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a b s t r a c t

A coupled system of nonlinear mixed-type equations modeling early stages of angio-
genesis is analyzed in a bounded domain. The system consists of stochastic differential
equations describing the movement of the positions of the tip and stalk endothelial cells,
due to chemotaxis, durotaxis, and random motion; ordinary differential equations for
the volume fractions of the extracellular fluid, basement membrane, and fibrin matrix;
and reaction–diffusion equations for the concentrations of several proteins involved in
the angiogenesis process. The drift terms of the stochastic differential equations involve
the gradients of the volume fractions and the concentrations, and the diffusivities in
the reaction–diffusion equations depend nonlocally on the volume fractions, making the
system highly nonlinear. The existence of a unique solution to this system is proved
by using fixed-point arguments and Hölder regularity theory. Numerical experiments in
two space dimensions illustrate the onset of formation of vessels.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Angiogenesis is the process of expanding existing blood vessel networks by sprouting and branching. Its mathematical
odeling is important to understand, for instance, wound healing, inflammation, and tumor growth. In this paper, we
nalyze a variant of the off-lattice cell-based model suggested in [1] that is used to simulate the early stages of angio-
enesis. The model takes into account the dynamics of the tip (leading) endothelial cells by solving stochastic differential
quations, the influence of various proteins triggering the cell dynamics by solving reaction–diffusion equations, and the
hange of some components of the extracellular matrix into extracellular fluid by solving ordinary differential equations.
p to our knowledge, this is the first analysis of the model of [1].
Angiogenesis is mainly triggered by local tissue hypoxia (low oxygen level in the tissue), which activates the production

f the signal protein vascular endothelial growth factor (VEGF). Endothelial cells, which form a barrier between vessels and
issues, reached by the VEGF signal initiate the angiogenic program. These cells break out of the vessel wall, degrade the
asement membrane (a thin sheet-like structure separating the endothelial cells from the underlying tissue), proliferate,
nd invade the surrounding tissue while still connected with the vessel network. The angiogenic program specifies the
ctivated endothelial cells into tip cells (cells at the front of the vascular sprouts) and stalk cells (highly proliferating cells).
he tip cells lead the sprout towards the source of VEGF, while the stalk cells proliferate to follow the tip cells supporting
prout elongation; see Fig. 1.
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Fig. 1. Schematic model of sprout formation in a blood vessel corresponding to an in-vitro experiment described in [1]. Tip cells are activated by
VEGF and they segrete the proteins DLL4, MMP, and uPA. The vessels are embedded in the fibrin matrix, which acts as a substrate and is surrounded
by extracellular fluid. The basement membrane is the top layer of the matrix and separates it from the extracellular fluid.

Following [1], the tip cells segrete the proteins delta-like ligand 4 (DLL4), matrix metalloproteinase (MMP), and
urokinase plasminogen activator (uPA). The chemokine DLL4 makes the stalk cells follow the tip cells, MMP breaks down
the basement membrane, and uPA degrades the fibrin matrix such that cells can move into the matrix. There are many
other molecular mechanisms and mediators in the angiogenesis process; see, e.g., [2,3] for details.

1.1. Model equations

The unknowns are

• the positions Xk
1 (t) of the kth tip cell and Xk

2 (t) of the kth stalk cell;
• the volume fractions of the basement membrane fB(x, t), the extracellular fluid fE(x, t), and the fibrin matrix fF (x, t);
• the concentrations of the proteins VEGF cV (x, t), DLL4 cD(x, t), MMP cM (x, t), and uPA cU (x, t),

where t ≥ 0 is the time and x ∈ D ⊂ R3 the spatial variable. All unknowns depend additionally on the stochastic variable
ω ∈ Ω , where Ω is the set of events. We assume that the mixture of basement membrane, extracellular fluid, and fibrin
matrix is saturated, i.e., the volume fractions fB, fE , and fF sum up to one. We introduce the vectors Xi = (Xk

i )k=1,...,Ni for
i = 1, 2, f = (fB, fE, fF ), and c = (cV , cD, cM , cU ).

Stochastic differential equations
The tip cells move according to chemotaxis force, driven by the gradient of the VEGF concentration, the durotaxis force,

driven by the gradient of the solid fraction fS := fB + fF , and random motion modeling uncertainties. The dynamics of
Xk
i (t) is assumed to be governed by the stochastic differential equations (SDEs), understood in the Itô sense,

dXk
i (t) = gi[c, f ](Xk

i , t)dt + σi(Xk
i )dW

k
i (t), t > 0, Xk

i (0) = X0
i , (1)

where i = 1, 2, k = 1, . . . ,Ni for Ni ∈ N, W k
i (t) are Wiener processes, and the drift terms

g1[c, f ](X1, t) := α0M1(fS(X1), X1)z1 + γ (fS(X1))∇cV (X1) + λ(fS(X1))∇fS(X1),
g2[c, f ](X2, t) := α0M2(fS(X2), X2)z2 + γ (fS(X2))∇cD(X2) + λ(fS(X2))∇fS(X2),

(2)

(we omitted the argument t for fS and Xi on the right-hand side) include a constant α0 > 0, the strain energy Mi, the
direction of movement determined by the strain energy density zi, the chemotaxis force ∇cV in the direction of VEGF (tip
cells) and ∇cD in the direction of DLL4 (stalk cells), and the migration as a result of the durotaxis force ∇fS . We refer to [1]
for a motivation of the specific choice (2). In this paper, we allow for general drift terms by imposing suitable Lipschitz
continuity conditions; see Assumption (A4) below. In the numerical experiments, we choose the functions Mi, γ , and λ

as in Appendix C.
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Ordinary differential equations
The proteins MMP and uPA degrade the basement membrane and fibrin matrix, respectively, while enhancing the

xtracellular fluid component. Therefore, the volume fractions fB, fE , and fF are determined by the ordinary differential
equations (ODEs)

dfB
dt

= −sBcM fB, t > 0, fB(0) = f 0B ,

dfF
dt

= −sF cU fF , t > 0, fF (0) = f 0F ,

dfE
dt

= sBcM fB + sF cU fF , t > 0, fE(0) = 1 − f 0B − f 0F ,

(3)

where sB, sF > 0 are some rate constants. Note that the last differential equation is redundant because of the volume-filling
condition fB + fE + fF = 1. Clearly, Eqs. (3) can be solved explicitly, giving for (x, t) ∈ D × (0, T ) and pathwise in Ω (we
omit the argument ω),

fB(x, t) = f 0B (x) exp
(

−sB

∫ t

0
cM (x, s)ds

)
,

fF (x, t) = f 0F (x) exp
(

−sF

∫ t

0
cU (x, s)ds

)
.

(4)

Reaction–diffusion equations
The mass concentrations are modeled by reaction–diffusion equations, describing the consumption and production of

the proteins:

∂tcV − div(DV (f )∇cV ) + αV (x, t)cV = 0 in D, t > 0,
∂tcD − div(DD(f )∇cD) + βD(x, t)cD = αD(x, t)cV in D, t > 0,
∂tcM − div(DM (f )∇cM ) + sM fBcM = αM (x, t)cV in D, t > 0,
∂tcU − div(DU (f )∇cU ) + sU fF cU = αU (x, t)cV in D, t > 0,

(5)

with initial and no-flux boundary conditions

cj(0) = c0j in D, ∇cj · ν = 0 on ∂D, j = V ,D,M,U, (6)

where the rate terms are given by αV = sV α̃V , αj = rjα̃j for j = D,M,U , βD = sDβ̃D, and

α̃j(x, t) =

N1∑
k=1

V k
j (X

k
1 (t) − x), β̃D(x, t) =

N2∑
k=1

V k
D(X

k
2 (t) − x), (7)

for j = V ,D,M,U and V k
j : R3

→ R are nonnegative smooth potentials approximating the delta distribution. The
parameters rj and sj are positive. In [1], the rate terms are given by delta distributions instead of smooth potentials.
We assume smooth potentials because of regularity issues, but they can be given by delta-like functions as long as they
are smooth. Indeed, we need C1+δ(D) solutions cj to solve the SDEs (1), and this regularity is not possible when the source
terms of (5) include delta distributions. As the number of the proteins is typically much larger than the number of tip
cells, the stochastic fluctuations in the concentrations are expected to be much smaller than those associated with the tip
cells, which justifies the macroscopic approach using reaction–diffusion equations for the concentrations.

In Eq. (5) for cV , the term αV cV models the consumption of VEGF along the trajectory of the tip cells. The protein DLL4
is regenerated from conversion of VEGF, modeled by αDcV along the trajectories of the tip cells, and consumed by the stalk
ells, modeled by βDcD along the trajectories of the stalk cells. In Eq. (5) for cM , the term sM fBcM describes the decay of
the MMP concentration with rate sB > 0 as a result of the breakdown of the basement membrane, and αMcV models the
production of MMP due to conversion from VEGF. Similarly, sU fF cU describes the decay of the uPA concentration, which
breaks down the fibrin matrix, and the protein uPA is regenerated, leading to the term αUcV .

The diffusivities are given by the mixing rule

Dj(f ) = DB
j fB + DE

j fE + DF
j fF , j = V ,D,M,U,

where Di
j > 0 for i = B, E, F . Then

0 < min{DB
j ,D

E
j ,D

F
j } ≤ Dj(f ) ≤ max{DB

j ,D
E
j ,D

F
j }, (8)

and Eqs. (5) are uniformly parabolic. Note, however, that Eqs. (5) are nonlocal and quasilinear, since the diffusivities are
determined by the time integrals of cM or cU ; see (4).

Various biological phenomena are not modeled by our equations. For instance, we do not include the initiation of
sprouting from preexisting parental vessels, the branching from a tip cell, and anastomosis (interconnection between
3
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blood vessels). Moreover, in contrast to [1], we do not allow for the transition between the phenotypes ‘‘tip cell’’ and
‘‘stalk cell’’ to simplify the presentation. On the other hand, we may include further angiogenesis-related proteins, if the
associated reaction–diffusion equations are of the structure (5).

1.2. State of the art

There are several approaches in the literature to model angiogenesis, mostly in the context of tumor growth. Cellular
utomata models divide the computational domain into a discrete set of lattice points, and endothelial cells move in a
iscrete way. Such models are quite flexible, and intra-cellular adherence can be easily implemented, but their numerical
olution is computationally expensive when the numbers of cells or molecules are large [4]. In individual-based off-lattice
odels, the cells are treated as discrete entities, and their movement is not restricted to any lattice points [5]. Continuum-
cale models consider cell densities whose dynamics is described by partial differential equations; see, e.g., [6] for wound
ealing and [7] for angiogenesis. Chemotaxis can be modeled in this approach by Keller–Segel-type equations, which
dmit global weak solutions in two space dimensions without blowup [8]. A hybrid approach was investigated in [9],
here the blood vessel network is implemented on a lattice, tip cells are moving in a lattice-free way, and other cells
re modeled macroscopically as densities. An off-lattice cell-based approach was chosen in [1], which is the basis of the
resent paper. The novelty of [1] is the distinction of tip and stalk cells and the inclusion of proteins segregated by the
ip cells.

In other models, stochastic effects have been included. In [10], the movement of the tip cells is modeled by a SDE,
ith a deterministic part describing chemotaxis, and a stochastic part modeling random motion. The mean-field limit in
stochastic many-particle system, leading to reaction–diffusion equations, was performed in [11,12]. We also refer to the
eviews [13,14] on further modeling approaches of angiogenesis.

Numerical simulations of a coupled SDE-PDE model for the movement of the tip cells and the dynamics of the tumor
ngiogenesis factor, fibronectin (a protein of the extracellular matrix), and matrix degrading enzymes were presented
n [15]. Other SDE-PDE models in the literature are concerned with the proton dynamics in a tumor [16], acid-mediated
umor invasion [17], and viscoelastic fluids [18]. However, only the works [16,17] treat a genuine coupling between SDEs
nd PDEs. While the model in [17] also includes a cross-diffusion term in the equation for the cancer cells, we have
impler reaction–diffusion equations but with nonlocal diffusivities. The model of [16] also includes nonlocal terms, but
here are different from ours. Up to our knowledge, the mathematical analysis of system (1), (3)–(6) is new.

.3. Assumptions and main result

Let (Ω,F, (Ft )t≥0,P) be a stochastic basis with a complete and right-continuous filtration, and let (W k
i (t))t≥0 for

i = 1, 2, k = 1, . . . ,Ni be independent standard Wiener processes on R3 relative to (Ft )t≥0. We write Lp(Ω,F; B) for the
et of all F-measurable random variables with values in a Banach space B, for which the Lp norm is finite. Furthermore,
et D ⊂ R3 be a bounded domain with boundary ∂D ∈ C3 (needed to obtain parabolic regularity; see Theorem 19). We
et QT = D × (0, T ).
We write Ck+δ(D) with k ∈ N0, δ ∈ (0, 1) for the space of Ck functions u such that the kth derivative Dku is Hölder

ontinuous of index δ. The space of Lipschitz continuous functions on D is denoted by C0,1(D). For notational convenience,
e do not distinguish between the spaces Ck+δ(D;Rn) and Ck+δ(D). Furthermore, we usually drop the dependence on the

variable ω ∈ Ω in the ODEs and PDEs, which hold pathwise P-a.s. Accordingly, we write c instead of c(ω, ·, ·) and c(t)
nstead of c(ω, ·, t). Finally, we write ‘‘a.s’’. instead of ‘‘P-a.s.’’.

As we deal with stochastic processes depending also on the space variable x, we use the following definition of a
rogressively measurable process: We call a stochastic process X : Ω × D × [0, T ] → R progressively measurable with

respect to a filtration (Ft )t≥0, if X is an Ft × B(D) × B([0, t])-measurable random variable for all t ∈ [0, T ]. Here, B(G)
denotes the Borel-σ algebra of the corresponding topological space G.

We impose the following assumptions:

A1) Initial data: X0
i ∈ L4(Ω,F0) satisfies X0

i ∈ D a.s. (i = 1, 2), c0 ∈ L∞(Ω,F0; C2+δ0 (D)), f 0 ∈ L∞(Ω,F0; C1+δ0 (D)) for
some 0 < δ0 < 1; c0j ≥ 0 (j = V ,D,M,U), f 0i ≥ 0 (i = B, E, F ), and f 0B + f 0E + f 0F = 1 in D a.s.; ∇c0j · ν = 0 on ∂D a.s.

A2) Diffusion: σi : Ω ×D×[0, T ] → R (i = 1, 2) is progressively measurable, satisfies σi = 0 on ∂D a.s., and there exists
a constant L > 0 such that for all x, y ∈ D, t ∈ [0, T ], and ω ∈ Ω ,⏐⏐σi(ω, x, t) − σi(ω, y, t)

⏐⏐ ≤ L
⏐⏐x − y

⏐⏐, ⏐⏐σi(ω, x, t)
⏐⏐ ≤ L

(
1 +

⏐⏐x⏐⏐).
A3) Drift: gi(x, y, p, q) : R × R × R3

× R3
→ R3 is measurable and gi(c, f , ∇c, ∇f )=0 for x ∈ ∂D, t ∈ [0, T ] if (c, f ) is a

solution to (4)–(6). We write gi[c, f ] instead of gi(c, f , ∇c, ∇f ) to shorten the notation.
A4) Lipschitz continuity for gi: For c, c ′, f , f ′

∈ C1(D × [0, T ]), there exists L1 > 0 such that for (x, t) ∈ D × [0, T ] and
i = 1, 2,⏐⏐gi[c, f ](x, t) − gi[c ′, f ′

](x, t)
⏐⏐ ≤ L1

(
1 + ∥c∥L∞(0,t;C1(D)) + ∥f ∥L∞(0,t;C1(D))

)
×

(
∥c(t) − c ′(t)∥ + ∥f (t) − f ′(t)∥

)
.
C1(D) C1(D)

4
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Furthermore, for c, f ∈ L∞(0, T ;W 2,∞(D)), there exists L2 > 0 such that for (x, t), (x′, t) ∈ D × [0, T ] and i = 1, 2,⏐⏐gi[c, f ](x, t) − gi[c, f ](x′, t)
⏐⏐ ≤ L2

(
1 + ∥c∥L∞(0,T ;W2,∞(D)) + ∥f ∥L∞(0,T ;W2,∞(D))

)
× |x − x′

|.

A5) Potentials: V k
j ∈ C0,1(R3) for j = V ,D,M,U , k = 1, . . . ,Ni are nonnegative functions.

Let us discuss these assumptions. Since we need C1+δ solutions (c, f ) to obtain Hölder continuous coefficients of
he SDEs (which ensures their solvability), we need some regularity conditions on the initial data in Assumption (A1).
ccordingly, ∇c0j · ν = 0 on ∂D is a compatibility condition needed for such a regularity result. In Assumption (A1), we
mpose the volume-filling condition initially, f 0B + f 0E + f 0F = 1 in D. Eqs. (3) then show that this condition is satisfied for
ll time. The conditions σi = 0 and gi[c, f ] = 0 on ∂D in Assumptions (A2) and (A3), respectively, guarantee that the tip
nd stalk cells do not leave the domain D. The conditions on σi in Assumption (A2) and the Lipschitz continuity of gi[c, f ]
n Assumption (A4) are standard hypotheses to apply existence results for (1). Note that gi[c, f ] in example (2) satisfies
ssumption (A4). As gi is assumed to be measurable by Assumption (A3), gi[c, f ] is progressively measurable if c and f

are. Assumption (A5) is a simplification to ensure the parabolic regularity results needed, in turn, for the solvability of
(1).

Under these assumptions, the solution to (1) will turn out to be an element of the following metric space for some
R > 0:

YR(0, T ;D) :=
{
X ∈ C1/2([0, T ]; L4(Ω)) : ∥X∥C1/2([0,T ];L4(Ω)) ≤ R, (9)

X(t) is Ft-measurable, X(t) ∈ D a.s. for all t ∈ [0, T ]
}
,

equipped with the standard norm of C0([0, T ]; L4(Ω)).

Theorem 1 (Global Existence and Uniqueness). Let Assumptions (A1)–(A5) hold. Then there exist a unique solution (f , c, X) to
(4)–(7), (1) and some constant R > 0 such that

• f = (fB, fE, fF ) solves (3) pathwise a.s. in the sense of (4), where fi ∈ C0([0, T ]; L2(D)) ∩ L∞(QT );
• c = (cV , cD, cM , cU ) is a classical solution to (5)–(6) pathwise a.s.;
• c, ∇c, f and ∇f are progressive measurably;
• Xk

i ∈ YR(0, T ;D) is a strong solution to (1) for i = 1, 2, k = 1, . . . ,Ni.

A strong solution (X1, X2) to (1) means that (Xk
i (t))t≥0 is an a.s. continuous (Ft )-adapted process such that for all

∈ [0, T ],

Xk
i (t) = X0

i +

∫ t

0
gi[c, f ](Xk

i (s), s)ds +

∫ t

0
σi(Xk

i (s))dW
k
i (s) a.s. (10)

.4. Strategy of the proof

The proof of Theorem 1 is based on a variant of Banach’s fixed-point theorem [19, Theorem 2.4] yielding global
olutions. Let X̃ be a stochastic process with a.s. Hölder continuous paths and values in D a.s. More precisely, X̃k

i ∈

R(0, T ;D), defined in (9). Then αj and βj are Hölder continuous in D × [0, T ] a.s. as a function of X̃ . As a first step,
we prove some uniform regularity results and a priori estimates for solutions to the linearized problem of (5), which are
independent of the path t ↦→ X(ω, t). Moser’s iteration method shows that the weak solution is in fact bounded, and a
general regularity result for evolution equations yields ∂tc ∈ L2(QT ). Then, interpreting (the linearized) equations of the
form (5) as elliptic equations with right-hand side ∂tc ∈ L2(QT ), we conclude the Hölder continuity of c(t) for any fixed

∈ (0, T ). Thus, the diffusivities are Hölder continuous, and we infer C1+δ(D) and W 2,∞(D) solutions c via a bootstrap-
type argument for solutions to the original nonlinear problem (5). Second, we show the existence of a classical solution
to (5) by an application of the fixed-point theorem of Schauder and the existence and regularity results of Ladyženskaya
et al. [20].

In the third step, we solve the SDEs (1). The functions (c, f ) have Hölder continuous gradients, and we show that (c, f )
and (∇c, ∇f ) are progressively measurable. Therefore, together with Assumption (A4), the conditions of the existence
theorem of [21, Theorem 3.1.1] are satisfied, and we obtain a solution X to (1) in the sense (10).

Fourth, we define fixed-point operator Φ : X̃ ↦→ X on YR(0, T ;D), which can be written as the concatenation

Φ : X̃ ↦→ (α, βD) ↦→ (c, f ) ↦→ X,

where α = (αV , αD, αM , αU ). It remains to show that Φ is a self-mapping and a contraction, which is possible for a
sufficiently large R > 0. In fact, we show that for any n ∈ N,

sup
(
E|Φn(X(t)) − Φn(X ′(t))|4

)1/4
≤ cn sup

(
E|X(t) − X ′(t)|4

)1/4

0<s<t 0<s<t

5
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T

w
T

f

L

for all X , X ′
∈ YR(0, T ;D), where cn → 0 as n → ∞. It follows from the variant of Banach’s fixed-point theorem in [19,

Theorem 2.4] that Φ has a unique fixed point, which gives a unique solution (X, c, f ) to (1), (3)–(7).
The paper is organized as follows. In Section 2, the existence of a unique classical solution to the reaction–diffusion

Eqs. (5)–(6) and some stability results are proved. The progressive measurability of the solutions to (3) and (5) as well
as the solvability of the SDEs (1) is verified in Section 3. Based on these results, Theorem 1 is proved in Section 4. Some
numerical experiments are illustrated in Section 5, showing stalk cells following the tip cells and forming a premature
sprout. Appendix A summarizes some regularity results for elliptic and parabolic equations used in this work, Appendix B
contains some auxiliary results, and Appendix C collects the numerical values of the various parameters used in the
numerical experiments.

2. Solution of the reaction–diffusion equations

We show first some a priori estimates, prove then the existence of classical solutions to (5)–(6) and finally the
uniqueness of solutions.

2.1. A priori estimates

The existence theory for SDEs requires some regularity for the solution c to (5), and in particular uniform estimates
are needed. We consider first the linear system

∂tcV − div(DV (̂f )∇cV ) + αV (x, t)cV = 0,

∂tcD − div(DD (̂f )∇cD) + βD(x, t)cD = αD(x, t)cV ,

∂tcM − div(DM (̂f )∇cM ) + sM f̂BcM = αM (x, t)cV ,

∂tcU − div(DU (̂f )∇cU ) + sU f̂F cU = αU (x, t)cV ,

(11)

where f̂ is calculated from (4), given some a.e. nonnegative function ĉ ∈ L2(0, T ; C δ(D)), and it fulfills the volume-filling
ondition f̂B + f̂F + f̂E = 1. Note that the bounds in (8) still hold and that 0 ≤ f̂ ≤ 1 a.e. Therefore, the following Lemmas 2
and 3 do not depend on the choice of ĉ and δ. We will hence omit the dependency of the diffusion coefficients Dj on f̂ in
this case.

We prove L∞ bounds for the solution c to (11). We suppose that Assumptions (A1)–(A5) hold throughout this section.

Lemma 2. Let c be a weak solution to (6), (11). Then c ∈ L∞(QT ), it holds for all 0 < t < T that ∥cV (t)∥L∞(D) ≤ ∥c0V∥L∞(D),

∥cj(t)∥L∞(D) ≤ et
(
∥c0j ∥L∞(D) + ∥αj∥L∞(0,T ;L∞(D))∥c0V∥L∞(D)

)
, j = D,M,U,

and cj(t) ≥ 0 a.e. for t > 0 and j ∈ {V ,D,M,U}.

Proof. First, we use (cV −K )+ := max{0, cV −K } with K := ∥c0V∥L∞(D) as a test function in the weak formulation of Eq. (5)
for cV :

1
2

d
dt

∫
D

[(cV − K )+]
2dx +

∫
D
DV |∇(cV − K )+|

2dx = −

∫
D

αV cV (cV − K )+dx ≤ 0.

We conclude that cV (t) ≤ K in D for t > 0.
Second, we show that cD is bounded. For this, set M(t) = M0et , where M0 = ∥c0D∥L∞(D) + ∥αD∥L∞(0,T ;L∞(D))∥c0V∥L∞(D).

hen (cD(0) − M)+ = 0 and, choosing (cD − M)+ as a test function in the weak formulation of Eq. (5) for cD,
1
2

d
dt

∫
D

[(cD − M)+]
2dx +

∫
D
DD|∇(cD − M)+|

2dx

= −

∫
D

∂tM(cD − M)+dx +

∫
D
(αDcV − βDcD)(cD − M)+dx

≤

∫
D

(
−M0 + ∥αD∥L∞(0,T ;L∞(D))∥c0V∥L∞(D)

)
(cD − M)+dx ≤ 0,

here we used βD ≥ 0, and the last inequality follows from the choice of M0. This shows that cD(t) ≤ M0et in D, t > 0.
he bounds for cM and cU are shown in an analogous way.
The nonnegativity of cD and then of cj, j ∈ {D,M,U} follows by using c−

j := min{0, cj} as a test function in the weak
ormulation of (11) and using the nonnegativity of the coefficients αj and βD. □

Next, we prove that the solution c(t) is Hölder continuous.

emma 3. Let c be a weak solution to (6), (11). We suppose that there exists Λ > 0 such that for a.e. 0 < t < T ,

∥α (t)∥ ∞ + ∥β (t)∥ ∞ ≤ Λ, j = V ,D,M,U . (12)
j L (D) D L (D)

6
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Then there exists δ > 0 such that for 0 < t < T ,

∥∂tc∥L2(QT ) ≤ C2, ∥c(t)∥Cδ (D) ≤ Cδ

(
∥c(t)∥L2(D) + ∥∂tc(t)∥L2(D)

)
, (13)

here C2 > 0 depends on the L2(D) norm of c0, the L∞(D) norm of f 0, and Λ, and δ, Cδ depend on the lower and upper bounds
(8) for Dj and Λ.

Proof. The L2(QT ) bound for ∂tc follows immediately from Theorem 16 in Appendix A. The Hölder estimate follows from
[22, Prop. 3.6]. Indeed, we interpret Eq. (5) for cV ,

div(DV∇cV ) + αV cV = −∂tcV ∈ L2(D) for t ∈ (0, T )

as an elliptic equation with bounded diffusion coefficient DV and right-hand side in Lp(D) with p > d/2. By [22, Prop. 3.6],
there exists δ > 0 such that cV (t) ∈ C δ(D) and

∥cV (t)∥Cδ (D) ≤ C
(
∥cV∥L2(D) + ∥∂tcV∥Lp(D)

)
.

The result follows by observing that d ≤ 3 implies that p < 2. The dependency of δ and Cδ on the data follows from
[23, Theorem 8.24], which is the essential result needed in the proof of [22, Prop. 3.6]. The regularity for the other
concentrations is proved in a similar way. □

Lemma 4. Let ĉ(t) ∈ L2(0, T ; C δ(D)) with δ > 0 as in Lemma 3, satisfying estimate (13), and let c be a weak solution to (6),
11). Furthermore, let c0j ∈ C1+δ(D) be such that ∇c0j · ν = 0 on ∂D, αj, βj ∈ C0(D × [0, T ]) satisfying (12), and f 0j ∈ C δ(D)
for j = V ,D,M,U, where δ > 0 is as in Lemma 3 or smaller. Then c ∈ C1+δ,(1+δ)/2(D × [0, T ]) and there exists C1+δ > 0 such
that

∥c∥C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ,

where C1+δ > 0 depends only on T , Λ, Cδ , ∥f0∥Cδ (D), ∥c0∥C1+δ (D), the L∞ bound proven in Lemma 2, and the lower and upper
bounds (8) for Dj.

The space C1+δ,(1+δ)/2(D × [0, T ]) consists of all functions being C1+δ in space and C (1+δ)/2 in time; see Appendix A for
precise definition.

roof. We know from Lemma 3 that c(t) is Hölder continuous in D for a.e. t ∈ (0, T ). We claim that f̂ is Hölder continuous
n D × [0, T ]. Let x, y ∈ D and τ , t ∈ [0, T ]. We assume without loss of generality that τ < t . The Lipschitz continuity of
z ↦→ exp(−z) implies, using the explicit formula for fB, that

|̂fB(x, t) − f̂B(y, t)| ≤ |f 0B (x) − f 0B (y)| + sB

∫ t

0
|̂cM (x, s) − ĉM (y, s)|ds,

≤ ∥f 0B ∥Cδ (D)|x − y|δ + sBCδ

(
∥̂cM∥L1(0,t;L2(D)) + ∥∂t̂cM∥L1(0,t;L2(D))

)
|x − y|δ,

|̂fB(x, t) − f̂B(x, τ )| ≤ |f 0B (x)|sB

∫ t

τ

|̂cM (x, s)|ds

≤ ∥f 0B ∥Cδ (D)sB∥̂cM∥L∞(QT )T
1−δ/2

|t − τ |
δ/2,

here we also used Lemma 3. Similar estimates hold for f̂E and f̂F . Thus, the assumptions of Theorem 17 in Appendix A
re fulfilled, yielding the statement. □

As solutions to (5)–(6) are also solutions to (6), (11) with the choice ĉ = c , we can use the previous lemmas to prove
he following uniform bound in L∞(0, T ;W 2,∞(D)) for solutions c to (5).

emma 5. Let the assumptions of Lemma 4 hold and let additionally c0 ∈ W 2,∞(D) and αj, βD ≥ 0, j ∈ {V ,D,M,U}. Then
very weak solution c to (5)–(6), with f given by (4), is an element of L∞(0, T ;W 2,∞(D)), and there exists a constant C > 0
uch that

∥c∥L∞(0,T ;W2,∞(D)) ≤ C,

where C depends on ∥f0∥W1,∞(D), ∥c0∥W2,∞(D), and has otherwise the same dependencies as C1+δ in Lemma 4.

Proof. We deduce from Lemma 3 that c ∈ L2(0, T ; C δ(D)) and c satisfies (13). Then Lemma 4 implies that c ∈
1+δ,(1+δ)/2(D × [0, T ]) with ∥c∥C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ . Taking into account the explicit representation (4) of f , the
egularity of c carries over to f . Let now V ⊂ R3 be a fixed bounded and open set satisfying D ⋐ V . We can extend c to
function c̃ ∈ W 1,∞(R3) with compact support in V such that [24, Section 5.4, Theorem 1]

∥̃c∥ ≤ C(V )∥c∥ ≤ C(V )C , (14)
W1,∞(R3) W1,∞(D) 1+δ

7
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where C(V ) only depends on the choice of V . By [24, Section 5.8, Theorem 4], c is Lipschitz continuous, and due to (14), the
Lipschitz coefficient is bounded by C(V )C1+δ (see the first part of the proof of [24, Section 5.8, Theorem 4]). We conclude
that, for x, y ∈ D and 0 < ζ < 1,

|c(x) − c(y)|
|x − y|ζ

= |x − y|1−ζ |c(x) − c(y)|
|x − y|

≤ max
{
1, sup

x′,y′∈D
|x′

− y′
|

}
C(V )C1+δ.

The map c is hence Hölder continuous of index ζ and its Hölder norm can be bounded independently of ζ . Repeating the
roof of Lemma 4, we can show the existence of a constant K (C1+δ, Λ, V ) such that

∥c∥C1+ζ ,(1+ζ )/2(D×[0,T ]) ≤ K (C1+δ, Λ, V ),

here K (C1+δ, Λ, V ) is again independent of ζ , see [25, Theorem 1.2]. Applying Lemma 20 for f = ∂c/∂xi together with
Rademacher’s theorem completes the proof. □

Remark 6. All the results proven in Lemmas 2–5 may depend on the L∞ bound of the processes α, β , but they do not
depend on the Hölder norm of index δ and therefore not on the process (X1, X2) itself as long as Xi(ω, t) ∈ D for i = 1, 2
a.s.

2.2. Existence

We show the existence of solutions to the reaction–diffusion and ordinary differential equations.

Theorem 7 (Existence). Let c0j ∈ C2+δ(D) be such that ∇c0j · ν = 0 on ∂D, let αj, βj ∈ C δ,δ/2(D × [0, T ]) be nonnegative and
satisfy (12), and let f 0j ∈ C1+δ(D) for j = V ,D,M,U, where δ > 0 is as in Lemma 4 or smaller. Then there exists a pair (c, f )
such that c ∈ C2+δ,1+δ/2(D × [0, T ]) is a classical solution to (5)–(6) and f is given by (4).

Proof. Let ĉ ∈ C1+δ′,(1+δ′)/2(D×[0, T ])∩H1(0, T ; L2(D)) for some 0 < δ′ < δ and let ĉ satisfy (13). Furthermore, let (̂fB, f̂F )
be given by (4) with cj replaced by ĉ , and f̂E is defined by the volume-filling condition f̂B + f̂E + f̂F = 1. By Theorem 19 in
Appendix A, the linear system (11), together with (6), has a classical solution c which satisfies the estimate

∥c∥C2+δ′,(2+δ′)/2(D×[0,T ]) ≤ K0 (̂f , α, β)
(
∥c0∥C2+δ′,(2+δ′)/2(D×[0,T ]) (15)

+ ∥cV∥C2+δ′,(2+δ′)/2(D×[0,T ])

)
≤ K (̂f , α, β)∥c0∥C2+δ′,(2+δ′)/2(D×[0,T ]).

We deduce from Lemma 4 that ∥c∥C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ , where C1+δ is independent of f̂ and the choice of ĉ.
We define now the fixed-point operator. Let

f ĉ ∈ W :=
{
u ∈ C1+δ,(1+δ)/2(D × [0, T ]) ∩ H1(0, T ; L2(D)) :

∥u∥C1+δ,(1+δ)/2(D×[0,T ]) ≤ C1+δ, usatisfies (13)
}
.

Then the operator Γ : W → W , mapping ĉ to the solution c to (5)–(6) is well-defined. Furthermore, by estimate (15), it
olds that

∥Γ (̂c)∥C2+δ′,(2+δ′)/2(D̄×[0,T ]) ≤ K1(α, β)∥c0∥C2+δ′,(2+δ′)/2(D̄×[0,T ]), (16)

here the constant K1 does not depend on f̂ thanks to the uniform bound C1+δ in W . Given two elements ĉ1, ĉ2 ∈ W , we
set Γ (̂ci) = ci and define u := c1,V − c2,V . Then u satisfies

∂tu − div(DV (̂f1)∇u) + αVu = div
(
(D(̂f1) − D(̂f2))∇c2

)
, in D × (0, T ],

u(0) = 0 in D, ∇u · ν = 0 in ∂D × [0, T ],

where f̂i is the corresponding solution to (3) associated with ĉi. By Theorem 19 and estimate (16), u = c1,V − c2,V satisfies
the inequality

||c1,V − c2,V ||C2+δ′,(2+δ′)/2(D×[0,T ])

≤ K2 (̂f1, α)∥c2∥C2+δ′,(2+δ′)/2(D×[0,T ])∥̂f1 − f̂2∥C1+δ′,(1+δ′)/2(D×[0,T ])

≤ K2 (̂f1, α)K3(α, β, c0)∥̂c1 − ĉ2∥C1+δ′,(1+δ′)/2(D×[0,T ]),

where we also used (4). We obtain similar estimates for the other components c1,i − c2,i, i = D,M,U . From these
inequalities, we directly infer the continuity of Γ in the norm ∥ · ∥C1+δ′,(1+δ′)/2(D×[0,T ]). Since W is compactly embedded in
C1+δ′,(1+δ′)/2(D × [0, T ]), using δ′ < δ, we conclude from Schauder’s fixed-point theorem that there exists a fixed point c
or Γ and hence a solution to (5)–(6). □
8
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2.3. Stability and uniqueness

The stability results are used for the solution of the SDEs; they also imply the uniqueness of solutions. We start with
stability estimate in the norms of L∞(0, T ; L2(D)) and L2(0, T ;H1(D)). Let Assumptions (A1)–(A5) hold.

emma 8. Let ci for i = 1, 2 be weak solutions to (5)–(6) with the same initial data (c0, f 0) but possibly different coefficients
i and βi. Then there exists C > 0, which is independent of ci, such that for all t ∈ [0, T ],

∥(c1 − c2)(t)∥L2(D) + ∥c1 − c2∥L2(0,t;H1(D)) ≤ h(t), where

h(t) := C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
.

Proof. We first consider cV . We take the difference of the equations satisfied by c1,V − c2,V and take the test function
c1,V − c2,V in its weak formulation. This leads to

1
2

d
dt

∫
D
(c1,V − c2,V )2dx +

∫
D
DV (f1)|∇(c1,V − c2,V )|2dx +

∫
D

α1,V (c1,V − c2,V )2dx

=

∫
D
(DV (f1) − DV (f2))∇c2,V · ∇(c1,V − c2,V )dx

+

∫
D
(α1,V − α2,V )c2,V (c1,V − c2,V )dx.

et ε := min{Di
j : j = V ,D,M,U, i = B, E, F} > 0. Using Young’s inequality and the estimate ∥(f1 − f2)(t)∥L2(D) ≤

∥c1 − c2∥L1(0,T ;L2(D)) from Lemma 21, we find that

d
dt

∥c1,V − c2,V∥
2
L2(D) +

ε

2
∥∇(c1,V − c2,V )∥2

L2(D)

≤ C(ε)∥∇c2,V∥
2
L∞(QT )∥DV (f1) − DV (f2)∥2

L2(D)

+ ∥c2,V∥
2
L∞(QT )∥α1,V − α2,V∥

2
L2(D) + ∥c1,V − c2,V∥

2
L2(D)

≤ C∥c1 − c2∥2
L2(D) + C∥α1,V − α2,V∥

2
L2(D).

The estimates for c1,j − c2,j with j = D,M, V are similar. This gives

d
dt

∥c1 − c2∥2
L2(D) +

ε

2
∥∇(c1 − c2)∥2

L2(D) ≤ Ch(t)2 + C∥c1 − c2∥2
L2(D).

An application of Gronwall’s lemma finishes the proof. □

A stability estimate can also be proved with respect to the H2(D) norm.

Lemma 9. Let ci for i = 1, 2 be weak solutions to (5)–(6) with the same initial data (c0, f 0) but possibly different coefficients
αi and βi. Then there exists C > 0 such that for all t ∈ [0, T ],

||∂t (c1 − c2)||L2(QT ) + ∥c1 − c2∥L∞(0,T ;H1(D)) + ∥c1 − c2∥L2(0,T ;H2(D))

≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
,

where C > 0 depends on ∥c1∥L∞(0,T ;W2,∞(D)).

Proof. The difference u := c1,V − c2,V is the solution to the linear problem

∂tu − div(DV (f1)∇u) = g(x, t) in D, t > 0,
∇u · ν = 0 on ∂D, u(0) = 0 in D,

(17)

where, by Lemma 5, the right-hand side

g := − div
(
(DV (f1) − DV (f2))∇c2,V

)
+ α1,V (c1,V − c2,V ) + (α1,V − α2,V )c2,V (18)

is an element of L2(QT ). Since the diffusion coefficient is bounded, we can apply Theorem 16 in Appendix A to conclude
that

∥u∥L∞(0,T ;H1(D)) + ∥∂tu∥L2(QT ) ≤ C∥g∥L2(QT ).

For the estimate of the right-hand side, we recall from Lemma 21 that

∥∇(f − f )∥ ≤ C∥c − c ∥ .
1 2 L2(QT ) 1 2 L1(0,T ;H1(D))

9
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Then, using the linearity of DV and the estimate for c2,V from Lemma 5, we infer that

∥g∥L2(QT ) ≤ C∥∇(f1 − f2)∥L2(QT )∥∇c2,V∥L∞(QT ) + C∥f1 − f2∥L2(QT )∥∆c2,V∥L∞(QT )

+ ∥α1,V∥L∞(QT )∥u∥L2(QT ) + ∥α1,V − α2,V∥L2(QT )∥c2,V∥L∞(QT )

≤ C
(
∥c1 − c2∥L2(0,T ;H1(D)) + ∥α1,V − α2,V∥L2(QT )

)
.

The difference c1 − c2 in the L2(0, T ;H1(D)) norm can be estimated according to Lemma 8. Therefore,

∥u∥L∞(0,T ;H1(D)) + ∥∂tu∥L2(QT ) ≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
. (19)

Similar estimates can be derived for the differences c1,j − c2,j (j = D,M,U).
To estimate u in the L2(0, T ;H2(D)) norm, we use the inequality

∥u∥H2(D) ≤ C
(
∥∆u∥L2(D) + ∥u∥L2(D)

)
.

Thus, it remains to consider ∆u. We deduce from

DV (f1)∆u = div
(
DV (f1)∇c1,V − DV (f2)∇c2,V

)
− ∇(DV (f1) − DV (f2)) · ∇c2,V

− (DV (f1) − DV (f2))∆c2,V − ∇DV (f1) · ∇(c1,V − c2,V )
= ∂tu − α1,Vu − (α1,V − α2,V )c2,V − ∇(DV (f1) − DV (f2)) · ∇c2,V

− (DV (f1) − DV (f2))∆c2,V − ∇DV (f1) · ∇u

and ∥∇(DV (f1) − DV (f2))∥L2(QT ) ≤ C∥c1 − c2∥L2(0,T ;H1(D)) (see Lemma 21) that

∥∆u∥L2(QT ) ≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT ) + ∥u∥L2(0,T ;H1(D))

)
.

We infer from (19) and related inequalities for c1,j − c2,j that

∥∆(c1 − c2)∥L2(QT ) ≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
,

which concludes the proof. □

Lemma 10. Let ci for i = 1, 2 be weak solutions to (5)–(6) with the same initial data (f 0, c0) but possibly different coefficients
αi and βi. Then there exists C > 0 such that for all t ∈ [0, T ],

∥c1 − c2∥L4(0,T ;W2,4(D)) ≤ C
(
∥α1 − α2∥L4(QT ) + ∥β1 − β2∥L4(QT )

)
.

Proof. Let u = c1,V − c2,V be the solution to (17). Since g ∈ L4(QT ) by Lemma 5 (recall definition (18) of g), Theorem 18
in Appendix A shows that u ∈ L4(0, T ;W 2,4(D)) ∩ H1(0, T ; L4(D)) and, because of ∇c2,V ∈ L∞(0, T ;W 1,∞(D)),

||c1,V − c2,V ||L4(0,T ;W2,4(D)) ≤ C∥g∥L4(QT )

≤ C
(
∥c1 − c2∥L1(0,T ;W1,4(D)) + ∥c1,V − c2,V∥L4(QT ) + ∥α1,V − α2,V∥L4(QT )

)
.

The first and second terms on the right-hand side can be estimated by using the embedding H2(D) ↪→ W 1,4(D) and
Lemma 9:

∥c1 − c2∥L1(0,T ;W1,4(D)) ≤ C∥c1 − c2∥L2(0,T ;H2(D))

≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
,

∥c1,V − c2,V∥L4(QT ) ≤ C∥c1,V − c2,V∥L4(0,T ;H1(D))

≤ C
(
∥α1 − α2∥L2(QT ) + ∥β1 − β2∥L2(QT )

)
.

This gives

∥c1,V − c2,V∥L4(0,T ;W2,4(D)) ≤ C
(
∥α1 − α2∥L4(QT ) + ∥β1 − β2∥L2(QT )

)
.

The estimates for c1,j − c2,j (j = D,M,U) are similar. □

3. Solution of the stochastic differential equations

Let α, β be given by (7). We first study the measurability of (c, f ).

Lemma 11. Let f 0 ∈ L∞(Ω; C1+δ(D)) and c0 ∈ L∞(Ω;W 2,∞(D)) be such that ∇c0j · ν = 0 on ∂D, j = V ,D,M,U.
Furthermore, let (c, f ) be a pathwise solution to (3), (5)–(6) and let (X1, X2) in (7) be adapted stochastic processes with Hölder
continuous paths (with Hölder index δ) almost surely. Then f , ∇f are measurable as maps from (Ω ×D × [0, t],Ft × B(D)×
B([0, t])) to B(R3)/B(R3×3), and c, ∇c are measurable as maps from (Ω ×D×[0, t],Ft ×B(D)×B([0, t])) to B(R4)/B(R4×3)
for all t ∈ [0, T ]. In particular, these functions are progressively measurable.
10
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Proof. Since fj can be represented as a function depending on the time integral of c , it is sufficient to show the
easurability of cj. The continuity of the potentials defining αj and βj in (7) shows that αj and βj are processes with
àdlàg paths almost surely. By approximating the initial data c0, f 0 and the processes αj, βj by suitable simple processes,
hich are adapted to the filtration by construction, we can obtain the Ft-measurability of cj(t) : Ω → C1(D) for t ∈ [0, T ].
e conclude from Lemma 8 and the compactness of W 2,∞(D) ⊂ C1+δ(D) in C1(D) the measurability of cj as the limit of

measurable functions. For details of this construction, we refer to [17, Section 3.3].
It is known that càdlàg processes Yt : Ω×[0, T ] → H with H = Rn, which are adapted to the filtration, are progressively

measurable [26, Prop. 1.13]. If the filtration is complete, this holds also true for processes having càdlàg paths almost
surely. A straightforward modification of the proof of [26, Prop. 1.13], utilizing [27, Theorem 4.2.2], shows that this holds
for arbitrary Banach spaces H . The estimate ∥cj(t) − cj(s)∥C1(D) ≤ C |t − s|δ , which follows from Lemma 4, implies that
cj(t) has almost surely continuous paths and consequently, cj(t) is progressively measurable. To be precise, this yields the
measurability of cj as a function from (Ω × [0, t],Ft × B([0, t])) to (C1(D),B(C1(D))) for every t ∈ [0, T ].

The function (c, x) ↦→ c(x), C1(D) × D → R4, is continuous and hence, it is measurable as a mapping from
C1(D) × D̄,B(C1(D)) × B(D̄)) to (R4,B(R4)). Now, we can write c(ω, x, t) as the concatenation

(ω, x, t) ↦→ (c(ω, ·, t), x) ↦→ c(ω, x, t), Ω × D × [0, T ] → C1(D) × D → R4,

f measurable functions, which yields the measurability of c. In a similar way, we can prove the measurability of ∂cj/∂xi
or i = 1, 2, 3 by considering the continuous mapping (c, x) ↦→ (∂c/∂xi)(x). □

Lemma 12. Let Assumptions (A1)–(A5) and the assumptions of Lemma 11 hold. Then there exists a unique, progressively
measurable solution (Xk

i ) to (1) such that Xk
i (t) ∈ D a.s. for every t ∈ [0, T ], i = 1, 2.

Proof. We extend the coefficients gi and σi by setting them to zero outside of D. The extended coefficients are still
uniformly Lipschitz continuous. We infer from Lemma 11 that gi is progressively measurable. Thus, by [28, Theorem
32.3], there exists a strong solution to (1).

It remains to show that Xk
i (t) ∈ D a.s. Let φ be a smooth test function satisfying suppφ ⊂ Dc . We obtain from Itô’s

emma that

dφ(Xk
i ) = ∇φ(Xk

i ) · gi[c, f ](Xk
i , t)dt +

1
2
σi(Xk

i )
2∆φ(Xk

i )dt + ∇φ(Xk
i ) · σi(Xk

i )dW
k
i . (20)

If Xk
i (t) ∈ D, we have φ(Xk

i ) = 0. If Xk
i (t) ∈ Dc then gi[c, f ](Xk

i (t), t) = 0 by Assumption (A3) and σi(Xk
i (t)) = 0 by

Assumption (A2). Eq. (20) then shows that φ(Xk
i (t)) = φ(X0

i ) = 0 and Xk
i (t) ∈ (suppφ)c a.s. Since φ with suppφ ⊂ Dc

as arbitrary, we conclude that Xk
i (t) ∈ D a.s. for t ∈ (0, T ). □

4. Proof of Theorem 1

The fixed-point operator is defined as a function that maps X̃ ↦→ (α, βD) ↦→ (c, f ) ↦→ X , where (α, βD) is defined in
(7) with X replaced by X̃ . To define its domain, we need some preparations.

Lemma 13. The space YR(0, T ;D), defined in (9), is complete. Furthermore, any X ∈ YR(0, T ;D) has a progressively measurable
modification with almost surely Hölder continuous paths.

Proof. Let (Xn) be a Cauchy sequence in YR(0, T ;D) and let ε > 0. Then there exists N ∈ N such that for all n,m ≥ N ,

∥Xn(t) − Xm(t)∥L4(Ω) ≤ ∥Xn − Xm∥C0([0,T ];L4(Ω)) < ε.

For any t ∈ [0, T ], (Xn(t)) is a Cauchy sequence in L4(Ω). Consequently, Xn(t) → X(t) in L4(Ω), where X(t) ∈ L4(Ω)
is Ft-measurable. Furthermore, there exists a subsequence of (Xn(t)) (not relabeled) that converges pointwise to X(t)
a.s., proving that X(t) ∈ D a.s. The definition of the Hölder norm implies that ∥Xn(t) − Xn(s)∥L4(Ω) ≤ R|t − s|1/2 for all
, t ∈ [0, T ]. This gives in the limit n → ∞ that ∥X(t) − X(s)∥L4(Ω) ≤ R|t − s|1/2 and consequently X ∈ C1/2(0, T ; L4(D)).
e conclude that X ∈ YR(0, T ;D). By the Kolmogorov continuity criterium, (a modification of) X has almost surely Hölder

ontinuous paths. As X(t) is an adapted process with respect to the filtration Ft , X is progressively measurable. □

emma 14. Let (̃X1, X̃2) ∈ YR(0, T ;D) for some R > 0, and let (c, f ) be a solution to (3), (5)–(6), where α, β are given by
7) with X replaced by X̃ . Then, for fixed initial datum (X0

1 , X0
2 ), there exists R0 > 0 not depending on R such that the solution

X1, X2) to (1) satisfies (X1, X2) ∈ YR0 (0, T ;D).

roof. According to Lemma 5, c is bounded in the L∞(0, T ;W 2,∞(D)) norm by a constant that is independent of R. Then,
y Lemma 12, there exists a unique solution (X , X ) to (1). Since Xk(t) ∈ D a.s., c , ∇c , f , ∇f are bounded uniformly in R,
1 2 i

11
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T

n

L
b

F

i.e., there exists K = K (c0, f 0) > 0, which is independent of R, such that |gi[c, f ](Xk
i (t), t)| ≤ K a.s. Thus, for s, t ∈ [0, T ],

using the Burkholder–Davis–Gundy inequality,

E|Xk
i (t) − Xk

i (s)|
4

≤ C(K )|t − s|4 + CE
(∫ t

s
σ (Xk

i (s))dW
k
i (s)

)4

≤ C(K )|t − s|4 + CE
(∫ t

s
σ (Xk

i (s))
2ds

)2

≤ C(K )
(
|t − s|2 + ∥σ∥

4
L∞(D)

)
|t − s|2 ≤ C(K , T , σ ,D)|t − s|2.

he lemma follows after choosing R0 := max{C(K , T , σ ,D)1/4, (K
√
T + C∥σ∥L∞(D))

√
T + ∥X0∥L4(Ω)}. □

The previous lemma shows that the fixed-point operator Φ : YR0 (0, T ;D) → YR0 (0, T ;D), X̃ ↦→ X , is well defined. We
eed to verify that Φ is a contraction. We first prove an auxiliary result.

emma 15. Let (c, f ) and (c ′, f ′) be progressively measurable solutions to (3)–(6), where α, β are given by (7) with X replaced
y X̃ , X̃ ′

∈ YR(0, T ;D) for some R > 0, respectively. Then the associated solutions X and X ′ to (1) satisfy

E|X(t) − X ′(t)|4 ≤ Ct
∫ t

0
E∥c(s) − c ′(s)∥4

C1(D)ds,

where the constant C > 0 does not depend on R, (c, f ), or (c ′, f ′).

Proof. The Itô integral representation of X(t) − X ′(t) gives

E|Xk
i (t) − (X ′)ki (t)|

4
≤ CE

(∫ t

0

(
gi[c, f ](Xk

i (s), s) − gi[c ′, f ′
]((X ′)ki (s), s)

)
ds

)4

(21)

+ CE
(∫ t

0

(
σ (Xk

i (s)) − σ ((X ′)ki (s))
)
dW k

i (s)
)4

=: I1 + I2.

It follows from Assumption (A4) and the explicit representation (4) that

I1 ≤ CE
⏐⏐⏐⏐ ∫ t

0

(
gi[c, f ](Xk

i (s), s) − gi[c ′, f ′
](Xk

i (s), s)
)
ds

⏐⏐⏐⏐4
+ E

⏐⏐⏐⏐ ∫ t

0

(
gi[c ′, f ′

](Xk
i (s), s) − gi[c ′, f ′

]((X ′)ki (s), s)
)
ds

⏐⏐⏐⏐4
≤ L41E

(
1 + ∥c∥L∞(0,T ;C1(D))

)4(∫ t

0
∥c(s) − c ′(s)∥C1(D)ds

)4

+ L42E
(
1 + ∥c ′

∥L∞(0,T ;W2,∞(D))
)4(∫ t

0
|X(s) − X ′(s)|ds

)4

.

urthermore, by the Burkholder–Davis–Gundy inequality and the Lipschitz continuity of σ ,

I2 ≤ CE
(∫ t

0

(
σ (Xk

i (s)) − σ ((X ′)ki (s))
)2ds)2

≤ CE
(∫ t

0
|X(s) − X ′(s)|2ds

)2

.

We insert these estimates into (21) and use Hölder’s inequality:

E|X(t) − X ′(t)|4 ≤ Ct3E
∫ t

0
∥c(s) − c ′(s)∥4

C1(D)ds

+ Ct3E
∫ t

0
|X(s) − X ′(s)|4ds + CtE

∫ t

0
|X(s) − X ′(s)|4ds.

Then Gronwall’s lemma concludes the proof. □

We prove now that Φ : YR0 (0, T ;D) → YR0 (0, T ;D), X̃ ↦→ X , is a contraction. By Lemmas 10 and 15, we have

E|Φ(X(t)) − Φ(X ′(t))|4 ≤ Ct
∫ t

0
E∥c(s) − c ′(s)∥4

C1(D)ds

≤ CtE
(
∥α − α′

∥
4
L4(QT )

+ ∥β − β ′
∥
4
L4(QT )

)
≤ CtE∥X − X ′

∥
4
L4(0,t,L4(D)) = Ct

∫ t

0
E|X(s) − X ′(s)|4ds.
12
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We iterate this inequality to find after n times that

E|Φn(X(t)) − Φn(X ′(t))|4 ≤ (Ct)n
∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
E|X(sn) − X ′(sn)|

4dsn · · · ds1

≤ (Ct)n
tn

n!
sup
0<s<t

E|X(s) − X ′(s)|4.

e conclude that

sup
0<s<T

(
E|Φn(X(t)) − Φn(X ′(t))|4

)1/4
≤

(CT 2)n/4

(n!)1/4
sup

0<s<T

(
E|X(s) − X ′(s)|4

)1/4
.

he sequence (CT 2)n/4/(n!)1/4 converges to zero as n → ∞. Hence, there exists n ∈ N such that Φn is a contraction. By
he variant [19, Theorem 2.4] of Banach’s fixed-point theorem, Φ has a fixed point, proving Theorem 1.

. Numerical experiments

We illustrate the dynamics of the tip and stalk cells in the two-dimensional ball D = BR(0) around the origin with
adius R = 500 (in units of µm) for one path t ↦→ X(ω, t). Let h = 10 be the space step size and introduce the grid points
ij = ((k − i)h, (k − j)h) ∈ R2, where i, j = 0, . . . , 2k and k = R/h. The time step size equals τ = 1 (in units of seconds).
The stochastic differential Eqs. (1) are discretized by using the Euler–Maruyama scheme

(̃Xk
i )

(n+1)
= (̃Xk

i )
(n)

+ gi[cn, f n]
(
(̃Xk

i )
(n), t

)
τ + σi

(
(̃Xk

i )
(n))√τN ,

ith initial datum (̃Xk
i )

(0)
= (X0)ki , where N is standard normally distributed and cn, f n are approximations of c , f

btained by linear interpolation of the values cnij (see below). The nonlinearity gi is chosen as in (2) with M , γ , and λ

given in Appendix C. Furthermore, α0 and z are taken as in [29, formulas (10) and (14)]. Compared to [1], we neglect the
contribution of the Hertz contact mechanics regarding z to guarantee the boundary condition gi[c, f ](·, t) = 0 on ∂D. We
choose the continuous radially symmetric stochastic diffusion

σ (x) =

⎧⎨⎩
0 for |x| ≥ R,
(1/R)

√
(R/10)2 − [R/10 − (R − |x|)2] for 9R/10 < |x| < R,

1/10 for |x| ≤ 9R/10.

The solutions (4) to the ordinary differential Eqs. (3) are written iteratively as

fB(x, (n + 1)τ ) = fB(x, nτ ) exp
(

−sB

∫ τ

0
cM (x, s + nτ )ds

)
, n ∈ N,

and similarly for fF . The integral is approximated by the trapezoid rule∫ τ

0
cM (x, s + nτ )ds ≈

τ

2
(cnM,ij + cn+1

M,ij ),

here cnM,ij approximates cM (xij, nτ ). We set f nij := (fB, fE, fF )(xij, nτ ).
Finally, we discretize the reaction–diffusion Eqs. (5) using the forward Euler method and the central finite-difference

cheme

div(DV (f )∇cV ) ≈
1
h

(
Ji+1/2,j − Ji−1/2,j + Ji,j+1/2 − Ji,j−1/2

)
,

here

Ji+1/2,j =
1
2h

(DV (f ni+1,j) + DV (f nij ))(c
n+1
i+1,j − cn+1

ij ),

Ji,j+1/2 =
1
2h

(DV (f ni,j+1) + DV (f nij ))(c
n+1
i,j+1 − cn+1

ij ).

Notice that we obtain a semi-implicit scheme. The resulting linear system of equations is implemented in the
Python-based software environment SciPy using sparse matrices and solved by using the spsolve function from the
scipy.sparse.linalg package.

The potentials V k
j , used in (5), are given by

V k
j (x) =

1
IR2

m
exp

(
−

R2
m

R2
m − |x|2

)
, x ∈ D, j = D,M,U, V ,

where R = 12.5, and I > 0 is a normalization constant to ensure that
∫

V k(x)dx = 1.
m R2 j

13



M. Fellner and A. Jüngel Journal of Computational and Applied Mathematics 438 (2024) 115570

w

w
c

t
c
s
o
w
M

r
a
o
o

Fig. 2. Positions of two tip cells (red crosses) and 200 stalk cells (blue dots) at times T = 0 s, T = 400 s, and T = 1600 s.

It remains to define the initial conditions. The initial positions of the endothelial cells X0,k
i (i = 1, 2, k = 1, . . . ,Ni) are

given by

X0,k
i =

(
r sinφ

r cosφ

)
,

where (r, φ) is uniformly drawn from the set [0.65R, 0.75R]×[0, π/2] = [325, 375]×[0, π/2]. The initial volume fractions
are

f 0F (x) =

⎧⎨⎩
0 for |x| ≥ Rf ,

0.4(1 − cos( π
0.3Rf

(Rf − |x|))) for 0.7Rf < |x| < Rf ,

0.8 for |x| ≤ 0.7Rf ,

here Rf = 0.95R = 475, as well as f 0B = 0.2f 0F and f 0E = 1 − f 0B − f 0F . We choose the initial VEGF concentration

c0V (x) = 0.1 exp
(

−
Rc√

R2
c − |x|2

)
1BRc (x),

hich is concentrated at the origin, and assume that the concentrations of the remaining proteins vanish, c0D = c0M =
0
U = 0 in D, as they are segregated by the tip cells.
We choose N1 = 2 tip cells and N2 = 200 stalk cells. Fig. 2 shows the positions of the tip and stalk cells at different

imes 2 for one trajectory. The tip cells segregate the DLL4 protein, and the stalk cells detect the local increase of the DLL4
oncentration, such that they follow the corresponding tip cell. This effect is slightly more pronounced for the tip cell that
tarts in an environment with a dense stalk cell population. The position of this tip cell is closer to the origin than the
ther tip cell with a higher VEGF concentration, leading to a relatively high production of DLL4 proteins. The stalk cells,
hich do not follow a tip cell, are primarily influenced by the stiffness gradient ∇(fB + fF ) and the strain energy density
, which incorporates contact mechanics, resulting to a spreading of these cells.
The protein concentrations are shown in Fig. 3. As the diffusion coefficient for VEGF is much larger than the reaction

ate sV , the concentration of the VEGF protein becomes uniform in the large-time limit. The DLL4, MMP, and uPA proteins
re produced by the tip cells and hence follow their paths. The corresponding concentrations increase with the availability
f VEGF and decrease due to consumption by the stalk cells or by getting exhausted from breaking down the fibrin matrix
r the boundary membrane. Since the diffusion is slow, the changes in the concentration are local up to time T = 1600 s.
We present the volume fractions of the basement membrane, fibrin matrix, and extracellular fluid in Fig. 4. The

membrane and fibrin matrix are degraded by the MMP and uPA proteins, thus increasing the volume fraction of the
extracellular fluid. As both proteins are produced by the tip cells, the degradation follows their paths.

Summarizing, we see that the model successfully describes the formation of premature sprouts. The experiments
from [1] for dermal endothelial cells show that the in vitro angiogenesis sprouting qualitatively well agrees with the
numerical tests. Clearly, the proposed system of equations models only a very small number of biological processes,
chemical reactions, and signal proteins, and more realistic results can be only expected after taking into account more
biological modeling details. Still, the onset of vessel formation is well illustrated by our simple model.

Data availability
No data was used for the research described in the article.
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Fig. 3. Concentrations of the proteins VEGF (first row), DLL4 (second row), MMP (third row), and uPA (last row) at times T = 0 s (left column),
T = 400 s (middle column), and T = 1600 s (right column).

Appendix A. Regularity results for elliptic and parabolic equations

Let D ⊂ Rm (m ≥ 1) be a bounded domain.
The following regularity results hold for the parabolic problem

∂tu − div(a(x, t)∇u) = f in D, t > 0,

a(x, t)∇u · ν = 0 on ∂D, u(0) = u0 in D.
(22)

Theorem 16 ([30], Section II.3, Theorem 3.3). Let a ∈ L∞(QT ) be such that a(x, t) ≥ a0 > 0 for all (x, t) ∈ D × [0, T ],
f ∈ L2(QT ), and u0

∈ H1(D). Then there exists a unique weak solution to (22) such that u ∈ C0([0, T ];H1(D)), ∂tu ∈ L2(QT ),
and there exists a constant C > 0, not depending on a, u, u0, or f , such that

∥u∥L∞(0,T ;H1(D)) + ∥∂tu∥L2(QT ) ≤ C
(
∥f ∥L2(QT ) + ∥u0

∥H1(D)
)
.

Proof. The a priori estimate is a consequence of the proof of [30, Theorem 3.3]. □
15
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Fig. 4. Volume fractions of the basement membrane (first row), fibrin matrix (second row), and extracellular fluid (last row) at times T = 0 s (left
olumn), T = 400 s (middle column), and T = 1600 s (right column).

Let α, β ∈ (0, 1]. The space Cα,β (D × [0, T ]) consists of all functions u : D × [0, T ] → R such that there exists C > 0
uch that for all (x, t), y, s) ∈ D × [0, T ],

|u(x, t) − u(y, s)| ≤ C(|x − y|α + |s − t|β ) for all (x, t), (y, s) ∈ D × [0, T ].

The space Ck+β (D) is the space of all functions u ∈ Ck(D) such that Dku is Hölder continuous with index β > 0.

heorem 17 ([25], Theorem 1.2). Let β ∈ (0, 1), ∂D ∈ C1+β , a ∈ Cβ,β/2(D × [0, T ]) be such that a(x, t) ≥ a0 > 0 for
ll (x, t) ∈ D × [0, T ], f ∈ L∞(0, T ; L∞(D)), and u0

∈ C1+β (D) be such that a(x, t)∇u0 · ν = 0 on ∂D. Furthermore, let
∈ C0([0, T ]; L2(D))∩ L2(0, T ;H1(D)) be a weak solution to (22). Then there exists a constant Cβ > 0, only depending on the

data, such that

∥u∥C1+β,(1+β)/2(D×[0,T ]) ≤ Cβ .

Theorem 18 ([20], Section IV.9, Theorem 9.1). Let ∂D ∈ C2, q > 3, T > 0, a ∈ C0(D × [0, T ]) be such that a(x, t) ≥ a0 > 0
for all (x, t) ∈ D × [0, T ], f ∈ Lq(0, T ; Lq(D)), u0

∈ W 2,q(D) be such that a(x, t)∇u0
· ν = 0 on ∂D. Then there exists a unique

trong solution u ∈ Lq(0, T ;W 2,q(D)) to (22) satisfying ∂tu ∈ Lq(0, T ; Lq(D)), and there exists a constant C > 0, not depending
on u, f , or u0, such that

∥u∥Lq(0,T ;W2,q(D)) + ∥∂tu∥Lq(0,T ;Lq(D)) ≤ C
(
∥f ∥Lq(0,T ;Lq(D)) + ∥u0∥W2,q(D)

)
.

Theorem 19 ([20], Section V.5, Theorem 5.4). Let β ∈ (0, 1), ∂D ∈ C2+β , T > 0, aij, bi, c ∈ Cβ,β/2(D × [0, T ]) be such that
(x, t) ≥ a > 0 for all (x, t) ∈ D × [0, T ] for i, j = 1, . . . ,m, f ∈ Cβ,β/2(D × [0, T ]), and u0

∈ C2+β (D) be such that
ij 0

16
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∇u0 · ν = 0 on ∂D. Then there exists a unique classical solution u ∈ C2+β,1+β (D × [0, T ]) to

∂tu −

m∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
+ b(x, t) · ∇u + c(x, t)u = f in D, t > 0,

∇u · ν = 0 on ∂D, t > 0, u(0) = u0 in D,

and there exists a constant C > 0, not depending on u, f , or u0, such that

∥u∥C2+β,1+β (D×[0,T ]) ≤ C
(
∥f ∥Cβ;β/2(D×[0,T ]) + ∥u0∥C2+β (D)

)
.

Appendix B. Auxiliary results

We collect some auxiliary results used in the paper.

Lemma 20. Let Ω ⊂ Rd be an open set and let f ∈ C δ(Ω) for every 0 < δ < 1. If the Hölder norm of f can be bounded
niformly, i.e., there exists a C∗ > 0 such that ∥f ∥Cδ (Ω) ≤ C∗ for all 0 < δ < 1, then f is a Lipschitz continuous function on Ω .

roof. Since we have not found a reference in the literature, we provide the short proof. Let x, y ∈ Ω with x ̸= y. Then
here exists 0 < δ < 1 such that |x − y|1−δ

≥ 1/2. With this choice of δ, we compute

|f (x) − f (y)|
|x − y|

=
|f (x) − f (y)|

|x − y|δ
1

|x − y|1−δ
≤ 2C∗.

As C∗ does not depend on δ and x, y ∈ Ω are arbitrary, we infer that f is Lipschitz continuous with Lipschitz constant
L ≤ 2C∗. □

Lemma 21. Let u1, u2 ∈ L∞(0, T ;W k,∞(D)) with k ∈ N0, g0
1 , g

0
2 ∈ W k,∞(D), and let g1, g2 ∈ C0([0, T ];W k,∞(D)) be the

unique solutions to

dgi
dt

= −uigi, 0 < t < T , gi(0) = g0
i a.e. in D, i = 1, 2.

Then there exists C > 0, only depending on T , the L∞(0, T ;W k,∞(D)) norm of ui, and the W k,∞(D) norm of g0
i , such that for

p > 1,

max
[0,T ]

∥g1 − g2∥W k,p(D) ≤ C
(
∥g0

1 − g0
2∥W k,p(D) + ∥u1 − u2∥L1(0,T ;W k,p(D))

)
.

Proof. The regularity of gi follows from the explicit formula and the regularity for g0
i and ui. Furthermore, taking the

W k,p(D) norm of

g1(t) − g2(t) = g0
1 − g0

2 −

∫ t

0

(
u1(g1 − g2) + (u1 − u2)g2

)
dx,

the result follows from the regularity u1 ∈ L∞(0, T ;W k,∞(D)) and g2 ∈ W k,∞(D). □

Appendix C. Model parameters and constants

The model parameters and constants are taken from [1]. For the convenience of the reader, we collect here the
expressions:

α0 =
biR3

c

Fiµ
,

γ (x, t) =
0.1biFi(1 − fE(x, t))

ρBfB(x, t) + ρF fF (x, t) + ρE fE(x, t)
,

λ(x, t) =
43biFĩλ

30
(1 − fE(x, t))

(
1
2

− fE(x, t)
)
fE(x, t),

Mk
i (x, t) =

2∑
j=1

Nj∑
ℓ=1

F 2
i

20π2R4
c
(1 − fE(x, t)) exp

(
−|Xk

i − Xℓ
j |

Rc

)

−
2
√
2
(max{0, Rc − 0.5|Xk

i − Xℓ
j |}

)5/2

,

π Rc

17



M. Fellner and A. Jüngel Journal of Computational and Applied Mathematics 438 (2024) 115570
vk
i =

2∑
j=1

Nj∑
ℓ=1

F 2
i

20π2R4
c
(1 − fE(x, t)) exp

(
−|Xk

i − Xℓ
j |

Rc

)
,

zki =
vk
i

|vk
i |

.

The parameters are chosen as in the following table; see [1, Appendix].

Value Unit Value Unit Value Unit

bi 0.02 s−1 DE
V 10 µm2s−1 rD 10 µm3s−1

Fi 1000 nN DB
D 0.51 µm2s−1 rM 10 µm3s−1

µ 0.2 – DF
D 1.02 µm2s−1 rU 10 µm3s−1

λ̃ 15 – DE
D 0.051 µm2s−1 sV 0.024 µm3s−1

Rc 11.25 µm DB
M 1.23 µm2s−1 sD 0.024 µm3s−1

ρB 1.06 · 10−3 ngµm−3 DF
M 2.46 µm2s−1 sM 0.024 s−1

ρF 1.06 · 10−3 ngµm−3 DE
M 0.123 µm2s−1 sU 0.024 s−1

ρE 0.9933 · 10−3 ngµm−3 DB
U 0.53 µm2s−1 sB 1.21 µm3ng−1s−1

DB
V 100 µm2s−1 DF

U 1.06 µm2s−1 sF 1.21 µm3ng−1s−1

DF
V 200 µm2s−1 DE

U 0.053 µm2s−1
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