations of motion{|

%

dop1 = p2 doq1 = Q38_pl - 2F’(p1)(<1>1 - Qﬂ)o)
Oz = =2F(p)®0 9y, = —q; + 3psU (p1) (2.58)
dops = =V

Oogs = Q3P2U(p1)

are then solved for this matter distribution which can be done exactly provided
certain boundary conditions are imposed to fix the homogeneous solutions. The
symmetric and asymmetric vertex functions oY and vl54) can then be extracted
by plugging the solutions into and expanding to linear order in ¢y or c;.
Moreover, it turns out that it is sufficient to only take the last part of the effective
action 2F (p') ((131 — qg(IDO) for this expansion as all other terms lead to vertices with

at least 6 outer legs or higher loop diagrams [7].

°Note, that the third possible combination ®;®; does not appear as the (p’) by —
(2.44b|) only depend on ®g.

°For notational convenience, from now on we switch to only lower indices of the canonical
variables.

13
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2.3.1. Effective fields

Solving with can be done separately for 2° < 3° and 2° > 3° where
the matter parts vanish. As we have six first order equations we will at first get
six undetermined homogeneous solutions for each of the patches. At the overlap
2° = 9" there have to be imposed matching conditions which can be found by
observing the form of : 1, D3, G2, g3 have to be continuous and p,, ¢; jump
at the overlap. The size of the jump is determined by the matter dependent
terms in the respective equations. With this one gets six matching conditions
and consequently the number of undetermined homogeneous solutions is reduced
by half. We can now choose freely which solutions we want to keep and take
the outer ones thinking of them as asymptotic solutions describing a classical
vacuum background. Conceptually, this is not in interference with the background
independence of the path integral quantization carried out before as it still holds in
the bulk. By the asymptotic conditions we rather fix the notion of an “asymptotic
observer” which is a useful ingredient for the scattering problem [16].

In fact, there are still the constraints of section [2.1| between the geometric vari-
ables which were not listed in (2.58|) and come out as Ward identities in the path
integral formalism |7, [15]. They reduce the number of independent homogeneous
solutions to three. By residual gauge transformations we can fix two of them
leaving one physical asymptotic constant which we give the suggestive name C..
Provided we fix the residual gauge freedom by

=2 (2.59a)
=19 (2.59b)

b }x0—>oo
qg}xoﬁoo

it can be shown that C., corresponds to the integration constant of p3 and is on
the other hand given by

= Cs (2.60)

20 —00

C(g)‘ = <€Q(m)p2p3 + w(pl))

20— 00

which indeed is the asymptotic value of the conserved Casirnilﬂ featuring promi-
nently in pure dilaton gravity models |2, |17]. can be seen to fix the asymp-
totic behaviour of the dilaton. Thinking back to its initial interpretation as essen-
tially an area radius we see that the “time” coordinate 2° with respect to which our
Hamiltonian evolves as well should be thought of as a radius. Additionally
fixes pa|0 400 = 1 and the Ward identities determine the last two homogeneous

"The function w(p;) = [*" dz e?*)V(2) is defined in the usual way [2].

14
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solutions. In summary we then get

pr=12"+ (2" — y°)2F (y°)ho (2.61)
pa=1-2F(")ho (2.62)
P3 = G_Q(pl) [COO — 2F(y0)w(y0)ho — %] (263)
@2 = Coo —w(p1) = 2(2° =) F'(y°) (2.64)
+ (4P (") (w(a) = w(y) - 20 = ) (F")w(’) + PO ()]
gs = QY (2.65)
where
hi = c;0(zt — y")O(y° — ) (2.66)

and the solution for ¢; was left out as it is not explicitly needed. It is interesting to
see what geometry this effective solution corresponds to. The effective line element
takes the form

ds® = 2q3da® (da' + goda®) = 2drdu + K (r, u)du® (2.67)
where we introduced Eddington—Finkelstein coordinates
1
dr = bqgda® du = d% (2.68)

which are adapted to the chosen temporal gauge. When inserting the potentials for
the EMKG-model the scale factor b can be chosen to any convenient value which

we set to b~! = (D —2)v/2. The functions appearing in the solutions (2.61))-(2.65)

are

_ A2 _
U(r) = Q(var)*" Vi) = Za(var)”
_ A2
Q) — (\/§7~)3 b w(r) = Ee_Qm (2.69)
1 _
F(r)= —5(\/57")[) 2
where we defined the constant
D -3
Qi=—. 2.
) (2.70)
We can now integrate (2.68)) and find for the asymptotic region (p; = )
20 = (Var)P™? R — (2.71)

V2(D-2)

15
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Employing the correspondences (2%, z') <+ (r,u) and (y°,y') < (+',u’) it can be
shown to linear order in ¢y and ¢; that the asymptotic Killing norm reads

K| =—-1+0(Cs) (2.72)

20—00

where the O(Cy,) term still contains spacetime dependence. We now fix
Co =0 (2.73)

which yields an asymptotic Minkowski background. For setting up the scattering
problem later on this is highly advantageous as we can just use the expansions of
free matter fields on flat space for our asymptotic states. In the region 2° < 3° we
get

Kzo<y0:—1+%+ar—d (2.74)

with
m= g0 —1)[(0 =2 EF e~y (2.75)
a=a%%yaf—wﬂ&D—ww—m@W5%+ﬁ} (2.76)
d=2yco6(z" —yt) (2.77)

and x = z(r,u), y = y(r’,u’). It is seen that this region is described by a
Schwarzschild—Tangherlini black hole with an additional Rindler term which gen-
eralizes the four dimensional case investigated in , . From a scattering per-
spective at our level of perturbation theory it mediates the interaction between
two incoming “particles”. It is clear that this solution with is not fulfilling
the equations of motion of the matter field which coined the name virtual black
hole for this intermediate scattering state , in analogy to virtual particles
in ordinary QFT.

2.3.2. Extracting the vertex functions

Having the solutions for the geometric variables at hand we can now extract the
two vertex functions as described before. We take the relevant term in the action
which we call £ evaluated on the solutions

,CQ‘ = QF(pl)((I)l — QQ(I)0> = p1QQ(I)0 — plq)l (278)

eom
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and expand in a double Taylor series in the ¢;. The symmetric vertex then has
contributions from only the first term in (2.78)) and reads

dgo dp
O = | Eadydo(2)0oy) (52 ) 2.
Va / xd yPo(x)Po(y) et + ¢ deo) oo (2.79)
whereas the asymmetric vertex has contributions from each of the terms
@ _ [ 2. 52 dgs dp
Vo = [ dzd y(‘%(?@)@l(y)—pl - q’l(x)q’o(y)—) : (2.80)
dey dcg / 1e;=0
We now insert the functions
20 X
w(X)=(D—-2)°X F(X) = 5 (2.81)

corresponding to our potentials and choose A = v/2(D — 2). This leads to the final
form of the lowest order 4-point vertices adapted to our model

Vi = [ [ @u@matien — i — )
x [2(D = 20 (@)% = (")?) (2.82)
— (2" =¢°)(2D* — 9D + 10) <(:1:0)ﬁ + (yo)ﬁﬂ
v =— /x/%(x)@l(y) 2’ [a® —y’lo(zt — y') (2.83)

where (2.70) was used. They are indeed non-local in the coordinates z°,3° and
local in 2!,y

17
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3. Scattering amplitude

The main goal is to determine the scattering amplitude

T(q,q;k,K) = <q, q

corresponding to the 4-point vertex determined in the last section. In general
we would like to have an expression for any dimension D > 3 which however
turned out to be too tedious a task with the chosen methods. Nevertheless the
computation will be kept as general as possible until a certain point where time
constraints have forced a condensation to the case D = 6. Providing an additional
measurement point to D = 4 in [19] this is at least a step in the right direction.
The final aim of this chapter is the partial cancellation process between several
divergent terms leaving only the lowest order divergences together with finite terms
in the amplitude. Showing the full cancellation of divergences and computing the
finite result is left open for future work.

Before the actual calculation can start we should however make sense of the

brackets in (3.1]).

V@ 4y ‘k K) (3.1)

3.1. Asymptotics

We have seen that for our boundary conditions asymptotically no virtual black
hole can act which means that we can build the asymptotic Fock space in the
usual “QFT-way”, i.e. on a Minkowski background. The viewpoint taken for the
scattering process here is the one from D dimensions as it is considered the more
natural one and also makes it easier to compare the situation for different values
of D. This means however that there will appear explicit factors of surfaces of
(D —2) spheres S here and there which we will mostly absorb in overall constants
later on.

The equation of motion for the scalar field asymptotically is just the Klein—
Gordon equation which can be solved in D dimensions (see appendix and yields
under the assumption of a spherically symmetric matter configuration the expan-
sion in modes

o0 D2 , ' D—
o(r,t) = / dk 4/ = Ja(kr) <aze”‘“ + a,;e’lkt>, a= p-3s (3.2)
0 2 2
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where for technical reasons involving convergence of the integrals following later
only standing waves instead of propagating ones were allowed as they are regular
at the origin [19, 8, [7]. J,(kr) denote the Bessel functions of the first kind. The
Hamiltonian reads

He? / ar 72 (3 4 (2,0)°) = § / KP2dk kafay  (3.3)
2 Jo 0

which was obtained using (A.1]) and can be seen to have the correct volume element
SkP=2dk. The fields af were promoted to operators with

_ Sk —K) o
(s 4] = = 5mg lay s ap] = 0= [a), a)] (3.4)
and by the chosen normalization factor are compatible with the equal time com-
mutation relation
io(r—1")
[o(t,r), m(t,7")] = D25 (3.5)

satisfied by ¢ and m = 0,¢. Using the vacuum state defined by a, |0) = 0 we can
now generate the asymptotic Fock space by the action of ladder operators and e.g.
obtain normalized two particle states by

1
|]€1, k?2> = ﬁagla;; |O> . (36)

3.2. Wick contractions

When evaluating a first step is to look at the operator valued part in the
vertex integrals (2.82))-(12.83|) and isolate the terms that contribute to the connected
diagrams in ﬁgu, i.e. the part in normal orderﬂ In this way all four outer legs
are attached to the amputated vertex. From now on the procedure will be split
into the part for the symmetric vertex and one for the asymmetric vertex
(12.83).

'Normal ordering is defined here in the sense that all a;’s are always to the right of all a?s.
So, e.g.

ca—atata- - — atata=a—
DQgagagap = ay a,aa, (3.7)
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3.2.1. Symmetric vertex

The expression

Bo(2)20(0) = 1 (A00(2) (o)) (33)

is at first transformed to asymptotic Eddington—Finkelstein coordinates ([2.71])
defined before

¥ = (V2r)P? R — (3.9)

and in order to insert (3.2) we use the relation
t=u+r (3.10)

between retarded time and Minkowski time. In the following x and y will still be
used as arguments but have to be understood as shorthand notation for (u,r) and
(u',7"). Now we can evaluate the derivative

1
Oop(z) = 0,0(u,r) = ¢ (z) + ¢ (x 3.11
0le) = ) = (@ 6 (31
where positive and negative energy modes
1

¢ (z) = D= 225 /0 dk VEk2D=5 9,2 (k, r)a; ™ (3.12a)

1 % .
¢t (x) = = dk VEk2D=59,X (k,r)a; e~ ™" (3.12b)
(D —2)272 r2@ Jo

with
E(k,r) =k~ J,(kr)e™ (3.13)
X(k,r) = k=r Iy (kr)e " (3.14)
were defined. This is then inserted into
(q,q'| Po(x)Po(y) |k, k') = {q,q'] - Po(2)Do(y) : + contractions |k, k') (3.15)

where the right hand side was obtained using Wick’s theorem. All the contractions
among the fields themselves lead to disconnected diagrams which are neglected.
The normal ordered part can be written in terms of ¢+ and ¢~ reading

- B(0)@0(y) - = (67 ()6~ (@0 )6 () + 6~ o™ ()6 (207 (2)

4
@)W @) + 6 W@ @)y o
+ 67 (@)6 ()6 W6 (@) + 6 (1)o (26" (1) (2))

+ ..
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where the ellipsis denotes terms with unequal numbers of negative and positive
modes which will be left out as well because they yield zero when evaluated on
the asymptotic states. The terms in the brackets are now contracted with the
outer legs leading to a symmetry factor 2 - 2! in each case. It is convenient to first
determine the single contractions

¢*(x) [k) = ¢"(x)a) |0) (3.17a)
_ 1 _Zkué(k: k)
— (D—2)2Dz_17‘2a/0 a7 0,2k e ) (317)
]' —iku
(D gsa g e (317¢)
and
(al¢(@) = (0| . (g, r)ei (3.18)

(D — 2)52 2 7“20‘\/_

They are then used to compute
(g, q'| + Po(x)Po(y) : |k, K)

1-D

1, 23 4 piula+a)) i/ (k+K')
n g((D — 2)5) (7’7’/)4a kK qq

1
§<O‘a;a : ®o(z) L af|0) (3.19a)

> I(q, ¢k, k)  (3.19b)
legs

where
(g, k k) = (a,,z(q, r)) (&E(q’, r)) (c%)((k, r’)) (c%?((k’, r')) (3.20)

and ), ;s denotes a sum over all 24 permutations of the outer momenta, assigning
a minus sign to every outgoing k, k' and every ingoing ¢, ¢":

> g, q k) =1(q,q k) + I(q q: k. k) +
legs (321)
+1(=k,q"s —q, k') + I(q, —k'; k, =¢')... .

After having transformed the integral (2.82)) to the new coordinates (2.71]) we can
plug in (3.19b)) which after several lines of simplifications leads to

T, ={q.q|: V¥ ) (3.22)

D—14

272 §(k+K —qg—q
=2 D _( )254\/W>/r7“/ Odrdr/@(r'—r)x (3.23)

X [7‘1}2((5 2D)7’+r> P 2( (5—2D)r )]quq k, k")

legs
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The v and v’ integrals were evaluated trivially leading to the momentum conserving
delta function.

3.2.2. Asymmetric vertex

The same steps are done for the asymmetric vertex where we evaluate the expres-
sion

(0.4 - Po(2)Pr(y) : [k, k')

= Ha.d|: (6@ (aol)ari))

2

" k,> | (3.24)

Inserting the expansion for the scalar field (3.2) we can again split each term into
positive and negative energy modes

Oop(x) = ¢ () + ¢ (2) (3.25)
Oo(r) =¥ (z) + ¢~ () (3.26)

with ¢* defined as in (3.12) and

Y (z) =i(D —2) /Ooo dk ViP5 k=Z(k, r)a; ™ (3.27a)

Y (x) = —i(D — 2) /00 dk VK25 kX (k,r)a; e " (3.27Db)
0
The product is easily brought into normal order leading to
D)1 (y) : = (67 ()6 (@) W0 (v) + 6 () ()6 ()67 (x)

+ ..

where like before the ellipsis denotes irrelevant terms. With the single contractions

EI9-EI9) and

o DDk )
e = =R ) (3.290)
(v (@) = (0] L2 =Dz o (3.200)

SV

23



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

we can evaluate ([3.24]) yielding

(a,q| : @o(2)@1(y) : |k, k) *—<o}a ,: Oo(z) Py (y) : ayafy|0) (3.30)

2(2 — D) < 2 2 >3eiu(q+q )—iu’ (k+E") B . /
- 1 (kKD . (331
8S (D —-2)S 7,4%,,204\/W %; (¢4 kK . ( )

Here the altered definition
I(q.q: k) = (ar =(q, 7«)) (&E(q', 7“)) (k X (k, r’)) (&/X(k’, 7“’)) (3.32)

was introduced whereas the leg sum is defined like in the symmetric case. Inserting
into (2.83) after transforming the integrals to the new coordinates (2.71]) we get

Ty={q,qd|: V" |k, }) (3.33)

277 6 (k+k —q—q) [
. -4 D-2 D—2 7 .
=D )5 / L = ) T sk )

legs

and the u, v’ integrals were again evaluated trivially.

3.3. Integration over radial coordinates for D =6

The following integrations over r and 7’ are highly non-trivial and were eventually
only manageable for the special case D = 6. Some of the techniques used here can
also be found in , .

3.3.1. Preparation

i) Both of the amplitudes T, and T}, contain a leg sum in the radial integrals
summing products I, of differentiated higher order Bessel functions. An
important simplification is achieved by noting that

2k, 1) = 0, (k™ *r > Jo(kr)e™) (3.34)
= éakz(k, r) (3.35)

and likewise
0,X(q,1) = g(?q)((q, r) . (3.36)
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i)

It is therefore possible to write

ek _ _
Ig,q's k. K) = 2575-0,0,0000 Z(a.7)2(d 1) X (k)X (K r') - (3:37)
~ /. N qq/kk/ o —( 1 / AW
I(q,q; k, K') = e 0g0y O Z(q,7)2(¢', ) X (b, ") X (K, 1) (3.38)

allowing to pull all the momentum derivatives together with the leg sums
out of the integrals.

In general the integrals behave differently for even and odd dimensions which
has to do with the fact that the Bessel functions .J,,(kr) can only be expressed
in terms of elementary functions if

a=n+—= n e N*, (3.39)

ie. if D = 2a 4 3 is even. In that case it is possible to employ the corre-
spondence (A.3]) between J,(kr) and the spherical Bessel function j,(kr) of

order n which in turn is related to the zeroth order spherical Bessel function

jo(kr) = Si“k(fr) (3.40)

by the Rayleigh-formula (A.4)). This yields for the upper restriction of «

Juey (hr) = <—1>”@ (5)" () "otk (3.41)

and will be used in the following. As already mentioned we will further
restrict to n = 1 from now on which is the simplest “non-trivial” case apart
from . The case of odd dimensions shall be put aside for now as it is unclear
how to handle the appearing expressions when it comes to performing the
integrals. It might be a possible topic for future research. Evaluating
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iii)

iv)

26

and (3.33)) for D = 6 gives

T, =27 (19) " ikas /M/ ) drdr' ©(r" —r)(r' —r)x (3.42)
X [77"4 4+ 613 4 6127 + 6rr”° + 77"4] Z I(q,q; kK"
legs
S(k+kK —q—q) /°°
=2 dr dr' |r' — 3.43
"US VIR GG Jrpo =1l (3.43)

X [7r4 1 613 4 612’ + 6rr” & 7r’4] Z I(q,q; k, k")

legs

160(k+ Kk —q— ~
T, = 2mi 65((4;) —kk?qu)// Odrdr’|7"4—r4‘21(q,q';k,k/) (3.44)

where we used the r <» r’ symmetry of T, to convert the step function into
an absolute value.

legs

All step functions included in the absolute values will be rewritten as integrals

by Fourier transformation (A.30). We have

d N\
‘7" — 7“‘ = lim —/ [ T } ((9_) e/’ =) (3.45)
e—0 271 T+ ze T — 1€ )
dT . ’
14 4| ir(r'—r) (,.14 4
- lim —— [ } — 3.46
|T r‘ el—r>%27m/ T + 1€ T—zee (r ") ( )

where in the first line we additionally generate the term (' —r) by a differen-
tiation with respect to 7. In order to shorten the notation we will abbreviate
the integral measure for the 7 integrals by

(3.47)

[dr] := lim dr dr ] :

e—0 LT —1€ T +1€

The quantities k, k', ¢, ¢, E;, E,, will be treated as independent variables from
now on which allows to differentiate after the energies without affecting the
momenta. This makes it possible to generate the polynomial expressions in

(B-43)-B49) by

(7r + 6% + 612" + 611" + Tr'") = D, e Fem e (3.48)

Ey,Ey=0

i1Egr ,—iEyr’

(r* =1 = D, e""e (3.49)

By, Ey=0
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where the energy differential operators

R P
Drer, = <70E;g ~%9moE, T omor: ~Yom, 08 78E;> (3:50)
i o
Dr.s, = (551~ 5m) (3:51)
z y

were defined. In the following parts the evaluation £, = 0 = E, after the
action of these operators is implicitly understood and will not be written
out.

3.3.2. Symmetric vertex

After applying the tools above as well as the definitions for the functions =, X’ in

(3.13)-(3.14)) one arrives at the expression
1

2 2
Ta = CDE’IEy ZQZQ/ k2/{7/ 8q8q,8k8kfm /T[dT] 87— (]1 : Ig) (352)

legs
where we abbreviated the prefactor as

_25(k+k’—q—q’)

c= = . (3.53)
w2(45)4 (kK qq')2
The radial integrals were pulled into the last term and were split into a product of
> d d o ,
T -6 (Y . iy i(q+q' +Ex—7+ie)r
n=tim [ dre (Gotan)) (Gt e (3.54)
X o0 _ d . d . i / —T7—ie)r!
b=l [ 6(% jo(kT/)> (% jo(k/r/)>e (k4K + By —r—ie) (3.55)
with a regulatmﬂ . In analogy to , we now define the operators
1
D,y = qzq’Q(?q@q/@ =qq'0,0y —q0, — ¢'0y + 1 (3.56)
1
Dy = l<:2k:’28k8k/ = kk’@kﬁk/ — kO, — k’@k/ +1 (357)

kk'

which have the useful property (A.6). The integrals I, I are of rather similar
form, so the following steps will be essentially the same for both of them. They
shall be shown explicitly for I;.

2In principle the two integrals have to be regulated independently with two parameters, say
€ and €. It however turned out that it does not matter in which order they are taken to zero
which justifies taking the same symbol for both of them.
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At first the momentum derivatives are pulled out leading to

Il = aqaq’ lim dr T_G jO(qr)jO(q'r)e
e—0 0

i(q+q +Ey—1+ie)r

~i(9, + ) lim [ dr v jo(ar)jo(q'r)el T
0

— lim dr r~* jg(qr)jo(q’r)ei(q+ql+Em_T+iE)r (3.58)

e—0 0

where the second and third line result from using the inverse product rule. With

wqr —iqr

e

Jo(qr) = _°

Sior (3.59)

we can further rewrite

Jo(qr)jolq'r)e! e —THET
= 1 . ( i ei(2q+2q/+Esz+i5)r + ei(2q+Esz+i€)r
4qq'r

+ ei(2q’+Esz+is)r . ei(Ezf7'+is)r>

1 . .
Z ez(Q—T—za)r (360)

:4 /02
ar qq’

where we defined the sign sum
Z f(j:qv iqlv l’) = f(+Qa +q,7 I’) + f<+Qa _qla J")
aq’ (3.61)
+ f(_Qa +q/7 LL’) - f(_cb _q/7 1:)

and
Q=q+¢ *qxd +E,. (3.62)
Insertion into (3.58)) yields
_ -8 zQ T+ie)r
I = q4qq lli%z/ drr
=7 zQ T+ie)r
—i(0y + 0y ) 4qq llg%Z/ drr
—6 zQ T+ie)r
4qq lim d?" r (3.63)
28
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and it can be seen that the integrals are of the form (A.24]). They are all evaluated
in the same way using that formula with the singular limit (A.25) and each one
yields a divergent as well as a finite part in the limit 6 — 0. Thus, in total we get

L=I 417 (3.64)

Taking a closer look at the divergent part

~ 7 1 1 7
=g ot T@- T
1 1 .
—I—@(Gq + 0y) o Z(Q — 7 +1ig)®
qq’
11
——— ) (Q—T+ie) 3.65

we can evaluate the sign sums together with the differentiations in Mathematica
and find

/

I = lim W (q+q —7+ie) . (3.66)

5,e—=0 90

It can be readily seen that this is eliminated by the differential operator D,, with
property (A.6). We therefore only need to concentrate on the finite part. In several
lines it can be shown to be of the form

o 1 1 1 . :
Iy = 1[ 7;8qq o  lim - (Q =7 +1) In(Q — 7+ ie)
Oq + Oy ) — lim Q—717+1)In(Q — T+ ie
—5 (0 00) > ¥ In )

L li Q i)’ In(Q ' 3.67

+aﬁ81_1>%2,( — 7 +1i€)’In(Q — 7 + ic) (3.67)

which simplifies by setting the terms ic in the polynomial expressions to zero as
they will only lead to terms vanishing in the limit ¢ — 0 after the following 7-
integration. It is however important to keep them in the logarithms as they will
provide a prescription for circling the logarithmic cuts in the complex 7-plane.
One last time we introduce new operators consisting of the prefactors in (3.67))

1. 1 1 1 11
Q ._ Q ._ Q
LY = ﬂaqq/qq, LY = 6!(aq+8q/)qq, Ls =510y (3.68)
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giving us the final expression

Iy = ! [ L?li_r}réZ(Q—T)”n(Q—T—l—ie)

4
Q B .
—Lg ll_r% E T+ ig)
Q B .
+L;? }:gn E P’ In(Q — 7+ 25)] : (3.69)

The integral I is done analogously leading to

2= % [—Lf lim S (K — 1) In(K — 7 — ic)

e—0

kk'
+LE llin Z )0In(K — 7 — ig)
kk’
—LE lim %;(K Y In(K — T — ie)] (3.70)
where
K=k+k+k+tk +E,. (3.71)

As opposed to I; there is one non-trivial intermediate step to be mentioned: After
applying (|A.24)) we at first get logarithms of the form In(— K + 7+i¢). In the final
result (3.70) a minus sign was pulled out leading to

In(—K + 7 +ie) = In(K — 7 —ig) +im (3.72)

with an additional term on the RHS. Doing this for each integral we get a purely
polynomial contribution similar to the divergent part I5° which just like (3.66]
vanishes under the action of Dy,. This justifies leaving out the terms im.

3.3.3. Asymmetric vertex

The starting point is expression (3.33]) and again all the tools of section are
applied. Going directly to the case D = 6 we get

1
T, =16cDp,i, Y _ ¢°q kK040 O —— p / [dr] (Ji - o) (3.73)

legs
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with

: = - d . d i ! —T+ie)r

Jp = }75% i drr=5 (—dqjo(qr)> <d ~jo(q’ 7‘))6 (a+q'+By—rtie) (3.74)
. < -5 d . d —i(k+k'+Ey—7—ic)r’

Ja=tlim | a7 (qpiolh)) (Gdoh'n ) e BT 3.7

We can again define momentum operators

Dy = ¢*q"?0, a =qq'0,0y — @0y — q'0y + 1 (3.76)

Dkk’ = k2l€/2(9k/

= k;(k’f)k, —1) (3.77)

and again pull the remaining derivatives out of the integral. Looking at the case
J1 more explicitly we get

Jy = 9,0y lim [ dr 772 jo(qr)jolq'r)e
e—0 0

i(qg+q' +Ex—1+ie)r

—i(0y+ 0y) lim [ dr 7™ jo(qr)jo(q'r)e e O
e—0 0

— lim dr r—3 jo(qr)jo(q’r)ei(quql*Ez’T”E)r (3.78)

e—0 0

where again the definition of the sign sum (3.61)) was used to rewrite the spherical
Bessel functions like in ([3.60)). This leaves us with

_ Q T+ie)r
Ji Oy 17 ll_l}éz / drr~
Q T+ie)r
—i(0; + Oy) 4qq 1-1_{%2/ dr r—°
Q T+ie)r
4qq lim dr r (3.79)

which is evaluated with (A.24)). There is again a divergent and a finite part

Jy= 0+ I (3.80)
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with the divergent part reading

=gl 0 2(Q-rvief
+%(aq +0y) qz, %(Q — 7 +ie)’
_%é %;(Q s (3.81)
and evaluating to
J° = 51?—{10 %—(g (3.82)

This is cancelled by Dy, rendering the integral J; finite. Note, that the main
difference to the symmetric vertex lies in the powers in r in the integrals —
(3.75). The fact that they are one order lower than in the symmetric case leads to
the divergent parts J;°, J5° being bilinear in the momenta. Therefore even though
the new differential operator in is only of first order, the integral J, is also
finite as Dy manages to kill the divergent terms.

We focus on the finite parts J7, J; and find

Jf——[ MthZ Q — T +ig)

e—0

M9 _ _ ;
M, ll_r%z )9 In(Q — 7 + ig)

qq’

+MZ lim D> (Q—7)"In(Q — 7+ i) (3.83)

qq’

o 1 K 1: 6 .
JS :Z[ MElim S(K = 7)°In(K — 7 — ie)

k!
~MElim Y (K —7)°In(K — 7 — ic)
e—0
k!
+ME hm Z Y In(K — 7 —ig) (3.84)

where we left out all terms i¢ in the polynomial expressions and introduced the
operators

1 1 1 1
M = =0,y M® = = (9, + 0,y)— M .= 2
6' qq’ qq 5 5'( q + q )qq/ 4 4' qq/

with analogous versions for K.

(3.85)
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3.4. Integration over 7 for D =6

In the last section we have managed to reduce the radial integrals to sign sums
with certain differential operators in front of them making the only remaining
integration the one over 7. At this point the two amplitudes read

T,=cDp,i, Y Doy Dy / [dr] 0, (I} - I5) (3.86)

legs T

Tb = 16¢ DEIEy Zqu/Dkk/ /[dT] (Jlo . J;) (387)

legs T

where the definitions (3.50) and (3.51)) were used. As the generators E,, E, have
been linearly absorbed into @ and K (cf. (3.62)),(3.71])) we can equally write these
operators as

Dg, g, =704 — 6050k + 6030% — 6000% + T0% (3.88)
Dp, 5, =04 — 0k (3.89)

and set B, = 0 = E,. Note however, that this is only true if they are evaluated
before the sign sums as otherwise the redefinitions — would be singular
for terms involving () = 0 or K = 0. We therefore pull the energy differentials
into the 7 integral and evaluate them next.

At this point it becomes quite important to only focus on terms that still lead to
non-zero results after evaluating all these sums an differentiations. All other terms
will be referred to as “harmless” and are dropped before the sums are evaluated.
This helps to reduce the size of the expressions quite a lot. Still, most of the
following part of the calculation was done with Mathematica as there are many
remaining terms to be taken into account. Before tackling the integration we
investigate which terms count as harmless.

3.4.1. Harmlessness

For the symmetric vertex we get terms of the form

Dy L2 > f(Q.1) i=567 (3.90)
qq’

33



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

and vice versa for K. Depending on the operator LZQ the following relations are
found to hold

qu’Lg Z Qf(x) =0 (3.91)
qq’LQZ Qf(z) +g(x )) =0 (3.92)
Dyy L§ 2@4 (3.93)

Dyy L Z (Q°h(x) + Qf (z) + g(z)) =0 (3.94)
qu/L? Z Q°f(z) =0 (3.95)
Doy L2 Y " (Q%1(x) + Q°h(z) + Qf (x) + g(x)) = 0 (3.96)

qq’

with some arbitrary functions [, h, f,g which do not depend on (). The same
relations hold for the case with K. Thus, all those special polynomial combinations
are dropped when they appear in the following computations.

For the asymmetric vertex the ()-dependent sign sum and operators essentially
fulfill the same relations as in the symmetric case with LY exchanged by M .
Only the K-dependent part differs because there Dy features instead of Dy .
The following relations hold:

Dy Mf* Z (K f(z)+g(x)) =0 (3.97)
Dy ME Y~ (Kh(z) + K f(2) + g(x)) =0 (3.98)
Dy MY (KPU(z) + K?h(z) + K f(2) + g(x)) = 0. (3.99)

Therefore, in the computation of the asymmetric amplitude all these terms are
dropped as soon as they appear.

3.4.2. Symmetric vertex

Starting from (3.86) with Dp, g, pulled in

=¢ Y Dyy D / [dr] 3, D, 5, (I7 13) (3.100)

legs

34



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

(]
i
r

M YOU

we take the results (3.69)-(3.70)) and rewrite

[1r1 0. D (17 15) = 613302 1255 4, (3.101)

T 1,j=5 qq’ kK

where

Ayj = (—1)i+j/_oo< dT. + dT. ) Or Dg, g, X

T — 1€ T + 1€

x (Q—7)(K -7y In(Q — 7 +ie)In(K — 7 — ie) .

(3.102)

These 9 integrals each are divergent as they stand which can easily be seen by
looking at the integrands: After evaluating the derivatives there are still polyno-
mial and logarithmic terms in 7 left which do not die off at infinity. However it
turns out that when they are summed in the end all divergences cancel leaving
a finite result. To make this more plausible the value of the integrand in
which already contains the full sum was evaluated in a large 7 expansion yielding

. o 1o kk' + qq 1

Tim 0, Dp,, (IT 1) = =+ 0( ) (3.103)
which indeed dies oﬁﬂ for 7 — oo. Thus, infinities appearing because of large values
of 7 in the single integrals A;; are more an artefact of our strategy of integration
than physical divergences in the amplitude. To handle them we will introduce a
cutoff R for each integral and see in the end that all cutoff dependent terms are
either harmless or cancel for R — co. As the integrals are quite similar in their
form we only show the evaluation for one of them and will jump to the final results
for the rest. Throughout the way it is constantly made use of harmlessness in order
to drop terms.

For the integral Ass one finds after evaluating 0. Dg, g,

Ass = —5! lim z< dr_, _dr >><

R—oo | _n» \T —i€ T+ 1i¢

X (@ =) =)' I(Q = 7 +i2) + (Q — T)}(K — 7 In(K — 7 — ie)
+ {70 =7 +5(Q = (K = 7) +5(Q = 7)(K = 7)' +7(Q — 1)} x

X In(Q — 7 +ie) In(K — 7 —ig) (3.104)

3In fact, the O(77!) term could still lead to logarithmic divergences but note that it only
depends linearly on the momenta and is thus harmless.
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where there are terms with single logarithms and bilogarithmic ones. If we continue
7 analytically we see that there are poles at 7 = 4ie and branch points of the
complex logarithms at 7 = @) +i¢ and 7 = K — ie. The integral is split into three
parts, two single logarithmic ones

R
A2 = —5! lim (‘h ar

R—o0 _R

E— j— 4 j— )
o )@= TK — ) QT i) (3.105)
RBodr dr
K — _5 1
A=t [ (T

yQ—ﬂ%K—Tan—T—m)(amm

T—1€ T +1€

and a bilogarithmic one

R

. d d

Al = —5! lim ( U
R—o0 _R

me—T+mﬂmK—T—wp<(3mn

T —1€ T+i€
X {7(K = 7)° 4 5(Q = 1)K = 7) +5(Q = T)(K = 1) +7(Q — 7)°} .
Also, in addition to the harmless terms in - we drop terms
e of O(e),
e of O(R™),
e of O(e)

as they do not yield non-zero results in the given limits. The three contributions
AL AK and Ab% are now evaluated with the following procedure: Split each one
into its two constituents corresponding to a part with the pole at 7 = +ie and
a part with the pole at 7 = —ije. Whenever there is a logarithmic branch cut
in the half space complementary to the one with the pole we use one of the two
contours depicted in figures [3.1] and depending on which half space it is. This
allows us to kill that logarithm and reduce the integral to a contribution along the
branch cut. The argument around justifies neglecting all auxiliary paths
at infinity. More explicitly, the contour in figure gives ug]]

[ == [r=emn- [ =iy
:‘/:%({TzzfﬂﬂﬂT{}-{Tzzfﬁﬂﬂ7¢}) (3.108)

which kills the K-logarithm by

In(K — e"|7]) — In(K — *™|7|) = —2mi . (3.109)
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Im 7

1€

Q +ic

R K —ie

Figure 3.1.: Integration contour for circling the K-branch cut.

In the same way we can work through the case in figure and find

R Q ] R ]
[ == [r=eminy - [ =i
-R R Q
R . .
:/ (tr = &milrl}y — {7 = ey (3.110)
Q
killing the @)-logarithm by

In(Q — *™|7|) — In(Q — "™|7|) = 27i . (3.111)

The remaining integrals, which are the ones with a single logarithm in the same
half space as the pole are integrated over the real axis in a standard manner.

4The ie-contributions in the K-logarithms were here neglected for a moment as for the
following considerations it does not make a difference whether the branch cut is on the real axis
or not.
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Im 7

Q +ic

ie K —e

Figure 3.2.: Integration contour for circling the ()-branch cut.

Altogether the three contributions to Ass; then read

B dqr
AY = — 5! lim .
R—oo J_p T — 1€

Q—7)(K —7)'In(Q — 7 +ic)

— 5127 lim L Q—7)(K—71)* (3.112)
' R—oo Jo T+ 1€ ’
AL = —5! lim " dr Q- 1K —7)In(K — 7 — ig)
B T Roe | g T 4de
. B oar 4
+ 51270 lim Q—71)(K—r1) (3.113)

R—oo Jpr T — 1€

. R d R d
At Z5127i lim [/ T In(Q — 7 + i) —/ T (K —7— ie)} x

Rooo L Jpe T — i€ o Ttie
x {7(K = 7)° 4+ 5(Q — 1) (K — 7)
+5(Q—7’)(K—7’)4+7(Q—7’)5} (3.114)

and can be seen to be either purely polynomial or logarithmic but not bilogarithmic
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which simplifies the integration a lot. Performing the integrals with Mathematica
yields many harmless terms, a contribution independent of R and terms linear in
R which do not cancel and diverge in the limit R — oo, i.e.

Ass = A2 + 1440K°Q*R . (3.115)

The finite contribution Az, shall not be presented here because of its size. It con-
tains no polynomial terms but only logarithmic and Dilogarithmic contributions,
the latter being always of the form

[polynomial] - [L’@(%) — Liy (g)} (3.116)

which is reminiscent of the 4-dimensional case |7].

With the same procedure for the other eight integrals A;; one obtains more
contributions linear in R as well as a large number of finite terms. The former
ones read altogether

AR = 1440 K*Q*R Al = —T800K*Q*R

Al = —2640K3Q*R AR = —7800K3Q'R

Al = —2640K*Q°R AR = 4320K*Q°R

Al = 4800K*Q°R AR = 4320K*Q'R

AR = 12600K*Q*R (3.117)

and cancel each other as expected when inserted into (3.101]),

7

SLPLEY > Afl=0. (3.118)

,J=5 qq’ kK’

We can therefore drop all R-dependent terms and immediately perform the limit
R — 00. The other terms are collected and we finally arrive at

7
C . QrK o
Ta = E ZE qu’Dkk’ llz)% ' E SLi LJ E kgk A,L] (3119)
egs i,j= qq’ !

where A7; are nine integrated expressions with all harmless terms dropped. We
also took the limit ¢ — 0 which can be done safely after having performed the
T-integrals.
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3.4.3. Asymmetric vertex
Expression (3.87) with the energy differentials pulled in reads

T, = 16¢ Y _ Dyy D / [dr] (05 — 9x) (J7J5) (3.120)

legs

where J7 , are given in (3.83)-(3.84)). We split (J7J3) into its nine components like
we did in the symmetric case yielding

/[dT] (08 — 05) (I3 J3) = ¢ Jim Z MEMSY N By (3.121)

e,e—0
o 1,j=4 qq’ kK’

where

B := (—D”ﬂ‘/i( Iy o ) (9% — ) %

T — 1€ T + 1€

x (Q—7)(K —7)YIn(Q — 7 +ie) In(K — 7 — ie) .

(3.122)

Again, each of these integrals is divergent by itself. It can however be expected
that summing all of them gives a finite result as we get for the integrand evaluated
at large 7

kk' — qq 1
4 o yo\ __
Tim (94— 04) (Ji5) = 5 +O(§> , (3.123)
i.e. a fall-off at infinity. The integrals are therefore evaluated by introducing a
cutoff R and checking that all cutoff-dependent terms cancel modulo harmlessness
in the end. By taking a look at the first integral which reads after evaluating the
energy differentials

By, = lim Z( dr + dr >><

R—oo J_p \T —1i€ T+ 1€

x [50([( (K — 1 — i) — 50(Q — 7) In(Q — T + ie)
+ {24(K )t 24(Q - 7)4} In(Q — 7 +ie) In(K — 7 — is)} (3.124)
it can be seen that both single logarithmic terms are harmless as they depend
only on one momentum combination each. We therefore concentrate on the bilog-

arithmic contribution and split into a part with the pole at 7 = +i¢ and one at
7 = —ie. The former is evaluated with the contour in figure [3.1] and the latter
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with the contour in figure [3.2] leading to

"od "od
Byy = 2mi lim [/ T ln(K—T—ia)—/ T In(Q — 7 +ie)| x

R—oo Q T "‘ 7:6 K T — /L.G
x (24([( — Y 24(Q — 7)4) (3.125)
where ((3.108) and (3.110) have been used. There is a finite contribution Bj, con-

sisting of polynomial, logarithmic and Dilogarithmic terms as well as a divergent
one

By = By, + 288in K*Q*In R | (3.126)

a pattern which stays the same for all the other integrals. Also, the Dilogarithmic
contribution is again of the form (3.116)). The R-divergent parts collected together
read

B = 288irK?Q*In R BE = —1200irK*Q*In R

B = —480in K*Q*In R B = —1200ir K*Q*In R

BE = —480in K*Q*In R Bit = 7120ir K*Q*In R

BE =800inK*Q*In R Bf = 720in K*Q*In R

BE = 1800ir K*Q*In R (3.127)

and like before cancel under evaluation of the sign sum and differential operators,
i.e.

6

S MPMEY > Bfi=0. (3.128)

i,j=4 qq Kk’

After finally taking the limits R — oo and € — 0 we are done with the 7-integration
of the asymmetric part and arrive at

6
Ty=cY DyyDuw lim > MEMEY S By, (3.129)
legs i,j=4 qq’ kK’

where the Bj; have been evaluated with Mathematica. Like for the symmetric
amplitude we refrain from displaying them here as the size of the expressions is
quite large.
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3.5. Summations and Differentiations

The final aim is to evaluate all the differential operators D,,, ny, L7 and MY? as
well as the leg and sign sums. A rough estimation gives of the order 10* terms
after performing all these operations which makes it far from possible to do any
computations by hand at this point. However, we can still use that several of
the remaining terms are harmless which helps to reduce the expressions to some
extent. When doing all these simplifications an important point to take care of
is the treatment of the complex logarithms. We shall restrict all of them to the
principal branch

Inz = In|z| + iArg(z), —m < Arg(z) <m (3.130)

which sometimes makes it necessary to introduce terms proportional to 27¢ when
a logarithm is simplified (see appendix . Also, similarly to the case D = 4
new divergences appear when the sign sum is evaluated. We will primarily focus
on the cancellation process of these divergent terms between the symmetric and
asymmetric amplitude in this last section and show that this cancellation indeed
occurs at the highest degree of transcendentalityﬂ s = 2. Regarding the size of the
intermediate results this is found a non-trivial result already. The cancellation of
the rest of the divergent terms with s = 1 still remains to be checked and is left
open for future work.

3.5.1. Extracting the divergent terms

The terms in A7; and Bj; which cause the divergences are of the form

o Q"In(K) o K"In(Q)
o Q"In(K) o K"In*(Q)
o Q"Liy(Q/K) e K"Liy(K/Q)

meaning that if Q = 0 or K = 0 we get logarithmic divergences. To isolate them
we split the sign sum into four parts

Y - 29: n 23: I 23: i 21: (3.131)

¢ k' Q#A0£K Q=0,K#0 Q#0,K=0 Q=0=K

5The degree of transcendentality s € N results from the definition of the Lerch zeta function
(s, z,¢) = D00, e Which generates the Polylogarithm of degree s by Lis(z) = 29(s, 2,1)
|20]. The divergent terms are classified by their transcendentality which for z — oo corresponds

to the highest power of logarithmic terms in an expression as lim, , Liy(z) = In(—2)" +
O(In(—2)"71). [21]
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where the two sums in the middle contain the divergent terms and the first one
yields a finite result. Examining the very last sum which only consists of the term
K = 0= (Q it turns out that it in fact does not cause any divergences as there is
always a polynomial zero compensating the logarithm.

The explicit computation of the divergent terms becomes a little more economic
if we go back to the 7-integrals A;;, B;; and drop all terms in the integrands
which cannot lead to any infinities of the mentioned type after the integration is
performed. As we already know that no divergences for 7 — oo can occur we
only need to take into account the parts which diverge at 7 — 0. For the explicit
example of Ass in (3.104) we are then left with

R
Adv = _51 lim ( dr_ 94T >>< (3.132)
R

R—oo | _p\T —1€ T+ 1€

X [7K5 + 7@5] In(Q — 7 +ie) In(K — 7 — ie)

as all other terms are of higher polynomial order in 7 and thus stay finite. Note
also, that the single logarithmic contributions of Ass do not lead to divergences
of this type and were therefore neglected. The same is done for all other A;; as
well as for the Bjj, the resulting integrands of A%" and B{” are summarized in
appendix [C] An interesting thing to note is that only the lowest order integrals
Asj, Ajs resp. By, Bjs contribute to the divergences, all integrands of higher order
in () or K automatically are of higher order in 7 and therefore yield only finite
results. Performing the 7 integrals again in the same way as explained in section
and dropping harmless terms as well as terms like Q"K™ In(K — @) which
stay finite for @ or K = 0 we arrive at the results summarized in appendix [C]
The limit lim, ., can be taken safely as there are no more ambiguities concerning

logarithmic branches.

The next step is to evaluate the divergent parts with

3

7 3
Tdiv — %Zqu,Dkk, Z LZQL?[ Z + Z }A?}'” (3.133)

legs %,j=5 Q=0,K#0 Q#0,K=0
6 3 3
T =3 DogDue > MEME[ 3"+ > | Bl (3.134)
legs 1,j=4 Q=0,K#0 Q#0,K=0

In order to be able to work with the expressions we regularize the vanishing mo-
mentum combination in each 3-sum by introducing a small parameter 6. The sums
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then read

3
> FQ.K) = f(6,2k +2K) — £(6,2k) — f(5,2K) (3.135)
Q=6,K+0
3
> HQK) = f(2q+24,0) — f(24,8) — f(2¢,9) (3.136)
Q#0,K=6

and have to be understood in a limit lims_,o. This regularization can be justified by
remembering that the expression Q = ¢+q+¢ +¢ originates from terms jo(qr)e"
in the mode expansion of the asymptotic states rewritten with . This
means that one of the ¢’s actually corresponds to the energy whereas the other
one corresponds to the momentum. As we are dealing with a massless scalar in
1+1 dimensions their difference cancels on-mass-shell. Consequently, regularizing
() = 0 in the first sum above can be understood physically as a slight deviation
from the mass-shell which indeed could happen by quantum mechanical effects
violating energy conservation on short time scales. The same argumentation holds
for K.

Now the sums and differential operators are evaluated with Mathematica and all
terms which are finite in the limit 6 — 0 are dropped as we are only interested in
the divergent terms. Using the expansions — helps to further simplify
the expressions and one finally arrives at divergent terms of two degrees of tran-
scendentality: There are several terms with s = 1 of the form ( polynomial ) - In(6)
and many terms of s = 2 which contain bilogarithmic expressions. The size of
the terms becomes quite large at this point which is why we refrain from showing
them explicitly. Keeping the focus on the part s = 2 we are now ready to add the
two contributions and find

T =T8 ,+ T, =0 (3.137)

where it was made use of the momentum conserving delta function in the prefactor
to write ¢ = k+ kK —q.
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4. Conclusion

During the course of this thesis it was at first outlined how the path integration of
the geometric sector of the Einstein-massless-Klein—Gordon model could be per-
formed along the lines of |5, |7]. Starting with the classical theory the important
point here was the restriction to the s-wave sector which allowed reformulating
the higher dimensional theory as a specific model of two-dimensional dilaton grav-
ity with non-minimally coupled matter. Having the scalar field as the only local
degree of freedom this theory is already non-trivial enough to permit an investi-
gation of scattering processes. A transition to the first order formulation and the
choice of temporal gauge for the geometric variables made it possible to perform
the geometric sector of the path integral exactly leaving only the integration over
a non-local effective action of the matter field. We were then interested in the
four-point tree-level vertices of the scalar field arising from this action which at
this point were pure quantum interactions mediated by gravitational backreaction.
Computing the matter dependent effective fields with certain boundary conditions
restricting global quantum fluctuations revealed that the intermediate scattering
state corresponds to a Schwarzschild-Tangherlini black hole. This is the expected
generalisation of the results for D = 4 found in the above references.

In chapter [3] we looked at the scattering amplitude corresponding to the men-
tioned vertices. It was known from previous results that for any dimension of
the original non-reduced spacetime there are two contributing non-local diagrams.
The chosen boundary conditions made it possible to construct an asymptotic Fock
space over a flat background using a mode expansion of the scalar field in terms
of Bessel functions, the featuring of the latter being typical for s-wave scattering
[22].

From this point on we restricted to even dimensions of the original spacetime.
Odd dimensions had to be left out because several properties of the Bessel func-
tions made it unclear how to treat that case analytically (see the discussion in
section . Also, all the higher even-dimensional cases turned out to be increas-
ingly complicated and the appearing bookkeeping problems eventually forced a
restriction to D = 6 which is the first interesting case after D = 4 already treated
in [7]. The calculation was split into two parts corresponding to the two diagrams.
It was found that each of them is divergent which is not a surprising result when
one compares with D = 4. Inspired by that case we as well should expect a

45



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

“miraculous” cancellation process of these divergences. The proof of this, however,
turned out to be quite non-trivial and a first step in this direction was made at the
end of chapter [3| where the divergences were classified according to their degree
of transcendentality. It could be shown explicitly that the divergences with the
highest degree s = 2 indeed cancel. All infinities with s = 1 still remain and their
cancellation process together with the computation of the finite part is left to be
shown in future work.
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A. Collection of formulae

Here I collect several formulae used in the main text, especially in the computation
of the scattering amplitude. Partially they are just adopted from |7].

Identities involving Bessel functions

/0 ke o () T () = M (A1)
Jo(z) = (1) Jo(—2) (A.2)
gnl@) =4[5 Tus(@)  meN (A3)
in@) = (-2 (52 "in(a) (A4)
jofar) = 2 (4.5)

where J,(z) denote the Bessel functions of the first kind of order o and j,(x) are
the spherical Bessel functions of order n [23].

Differential operators

In the main text we use the following definitions of differential operators:

® Dy i=ayds, —y0y — a0, +1

It acts on polynomials like
D,y (abz"y™) = ab(m — 1)(n — 1)a"y™ (A.6)
and therefore kills all momentum combinations in the main text that are

linear in at least one of the momenta. For more properties the reader shall
be referred to appendix F in [7].
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. Dwy =zydy —
Acting on a term in a polynomial yields
Dy (abz™y™) = ab(m — 1)z"Hy™ (A.7)

which still kills linear terms in y but not in x.

Path integral identities

We can express the formal path integral of a linear functional L(¢, X) = [ ¢MX
as

/ (D)(DX) exp i / PMX = / (DX) §(MX) = (Det M)™"  (A.8)

where ¢ and X are Grassmann even fields. If we take both arguments of the
functional to be ¢ we get the Gaussian integral formula

/ (Do) exp i / ¢M¢p = (Det M)~ (A.9)
If we take ¢ and X to be Grassmann odd fields instead we get
/(D¢)(DX) expz'/ngX = /(DX) S(MX) = (Det M) . (A.10)
Complex logarithm
The restriction to the principal branch of the complex logarithm
In(z) = In |z| + iArg(z) —7m <Arg(z)<wm (A.11)

for some z € C* makes it necessary to modify some rules involving the func-
tion In(z). The reason is the behaviour of the function Arg(z) when it comes to
multiplication and division of two complex numbers z;, zo € C*. We have

Arg(z129) = Arg(z1) + Arg(zo) + 20N, (A.12)
Arg(z1/29) = Arg(z1) — Arg(z) + 27 N_ (A.13)

where the integers N, are determined by

—1, if Arg(z)+ Arg(z) >
Niy=40, if —7m<Arg(z)EArg(z)<mw (A.14)
1, if Arg(z) £ Arg(z) < —7.
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This leads to the following rules for the complex logarithm

In(z122) = In(z1) + In(22) + 2w N,
In(21/22) = In(z1) — In(z) + 2mwiN_

which have as a special case

—In(z) + 27 if =z real and negative

—In(z) otherwise .

In(l/z) = {

Dilogarithm

The Dilogarithm is defined as the following integral

Lin() = — /0 Thi=w

u

(A.17)

(A.18)

where the path is chosen in the complex plane and must not cross the branch
cut of the integrand lieing along the real axis at [1,00) for our conventions. For

evaluating the divergent terms we need the derivative

iLig(Z) _ ~In(1—2)

dz z

and the expansion for large z with small imaginary part

1
lim Liy(z) = —§1n2 |z| Firln|z| + O(1)

z—o0tie

1
lim  Liy(z) = —511&2 |z| + O(1) .

z——oozie

The Dilogarithm also fulfils the following identities

2
Liy(2) + Lis(1 — z) = % —Inzln(l —z)

2

1 In?
Lis(1—2) + Li2(1 - —> n
z

which were useful for the simplification of the amplitude.

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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Other identities

It is made extensive use of the regularized Fourier transformation of ©(z)z* with
some parameter \ € Z

/ g ety = ieMTWF(/\ + 1) (o 4 i) (A.24)
0

where ¢ is some regulator. We actually only need the singular limits

A= (lsim(—n +9), neN (A.25)

—0

which can be evaluated using the expansions

%Lr% I'(—n+6) = (—n_ll)” [% +i(n+1) + (9(5)] (A.26)
_dInI(z) - ~ 1
Giln+1) = = ; - (A.27)
and
(0 +ie) 0 =1— 5<1n lo| +imO(—0) + (9(5)) +O(6%) (A.28)
M2 = gminT2(] 5%” +0(6%) . (A.29)

Here 7 is the Euler—-Mascheroni constant and ¢4 (z) the first logarithmic derivative
of T'(z). The branch cut of complex logarithms is, unless stated differently, assumed
to lie along the negative real axis.

We also use the Fourier transform of ©(x)

O(z) = lim —— / A7 gira (A.30)

e—02me J_ o T — 1€

with some regulator e.
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B. Spherical wave equation

For solving the massless Klein-Gordon equation
" 0,0,¢ =0 (B.1)

in flat space and spherical coordinates we can use the fact that the wave operator
still splits into a sum

00,0, = 0 — A (B.2)

where A is the Laplacian in spherical coordinates. We can therefore separate

o(t,r) = X(t)p(r) where it was assumed that we are in the pure s-wave sector, i.e.

no dependence of ¢ on the angular coordinates is present. The equation separates
with

RX Ay

X o

where k is some constant which can be chosen to be strictly positive without loss
of generality. The time dependent equation is immediately solved

—k? (B.3)

X(t)= Ae™ + Be™* A BecR (B.4)
and the spatial one can be shown to be of the form
292 2,2 D -3
2020 + (1 4 20)r0.¢ + k“r°p = 0, a=—. (B.5)
By the redefinition
o(r) =r="f(r) (B.6)
it can be recast as
202 f +ro.f + (K*r* —a®)f =0 (B.7)

which is the Bessel differential equation [23]. For a fixed k its general solution is
given by a superposition of two linearly independent functions

f(r)= {Clj&(kr) texlalkr), a€{z 3.} [Deven)

crJa(kr) + eoYo(kr), ae{1,2,..} [D odd] (B8)
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where ¢1,c0 € R and J,(kr),Y,(kr) are the Bessel functions of the first resp.
second kind. Going back to ¢(r) = r=*f(r) it can be shown that this is only
regular at » — 0 if ¢ = 0 in both cases. Then for r — oo the solutions have
the fall-off behaviour ¢ ~ O(r’o"%). Restricting to this case and summing up
solutions for different k we arrive at

o(t,r) = /000 dk c(k)r® J_o(kr) (af €™ + a; e™™) (B.9)

where ¢(k) is a still undetermined normalization function which is chosen to be
c(k) = y/kP=2/2 in the main part. We also introduced the coefficient functions
af whose quantized versions are used to build the Fock space of the free theory.

Note, that the massless dispersion relation in this two dimensional setting reduces

with the chosen units to
-2

E*=uw* =k (B.10)

where k = k is just a scalar number in one spatial dimension. We implicitly used
this definition for k above and it should not be confused with the Lorentz invariant
length of the two-vector k* which is of course zero for a massless field.
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C. Intermediate results

Here some results from the extraction of the divergent terms in section [3.5.1| are
collected.

Divergent integrands

The divergent part A?;”, Bf?” of the 7 integrals (3.102), (3.122) are of the form

R(dT . dr

Af]’f” = 5!7 lim )aij In(Q —7+ie)In(K — 7 —ie) (C.1)

R—oo | _p \T —1€ T+ 1€
div - R dr dr , ,
BiY = 4! 1%520 . (7_ — + p— ie)bij In(Q — 7 +ie) In(K — 7 — ie) (C.2)
with

a55:—K5—Q5 544=K4—Q4
ase = K° bys = —K°
Qgs = Q6 b54 = Q5
asr = —K' bis = K°
ars = —QF bes = —Q° (C.3)

and the rest of the combinations being zero.

1 As explained in the main text we are only interested into the small-7 divergences. It has
already been shown that divergences for 7 — oo are harmless.
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Divergent 7-integrals evaluated

Evaluating the divergent 7-integrals (C.1))-(C.2)) as explained in section and

dropping harmless terms one finds

Ay =577 Q727 — il K) K + K° (27 +iln Q) InQ (C.4)
+2i(K°+ Q) (Lia (g) - ng(%»}

Ady =577 [ K°( = 27 = iln Q) nQ (C.5)
() - ()

Ay = 57m [ Q°( = 27 + il K) n K (C.6)
-t () - ()

Ay =517 | KT (27 + i Q) In Q (C.7)
o () - ()]

Ay =577 Q° (27 — iln K) In K (C.8)

cxer (i) ()

as well as
Bl = 4 [Q'(2r — il K) K + K'( =27 = i Q) nQ (C.9)
a9 () - 1( D)
Bl = i [K° (27 +in Q) n Q (C.10)
o () ()]
54
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