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Abstract
A common approach to boost the predictive performance of message passing
graph neural networks (MPNNs) is to attach additional features to nodes. In
contrast, we propose to use expressive global graph features. This is motivated
by the limited expressivity of MPNNs resulting in an inability to compute certain
global graph properties, like the Wiener index and Hosoya index. Such global
graph features are well known in fields like chemoinformatics but seem to be
overlooked by the GNN community. We propose an architecture which extends
graph embeddings learned by MPNNs with global graph features, for example,
topological indices describing the entire graph. Analyzing different global graph
features, we show that certain global features like the Wiener index increase the
expressivity of MPNNs, while others like the Zagreb indices do not. Our first
experiments indicate that adding global graph features improves the performance
of MPNNs on molecular benchmark datasets.

1 Introduction
We propose to combine global graph features with learned graph embeddings to increase the ex-
pressivity of graph neural networks (GNNs) and their predictive performance. GNNs have made
significant progress in learning with graph-based data, for example, in domains such as chemoinfor-
matics [Gilmer et al., 2017] and bioinformatics [Gainza et al., 2020]. Still, in-depth exploration of
GNNs has revealed a fundamental challenge limiting their expressivity. This challenge arises from
the networks’ message passing approach, which is bounded in expressivity by the Weisfeiler-Leman
graph isomorphism test (1-WL) [Xu et al., 2019; Morris et al., 2019].

Table 1: Expressivity of the global graph features

Global feature Increases expressivity

Wiener index ✓
Maximum matching ✓
Hosoya index ✓
Independence number ✓
Second eigenvalue ✓
Circuit rank ✓
Spectral radius ✗
Zagreb M1 ✗
Zagreb M2 ✗

Our goal is to tackle this challenge with global
graph features. In chemoinformatics there ex-
ists a large number of specialized graph features
called topological indices [Balaban, 1982] or
molecular fingerprints [Cereto-Massagué et al.,
2015; Muegge and Mukherjee, 2016; Capec-
chi et al., 2020] that are under-explored by the
GNN community. These indices are known to
capture important chemical properties on the
global graph level, e.g., of the whole molecule.
This is in contrast to most positional encodings
[Dwivedi et al., 2023] studied so far, which cap-
ture local information and hence make sense
as node features. Thus, we propose to combine
global graph features with the graph embeddings
learned by a GNN (see Figure 1). In this paper, we investigate a diverse set of global graph features
(see Table 1). We show whether they improve the expressivity of MPNNs and empirically investigate
their impact on the predictive performance.

A. Brasoveanu et al., Extending Graph Neural Networks with Global Features (Extended Abstract). Presented at
the Second Learning on Graphs Conference (LoG 2023), Virtual Event, November 27–30, 2023.
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Figure 1: Our proposed GNN architecture. We concatenate global graph features to the output of the
graph pooling layer after multiple GNN layers. Figure adapted from Welke et al. [2023].

2 GNNs with Global Graph Features
A common assumption for GNNs is that predictions should remain unchanged regardless of the order
in which the nodes appear in the graph. This is formalized as permutation invariance: Let ϕ be a
function mapping graphs to real-valued vectors. Then, ϕ is permutation invariant if for every graph
G and permutation P of its vertices it holds that ϕ(P (G)) = ϕ(G). This means that permutation
invariant functions map isomorphic graphs to the same embedding. The ability of a permutation
invariant function ϕ to map non-isomorphic graphs G,H to different embeddings ϕ(G) ̸= ϕ(H) is
called expressivity. Most GNNs are designed to be differentiable permutation invariant functions
GNN : G → Rd where G is the set of all graphs. MPNNs in particular can be seen as a neural variant
of the Weisfeiler-Leman algorithm (1-WL test) and are bounded by its expressivity [Xu et al., 2019;
Morris et al., 2019]. As a result, there exist graphs that cannot be distinguished by any MPNN.

We propose an architecture that combines the learned graph embedding function of a GNN with
another permutation invariant function on graphs by concatenating their outputs. In particular, we
investigate existing numerical or ordinal properties of graphs which can be computed in practice.
Definition 1. (Global Graph Feature) Let f be a permutation invariant function with f : G → R.
Then we call f a global graph feature.

The concatenation of a global graph feature f and a learned graph embedding GNN will never
decrease the expressivity of GNN or f . For 1-WL there exist global graph features that provably
increase the expressivity, see Table 1 and Appendix B. A permutation invariant function on graphs
is (strictly) more expressive than 1-WL if it can distinguish every pair of graphs that 1-WL can
distinguish and at least one pair of graphs that 1-WL cannot distinguish. We call a global graph feature
f expressivity-increasing if for a pair 1-WL indistinguishable graph G and H it holds f(G) ̸= f(H).
Proposition 1. Let f be an expressivity-increasing global graph feature. Then, (1-WL, f ) is strictly
more expressive than 1-WL.

For MPNNs this implies that we can increase their expressivity with global graph features: We
concatenate a global graph feature to their output and send the result through a multilayer perceptron
(MLP), which generates the final prediction. If the MLP computes and injective function, the resulting
function is strictly more expressive than the MPNN without the concatenated global graph feature.
Figure 1 shows our proposed architecture.

Our selection of global graph features. We investigate a set of global graph features based on
node degrees, connectivity, distances, or spectral properties. We choose a representative set of
indices that (1) consider different aspects of the graph and (2) have been used before in the field of
computational chemistry. For this initial work, we decided to test features individually rather than
using composite features. For example, the Wiener index W is computed using the graph distance
matrix D by W = 1

2

∑n
i=1

∑n
j=1 Dij . Similarly, the related Balaban index J [Balaban, 1982, 1988]

is computed as J = m
γ+1

∑
(i,j)∈E(G)(D

T
i·Dj·)

− 1
2 , where γ is the circuit rank and m is the number

of edges. Thus, we select only the Wiener index and the circuit rank in this case. Another well-known
molecular index is the Hosoya index, which counts the number of matchings in the graph. We also
use the size of the maximum matching. Both M1 and M2 Zagreb indices are defined over the node
degrees. For graph connectivity, we choose the circuit rank and the second smallest eigenvalue of
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the Laplacian matrix. Finally, we choose the independence number and the spectral radius (of the
adjacency matrix) as global graph features. For a more detailed overview and a discussion whether
each global graph features increases expressivity, see Appendix B. In particular, we explore the
expressivity of the global graph features on 3 pairs of 1-WL indistinguishable graphs (Table 7,8,9).

3 Discussion and Related Work
Attaching features on the global level is a simple and versatile approach to making GNNs more
expressive and providing a boost to their predictive performance. Graph level features can be attached
to the embedding of any GNN without making changes to the GNN architecture. Furthermore, they
can be used to increase the expressivity of a GNN after training it, by attaching the global graph
features and only fine tuning the final MLP layers. In contrast, it is also possible to attach features to
the nodes or edges, as has been done by Barceló et al. [2021] and Bouritsas et al. [2022]. However,
for many global graph features there is no trivial way of localizing the graph-level feature to the
node-level. For example, it is possible to obtain a local version of the Wiener index by summing all
shortest path distances with the starting point fixed to a specific node. However, this is not possible,
for example, with the eigenvalues of the Laplacian as they are inherently non-local; instead we can
only attach the same value to all nodes. This would add redundant information and thus it is more
appropriate to use such features globally.

Global graph features in the wild. Some previous GNN architectures have implicitly or explicitly
used global features. Battaglia et al. [2018] discussed global features as part of a general learning
on graphs framework. However, they do not mention global features in the context of expressivity.
More recently, Lim et al. [2023] proposed SignNet, where eigenvalues can be added in each layer.
They discuss the expressivity of SignNet with and without added eigenvalues, relying on common
results concerning Weisfeiler-Leman and spectral graph theory, see, e.g., Rattan and Seppelt [2023].
While most pattern counting based approaches attach the counts to the nodes [Barceló et al., 2021;
Bouritsas et al., 2022], Welke et al. [2023] consider homomorphism counts as global features. Finally,
the circuit rank, also called first Betti number, was used for topology-based GNNs [Horn et al., 2022].

4 Experiments
In this extended abstract, we present initial experiments to evaluate the potential benefit of global
graph features. Our experiments1 are designed to measure the performance gain of MPNNs when
attaching global graph features and not to beat the state-of-the-art.

Baseline. We experiment with the Graph Isomorphism Network (GIN) [Xu et al., 2019]. We tune
hyperparameters for the GIN baseline with no global graph features attached. When evaluating GIN
with global graph features we use the best hyperparameters of the baseline. Hyperparameter grids can
be found in Appendix A. We also introduce an one-dimensional uniform noise feature in the range
[0, 1) for an ablation study. We treat it as a global graph feature to investigate if practical performance
increases are due to additional finetuning and additional weights in the MLP.

Datasets. We use the datasets ZINC [Irwin and Shoichet, 2005] and MOLHIV [Hu et al., 2020]
to evaluate the predictive performance of our proposed architecture on molecular data. ZINC is a
regression task dataset of molecular graphs (we use the variant [Dwivedi et al., 2023] with 12000
graphs) with the aim to predict the constrained solubility value for each molecule. MOLHIV is a large
molecular dataset (containing approximately 41000 graphs) from OGB [Hu et al., 2020], with the
task to predict whether a molecule inhibits HIV.

Setup. For each global graph feature in Table 1, we train and evaluate 10 times on each dataset
to compute the mean and standard deviation of the target test metrics in the epoch with the highest
validation metric. On ZINC we use a batch size of 128 and an initial learning rate of 10−3. We halve
the learning rate whenever the validation metric does not improve for 20 epochs and stop the training
after 1000 epochs or after the learning rate dips below 10−5. On MOLHIV it is common [Bevilacqua
et al., 2022] to only train for 100 epochs with a fixed learning rate and a batch size of 32. However,

1https://github.com/andreibrasoveanu97/gnn-global-features
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Table 2: Test results for ZINC and MOLHIV datasets. The evaluation metric is written in brackets and
↓ / ↑ denotes that smaller / larger values are favorable. Bold values are better by at least one standard
deviation for a given global-feature and dataset. Red values are the best result for a given dataset.

ZINC (MAE ↓) MOLHIV (ROC-AUC ↑)

Global feature f GIN (GIN, f ) GIN (GIN, f )

Wiener 0.187 ± 0.004 0.177 ± 0.004 0.7659 ± 0.015 0.7662 ± 0.015
Circuit rank 0.182 ± 0.006 0.179 ± 0.004 0.7620 ± 0.014 0.7673 ± 0.012
Independence 0.187 ± 0.005 0.175 ± 0.004 0.7719 ± 0.009 0.7705 ± 0.009
Hosoya 0.184 ± 0.002 0.18 ± 0.004 —
Max. matching 0.186 ± 0.004 0.175 ± 0.003 0.7600 ± 0.017 0.7602 ± 0.013
Second eigenv. 0.187 ± 0.004 0.174 ± 0.004 0.7686 ± 0.013 0.7705 ± 0.010
Spectral radius 0.184 ± 0.003 0.181 ± 0.003 0.7685 ± 0.015 0.7707 ± 0.016
Zagreb M1 0.188 ± 0.004 0.177 ± 0.003 0.7676 ± 0.015 0.7683 ± 0.014
Zagreb M2 0.183 ± 0.004 0.177 ± 0.004 0.7714 ± 0.019 0.7761 ± 0.018
All features 0.186 ± 0.006 0.164 ± 0.003 0.7696 ± 0.018 0.7718 ± 0.014
Noise 0.185 ± 0.005 0.182 ± 0.004 0.7687 ± 0.017 0.7614 ± 0.018

we have found that in this setup the training is very noisy. Thus, we use a learning rate decay for
MOLHIV: we use an initial learning rate of 10−3 which we half whenever the validation metric does
not improve for 5 epochs. We train with a batch size of 32 and stop training after 100 epochs.

Results. Table 2 shows our experimental results. For MOLHIV, global features only yield slightly
improved performance in 7 out of 9 datasets. However, the differences are much smaller than
the standard deviation. For ZINC, global graph features give consistent and strong performance
improvements over the GIN baseline. Combining all global graph features together (’all features’)
achieves the best results. This indicates that while the performance gain from a single global
graph feature is not too large, combining multiple such features can give significant performance
improvements without changing the GNN architecture. Interestingly, the expressivity of the global
graph feature has no direct impact on the performance. The non-expressivity-increasing Zagreb
features performing competitively to the expressivity-increasing features.

Finally, we can see that the noise feature only yield small improvements on ZINC and are harmful
for MOLHIV. This implies that the improvement from global graph features is due to the additional
information provided by the feature and not due to extra fine-tuning in training.

5 Conclusion

In this work, we have started the investigation of expressivity-increasing global graph features.
We have proven that many common global graph features (e.g., Wiener and Hosoya index) from
chemoinformatics increase the expressivity of MPNNs, while other features do not (e.g., Zagreb
M1,M2). Our initial experiments indicate that adding global graph features to GNNs consistently
improves the performance on ZINC and does not harm performance on MOLHIV. Interestingly, even
the non-expressivity-increasing global features improved the performance (on ZINC). Combining all
9 studied global graph features simultaneously increased the performance even more. Our approach
is simple to implement and requires no changes to an existing GNN architecture. Indeed, we can
combine a pre-trained GNN with a global graph feature and only train the final MLP.

As future work, we will consider more recent molecular fingerprints [Capecchi et al., 2020] and
applications to other domains. In particular, it would be interesting to see whether molecular
descriptors are also useful for, e.g., social networks. A different direction might be to use the global
graph features as a pre-training step before the actual training on the predictive task. Indeed, by
first training the GNN to be able to predict global graph features (in a self-supervised manner),
assuming they are related to the downstream task, we might be able to improve the actual predictive
performance. Finally, inspecting the selection of the global graph features from a feature engineering
and/or boosting perspective (viewing the global features as weak learners) is promising.
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A Experimental Details
In this section we add results for two additional GNNs: Graph Convolutional Network (GCN) [Kipf
and Welling, 2017] and CW Network (CWN) [Bodnar et al., 2021]. CWN is strictly more expressive
than 1-WL and implemented through a graph transformation [Jogl et al., 2022] combined with
GIN. We tune hyperparameters for GCN exactly as we tune them for GIN. We do not tune the
hyperparameters for CWN and instead use hyperparameters which we know will give us a strong
baseline.

In this section we also add results for an additional dataset QM9 [Wu et al., 2018], a large molecular
dataset (containing approximately 130000 molecules) with 19 regression targets, corresponding to
different quantum chemical properties of small organic molecules. For the experimental setup, we
use a batch size of 128 and a total number of epochs of 150. The stopping criteria is similar to the
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Table 3: Hyperparameter grids for different datasets.

Parameter GIN GCN
On ZINC

GIN GCN
On MOLHIV

Message passing layers 1, 2, 3, 4, 5 1, 2, 3, 4, 5
Final MLP layers 2 2
Pooling operation mean, sum mean, sum
Embedding dimension 64, 256 64, 256
Dropout rate 0, 0.5 0, 0.5
Batch size 128 32
Epochs 1000 100

Table 4: Experimental results of GIN and GCN on QM9 dataset.

QM9 (MAE ↓) QM9 (MAE ↓)

Global feature f GIN (GIN, f ) GCN (GCN, f )

Wiener 0.0614 ± 0.0020 0.0598 ± 0.0016 0.0771 ± 0.0016 0.0749 ± 0.0017
Circuit rank 0.0599 ± 0.0012 0.0591 ± 0.0011 0.0764 ± 0.0016 0.0756 ± 0.0015
Independence 0.0609 ± 0.0005 0.0598 ± 0.0005 0.0766 ± 0.0018 0.0756 ± 0.0014
Hosoya 0.0598 ± 0.0017 0.0589 ± 0.0015 0.0775 ± 0.0016 0.0765 ± 0.0014
Max. matching 0.0612 ± 0.0014 0.0598 ± 0.0010 0.0770 ± 0.0014 0.0756 ± 0.0012
Second eigenv. 0.0613 ± 0.0011 0.0593 ± 0.0008 0.0773 ± 0.0021 0.0729 ± 0.0018
Spectral radius 0.0609 ± 0.0014 0.0598 ± 0.0012 0.0763 ± 0.0014 0.0754 ± 0.0012
Zagreb M1 0.0609 ± 0.0016 0.0598 ± 0.0015 0.0764 ± 0.0009 0.0752 ± 0.0007
Zagreb M2 0.0620 ± 0.0019 0.0609 ± 0.0018 0.0772 ± 0.0010 0.0760 ± 0.0010
All features 0.0604 ± 0.0018 0.0576 ± 0.0013 0.0759 ± 0.0011 0.0708 ± 0.0010
Constant (1’s) 0.0613 ± 0.0012 0.0604 ± 0.0011 0.0776 ± 0.0019 0.0765 ± 0.0014

ZINC setup, we only reduce the patience of the learning rate to 5. There are 19 regression tasks for
QM9, we calculated the Mean Absolute Error (MAE) for each target individually and average them.

Furthermore, we also add the results of new ablation study experiments, where we introduced an
one-dimensional global feature containing only values of 1 for each graph.

Table 3 shows the used hyperparameter grids. Tables 4, 5 and 6 show additional experimental results.

Table 5: Experimental results for GCN and CWN on ZINCdataset.

ZINC (MAE ↓) ZINC (MAE ↓)

Global feature f GCN (GCN, f ) CWN (CWN, f )

Wiener 0.217 ± 0.010 0.206 ± 0.005 0.128 ± 0.004 0.103 ± 0.003
Circuit rank 0.215 ± 0.007 0.214 ± 0.008 0.125 ± 0.005 0.109 ± 0.002
Independence 0.221 ± 0.013 0.207 ± 0.007 0.125 ± 0.007 0.106 ± 0.002
Hosoya 0.218 ± 0.009 0.210 ± 0.006 0.128 ± 0.004 0.120 ± 0.002
Max. matching 0.222 ± 0.011 0.212 ± 0.008 0.125 ± 0.004 0.105 ± 0.002
Second eigenv. 0.211 ± 0.008 0.204 ± 0.008 0.125 ± 0.003 0.106 ± 0.002
Spectral radius 0.220 ± 0.016 0.215 ± 0.012 0.128 ± 0.004 0.121 ± 0.003
Zagreb M1 0.213 ± 0.009 0.208 ± 0.008 0.126 ± 0.003 0.104 ± 0.001
Zagreb M2 0.218 ± 0.008 0.211 ± 0.006 0.128 ± 0.002 0.105 ± 0.001
All features 0.221 ± 0.004 0.203 ± 0.005 0.127 ± 0.005 0.101 ± 0.002
Constant (1’s) 0.218 ± 0.007 0.213 ± 0.007 0.126 ± 0.005 0.122 ± 0.004
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Table 6: Experimental results of CWN on MOLHIV dataset.

MOLHIV (ROC-AUC ↑)

Global feature f CWN (CWN, f )

Wiener 0.7781 ± 0.016 0.7895 ± 0.011
Circuit rank 0.7838 ± 0.014 0.7890 ± 0.014
Independence 0.7824 ± 0.020 0.7893 ± 0.023
Hosoya —
Max. matching 0.7850 ± 0.014 0.7930 ± 0.015
Second eigenv. 0.7880 ± 0.007 0.7899 ± 0.007
Spectral radius 0.7829 ± 0.012 0.7945 ± 0.007
Zagreb M1 0.7801 ± 0.012 0.7911 ± 0.012
Zagreb M2 0.7902 ± 0.014 0.7983 ± 0.009
All features 0.7830 ± 0.015 0.7885 ± 0.012
Constant (1’s) 0.7840 ± 0.010 0.7912 ± 0.010

B Definitions of Global Graph Features
In this section, we give more details on our selected global graph features and discuss whether they
improve expressivity compared to 1-WL.

Wiener Index represents the sum of the lengths of the shortest paths between all pairs of vertices in a
graph [Rouvray and King, 2002]:

W =
1

2

n∑
i=1

n∑
j=1

Dij ,

where D is the shortest path distance matrix.

Maximum Matching. A matching is a set of edges with no common vertices. We take the cardinality
of a maximum matching as a global parameter. It can be computed by the algorithm of Edmonds
[1965].

Hosoya Index is the total number of matchings in a graph. As mentioned by Hosoya [1971], it is
correlated to the boiling points of alkane isomers. Jerrum [1987] showed that this is a #P-complete
problem for planar graphs, but for relatively smaller graphs it can be computed using the coefficients
of the matching polynomial evaluated at 1 [Bonchev, 1991]. Using the latter, the Hosoya index can
also be calculated in polynomial time for graphs of bounded clique-width [Makowsky et al., 2006].

Z =

n∑
k=0

|ak|,

where n is the number of vertices in the graph, ak is the kth coefficient of the matching polynomial
and |x| represents the absolute value of x.

Independence Number α(G) is the cardinality of the largest vertex set in a graph, such that no two
vertices in this set represent an edge. Computing such a set is NP-hard [Garey and Johnson, 1978].
This number is equal to the largest exponent in the independence polynomial of graph G.

Second Eigenvalue For a given graph G, the Laplacian matrix is equal to
L = D −A,

where D is a diagonal matrix whose elements are the degrees of each node and A is the adjacency
matrix. The value of the second smallest eigenvalue of matrix L, λ2, reflects how well connected
the graph is [Fiedler, 1973]. Smaller values correspond to less connected graphs, while for fully
connected graphs, the value is relatively larger.

Circuit Rank is the smallest number of edges that must be removed from a graph so that are no
graph cycles remaining. Also known as the first Betti number [White, 2001], it is given by:

γ = m− n+ c,

8
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where m is the number of edges in the graph, n is the number of nodes, and c is the number of
connected components.

Spectral Radius is the largest absolute value among the graph’s eigenvalues of the adjacency matrix.
For a graph G, it is given by:

ρ(G) = max
1≤i≤n

|λi|,

where λi are the eigenvalues of the adjacency matrix of the graph G.

Zagreb M1 / M2 The Zagreb indices were first introduced by Gutman and Trinajstić [1972] and are
defined based on the values of the nodes’ degrees. The first index is equal to the sum of squares of
the degrees of the nodes, while the second is equal to the sum of the products of the degrees of pairs
of adjacent nodes of the graph [Horoldagva and Das, 2023; Hua, 2008]. For a graph G, with node set
V (G) and edge set E(G), they are given by:

M1(G) =
∑

i∈V (G)

d2i ,

M2(G) =
∑

i,j∈E(G)

didj ,

where di represents the degree of node i.

C Expressivity Results
As mentioned in 2, an architecture is said to be (strictly) more expressive than 1-WL if it can
distinguish every pair of graphs that 1-WL can distinguish and at least one pair of graphs that 1-WL
cannot distinguish. In this context, we propose an investigation designed to measure the expressivity
of the proposed global features in regards to the 1-WL test.

For the experiments, we selected three pairs of graphs that are indistinguishable by the 1-WL test.
For each pair, a comparison is made between the value of the global feature applied to each graph. A
global feature is then said to be more expressive than 1-WL if it can distinguish between two graphs,
having different values for each of them, that the 1-WL cannot distinguish.

Global features not increasing expressivity. As proven by Scheinerman and Ullman [2011], if
two graphs are isomorphic, then the maximum eigenvalues of their adjacency matrices (spectral
radius) have the same value. Arvind et al. [2020] shows that two graphs that are indistinguishable
by 1-WL (color refinement) have the same degree sequence. The Zagreb M1 and M2 indices are
computed using the degree sequence of the graphs, so their values are the same for a pair of graphs
that are indistinguishable by 1-WL. Hence, we do not include them in the following exploration on
pairs of graphs that are not distinguishable by 1-WL.

For a pair of connected graphs circuit rank γ will have the same value (number of connected
components stays the same). We show for the third pair of graphs 4, G5 (connected) and G6

(disconnected), that the circuit rank is more expressive than 1-WL.

In the case of disconnected graphs, we set the value for Wiener index to ∞, as there is no shortest
path between all pairs of vertices.
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Table 7: Global feature values for G1 and G2

G1 G2 increases expressivity
Wiener 25 27 ✓
Hosoya 22 20 ✓

Circuit rank 2 2 ✗
Independence 3 2 ✓

Max. matching 3 3 ✗
Second eigenv. 1 0.438 ✓

(a) G1 (b) G2

Figure 2: First pair of graphs, G1 and G2, indistinguishable by 1-WL

Table 8: Global feature values for G3 and G4

G3 G4 increases expressivity
Wiener 281 261 ✓
Hosoya 1280 1480 ✓

Circuit rank 4 4 ✗
Independence 5 6 ✓

Max. matching 6 7 ✓
Second eigenv. 0.14 0.14 ✗

(a) G3 (b) G4

Figure 3: Second pair of graphs, G3 and G4, indistinguishable by 1-WL
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Table 9: Global feature values for G5 and G6

G5 G6 increases expressivity
Wiener 27 ∞ ✓
Hosoya 18 16 ✓

Circuit rank 1 2 ✓
Independence 3 2 ✓

Max. matching 3 2 ✓
Second eigenv. 1 0 ✓

(a) G5 (b) G6

Figure 4: Third pair of graphs, G5 and G6, indistinguishable by 1-WL
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