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Kurzfassung

Diese Arbeit beschäftigt sich mit Konsensus-Algorithmen, die sich für die Implementie-
rung auf ressourcenbeschränkten Geräten in hochdynamischen drahtlosen Netzwerken
eignen – Bedingungen, wie sie in unterschiedlichen Internet of Things (IoT) Umgebungen
vorherrschen. Konsensus ist ein klassisches Problem des „Distributed Computing“ – wir
besprechen hier sowohl die terminierende als auch die stabilisierende Variante. Diese
Arbeit präsentiert zuerst das Systemmodell und die wichtigsten Konzepte einer Klasse
von „root component“ basierenden Algorithmen – eingeführt in [SS21] und [WSS19] – die
sowohl das terminierende als auch das stabilisierende Konsensus Problem in dynamischen
Netzwerken unter „eventually stabilizing message adversaries“ lösen.

Nachdem wir die theoretischen Aspekte der „root component“ basierenden Algorithmen
im Detail besprochen haben, geben wir einen kurzen Überblick über den MinMax
Konsensus-Algorithmus von [CM21] und bringen einige der wichtigsten Konzepte der
„root component“ basierenden Algorithmen in Relation zu zentralen Konzepten des
MinMax Algorithmus.

Nach dem theoretischen Abschnitt gibt diese Arbeit eine detaillierte Beschreibung einer
Implementierung des „root component“ basierenden Algorithmus und des MinMax
Konsensus-Algorithmus. Weiters beschreibt diese Arbeit eine Simulationsumgebung, die
entwickelt wurde um die Implementierung der Algorithmen zu unterstützen. Abschließend
beschreiben wir die Resultate eines experimentellen Vergleichs des „root component“
basierenden Ansatzes mit dem MinMax Ansatz in Hinblick auf die Stabilisierungszeit der
Algorithmen.
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Abstract

This thesis is concerned with consensus algorithms suitable for implementation on
resource-constrained devices operating in highly dynamic wireless networks – conditions
that can be found in various IoT environments. Consensus is a classical problem in the
field of distributed computing – we discuss both its terminating and its stabilizing variant.
This thesis starts by presenting the system model and core concepts of a class of root
component based algorithms – introduced in [SS21] and [WSS19] – that solve both the
terminating and the stabilizing consensus problem in dynamic networks under eventually
stabilizing message adversaries.

Following the theoretical aspects of the root component based algorithms, we give a
brief discussion of the MinMax consensus algorithm by [CM21] and put some central
system model concepts of the MinMax algorithm in relation to core concepts of the root
component based stabilizing algorithm.

After the theoretical part, this thesis provides a detailed account of an actual implemen-
tation of the root component based stabilizing consensus algorithm and the MinMax
consensus algorithm. This thesis also discusses the implementation of a simulation
environment that was created to aid development. Finally we report on an experimental
side-by-side evaluation of the root component based algorithm and the MinMax algorithm
with regard to stabilization time.
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CHAPTER 1
Introduction

Everything starts somewhere, although many
physicists disagree.

— Terry Pratchett, “Hogfather”, p. 1

This thesis is concerned with consensus algorithms – both from a theoretical and from
a practical viewpoint. [SS21], based on the work of [WSS19], introduced two root
component based round-oblivious consensus algorithms – one for terminating consensus,
one for stabilizing consensus – operating under related message adversaries.

Initial experiments conducted in [PS16] showed a similar message adversary to be a good
match for real world conditions in synchronous Wireless Sensor Networks (WSNs). Since
consensus may play a role in emerging IoT systems – which are, in a sense, wireless
sensor and actuator networks with resource limited nodes – a practical implementation
of these algorithms is of interest. By implementing the algorithms, we expected to gain a
deeper understanding of the engineering obstacles one needs to overcome to make use of
these recent discoveries in real-world applications. To the best of our knowledge, there is
little to no tooling available to aid the developer in implementing such algorithms. As
a side product of the implementation, a framework to simulate and test the consensus
algorithms was created.

In addition to the implementation work, this thesis provides an experimental side-by-
side comparison of the root component based stabilizing algorithm from [SS21] and the
MinMax stabilizing algorithm introduced in [CM21] under real world conditions. Viewed
from a theoretical standpoint the MinMax stabilizing consensus algorithm reveals that
the problem solved by the root component based stabilizing consensus algorithm can be
solved for a different adversarial model that does not require nodes with unique identifiers.
This thesis also explores the differences in the models and computations behind the
MinMax and the root component based stabilizing consensus algorithm.
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1. Introduction

1.1 The consensus problem
The problem of consensus is a central one in the field of distributed computing. Con-
sensus is important in all scenarios, where independent processors need to agree on a
common value [AW04]. Achieving distributed consensus becomes hard under unreliable
communication conditions, such as are present in WSNs. These systems need practi-
cal implementations of consensus algorithms able to cope with limited resources and
unreliable networks.

We will now give a small recap of the consensus problem in two variants – stabilizing
consensus and terminating consensus.

The basic assumptions behind these two variants are the same. Processes are given initial
values and are tasked to decide unanimously on one of these values. The validity condition
is the same for both variants: processes are only allowed to decide on a value that was
the input of some process. The agreement condition states that the decision value has to
be chosen unanimously. Terminating and stabilizing consensus differ, in that terminating
consensus demands agreement at all points in time and mandates that processes are only
allowed to write the output variable once. Under stabilizing consensus, there just has to
exist a time t, after which the agreement condition holds, albeit processes are allowed to
write the output variable more than once.

We call the set of participating processes Π = {1, . . . , N} and for a process p ∈ Π, denote
the input value by xp ∈ V and the output value by yp ∈ V ∪ {⊥}, where V is a totally
ordered set and ⊥ �∈ V represents “undecided yet”.

1.1.1 Stabilizing Consensus

Definition 1.1.1 (Stabilizing consensus). The problem of stabilizing consensus requires
the following conditions to hold:

Validity ∀i ∈ Π, ∃j ∈ Π : yi = xj

Eventual Agreement There is a time t after which ∀i, j ∈ Π : yi = yj

The problem of stabilizing consensus requires the conditions Validity and Eventual
Agreement to hold for the set of participating processes Π. Recall that stabilizing
consensus allows a process p ∈ Π to write the output value yp more than once.

1.1.2 Terminating Consensus

Definition 1.1.2 (Terminating consensus). The problem of terminating consensus
requires the following conditions to hold:

Validity ∀i ∈ Π, ∃j ∈ Π : if yi �= ⊥, then yi = xj

Agreement ∀i, j ∈ Π : if yi �= ⊥, yj �= ⊥, then yi = yj

2



1.2. Related work

Termination Every process p eventually writes once to yp

The problem of terminating consensus requires the conditions Validity, Agreement and
Termination to hold for the set of participating processes Π. In contrast to stabilizing
consensus, the condition Agreement has to hold at all times and a process p ∈ Π is
required to write the output value yp exactly once.

1.2 Related work

1.2.1 Consensus

The consensus problem comes in variants – terminating consensus, asymptotic consensus,
stabilizing consensus. Formal definitions for terminating and stabilizing consensus have
been given in Section 1.1. Asymptotic consensus weakens the validity condition and
mandates that the participants are only required to asymptotically converge on a common
value. This variant of consensus is important in the field of multi-agent systems and used,
amongst other things, for sensor data fusion – see [SM03], [OSFM07]. Extensive work on
asymptotic consensus and its variants has been done by [LZKS13], [CFN15], [Now15],
[CBFN16], [FNS18] and [FN18]. [LZKS13] introduced a novel algorithm able to solve
asymptotic consensus with a special focus on resilience against targeted attacks on nodes.
The authors further introduced the notion of network-robustness as a graph-theoretic
property. [CFN15] investigated the solvability of approximate consensus in dynamic
networks and arrived at the result that for approximate consensus to be solvable each
round’s communication graph has to have a rooted spanning tree. [Now15] investigated
the asymptotic consensus problem in a setting where nodes do not necessarily trust their
own values and introduced the concept of aperiodic cores to adapt existing convergence
results to the loss of self-confidence. [CBFN16] introduced a new technique to enhance
existing averaging algorithms, leading to a class of algorithms termed amortized averaging
algorithms. The authors further introduced a new algorithm – the amortized midpoint
algorithm and showed that its results degrade gracefully even under network model
violations. [FNS18] derived tight bounds for contraction rate and time complexity of
asymptotic consensus algorithms and showed that the algorithms from [CBFN16] are
optimal. [FN18] introduced new algorithms able to solve asymptotic and approximate con-
sensus for agents with multidimensional values, whose time-complexity is not dependent
on the size of the value vector.

The problem of clock synchronization can also be viewed as a variety of the asymptotic
consensus problem. See Section 1.2.2 for references regarding asymptotic consensus
applied to the problem of clock synchronization.

Terminating consensus is considered a classical problem in computer science – especially
in the field of distributed computing – and has a history of more than 40 years of research
[Fis83]. See [AW04, Chapter 5] for an introduction.

3



1. Introduction

The problem of stabilizing consensus was first introduced in [AFJ06]. Additional work
on stabilizing consensus was done in [DGM+11], which described a median-based update
rule to solve stabilizing consensus in a non-adversarial setting and showed that using
the median-based rule, almost stable consensus can be reached in an adversarial setting.
[BCN+16] showed that using a 3-majority based rule, almost stable stabilizing consensus
is possible under an adversarial model. Recent progress in stabilizing consensus has been
made in the area of directed dynamic networks by [SS21] and [CM21].

Since this thesis is concerned with terminating and stabilizing consensus in directed
dynamic networks, we will now direct our attention to theoretical work with a focus
on directed dynamic networks. Work was done, amongst others, by [BRS12], [SWS16],
[BRS+18], [WSS19], [SS21] and [CM21]. [BRS12] introduced the notion of vertex-stable
stable root components in the communication graph and provided and proved correct
an algorithm that solves consensus under these assumptions. [SWS16] improved on the
previous results regarding consensus algorithms for message adversaries that guarantee
a vertex-stable root component. [BRS+18] investigated consensus under a message
adversary that allows several vertex-stable root components and in addition took a look
at k-set agreement and its impossibility/solvability border. [WSS19] investigated the
problem of consensus in dynamic networks under non-oblivious message adversaries and
presented and proved a novel consensus algorithm. [SS21] improved the algorithm from
[WSS19] to be round-oblivious and introduced a novel stabilizing consensus algorithm.
[CM21] introduced the MinMax family of algorithms for solving the problem of stabilizing
consensus. For an overview of recent theoretical advances in the field of consensus in
directed dynamic networks see [WS19].

Implementation aspects of consensus protocols

When implementing an algorithm using a given technology, it is often advisable to
adapt the algorithm to exploit domain-specific characteristics. [LB03] discussed the
implementation of a consensus protocol for Controller Area Network (CAN) based
systems. The authors discussed scenarios, where a CAN network can become inconsistent,
and then developed a consensus protocol that can tolerate these inconsistent scenarios.
[Kö13] described a network stack that makes it easy to reach consensus in building
automation networks by developing a custom Media Access Control (MAC) layer and
a matching routing protocol optimized for the requirements of a consensus protocol.
[Lin15] investigated design choices and trade-offs that should be considered when designing
(asymptotic) consensus algorithms for the use in WSNs.

[KKRF11] implemented an average consensus algorithm under TinyOS on IRIS motes1.
[Man13] described the implementation of a multi-hop dynamic consensus algorithm,
relying on ZigBee as the wireless transport technology. Routing of messages was im-
plemented using Ad-hoc On-demand Distance Vector (AODV). [Sup18] reported on a

1http://www.nr2.ufpr.br/~adc/documentos/iris_datasheet.pdf
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1.2. Related work

bare-metal implementation of a consensus protocol for an ESP8266 microcontroller with
RF-communication done in the 433 MHz band.

[ANRE15] described the implementation of a binary consensus algorithm – again using
IRIS motes and running TinyOS. The authors performed simulations under TOSSIM and
real world experiments with up to 139 nodes. [AEF14] implemented a binary consensus
protocol on MoteLab hardware and compared simulation results in TOSSIM with the
results obtained from real-world runs.

[PS16] conducted extensive experiments that showed a message adversary, similar to the
ones presented in [WSS19] and [SS21], to be a good match for real world connectivity
conditions in a WSN. The authors developed and successfully deployed a connectivity
monitoring framework for Atmel RZ200 motes running TinyOS and using IEEE 802.15.4
in the 2.4 GHz band for wireless connectivity. The monitoring framework was designed
to record the connectivity information per round for each node in the WSN. To facilitate
synchronous rounds, global time was established inside the WSN using Flooding Time
Synchronization Protocol (FTSP). The collected connectivity data was forwarded to
a stationary PC for long term storage and to allow post-processing tools to analyze
the captured data and check certain properties. The framework took care to allow
the monitoring data to be retrieved in a reliable way (in the face of message loss or
network partition) and also had a means to inject errors. Online fault injection was
done by sending special fault injection messages to nodes, thereby instructing them to
drop all messages from a given list of nodes until further notice. Two different locations
were evaluated – an office/lab environment and the roof-top of a university building.
Experiments run in both locations (using transmission scheduling to avoid massive packet
loss) show a high coverage for a wide range of values for D (the dynamic network depth)
for the message adversary ♦STABLE(D) (see [PS16, Definition 3]).

1.2.2 Clock synchronization
Since the algorithms presented in Chapter 3 and Chapter 4 assume a round-based
communication scheme, we are going to need some way to establish global time using
clock synchronization. Clock synchronization is an important problem and various
solutions for different kinds of networks have been proposed over time. The most
widely used clock synchronization protocol today is Network Time Protocol (NTP) – see
RFC 5905. NTP was designed for traditional (wired) networks like the Internet. It is
widely and successfully deployed, but not suitable for application in WSNs, because it
ignores key issues like energy efficiency and the dynamics inherent in WSNs, both in
network layout and configuration. [ER03] defined the problem of time synchronization in
WSNs and discussed in detail why protocols like NTP are not a good fit for WSNs.

Many solutions to the problem of time synchronization in WSNs have been proposed.
[EGE02] introduced Reference-Broadcast Synchronization (RBS), where nodes broadcast
reference beacons (containing no timestamps) and upon reception of a beacon take a
timestamp. All recipients exchange information about their respective reception times

5
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1. Introduction

and from this information are able to establish a global time. [GKS03] described the
Timing-sync Protocol for Sensor Networks (TPSN). The basic idea behind TPSN is to
first elect a reference node and then establish a spanning tree over the network. Nodes
then perform pairwise synchronization along the edges of the rooted tree. In the end,
all nodes will be synchronized to the clock of the reference node. [MKSL04] introduced
FTSP. FTSP can be considered the current de-facto standard for time synchronization in
WSNs, indicated by the fact that papers presenting new developments often compare their
results to FTSP. FTSP works by dynamically electing a root-node and using timestamped
messages, broadcast by the root, in combination with linear regression to predict clock
skews. For a more detailed introduction to FTSP see Section 5.3.1. Various improvements
to FTSP have been published. [CJM05] described an FTSP implementation specific to
ZigBee, which improved FTSP’s energy efficiency by using domain-specific knowledge
of the ZigBee protocol suite - mainly the master-slave communication mode. [YK14]
improved the accuracy of the slow-flooding approach used by FTSP, by utilizing a clock-
speed agreement algorithm to keep the estimated errors low – leading to the Flooding
with Clock Speed Agreement (FCSA) approach. An approach based on rapid-flooding
(in contrast to the slow flooding approach utilized by FTSP) was introduced in [LSW15]
and named PulseSync. PulseSync is able to outperform FTSP in some scenarios, but has
drawbacks related to network contention due to its rapid-flooding approach.

There are also a variety of asymptotic consensus based time synchronization approaches.
[SG07] introduced Average TimeSync (ATS). ATS is fully distributed and does not elect
a root node. It employs an average consensus algorithm and does skew compensation
and MAC layer timestamping. One drawback of ATS is that it only establishes a logical
timebase among the nodes and is not capable of using an external time signal as a source
of truth. [HCS+14] described two consensus based approaches to clock synchronization –
Maximum Time Synchronization (MTS) and Weighted Maximum Time Synchronization
(WMTS) – both based on the idea of max-consensus introduced in [SM03, Equation 7].

The topic of clock synchronization is a vast field and not all approaches are presented here.
Both [Fai07] and [SW14] provide a good overview of clock synchronization approaches
specific to WSNs. [DB16] discusses general issues of implementation with a focus on
existing published implementations of time synchronization protocols.

1.3 Organization and contributions of the thesis
[SS21] introduced the idea of using the root component based technique developed in
[WSS19] to solve stabilizing consensus and further improved on the algorithms from
[WSS19] by making them round-oblivious. This thesis provides real-world implementa-
tions of both root component based algorithms from [SS21] and the MinMax algorithm
from [CM21] and a matching simulation environment. In addition it reports on ex-
periments performed to compare the MinMax and root component based stabilizing
algorithms under real world conditions with a special focus on stabilization time. This
thesis further sets core system model concepts and computations behind the root compo-

6



1.3. Organization and contributions of the thesis

nent based stabilizing consensus algorithm and the MinMax based algorithm in relation
to each other.

The thesis is conceptually split into two parts – a theoretical and a practical part. The
theoretical part comprises Chapters 2 to 4. Chapters 5 to 6 and Appendix A make up the
practical part. The theoretical part first introduces the system model, goes on to describe
the root component based algorithms and then gives insights into the differences between
the root component based algorithms from [SS21] and the MinMax algorithms described
in [CM21]. The practical part first discusses the various underlying technologies used and
then provides a discussion of the implementation of the root component based algorithms.
Last but not least, the simulation environment is introduced and the evaluation results
are discussed. Appendix A serves as a small tutorial for future developers to get up to
speed with the implementation.

7





CHAPTER 2
System model

She’s a model and she’s looking good
— Kraftwerk, “The Model” (1981)

This chapter introduces the system model behind the root component based algorithms
from [SS21] and describes how the environment, in which the algorithms are trying to
reach consensus, essentially behaves. In addition, we will introduce important graph-
theoretical concepts, necessary to understand the inner workings of the root component
based algorithms. Our description of the system model and the related definitions closely
follow the descriptions and definitions from [SS21] and [WSS19].

2.1 Lock-step synchronous rounds
We call the participants trying to reach consensus processes and denote the set of all
participating processes with Π = {1, 2, 3, . . . , N}. We further assume that all processes
are fault free and have a unique id, taken from the set Π, but do not necessarily know N .

In our system model, a process’ time passes in the form of lock-step synchronous rounds.
The algorithms make progress by moving from one round to the next. These steps are
synchronized between all active processes. For all active processes p, q ∈ Π it holds that
p and q start a round at exactly the same point in time.

All processes start in a passive state. Passive processes can make the transition to being
active. A transition from passive to active can only happen when a new round starts.
Once a process becomes active, it can never go back to being passive. Our system model
behaves differently depending on the consensus algorithm that the processes are executing.
For terminating consensus the environment is only able to make all processes do the
state transition from passive to active at the same time. When running the stabilizing

9
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Figure 2.1: Progression of time structured in rounds

consensus algorithm, the environment allows the processes to transition from passive to
active at different times. We call the time a process p becomes active ap and denote with
Πa the set of all active processes.

All messages sent in round r are either received in the same round r or not received
at all. Conceptually, rounds are further split into a number of phases. The first phase
is the broadcast phase. In this phase all processes broadcast the message they wish to
send in the current round. The receive phase follows the broadcast phase and processes
now receive and process messages sent by other processes in the preceding broadcast
phase. The computation phase is the last phase in a round and processes now execute
the algorithm’s main computation. Figure 2.1 illustrates how time progresses structured
in rounds.

Rounds are numbered starting with 1. We use the special round 0 to refer to the state of
a process before execution starts – the process’ initial state. When talking about the
state of a process in round r, we refer to the state of the process after having finished
the computation phase of round r and before starting the broadcast phase of round r + 1
– a well-defined state exists only in-between rounds. Since the root component based
algorithms are round-oblivious, the actual round number is of no importance to the
processes executing the algorithms.

We follow the notational convention to use a superscript for the round number and a
subscript to refer to a process. xr

p refers to the variable x of process p captured at the
end of round r.

See Section 5.3 for a detailed description of a possible way to implement processes
executing in lock-step synchronous rounds.

2.2 Communication
Processes communicate with each other by sending messages. All communication is
broadcast without acknowledgements – there is no way to address a message to a
specific process. In contrast to the assumption of fault-free processes, we assume that

10



2.2. Communication

communication is unreliable. Communication is unreliable in the sense that messages
might get lost and not be delivered at all and that the underlying communication graph
changes over time. Note that the concept of lost messages is strong enough to simulate
process crashes – a process whose messages are not received by any other process after
some time is indistinguishable from a process that has crashed, since messages are the
only means of exchanging information. In round r, all the received messages will at most
be based on state from round r − 1, because at the time of broadcasting in round r the
round r state is not yet fully available.

A directed graph G = (Π, E) captures the static relationship of processes with regard
to message reception in a single round. We often use the terms node and process when
talking about the vertices in the communication graph. An edge (p, q) ∈ E encodes
the fact that process q is able to receive messages from process p, but not necessarily
vice versa. By definition, there are no edges in the communication graph starting or
terminating at a passive process. We assume our communication graphs to be reflexive,
meaning each active vertex has a loop, for reasons that will become clear when introducing
the concept of a compound graph. The self-loops fit well with the concept of message
reception, because every process is – in a way – able to receive its own messages. When
illustrating concepts by drawing graphs, we will often omit the loops for reasons of
clarity. We sometimes sloppily write (q, p) ∈ G, when we actually mean G = (Π, E) and
(q, p) ∈ E.

To model communication conditions that change over time, we employ the concept of a
Directed Dynamic Network (DDN) – for more information regarding DDNs see [KO11].
We are going to represent the execution of a DDN as a sequence of graphs (Gi)i∈N+ .
We associate each graph from the DDN with one round and call Gr = (Π, Er) the
communication graph of round r with the edge set Er. We write (Gr)b

r=a with a ≤ b to
refer to a continuous sequence of graphs starting at round a up to round b with a length
of b − a + 1.

As a notational convention, when talking about sequences of graphs, we generally use
the Greek letter σ. We write σ� ⊆ σ to mean that σ� is a subsequence of the sequence σ.
Πσ is the set of processes that appear in the graphs of sequence σ.

The time-varying topology concept allows us to model the complex communication
conditions one might experience in a wireless sensor network. Due to effects like multipath-
fading and interference, communications links cannot be assumed to be bidirectional by
default. We use DDNs to primarily model changes in the interconnection topology and
not so much changes in the set of vertices, albeit the fact that N is generally unknown
to the processes also allows the latter.

2.2.1 Unreliable communication and message adversaries
We need a way to specify how “unreliable” our communication is, because without any
limitations on the graph topology – e.g. a network, where all nodes are isolated – no
interesting problems can be solved. This is where the concept of a message adversary
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2. System model

[AG13] comes into play. A message adversary can be thought of as an all-knowing entity,
which is allowed to choose the communication links that are active in a given round r
and who tries to hinder the processes from reaching consensus. In other words, a message
adversary is allowed to choose the communication graph Gr for every round r. Formally,
message adversaries are defined as sets of communication graphs or sets of sequences
of communication graphs. Message adversaries cannot have unlimited power, but must
adhere to some specification.

Message adversaries come in two flavours – oblivious and non-oblivious. Oblivious
message adversaries are allowed to choose the communication graphs at will from a
predefined set of admissible communication graphs.

Non-oblivious message adversaries choose the communication graphs from a – possibly
infinite – set of graph sequences. Another way to think about non-oblivious message
adversaries is to imagine additional constraints on which graphs can be chosen, depending
on the round number r. Non-oblivious message adversaries allow us to specify liveness
and safety properties on the graph sequences they generate. The algorithms in this thesis
are exclusively concerned with non-oblivious message adversaries. Definitions 2.4.4, 2.4.5
and 4.1.6 provide the specifications of the message adversaries relevant to this thesis.

2.3 Graph and DDN concepts
Now that we know how the environment behaves, we will introduce concepts that lead
us to an understanding of the basic ideas behind the algorithms.

2.3.1 Root Component
A concept of central importance to the algorithms from [SS21] and [WSS19] is that of a
root component.

Definition 2.3.1 (Root component). A root component R of a directed graph G = (V, E)
is a set of vertices, which form a strongly connected component with the additional
requirement that ∀p ∈ V, ∀q ∈ R : (p, q) ∈ E =⇒ p ∈ R holds.

Loosely speaking, a root component is a strongly connected component, whose member
nodes have no incoming edges with an origin vertex that is not itself part of the root
component.

All graphs have at least one root component and at most |V |. The set of root components
of a graph G is denoted with Roots(G). We call a graph G a rooted graph, if it has
exactly one root component and denote the root component’s members with Root(G). A
rooted graph has the useful property that, for every vertex from the root component,
there exists a path to every other vertex in the graph. This property will later come in
handy, when we reason about information distribution between vertices over a span of
rounds.

12
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To further motivate the concept of a root component, we can ask ourselves what kind
of properties we want from our communication graphs with regard to the consensus
problem? One meaningful answer would be that we want the consensus problem to still
be solvable, but we do not want to impose strong guarantees like “strong connectivity” to
ensure solvability. Too strong guarantees are problematic, because these guarantees are
not easily matched by real-world conditions. Other guarantees like “weak connectivity”
are too weak to make consensus solvable in all instances. The concept of a rooted graph
lies somewhere between strong and weak connectivity and allows us to still solve the
consensus problem – as demonstrated by the algorithms presented in Chapter 3.

Extending the concept of a root component to span a sequence of graphs leads to the
definition of a vertex-stable root component.

Definition 2.3.2 (Vertex-stable root component). If all graphs in a non-empty sequence
of graphs have the same root component R, we call the sequence R-rooted and the root
component R the vertex-stable root component of the sequence.

Edges between members of the root component and other vertices are allowed to change,
as long as the set of vertices in the root component stays the same and all vertices are
reachable. See Figure 2.2 for a graphical explanation of the concepts – the vertices that
are part of a root component are colored yellow.

Now that we have introduced the concept of an R-rooted sequence, we can start discussing
properties of information propagation over time in a DDN.

2.3.2 Causal past
To introduce the concept of a causal past, we first need to define the compound graph
and the in-neighbourhood of a vertex. The causal past will be our tool of choice to
describe how information propagates through the DDN over time.

Definition 2.3.3 (Compound graph). Let G = (V, E) and G� = (V, E�) be directed
graphs. The graph G ◦ G� = (V, E��) with E�� = {(p, q) | ∃u ∈ V : (p, u) ∈ E ∧ (u, q) ∈ E�}
is called the compound graph.

The compound graph captures the notion of having a direct or indirect connection over
time. For an edge to exist in the compound graph, there must be a node u that is able
to receive information in the first graph G and is then able to pass on the information in
the second graph G�. We assume that communication graphs have self-loops, because
these reflexive edges nicely capture the ability of processes to store information and pass
it on at a later point in time. Note that G ⊆ G ◦ G� and G� ⊆ G ◦ G� holds.

Definition 2.3.4 (In-neighbourhood). Let G = (V, E) be a communication graph. We
call the set {p | (p, q) ∈ E} the in-neighbourhood of process q and denote it with Inq(G).

13
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1

2 3

4

Ga:

...

Roots(Ga) = {{1}, {4}}
Ga is not rooted

1

2 3

4

Gb: Root(Gb) = {1, 2, 3} = R
Gb is rooted

1

2 3

4

Gc: Root(Gc) = {1, 2, 3} = R
Gc is rooted

1

2 3

4

Gd: Root(Gd) = {1, 2} �= R
Gd is rooted

...

(Gb, Gc) is an
R-rooted sequence

Figure 2.2: Illustration of the graph theoretical concepts root component and R-rootedness.
Vertices that are part of a root component are coloured yellow.
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The in-neighbourhood of a process p is the set of all processes that p is able to receive
messages from in a round.

Definition 2.3.5 (Causal past). The causal past of a process p starting at round b and
going back to round a is defined as CPb

p(a) = Inp(Ga+1 ◦ . . . ◦ Gb) for b > a, otherwise
CPb

p(a) = ∅.

The causal past of a process p from time b down to time a is a set of vertices. All vertices
in this set were able to influence the state of p at the end of round b either directly or
indirectly with state information no older than from the end of round a. Note that the
definition of the causal past builds the compound graph starting with Ga+1 – this is due
to the fact that the round a state is first broadcast in round a + 1.

If we look at the causal past in the context of a full information protocol – a mode of
communication, where all processes broadcast their entire state history, including all the
received messages – we can express the meaning of the causal past in a different way. For
a process q ∈ CPb

p(a), process p knows the message that q sent in round a + 1. Knowing
the message additionally implies that the causal past CPb

p(a) is the set of vertices where
process p at time b knows the process’ state at round a. Figure 2.3 illustrates the concept
of the causal past for the exemplary graph sequence (Ga, Gb, Gc, Gd).

2.3.3 Dynamic Network Depth

Now that we have the tools to model information propagation, we are going to introduce
a parameter that captures the speed (in terms of rounds) of information distribution in a
DDN in combination with a root component. The dynamic network depth D measures
how many rounds it takes, at most, for information from every member of the root
component to reach all vertices in the graph. The upper bound for D of D ≤ N − 1 was
proven in [BRS+18]. The dynamic network depth is not a static graph concept, but one
that makes only sense for R-rooted subsequences of graphs.

Expressing the dynamic network depth in terms of the causal past leads us to the insight
that for information from the vertex stable root component R to have reached all nodes,
R must be a subset of the causal past of all processes.

Definition 2.3.6 (Dynamic Network Depth). The dynamic network depth D at round a
for a graph sequence that is R-rooted in (Gr)a+D−1

r=a , is the smallest value of D for which
R ⊆ CPa+D−1

p (a − 1) for all processes p holds.

We will further motivate the concept of the dynamic network depth by giving an example,
that also shows that D is not directly related to the maximal path length in the graphs –
see Figure 2.4.
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1 2 3Ga:

...

t

1 2 3Gb:

1 2 3Gc:

1 2 3Gd:

...

1 2 3Gb ◦ Gc:

Compound graphs

Causal past examples

1 2 3Gc ◦ Gd:

CPb
3(a) = In3(Gb) = {1, 3}

CPc
1(a) = In1(Gb ◦ Gc) = {1}

CPc
3(a) = In3(Gb ◦ Gc) = {1, 3}

CPd
1(b) = In1(Gc ◦ Gd) = {1}

CPd
3(b) = In3(Gc ◦ Gd) = {1, 2, 3}

Figure 2.3: Various examples of the causal past operation applied to different nodes
from graphs of the sequence (Ga, Gb, Gc, Gd) starting and ending in different rounds. The
compound graphs required to calculate the causal past are shown as well.

2.4 Message adversaries
Now all the definitions we need are in place and we can provide the specification for the
message adversaries behind the algorithms in Chapter 3. We are going to specify the
message adversary ♦STABLE≤N,D(D + 1), used by the terminating consensus algorithm
presented in Section 3.3 and the message adversary ♦WEAKSTAB≤N (D + 1, D) used
by the stabilizing consensus algorithm presented in Section 3.2. The definitions for the
message adversaries closely follow the definitions given in [WSS19] and [SS21].

We are going to define three sets of infinite communication graph sequences, where
each set describes one important property that we expect from our message adversary.
Informally, we want the message adversary to be strong, making consensus not easily
solvable, but not so strong as to prevent reaching consensus. As briefly mentioned above,
the concept of a root component extends the idea of a weakly connected graph with
additional properties that, as Chapter 3 shows, make consensus solvable. Only weakly
connected communication graphs are not enough for consensus to be solvable. The fact
that certain information can be distributed to all vertices during an R-rooted subsequence
of sufficient length, is the main property that the algorithms are going to exploit. It
should come as no surprise, that the existence of said R-rooted subsequence is going
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1 #

#

G1

2

43 5

1 #

#

G2

3

42 5
#

1 #

#

G3

4

32 5
# #

1 #

#

G4

5

32 4
# # #

Figure 2.4: The asterisk represents the information that node 1 – the vertex-stable root
component of the graph sequence (G1, G2, G3, G4) – is trying to spread throughout the
network. Highlighted nodes switched position between the current and the last graph.
Although all paths are of length 2, the dynamic network depth D is 4.

to be an important part of the specification of our message adversaries. Requiring the
eventual existence of an R-rooted subsequence can be thought of as a liveness property,
in the sense that something good – an R-rooted subsequence in our case – will eventually
happen.

Definition 2.4.1 (♦GOODn(x)). Let ra = max{ap | p ∈ Π} be the earliest round
where all processes have become active. The set ♦GOODn(x) is the set of all infinite
communication graph sequences σ with |Πσ| = n, that contain an R-rooted subsequence
σ� = (Gr�

, Gr�+1, . . .) ⊆ σ with |σ�| ≥ x and R ⊆ Πσ� and r� ≥ ra.

Under terminating consensus, decisions are irrevocable. Having arbitrarily long sequences
of non-rooted communication graphs before the R-rooted subsequence occurs is prob-
lematic, because some processes might not receive information for an arbitrarily long
time, thereby making terminating consensus impossible. We define an additional set
of sequences of communication graphs, where all communication graphs are rooted.
Requiring all communication graphs to be rooted can be thought of as a safety property,
in the sense that nothing bad – a non-rooted graph in our case – ever happens.

Definition 2.4.2 (ROOTEDn). The set ROOTEDn is the set of all infinite communication
graph sequences σ, where every graph in the sequence is rooted and |Πσ| = n.

The last thing we require from our message adversary is that it adheres to a given
dynamic network depth. This would not be necessary, if we were content with the upper
limit for D, namely n − 1. Including this specification in our message adversary allows
us to specify smaller upper limits for the dynamic network depth.
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Definition 2.4.3 (DEPTHn(D)). The set DEPTHn(D) is the set of all infinite com-
munication graph sequences σ with |Πσ| = n and for all rounds r and all subsequences
σ� ⊆ σ, starting at round r with |σ�| = D, we require that if σ� is R-rooted, then
R ⊆ CPr+D−1

p (r − 1) for all processes p ∈ Πσ.

The set DEPTHn(D) enforces that, for all R-rooted subsequences σ� of at least length D,
the given parameter D is the dynamic network depth.

Now we can combine the three sets to form the message adversary used by the terminating
consensus algorithm:

Definition 2.4.4 (♦STABLEn,D(x)). The set

♦STABLEn,D(x) = ROOTEDn ∩ ♦GOODn(x) ∩ DEPTHn(D)

is called the eventually stabilizing message adversary with stability period x.

We are going to work with an instance of the above message adversary called

♦STABLE≤N,D(D + 1) =
N�

n=2
♦STABLEn,D(D + 1)

where the number of actually participating processes n is 2 ≤ n ≤ N . See [WSS19,
Theorem 3] for proof why the stability period needs to be at least D + 1 for a consensus
algorithm to exist.

For stabilizing consensus, the message adversary can do without some restrictions. Since
processes are allowed to decide multiple times, we do not require that all communication
graphs are rooted. We just need the existence of a sufficiently long R-rooted sequence.
Note that the definition of GOODn(x) enforces that the R-rooted sequence only occurs
after all processes have become active.

Definition 2.4.5 (♦WEAKSTABn(x, D)). The set

♦WEAKSTABn(x, D) = ♦GOODn(x) ∩ DEPTHn(D)

is called the weakly stabilizing message adversary.

Again we are going to work with an instance of the above message adversary called

♦WEAKSTAB≤N (D + 1, D) =
N�

n=2
♦WEAKSTABn(D + 1, D)

for reasons already mentioned before.
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CHAPTER 3
Root component based algorithms

A distributed system is one in which the failure of a
computer you didn’t even know existed can render
your own computer unusable.

— Leslie Lamport (1987)1

This chapter is concerned with root component based consensus algorithms. The first
algorithm we are going to present solves the stabilizing consensus problem under the
message adversary ♦WEAKSTAB≤N (D + 1, D). By extending the stabilizing consensus
algorithm with functionality to guarantee the termination property mandated by the
terminating consensus problem, we will arrive at an algorithm that solves the terminating
consensus problem under the message adversary ♦STABLE≤N,D(D + 1).

Both algorithms were first introduced in [SS21]. The terminating consensus algorithm
from [SS21] is the round-oblivious improvement of an algorithm first presented in [WSS19].

3.1 Basic ideas
The stabilizing and the terminating consensus algorithm are based on the same ideas.
We are going to briefly introduce each idea and refine the discussion when presenting the
algorithms in detail.

Full information protocol The algorithms use a full information protocol. A full
information protocol mandates that each process broadcasts a copy of its entire state in
every round. In our case, the entire state of a process is captured in the variables P, S
and A. Note that, because of the way P, S and A are updated, the state of a process
includes all the state information it previously received from other processes as well.

1https://lamport.azurewebsites.net/pubs/distributed-system.txt
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3. Root component based algorithms

Round obliviousness Instead of using the round counter r to read and write historical
state, both algorithms employ an indirect approach. The algorithms refer to the current
round r as level 0, the round r − 1 as level −1, et cetera. All access to the state is done
via levels, the algorithms have no need for the round counter r – making them round
oblivious.

Under-approximation of graph sequence Using the received messages, each process,
over time, builds and refines an under-approximation A of the current graph sequence.
More specifically, a process p adds an edge (q, p) to its round r graph approximation Ap

for each message received from a process q in round r. Since we operate under a full
information protocol, every received message also contains the graph approximation of
the sending process. Consequently, each process p merges the received graph approxi-
mations into its own. The resulting Ar

p is an under-approximation of the actual round
r communication graph Gr, in the sense that only edges that really existed in Gr are
present in Ar

p, but not necessarily vice versa.

Detection of vertex stable root component Since both message adversaries guar-
antee the eventual existence of an R-rooted sequence of graphs of at least length D + 1,
we know, that at some point in time, all processes will have received information from all
members of said root component R. This implies that all nodes are able to detect the root
component R in their graph approximation A when looking back D rounds in their state
history. The nodes can now derive a common decision value using a deterministic function
that maps all the proposal values of the processes that make up the root component R
to a single value.

Persistence of decision After the R-rooted sequence has occurred, all nodes will have
computed the same value as their new proposal value. This effectively prevents vertex
stable root components, which occur after the first sufficiently long vertex stable root
component, from being able to change the proposal value: new proposal values would be
derived from the “old” proposal values, which are now all equal.

Termination The terminating consensus algorithm needs to solve an additional problem
– that of termination and deciding only once. The algorithm introduces an additional
lock variable and some functions to allow processes to check if the current proposal value
is in agreement with that of the other processes. Only after the algorithm has made sure
that all processes are in agreement can it safely decide.

3.1.1 Data structures
Since the terminating and the stabilizing consensus algorithm share the same basic
ideas, they also operate on the same basic data structures. We use the same data
structures for both the terminating and the stabilizing consensus algorithm, even if the
stabilizing algorithm does not make use of the lock variable �. This simplifies presentation,
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because many helper functions can be shared between the stabilizing and the terminating
consensus algorithm.
The variable A is the graph approximation built over time. A is a set of tuples of the
form (s, q, p), where s is a level and q and p are processes – in other words: A is a set of
edges (q, p) marked with a level s. P is the set of processes the executing process knows
about and S is a record of the history of proposal and lock values for all processes. S
contains tuples of the form (p, s, x, l), where p is a process, s a level, x a proposal value
and l a lock value. Note that only the terminating consensus algorithm actually uses the
lock value – the stabilizing consensus algorithm never writes � besides initializing it.
All processes p start out by setting their proposal value x to some initial value xp ∈ V
with ⊥ �∈ V . For stabilizing consensus the proposal value x is also the output value of the
algorithm. Processes executing the terminating consensus algorithm have an additional
output value called yp ∈ {⊥} ∪ V – this variable can only be written once and is assumed
to be initialized to ⊥.

3.2 Stabilizing consensus
The algorithm that solves stabilizing consensus under message adversary
♦WEAKSTAB≤N (D + 1, D) is given in Algorithm 3.2. Algorithm 3.1 lists helper
functions used by Algorithm 3.2, and the terminating consensus algorithm, Algorithm 3.4.
We are going to briefly discuss the helper functions and then provide a description of the
stabilizing consensus algorithm.
Function X from Algorithm 3.1 (Line 1) extracts the proposal value of process q at level
s from S or returns ⊥ if no entry exists.
Function update from Algorithm 3.1 (Line 6) updates the variables P, S and A with
information provided by process q in the form of Pq, Sq and Aq. Because update is
called after a message has been received from process q in round r, the edge (q, p) can be
safely added to A, since after receiving a message from process q in round r, we know
that the edge (p, q) must have been present in Gr. Note that the level of the newly added
edge is set to 1 instead of 0, because update2 will later add −1 to every level, leading
to the correct level 0.
Function update2 from Algorithm 3.1 (Line 10) makes using levels instead of absolute
round numbers work, by pushing all entries back one level every time it is called. This
allows the algorithm to always refer to the current round r as level 0 and to reference
past rounds using negative levels.
Function searchRoot from Algorithm 3.1 (Line 12) checks if a root component exists at
level s in the graph approximation A. To do so, it first extracts the level s communication
graph from the graph approximation A and then proceeds to check if some strongly
connected component of said graph is a root component. The first root component
that can be found is returned. In case the extracted graph is the empty graph, no root
component can exist and the empty set is returned.
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Algorithm 3.1: Helper functions used by Algorithm 3.2 and Algorithm 3.4
1 Function X(q, s):
2 if ∃(q, s, x, ∗) ∈ S then
3 return x
4 else
5 return ⊥

6 Function update(q, Pq, Sq, Aq):
7 P ← P ∪ Pq ∪ {q}
8 S ← S ∪ Sq

9 A ← A ∪ Aq ∪ {(1, q, p)}

10 Function update2():
11 add −1 to s in every tuple (s, i, j) ∈ A and to s and l �= ⊥ in every tuple

(p, s, x, l) ∈ S

12 Function searchRoot(s):
13 V ← {v ∈ P | ∃(s, ∗, v) ∈ A or ∃(s, v, ∗) ∈ A}
14 E ← {(u, v) ∈ P2 | ∃(s, u, v) ∈ A}
15 Let SCC(V, E) denote the set of vertex sets of strongly-connected components

of the graph (V, E)
16 foreach C ∈ SCC(V, E) do
17 if �v ∈V \C: (v,u) ∈E for some u ∈C then
18 return C

19 return ∅

3.2.1 Main algorithm

Algorithm 3.2 is the stabilizing consensus algorithm, first presented in [SS21]. Its
implementation is discussed in Chapter 5 and experimental results regarding a comparison
with the MinMax algorithm from [CM21] under real-world conditions are presented in
Chapter 6. The algorithm makes use of the helper functions presented in Algorithm 3.1.

Every process p executes the same algorithm. After initialization in Lines 1 to 2, Lines 3
to 13 are executed for every round r. In the round r communication phase of the
algorithm (Lines 3 to 4) all processes p broadcast their entire state – captured in the
variables P, S and A – and receive messages of the form (Pq, Sq, Aq) from all processes q
where (q, p) ∈ Gr.

After all messages have been received, the computation phase of the algorithm (Lines 5
to 13) starts. Lines 5 to 7 merge the information from all received messages into the
local state and update the level markers for all entries. Lines 8 to 9 try to detect if
a possible root component at level −D is different from the root component of the
previous level −D − 1. If such a new root component can be found, the maximum of the
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Algorithm 3.2: Stabilizing consensus under ♦WEAKSTAB≤N (D + 1, D) for
process p

Initialization:
1 x ← xp, � ← ⊥, A ← ∅, P ← {p}
2 S ← {(p, 0, x, �)}

Round r communication, r ≥ 1:
3 Broadcast (P, S, A)
4 ∀q : (q, p) ∈ Gr receive message (Pq, Sq, Aq)

Round r computation, r ≥ 1:
5 foreach (Pq, Sq, Aq) received in round r from q do
6 update(q, Pq, Sq, Aq)
7 update2()
8 R ← searchRoot(−D)
9 if R �= ∅ and R �= searchRoot(−D − 1) then

10 t ← max{X(q, −D) | q ∈ R}
11 if t �= ⊥ then
12 x ← t

13 S ← S ∪ {(p, 0, x, �)}

proposal values of all members of the root component at level −D is computed in Line 10
and assigned to the current proposal value in Line 12. Keep in mind that the message
adversary ♦WEAKSTAB≤N (D + 1, D) does not force all communication graphs to be
rooted. Should multiple root components exist in a round r communication graph, a
random root component is returned. Nonetheless, the eventual existence of an R-rooted
communication graph sequence of, at least, length D + 1 makes the algorithm agree on a
single value that cannot be changed afterwards. The computation part ends by updating
the state S with current information in Line 13.

For a proof see [SS21, Theorem 6].

3.3 Terminating consensus
The algorithm that solves terminating consensus under message adversary
♦STABLE≤N,D(D + 1) is given in Algorithm 3.4. The algorithm was first presented
in [SS21] and its implementation is discussed in Chapter 5. The algorithm relies on the
helper functions listed in Algorithm 3.1 and introduces new helper functions given in
Algorithm 3.3, which we will now briefly discuss.

Function L from Algorithm 3.3 (Line 1) is very similar in style to function X from
Algorithm 3.1 (Line 1). Instead of fetching the proposal value from the state history, L
fetches the lock value for a given level s and process q.
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Algorithm 3.3: Helper functions used by Algorithm 3.4
1 Function L(q, s):
2 if ∃(q, s, ∗, l) ∈ S then
3 return l
4 else
5 return ⊥

6 Function latestRefutation(a, b):
7 T ← {i ∈ [a, b] | ∃q ∈ P : L(q, i) = ⊥ or X(q, i) /∈ {⊥, x}}
8 if T �= ∅ then
9 return max(T )

10 else
11 return ⊥

12 Function uniqueCandidate(a, b):
13 if ∃k ∈ N : ∀u ∈ P, ∀i ∈ [a, b] : L(u, i) �= ⊥ =⇒ X(u, i) = k and

∃q ∈ P, ∃j ∈ [a, b] : L(q, j) �= ⊥ then
14 return k
15 else
16 return −1

17 Function allGood(a, b, x):
18 return (∀q ∈ P, ∀i ∈ [a, b] : L(q, i) �= ⊥ and X(q, i) ∈ {⊥, x})

Function latestRefutation from Algorithm 3.3 (Line 6) returns the most recent
level from the level interval [a, b], where a process q has either not locked (� set to
⊥) or has locked and proposed a value different from process p’s proposal value. The
most recent level where this has happened is returned. In case no such level exists,
latestRefutation returns ⊥.

Function uniqueCandidate from Algorithm 3.3 (Line 12) checks if in the level interval
[a, b], there are processes that have locked and in addition, that all the processes that
have locked, have proposed the same value. If such a common value can be found it is
returned. Otherwise uniqueCandidate returns −1.

Function allGood from Algorithm 3.3 (Line 17) checks if it is true, that in the level
interval [a, b] all processes have locked and, if we know their proposal value, have proposed
the same value as process p.

3.3.1 Main algorithm
To make the transition from stabilizing consensus to terminating consensus, the stabilizing
consensus algorithm has to be augmented with the additional property of termination,
because under terminating consensus, the output value yp can only be written once. Up
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to Line 8, Algorithm 3.4 and Algorithm 3.2 are identical. Both initialize their variables
to the same values and handle broadcast and reception of messages in the same way.

Algorithm 3.4: Terminating consensus under ♦STABLE≤N,D(D + 1) for
process p

Initialization:
1 x ← xp, � ← ⊥, A ← ∅, P ← {p}
2 S ← {(p, 0, x, �)}

Round r communication, r ≥ 1:
3 Broadcast (P, S, A)
4 ∀q : (q, p) ∈ Gr receive message (Pq, Sq, Aq)

Round r computation, r ≥ 1:
5 foreach (Pq, Sq, Aq) received in round r from q do
6 update(q, Pq, Sq, Aq)
7 update2()
8 R ← searchRoot(−D)
9 if R �= ∅ and ( � = ⊥ or R �= searchRoot(−D − 1) ) then

10 x ← max{X(q, −D) | q ∈ R}
11 � ← 0
12 else if r > N then
13 t ← latestRefutation(−N ,−1)
14 if t �= ⊥ and t ≥ � then
15 � ← ⊥
16 if uniqueCandidate(−N , −1) �= −1 then
17 x ← uniqueCandidate(−N , −1)
18 if r > N(D + 2N), yp = ⊥, � �= ⊥ and allGood(−N(D + 2N), −1, x)

= True then
19 yp ← x
20 S ← S ∪ {(p, 0, x, �)}
21 if � �= ⊥ then
22 � ← � − 1

Just as Algorithm 3.2, Algorithm 3.4 tries to detect changes in the root component
at level −D. When a change in root components is detected, in addition to setting
the proposal value to the maximum over all proposal values from the root component,
Algorithm 3.4 also sets � to the current level 0 in Line 11 – signalling that it has locked.

If Line 9 of Algorithm 3.4 does not evaluate to true, the algorithm has to make sure, that
the output value is written only once, and that all the output values are in agreement.
When we reach Line 13 of Algorithm 3.4 we know that process p has locked and that
no change in the root component was detected. In this case, the terminating consensus
algorithm checks if the proposal value of process p is in agreement with the proposal
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3. Root component based algorithms

values of the other processes in the system and tries to align p’s proposal value with
the rest of the proposal values in Lines 13 to 17. This is done, because some processes
might have already detected some other root component and set their proposal value
accordingly. Line 14 of Algorithm 3.4 checks if there is a valid refutation of process p’s
lock value �. A refutation is a level, where another process has either not locked at all or
has locked, but set the proposal value to a different value. If the refutation has happened
after or in the same level as process p’s lock, then p clears its lock status in Line 15. This
will make p perform the proposal value update in Line 10 in the next round, even if no
change in the root component can be detected.

After checking for a refutation, the algorithm also checks if it can find a unique candidate
for p’s proposal value in the state history in Line 16 of Algorithm 3.4. If such a unique
candidate can be found, the algorithm updates its proposal value to the unique candidate
in Line 17, regardless of the fact that it may not have found a refutation. Note that
when using the unique candidate the lock variable � is not set, but it might very well be
already set.

At the end of each round r computation, the algorithm checks if it can safely decide in
Line 18 of Algorithm 3.4. If it is safe to decide, the algorithm decides in Line 19. Last,
but not least Lines 20 to 22 update the state S with current information and decrease
the lock value to make the level convention work.

For a proof see [SS21, Theorem 1]. This theorem establishes a one-to-one mapping of
layers to round numbers – the algorithm using round numbers was already proven in
[WSS19, Theorem 4].
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CHAPTER 4
MinMax algorithms

[CM21] introduced a new category of algorithms called “MinMax algorithms”, able to
solve stabilizing consensus in time varying graphs. This chapter gives a short introduction
to the system model and dynamic network concepts used by [CM21] and provides a
way to translate some of the core ideas to concepts presented in Chapter 2. We will
then briefly show that the assumed message adversary is not comparable to the message
adversaries introduced in Section 2.4. An implementation of the MinMax consensus
algorithm is presented in Chapter 5 and experimental results regarding a comparison
with the stabilizing consensus algorithm from [SS21] under real-world conditions are
presented in Chapter 6.

4.1 System model
The definitions and concepts presented here closely follow the definitions and concepts
introduced in [CM21]. The system model from [CM21] assumes synchronous, round-based
operation, fault free processes and a time varying-topology – the same assumptions are
made by the system model presented in Chapter 2. The first big difference, is that
processes – or agents, as the participants are called – are anonymous, in the sense that
they do not have unique IDs.

4.1.1 Time-varying topology
The digraph that represents the round t communication graph is denoted by G(t) = (V, Et).
This is equivalent to a graph Gt in the notation of the system model from Chapter 2. As
is the case in our system model, all communication graphs are assumed to be reflexive.

The sequence of communication graphs is denoted by G = (G(t))t∈N and is called a
dynamic graph. Non-empty sets of dynamic graphs are called network models. Similar
to our system model, agents start out passive and can once make the transition to
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4. MinMax algorithms

active. xu(t) is used to refer to variable x belonging to agent u at the end of round
t. The in-neighbourhood is denoted by Inu(t) – the incoming neighbors of u in the
communication graph G(t).

4.1.2 Dynamic graph concepts
Instead of calling G ◦ G� the compound graph of the graphs G = (V, E) and G� = (V, E�),
[CM21] calls the operation the graph product of G and G� and for t� > t ≥ 1 introduces the
notation G(t : t�) = G(t)◦. . .◦G(t�) for repeated application of the product operation. This
notational convention is extended to Inu(t : t�) = Inu(G(t : t�)) – the in-neighbourhood of
a product of consecutive graphs.

This is a concept very similar in nature to the Causal Past – see Definition 2.3.5.

CPb
p(a) = Inu(a + 1 : b)

The notation G(t : ∞) is defined to mean

G(t : ∞) = (V, ∪t�≥tE(G(t : t�)))

and this extension of the interval to infinity can also be applied to the in-neighbourhood.
Inu(t : ∞) is defined to mean

Inu(t : ∞) = ∪t�≥tInu(t : t�)

.

Note that E(G(t : t + 1)) ⊆ E(G(t : t + 2)) ⊆ E(G(t : t + 3)) . . . holds. The extension of
the interval to infinity is just the repeated application of the graph product operation.

Now we can introduce the first major dynamic network concepts – the integral and the
limit superior of a dynamic graph.

Definition 4.1.1 (Integral of a dynamic graph). Let G be a dynamic graph. Then
G is called the integral of the dynamic graph G and defined by G = (G(t))t∈N and
G(t) = G(t : ∞).

Each graph G(t) in the dynamic network G, is a graph that arises from the product
operation with an interval extended to infinity.

If a dynamic network H is defined as

H =

 1 2

3
,

1 2

3
,

1 2

3
,

1 2

3
, . . .


with the last graph repeated forever, then the integral H of the dynamic graph H is
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H = (H(1 : ∞),H(2 : ∞),H(3 : ∞),H(4 : ∞), . . .)

which comes down to

H =

 1 2

3
,

1 2

3
,

1 2

3
,

1 2

3
, . . .


with the last graph repeated forever.

Definition 4.1.2 (Limit superior). Let G be a dynamic graph. Then G(∞) = (V, E∞)
is called the limit superior of graph G. E∞ is defined as

E∞ = {(u, v) ∈ V × V | ∀t, ∃t� ≥ t : (u, v) ∈ E(G(t�))}

Note that the integral of a dynamic graph is itself a dynamic graph, but the limit superior
of a dynamic graph is just a graph. Informally the limit superior is the graph containing
all the edges that occur in an infinite number of graphs G(t) of the dynamic network G.

Using our exemplary dynamic network H, we see that both the limit superior H(∞) and
the limit superior of the integral H(∞) come down to

H(∞) = H(∞) =
1 2

3
.

Definition 4.1.3 (Root of a graph). Let G = (V, E) be a digraph. A node u ∈ V is
called a root of the graph G, if there exists a path from u to every node v ∈ V . A node
u ∈ V is called a central root of the graph G, if there exists an edge (u, v) ∈ E(G) for
every v ∈ V .

A graph with at least one root is called rooted and a dynamic graph G is called permanently
rooted if all graphs G(t) are rooted. We write Roots(G) for the set of roots of G and
CRoots(G) for the set of central roots of G.

Lemma 4.1.1. If a graph G is rooted in the terminology of [CM21], then G is also a
graph with exactly one root component according to Definition 2.3.1 and vice-versa.

Proof. Let G = (V, E) be a rooted graph in the terminology of [CM21]. Then there is a
node u ∈ V , where a path exists to all other nodes v ∈ V . Now assume that graph G
has more than one root component in the terminology of [SS21]. Because there are no
paths between root components this leads to a contradiction and the conclusion that G
has exactly one root component.
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4. MinMax algorithms

For the other direction we assume a graph G = (V, E) that has one root component R.
By the definition of a root component, we know that for every u ∈ R, there is a path to
every other node v ∈ V . All the members of the root component R are roots of G in the
terminology of [CM21].

Definition 4.1.4 (Kernel of a dynamic network). Let G be a dynamic network. Then
Ker(G) is called the kernel of G and defined by

Ker(G) = ∩t≥1CRoots(G(t))

The kernel of a dynamic network G is the intersection of all the central roots for each
of the graphs in the integral of G. Informally, these are the central roots that occur
infinitely often in the integral of G.

Definition 4.1.5 (Rooted with delay T ). A dynamic graph G is called rooted with delay
T , if for every t ∈ N G(t : t + T − 1) is rooted. A dynamic graph G is called rooted with
bounded delay if it is rooted with delay T for some fixed positive integer T .

[CM21, Corollary 12] now states that every safe MinMax algorithm solves stabilizing
consensus for all dynamic graphs that are rooted with a bounded delay.

Informally, it should be noted that the concept of bounded delay rootedness allows one
to reason about information distribution in a graph sequence, similar to the concept of
dynamic network depth in combination with a vertex stable root component.

Definition 4.1.6 (BOUNDEDDELAY≤N ). The message adversary BOUNDEDDELAY≤N

is the set of a all dynamic networks with |V | ≤ N , that are rooted with bounded delay.

4.2 Comparison of message adversaries
To be able to compare the graph sequences generated by ♦WEAKSTAB≤N (D + 1, D)
with BOUNDEDDELAY≤N , we must first translate ♦WEAKSTAB≤N (D + 1, D) into a
form that is not dependant on the point in time where processes get activated.

We introduce the message adversary ♦WEAKSTAB�≤N (D +1, D) that, instead of generat-
ing the vertex stable root component of length D + 1 only after all processes have become
active, generates a vertex stable root component of length D + 1 infinitely often. This
does not influence the correctness of the algorithm. Let s be the smallest round where
all processes have become active. All decisions before round s can still be overridden
by the first vertex stable root component that starts at or after round s. After the first
vertex stable root component at or after round s has occurred, the output value is fixed
and cannot be changed by any vertex stable root component that occurs afterwards.

Note that the introduction of ♦WEAKSTAB�≤N (D +1, D) also makes it clearer that there
is no contradiction to [CM21, Theorem 6], which states the fact that there cannot be an
algorithm that solves stabilizing consensus in dynamic graphs with an empty kernel. All
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Figure 4.1: G is rooted with bounded delay

the dynamic networks G that ♦WEAKSTAB�≤N (D + 1, D) generates have R ⊆ Ker(G),
with R being the vertex stable root component that occurs infinitely often.

We will now proceed to show that BOUNDEDDELAY≤N and ♦WEAKSTAB�≤N (D + 1, D)
are not directly comparable. To do this, we will construct a dynamic network G
that is an element of BOUNDEDDELAY≤N , but not of ♦WEAKSTAB�≤N (D + 1, D) and
a dynamic network H that is an element of ♦WEAKSTAB�≤N (D + 1, D) but not of
BOUNDEDDELAY≤N .

Construction of G We define the three graphs

G(0) =
1 2

3
G(1) =

1 2

3
G(2) =

1 2

3

and from those graphs build our dynamic network G(t) = G(t mod 3).

None of the graphs in G are rooted. Therefore there does not exist a vertex stable root
component of any length and G cannot be generated by ♦WEAKSTAB�≤N (D + 1, D).

G is rooted with bounded delay T = 3 and is therefore a graph that can be generated
by BOUNDEDDELAY≤N . This can be checked by computing the graph products G(0) ◦
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4. MinMax algorithms

G(1) ◦ G(2), G(1) ◦ G(2) ◦ G(0) and G(2) ◦ G(0) ◦ G(1) and checking if all the results are
all rooted. See Figure 4.1 for a visualization of the product operations.

. . .
D + 1

Kn

1

Kn

D + 1

Kn

2

Kn

Figure 4.2: Construction of H

Construction of H To construct the dynamic network H with size n, we assume a
graph sequence that starts with the complete graph Kn for D + 1 rounds, followed by the
empty graph Kn for a duration of 1 round. The empty graph is followed again by the
complete graph for D + 1 rounds, followed by the empty graph for a duration of 2 rounds.
This scheme is repeated with increasing durations for the subsequences of empty graphs.
The dynamic network H can be generated by ♦WEAKSTAB�≤N (D + 1, D), but due to
the ever increasing subsequences of empty graphs it is not rooted with bounded delay
and can therefore not be generated by BOUNDEDDELAY≤N . See Figure 4.2 regarding
the construction of H.

Theorem 4.2.1. BOUNDEDDELAY≤N and ♦WEAKSTAB�≤N (D + 1, D) are not directly
comparable.

Proof. Because of the existence of G, BOUNDEDDELAY≤N �⊆ ♦WEAKSTAB�≤N (D+1, D)
and by the existence of H, ♦WEAKSTAB�≤N (D + 1, D) �⊆ BOUNDEDDELAY≤N .

4.3 The algorithm
We are now going to present the main ideas behind the MinMax algorithm, with the
purpose of giving an intuitive understanding of this class of algorithms. For more details
see [CM21, Chapters 4, 5 and 6]. After discussing the basic ideas we, will present the
algorithm optimized for implementation in pseudocode.

To get an intuitive understanding of why this algorithm works, we take a look at the
requirements for the communication graphs. The message adversary BOUNDEDDELAY≤N

requires that the dynamic network G is rooted with bounded delay. Having a dynamic
graph that is rooted with bounded delay means that the in-neighbourhood of a node u
of a compound graph, starting at any round r, of sufficient size must contain nodes from
the kernel (every dynamic network that is rooted with bounded delay has a non-empty
kernel by definition). In other words: there is an integer s such that for all compound
graphs of at least size s every node u has a node from Ker(G) in its in-neighborhood.
Informally, the kernel of a dynamic network is hence the set of nodes that are able to
repeatedly reach all nodes in the network.
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Figure 4.3: Showing the min and max computation phase of the MinMax algorithm.
With a correctly chosen θ the nodes reach consensus.
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For the purpose of the presentation, we now assume the existence of a compound graph
of sufficient size. We additionally assume a round θ according to the specification below.
All nodes start by broadcasting their initial value and by computing the minimum of the
received values. If this scheme were to be executed in a dynamic network G with nodes
V and Ker(G) = V , then all nodes would eventually stabilize to the global minimum over
all values. But since we do not require our kernel to equal V , we need additional steps to
compute a correct value: Assuming that, when round θ is reached, all nodes within the
kernel have stabilized to the same minimum value and all other nodes have stabilized to
a possibly different value than the value derived by the kernel members. After round
θ, all nodes switch to a different computation scheme: The nodes start broadcasting
the computed minimal values in addition to computing the maximum value over the
received minimum values. This makes all the nodes agree on a common value over time.
Figure 4.3 shows an exemplary graph and gives a graphical explanation of the min and
max computation steps.

The problem now is that the value θ is not know beforehand and cannot be precomputed.
The paper shows that, by computing θ repeatedly on the fly with certain properties, this
scheme can be made working. Loosely speaking, eventually, we need θ to be large enough
that all the nodes can compute the minimum value in the first phase and we need it to
be small enough that the nodes are able to receive the computed minimum value from
members of the kernel and compute the shared maximum.

4.3.1 Practical implementation
Algorithm 4.1 shows the pseudocode for the algorithm. We adapted the form of the
pseudocode to fit the presentation of the root component based algorithms.

Algorithm 4.1: Stabilizing consensus under BOUNDEDDELAY≤N for process
p

Initialization:
1 x ← xp, y ← xp, δ ← 0
2 AGE[1 . . . |V |] ← ∞, AGE[x] ← 0

Round r communication, r ≥ 1:
3 Broadcast AGE
4 ∀q : (q, p) ∈ Gr receive message AGEq

Round r computation, r ≥ 1:
5 foreach α ∈ V do
6 AGE[α] ← 1 + min{AGEq[α] : (q, p) ∈ Gr}
7 x ← min{α : AGE[α] < ∞}
8 AGE[x] ← 0
9 δ ← δ(r) // cutoff value, which determines max computation

10 y ← max{α : AGE[α] ≤ δ}
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To facilitate a practical implementation, the authors of [CM21] argue that instead of
distributing the whole graph for each round and using those graphs to compute the
required values, one only needs to broadcast the relevant values using the AGE data
structure.

The basic structure of the algorithm is the same as for the root component based
algorithms. Lines 1 to 2 initialize all the variables and data structures. The variables x
and y are initialized to the starting value. The output value of the algorithm is y. The
dictionary AGE contains a mapping of proposal values to counter values. The counter
represents the age of a value – how many rounds ago this value was last seen.

Lines 3 to 10 form the body of the algorithm and are executed every round. The
communication phase of the algorithm happens in Lines 3 to 4. During the communication
phase of round r, the AGE data structure is broadcast and in turn received by all nodes
in accordance with the round communication graph Gr.

The computation phase is described in Lines 5 to 10. The set V is the set of all possible
consensus values. In Lines 5 to 6, the algorithm determines the minimum age (the
latest point in time), where a value was seen by any of the nodes we received a message
from. Note that, by definition, a node always receives its own message, so the AGE data
structure of the executing process p is also taken into account.

Line 7 is the min step in the algorithm’s execution. Each node determines the smallest
value it has seen at this point in time, updates the variable x and adds it to the AGE
data structure (Line 8). An age of ∞ indicates that the value was not seen yet. The next
step is to calculate a cutoff age in Line 9. This cutoff age δ(r) somewhat corresponds to
the θ value in the introductory presentation. The function to calculate δ can be chosen
by the implementor, but needs to guarantee that the ranges where the min and the
max operations are performed must be ever increasing for r → ∞. A possible function
that fulfills these requirements and takes the round counter r as the input is f(r) = � r

2
.
After calculating the cutoff age, the algorithm performs the max step in Line 10. The
maximum value of all values younger or equal to δ is taken and assigned to the output
variable y.

For a proof of why the MinMax algorithm works in this form, see [CM21, Theorem 16].
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CHAPTER 5
Implementation

We think in generalities, but we live in detail.
— Alfred North Whitehead, “The Education of an

Englishman” in The Atlantic Monthly, Vol. 138
(1926), p. 192

5.1 Overview
The theoretical part of this thesis has – amongst other things – presented variants of the
consensus problem and matching algorithms able to solve consensus in their respective
system models. In particular, it has given a detailed introduction to a group of root
component based algorithms, which solve consensus under a message adversary whose
practical relevance is backed up by some experimental data, see [PS16]. The focus of this
thesis will now shift towards providing an actual implementation of the aforementioned
root component based algorithms and the MinMax algorithm. We will describe challenges
faced, solutions found and questions still in need of answering. Our description of the
system is going to be from the bottom up. Figure 5.1 provides a map of the involved
components and their relationship to each other.

We are going to start by briefly describing the hardware, the operating system and
the communication protocols used. We will motivate and explain our design choices by
specifying concrete requirements and describing how the selected components meet those
requirements.

After introducing the foundations of our implementation, we will focus on the task of
providing nodes with a shared notion of time. This notion of global time is necessary
to provide one of the pillars upon which the algorithms’ system models rest – lock-step
synchronous rounds. We will give a detailed description of the time synchronization
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Figure 5.1: System overview and components of the implementation

approach used and describe how to derive lock-step synchronous rounds from a global
time. In addition we are going to present some measurement results regarding the
achieved synchronization precision.

After we have established a framework that is able to provide communication in lock-step
synchronous rounds, we will give a detailed account of the algorithms’ implementations
and discuss relevant design decisions. A major asset during the implementation of the
algorithms was the simultaneously developed simulation environment. Chapter 6 will
present key features of the simulator.

5.2 Hardware, Operating System, Networking
The algorithms are described independently of hardware, Operating System (OS) and
networking technology. But for an implementation, all these things have to be selected
from a multitude of available options. The specific choices have a great deal of influence
on the final result. The System-on-Chip (SoC) and its radio determine the physical
properties of the communication protocols that can be used, the OS determines the
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available abstractions and libraries and the networking stack constrains the available
communication primitives. We identified the following constraints and demands that our
specific choices needed to satisfy:

Open-source operating system and networking stack Because of the nature of
the time synchronization protocol used, access to the source code of the networking stack
– especially at the lower levels – and the possibility to easily adapt it, were a major
decision point. Because of the number of different concurrent tasks (time synchronization,
communication, algorithm computation) the nodes have to perform, support for threading
or other concurrency primitives was also essential.

Standardized, low-complexity networking protocols Instead of developing custom
solutions, we tried to rely as much as possible on existing standards. The need for a
networking stack with relatively low complexity is again motivated by the fact that we
most likely are going to have to adapt the stack to fit the needs of the time synchronization
protocol. The algorithm’s only requirement regarding communication is a means to
broadcast information – due to the nature of wireless communication, almost all wireless
protocols provide this communication primitive.

Ease of programming and debugging The development board needs to be relatively
comfortable to work with in terms of programming and debugging. The ability to power
the hardware over USB and a serial-over-USB interface are equally important.

In the end we chose RIOT as the OS and a development board designed around the
nRF52840 SoC. The SoC has support for a multitude of communication protocols in
the 2.4 GHz band – we chose IEEE 802.15.4 in combination with IPv6 over Low power
Wireless Personal Area Network (6LoWPAN) as the basic networking technologies.

5.2.1 nRF52840
The development board used for the implementation is the nRF52840-MDK1. This
development board features an nRF52840 SoC from Nordic Semiconductor and various
peripheral components like a Debug-Access-Port Link (DAPLink) interface for easy
programming and debugging. Figure 5.2 shows a picture of the development board with
additional peripherals.

The nRF52840 contains a 32 bit ARM Cortex-M4 processor, clocked at a speed of 64 MHz.
It is equipped with 1 MB of flash memory, 256 kB of RAM and includes a single precision
Floating Point Unit (FPU). The development board provides an additional 8 MB of
external flash memory.

The nRF52840 has radio support for Bluetooth Low Energy (BLE), IEEE 802.15.4-
2006 and custom proprietary protocols like Gazell (an in-house development of Nordic

1https://wiki.makerdiary.com/nrf52840-mdk/
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Figure 5.2: Photograph of the development board with additional peripherals

Semiconductor). All supported protocols operate in the 2.4 GHz frequency band. The
nRF52840’s radio is a typical “Soft-MAC” radio, in that it only implements parts of the
MAC layer of IEEE 802.15.4 in hardware. In addition to a complete Physical (PHY)
layer implementation, the radio only provides facilities for Cyclic Redundancy Check
(CRC) generation and support for channel sensing and energy detection. Data transfer,
from and to the radio, is handled via Direct Memory Access (DMA). The nRF52840
includes an EasyDMA module that is used to initiate data transfers to almost all memory
mapped peripherals on the SoC. The fact that the radio does not provide a complete IEEE
802.15.4 MAC layer in hardware comes as an advantage, because the time synchronization
protocol requires us to obtain and insert timestamps at certain points in the MAC layer.
It does not seem very likely that a “Hard-MAC” radio would provide the support required
to do this.
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5.2.2 RIOT
The OS used in the implementation is RIOT2. RIOT is an operating system, next to
TinyOS, Contiki-NG and others, targeting the embedded systems market, with a focus on
IoT requirements such as low power consumption, low memory and low cost nodes with
wireless communication capabilities. RIOT is implemented in C, provides support for
threading and Inter-process-communication (IPC) and has a strong academic background.
It provides its own networking stack called GeNeRiC network stack (GNRC), but also
supports other networking stack implementations like lwIP3, OpenThread4 and emb65.
Our implementation makes use of GNRC and its 6LoWPAN module for communication
in the consensus part. Bare IEEE 802.15.4 frames are used for communication in the
time synchronization part. GNRC comes with a high-level POSIX-like socket API,
which allows networking code to remain portable over various underlying networking
technologies. RIOT has rich support for different SoCs and development boards and its
build system has the ability to build executables capable of running under Linux. The
native build, in combination with the high-level socket API, enables the developer to
run all the code, including networking, on the development machine – our simulation
environment makes use of this feature to some extent.

RIOT features a build system that makes it easy to provide functionality encapsulated
in modules. The system designer is able to only include modules required for a specific
functionality. This helps keep code and memory requirements low. RIOT comes with an
extensive test suite and makes it relatively easy to reuse parts of the testing infrastructure
for tests in custom modules. All functionality of our implementation is contained in
reusable and loosely coupled modules. A comprehensive overview of RIOT can be found
in [BGH+18].

5.2.3 Networking
As previously mentioned, IEEE 802.15.4 and 6LoWPAN are our basic networking tech-
nologies. Both protocols are well standardized and have good support in RIOT.

802.15.4

IEEE 802.15.4-2003 was released in response to a growing demand for an open, interop-
erable wireless communication protocol targeted especially at the low-power segment of
sensor networks [Ada06].

One of the main reasons for choosing IEEE 802.15.4 over similar technologies like BLE is
the relatively low complexity of the core elements of the standard. Since its initial release
in 2003, the standard grew considerable in size and more features were added, but the
core principles – an explicit focus on low-power networks and low complexity – stayed

2https://riot-os.org
3https://www.nongnu.org/lwip/2_1_x/index.html
4https://openthread.io/
5https://github.com/hso-esk/emb6
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the same. The 2006 release [IEE06] of the standard – the one supported by our radio
– includes four PHY specifications in two frequency bands (2.4 GHz and 868/915 MHz),
whereas the current version of the standard – IEEE 802.15.4-2020 [IEE20] – includes
around 20 different PHY specifications and additional methods for access arbitration and
improved robustness like Time Slotted Channel Hopping (TSCH).

The standard specifies two distinct layers – a PHY and a MAC layer. Northbound of
those two layers, the standard takes care not to make any requirements, allowing various
higher level protocols like ZigBee or 6LoWPAN to be specified independently.

Even though the standard contains a section, where possible networking topologies are
discussed [IEE06, p. 14], it explicitly does not make any assumptions regarding network
layout. The formation of the specific topology is delegated to the upper layers. The
two topologies mentioned in the standard are star and peer-to-peer topology. The star
topology has a central node, which is responsible for passing on frames to the other
participants in the network. The peer-to-peer topology, in contrast, allows nodes to
communicate freely amongst themselves, without a central authority. The topology we
use for our implementation is peer-to-peer – there is no single central authority in our
network.

Devices wishing to communicate with each other form a Personal Area Network (PAN).
Management functionality, such as PAN membership and other duties like regulating
access to the shared medium in a beacon-enabled PAN, fall to a special node termed the
PAN coordinator. The standard mandates that each network has one PAN coordinator.

We violate this requirement, by operating our network without a PAN coordinator. We
do this because of two reasons: The first and more practical reason is, that all the tasks
the PAN coordinator would need to perform, like managing membership, etc. can – in
our case – be done at compile time. Since we don’t operate a beacon-enabled PAN, we
have no need for any of the additional functionality like the superframe structure or data
transfer via the coordinator. The channel (default value 26) and the PAN ID (default
value 0x0023) are set at compile time. The second reason is that, because all the other
parts of the implementation operate without a central and fixed authority – be it for
time synchronization or reaching consensus, introducing one into the system seems like
bad taste.

PHY layer The PHY layer describes ways to encode and modulate data for transmission
over the Radio Frequency (RF) medium. The standard specifies different encoding and
modulation schemes, depending on the frequency band and/or the application one has
in mind. Since our transceiver is only able to operate in the unlicensed 2.4 GHz band,
we will not discuss properties of the other PHYs. IEEE 802.15.4 partitions the 2.4 GHz
band into 16 channels (channels 11 to 26), with a bandwidth of 5 MHz per channel.
Note that channels 15, 20, 25 and 26 do not overlap with 2.4 GHz 802.11 WiFi channels
and are therefore good choices for situations where WiFi interference is to be expected
[MET08]. In the 2.4 GHz band, Offset Quadrature Phase-Shift Keying (O-QPSK) is used
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as the modulation technique. The addition of Direct Sequence Spread Spectrum (DSSS)
technology with 32 chips per symbol makes IEEE 802.15.4 especially robust against
small-band interference. IEEE 802.15.4 is specified for a bit rate of 250 kbit/s in the
2.4 GHz band.

Not only is the PHY layer concerned with physical properties and ways to access the RF
medium, it must provide additional services like a Clear Channel Assessment (CCA) and
an Energy Detection (ED) primitive to the MAC layer. The CCA is used during Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA), when trying to arbitrate
access to the shared channel. The ED primitive is intended to be used by upper layers
to select channels with good conditions or to switch channels during operation. These
services can be requested by the MAC layer and in turn by higher layers.

MAC layer The MAC layer is responsible for arbitrating access to the shared channel
and contains all the functionality concerned with PAN coordination and addressing.

All devices wishing to participate in an IEEE 802.15.4 network must have a globally
unique 64 bit address (an EUI-64 address – see [IEE17] for more information on the
topic). When devices are associated with a PAN, the PAN coordinator may hand out
16 bit addresses to the associated devices. These short addresses are intended to reduce
the size of the IEEE 802.15.4 frames, but are only valid inside the PAN where they were
issued.

Figure 5.3 shows the layout of an IEEE 802.15.4 Data frame, specific to our implementa-
tion. The time synchronization protocol and the higher level consensus protocol both
use the same underlying frame layout. Note that this is not the definitive layout of an
IEEE 802.15.4 Data frame, since IEEE 802.15.4 supports a variable length address header
and an additional security header. The standard defines three more types of frames –
Beacon, Acknowledgement and MAC Command – but since we do not actively use any
of those types, we will not discuss their structure. The exact size and layout of the frame
is important when performing time synchronization over IEEE 802.15.4, because to be
able to compensate for the transmission delay, one needs to exactly know the number of
bits that are transmitted over the air. See Section 5.3.1 for more details. Since IEEE
802.15.4 has a maximum PHY Service Data Unit (PSDU) size of 127 bytes and our
header (including the Frame Check Sequence (FCS)) is 17 bytes long we have 110 bytes
left for the payload. As one can see in Figure 5.3 the PSDU is further extended with a
PHY Protocol Data Unit (PPDU) header. The PPDU header does not count towards
the 127 bytes limit and its exact layout is dependant on the particular PHY layer.

The MAC layer has support for acknowledged frames, but neither our time synchronization
protocol implementation nor the consensus algorithms make use of acknowledgements.
See [SS21, Chapter 6] for a result showing that acknowledged communication does not
benefit the task of reaching consensus under stabilizing message adversaries.

IEEE 802.15.4 networks can operate in two distinct modes – beacon enabled and non-
beacon enabled. Depending on the mode, concurrent access to the shared medium is
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Figure 5.3: The layout of an IEEE 802.15.4 Data frame – specific to our implementation.
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handled differently. Networks operating in beacon enabled mode are able to impose a
shared structure on the period between two beacons – this period is called a superframe.
The superframe structure is a way to split the time between two beacons into 16 equally
sized slots. A slot is either reserved for a specific node (called a Guaranteed Time Slot
(GTS)) or nodes can contend for access during this slot. The slots where nodes contend
for access to the channel are grouped into the Contention Access Period (CAP), followed
by the Contention Free Period (CFP) containing the GTSs. In non-beacon enabled mode,
all nodes perform a variant of a CSMA/CA algorithm with exponential, random back-off
to arbitrate access to the channel. We operate our network in non-beacon enabled mode
and derive the synchronization required for the lock-step synchronized rounds from a
separate time synchronization protocol.

As we will see later, because of the nature of communication in lock-step synchronized
rounds, almost all communication attempts will happen at exactly the same time –
leading to massive message loss if no precautions are taken. Since these collisions are
very predictable, we chose a different approach than relying on the CSMA/CA algorithm
from the specification. For more details see Section 5.4.1.

A more comprehensive overview of IEEE 802.15.4 is given in [Ada06]. The detailed
specification document for IEEE 802.15.4-2006 (the exact version supported by our radio)
is [IEE06].

6LoWPAN

Time synchronization messages are directly transported over IEEE 802.15.4 frames,
because there is no need for any functionality provided by a higher layer in the networking
stack. We do not need routing capabilities, because the messages are simply broadcast.
Since the time synchronization messages are never going to be bigger than the 110 bytes
of available payload space, we do not need any kind of fragmentation support. See
Section 5.3.1 for more details on the structure of the time synchronization messages.

For the consensus protocol, we – again – do not need any routing facilities, but messages
can certainly get bigger than the maximum possible payload size. To transport mes-
sages bigger than 110 bytes, we need some kind of fragmentation support. Instead of
implementing a custom solution, we rely on already existing technologies. To get frag-
mentation support, we use 6LoWPAN as an adaption layer for Internet Protocol Version
6 (IPv6) over IEEE 802.15.4. In addition to fragmentation support, this enables usage
of the POSIX-like socket API provided by RIOT’s GNRC. The benefits of introducing
6LoWPAN more than make up for the small overhead in message size. See Figure 5.4 for
an overview of the networking stack.

6LoWPAN conceptually resides between the link layer and the network layer. It allows
IPv6 packets to travel over IEEE 802.15.4 links and therefore provides a way to connect
IEEE 802.15.4 networks to the Internet. A major challenge in transporting IPv6 over
IEEE 802.15.4 is the mismatch in the supported Maximum Transmission Unit (MTU).
IPv6 has a minimum MTU of 1280 bytes, but IEEE 802.15.4 has a maximum frame size of
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Figure 5.4: Overview of the networking stack

127 bytes. 6LoWPAN – when used in combination with the header compression feature –
works as an adaption layer. It does not introduce an additional protocol header that just
wraps the IPv6 header, but instead makes use of header compression to represent the IPv6
header in a much more space efficient manner. The space efficiency comes from the fact
that it is tightly coupled with IEEE 802.15.4 and can therefore make assumptions about
addresses being shared between the link layer and the network layer. Using Stateless
Address Autoconfiguration (SLAAC), we are able to derive our IPv6 addresses directly
from the IEEE 802.15.4 link layer addresses. In addition to compressing the IPv6 header,
6LoWPAN’s header compression is also able to compress details of the User Datagram
Protocol (UDP) header. Since communication of all nodes is within the same IPv6
subnet, the 6LoWPAN header is only 2 bytes big in our case. It is interesting to note
that RFCs like RFC 7668 “Bluetooth over IPv6” define adaption layers using technology
and concepts very similar to 6LoWPAN for other physical layers.

The old adage of “everything over IP, IP over everything“ and the resulting IP hourglass
design have certainly not lost its relevance. Last but not least, the use of IPv6 and a
high-level socket API would make it possible to run the code, without any changes to the
networking part on the host system. When running on the host, no 6LoWPAN adaption
layer is necessary, because IPv6 is directly transported over Ethernet frames.

Because we are transporting two different types of payload over IEEE 802.15.4, we need
a way to distinguish between packets carrying 6LoWPAN and packets carrying time
synchronization messages. Since IEEE 802.15.4 does not have an upper protocol field in
its header, 6LoWPAN specifies that the first byte of the payload is used as a dispatch
field to decide if the data is a 6LoWPAN packet or some other content. We make use
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of this feature to mark our time synchronization messages as carrying non 6LoWPAN
content – Not A LoWPAN Frame (NALP) content in the terminology of RFC 4944.
For more details on 6LoWPAN refer to the current standard documents RFC 4944 and
RFC 6282.

5.3 Global time and lock-step rounds
A basic premise of our system model is the existence of lock-step synchronous rounds.
To be able to implement the algorithms, we first need to create mechanisms that allow
the nodes to execute code within a round structure. For nodes to be able to execute
code in lock-step rounds, there must exist a shared notion of time or at least a notion of
synchrony.

One viable option would be to use a time signal provided by an external and sufficiently
precise time source like Global Positioning System (GPS). Another way to create a notion
of common time within the group of participating nodes is to use a time synchronization
protocol. This kind of common time must not necessarily have any connection to wall
time. We chose to implement a time synchronization protocol to establish a common
time base, instead of using an external time source like GPS. Equipping all nodes with
GPS receivers, does not seem like a practical approach for low power and low cost IoT
systems.

A multitude of time synchronization protocols targeted at WSNs exist - see Section 1.2.2
for an overview. One of the better known protocols is FTSP introduced in [MKSL04]. It
is a suitable candidate for our implementation, because of its relatively low complexity
both implementation and communication wise. FTSP is explicitly tailored to nodes with
little memory and low CPU resources.

To be able to understand the details of the implementation, we must first understand
the basic principles behind FTSP. The next section will describe the basic operation of
FTSP – afterwards we will delve into the details of our FTSP implementation and we
will talk about how we are going to derive a round structure from the shared notion of
time.

5.3.1 FTSP
The basic idea behind FTSP is that a dynamically selected node – called the root
– broadcasts messages containing a timestamp in regular intervals. The timestamp
contained in the broadcast message is called the global timestamp and taken on the brink
of sending the broadcast. Nodes, upon reception of a time synchronization message, take
another time stamp – dubbed the local timestamp. Using matching pairs of remote and
local timestamps, the nodes try to synthesize a time that tracks the root node’s time
as closely as possible. To facilitate distribution of the time information in a network,
where the root node is not able to directly reach all other nodes, each non-root node
broadcasts its local estimate of the global time, after having received a sufficient number
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of timestamp pairs. A node that has received a sufficient number of time synchronization
messages from the same root is said to be synchronized. Sequence numbers in the
messages allow the detection of duplicates to avoid processing messages twice.

Precision and delays

The high precision that FTSP is able to achieve – the authors of [MKSL04] report
a synchronization accuracy of up to 1.5 µs – is due to two techniques: MAC layer
timestamping and skew prediction.

MAC layer timestamping MAC layer timestamping is not so much an algorithmic as
an implementation technique. It describes the practice of taking the timestamps as close
as possible to the point of actually sending or receiving a time synchronization message.
The name “MAC layer timestamping” is a bit of a misnomer, because the ultimate goal
is not to take the timestamp in the MAC layer, but – if possible – on the radio driver
level. On one hand, MAC layer timestamping violates the layer encapsulation principle
and manipulates packet content without going through the appropriate layers of the
networking stack. On the other hand, this technique does a good job in minimizing the
non-deterministic delays that would otherwise decrease the achievable precision. MAC
layer timestamping has its limits, because without special hardware support, the sender
side timestamp must always be taken before the bytes containing the timestamp are
transmitted and vice-versa for the timestamp taken on reception. There is hardware
support for timestamping in some Ethernet Network Interface Cards (NICs), but to our
knowledge, none in any of the low cost SoCs targeted at the IoT ecosystem. But even
with hardware timestamping support, there is a fundamental limit, as to how accurate
time synchronization between nodes can get. [LL84] proved that even in a fully connected
network with n nodes without failures and clocks that are not skewed against each
other, clocks cannot be synchronized more closely than �(1 − 1

n), with � being the always
remaining non deterministic delay in message delivery.

Skew prediction and linear regression When it comes to time synchronization, skew
(also called offset) and drift are two important parameters that describe the relationship
between clocks. We assume a clock to be a function C(t) that maps real time t to the
respective clock value. Given two clocks Ca(t) and Cb(t) we call |Ca(t) − Cb(t)| the skew
between these clocks. The drift of a clock captures the rate at which it deviates from a
given reference clock in a given amount of time. Ca(t1)−Ca(t0)

Cb(t1)−Cb(t0) would be the drift between
clocks Ca(t) and Cb(t) in the interval [t0, t1]. If clock crystals would oscillate at the
exact same frequency, the drift between any two clocks would be exactly one. A single
synchronization message would be enough to synchronize a clock to a reference clock.
After determining the skew, all nodes could derive the same global time and keep it
indefinitely. But in reality, quartz crystals do not oscillate at exactly the same frequency
and the time synchronization protocol needs to compensate for this fact. The second
technique that helps FTSP achieve high precision is the use of linear regression to make
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a prediction on how the local quartz drifts against the root node’s quartz. FTSP makes
some reasonable assumptions about the behaviour of the quartz crystals or other kinds
of oscillators that provide the local time to the node. The local time is assumed to have
small local error (when asking for the local time in short succession, only a small change
in local time will have happened) and it assumes that the error between different crystals
can be modelled closely enough by a linear function, because FTSP is only able to make
linear predictions.

The FTSP paper also mentions other techniques like taking multiple timestamps to
average over them and determining the radio’s byte alignment, but we will not go into
detail on those techniques, because they are not applicable to the kind of radio hardware
that we have at our disposal.

Root election and resilience

Now that we know the main techniques that allow FTSP to achieve high synchronization
precision, we are going to talk about the mechanisms in FTSP that allow dynamic and
robust election and reelection of a root node.

The root node is the central source of truth regarding global time. It is dynamically
elected during the execution of the algorithm and – should the current root fail – a new
root is elected with minimal disturbance to the common time. FTSP’s root election
mechanism makes the assumption that all nodes possess a unique ID. The core rule of
the root election mechanism is that the node with the lowest ID is considered to be
the root. To facilitate the election process the nodes follow these steps: Each node i
has a variable rooti that contains the current root’s ID – as seen from node i’s point
of view. Every FTSP synchronization message contains rooti and upon reception of a
message, all nodes compare the received node ID with their current notion of the root.
Should the received message contain a node ID that is bigger than rooti, the message is
simply ignored. Should the received node ID be smaller than rooti, the node assumes
that it has seen a new root, updates its local variable and starts – if it has seen enough
synchronization messages – rebroadcasting messages from the new root. After some time,
only one node is left broadcasting on its own – the newly elected root. Should a node not
hear from its current root for a specified amount of time, the node clears the contents of
rooti and starts looking for a new root.

To guarantee a smooth transition between different roots, the algorithm takes care to
reuse the already established linear regression parameters skew and offset. This allows a
continuous global time even when the root changes. The initial waiting period for new
nodes that just joined the network enables them to acquire the parameters of the current
global time before they might take on the role as the new root node. An interesting
consequence of this approach is the fact that the root node might broadcast a global
time that is different from the root node’s local time.
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Figure 5.5: Layout of synchronization messages

Implementation

The implementation is split into two threads of control – a sender and a receiver thread.
The receiver thread listens for FTSP packets and processes them according to the rules
laid out above. The sender thread periodically wakes up, determines the status of the
node (is the node synced?, is the node a root?, . . . ) and sends messages accordingly.
Figure 5.5 shows the layout of our synchronization messages. The first byte is used to
mark the payload as not being 6LoWPAN content. The global timestamp field is set by
the sender, as are the node ID and the sequence number fields. The local timestamp is
filled in on reception by the receiver.

MAC-layer timestamping Our implementation takes a slightly different approach
to MAC layer timestamping than what Maroti et.al. proposed in [MKSL04]. The radio
used in the FTSP paper is byte-oriented, whereas the nRF52840’s radio has a DMA
interface. The paper describes a MAC timestamping algorithm, where a timestamp is
taken after each transmitted byte and the average of these timestamps is used as the
timestamp to include in the synchronization message. This approach is not possible for a
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radio with a DMA interface, since the whole message is transferred in bulk to the radio
via the DMA controller. Since our radio has a “Bitcounter” facility, one could nonetheless
get timestamps after each transmitted byte. The bitcounter facility allows the radio to
generate an interrupt after a configurable amount of bits have been transmitted or received.
But because our radio’s interface is DMA-based, we cannot append a timestamp to a
message that is already being transmitted by the radio. We could transmit the timestamp
in a separate message and somehow fuse the message we used to get the timing information
with the message containing the timestamp on the receiver side, but we decided to take
another approach. We identified the location in the networking driver, where the DMA
transfer is initialized and are taking the timestamp right before the transfer is started.
The timestamp on reception is taken in a similar fashion – as soon as the Interrupt
Service Routine (ISR) for a received packet is triggered the reception timestamp is taken
and appended to the message. The adaption we had to make in the RIOT networking
stack is available in cpu/nrf52/radio/nrf802154/nrf802154_radio.c.

Linear regression Regarding the implementation of the linear regression logic, care
has to be taken to not introduce numerical errors in the floating point computations.
To keep the error low, we perform the linear regression not from the local timestamp
to the global timestamp, but from the local timestamp to the offset between global
and local timestamp. This technique is used in the FTSP implementation available
in TinyOS as well. In addition to using the offset instead of the global timestamp,
we try to perform all calculations using integer data types where possible – this is
especially important when performing additions. To make sure that the floating point
error stays within a reasonable bound, we created a test suite generator, which generates
linear regression calculation tests for the whole range of the FTSP timestamp. See
consensus/ftsp/tests/ftsp_linear_regression/generate_testcases.py
for the testcase generator.

Since we use a 32 bit unsigned integer for the global timestamp and our unit of time
are µs, after approximately 71.58 min the counter will overflow. The choice to use a
32 bit unsigned integer is motivated by the fact that we need to perform floating point
calculations. Since our hardware only has support for single precision floating point
numbers, using a 64 bit unsigned integer would mean that we would sooner or later leave
the range where we can perform meaningful and somewhat precise calculations.

Applying the corrections The major correction we have to apply to the received
timestamp is due to the transmission of our packet at a speed of 250 kbit/s. After
the timestamp has been taken and the DMA transfer is initiated, the radio will spend
considerable time transmitting the bits at the speed mandated by the IEEE 802.15.4
standard. Since we use the offset between the timestamp contained in the message and
the timestamp obtained on reception, this offset includes the time it took to transmit the
bits over the air and we need to compensate for it. We will ignore the delay introduced by
the propagation of the electromagnetic waves, because an electromagnetic wave travels
with a speed of about 300 m/µs and assuming a distance of 100 m (which is at the upper
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boundary of what is possible with IEEE 802.15.4) the introduced delay would only be
around 0.3 µs.

On top of the transmission delay, we observed an almost constant delay of about 75 µs.
This delay might capture the DMA setup and transfer times and radio specific delays.
We did not investigate the causes of the delay any further, but just included it in the
correction logic.

Fault injection Each node can be given a blocklist containing nodes, whose messages
should be dropped. This blocklist can be activated and deactivated during runtime. The
blocklist functionality allows the controlled injection of faults during the evaluation runs
to test the code under different scenarios.

5.3.2 FTSP evaluation
We are now going to briefly describe our synchronization precision measurement setup and
present the obtained results. We used two different setups to obtain performance metrics
from our FTSP implementation. Our measurement setups differ from the measurement
setup in the FTSP paper. In that paper, a special node queries all nodes in the network
and the nodes report their timestamps. We don’t do accuracy measurements over the
air. Our first setup uses an oscilloscope to directly capture the moment of signal change
on a GPIO pin. This has the benefit of not needing to implement a separate precision
reporting infrastructure – the disadvantage is that this approach will not scale up to a
high number of nodes or a setup where the nodes are spaced very far apart, because the
nodes need to be connected to the inputs of the oscilloscope.

The second measurement setup consisted of 20 nodes running FTSP and logging various
information like the current global timestamp and the node state at predefined points
in time to an SD card. These logs were later used to extract the desired performance
metrics.

Oscilloscope measurement setup

To be able to measure the accuracy with an oscilloscope, we devised the following scheme
that makes use of the lock-step synchronous round infrastructure. We configured the
round generation logic to use rounds consisting of 2 phases. At the start of every new
phase each node under observation toggles a pin connected via shielded cables to an
oscilloscope. The oscilloscope’s output is captured on a PC using Virtual Instrument
Software Architecture (VISA). A script post-processes the captured traces and determines
the time difference between the signal transitions. The script to collect data from the
oscilloscope is consensus/rigolyze.py. The script to post-process the data is
consensus/ftspalyze.py.

Measurement run 1 The first measurement run used an FTSP period of 5 s and a
phase duration of 8.38 s. The nodes were placed next to each other – simulating optimal
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conditions. After some time, a failure of node 2 was simulated and later the recovery
of node 2. Some time after node 2 came back online, a root failure was simulated by
powering off node 1, making node 2 the new root. Later on, node 1 was powered on
again, taking over the role as the root. See Figure 5.6 for a plot of the time differences of
the nodes to the current root. The achieved precision ranges from a difference of around
28 µs for node 2, and 8 µs for node 3 down to 3 µs for node 4, depending on the current
root node. It is interesting to note that the nodes seem to have a quite constant error,
leading to the conclusion that node specific calibration parameters could further increase
the achievable performance of our implementation. The counter overflow is handled
smoothly, because of the quite high FTSP period.

Measurement run 2 The second measurement run used the same FTSP period of
5 s and again a phase duration of 8.38 s, but this time the nodes were distributed in
an apartment in different rooms. The same failure protocol as in run 1 was performed.
Figure 5.7 shows a plot of the time differences of the nodes to the current root. We are
able to observe a similar behaviour when the nodes are placed further apart and not
in direct line of sight. The error seems to be quite constant for each node as well and
overflow is handled gracefully.

Measurement run 3 The third measurement run used an FTSP period of 30 s and a
phase duration of 2.09 s. The nodes were placed in the same locations as in the second
measurement run. This time, no failure protocol was performed. See Figure 5.8 for the
time differences of the nodes to the current root. Something interesting can be observed:
Even though the period is higher, the node specific errors are now not as pronounced as
in the first and second measurement runs, but the extreme values of the time difference
error are much higher. This might be due to the increased phase duration and the
concomitant increase in measurement error. Due to the high FTSP period, recovering
from the counter overflow takes much longer.

SD card measurement setup

20 nodes where placed in close proximity to each other and different blocklist settings
were given to the nodes to allow the recreation of different connectivity scenarios. Two
scenarios where tested - a regular grid without any blocklist configuration and a kind of
line graph that forced all the nodes to have a different root. These experiments where
done as a kind of sanity check that the FTSP implementation works as expected.

No fault injection The first measurement run used an FTSP synchronization period
of 3 s. Figure 5.9 shows that the biggest synchronization error between all 20 nodes placed
in a regular grid stays well below 250 µs in the worst case. The second measurement run
increased the FTSP synchronization period to 30 s. This does not have a detrimental
effect on the maximal synchronization error - see Figure 5.10. These two measurement
runs represent optimal network connectivity conditions.
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5.3. Global time and lock-step rounds

Figure 5.9: FTSP precision measurements – run 1 – SD card setup. The biggest error
between all 20 nodes placed in a regular grid with an FTSP synchronization period of 3 s
and no blocklist settings.

Figure 5.10: FTSP precision measurements – run 2 – SD card setup. The biggest error
between all 20 nodes placed in a regular grid with an FTSP synchronization period of
30 s and no blocklist settings.
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Figure 5.11: The biggest error between all 20 nodes placed in a regular grid with an
FTSP synchronization period of 3 s and a blocklist activated after 30 min that forces a
line graph with respect to the visible root nodes.

With fault injection To evaluate the behaviour of our FTSP implementation under
non-optimal conditions we ran a third experiment with an FTSP synchronization period of
3 s and error injection starting after 30 min that forced each node to see a different FTSP
root node. Figure 5.11 shows that even in the worst case the maximal synchronization
error between all nodes stays below 4.3 ms. This is well below the required phase duration
of 2.09 s used in the experimental evaluation of the consensus algorithms - see Section 6.2.

5.3.3 Lock-step synchronous rounds

Now that we are able to robustly establish a common time base between the nodes, we
can take the next step and create an infrastructure to execute code in a lock-step fashion.
The basic idea behind our approach is to define points in time where new rounds or
phases start, and have all nodes – using global time – determine their distance to the
next starting point and sleep until then.

Because our system model dictates that the lock-step synchronous rounds consist of
separate non-overlapping phases, the basic unit of synchronization in our implementation
is the phase. A certain number of phases makes up a round. At first, the nodes try to
synchronize to a round boundary, and after that they will always synchronize to the next
phase boundary.
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Figure 5.12: Phase and round structure of global time. To map a timestamp to a
phase after global time has overflowed, we need the duration of a round in µs to divide
UINT32_MAX + 1.

Properties of rounds and phases with respect to global time

The algorithms presented in Chapter 3 assume rounds to be structured into three phases:
broadcast, receive and compute. This is mostly done to have a nice conceptual structure,
but this structure cannot necessarily exist in that exact way in an actual implementation.
What we need to guarantee is that all messages are broadcast and received before the
nodes start the compute phase. When doing time based structuring of the global time
into rounds and phases, one must take into account that global time will eventually wrap
around. Note that we must be able to uniquely identify the phase a timestamp belongs to,
because the receiver part of the consensus implementation has support for a mode where
it does not synchronize itself to a round structure. Instead, on the reception of a message,
it determines the current broadcast phase start and end points and checks if the message
contains a timestamp that falls into this range. In other words: The receiver must be
able to determine if a timestamp belongs to a broadcast phase or not. This is necessary
to prevent spurious messages from being received in this mode and thereby enhances the
resilience of the system. Therefore, we need the following property to hold if we want
to handle global time wrap-around reliably: The duration of a round in µs must divide
UINT32_MAX + 1, which is the maximum timestamp value (in µs) + 1. This allows us
to uniquely identify which phase a timestamp belongs to – even after wrap-around. See
Figure 5.12 for an illustrated explanation of the global time wrap-around and its effect
on the round/phase structure.

As already mentioned, the algorithms assume a round that consists of three phases, but
the receive phase naturally happens at the same time as the broadcast phase, because
as soon as nodes start to broadcast other nodes will receive data. This means that the
broadcast and receive phase happen at the same time and we are only left with the
compute phase. Therefore, a round in our implementation consists of a broadcast phase,
where all messages are broadcast and received to a temporary variable and a compute
phase, where the received messages stored in the temporary variable are integrated into
the main data structure and the computations are performed.

59



5. Implementation

5.4 Consensus Algorithms
All the necessary parts are now in place to shift our focus to the implementation of the
algorithms as a whole. We implemented the terminating and stabilizing variants of the
root component based algorithms and the MinMax stabilizing consensus algorithm.

The implementation naturally decomposes into various modules. The most important
ones are listed below. Each module corresponds to a directory in our source tree.

ftsp Responsible for providing a global time

ddn Contains all the root component based data structures and
graph algorithms

consensus The basic consensus machinery shared by all algorithms

consensus_stabilizing The implementation of the root component based stabiliz-
ing consensus algorithm

consensus_terminating The implementation of the root component based termi-
nating consensus algorithm

consensus_minmax The implementation of the MinMax based stabilizing con-
sensus algorithm

For a more detailed overview of the filesystem layout see Appendix A.

5.4.1 System overview
The consensus module is split into two threads of control. A receiver thread, responsible
for the reception and processing of network packets and a computation thread, which
is in charge of both broadcasting the node’s state and executing the algorithm’s main
computations. See Figure 5.13 for a system overview.

The receiver thread is not synchronized to the round structure and constantly listens
for incoming messages. To check if a received message was sent in the current broadcast
phase, the receiver either compares the timestamp embedded in the message with its own
global time or uses the global timebase to determine if a message belongs to the receive
phase without looking at the message timestamp embedded in the consensus message.
The define CNS_IGNORE_MSG_TIMESTAMP switches between the different modes. If a
message does not belong to the current broadcast phase, the message is dropped. See
Section 5.3.3 for a discussion on the properties of the round/phase structure that need
to hold, to enable the receiver thread to reliably compute the current broadcast phase
boundaries. We do not merge the received messages directly into the main data structure,
but keep a temporary variable, because we want to make sure that the reception of a
message does not change the state of a node that has not yet sent its broadcast message.
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Figure 5.13: System overview of the consensus part

The temporary variable is merged into the main data structure at the beginning of
the computation phase. Since the temporary variable is accessed by both receiver and
computation thread, a lock controls access to the data structure.

The second thread in the system is the computation thread. In contrast to the re-
ceiver thread, the computation thread is synchronized to the round structure. After
synchronizing to the round structure, the computation thread first broadcasts the current
state in the broadcast phase. After entering the computation phase, the thread merges
the received state information from the other processes into its main data structure,
then clears the temporary variable and finally takes the necessary computation steps,
depending on the variant of consensus implemented. When broadcasting messages in the
computation thread, we run into the problem that all nodes are precisely synchronized
and would attempt to broadcast messages at exactly the same time. We could leave the
channel arbitration to the MAC layer to perform the CSMA/CA algorithm mandated by
the IEEE 802.15.4 standard. Because of the nature of the exponential back-off algorithm,
however, this would introduce non-determinism into the system and make estimation
of the necessary phase duration more difficult. Instead we chose a simpler approach –
all nodes must wait (node_id − 1) ∗ tmsg, before broadcasting the local state. tmsg is
the time it takes to transmit the biggest consensus message. Due to the nature of the
data structures and our knowledge of N the maximum size of a consensus message is
known at runtime. See Section 5.4.2 for more details on the encoding scheme and on
pruning the graph approximation. Using this scheme enables us to find an upper bound
for the duration of a phase when we know the number of nodes involved. This means that
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for algorithms that require lock-step synchronous rounds (and are working in a shared
medium – like the RF medium) the implementation needs to have at least a knowledge of
N to determine the maximum round/phase duration – even if the algorithms themselves
do not require this kind of knowledge.

Our implementation has the additional feature of being able to execute two consensus
algorithms at the same time. This allows us to evaluate certain properties of different
consensus algorithms under exactly the same real world conditions. When two algorithms
are run in parallel their messages are fused together, to make the communication conditions
exactly the same for both algorithms.

5.4.2 Implementation details

First we are going to discuss some global implementation details and then we will highlight
various aspects of the root component based algorithms and the MinMax based algorithm.

Choosing an appropriate round duration The phase duration needs to allow for
enough time for all messages to be sent one after the other. It takes 802.15.4 30 µs
to transmit one byte, because the nominal speed of transmission is 250 kbit/s. The
maximum message size is dependant on the number of nodes taking part in the algorithm
and the different algorithms being executed.

Node IDs The boards have factory set unique identification registers that we map into
the range 1 to N . This mapping happens in the module node_id. When running the
code in the simulator the node ID is passed as a commandline argument.

Debugging and tests The ATUSB 802.15.4 dongle6, suitable for sniffing IEEE 802.15.4
with a recent Linux PC, was extremely helpful. See consensus/scripts/sniff.sh
for a script to put the dongle into promiscuous mode and start sniffing on a given channel.
This dongle in combination with Wireshark7 was a powerful tool to debug various network
related problems with relative ease.

All modules come with an extensive unit test suite contained in the tests subdirectory
of the respective module. The consensus/scripts directory contains scripts to run
various kinds of automated tests. See Appendix A for more detailed instructions.

Consensus messages The consensus messages sent over the air are rather sim-
ple. They only contain the node ID, a timestamp – not used when executing with
CNS_IGNORE_MSG_TIMESTAMP – and the serialized local state of the node. Figure 5.14
shows the layout of the consensus messages.

6http://shop.sysmocom.de/products/atusb
7https://www.wireshark.org
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Figure 5.14: Layout of the consensus message

Root component based algorithms

Data structures In the algorithm’s pseudocode, the graph approximation A, the state
S and the set of known processes P are kept separate. In our implementation, we decided
to merge all three data structures into one. We store the necessary state information
with the vertex representing the node in the graph. This has the benefit that we only
have one central data structure – the graph approximation (ddn_t in the source code) –
to perform our operations on. Merging the data structures does not have an impact on
the correctness of the algorithm, because the algorithm’s correctness arguments make no
assumptions with regard to the separateness of the data structures.

The DDN is implemented as a linked list of graphs. Graphs themselves are implemented as
sparse adjacency matrices – again using linked lists. The main graph theoretical algorithm
used to find strongly connected components, necessary to identify roots, is Tarjan’s
algorithm. See the function ddn_get_sccs in consensus/ddn/algorithm.c for
the implementation.

Serialized state The basic idea behind the state encoding is to represent each node u of
round s as a suitably sized bitfield and set bit v −1 if there is an edge going from u to v in
round s. See the functions ddn_encode and ddn_decode in consensus/ddn/ddn.c
for the implementation of the state encoding and decoding.

Pruning the graph approximation To make the implementation practical, the
graph approximation has to be pruned at a certain depth. Examining both algorithm’s
pseudocode, we note that we do not go more than D + 1 rounds into the past in the case
of stabilizing consensus. For terminating consensus we do not go more than N(D + 2N)
rounds into the past. This allows us to prune the approximation at the respective depth.
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Relative round numbers The implementation uses relative round numbers from 0
upwards, with 0 being the current round. The algorithm encodes relative round numbers
a negative numbers, describing how far back “in time” a round is. The choice to use
non-negative numbers comes natural in the implementation, because the round numbers
can be thought of as an index into an array of graph approximations.

MinMax based algorithm

Data structures The main data structure of the MinMax algorithm is age_t, a linked
list of objects storing an age for a value. Encoding this linked list for transport over the
air is done by flattening the list to a compact array. All functions operating on age_t
can be found in consensus/consensus_minmax/age.c.

Cut-off function The special value δ, used to determine the cutoff point between the
minimum and the maximum operation is calculated based on the current round number
as δ(r) = � r

2
.

5.5 Future Extensions
We have now presented a bottom-up view of the implementation and are now going to
briefly discuss possible future extensions to various parts of the system.

Global time It would be interesting to investigate how good a fit the superframe
structure of IEEE 802.15.4 is to implementing lock-step synchronous rounds. One could
either directly use the GTSs or derive synchronization from the beacons. When using the
GTSs and equating one superframe with one round, the limit of 16 slots per superframe
limits the number of nodes that could participate severely. A solution might be to make a
round span more than one superframe. The beacons could provide a basic synchronization
point, but they do not provide any of the features we expect from a dedicated time
synchronization protocol. The beacon frame does not contain an explicit time stamp field
(although the optional user-defined beacon payload could be used for this) and there is no
robustness against failing PAN coordinators. The issue of PAN coordinator (re-)election
could be handled on a higher layer – see [CCA10] for a possible solution.

FTSP Future improvements to the FTSP implementation could be to increase the
robustness during overflow and an investigation if node specific calibration parameters
can further increase the performance. In particular, an approaching overflow could be
detected and a separate linear regression table used to store values until it contains
enough entries to be used as the main linear regression table.

Security Since our implementation’s focus is not on security, we do not go into details
regarding the various security features that both 6LoWPAN and IEEE 802.15.4 offer. In
production IoT systems, security is of the utmost importance, because of the often sensitive
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nature of these kind of systems. To add message encryption to our implementation two
possible avenues exist. Encryption can either be added on the IEEE 802.15.4 level –
the standard specifies symmetric key encryption with a key provided by some upper
layer using Advanced Encryption Standard (AES) in Counter with CBC-MAC (CCM*)
mode – or by using Datagram Transport Layer Security (DTLS) defined by RFC 6347 on
the application level. The SoC we chose could cope with stricter security requirements,
because it has hardware support for 128-bit AES in the form of a dedicated co-processor.
This co-processor would be well suited to encrypt and decrypt packets on the fly, without
any additional burden on the main CPU.

65

https://tools.ietf.org/html/rfc6347




CHAPTER 6
Simulation and Experiments

This was the gist of the notice. It said “The Guide is
definitive. Reality is frequently inaccurate.”
— Douglas Adams, “The Restaurant at the End of

the Universe”

Of all the debugging and testing tools at hand, the custom developed simulation en-
vironment was the most valuable tool during the implementation of the algorithms.
The simulator executes multiple instances of the code that would otherwise run on the
resource limited IoT boards on a host PC – encapsulated as separate processes. The
simulation environment creates a virtual communication network between the processes
that changes over time according to a given graph specification. The simulator allows the
user to programmatically step through the progression of rounds, without any connection
to the passing of real time. It is further possible to inspect – through instrumentation –
the internal and external state of the participating virtualized IoT nodes.

The simulator can compare the output and state of a given implementation for an IoT
node with the output and state of an implementation contained in the simulator. The
ability to compare the C implementations of the algorithms with implementations using
a different technology allowed us to gain further confidence in the correctness of the C
code.

6.1 Simulation environment
The simulator was first written to simplify debugging of the root component based
algorithm implementation. Programs that heavily interact with their environment are
inherently difficult to debug, because of the sometimes fleeting nature of physical reality.
It might be possible to halt the CPU and inspect the registers using a debugger, but it is
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/
b-1 ............................. Broadcast data from node 1
b-2 ............................. Broadcast data from node 2
b-3 ............................. Broadcast data from node 3
1 ................................ Reception directory for node 1. Node 1 re-

ceives messages from nodes 2 and 3.
2 -> ../b-2
3 -> ../b-3

2 ................................ Reception directory for node 2. Node 2 does
not receive anything.

3 ................................ Reception directory for node 3. Node 3 re-
ceives a message from node 1.

1 -> ../b-1

Figure 6.1: Exemplary filesystem layout that provides the broadcast data and describes
the communication graph for one round for nodes 1, 2 and 3. Shown are the broadcast
files b-1, b-2 and b-3 as well as the reception directories 1, 2 and 3 with the symlinks
describing the current communication graph.

certainly not possible to precisely control the communication graph or stop time during
the transmission of data over the air. Using a simulator allowed us to exert much more
fine grained control over the network graph than would ever be possible in the real world.

Multiple options present themselves when implementing a simulation environment. It
is entirely possible to provide an environment where only the abstract concepts of the
system are simulated, providing full control over all aspects of the simulation. On the
other hand, one can try to run as much production code as possible in the simulation
environment, thereby giving up some control over the environment and likely loosing
performance, but gaining a more realistic basis for simulation. We choose a middle
ground by abstracting away the time synchronization and round/phase calculations, but
more or less keeping the other code paths.

The simulator takes the C code targeted at the nRF52840 hardware and compiles it for
Linux running on ordinary PC hardware. When the C code is compiled for use under the
simulator, some code paths are changed by setting simulator specific defines. All code
paths concerned with the computational aspects of the algorithms stay the same. The
first big difference when running under the simulator is the fact that the round/phase
structure is not established by running a time synchronization protocol. The start of
a new round or phase is signaled by the simulator to the node processes using POSIX
message queues. The second big difference when running the code under the simulator is
how messages are exchanged. Networking under the simulator is mapped to operations
on files. Each node gets assigned a special file, used to write all the data it wants to
broadcast in the current round. The simulator then – according to the given current
network graph – creates symlinks from the broadcast files to files in a special reception
directory separate for each node. Note that the symlinks are cleared and recreated at
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Message adversary Dynamic network generator
BOUNDEDDELAY≤N BoundedDelay
♦WEAKSTAB≤N (D + 1, D) EventuallyWeakStab
♦STABLE≤N,D(D + 1) EventuallyStable

Table 6.1: Available dynamic network generators in the simulator and the match-
ing message adversary. All listed Python classes are defined in the module
simulator.message_adversaries

the start of each round. See Figure 6.1 for a more detailed description of the filesystem
networking setup.

Using the filesystem has a number of advantages over using the hosts networking stack.
The first advantage is that the filesystem allows for easy inspection by various commandline
tools and is suitable for taking quick snapshots for later analysis – especially of broadcast
data. The second advantage is that we can avoid all the timing assumptions that the
host’s networking stack implementation certainly makes and that would be difficult to
handle reliably inside the simulator. A third advantage of using the filesystem is the fact,
that the 6LoWPAN implementation has an upper limit for the number of bytes it can
transport. Since we do not need to go through the 6LoWPAN stack, the simulator is
able to simulate a higher number of nodes than would be supported by an unpatched
6LoWPAN implementation. For more details on this topic see Section 6.2.

After using the simulator to debug various issues, the need to automatically check if
the algorithm computed correct results arose. We extended the simulator with facilities
to programmatically describe the expected state of the algorithm for each node and
round. This programmatic description is then used to compare the C code’s internal
state after every round with the programmatically described state. This approach is
useful for testing specific key points, but quickly becomes cumbersome for larger values of
N and larger numbers of simulated rounds. Instead of manually describing the expected
state, we additionally implemented the stabilizing root component algorithm as well as
the MinMax algorithm in Python. Afterwards we extended the simulator with facilities
to compare the expected state of the Python implementation with the state of the C
implementation when executing both implementations using the same parameters and
dynamic network.

There are two possible ways to provide the dynamic network for a simulation run.
Using the Python networkx1 package, the user of the simulator can programmatically
describe the communication graph for each round. This approach only lends itself to
small checks for specific properties and becomes quickly long-winded. A second problem
with the manual approach is that the dynamic networks do not include any variation
or randomness, making it even more cumbersome to write different scenarios. To solve
this problem the simulator was extended with dynamic network generators that are able

1https://networkx.org/ A popular Python graph library
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to create dynamic networks of a given length and according to a message adversary
specification. The dynamic network generators can be used in two different modes:
seeded and unseeded mode. When the generator is given a seed it will always create
the same dynamic network. In unseeded mode the dynamic network will be different for
every execution. See Table 6.1 for a list of dynamic network generators included in the
simulator.

Simulation Loop

Message queues

Execution Specification

Node 3Node 2Node 1

. . .

Filesystem

C implementation
of algorithms

Python implementation
of algorithms

Captured stdout
for running checks

Provide parameters like N, D
algorithm to simulate and
current communication graph

Create symlinks
according to current
communication graph

Spawn
processes

Consume
stdout

Signal start
of phase

Signal readiness
for next phase

Read receive directory

Write broadcast file

Figure 6.2: The flow of control in the simulator. The execution specification provides
information to the simulation loop and in turn gets information about the nodes’ internal
state to run the automated checks. The simulated nodes and the simulation loop both
access the filesystem to facilitate communication between the nodes.

Flow of control

The core of the simulator consists of the simulation loop. The simulator first spawns the
specified number of processes, where each process represents a node. Since the simulator
does not need to establish a global time base, it disables the FTSP module. Instead
of using the global time base to determine the start of the next round, the simulator
uses POSIX messages queues to control the round structure of the node processes. The
simulator waits for all nodes to report that they are ready to start a new phase and then
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issues a command to start the next phase. The nodes listen for instructions from the
simulator and start execution of the next phase when the command to do so arrives.
During execution of a phase, the simulator consumes the standard output of the node
processes. The structured messages on the standard output are a representation of the
current internal state of the node and are parsed by the simulator and used for comparison
with either the manual or the automatic checks. After a round is complete, all checks
scheduled for this round are performed and then the simulation loop advances to the
next round. See Figure 6.2 for a description of the flow of control in the simulator.

Execution specification

Writing executions is the main way of interacting with the simulator. Executions
are written using the Python programming language and must be included in the
simulator.executions module. Executions are specific runs of an algorithm, with
a given environment and graph sequence. When writing the executions the programmer
either specifies checks manually or – using automatic mode – lets the simulator generate
the checks using a separate implementation of the algorithm under test.

1 class LateJoinExecution(AutoExecutionMixin, BaseExecution):
2 N = 6
3 D = N - 1
4 algorithm_class = StabilizingConsensus
5
6 @property
7 def graphs(self):
8 g = nx.DiGraph()
9 g.add_edge(1, 2)

10 g.add_edge(2, 3)
11 g.add_edge(3, 4)
12 g.add_edge(4, 1)
13 g.add_node(5)
14 g.add_node(6)
15
16 # Now nodes 5 and 6 join
17 h = nx.DiGraph()
18 h.add_edge(1, 2)
19 h.add_edge(2, 3)
20 h.add_edge(3, 4)
21 h.add_edge(4, 5)
22 h.add_edge(5, 6)
23 h.add_edge(6, 1)
24
25 return [g] * 40 + [h] * 40

Listing 6.1: An execution written in Python with an explicitly specified graph
sequence and automatic comparison against the simulator provided implementation
StabilizingConsensus of the root component based stabilizing consensus algorithm.
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In manual mode, the developer programmatically describes the expected state at a certain
point in time, and the simulator checks that the actual and expected states are equal. The
AutoExecutionMixin enables automatic check generation depending on the specified
algorithm class using the algorithm_class attribute.

The graphs property must return a list of graphs – one for each round of the execution.
Graph sequences can be auto-generated according to a message adversary specification
or specified explicitly. See Listing 6.1 for an exemplary execution using an explicit graph
sequence. The code shown in Listing 6.2 makes use of the dynamic network generator
BoundedDelay to generate a dynamic network that follows the constraints given by
BOUNDEDDELAY≤N .

1 class RandomExecution(AutoExecutionMixin, BaseExecution):
2 """An execution using random graphs without an initial seed.
3
4 The list of graphs generated will be different for each call.
5 """
6
7 N = 16
8 algorithm_class = MinMax
9 T = 5

10
11 @property
12 def graphs(self):
13 ma = BoundedDelay(self.T, self.N, 60, edge_p=0.1)
14 return list(ma)

Listing 6.2: An execution written in Python with a generated graph sequence according
to a message adversary specification and automatic comparison against the simulator
provided implementation MinMax of the MinMax based stabilizing consensus algorithm.

6.2 Experiments
After completing the implementation we decided to run some experiments. The purpose
of our experiments was to gather data on the stabilization times of the root component
based stabilizing algorithm and the MinMax algorithm. This data would allow us to
make predictions on which algorithm stabilizes faster under real world conditions. To
gather this data we extended our implementation with the ability to run two different
consensus algorithms in parallel. Using this feature we were able to directly compare
the real-world performance of the consensus algorithms. It is important to note, that
broadcast messages from both algorithms get combined into one message that is either
fully received or completely lost. Using this combined message approach guarantees that
the communication graph is exactly the same for both algorithm implementations during
an experimental run.

We additionally extended both algorithms to write a log of their execution. This data
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was later collected and analyzed to determine the respective stabilization times. Since
both algorithms solve the stabilizing consensus problem, there is no point in time where
the algorithms irrevocably decide on a value. We defined the point of stabilization as the
round after which all nodes agree on a common value until the end of the run.

The experiments were performed using 14 nodes. Increasing the number of nodes
further would – when running the stabilizing and the MinMax algorithm in parallel –
cause our consensus messages to exceed the MTU of 1280 bytes for 6LoWPAN defined
by RFC 4944. Future experiments could circumvent this limitation by patching the
6LoWPAN implementation of RIOT to allow messages bigger than 1280 bytes.

The experiments ran over the course of several hours on the third floor (approx. 500 m2)
of an office building in Vienna. The nodes were evenly spread around, but several metal
structures like an elevator shaft and other IT equipment prevented direct line of sight
communication between the nodes. We performed 8 experimental runs, where each run
was 30 min long.

Run No. Stabilization time – MinMax Stabilization time – root component based
1 51 35
2 47 37
3 43 33
4 49 30
5 55 30
6 45 32
7 47 18
8 55 39

Table 6.2: Stabilization times in rounds for the direct comparison of the MinMax and
the root component based stabilizing consensus algorithms.

To be able to run the experiments the minimum phase duration needed to be calculated
first. For a message in size shortly below 1280 bytes, 14 nodes and the nominal trans-
mission speed of 250 kbit/s of 6LoWPAN, we arrived at a minimum phase duration of
about 2.09 s. Note that this value takes into account the properties that were described
in Section 5.3.3.

All nodes logged to SD cards that were collected for analysis after all 8 runs finished.
The logs from the SD cards allowed us to reconstruct the connection graphs for each
round in all the runs. Figure 6.3 shows renderings of some of the communication graphs
of run 1. Shown are every fifth round’s graph until both algorithms have stabilized. The
top values inside the circles are the node IDs, the left bottom values are the output of
the root component based algorithm, the right bottom values the output of the MinMax
algorithm. Animations of communication graphs for all 8 runs can be found under
https://thesis.echtinger-sieghart.at.

See Table 6.2 for the different stabilization times obtained per run. The experimental
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6. Simulation and Experiments

evaluation confirmed our suspicion that the root component based consensus algorithm
stabilizes faster than the MinMax consensus algorithm under real-world conditions.

(a) Run 1, communication graph of round 5 (b) Run 1, communication graph of round 10

(c) Run 1, communication graph of round 15 (d) Run 1, communication graph of round 20

Figure 6.3: Communication graphs for run 1 for every fifth round until stabilization
of both algorithms. The top values are the node IDs. The bottom left values are the
output of the root component based algorithm, the bottom right values the output of
the MinMax algorithm. (1/3)
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6.2. Experiments

(e) Run 1, communication graph of round 25 (f) Run 1, communication graph of round 30

(g) Run 1, communication graph of round 35 (h) Run 1, communication graph of round 40

Figure 6.3: Communication graphs for run 1 for every fifth round until stabilization
of both algorithms. The top values are the node IDs. The bottom left values are the
output of the root component based algorithm, the bottom right values the output of
the MinMax algorithm. (2/3)
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6. Simulation and Experiments

(i) Run 1, communication graph of round 45 (j) Run 1, communication graph of round 50

(k) Run 1, communication graph of round 55 (l) Run 1, communication graph of round 60

Figure 6.3: Communication graphs for run 1 for every fifth round until stabilization
of both algorithms. The top values are the node IDs. The bottom left values are the
output of the root component based algorithm, the bottom right values the output of
the MinMax algorithm. (3/3)
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CHAPTER 7
Conclusion

“Not even time to finish my cake?”

NO. THERE IS NO MORE TIME, EVEN FOR
CAKE. FOR YOU, THE CAKE IS OVER. YOU
HAVE REACHED THE END OF CAKE.

— Terry Pratchett “Night Watch”

We conclude with a short recap of this thesis, highlighting the major parts. We started
with a literature overview that put its focus on consensus algorithms in the context of
WSNs, time synchronization algorithms and respective implementation techniques. We
also introduced the terminating and the stabilizing consensus problem. Chapter 2 talked
about the system model and the core concepts necessary to understand a class of root
component based consensus algorithms introduced by [SS21] and [WSS19].

Chapter 3 presented, in detail, the aforementioned root component based algorithms.
After discussing the root component based approach to solving consensus, we shifted our
focus to a completely different approach: The MinMax algorithm introduced by [CM21]
and presented in Chapter 4. We explained the system model and the core concepts behind
the MinMax based approach to stabilizing consensus. We further put some concepts of
the root component based system model into relation with concepts from the MinMax
system model and showed that the message adversaries behind the root component based
algorithm and the MinMax algorithm are not comparable.

After the in-depth introduction to the theoretical underpinnings, we presented in Chapter 5
the steps we took to arrive at a working implementation. We provided practical and
theoretical insights regarding an implementation of FTSP, showed a way to derive the
required round structure from the global time base and presented data structures and
implementation techniques suitable to implementing the root component based stabilizing
algorithm and the MinMax algorithm.
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7. Conclusion

Last but not least, Chapter 6 introduced the simulation environment that was developed
during the implementation of the consensus algorithms and gave a short tutorial on
how to interact with the simulator. The thesis is rounded off by a description of a
series of experiments we undertook regarding a comparison of the stabilization times of
the root component based stabilizing consensus algorithm and the MinMax consensus
algorithm. As can be seen from looking at the source code, the implementation of the
root component based algorithms is much more involved than the implementation of
the MinMax based algorithm. Our experimental results hint at the fact that the higher
complexity in implementation pays off in terms of a faster stabilization time.
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APPENDIX A
Getting started

A learning experience is one of those things that says,
“You know that thing you just did? Don’t do that.”

— Douglas Adams “The Salmon of Doubt”

This appendix serves as a small guide to the practical side of the implementation. We
will explain the directory layout and go into detail regarding usage of the build system
and the simulation environment. We conclude the appendix with a list of common tasks
and corresponding commands.

A.1 Source code and directory layout

The source code for the implementation can be found in the git repository https:
//git.sr.ht/~chrstph/consensus. Figure A.1 gives an overview of the directory
layout of the project – note that only the most important directories and files are
described.

The main part of the implementation was written in C99 with GNU C Extensions.
The GNU C Extensions are used to define variable length arrays in structs – see the
comments in consensus/ddn/include/ddn.h for more details. The simulator was
implemented in Python 3.8 and most supporting scripts are either plain bash or also
Python 3.8.

All commands given in this appendix must be executed in the directory consensus and
all exemplary command invocations are given relative to this directory.
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A. Getting started

/
RIOT/ .......................... RIOT OS source tree with custom changes
consensus/

consensus/
consensus.c ............ Code shared by the three consensus imple-

mentations
consensus_terminating/

terminating.c ......... Root component based terminating consensus
implementation

consensus_stabilizing/
stabilizing.c ......... Root component based stabilizing consensus

implementation
consensus_minmax/

minmax.c ................ MinMax based stabilizing consensus imple-
mentation

age.c .................... Data structures and helper functions for the
MinMax algorithm

ddn/
algorithm.c ............ Tarjan’s algorithm and various related func-

tions
ddn.c .................... DDN implementation and helper functions

used by the root component based consensus
implementations

docker/ .................... Definitions of the various docker containers
ftsp/

ftsp.c .................. FTSP implementation
main.c ...................... The main entry point
Makefile ................... The main Makefile
node_id/

node_id.c .............. Maps physical SoC IDs to node IDs
parameters/

parameters.c .......... Allows setting the parameters D and N
riotmake.sh ............... Dockerized build/flash/debug
scripts/ ................... Various helper scripts
simulator/ ................ Implementation of the simulator
simulator.sh ............. Start script for the simulator

Figure A.1: Directory layout of the project
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A.2. Build system

A.2 Build system

A.2.1 Node IDs

To be able to use your board with the build system, the serial number of the board’s
programmer needs to be configured in consensus/scripts/lib.sh. Our build
system currently has support for nRF52840-MDK and nRF52840 DK boards, but it is
easy to add support for other boards as long as RIOT has support for the board1. If you
are running a recent Linux distribution with systemd-udev, the easiest way to get the
serial number of your board’s programmer is to check the directory /dev/serial/by-
id after plugging the board in.

In addition to adding the programmer’s serial to consensus/scripts/lib.sh,
the SoC’s internal ID needs to be added to the array device_ids[] defined in
consensus/node_id/node_id.c. To obtain the internal ID of your SoC, you may use
the function node_id_print_device_id() defined in consensus/node_id/node_id.c.
The mapping of SoC ID to array index is used to provide the boards with the neces-
sary unique node IDs. This allows us to later address a specific board when running
consensus/riotmake.sh in combination with the CNID environment variable.

A.2.2 Multiple algorithms

Since the implementation supports the parallel execution of two different consensus
algorithms we need a way to control which algorithms should be active. The environment
variables CONSENSUS_ALGO_A and CONSENSUS_ALGO_B can be set to stabilizing,
terminating, minmax and dummy. These variables specify which consensus algorithms
will be built and run on the board. The special value dummy is there to disable an
algorithm slot.

A.2.3 Docker

The whole project is configured to be built inside a Docker2 container. This makes it pos-
sible to get started without installing any dependencies with the exception of Docker. The
starting point for all interactions with the build system is the consensus/riotmake.sh
script. To build all the required Docker images use consensus/scripts/build-
images.sh.

If the use of Docker is not an option, the project can be built without Docker by directly
calling make. When using the plain make command, make sure to set the BOARD and
CNID environment variables accordingly.

1https://doc.riot-os.org/group__boards.html
2https://www.docker.com
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A. Getting started

A.3 Simulator

The simulator is also run inside a Docker container. See consensus/simulator.sh
for more details. The implementation of the simulator is contained in in the directory
consensus/simulator. The C define SIMULATOR_PRESENT is used in the source
code to switch between sections of code that only make sense in the simulator or that only
make sense when running on the actual board. The main differences between running in
the simulator and running on real hardware, is the way that the round/phase structure
is enforced and the way messages are sent and received. On real hardware FTSP is used,
whereas inside the simulator the main process uses POSIX Message Queues to signal start
and completion of new rounds and phases. In addition to that, dumping the internal
state is disabled when running on real hardware. The simulator expects the binaries
to be already compiled with the correct flags – the script consensus/simulator.sh
takes care of that.

A.4 Common tasks

A.4.1 Basics

List all available Makefile targets.

./riotmake.sh help

Compile the source code for the board with node ID 2.

CNID=2 ./riotmake.sh

Flash the board identified by node ID 3 with the root component based stabilizing
algorithm in algorithm slot A and the MinMax algorithm in algorithm slot B.

CNID=3 CONSENSUS_ALGO_A=stabilizing CONSENSUS_ALGO_B=minmax \
./riotmake.sh flash

Connect a debugger to the board identified by node ID 1.

./riotmake.sh debug

Connect a terminal to the serial output of the board identified by node ID 4.

CNID=4 ./riotmake.sh term
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A.4. Common tasks

A.4.2 Tests
Run all tests included with the project. Note, that to run the C tests, a board with node
ID 1 needs to be connected to the system, because some tests are run directly on the
target hardware.
./scripts/check.sh

To run only a specific set of tests use one of the following commands:
./scripts/run-simulator-tests.sh
./scripts/run-c-tests.sh
./scripts/run-code-quality.sh

Run only a subset of the C tests.
./riotmake.sh -C ftsp/tests/ftsp_table_ops flash test

Run only a subset of the simulator tests.
./scripts/run-simulator-tests.sh -k SOME_FUNC_OR_CLASS

A.4.3 Running the simulator
Run all simulator executions for the terminating consensus algorithm.
./simulator.sh terminating

Run all simulator executions for the stabilizing consensus algorithm, whose names contains
the string “CompleteCycle”.
./simulator.sh stabilizing -k CompleteCycle

Continually run random executions for the stabilizing consensus algorithm.
while ./simulator.sh stabilizing -k RandomExecution; do :; done

A.4.4 Various
Enter the docker container used by the build system.
./scripts/riotshell.sh

Build or rebuild all docker images.
./scripts/build-images.sh
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A. Getting started

Setup the ATUSB 802.15.4 dongle to sniff IEEE 802.15.4.
./scripts/sniff.sh
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