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a b s t r a c t 

Background and objective: Measuring physiological loading conditions in vivo can be challenging, as meth- 

ods are invasive or pose a high modeling effort. However, the physiological loading of bones is also 

imprinted in the bone microstructure due to bone (re)modeling. This information can be retrieved by 

inverse bone remodeling (IBR). Recently, an IBR method based on micro-finite-element (μFE) modeling 

was translated to homogenized-FE (hFE) to decrease computational effort and tested on the distal radius. 

However, this bone has a relatively simple geometry and homogeneous microstructure. Therefore, the ob- 

jective of this study was to assess the agreement of hFE-based IBR with μFE-based IBR to predict hip joint 

loading from the head of the femur; a bone with more complex loading as well as more heterogeneous 

microstructure. 

Methods: hFE-based IBR was applied to a set of 19 femoral heads using four different material mapping 

laws. One model with a single homogeneous material for both trabecular and cortical volume and three 

models with a separated cortex and either homogeneous, density-dependent inhomogeneous, or density 

and fabric-dependent orthotropic material. Three different evaluation regions (full bone, trabecular bone 

only, head region only) were defined, in which IBR was applied. μFE models were created for the same 

bones, and the agreement of the predicted hip joint loading history obtained from hFE and μFE models 

was evaluated. The loading history was discretized using four unit load cases. 

Results: The computational time for FE solving was decreased on average from 500 h to under 1 min 

(CPU time) when using hFE models instead of μFE models. Using more information in the material model 

in the hFE models led to a better prediction of hip joint loading history. Inhomogeneous and inhomoge- 

neous orthotropic models gave the best agreement to μFE-based IBR (RMSE% < 14%). The evaluation region 

only played a minor role. 

Conclusions: hFE-based IBR was able to reconstruct the dominant joint loading of the femoral head in 

agreement with μFE-based IBR and required considerably lower computational effort. Results indicate 

that cortical and trabecular bone should be modeled separately and at least density-dependent inhomo- 

geneous material properties should be used with hFE models of the femoral head to predict joint loading. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Obtaining physiological loading conditions of joints is required 

or a multitude of problems. For example, to obtain safety factors 

or fracture risk analysis [1] , to obtain loading conditions for test- 

ng of implants [2] , to infer habitual activities of extinct living be- 
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ngs [3] , or to enhance patient-specific models [ 4 , 5 ]. But, obtaining

uch physiological loading conditions can be challenging: measur- 

ng them in vivo using strain gauges [6] or instrumented prosthe- 

es [ 7 , 8 ] are invasive methods, and other options, such as muscu-

oskeletal models [9] , require high modeling effort. Inverse bone 

emodeling (IBR) is another method to reconstruct the loading his- 

ory from the microstructure of bones, which can be imaged using 

omputed tomography (CT). 

IBR uses information imprinted in the bone by (re)modeling 

o obtain physiological loads by reconstructing the loading history 
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Table 1 

Elastic base material properties. See the appendix for details of the material models. 

tb: trabecular; ctx: cortex. 

Model E 0 (MPa) G 0 (MPa) ν0 (-) k (-) l (-) 

INHOM (tb) 10905 - 0.25 2.00 - 

INHOM (ctx) 12000 - 0.30 2.00 - 

ORTHO (tb) 13758 4136 0.22 2.01 1.20 
10] . Mechanical stimuli acting on the bone will elicit an adaption 

f bone tissue [11] . Thus, by regular and prolonged loading of the 

one, the bone will (re)model to withstand the applied loading in 

n optimized way [12] . IBR aims to invert this process and find 

he loading that caused the bone to adapt [10] . A set of probable

nit load cases is applied to a finite element (FE) model of the 

one to solve the inverse problem. Then, an optimization proce- 

ure finds scaling factors for the load cases, such that the com- 

ined and scaled load cases load the bone in an optimal way. For 

one that is in homeostasis, i.e., that has already adapted to a cer- 

ain loading condition, such an optimal loading can be found when 

he loading state in the bone is distributed homogeneously and 

lose to a target value. 

The first IBR implementation used 2D homogenized-FE (hFE) 

odels to predict loading conditions at the proximal femur [13–

6] . Another implementation of IBR is designed for high-resolution 

FE and uses a simplified optimization criterion, as the internal 

one loading can be directly evaluated at the tissue level [17] . 

his μFE-based IBR method was already applied, for example, to 

dentify hip loading patterns of animals [18] or to investigate the 

lausibility of the predictions on human femora [19] . Recently, the 

ethod was translated to hFE [20] to speed up computational time 

nd to be able to use sophisticated boundary conditions such as 

rticular contact in the future. 

The recently developed hFE-based IBR model was so far only 

pplied at the distal radius [20] , a bone with relatively simple ge- 

metry, homogeneous microstructure, and simple loading condi- 

ion, as the bone experiences almost exclusively axial compression 

n a physiological scenario [21] . A study investigating the predictive 

ower on bones with a more diverse loading regime and hetero- 

eneous microstructure is still missing. Furthermore, only section 

orces have been estimated so far, while the ultimate goal would 

e to estimate joint loadings. 

To fill this gap, hFE-based IBR could be applied to the proximal 

emur to predict hip joint loading. In contrast to the distal radius, 

he proximal femur microstructure is heterogeneous, with differ- 

ntly oriented trabeculae, and the outer bone geometry is more 

omplex. Also, in vivo measurements from instrumented prosthe- 

es [7] are available. Thus, the results of IBR can be checked for 

lausibility. From a clinical point of view, the proximal femur is of 

nterest because it poses a high fracture risk, especially in elderly 

eople [22] , and is thus also a common bone to evaluate fracture 

isk on [23] . Lastly, the femur is the longest and most massive bone

n the human body and is thus a good test case for the computa-

ional efficiency of the hFE-based IBR method. 

The primary objective of this study was to apply the previously 

eveloped hFE-based IBR algorithm to the proximal femur and as- 

ess its performance. Specifically, it should be tested if the results 

y Synek et al . [19] achieved by μFE-based IBR can be reproduced 

y hFE-based IBR. A secondary objective was to assess how sim- 

le the hFE models can be to still get results in good agreement 

ith μFE-based IBR. This information is also important if image 

ata with lower image quality or resolution, such as QCT or MRI, 

hould be used in the future as the basis of hFE-based IBR. 

. Methods 

A graphical overview of the study is given in Fig. 1 . First, micro-

T (μCT) images were processed, and μFE and hFE models were 

reated from the same μCT images. While μFE only used a sin- 

le isotropic material for the entire bone, different material models 

ere used in hFE. Unit load cases were applied in four directions 

n the frontal plane. After solving the FE models, optimal loading 

as determined using IBR. The peak and mean force of each model 

ere then calculated, and all models were compared with respect 

o μFE, which acted as the baseline. 
2 
.1. Finite element model meshes and boundary conditions 

A set of 19 images of proximal femora was used from a pre- 

ious study [ 19 , 24 ]. No additional experiments or scans were per-

ormed on the specimens. The images were originally scanned in 

 μCT scanner with 0.0303 mm voxel size but were resampled to 

.0 60 6 mm voxel size to reduce computational costs. This resolu- 

ion was shown to still be sufficient for μFE based IBR [25] . The

emur was rotated into a head-centered coordinate system, and 

he head region was cropped from the femur, as described pre- 

iously [19] ( Fig. 1 a). Following [19] , a voxel-based cartilage layer 

as added, 2.2 mm larger than the radius of the head. The head 

adius was found by fitting a sphere to the femoral head. Addi- 

ionally, trabecular and cortical volumes were identified using the 

fill” method [26] of medtool (Version 4.6, Dr. Pahr Ingenieurs e.U., 

faffstätten, Austria) and labeled in the images. 

μFE meshes were generated in analogy to [19] by direct conver- 

ion of each voxel belonging to bone or cartilage to a hexahedral 

lement. Smooth FE meshes were created using the “bone mesher”

26] of medtool and a custom cartilage mesh generator imple- 

ented with gmsh [27] . In brief, the algorithm generates a tetra- 

edral volumetric mesh of the trabecular region and uses a thick- 

ess map of the cortex to create a thin, closed cortical layer us- 

ng wedge elements. The resulting mesh had a maximum element 

ize of 2.5 mm for the trabecular elements and approximately 2.5 

m side length of the triangular basis of the cortex wedge ele- 

ents. Details of mesh convergence can be found in the appendix. 

he cartilage layer was constructed using the same parameters as 

n μFE but used an additional refined loading area using a max- 

mal element size of 1mm. The cortical bone used second-order 

edge elements (C3D15), while the trabecular bone and the carti- 

age were meshed using second-order tetrahedrons (C3D10). 

Force boundary conditions were applied in 40 ° spherical cap ar- 

as on the cartilage layer [19] ( Fig. 1 b). For μFE, a normal force

ector, acting in the head center, was constructed, and the force 

as evenly distributed among all nodes in the contact area. For 

FE, a pressure acting on the contact surface area was applied to 

odel the same force magnitude and direction as in μFE (for as- 

essment of the compatibility of the two boundary conditions, see 

he appendix). The two cut surfaces at the neck were pinned in all 

hree directions. Four load cases were applied using -20 °, 20 °, 60 °, 
nd 100 °, all in the frontal plane, with a unit force magnitude of 

 u = 1 kN per load case. 

.2. Material models 

An isotropic tissue material was used for the bone in the μFE 

odels using E = 12 GPa and a Poisson ratio of ν = 0.3 [ 20 , 28 ].

he cartilage was modeled with E = 10 MPa and ν = 0.3 [19] .

FE models were created using different material mappings for 

he trabecular and cortical bone regions, two models with ho- 

ogeneous (density-independent) and two with inhomogeneous 

density-dependent) finite element material properties ( Fig. 1 d, 

able 1 ). The simplest model (HOM) used the same isotropic and 

omogeneous material for both cortex and trabecular bone. The 

ext model (HOM_HOM) used two different isotropic homoge- 

eous materials for the cortex and trabecular bone. The two most 
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Fig. 1. Graphical overview of the study. (a) shows the selected region for the femoral head model, the anatomical landmarks and used sizes for the cartilage and region of 

interest (ROI). (b) gives an overview of the four applied load cases and their location on the surface of the cartilage. (c) μFE model showing different regions inside the model. 

The “empty” regions are not actually modelled. (d) overview of homogenized-FE (hFE) model and the four different material models used. HOM: cortex and trabecular bone 

use the same homogenous material. HOM_HOM: cortex and trabecular bone use a different but homogenous material. INHOM_INHOM: both cortex and trabecular bone 

are modeled with two density-dependent inhomogeneous materials. INHOM_ORTHO: the cortex uses an inhomogeneous material law while the trabecular bone uses an 

inhomogeneous orthotropic material law. (e) Inverse Bone Remodeling (IBR). Shown are the evaluation regions schematically. CTX + TB: both cortical and trabecular bone 

were used in the optimization. TB: only trabecular bone was used. ROI: cortical and trabecular bone inside a sphere (see definition of ROI in a) were used. With IBR, the 

mean and peak force was estimated and the different hFE models were compared to the reference, which was μFE. 
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dvanced models used a density-dependent inhomogeneous cortex 

ith either a density-dependent inhomogeneous trabecular bone 

INHOM_INHOM) or a density and fabric-dependent orthotropic 

rabecular bone (INHOM_ORTHO). 

Homogenized base material properties were taken from Pa- 

yasantisuk et al . [29] , who used FE-based homogenization with 

eriodicity-compatible mixed uniform boundary conditions. These 

alues were scaled to match the 12 GPa μFE material. Two differ- 

nt types of material mapping models, an inhomogeneous, density- 

ependent material and an orthotropic, density and fabric depen- 

ent material (Zysset-Curnier material model [30] ) were consid- 

red. Equations of all material models are given in the appendix. 

omogeneous material properties of the HOM and HOM_HOM 

odels were calculated by using the average density and in- 

erting it into an inhomogeneous material mapping law. For the 

OM model, the average density (31.9%) of the entire mod- 

lled region was used and inserted in the “INHOM (tb)” law 

 Table 1 ) and yielded an elastic modulus of E = 1108 MPa. For

OM_HOM, the average density for trabecular (25.7%) and cortical 

one (97.3%) was evaluated separately and yielded elastic moduli 

f E = 720 MPa using the “INHOM (tb)” law and E = 11361 MPa 

y using the “INHOM (ctx)” law, respectively. The inhomogeneous 
3 
ortex model used the same inhomogeneous model as the trabec- 

lar bone but a tissue modulus of E 0 = 12 GPa and Poisson ratio 

= 0.3 was used, such that it matches μFE at 100% bone density. 

he cartilage was modeled using E = 10 MPa and ν = 0.3, same as 

n μFE [19] . 

To map the inhomogeneous isotropic and orthotropic material 

o the meshes, a material mapping algorithm [31] in medtool was 

sed (Sampling sphere diameter: 5 mm, background grid distance: 

.5 mm) using the segmented high-resolution image data, comput- 

ng local density and fabric and using the corresponding material 

apping law to get the element-wise elastic material properties. 

.3. Inverse bone remodeling 

An hFE-based IBR algorithm was implemented as presented 

reviously [20] , which is a general extension of the μFE-based IBR 

f Christen et al . [17] . In brief, the algorithm scales the applied

oad cases using scaling factors αi such that the difference between 

he accumulated SED in the bone and a set target stimulus ˜ U 0 is 

inimized. The hFE-based IBR algorithm uses a power-law func- 

ion based on density to scale the tissue-level quantities to the 

ontinuum-level. The optimization function can be written as the 
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Table 2 

Average total CPU time required for solving all load cases of the FE models. HOM, 

HOM_HOM, INHOM_INHOM, and INHOM_ORTHO denote the hFE models with dif- 

ferent material modeling strategies. 

Mean SD Min Max 

μFE 499.9 h 387.2 h 185.8 h 1841.7 h 

INHOM_ORTHO 47.0 s 8.1 s 32.3 s 63.4 s 

INHOM_INHOM 49.2 s 8.1 s 35.6 s 63.0 s 

HOM_HOM 22.3 s 4.6 s 14.9 s 31.3 s 

HOM 23.3 s 4.3 s 16.7 s 31.1 s 

Table 3 

RMSE% of the loading history (RMSE divided by μFE peak force) for all models and 

evaluation regions. Values are given in percent as mean ± std. CTX + TB: full evalu- 

ation region. TB: only trabecular bone considered in evaluation. ROI: region of in- 

terest for evaluation. 

CTX + TB TB ROI 

INHOM_ORTHO 18.49 ± 4.32 12.08 ± 2.97 14.16 ± 2.45 

INHOM_INHOM 17.54 ± 3.87 13.62 ± 2.58 14.91 ± 4.08 

HOM_HOM 29.08 ± 4.73 38.83 ± 5.98 32.27 ± 4.44 

HOM 42.95 ± 5.81 39.03 ± 6.56 40.81 ± 5.54 
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inimization of a residual function: 

min 

i ∈ R + 0 

r ( αi ) = 

N IP ∑ 

j=1 

( 

˜ U 0 ρ
d 
j −

1 

N LC 

N LC ∑ 

i =1 

α2 
i U j,i 

) 2 

V j 

For all N IP integration points in the FE mesh and N LC unit load 

ases. V j denotes the volume, and ρ j the density of the integration 

oint j. U j,i is the SED in integration point j for load case i . The ex-

onent d , required in the power-law, was identified in analogy to a 

revious study [20] and was found to be d = 1.297. Details on the

arameter identification can be found in the appendix. The target 

issue stimulus was fixed to ˜ U 0 = 0 . 02 MPa [ 17 , 19 ]. The hFE models

sed full-integration for all elements and the density in each ele- 

ent was assumed to be constant. Field values in μFE were only 

valuated at the centroids and the density of each element was 

ssumed to be 100%. 

IBR was then performed on three sets of elements. First, the full 

E models were used, including both cortical and trabecular bone 

19] . Second, only the trabecular elements were considered in the 

ptimization to avoid bias from the cortical elements [32] . Third, a 

egion of interest (ROI) was cropped from the head, using a spher- 

cal region with a radius of 1.3 R head (see Fig. 1 a), following the

ypothesis that sufficient information regarding the joint load di- 

ection is “stored” in the head region. For the ROI evaluation, both 

rabecular and cortical bone was used in the optimization. 

.4. Evaluation of models 

The computational performance was measured as total CPU- 

ime for the solving of the FE models. To qualitatively compare the 

verall predictive performance between μFE and hFE, the loading 

istory was visualized. The loading history is represented by a set 

f scaled load resultant forces αi F i [19] . As each of the load cases

as the same unit load magnitude F u , the loading history can also 

e written as a vector of the scaling factors: F u [ α1 , α2 , α3 , α4 ] 
T . To

uantify the error between hFE-based IBR and μFE-based IBR, the 

oot mean squared error (RMSE) between the loading history vec- 

ors was evaluated. 

For further interpretation of the predicted forces, the peak and 

ean force were calculated from the loading history. The peak 

orce F peak = αi F i was defined as the force with the highest scaling 

actor αi and the mean force was calculated as F mean = 1 / 4 
4 ∑ 

i =1 

αi F i .

he magnitude | F | and angle φ were calculated for both peak and 

ean force vectors to analyze them separately. To have an error 

easure relative to the peak force, the RMSE was standardized by 

he respective μFE peak force magnitude. This measure is then re- 

erred to as RMSE%. 

.5. Hardware and software 

All μFE models were solved in ParOSol [33] on a dual In- 

el(R) Xeon(R) Gold 6144 with a base frequency of 3.5 GHz using 

6 processes in parallel. The hFE models were solved in Abaqus 

6R2022 (Dassault Systèmes, Vélizy-Villacoublay, France) on an In- 

el(R) Xeon(R) CPU E3-1231 v3 with a base frequency of 3.4 GHz 

sing four processes in parallel. IBR, pre- and post-processing was 

erformed in Python 3.7.4 (Python Software Foundation, https: 

/www.python.org ), scipy 1.7.2 [34] and medtool 4.6 (Dr. Pahr In- 

enieurs e.U., Pfaffstätten, Austria, http://www.medtool.at ). 

. Results 

.1. Computational performance 

The overall FE solving time, measured as total CPU-time, was 

educed by 4 to 5 orders of magnitude using hFE instead of μFE 
4

odels from an average of 500 h to under 60 s ( Table 2 ). The

omogeneous hFE models (HOM and HOM_HOM) were solved ap- 

roximately twice as fast as inhomogeneous/orthotropic hFE mod- 

ls. Number of degrees of freedom ranged from 354 million to 598 

illion in μFE, and from 110 thousand to 177 thousand in hFE. 

.2. Loading history 

The optimally scaled forces obtained from IBR were influenced 

y the type of material model used. In general, more information 

n the model (density, fabric) led to a better agreement with the 

FE results ( Fig. 2 ). The pattern of the individual loading history 

 α1 to α4 ) were strongly dependent on the material model. While 

NHOM_ORTHO and INHOM_INHOM showed a similar pattern to 

FE, HOM_HOM and HOM showed a different pattern ( Fig. 2 ). In 

OM, the 20 ° and 60 ° load cases were upscaled strongly and in 

OM_HOM almost a uniform load distribution was predicted be- 

ween the four load cases. A detailed box-plot comparing all four 

caling factors separately, as well as Bland-Altman plots of the scal- 

ng factors can be found in the supplemental material. 

The RMSE of the loading history ( Fig. 3 ) and the standardized 

MSE% ( Table 3 ) quantitatively confirmed the trend that more in- 

ormation in the model (density, fabric) improved the prediction. 

NHOM_ORTHO and INHOM_INHOM gave the lowest errors, indi- 

ating the best agreement with the μFE results. Using different 

valuation regions showed a similar trend between the different 

odels, but INHOM_ORTHO and INHOM_INHOM achieved overall 

ower errors when the trabecular evaluation region was used. 

While different hFE material models resulted in large differ- 

nces in the predicted loading histories, the evaluation region 

f the IBR model only led to minor differences ( Figs. 2 and 4 ).

sing trabecular or ROI evaluation regions led to a more simi- 

ar pattern between μFE-based IBR and hFE-based IBR with the 

NHOM_INHOM and INHOM_ORTHO models. Specifically, the 60 °
oad case was downscaled and -20 ° and 20 ° load cases were up- 

caled when using trabecular or ROI region instead of the full eval- 

ation region. 

.3. Peak and mean force 

Averaged peak and mean forces are shown in Fig. 2 , while 

ig. 4 presents magnitudes and angles separately. 

The magnitude of the mean force was in a similar range to μFE 

or INHOM_INHOM, overestimated for INHOM_ORTHO, and under- 

https://www.python.org
http://www.medtool.at
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Fig. 2. Polar plots of the predicted loading history (mean and ±standard deviation), mean force, and peak forces for the different material models (one per column) and 

different optimization regions (one per row). The isolines of the polar plot show the force magnitude, the dashed lines give the four loading directions (-20 °, 20 °, 60 °, and 

100 °). 
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stimated for both HOM and HOM_HOM ( Fig. 4 a). The angle of the

ean force was consistently tilted towards the 60 ° load case using 

FE-based IBR ( Fig. 4 b). This was particularly pronounced in the 

OM model, where the mean force pointed almost entirely in the 

0 ° load case direction. 

The peak force magnitude was systematically underestimated 

y hFE-based IBR in the HOM, HOM_HOM, and INHOM_INHOM 

odels, whereas good agreement with μFE-based IBR was found 

sing INHOM_ORTHO model ( Fig. 4 c). The predicted peak force an- 

le ( Fig. 4 d) was correctly identified in almost all samples using 

he INHOM_INHOM and INHOM_ORTHO models. The HOM_HOM 

odel identified the peak force angle for most samples correctly 
5

sing the full and ROI evaluation region but not when using the 

rabecular evaluation region, where a peak force angle of 100 ° was 

redicted in all samples. The HOM model failed to predict the peak 

orce angle, as 60 ° was predicted for almost all samples and in all 

hree evaluation regions. 

The resulting peak and mean forces were less affected by the 

ptimization region than the material models. A notable differ- 

nce, however, was the erroneous peak force direction for the 

OM_HOM models and the trabecular evaluation region in all 19 

amples, which was predicted correctly for 16 samples using the 

ntire evaluation region and 14 samples using the ROI evaluation 

egion. 
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Fig. 3. Root mean squared error (RMSE) of the loading history vector 

( F u [ α1 , α2 , α3 , α4 ] 
T ) between μFE and the respective hFE model for each evaluation 

region. 
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. Discussion 

This study showed that hFE-based IBR can be used to predict 

he loading history, in terms of scaling factors, mean, and peak 

ip joint forces at the femoral head. With the best hFE models, 

FE-based IBR predictions were in good agreement with μFE-based 

BR and offered a huge computational speed gain due to the lower 

umber of elements. Using an inhomogeneous rather than homo- 

eneous trabecular bone material model had the highest influence 

n the predicted values, whereas the evaluation region of the IBR 

lgorithm generally had a minor influence on the results. 

Using different types of material models gave a clear indica- 

ion of the primary information of the bone structure used in the 
ig. 4. Matrix of force results: Three evaluation regions CTX + TB, TB, ROI versus differen

agnitude. (d) Peak force angle. The bar for each of the four discrete angles gives the 

odel for the TB evaluation region predicted 100% of the samples to be 100 ° but 74% to 

6 
BR algorithm. The fully homogeneous model (HOM) represents 

he “purely geometrical” information. Using the HOM models, IBR 

ed to a strong overestimation of the load in the direction of the 

emoral neck, which is the stiffest direction if the cortical thickness 

nd bone density distribution are neglected. When the distinction 

etween cortical and trabecular bone was added in the HOM_HOM 

odel, the influence of the geometry decreased and resulted in the 

rediction of almost uniform loading of the femoral head. As soon 

s inhomogeneous bone material was used in the hFE models, ei- 

her with or without orthotropy, the IBR predictions came close to 

he predictions of μFE. A reason could be the principal compres- 

ive group of the femoral microstructure [35] , which is only rep- 

esented in the inhomogeneous models and is responsible for the 

igher scaling of the 20 ° load case in comparison to the HOM and 

OM_HOM models. In this case, the orthotropic material scales the 

tiffnesses in the principal direction of the compressive group even 

igher and thus gives an even better prediction than the inhomo- 

eneous material. However, the 60 ° and 100 ° load cases were con- 

istently scaled higher using hFE when compared to μFE. One rea- 

on might be a too stiff trabecular material behavior resulting from 

he material mapping, which computed the bone densities based 

n several sampling spheres with a diameter of 5 mm. This might 

ead to the inability to resolve small low-density regions or steep 

ensity gradients, such as behind the fovea capitis. However, for 

 material that also depends on orientation, the sampling sphere 

annot be chosen arbitrarily small [ 31 , 36 ]. To ensure comparability 

etween the INHOM and ORTHO models, the sampling sphere was 

sed with the same size in both models. 

The bias of hFE-based IBR due to material models also influ- 

nced the agreement of the mean and peak force with μFE-based 
t force measures. (a) Mean force magnitude. (b) Mean force angle. (c) Peak force 

percentage of models predicting that angle as peak. For instance, the HOM_HOM 

be 20 ° and 16% to be 60 ° for the ROI evaluation region. 
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BR. While the mean force magnitude was least influenced by the 

ind of hFE model, the mean force angle was strongly influenced 

ue to the higher scaled 60 ° and 100 ° load cases. On the other 

and, the peak force angle was correctly predicted for most mod- 

ls and evaluation regions (over 73% for HOM_HOM, except for TB 

egion; over 94% for INHOM_INHOM and INHOM_ORTHO, indepen- 

ent of region), but the peak magnitude varied largely. The mean 

orce magnitude is a more robust measure, as it averages all scal- 

ng factors, while the peak force only uses a single scale factor [19] .

onversely, the peak force angle is more robust than the mean 

orce angle. That is, because the proportions of the scaling factors 

o each other influence the mean force angle, while the maximum 

cale factor is found reliably, if at least inhomogeneous material is 

sed. 

Using different evaluation regions in IBR led to no drastic 

hange in the joint force predictions, except for the HOM_HOM 

odel. In this case, the predicted peak force angle changed when 

he trabecular evaluation region was used. μFE-based predictions 

ere generally less influenced by the evaluation region than hFE- 

ased predictions. Thus, selecting a region might be more impor- 

ant in hFE than in μFE, to filter for example, very high SEDs in

egions where the boundary conditions are applied. 

The results of this study suggest that for the application of hFE- 

ased IBR in the future, at least inhomogeneous material prop- 

rties are required. Only modeling the pure geometry or cortical 

nd trabecular volumes with constant density increased the error 

n the prediction 2 to 3 times. Further, models that did not in- 

lude material inhomogeneity (HOM, HOM_HOM) were not able to 

redict the peak force angle in a robust manner. The added or- 

hotropy only influenced the results slightly in this study. However, 

he optimization criterion applied in this study does not use the 

rthotropy information and a different optimization function could 

ield better results together with the orthotropic model. Such an 

ptimization function can be found, for example, by fitting the re- 

uired parameters on trabecular bone cubes with optimized load- 

ng conditions determined using μFE-based IBR, in as asuggested 

n [20] . While there is an additional gain in speed when using 

omogeneous models (HOM and HOM_HOM) instead of inhomo- 

eneous models (INHOM_INHOM and INHOM_ORTHO), the speed 

ain between different hFE models was marginal (30 versus 60 

PU seconds) when compared to the gain of hFE versus μFE in 

eneral (500 CPU hours). Given the high gain in computational 

peed and minor drawbacks in terms of accuracy, this study sug- 

ests that hFE-based IBR might also be suitable for load predic- 

ions using clinical imaging technology. In future, inhomogeneous 

odels could be created from clinical CT scans [ 14 , 15 ] which were

hown to predict strength equally well as inhomogeneous models 

reated from high resolution CT-scans [37] . However, the results of 

BR with hFE models created from clinical CT scans remain to be 

valuated in detail. 

This study has some limitations. Only simplified boundary con- 

itions with uniform pressure distributions were used, as circular 

ontact patches with resultant forces only in the frontal plane were 

sed. However, in reality peak force components are also acting 

n the sagittal and transversal plane in the hip [7] , which cannot 

e identified with the current set of load cases. The restriction of 

oad cases was necessary to enable a comparison of the results be- 

ween hFE and μFE-based IBR with feasible runtimes. Also, the pin- 

ing of the cut-planes at the neck is a simplification of the phys- 

ological boundary. While using an ellipsoidal load distribution in- 

tead of the here applied uniform pressure had only a small in- 

uence on the results when using μFE-based IBR [19] , a contact 

oundary condition might also give more realistic stress distribu- 

ions [38] and thus also more realistic results in IBR. In addition, 

nly the femoral head was considered for IBR, but muscle forces 

n the proximal femur might influence the result. Muscle forces 
7 
ere so far only modeled in 2D representations of the proximal 

emur in IBR [13–16] and in 3D using neural network based IBR 

39] . However, the effect of muscle forces on IBR is not yet known 

nd might be negligible, as the stress distribution of the head is 

ot influenced by adding muscle forces [40] . Thus, further studies 

re required to elucidate the effect of different boundary condi- 

ions on IBR. Finally, the continuum target stimulus of the IBR al- 

orithm used here only contains density information. Orientation 

f the material could be added in the future to further improve 

he joint load predictions. The cartilage was modelled as an elastic 

aterial with Poisson’s ratio ν = 0.3 both in μFE and hFE. How- 

ver, cartilage is typically modelled as incompressible with Pois- 

on’s ratios near 0.5. The reason for the lower Poisson’s ratio in 

his study was to ensure comparability with μFE, as the μFE solver 

arOSol only allows for a single Poisson’s ratio for the whole model 

33] . Using a Poisson’s ratio of ν = 0.495 and hybrid elements 

C3D10H) resulted in slightly changed scaling factors in the hFE 

odels (see Supplemental material for correlation plot) but did 

ot change the main conclusions of this study. Finally, the here re- 

orted CPU-times for μFE and hFE were collected on two different 

ypes of CPUs and different number of parallel processes as well 

s different FE solvers. A high number of parallel processes is re- 

uired for μFE to allow for feasible runtimes. However, this leads 

o systematic differences between the reported CPU-times. There- 

ore, the CPU-times given are only comparable to a limited extent 

nd should not be interpreted as a true benchmark, but still give 

 reasonable estimate if μFE and hFE were run on the same hard- 

are. 

To conclude, hFE-based IBR allows the prediction of hip joint 

oading based on a CT scan of the femoral head, but with much 

ower runtime compared to μFE-based IBR. The accuracy of the 

redictions depended on the used material models and at least in- 

omogeneous material properties were required to get to similar 

esults to μFE-based IBR. The evaluation region used for optimiza- 

ion only had minor influence on the result. These results indicate 

hat in vivo load prediction using IBR based on clinical CT data may 

e feasible in the future. 
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ppendix 

. Homogenized material models 

The here used material models were either a density dependent 

ower-law model or a density and fabric dependent Zysset-Curnier 

30] type model. While the power-law yields an isotropic model 

two independent material parameters), the Zysset-Curnier model 

s orthotropic (nine independent material parameters). 

The power-law uses three parameters: The base elastic-modulus 

 0 , the base Poisson number ν0 , and the density exponent k . The 

ollowing equation is used to get the density dependent elastic- 

odulus: 

E = E 0 ρ
k (1) 
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Fig. 5. Curve fitting of the power-law exponent d for the continuum optimization 

function. 
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Fig. 6. Mesh convergence study. (a) Change in volume, relative to the true volume 

measured in the CT image. (b) total CPU time for solving the model (all four load 

cases). (c) change of mean SED Ū , relative to the finest model (3 / 2 / 0.75) for the 

20 ° load case. Asterisk ( ∗) marks the selected model. 
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The Zysset-Curnier model uses, additionally to the density, the 

hree eigenvalues m i of the fabric tensor, which is a measure for 

he orientation of the microstructure. The fabric tensor has to be 

caled such that the trace of the tensor is equal to 3. An additional

xponent l is used to scale the eigenvalues. There are now three 

lastic-moduli: 

E i = E 0 ρ
k m 

2 l 
i 

(2) 

As well as three independent shear moduli: 

G i j = G 0 ρ
k 
(
m i m j 

)l 
(3) 

And three independent Poisson numbers: 

νi j = ν0 

(m j 

m i 

)l 
(4) 

In the case of an isotropic material, where all eigenvalues are 1, 

he model reduces to the power-law model ( Eq. (1) ), if the follow-

ng Eq. (5) is fulfilled for ν0 : 

ν0 = 

E 0 
2 G 0 

− 1 (5) 

arameter identification 

Parameters of the hFE-based IBR algorithm were identified in 

nalogy to [20] . To identify the power-law exponent d of the op- 

imization function, the same set of 167 trabecular bone cubes as 

ere already used for the identification of the homogenized elas- 

ic material properties [29] were uses. Six canonical load cases, 

sing periodicity compatible mixed uniform boundary conditions 

PMUBC), were applied to the cubes. Then, the optimized loading 

tate was found by applying IBR to the six load cases. Afterwards, 

he accumulated macroscopic SED 〈 U opt 〉 was calculated and fitted 

or the relative density ρ of each of the cubes using curve fitting 

 Fig. 5 ). In the curve fitting process, the variable ˜ U 0 was fixed to

.02 MPa. 

greement of hFE and μFE boundary conditions 

To validate that the used boundary conditions in μFE and hFE 

ive the same results, models of a single femoral head were cre- 

ted using the finest mesh resolution in hFE (see Mesh Conver- 

ence). The model was completely filled with an isotropic homo- 

eneous material and the force (μFE) and pressure (hFE) boundary 

onditions were applied for the 20 ° load case. The reaction force at 

he neck boundary was calculated for both models, to compare the 

rror using the different loadings. The magnitude was 10 0 0.1 N for 

FE and 996.4 N for hFE. Then, the displacement field of the two 

odels was compared on each node of the hFE mesh by search- 

ng for the nearest node in the μFE mesh. A corresponding μFE 

ode was found on average in 0.029 mm ± 0.009 mm distance 
8 
nd the displacement field differed on average by a magnitude of 

.012 mm ± 0.006 mm with an average displacement magnitude 

f 0.239 mm ± 0.135 mm for μFE and 0.233 mm ± 0.135 mm for 

FE. The main difference between the two meshes was the under- 

stimation of volume in the neck region in the hFE mesh due to 

arge pores in the cortex, thus giving a softer model with slightly 

arger displacements in the head. Given that the actual reaction 

orce magnitude only differed by less than 1% and the displace- 

ent differences can be explained by the lower hFE mesh volume, 

he boundary conditions were assumed to be comparable. 

esh convergence 

To test the dependency of element size in the hFE meshes, dif- 

erent mesh densities were created and the INHOM_ORTHO model 

as applied for 17 of the 19 femora. Two models were removed 

ecause the cartilage mesh was not created correctly for the coars- 

st mesh. The volume weighted mean SED was calculated for each 

f the models and standardized by the finest model. Fig. 6 gives 

he mean SED for the 20 ° load case, the total runtime of each 

odel and bone volume (trabecular and cortical volume, not in- 

luding the cartilage layer). The name of each model is the num- 

er of cortical refinement steps, the number of elements over the 

ortex thickness and the maximal element size for the trabecu- 

ar bone. Finally, the model 2/1/2.5 (2 refinement steps, 1 element 

ver the cortex, 2.5 mm maximal element size) was selected, as 

he deviation of mean SED from the finest model was on average 

elow 5% and it had runtimes one order of magnitude lower than 

he next finer model. 
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The volumes of the hFE meshes with the selected meshing pa- 

ameters were compared to the voxel-based volume of μFE, to en- 

ure that both models are not biased because of different volumes. 

he hFE meshes had 0.5% to 1.1% less volume than μFE, due to the 

moothing of the mesh surfaces in hFE. 

upplementary materials 

Supplementary material associated with this article can be 

ound, in the online version, at doi:10.1016/j.cmpb.2023.107549 . 
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