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Abstract

Structural features and the heterogeneity of disease transmissions play an essential role in

the dynamics of epidemic spread. But these aspects can not completely be assessed from

aggregate data or macroscopic indicators such as the effective reproduction number. We

propose in this paper an index of effective aggregate dispersion (EffDI) that indicates the

significance of infection clusters and superspreading events in the progression of outbreaks

by carefully measuring the level of relative stochasticity in time series of reported case num-

bers using a specially crafted statistical model for reproduction. This allows to detect poten-

tial transitions from predominantly clustered spreading to a diffusive regime with diminishing

significance of singular clusters, which can be a decisive turning point in the progression of

outbreaks and relevant in the planning of containment measures. We evaluate EffDI for

SARS-CoV-2 case data in different countries and compare the results with a quantifier for

the socio-demographic heterogeneity in disease transmissions in a case study to substanti-

ate that EffDI qualifies as a measure for the heterogeneity in transmission dynamics.

Introduction

Tipping points that define significant transitions in the infection dynamics or ramifications of

an epidemic have been a main focus of attention for researchers, decision makers, media out-

lets and the general public during the ongoing COVID-19 pandemic. In particular decision

makers often cite thresholds for indicators such as the number of intensive care patients, the

seven-day case rate, the hospitalization rate, or the effective reproduction number either as tar-

get values or triggers for specific containment measures. Most time-varying indicators that are

commonly used to monitor an ongoing outbreak only measure the immediate effects of the

outbreak on the population or, in the case of the effective reproduction number, aggregate

properties of the current infection dynamics from a macroscopic point of view. However,
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outbreaks that are strongly governed by large infection clusters and superspreading events

(SSEs) can only be fully understood by taking into account events occurring at a meso- or even

microscopic scale of the epidemic. Such outbreaks are predominantly investigated with indi-

vidual- or network-based models [1–9] and usually exhibit a large dispersion in the number of

individual secondary infections, which has been observed to crucially affect the respective

infection dynamics [1–4, 10–12].

Specifically during low-prevalence periods of an epidemic, such as in the onset of an out-

break, a strong variation in the number of individual secondary cases implies a higher degree

of stochasticity in the observed daily case numbers and increases the likelihood of stagnation

as compared to a situation in which the offspring distribution exhibits only a small variance [3,

10]. Once an outbreak with large dispersion in the individual secondary case numbers has

taken off and grown beyond the emergence of isolated SSEs, it usually exhibits stable exponen-

tial growth with growth rates that are comparable to an outbreak with the same basic repro-

duction number but no variation in the number of secondary infections per infected

individual [3, 10]. This suggests a phase transition occurring in the early stages of an outbreak

with large dispersion in the number of individual secondary infections after which contain-

ment becomes increasingly difficult due to the ill nature of exponential growth.

Analogously, as seen during the current COVID-19 pandemic, we observe that measures

such as rigorous contact tracing and personal quarantining are successful in low-prevalence

episodes and particularly when isolated infection clusters or spreading trees can be identified

and significantly contribute to the bulk of new infections. During periods of high prevalence

or when infection clusters can no longer be demarcated, on the other hand, broader and more

severe interventions such as partial lockdown and curfews are deemed to be effective for curb-

ing the reproduction dynamics. Hence, correctly identifying tipping points in the course of an

ongoing outbreak that indicate a transition between phases of clustered and diffusive spread

independently of the general level of prevalent cases could be of great value for managing the

implementation of countermeasures.

In this work, we propose a novel indicator that makes this phase transition transparent by

quantifying the effective aggregate dispersion of epidemic outbreaks based on time series of

daily reported case numbers and a statistical model for reproduction. Technically, our indica-

tor can be seen as a time-varying measure for the stochasticity in time series of aggregate daily

case numbers. It is important to note that simply computing standard measures of variation,

such as the empirical variance, does not yield a meaningful metric in this setting. This is

mainly because much of the variation is not due to the dispersion of secondary infections but

can be explained by other factors like changes in the effective reproduction number or weekly

periodic patterns that are caused by seasonalities in the behavior of the population and the

underlying testing and reporting regime. Our statistical model and inference framework take

into account artifacts and patterns that cannot be attributed to the dispersion in the number of

secondary infections and provides an effective aggregate dispersion index (EffDI) that reflects

the heterogeneity in individual transmission dynamics. We anticipate the EffDI to act as an

‘early warning system’ that allows decision makers to react to subtle but significant changes in

the infection dynamics of an outbreak during periods of low-prevalence.

Investigating the infection dynamics on the individual or mesoscopic level requires a model

for reproduction that considers the temporal aspects of disease transmission and case registra-

tion that manifest in aggregate reported case numbers. We initially revise the structure of exist-

ing models for inferring effective reproduction factors [7, 13–20] and basic dispersion

parameters [1–4, 10–13] and generalize reproduction as the interplay between infectious load,

which corresponds to the current contagious population that can be derived from reported

case numbers, and infectious activity, which is the corresponding amount of new infections.
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We then analyze the characteristics of the stochasticity in time series of reported case numbers

and artifacts that result from the administration and procedures of case registration. Based on

our findings, we develop a carefully designed infection model for the quantification of time-

varying effective aggregate dispersion in daily incidence time series. This model relates the

infectious load observed at a given day with the respective infectious activity and has certain

desirable properties that enable the quantification of time-varying effective aggregate disper-

sion. Most importantly, it is capable of capturing daily seasonal patterns in the reproduction

dynamics and considers an additional time-varying aggregate dispersion parameter. Based on

this model, the EffDI will be determined by the time-varying minimal amount of aggregate

dispersion required such that the observed infectious load and activity are plausible under the

fitted model parameters.

With our approach, we exploit the connection between the observed stochasticity in

reported case numbers and the degree to which SSEs and infection clusters are statistically rel-

evant and traceable in the current infection dynamics. To support the developed indicator, we

further investigate the occurrence of SSEs from a socio-demographic perspective based on

reported case data that includes information about a small number of social attributes of the

incidence population. We measure the statistical distance between the socio-demographic

composition of infectious load and infectious activity, and assume that this supporting indica-

tor reflects the emergence of infection clusters that are significant relative to the overall infec-

tious activity. From the qualitative correspondence of both indicators, we conclude that EffDI

can indeed be used to assess the significance of SSEs and infection clusters based on a time

series of aggregate reported case numbers.

Results

Inference of reproduction dynamics

The common approach for investigating the reproduction dynamics of epidemic outbreaks

aligns with a mathematical model that can be formalized as

reproduction : infectious load 7! infectious activity; ð1Þ

where infectious load refers to the currently contagious population or the induced potential for

generating new infections among the susceptible population, and infectious activity refers to

the amount of infections arising from transmissions by the currently infected population

(compare also prevalence and incidence in the widest sense).

For inferring information about reproduction, load and activity are regarded as ‘exogenous’

variables that are derived from reported case numbers. This transformation must take into

account the characteristics of the disease and of case reporting. An important simplification is

to assume that load and activity are equally affected by under-reporting and by gradual

changes of the detection rate. This becomes evident for a simple multiplicative reproduction

factor in particular. Nevertheless, registration of cases is also subject to specific delays which

result from the deferred exposure of symptoms, personal testing and monitoring schemes, and

from the implemented administrative processes (compare ‘nowcasting’) [14, 21–24]. Further-

more, to distinguish between load and activity, the time between subsequent infections in a

transmission pair must be considered [16, 17, 25–29]. This time period is specific to the disease

and the contact behavior of the population and can only be measured in individually tracked

infection pairs [30–37]. Fig 1A presents a schematic diagram of the time intervals occurring in

transmission pairs. Fig 1B visualizes the general approach for inferring reproduction via load

and activity from reported case numbers.
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In the following, we investigate the statistical distributions of typical SARS-CoV-2 disease

intervals and formalize the calculation of load and activity. We then analyze the stochasticity

and artifacts in time series of reported SARS-CoV-2 case numbers which is the foundation for

constructing a statistical framework for the quantification of heterogeneity in reproduction in

the form of an aggregate dispersion parameter.

Obtaining infectious load and activity

We denote the time interval between infection and (potential) registration in a surveillance

system as the forward reporting offset Drepy , and the time interval between the registration of a

case and a (potential) secondary infection as the backward reporting offset Drep∗ . The case inter-
val Dcase ¼ Drep∗ þ Drepy is the time between the registration of consecutive cases (compare

Fig 1. Disease intervals and reproduction. (A) Disease and transmission intervals. Schematic diagram showing the events infection, symptom onset
and registration (denoted by T) in the timeline of a hypothetical infection pair. The time period between two consecutive disease transmissions is called

the generation interval, here written as Δgen. The time period between the symptom onsets in an infection pair is called the serial intervalΔser. We further

denote the time period between registration of two consecutive cases as the case intervalΔcase. Further intervals shown are the incubation delayΔinc, the

registration delayΔreg and the forward and backward reporting offsets Drepy , Drep∗ . (B) Visual outline for the quantification of reproductive dynamics

based on time series of reported cases. Infectious load and activity can be derived from reported cases using the statistical distributions of the reporting

offsets. The obtained characterization of epidemic progression is only a surrogate for actual reproduction dynamics. (C) Probability densities of the

backward and forward reporting offset distributions and the case interval distribution inferred from data. All interval distributions were calculated for

different parameter settings; here, the weekday of case registration is encoded in the lightness of the color. (D) Transformation between different

statistical models for the reporting offset intervals. We investigate our model and the resulting dispersion indicator (EffDI) under gradual

transformation of the probability densities to analyze potential impacts of their characteristic features (S9 Text). Here, the continuous transformation—

implemented by means of a transition parameter in the interval [0, 1] and displayed according to continuous color ramps—of the forward and

backward reporting offset into a degenerate distribution and the case interval is portrayed.

https://doi.org/10.1371/journal.pone.0286012.g001
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Fig 1A). For simplification and because case numbers are usually reported on a daily basis, we

restrict our formulations to discrete time and assume that continuous distributions can be dis-

cretized accordingly [13, 20]. Independent of the actual statistical distributions, load and activ-

ity can be interpreted as simulated individual contagion events or as the corresponding

aggregate time series,

T∗
inf ¼ Treg þ Drep∗ () I∗t ¼

X

t2Z

It� tut

Tyinf ¼ Treg � Drepy () Iyt ¼
X

t2Z

It� tv� t
ð2Þ

where It is the ‘measurable’ time series of reported cases, which, in turn, reflects all individual

events of case registration (Treg), and uτ and vτ are the probability masses of the backward and

forward reporting offset distributions (Drep∗ and Drepy). Accordingly, the time series of infec-

tious load I∗t can be understood to reflect the (potential) events T∗
inf of individual persons trans-

mitting the disease and the time series of infectious activity Iyt counts the events of (detected)

persons getting infected Tyinf (compare Fig 1B). It is important to note, however, that infectious

load and activity are time series of positive real numbers and that they serve as an abstract

model for the occurrence of individual disease transmission events.

To obtain tangible statistical models for Drep∗ and Drepy (i.e. the probability masses uτ and

vτ), we formulate an algebraic equation system that relates the time intervals occurring in indi-

vidual transmission pairs (Fig 1A). We then use available data about the statistical distributions

of (individual) disease intervals to ‘solve’ this equation system using a Markov chain Monte

Carlo (MCMC) approach (see Methods). To account for the most significant temporal changes

and seasonalities in reporting, we separately perform our calculations for different stratifica-

tions of the data differentiating by the day of the week and for distinct time periods of the epi-

demic. We observe a gradual shortening of the obtained reporting offset intervals over the

course of the pandemic (see S5 Text) and also marginally longer intervals for cases reported on

weekends (see S5 Text and Fig 1C). The obtained statistical models are particularly valid for

the Austrian setting with a relative large number of routine tests, but could indicate a general

configuration that is also applicable to other countries. Similar approaches based on MCMC

methods or Bayesian inference were applied for synthesising missing statistical information

about disease intervals before [14, 20, 21, 27, 36, 38, 39]. Ultimately, the obtained probability

masses can be used in Eq (2) to calculate the time series of load and activity.

In practice, frameworks that deal with the quantification of effective reproduction factors

often use—in contrast to Eq (2)—a simplified model of disease and transmission intervals to

calculate what we call load and activity. A reason for this is that particularly during the early

stage of a pandemic detailed knowledge about the time intervals, and especially the reporting

dynamics, is not available [13, 19, 20]. Often—partially justified by the characteristics of the

observed disease—estimates of the serial interval provided by secondary literature and studies

are used to approximate the generation or case interval [3, 7, 13, 19]. Methods for extracting

the relevant inter-patient time distribution from a number of observed infection pairs were

also directly included in the algorithms for calculating effective reproduction factors [20]. Fur-

thermore, in the inference of effective reproduction factors, reported cases are widely used as a

surrogate for actual contagion events [7, 13, 16, 17, 19, 20, 40, 41] (infectious activity). The cor-

responding ‘simplified’ configuration of the interval model and the associated forms of
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infectious load and activity corresponds to the formula

Drep∗ ¼ Dcase () T∗
inf ¼ Treg þ Dcase () I∗t ¼

X

t2Z

It� twt

Drepy ¼ 0 () Tyinf ¼ Treg () Iyt ¼ It
ð3Þ

where wτ are the probability masses of the distribution of the case interval Δcase, which is usu-

ally replaced with either Δser or Δgen. Under the condition that the case interval—or the used

surrogate—is strictly positive, it can further be argued, that in contrast to ‘complex’ data-

driven models (as discussed above and corresponding to Eq (2)), this form is better suited for

the real-time assessment and forecasting of epidemics as no future values in the time series of

the reported cases is required [13, 16, 17, 20].

Stochasticity and artifacts in reported case numbers

Reported (SARS-CoV-2) case data is typically characterized by weekly seasonal patterns [11,

15, 18, 21, 23], artifacts that result from reporting procedures, and a distinct—potentially tem-

porally varying—level of fluctuation (variance). Nevertheless, statistical models for inferring

effective reproduction factors usually directly operate on crude time series of reported case

numbers according to the model in Eq (3). One way to account for the at times large variance

in the data is to increase the dispersion of the statistical model for the individual number of

secondary infections (offspring distribution). In other words, when the data is over-dispersed

with respect to the employed statistical model, a model with greater variance in secondary

infections must be used. Alongside improved correspondence with the data [3, 41, 42], such a

modification can also provide—eventually in the form of a basic dispersion parameter—infor-

mation about the inherent level of dispersion in the secondary infections during an outbreak

[1, 4, 10, 12]. This, in turn, is a leverage point for the assessment of spreading characteristics

such as the occurrence of SSEs [1–3, 10]. However, the stochasticity and regularity in time

series of reported case numbers is not only affected by the transmission dynamics of the epi-

demic. It is also the employed testing and reporting regime that causes weekly seasonal pat-

terns, making it necessary to separate artifacts of reporting from the stochasticity that is

presumably caused by the transmission dynamics itself.

Furthermore, we observe that the general level of stochasticity in reported case numbers is

high in low-incidence phases but diminishes when case numbers become large, rendering the

data more regular with pronounced seasonal patterns in these periods. Fig 2 illustrates this sep-

aration for three different countries by comparing normalized segments of reported case num-

bers from low-prevalence periods with segments from high-prevalence periods.

In the following, we develop a statistical model for the reproduction dynamics of epidemic

outbreaks that considers a temporally varying degree of dispersion and (a) explicitly decouples

the amount of stochasticity from the general level of infectious load and (b) ‘filters’ seasonal

patterns from the observed infectious activity. Ultimately, this leads to what we call a time-

varying aggregate dispersion parameter, which, in turn, indicates periods of an epidemic that

are likely driven by SSEs and episodes with diffusive spread. We implement both aspects in

our extension of the state-of-the-art statistical inference framework in the next sections.

A model for quantifying effective aggregate dispersion

A common statistical approach for the inference of reproduction dynamics is based on a Pois-

son model for the individual number of secondary infections (offspring distribution) that is

parameterized with an effective reproduction factor as the rate or expected value. Under the

assumption that the individual reproduction factor (i.e. the expected number of secondary

PLOS ONE Assessing the heterogeneity in the transmission of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0286012 May 30, 2023 6 / 26

https://doi.org/10.1371/journal.pone.0286012


cases) is the same for all contagious individuals at a given time t and by using the additivity of

the Poisson distribution, the total number of new cases Iyt (infectious activity) can be modeled

as

Iyt � PoissonðRtI∗t Þ; PðIyt ¼ xÞ ¼
ðRtI∗t Þ

xe� RtI∗t
x!

; ð4Þ

where I∗t is the number of contagious individuals (infectious load), and Rt denotes the common

effective reproduction factor [13, 19, 20].

Not limited to the current SARS-CoV-2 pandemic, a large variety of techniques and soft-

ware packages have been developed to infer time series of aggregate effective reproduction fac-

tors Rt based on Eq (4). A particular extension of this approach is to regard the individual

reproduction factor as a random variable instead of a deterministic uniform value. Typical

models for a stochastic individual reproduction factor are for instance the exponential distri-

bution, or the gamma distribution. Due to the stochasticity encountered in aggregate reported

case numbers, using an exponential model can lead to over-dispersion when fitting the result-

ing geometric model to the data [10, 18]. Considering identically and independently gamma

distributed individual reproduction factors with shape parameter k and scale parameter Rt/k
leads to a negative binomial model (gamma-Poisson mixture) for the total number of new

cases, which can be written as

Iyt � NB kI∗t ;
Rt

Rt þ k

� �

; PðIyt ¼ xÞ ¼
xþ kI∗t � 1

kI∗t � 1

� �
k

Rt þ k

� �kI∗t Rt

Rt þ k

� �x

; ð5Þ

where the first parameter is understood as the number of allowed failures and the second

parameter is the success probability. This approach allows the model to better comply with the

observed stochasticity in reported case numbers [1, 3, 10, 18, 21, 41, 42] by considering an

additional free parameter k, which can be viewed as a dispersion parameter that reflects the

Fig 2. Varying regularity of reported case numbers. Normalized segments of daily reported case numbers [43] during low-prevalence (top row) and

high prevalence (bottom row) periods in different countries (columns). Normalization was achieved by dividing the daily case numbers by their mean

value during the respective three-week period. During the respective high prevalence periods, we observe a high degree of regularity and weekly

seasonal patterns, whereas in low-prevalence phases, the segments seem to be more erratic.

https://doi.org/10.1371/journal.pone.0286012.g002
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variance in individual secondary cases. Large dispersion, which is associated with a scenario

that shows great variability in the individual numbers of secondary cases, can be modeled in

Eq (5) by choosing k small. Vice versa, small dispersion, which describes a situation where all

infected individuals cause a similar number of secondary cases and where spread of the disease

happens in a more ‘homogeneous fashion’, can be modeled by choosing k large. For k!1,

the limiting distribution falls back to the Poisson model Eq (4). The properties of the negative

binomial distribution proved to provide good overall correspondence with the data in many

case studies. Analogous to the basic reproduction number, basic dispersion parameters of

SARS-CoV-2 outbreaks and other epidemics have been estimated from historical data and

used for investigating the heterogeneity of infection dynamics [1, 2, 4, 10, 12].

According to our generalized concept of reproduction (Eq (1)), we presume that infectious

load and infectious activity are continuous variables that are calculated as weighted sums (Eqs

(2) and (3)) of original counting data. In S8 Text we demonstrate that the standard discrete-

valued negative-binomial model in Eq (5) can be approximated with a corresponding continu-

ous gamma model that is compatible with our approach to infectious load and activity. In the

following, we discuss a further reproduction model based on the gamma distribution that was

designed for investigating variable dispersion.

The observed variability of relative stochasticity in recorded time series data (Fig 2) and for-

mal considerations regarding the model defined in Eq (5) indicate that the effect of dispersion

on the infection dynamics is negligible in high-incidence periods. In order to capture the vari-

able impact of dispersion on the dynamics of an outbreak with a quantitative measure, we con-

sider a carefully designed infection model which introduces a time-varying aggregate
dispersion parameter κt,

Iyt � Gamma kt;
I∗t Rt

kt

� �

; f ðxÞ ¼ GðktÞ
� 1 kt

I∗t Rt

� �kt

xkt � 1 e
x kt
I∗t Rt : ð6Þ

A thorough motivation of Eq (6) and a description of the estimation procedure can be found

in Methods. The key statistical aspects of the models Eqs (5) and (6) and additional aspects are

recapitulated in S8 Text. Essentially, the models defined in Eqs (5) and (6) have the same

expected value I∗t Rt , but the variance of the former scales linearly with I∗t , whereas the variance

of the latter scales quadratically with I∗t . Hence, given that the true infection dynamics of an

outbreak yield an infectious activity Iyt for which the variance scales subquadratically with the

magnitude of the infectious load I∗t —as observed in the data (c.f. Fig 2)—we can choose the

parameter κt in the model Eq (6) increasingly large during high-incidence regimes without

impeding the ability of the model to describe the variance present in the data. Ultimately, for a

given day t, we apply Monte Carlo simulation to estimate the smallest plausible amount of

aggregate dispersion (i.e., the largest possible value for κt) that is required for explaining the

observed time series of daily aggregate case numbers.

Filtering of seasonal patterns

Inferring quantifiers such as effective reproduction factors Rt (using a statistical model based

on Eq (4)) directly from reported case numbers (according to the load-activity model in Eq

(3)) leads to strong oscillations in the obtained quantifier. A possible approach for obtaining

less erratic numerical indicators is to employ the load-activity model in Eq (2), which utilizes

the ‘informed’ offset distributions as convolution kernels [14, 16, 18] for calculating load and

activity. However, with this approach, irregularities resulting from the transmission dynamics

are also mostly removed from the exogenous variables (load and activity) and quantifying the

stochasticity in transmission dynamics is no longer possible. Hence, we anticipate that the
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‘raw’ form of load and activity according to Eq (3) is more suitable for harnessing the stochasti-

city in reported case data [43] than a ‘regularizing’ model Eq 2).

Many existing frameworks for estimating numerical indicators such as the effective repro-

duction factor use raw and unprocessed case numbers directly (Eq (3)). This allows to use the

stochasticity in the data, for instance, to estimate the confidence intervals of the obtained indi-

cator. To obtain smoother behavior of numerical indicators (e.g. Rt) often constant reproduc-

tion dynamics are assumed during a certain time window by simultaneously regarding all

load-activity pairs that statistically occur during that window in an extended (Bayesian) infer-

ence approach [13]. Similarly, to remove the effects of reporting artifacts and seasonal patterns,

we use a windowed linear model for Rt in Eq (6) that can explain trends and weekly periodic

patterns in the data (see Methods) but retains the residual stochasticity such that the assess-

ment of dispersion is still possible.

In S9 Text, we further address the question of how much of the stochasticity in reported

case data can actually be filtered out in the preprocessing of load and activity before the assess-

ment of stochasticity fails. To this end, we investigate the quantifier developed in this paper

under a continuous transition between the ‘pre-regularizing’ model in Eq (2) and the ‘raw’ sce-

nario defined in Eq (3). Technically this is achieved by simultaneously transforming the densi-

ties of the forward and backward reporting offset distributions into a degenerate distribution

and the case interval respectively (cf. Fig 1D). Our results confirm what has been observed in

existing research [13, 16, 17, 20]. Regularization, on the one hand, leads to implicit delays in

the time series of load and activity, which is problematic in the real-time assessment of epi-

demic progression. Secondly, over-smooth input time series can hinder the assessment of sto-

chasticity. On the other hand, when reporting artifacts or excess roughness in the underlying

data is not filtered, the confidence intervals in statistical inference approaches are generally

larger and numerical quantifiers can behave erratically. Furthermore, we conclude that if

reporting artifacts are sufficiently filtered, inclusion of detailed data-driven statistical distribu-

tions of disease and transmission specific intervals can be evaded [16, 18, 41] and it is reason-

able to map only the basic characteristics of these intervals.

Construction and evaluation of EffDI

Our approach for quantifying time varying dispersion is based on the temporal progression of

the plausibility pt(κ) 2 [0, 1] of the reproduction model Eq (6) with fixed dispersion parame-

ters κ given the observed data. When for an assumed amount of dispersion (κ), the model

becomes less plausible over time, increasing the dispersion (i.e. proceeding to a lower value of

κ) allows the model to retain the initial amount of plausibility. Accordingly, we construct the

time varying dispersion parameter κt as the largest κ for which the model provides the same

amount of plausibility p throughout the course of an outbreak,

ktðpÞ ¼ supfk : ptðkÞ � pg:

Technical details on the corresponding Monte Carlo simulation approach and on the used test

statistic are provided in Methods (cf. Eq (20)).

Fig 3B depicts the progression of the plausibility of the model for a range of dispersion

parameters κ when fitting the corresponding model Eq (6) on aggregate reported SARS-CoV-

2 case numbers in Austria [43]. Using a logarithmic scale for κ in Fig 3B, the transition from

zero plausibility (p = 0.0) to high plausibility (p = 1.0) appears abrupt and uniform, suggesting

that under such a transformation a plausibility level set could be a meaningful indicator. Ulti-

mately, we define the effective aggregate dispersion index (EffDI) as the reciprocal square root
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Fig 3. Quantification of effective aggregate dispersion. (A) Number of reported cases in Austria [43] and infectious load and activity according to Eq

(3). The low- and a high-incidence phases from Fig 2 are indicated with vertical lines. (B) Plausibility diagram for the dispersion parameter κt. The

transition between the plausible and implausible regime (e.g. p = 0.9) is abrupt. (C) EffDI results by the transformed level set line (green)

(κt(p = 0.9))−1/2. It is a quantifier for dispersion and corresponds to the coefficient of variation in the underlying statistical model Eq (6). The

progression of dispersion aligns with the progression of a socio-demographic heterogeneity measure (orange). Socio-demographic heterogeneity is

measured via the total variation distance between infectious load and infectious activity. (D) Resulting case reproduction number.

https://doi.org/10.1371/journal.pone.0286012.g003
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of the time varying dispersion parameter

EffDIt ¼ ktðpÞ
� 1=2

; ð7Þ

which has similar characteristics but also corresponds to the coefficient of variation of the

model defined in Eq (6) (compare S8 Text).

Based on the construction of the time varying dispersion parameter, we anticipate similar

qualitative behavior for arbitrary (initial) p. However, requiring high plausibility seems intui-

tive and we assume that the smoothed approximation of the level set κt(p = 0.9) and the corre-

sponding EffDIt is a suitable indicator for separating plausible assumptions about dispersion

from model configurations for which the data is over-dispersed.

In Fig 3A and 3B we observe that the dispersion parameter κt can in general be chosen large

during high prevalence periods, and that low-prevalence periods of an outbreak are usually

associated with a measurably higher degree of stochasticity relative to the current infectious

load. For instance, we can observe a significant phase transition in the stochasticity of the time

series of aggregate reported case numbers during the end of May and the first weeks of June in

2020.

In Fig 3C, we compare the EffDI with the progression of a measure for the socio-demo-

graphic heterogeneity in disease transmissions for the Austrian setting. The heterogeneity

measure relies on data that includes additional information about cases and is developed in

the next section. We motivate this measure as an independent indicator for the occurrence

and significance of SSEs and infection clusters. As a consequence, qualitative correspondence

between both measures substantiates that the progression of the time-varying aggregate dis-

persion parameter adequately reflects structural changes in the underlying infection dynamics

of an outbreak.

Fig 4 shows the development of EffDI based on daily aggregate case numbers between Feb-

ruary 25, 2020 and January 31, 2022 for six different countries. In the case of South Korea, the

transition line closely follows the expected behavior of high stochasticity during low-preva-

lence periods and low stoachsticity during high-prevalence periods with a prominent phase

transition during a particular period of low-prevalence around the beginning of May 2020. By

far the longest period of high stochasticity can be found in the aggregate case numbers

reported by Singapore, which yield a very high stochasticity measure for more than a year. In

all of the five analyzed European countries (Austria, Switzerland, United Kingdom, Italy, and

Germany), significant periods of high stochasticty can be observed between May and July

2020, indicating that during this time, the infection dynamics of the COVID-19 outbreak were

mainly governed by comparatively few isolated events throughout many countries in Europe.

However, particularly in the cases of Germany and Italy, our analysis also yields periods of

relatively high stochasticty during times of high prevalence. We assume that during these peri-

ods, systematic changes were made to the employed testing and reporting regime such that the

measured stochasticity can not be exclusively attributed to the actual infection dynamics. In

the example of Switzerland, all occurrences of high stochasticity in times of high prevalence

can in fact be attributed to changes and irregularities in case reporting because aggregate case

numbers were only reported for weekdays after 2020-09-19, and four additional dates in the

spring of 2021 were missing from the time series of reported case numbers.

We further contextualize in S10 Text the behavior of EffDI with the emergence of new vari-

ants of the Corona virus in Austria. Generally, the gradual introduction of a new variant does

not imply a change in the progression of our heterogeneity measure. However, we observe that

aggressive variants with increased transmissibility (e.g. Omicron) can become dominant in a
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Fig 4. EffDI evaluated for different countries. Reported case numbers [43] are shown in gray. In the case of Switzerland and the UK, certain dates are

highlighted to illustrate the effect of irregularities or changes in the reporting regime. a: After September 19, 2020, Switzerland only reported aggregate

case numbers on weekdays (cf. Fig 2). b, c, d, e, f, h: Missing aggregate case numbers in Switzerland on several days in 2021. g: Missing entries on a

Friday and the following Monday in Switzerland during September 2021. i, j: Reporting of negative aggregate case numbers on two days in April and

May 2021 in the UK.

https://doi.org/10.1371/journal.pone.0286012.g004

PLOS ONE Assessing the heterogeneity in the transmission of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0286012 May 30, 2023 12 / 26

https://doi.org/10.1371/journal.pone.0286012.g004
https://doi.org/10.1371/journal.pone.0286012


relatively short time and abruptly change the reproduction dynamics coinciding with elevated

values for EffDI.

Social heterogeneity in transmission dynamics

To support our findings about the temporal variability of aggregate dispersion, we investigate

the progression of socio-demographic heterogeneity of the infected population and in repro-

duction using statistical distance measures. In particular, we calculate the total variation dis-
tance (TV)

DTVðp; qÞ ¼
1

2

X

x2X

jpðxÞ � qðxÞj; ð8Þ

between normalized histograms p and q of two populations with respect to a discrete and cate-

gorical feature space X. Here X either refers to age-compartments, gender, geographic region

or the product space.

Let Iyt be the time series of vector-valued infectious activity consisting of normalized histo-

grams of the newly infected population. Let Q be the socio-demographic configuration of the

total population. We denote the difference DTVðIyt ;QÞ as the heterogeneity of infectious activity.

If this quantifier is small, we expect that infectious activity is distributed homogeneously across

the population. If the distance measure is large, infectious activity is concentrated in distinct

social compartments. We use the previously found statistical interval models to extract vector-

valued infectious activity according to Eq (2) from an Austrian socio-demographic case data-

set and quantify the distance to the total population. In Fig 5B–5D the resulting heterogeneity

of infectious activity with respect to gender, age and administrative affiliation is visualized. In

Fig 5E the corresponding evaluated distance measures are plotted over time. With the visual as

well as the quantitative approach it is possible to distinguish phases with heterogeneous infec-

tious activity and phases with homogeneous activity.

We further compare the socio-demographic configuration of infectious activity Iyt with the

configuration of infectious load I∗t and denote the progression of the statistical distance

DTVðIyt ; I
∗
t Þ as the socio-demographic heterogeneity in reproduction. When the distance mea-

sure is small, then the socio-demographic configuration of the infected population remains the

same, when the distance measure is large, we expect that the socio-demographic configuration

of the infected population is about to change. Hence, large heterogeneity can indicate that pre-

dominant infectious activity shifts to previously unaffected social strata. We further assume

that abrupt changes in the socio-demographic composition of the infected population point to

the emergence of infection clusters that are composed of individuals with similar social attri-

butes (e.g. geographic location). Hence, we conclude that (analogously to EffDI) a measure for

the social heterogeneity in reproduction can indicate the emergence and dissipation of signifi-

cant infection clusters. In Fig 5F this measure is evaluated for Austrian case data.

In Fig 5 a selection of significant SSEs and infection clusters is indicated in the timeline

(compare [1, 3]). Details about case numbers and the corresponding media coverage are found

in the supplement (S7 Text). We observe an initial cluster (C1) in Ischgl, Tyrol (region code 7)

affecting mostly younger and middle-aged persons. During the first epidemic wave, news

media report about infection clusters in retirement homes in different provinces (C2). During

the summer of 2020 we further observe mostly smaller infection clusters with occasional larger

SSEs (C3) in logistic centers in and around Vienna (region code 9) as well as other SSEs (C4)

in the state of Lower Austria (region code 3). A large regional cluster (C5) was detected in

Upper Austria (region code 4). In the onset of the second epidemic wave SSEs are reported to

have occurred during private meetings (C6) as well as in public events (C7). After a high-
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incidence phase, infection clusters in retirement homes across the country were observed

(C8). Media reports about specific (noticeable) SSEs occurred in particular during the low-

incidence phases of the epidemic. Analogously, the measure for heterogeneity in infectious

activity is large only during the same periods indicating that individual SSEs can be distin-

guished only during such phases of an epidemic. In high-incidence phases, singular SSEs can

Fig 5. Heterogeneity of infectious activity and in reproduction. Media coverage about certain SSEs in Austria is

indicated by vertical dashed lines and the identifiers C1-C8 (see main text). (A) Crude number of reported cases in

Austria; estimate for the time series of infections of subsequently reported cases (infectious activity); and estimated

time series of the currently infectious population (infectious load). (B-D) For the social dimensions sex, age, and

geographic region, the difference of the distribution of the estimate newly infected population (infectious activity) to

the distribution of the total population Iyt ðxÞ � QðxÞ is visualized. High values (red) indicate over-representation of

infectious activity and low values (blue) indicate under-representation. (E) Quantification of the heterogeneity of

infectious activity using the total variation distance measure. To increase lucidity, a smoothed version of the resulting

time series is shown. (F) Quantification of the heterogeneity in reproduction; if the distance measure is small, spread is

confined to specific social strata; if the distance is large infections shift to previously unaffected social compartments.

https://doi.org/10.1371/journal.pone.0286012.g005

PLOS ONE Assessing the heterogeneity in the transmission of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0286012 May 30, 2023 14 / 26

https://doi.org/10.1371/journal.pone.0286012.g005
https://doi.org/10.1371/journal.pone.0286012


be recognized in measured heterogeneity only if they are very significant in size (relative to the

current incidence numbers) involving hundreds of infections.

Discussion

The methods proposed in this paper aim to provide insight into the mesoscopic dynamics of

epidemic outbreaks based on time series of reported case numbers. A statistical framework

was designed to harness the stochasticity in such data for inferring a time-varying effective
aggregate dispersion index (EffDI) that reflects the progression of heterogeneity in the configu-

ration of individual secondary infections. Large dispersion is in general associated with cluster-

ing and the occurrence of superspreading events (SSEs), whereas low dispersion implies

homogeneous reproduction and spread [1–4, 10, 42]. Technically, the proposed indicator

quantifies the time-varying minimal plausible amount of dispersion that is required for

explaining the stochasticity in observed incidence numbers via a statistical model for repro-

duction. As a consequence, this novel approach serves to distinguish phases of an outbreak, in

which infection clusters and SSEs are definite and play a significant role, from phases, in

which infection clusters either appear indistinct or are nonexistent. Since the individual distri-

bution of secondary cases is only indirectly reflected in our model, we use the notion of a

dimensionless aggregate dispersion parameter to emphasize the absence of a direct ‘physical’

interpretation. Correspondingly, the proposed indicator does not quantify the (plausible) vari-

ance in individual secondary infections but rather measures the plausible heterogeneity of the

spreading dynamics on a mesoscopic scale. For instance, we assume that EffDI also accounts

for the occurrence of multi-generation clusters, instead of assessing the likelihood for individ-

ual superspreaders.

Evaluating the EffDI for a number of countries we observe that the transition from periods

with moderate case numbers to periods with high incidence (‘epidemic waves’ or ‘peaks’) is

often accompanied by the early decline of the EffDI. We speculate that this behavior indicates

a pending shift in the quality of infectious spread towards the diffusive regime with exponen-

tially growing case numbers. Hence, the EffDI could be a valuable tool for monitoring qualita-

tive changes in the mesoscopic spreading behavior. We anticipate that our novel indicator will

be relevant in the planning of containment measures (e.g., deciding between individual-level

contact tracing policies and large-scale containment measures) [2–4, 6, 11].

Our approach is founded on a branch of existing statistical models for reproduction that

have been developed for inferring the progression of effective reproduction factors [7, 13–20]

and a constant basic dispersion parameter [1–4, 10–13]. In alignment with the general concept

of reproduction, the employed model portrays a relation between the currently contagious

population (infectious load) and the new emerging infected population (infectious activity).

For the extraction of both quantities from time series of reported case numbers, specific time

intervals such as the incubation and generation period as well as delays in case registration

must be considered. Furthermore, the implemented testing and reporting procedures often

lead to weekly seasonal patterns and artifacts in the data. Experiments showed that modeling

the seasonalities of case reporting in the statistical distributions of the disease intervals in a

data-driven approach can successfully eliminate artifacts of reporting, but also obliterates the

stochasticity, which presumably contains the effects of heterogeneous spreading dynamics. As

a consequence we include a technique for the dynamic filtering of weekly periodic patterns

within our statistical framework which allows to retain exactly the residual stochasticity of the

data while at the same time correctly reproducing the relevant times intervals. Analogous to

existing research [13, 16, 18, 20], we confirm that in this setting there exists a trade-off between
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synthesizing load and activity based on ‘accurate’ data-driven models for disease and transmis-

sion intervals, and the careful abstraction of transmission dynamics.

We evaluate the progression of EffDI for reported SARS-CoV-2 case numbers in different

countries and confirm that inferred effective aggregate dispersion is usually higher in low-inci-

dence regimes. This can be explained by a generally higher relative stochasticity for small sam-

ple sizes [42] but also aligns with individual infection clusters only having a significant effect

on the overall infection dynamic in such periods. Hence, EffDI can assess the presence and

demarcation of infection clusters and SSEs in low-incidence periods, but in high-incidence

periods a large number of simultaneous clusters can appear as homogeneous spreading and

obliterate the significance of singular spreading events. Nevertheless, our indicator is not trivial

in the sense that the time periods with elevated effective aggregate dispersion do not simply

agree with periods of large relative variance in the data, constantly low case numbers or a large

effective reproduction factor.

To further validate the proposed indicator, we use an Austrian SARS-CoV-2 data-set that

includes aggregated social attributes of reported cases and compare the progression of socio-

demographic heterogeneity in disease transmissions with the progression of the detected effec-

tive aggregate dispersion. Whereas our original method is data-economical, the validation

approach relies on higher-resolution case data for quantifying the statistical distance between

the socio-demographic configuration of the present and newly infected population (between

infectious load and infectious activity). Typically, close-proximity interaction communities,

which are the main driver for infection clusters and SSEs, are characterized by distinct social

attributes like age or geographic affiliation [1–5, 11]. Hence, we assume that the demarcation

and significance of individual infection clusters and SSEs can be deduced from relatively

abrupt changes in the observed socio-demographic composition of the incidence population.

The indicators show good qualitative correspondence and we can substantiate that EffDI is

suitable for differentiating regimes with clustered spreading characteristics form regimes with

diffusive spread.

The EffDI complements existing indicators (e.g., effective reproduction factor) which are

used for assessing and anticipating the dynamics of epidemic outbreaks. Furthermore, the sep-

aration and indication of periods with different spreading characteristics could also improve

individual-based [4, 8, 9, 44] and aggregate models for the simulation and forecasting of epi-

demics and could provide a reference for combining or switching between different modeling

approaches. We also assume that providing indications about the time-varying progression of

heterogeneity in epidemic outbreaks could contribute to the general perception of epidemic

spreading as complex dynamics on multiple scales. Generally, the usability of quantifiers and

numerical indicators is inevitably affected by the availability and accuracy of data. Especially in

the epidemiology of infectious diseases, the data often provides an indirect view on the actual

situation and makes it necessary to combine data of different origin and to map the dynamic

aspects of spreading by the means of mathematical models. An immediate consequence is to

include also the variability or stochasticity of reported case data itself in such models and in

the calculation of numerical indicators. For instance, in the inference of effective reproduction

factors, the relative stochasticity of the data is used for assessing the uncertainty of statistical

estimates [13, 20, 41]. Analogously, we designed our approach to use the stochasticity in the

data for inferring information about the infection dynamics on a mesoscopic scale, that can

not directly be concluded from aggregate case numbers. However, for investigating the plain

stochasticity or regularity in time series of reported case numbers there exist more suitable

mathematical approaches like approximate entropy or spectral methods that do not integrate a

statistical model for reproduction.
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We provide the algorithms developed in this paper as a Python programming package

(EffDI Python package) that can operate on any time series of crude reported case numbers.

We anticipate that the proposed concept of an indicator for effective aggregate dispersion can

further be improved in terms of the reflection of artifacts and seasonal patterns in the data and

by investigating the robustness against changes in the assumed characteristics of the disease.

Certain changes in the characteristics of the disease should be factored into the calculation of

infectious load and activity. On the other hand, changes in the heterogeneity of spreading

dynamics, that are caused by the emergence of new viral variants or by the implementation of

intervention measures, should be reflected in the temporal progression of an indicator for

transmission heterogeneity. This suggests that numerical indicators such as EffDI should not

be investigated without regarding additional epidemiological data. In our current approach,

abrupt changes in the seasonality of the data, which are caused by systematic changes in case

reporting operations, can lead to the artificial inflation of inferred effective aggregate disper-

sion. Furthermore, our framework does currently not regard truncation or other aspects that

should be considered in the analysis of time series data. Besides technical improvements, we

assume that investigating effective aggregate dispersion with synthetic data that was obtained

from individual-based or network models [4–9, 44] could provide additional insight and

improvements.

Methods

Disease and transmission intervals

Motivation. In the study of the epidemiology of transmissible diseases usually only a sub-

set of the relevant time intervals is accessible via collected data. We relate an extended set of

disease and transmission specific intervals in a stochastic model to infer information that can-

not be retrieved directly from collected data in most cases.

Corresponding to the notation introduced in Results, we denote the offset between infection

and (potential) case registration as the forward reporting offset Drepy and the time between

detection and a (potential and subsequently detected) secondary infection as the backward
reporting offset Drep∗ . For an infection pair AB let TA

reg be the point in time when a patient A was

registered, let TB
inf be the point in time when the secondary case (patient B) acquired the infec-

tion from patient A and let TB
reg be the time of registration of patient B. Then

TB
inf ¼ TA

reg þ D
AB
rep∗ ;

TB
inf ¼ TB

reg � D
B
repy ;

where D
B
repy and D

AB
rep∗ are the specific reporting offsets for the infection pair AB. In addition to

the specific infection and reporting times Tinf and Treg, also regard the time of symptom onset

Tsym and denote the time intervals

D
AB
gen ¼ TB

inf � TA
inf ;

D
AB
ser ¼ TB

sym � TA
sym;

D
AB
case ¼ TB

reg � TA
reg;

as the generation, serial and case interval. We further write

D
A
inc ¼ TA

sym � TA
inf ;

D
A
reg ¼ TA

reg � TA
sym:
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for the incubation period and the registration delay (for patient B respectively). A diagram

relating all disease and transmission intervals is provided in Fig 1A.

Data. For quantifying infectious load and activity (compare Eq (2)), the time series of

reported cases and the statistical distributions of the reporting offsets are required. In literature

and studies, however, most often the generation [27, 36, 45] and serial intervals [29, 30, 32, 35,

37, 46] as well as the incubation period [31, 34, 35, 47] are investigated and the underlying data

usually stems from a relatively small number of closely tracked infection pairs. Parameters of

statistical distributions found in literature and visual comparison are provided in S1 Data and

S1 Text. In the presented stochastic inference approach we use ‘averaged’ versions of the found

distributions.

Delays in registration and reporting, on the other hand, are less frequently studied because

they are very specific to administrative processes including changing reporting procedures and

laboratory schedules. We use a data-set containing daily histograms about the time between

symptom onset and recording that was extracted for us from the Austrian national surveillance

system. We removed outliers reporting large negative and positive delays, subdivided the data

by registration date at 2020-06-01, 2020-10-01 and 2021-03-01, and fitted gamma distributions

separately for each of the four resulting periods and for each day of the week. The inferred

parameters are provided in S2 Data. In our analysis, we observe smaller delays in the later

stages of the epidemic; presumably due to improved testing and registration procedures. But it

is also possible that the emergence of new variance with different incubation times could influ-

ence the duration of reporting delays. Weekly patterns can be recognized with slightly longer

reporting delays for cases that first showed symptoms during the weekends. The obtained

interval distributions are specific to the Austrian setting but we assume that qualitatively simi-

lar results should be obtained for other countries. Visualizations of the data is provided in S2

Text.

Population specific time intervals are less frequently studied than intervals in transmissions

that are specific to the disease. As a consequence, in models for the inference of reproductive

numbers, often the serial or generation interval is used as an approximation of the case interval

[3, 7, 13, 19] (compare Eq (3)). In fact, we find that E½Dgen� � E½Dser� � E½Dcase�. Nevertheless,

the generation interval is always a positive time period, whereas the serial and case intervals

can take negative duration. We distinguish statistical distributions for the serial interval found

in literature that assume strictly positive values (‘pSI’) and models that allow negative serial

intervals (‘nSI’). We use the latter model throughout our presentation but highlight some

effects and differences when choosing the ‘pSI’ model in S6 Text. Due to the accumulated vari-

ability in individual disease progression and reporting, we may further assume that variance in

the case interval distribution is larger than in the generation and serial interval distributions.

Furthermore, the incubation period Δinc is always a positive time period, and we anticipate for

the registration delay Δreg a distribution with its mass concentrated close to and right of the

origin. Negative registration delays can occur if symptom onset happens after the infection

was discovered. Finally, for the backward reporting offset Drep∗ we anticipate a statistical distri-

bution that yields mostly negative values because once a patient is discovered, the likelihood of

posterior secondary infections should be minimal. The forward reporting offset Drepy presum-

ably is a strictly positive interval with a shape strongly influenced by the incubation period dis-

tribution. All intervals can be subject to gradual change over time. This can be attributed to the

emergence of more aggressive variants of a virus, which may lead to decreased incubation peri-

ods, to the improvement of surveillance and contact tracing, which can lead to smaller report-

ing delays (observed in the data), or to a generally altered social contact behavior and

immunity.
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Inference approach. The following equation model corresponds to the schematic in Fig

1A and brings into relation above time intervals occurring in infection pairs AB,

D
AB
ser ¼ D

AB
gen � D

A
inc þ D

B
inc

D
AB
case ¼ D

AB
gen � D

A
inc � D

A
reg þ D

B
inc þ D

B
reg

D
AB
case ¼ D

AB
ser � D

A
reg þ D

B
reg

D
A
rep∗ ¼ D

AB
gen � D

A
inc � D

A
reg

D
A
rep∗ ¼ D

AB
ser � D

B
inc � D

A
reg

D
A
repy ¼ D

A
inc þ D

A
reg

D
B
repy ¼ D

B
inc þ D

B
reg:

ð9Þ

We designate the generation, serial and incubation period (Δgen, Δser, Δinc) as exogenous vari-

ables that can be modeled with statistical distributions found in literature (S1 Data and S1

Text). A further exogenous variable is the registration delay Δreg (S2 Data and S2 Text).

Accordingly, the remaining ‘endogenous’ variables left for inference are the case interval Δcase

and the forward and backward reporting offsets Drepy , Drep∗ . To map the equation system in a

stochastic simulation framework, we differentiate between distinct instances of random vari-

ables on the left-hand side in Eq (9) and model the difference between instances of the same

variable as normal errors with a standard deviation of 3 days. We then implement the resulting

expressions (S3 Text) in a stochastic simulation framework (Python PyMC3 library [48]) and

employ gradient-based MCMC algorithms to obtain stochastic samples of all random variables

that comply with the formulated constraints (error terms). Corresponding Python program-

ming code is provided in S1 Code.

We compare the obtained parameters of the fitted distributions of all exogenous variables

with their prior counterparts that were found in literature and data (S4 Text). By this we can

assure that the posterior distributions only deviate marginally from the initially provided data

and models while simultaneously adhering to the equation model. We further fit statistical

models (skew normal distributions) to the synthetic samples of the remaining endogenous var-

iables (case interval and reporting offset distributions) and collate their qualitative characteris-

tics with above considerations. To honour the temporal transformation of disease intervals

and weekly patterns in reporting delays, this procedure was separately performed for distinct

time periods of the SARS-CoV-2 epidemic in Austria and for each day of the week. Hence, for

distinct time periods and for different days of the week specific statistical models for the

reporting offset distributions were obtained (compare Fig 1C).

In S3 Data we provide the obtained distribution parameters for all scenarios (weekday and

phase of the epidemic in Austria). In S5 Text we visualize the obtained reporting offset distri-

butions for all scenarios. In S6 Text we compare the results of our approach for real and posi-

tive serial intervals.

Framework for the inference of effective aggregate dispersion

Motivation. In the common approach for inferring reproduction dynamics from time

series of reported cases (see Results) it is assumed that infectious activity (I†) can be modeled

with a negative binomial distribution (see also Eq (5)),

Yt � NB kI∗t ;
Rt

Rt þ k

� �

; ð10Þ
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where I∗t is the current infectious load, Rt is the effective reproduction number, and k> 0 is a

constant dispersion parameter. We obtain for the mean and variance,

mYt
¼ I∗t Rt; s2

Yt
¼ I∗t Rt þ

I∗t R
2
t

k
ð11Þ

and Chebyshev’s inequality yields

P
jYt � mYt

j

mYt

� ε

 !

�
1

ε2

1

I∗t Rt
þ

1

kI∗t

� �

; ε > 0: ð12Þ

Hence, the relative deviation of infectious activity converges to zero in probability for increas-

ing load and fixed k, that is

plim
I∗t!1

jYt � mYt
j

mYt

¼ 0: ð13Þ

This means that with the model Yt, independent of the dispersion parameter k, the relative

‘stochasticity’ of infectious activity diminishes with increasing infectious load. In other words,

the above model assumes highly regular time series of infectious activity during regimes with

increased load irrespective of the presence of dispersion in the transmission dynamics. In turn,

this indicates that Yt is not suitable for assessing the variable amount of traceable or effective
dispersion in the transmission dynamics of an outbreak.

We now consider a slightly modified model for infectious activity (see also Eq (6))

Zt � Gamma kt;
I∗t Rt

kt

� �

; ð14Þ

where Rt is again the effective reproduction number and κt> 0 is a time-dependent aggregate

dispersion parameter. It holds that

mZt
¼ RtI∗t ; s2

Zt
¼
ðRtI∗t Þ

2

kt
: ð15Þ

Whereas mZt
¼ mYt

, the main difference between the random variables Zt and Yt is how their

respective standard deviations scale with the infectious load I∗t . In particular, we have sYt
¼

Oð
ffiffiffiffi
I∗t

p
Þ and sZt

¼ OðI∗t Þ for I∗t !1. Hence, in contrast to Eq (12), applying the Chebyshev’s

inequality for Zt we obtain

P
jZt � mZt

j

mZt

� ε

 !

�
1

ε2 kt
; ε > 0; ð16Þ

which does not imply a reduction of the relative deviation from the expectation with increased

load I∗t . Note that in general this behavior can only be obtained when sZt
grows at least linearly

with I∗t (further technical comparison of both models is provided in S8 Text). Hence, in con-

trast to Yt, when small dispersion and homogeneous spreading is assumed (large κt) in model

Zt, then the ‘stochasticity’ of simulated infectious activity is small irrespective of the current

infectious load.

We now use Zt as a benchmark model for investigating time-varying aggregate dispersion

in the following sense: If we can further extend the model Zt in such a way that it inherently

explains most of the (seasonal) variance in Iyt caused by external factors such as the testing and

reporting regime, it is possible to choose the time-dependent aggregate dispersion parameter
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κt increasingly large only during phases of low relative ‘stochasticity’ without making the

observed infectious activity implausible.

Residual stochasticity. When attempting to quantify the amount of variance in a time

series of aggregate reported case numbers that can be attributed to the dispersion in the num-

ber of individual secondary infections, we are faced with two major problems.

First, models for the reproduction dynamics such as Yt in Eq (10) are defined by time-vary-

ing parameters that can easily change between two consecutive days. The observed time series

of aggregate case numbers, however, only yields a single entry for each day. Hence, in general,

we only have a single sample for a fitted model Yt, from which it is clearly impossible to obtain

any notion of empirical variation. One way to address this issue is to assume that the parame-

ters of a model for the reproduction dynamics of an outbreak remain unchanged for a given

number of days [13]. Under this assumption, we can sample infectious load and infectious

activity pairs for each day in the selected time window and measure how well a model that was

fitted on these pairs explains the data observed across the respective time frame.

Secondly, large parts of the variance in a time series of daily aggregate case numbers is

caused by independent factors such as the individual testing behavior, the current setup of the

testing regime, or the workflow of laboratories and governmental institutions. These contribu-

tions to the overall variance in the observed time series need to be separated from the variation

caused by the dispersion in the number of secondary infections.

In the following, we define a model for the number of secondary infections that mitigates

both of these issues and thus enables us to quantify how much dispersion at least needs to be

assumed during a given period in the pandemic such that the observed variance of daily aggre-

gate case numbers is in fact plausible.

Inference approach. To assess the plausibility of the observed data around a day t given

an aggregate dispersion parameter κt in the model Eq (14), we first fit the effective reproduc-

tion numbers Rt on a fixed window around t during which we assume that the parameters

describing the current infection dynamics remain constant. A typical approach in the literature

is to use a constant model for Rt [13]. However, a constant model cannot account for variance

in the data caused by daily seasonalities in the reporting or strong linear trends, both of which

are usually present in daily incidence time series. Here, we will consider a model which com-

bines a linear trend with a daily seasonal constant, namely

Rt ¼ c0t þ st mod 7; ð17Þ

where c0; s0; . . . ; s6 2 R. Let here for convenience ei 2 R
7

for i 2 {0, . . ., 6} denote the (i + 1)-

th unit row vector and let Iyt ¼ It be the infectious activity on day t according to Eq (3). By

assuming that the parameters c0, s0, . . ., s6 remain constant τ0 days before and τ1 days after t,
we define the linear problem

0 I∗t� t0eðt� t0Þ mod 7

I∗t� t0þ1
I∗t� t0þ1

eðt� t0þ1Þ mod 7

..

. ..
.

t0I∗t I∗t et mod 7

..

. ..
.

ðt0 þ t1 � 1ÞI∗tþt1 � 1
I∗tþt1 � 1

eðtþt1þ� 1Þ mod 7

ðt0 þ t1ÞI∗tþt1 I∗tþt1eðtþt1Þ mod 7

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

c0

s0

..

.

s6

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

Iyt� t0
Iyt� t0þ1

..

.

Iyt

..

.

Iytþt1 � 1

Iytþt1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
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; ð18Þ
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which can be solved with an ordinary least squares approach. Substituting the obtained param-

eters in Eq (17) then yields a fit for the effective reproduction numbers Rt� t1
; . . . ;Rtþt1

on the

selected window of days around t. For a fixed time-dependent aggregate dispersion parameter

κt, which we assume to also remain constant in the period from t − τ0 to t + τ1, this fully defines

the model Zt for the selected time window. To calculate the plausibility of this model given the

observed data within the selected time window, we define the following test statistic based on

the squared distance from the daily expectation:

Tðx� t0 ; . . . ; x0; . . . ; xt1Þ ¼
Xt1

n¼� t0

ðxn � mZt� n
Þ

2
; ð19Þ

where mZt� n
¼ Rt� nI∗t� n. The plausibility of the model Zt given the observed case data and a

fixed parameter κt can now be assessed via the p-value that represents the probability that the

test statistic Eq (19) for samples from the random variables Zt� t0
; . . . ;Ztþt1

is greater or equal

than the test statistic for the estimated infectious activities Iyt , that is,

ptðktÞ ¼ PðTðIyt� t0 ; . . . ; Iytþt1Þ � TðZt� t0
; . . . ;Ztþt1

ÞÞ: ð20Þ

Note that the test statistic can be applied to integer- and real-valued time series alike. For a

plausibility threshold p 2 [0, 1], we write

ktðpÞ ¼ supfk: ptðkÞ � pg; ð21Þ

to denote the largest aggregate dispersion parameter for which the model Zt is plausible given

the observed case data around day t. The effective aggregate dispersion index (EffDI) is then

defined as the square root of the reciprocal of κt(p), that is,

EffDIt ¼ ktðpÞ
� 1=2

: ð22Þ

Supporting information

S1 Code. Python programming code for the stochastic inference of disease interval distri-

butions. The programming code implements the stochastic inference approach for the report-

ing offset distributions presented in Methods. The program uses the data provided in and S1

and S2 Data.

(PY)

S1 Data. Parameters of statistical distributions of disease intervals. We provide a machine-

readable file in the JSON format containing the parameters and statistics of the distributions of

disease intervals found in literature. The references are listed in S1 Text.

(JSON)

S2 Data. Parameters of reporting delay distributions. We provide a machine-readable file in

the JSON format containing the parameters of reporting delay distributions that were fitted to

Austrian data.

(JSON)

S3 Data. Parameters of the inferred distributions of disease intervals. We provide a

machine-readable file in the JSON format containing the parameters and statistics of inferred

forward and backward reporting offset distributions and the inferred distributions of the case

interval.

(JSON)
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S1 Text. Visualization of statistical distributions of disease intervals. Visualization of the

data provided in S1 Data.

(PDF)

S2 Text. Visualization of reporting delay distributions. Visualization of the statistical distri-

butions provided in S2 Data.

(PDF)

S3 Text. Equations and constraints for stochastic simulation. Formal representation of the

equations defining the stochastic model for the MCMC inference approach.

(PDF)

S4 Text. Posterior distributions of the MCMC inference approach. Analysis of the posterior

distributions obtained by stochastic inference.

(PDF)

S5 Text. Visual display of the inferred disease interval distributions. Visualization of the

statistical distributions provided in S3 Data.

(PDF)

S6 Text. Comparison of inferred interval models under different conditions for the posi-

tivity of the serial intervals. Additional visualization of the statistical distributions provided

in S3 Data.

(PDF)

S7 Text. List of selected superspreading events in Austria. Details on the SSEs that are indi-

cated in Fig 5.

(PDF)

S8 Text. Additional details on the statistical models for reproduction. Formal analysis of

the reproduction models in Eqs 4–6.

(PDF)

S9 Text. Parameter variation studies. EffDI under the variation of the parameters of the sta-

tistical distributions of disease intervals. We investigate the robustness of EffDI against the

shape of the reporting offset distributions and the behavior of EffDI under the transition

between Eqs 2 and 3.

(PDF)

S10 Text. Emergence of SARS-CoV-2 variants and EffDI. This supporting text compares the

emergence of new variants with the behavior of EffDI based on Austrian case data.

(PDF)
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Rahmen der COVID-19 Epidemie, Östrreich. Austrian Agency for Health and Food Safety (AGES);

2020. Available from: https://wissenaktuell.ages.at/imputation-des-erkrankungs-datums-bei-

unvollstaendigen-daten-im-rahmen-der-covid-19-epidemie-oesterreich/.

25. Challen R, Brooks-Pollock E, Tsaneva-Atanasova K, Danon L. Meta-analysis of the SARS-CoV-2 serial

interval and the impact of parameter uncertainty on the COVID-19 reproduction number. medRxiv.

2020. https://doi.org/10.1101/2020.11.17.20231548

26. Fine PEM. The Interval between Successive Cases of an Infectious Disease. American Journal of Epi-

demiology. 2003; 158(11):1039–1047. https://doi.org/10.1093/aje/kwg251 PMID: 14630599

27. Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval

for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance.

2020; 25(17). https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257 PMID: 32372755

28. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-

19 outbreaks by isolation of cases and contacts. The Lancet Global Health. 2020; 8(4):e488–e496.

https://doi.org/10.1016/S2214-109X(20)30074-7 PMID: 32119825

29. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and trans-

missibility of COVID-19. Nature Medicine. 2020; 26(5):672–675. https://doi.org/10.1038/s41591-020-

0869-5 PMID: 32296168

30. Ali ST, Wang L, Lau EHY, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over

time by nonpharmaceutical interventions. Science. 2020; 369(6507):1106–1109. https://doi.org/10.

1126/science.abc9004 PMID: 32694200

PLOS ONE Assessing the heterogeneity in the transmission of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0286012 May 30, 2023 25 / 26

https://doi.org/10.1080/02664763.2021.1941806
https://doi.org/10.1080/02664763.2021.1941806
https://doi.org/10.12688/wellcomeopenres.15842.3
https://doi.org/10.12688/wellcomeopenres.15842.3
http://www.ncbi.nlm.nih.gov/pubmed/32685698
https://doi.org/10.1093/aje/kwt133
http://www.ncbi.nlm.nih.gov/pubmed/24043437
https://doi.org/10.12688/wellcomeopenres.16006.2
https://doi.org/10.1371/journal.pone.0000758
http://www.ncbi.nlm.nih.gov/pubmed/17712406
https://doi.org/10.1371/journal.pcbi.1008409
http://www.ncbi.nlm.nih.gov/pubmed/33301457
https://doi.org/10.1371/journal.pcbi.1008679
https://doi.org/10.1371/journal.pcbi.1008679
http://www.ncbi.nlm.nih.gov/pubmed/33513137
https://doi.org/10.1186/1472-6947-12-147
https://doi.org/10.1186/1472-6947-12-147
http://www.ncbi.nlm.nih.gov/pubmed/23249562
https://doi.org/10.1016/j.epidem.2019.100356
http://www.ncbi.nlm.nih.gov/pubmed/31624039
https://doi.org/10.1002/bimj.202000112
http://www.ncbi.nlm.nih.gov/pubmed/33258177
https://doi.org/10.25646/6692.4
https://doi.org/10.25646/6692.4
https://doi.org/10.1002/sim.5670
http://www.ncbi.nlm.nih.gov/pubmed/23124850
https://wissenaktuell.ages.at/imputation-des-erkrankungs-datums-bei-unvollstaendigen-daten-im-rahmen-der-covid-19-epidemie-oesterreich/
https://wissenaktuell.ages.at/imputation-des-erkrankungs-datums-bei-unvollstaendigen-daten-im-rahmen-der-covid-19-epidemie-oesterreich/
https://doi.org/10.1101/2020.11.17.20231548
https://doi.org/10.1093/aje/kwg251
http://www.ncbi.nlm.nih.gov/pubmed/14630599
https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
http://www.ncbi.nlm.nih.gov/pubmed/32372755
https://doi.org/10.1016/S2214-109X(20)30074-7
http://www.ncbi.nlm.nih.gov/pubmed/32119825
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1038/s41591-020-0869-5
http://www.ncbi.nlm.nih.gov/pubmed/32296168
https://doi.org/10.1126/science.abc9004
https://doi.org/10.1126/science.abc9004
http://www.ncbi.nlm.nih.gov/pubmed/32694200
https://doi.org/10.1371/journal.pone.0286012


31. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infec-

tions among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance. 2020; 25(5). https://

doi.org/10.2807/1560-7917.ES.2020.25.5.2000062 PMID: 32046819

32. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial Interval of COVID-19 among Publicly

Reported Confirmed Cases. Emerging Infectious Diseases. 2020; 26(6):1341–1343. https://doi.org/10.

3201/eid2606.200357 PMID: 32191173
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