
Autonomous Racing With
Attention-Based Neural Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Felix Resch, BSc
Matrikelnummer 11777729

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Mitwirkung: Univ.Ass. Dott.mag. Luigi Berducci

Wien, 30. November 2023
Felix Resch Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Autonomous Racing With
Attention-Based Neural Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Felix Resch, BSc
Registration Number 11777729

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Assistance: Univ.Ass. Dott.mag. Luigi Berducci

Vienna, 30th November, 2023
Felix Resch Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Felix Resch, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. November 2023
Felix Resch

v

Acknowledgements

First and foremost, I have to thank my thesis advisors, Radu Grosu and Luigi Berducci.
Without their assistance and dedicated involvement in the experimental phase and the
writing of this thesis, I would have never finished finished this thesis. Thank you very
much for your support over the past months.

I would also like to thank Daniel Scheuchenstuhl and Stefan Ulmer, with whom I
collaborated to record the human attention data and discussed some ideas for imitating
them. At this point, I also have to thank my colleague Monika Farsang, who helped me
find the remaining problems in my approach.

Big thanks also got out to everyone who sacrificed their time to drive a small car around
a track while wearing an eye-tracking device so that we could record their attention.
In no specific order: Anna Sebor, Alex Führer, Till Abele, Florian, Anna, and Moritz
Christamentl.

I also have to thank my friends and family, who had to endure my stressful behavior,
especially at the end of my thesis. Your support meant a lot to me and helped me to
focus on finishing this thesis. Thank you.

vii

Kurzfassung

In dieser Arbeit untersuchen wir den Einfluss von menschlicher Aufmerksamkeit auf
künstliche neuronale Netze im Kontext des autonomen Rennfahrens. Zu diesem Zweck trai-
nieren wir eine Nachahmung der menschlichen visuellen Aufmerksamkeit und integrieren
sie in einen modifizierten Steuerungsansatz für autonome Rennen.

Wir lernen eine Imitation der menschlichen Aufmerksamkeit aus Aufzeichnungen mensch-
licher Aufmerksamkeit mit einem supervised learning Ansatz für Heatmap-Regression.
Nachdem wir die Nachahmung an realen Daten und in Simulationen evaluiert haben,
verwenden wir sie, um Teilbilder der Eingabe für unseren Rennregler auszuwählen. Ziel
dieser Teilbilder ist es, die Eingabegröße des Netzwerks zu reduzieren. Der in dieser
Arbeit verwendete Renncontroller verwendet die Decision-Transformer-Architektur, die
auf Generative Pre-Trained Transformern basiert, um High-Level-Aktionen zu generieren.
Anschließend verwendet er Pure Pursuit, einen Standard-Pfadverfolgungsalgorithmus,
um diese High-Level-Entscheidungen auszuführen.

Decision-Transformer verwenden eine Variante von Offline-Reinforcement Learning für
das Training, welche große Datenmengen erfordert, die wir mit Simulationen erzeugen.
Wir vergleichen zwei Auswahlverfahren für Teilbilder und einen Vollbildansatz hinsichtlich
ihrer Rundenzeiten, ihres Fahrverhaltens und der Varianz der Aktionswerte. In diesem
Vergleich schneidet die auf menschlicher Aufmerksamkeit basierende Auswahlmethode
besser ab als die anderen Ansätze, da sie schnellere Rundenzeiten und eine geringere
Varianz der Ausgabewerte erzielt, obwohl das Fahrverhalten manchmal unerwünscht ist.

Diese Arbeit hat gezeigt, dass es möglich ist, ein künstliches neuronales Netzwerk so zu
trainieren, dass es die menschliche Aufmerksamkeit imitiert. Außerdem haben wir gezeigt,
dass künstliche neuronale Netze, die menschliche Aufmerksamkeit erhalten, ihre Leistung
verbessern und stabilere Vorhersagen machen können. Diese Arbeit hat auch einige der
Mängel des derzeitigen Ansatzes aufgezeigt und neue Wege für die wissenschaftliche
Erforschung eröffnet.

ix

Abstract

In this thesis, we explore the influence of human attention on Artificial Neural Networks
in the context of autonomous racing. To do so, we train an imitation of human visual
attention and integrate it into a modified control approach for autonomous racing.

We learn a human attention imitation from recorded human attention data with a
supervised learning approach for heatmap regression. After evaluating the imitation on
real-world data and in simulation, we use it to select sub-images of the input to our
racing controller to reduce the input size. The racing controller used in this thesis uses
the Decision Transformer architecture based on Generative Pre-Trained transformers to
generate high-level actions. It then uses Pure Pursuit, a standard path-tracking algorithm
for executing those high-level decisions.

Decision Transformers use a variant of Offline Reinforcement Learning for training,
requiring large amounts of data, which we generate with simulation. We compare two
selection policies for input sub-images and a full-image approach regarding their lap
times, driving behavior, and variance of action outputs. In this comparison, the human
attention-based selection policy outperforms the other approaches, achieving faster lap
times and less variance in output values, even though the driving behavior is sometimes
undesirable.

In this thesis, we showed that training an Artificial Neural Networks to imitate human
attention is possible. Furthermore, we showed that providing Artificial Neural Networks
with human attention can improve their performance and lead to more stable predictions.
This thesis also highlighted some of the shortcomings of the current approach and opened
up new directions for scientific exploration.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Structure . 3

2 Related Work 5
2.1 Autonomous Racing Approaches . 7
2.2 Safety in Autonomous Operations . 9
2.3 Attention & Self-Attention . 10

3 General Approach 13
3.1 Human Attention Recording & Imitation 14
3.2 Autonomous Racing as Case Study . 16

4 Human Attention Imitation 21
4.1 Human Attention Measurement Setup 22
4.2 Human Attention Imitation Architecture 30

5 Racing Controller 35
5.1 Simulation Environment & Low-Level Controller 36
5.2 Dataset . 40
5.3 Decision Transformer . 45
5.4 Decisions Transformer with Human Attention 48

6 Training & Evaluation 51
6.1 Human Attention Imitation . 52
6.2 Overtaking Controller . 56

7 Conclusion 75

xiii

7.1 Future Work . 76

List of Figures 79

List of Tables 81

Acronyms 83

Bibliography 85

CHAPTER 1
Introduction

1

1. Introduction

Cyber-Physical Systems (CPSs) are systems comprised of physical hardware components
controlled by cyber components, usually computers. Contemporary works use two
different approaches to control CPSs. The first is analytical or optimal control, and the
second uses heuristic methods, such as Artificial Neural Networks (ANNs), for traditional
control methods and data-driven approaches. While optimal control strategies always
require a physical model to achieve optimal control, heuristic approaches can either use a
model or learn the physical characteristics of the controlled system.

The reliance on a physical model limits the accuracy of optimal control to the model’s
capabilities to characterize the real world. If the system is non-linear, the system’s
behavior can cause approximation problems if the problem is linearized or lead to infeasible
computation times if the calculations become too complex. ANNs can learn and handle
the non-linearities of systems, as ANNs build on non-linear, usually exponential, building
blocks and, through their carefully crafted structure, allow for optimized acceleration on
dedicated hardware such as graphics cards.

Modern ANNs can consist of billions of parameters, even for simple problems. For complex
tasks, such as Natural Language Processing, modern ANNs can consist of hundreds
of billions (Chat GPT 3, 175 billion[4]) or even trillions of parameters (Chat GPT 4,
1.76 trillion[34]). The functions in ANNs use these parameters to process information.
Given the high number of parameters, which usually translates linearly to the number of
functions, the number of computations necessary for a single prediction is also high.

Reducing the number of computations needed is desirable, especially in time-critical
control problems. Simplification for optimal control strategies is usually achieved by
further reducing the complexity of the model or by approximating some aspects of the
physical characteristics. For ANNs, this reduction is only possible by simplifying network
architectures or reducing the size of the network’s input.

1.1 Motivation
To enhance the capabilities of neural networks, a common source of inspiration is nature.
From early perceptrons over deep and Convolutional Neural Networks (CNNs) to self-
attention-based networks, all those architectures find correspondences in biological neural
networks. All those approaches have in common that they require the architecture to
learn what elements of their sensory inputs are relevant and which are not.

But what if a neural network had access to this information during training? Human
attention, a cognitive phenomenon deeply rooted in our biology, is a mechanism that
allows us to focus on specific details while filtering out distractions. This thesis explores
the possibilities of neural networks with a priori access to an attention mechanism that
discerns relevant information from irrelevant information.

Case-Study Applying the methods developed in this thesis is necessary to test the
claims this thesis makes. Autonomous racing presents a captivating and relevant case

2

1.2. Structure

study in the context of this thesis. Just as human drivers rely on their ability to swiftly
allocate attention to critical cues, such as the trajectory of the race track, the positions of
other vehicles, and potential hazards, autonomous racing vehicles require a comparable
level of selective focus to navigate the complex and dynamic racing environment, with its
high-dimensionality state space and requirements for high-frequency decision making.

Drawing insights from human attention research could enable ANN-based controllers to
achieve human-like decision-making skills. Since these networks build on the provided
attention mechanism, their training could improve as their perceptual understanding
stems from human attention. Moreover, the fusion of human attention and ANNs could
pave the way for safer and more efficient autonomous vehicles in racing and broader
applications, contributing to the advancement of self-driving technologies.

Attention in Neural-Networks The most common mechanism in contemporary
ANN models when discussing attention in ANNs is self-attention. Self-attention is a
mechanism in transformers that enables the overall architecture to weigh the significance
between elements within a given input sequence, fostering an understanding of contextual
relationships and dependencies. Section 2.3 gives further details and explanations about
self-attention and transformers.

In addition to self-attention, conventional ANNs also use inherent mechanisms similar to
attention. Like biological neural networks, ANNs interpret sensory or input information
and, in doing so, consider some parts of the input more relevant than others. For artificial
neural networks, the value associated with the relevance of certain input parts is called
saliency.

The saliency of ANNs is a way to interpret the way ANNs perceive information. A
saliency map for an ANN indicates the relevance of each input modality. Unlike human
attention, ANNs does not necessarily consider the indicative information as relevant
but might also regard non-indicative information as more pertinent. While some ANNs
perform well in optimal conditions, they might focus on parts of the input that are
not primary indicators used by humans for specific tasks. A prominent example in
autonomous driving shows that ANNs focusing on the road instead of the areas outside
the road are more resilient to errors or noise[29].

1.2 Structure
This thesis describes a possible way to infuse state-of-the-art ANNs with human attention
to reduce their complexity while maintaining or improving their prediction performance.
To achieve this, we propose to learn an attention filter, a network that predicts Region of
Interests (ROIs) in the form of attention heatmaps in images. Other parts of this thesis
use those predictions as an attention mechanism.

Chapter 2 discusses prior and related work in this area of research and their applicability
to this thesis. Chapter 3 describes the general approach of how this thesis includes human

3

1. Introduction

attention in ANNs.

Chapter 4 details the recording process of ground truth human attention data and the
training of human attention prediction. It details the pre-processing steps for the recorded
data and statistics about the recorded data. Furthermore, it describes the structure of
the ANN and the specialized loss function used during training.

Chapter 5 discusses the details of the simulation environment and the racing controller,
trained using Offline Reinforcement Learning (Offline RL). The description of the simula-
tion environment includes the state and action space of the environment and the track
used for simulation. After discussing the simulation environment, section 5.2 describes
the generation of the dataset for Offline RL. Section 5.3 gives an overview of the used
ANN architecture, and section 5.4 describes the integration of human attention into the
novel ANN.

Chapter 6 describes the training regimes and methods used to evaluate the models from
Chapter 4 and 5, and Chapter 7 discusses the results of this thesis and possibilities for
future work.

4

CHAPTER 2
Related Work

5

2. Related Work

Developing novel control algorithms able to outpace other algorithms and safety mecha-
nisms in autonomous racing has always driven innovation in this field of research. This
chapter explores related work, giving an overview of the landscape of racing controllers
and the critical aspect of safety within autonomous racing. It further delves into pre-
vious research into biological concepts such as attention and derived concepts such as
self-attention. We also highlight neural network architectures used in medical imaging to
imitate some of these biological concepts, as they focus more on prediction biological
processes than conventional labeling architectures.
In autonomous racing algorithms, the primary challenge no longer revolves around the
precision of control algorithms for high-speed trajectory tracking. Instead, the concern
lies in effectively navigating the interactions with other, potentially slower-moving vehicles
and unexpected obstacles on the racing track. Even when controllers excel in maintaining
a racing line akin to driving on rails, the issue arises when the railroad(raceline) is
obstructed, potentially resulting in degraded driving performance or collisions. As a
result, we focus on research that exhibits the capability, or at the very least makes a
concerted effort, to overtake slower vehicles and circumvent obstacles while leveraging
optimized reference trajectories as a guiding principle.
High-speed autonomous racing requires a certain degree of performance on the computing
platforms to perform control computations. Even though hardware performance on
embedded platforms continues to evolve, most recent developments increase the number
of parallel computations, not the single-core performance. With this restriction on
computation frequency a critical factor remains the decision frequency of the controller,
which must be sufficient to ensure timely responses in high-speed racing scenarios.
The literature on racing algorithms presents diverging approaches, with some offering
practical workarounds to meet real-time demands. In contrast, others predominantly
serve as simulation-only, proof-of-concept ideas. Given our eventual goal of deploying the
algorithms developed as part of this thesis on real-world 1:10 racing cars, we discuss the
respective applicability of these approaches in real-world racing in this chapter.
As stated in the introductory section of this thesis, integrating a selective attention
mechanism inspired by biological attention is the central focus of our research. We
intend to use this concept of selective attention to shrink the overwhelming amount
of information presented to ANNs. In this pursuit, we have turned to the domain of
medical image processing, specifically ANNs designed for this task. While these networks
primarily find their application in image segmentation, their capability to deal with
the inherent uncertainty in biological processes, such as attention allocation, becomes
evident.
An additional facet of biological inspiration that is currently impacting ANNs is the
concept of self-attention. This concept is a foundational building block within transformer
architectures, employed in various applications, spanning from natural language processing
to control and visual tasks. Self-attention mechanisms equip transformers with the
capacity to simultaneously process multiple data elements, for example, a time series of
states, and effectively determine correlations between input elements. This ability to

6

2.1. Autonomous Racing Approaches

uncover interdependencies among data elements significantly enhances their predictive
performance.

This chapter discusses the related work used in this thesis. It starts with a discussion of
autonomous racing approaches, with a small side-step to autonomous driving approaches
focusing on overtaking. It continues with an overview of the literature on safety in
autonomous driving and racing and sources on biological attention and self-attention as
a critical mechanism in transformers, a modern approach for processing series data.

2.1 Autonomous Racing Approaches
In autonomous racing algorithms, it has become evident that non-reactive algorithms,
which incorporate additional information about the track, outperform their purely reactive
counterparts. Among the pioneering algorithms to embrace the concept of tracking
reference trajectories was the Pure Pursuit[49, 13] algorithm. This straightforward yet
practical approach involves tracking a predefined trajectory and generating steering and
velocity commands accordingly. Following a reference trajectory requires pre-computed
trajectories. A tool that can perform multiple different types of optimizations is a tool
by the TU Munich Formula Student team[43, 21].

In more contemporary developments, algorithms that track trajectories embrace the
paradigm of Model Predictive Control (MPC). MPC is a sophisticated control strategy
that differs from traditional control methods in making decisions based on a predictive
model of the system’s behavior. MPC operates by repeatedly optimizing a control action
over a finite horizon, considering the system dynamics, constraints, and a specified
performance objective. This predictive approach allows MPC to find an optimal control
sequence that minimizes a cost function, accounting for future system states. As the
system evolves, MPC continually re-optimizes, making it adaptable to dynamic and
uncertain environments. As most current developments use MPC in some form but also
introduce other new techniques, we mainly discuss approaches using MPC in the rest of
this section.

Li et al.[30] employ a non-linear MPC incorporating a mixed-integer quadratic non-linear
model for the control strategy. This innovative approach has demonstrated promising
outcomes, particularly in overtaking maneuvers. However, a notable limitation lies in
the extended computational time required for optimization, rendering the approach
impractical for real-world deployment beyond simulation environments.

Bhagarv et al.[3] employ a novel Model Predictive Contouring Control (MPCC) approach,
which integrates offline learning to predict opportune areas on the racing track for
overtaking maneuvers. By leveraging offline learning, their method identifies zones
conducive to overtaking, which are subsequently executed by the MPCC controller,
effectively combining predictive and reactive elements for safer racing. In a parallel
development, Brüdigam et al.[5] expand upon the MPC framework for autonomous racing
by incorporating a learning component. Their approach seeks to understand and predict

7

2. Related Work

the behavior of opponent vehicles using Gaussian learning, enabling a more adaptive
response to dynamic racing scenarios.

A recurring drawback highlighted in MPC implementations is the considerable increase
in computational cost associated with the optimization process. MPC’s iterative nature,
which continually reevaluates control actions based on predictive models, demands
significant computational resources, making it resource-intensive. In contrast, the Pure
Pursuit algorithm offers a distinct advantage, relying on relatively simple computations.
This computational efficiency allows Pure Pursuit to make timely decisions with lower
overhead.

Weiss et al.[51] introduce a distinctive autonomous racing car control approach, deviating
from the previously mentioned MPC trajectory-following paradigm. Instead, they condi-
tion an ANN to generate a Bezier curve, which a Pure Pursuit controller subsequently
tracks. Their innovative method has been tested successfully in simulation and on 1:10
scale cars, demonstrating the required performance levels for autonomous driving.

2.1.1 Autonomous Driving Controllers with Overtaking Capabilities
To gain insights into state-of-the-art controllers capable of overtaking, we expanded our
search to autonomous driving. Unlike in racing, where the whole track is available to all
agents, autonomous road vehicles must navigate within the confines of traffic regulations
and shared lanes. Consequently, the primary focus of research in autonomous driving
has gravitated toward the strategic decision of when and how to switch lanes safely and
efficiently, aligning with the demands of urban and highway environments.

As one of the earlier works, Shamir[42] delves into the intricacies of designing an optimal
trajectory for a vehicle to execute a successful overtaking maneuver. Meanwhile, Mashadi
and Maijidi[32] propose a unique approach focused on overtaking moving obstacles while
adhering to a straight reference line. Their method leans on non-linear optimization
techniques to determine the best path for successful overtaking. In a related domain,
Usman and Kunwar[45] introduce the application of the Rendezvous-Guidance Technique.
This technique intercepts another object to facilitate overtaking on a two-lane highway.
Their work addresses the dynamics of trailing and leading vehicles, ensuring safe and
efficient overtaking scenarios in a real-world, two-lane road setting.

Petrov and Nashashibi[36] propose a three-phase overtaking strategy on lane-based
streets aligning with previous approaches in the field. They utilize a comprehensive
kinematic model that optimizes a set of differential equations. In a parallel development,
Murgovski and Sjöberg[33] present an innovative approach that transforms a general
Quadratic Programming (QP) method into a convex QP framework, simplifying the
optimization process for overtaking scenarios. Meanwhile, Coskun[12] addresses the
complex challenge of overtaking on multi-lane roads, considering oncoming traffic. Their
solution incorporates QP and the concept of reachable worst-case sets to reduce the
state space to drivable maneuvers while employing model predictive reachability sets to
estimate the behavior of surrounding vehicles.

8

2.2. Safety in Autonomous Operations

In our survey, we also discuss machine-learning approaches for lane-based overtaking. Liu
et al.[31] use Q-learning for high-level overtaking decision-making on a lane-based highway.
Their research also involves a comparative analysis of various algorithms designed to
optimize overtaking maneuvers, seeking to identify the most effective techniques in
this context. On the other hand, Chai et al.[9] employ a fuzzy adaptive controller
for overtaking and evading multiple objects while simultaneously addressing multiple
partially contradicting objectives.

Bak et al.[2] undertake a comprehensive investigation into the evaluation and stress
testing of a diverse range of autonomous racing algorithms, mainly focusing on overtaking
strategies. Their study delves into the description and discussion of various algorithms
designed for overtaking maneuvers. Among the approaches explored is the Lane Switcher,
a straightforward algorithm that facilitates overtaking by switching between the main
raceline and alternative lanes. They also introduce the Frenet Planner [52], a continuous
variant of the Lane Switcher, which leverages the Frenet frame of the racetrack to select
goal points for overtaking. Both algorithms employ a two-level controller system to follow
the trajectories generated.

The approaches highlighted in this section share common characteristics that underpin
their overtaking strategies. Primarily, they adopt discrete lanes for overtaking, except
the Frenet Planner, which operates in a continuous space. Additionally, these approaches
fall into two overarching categories: those employing optimal control methods with
extensive optimization processes, entailing significant computational demands, and those
integrating ANNs within a hierarchical controller structure. Given that the majority
of existing works in the field of overtaking in autonomous driving rely on lane-based
strategies and machine learning-driven approaches typically feature a two-level controller
layout, we have chosen to leverage these well-established paradigms as the basis for our
approach.

2.2 Safety in Autonomous Operations
In formulating our reward function, we aimed to incorporate not only fundamental metrics
like track progress and speed but also a crucial consideration: the safety of all executed
maneuvers. It is clear that rapid progress is desirable, yet an integral aspect of safety
needs addressing, as controllers must avoid collisions. To effectively embed safety within
our reward function, a clear and quantifiable definition of safety becomes essential. In
this section, we delve into various approaches that propose definitions and methodologies
for integrating safety as a critical concept within the reward function framework.

ISO 26262-2018[1], often called the Functional Safety for Road Vehicles, focuses on the
safety of electrical and electronic systems within road vehicles. It introduces a structured
framework for safety requirements and processes throughout the development lifecycle,
incorporating risk assessment, hazard analysis, and safety goals. ISO 26262 emphasizes
the importance of mitigating and controlling safety-related risks in the automotive domain
and defines safety as the absence of unreasonable risk.

9

2. Related Work

The J3016C[24] Society of Automotive Engineers standard, titled Taxonomy and Defini-
tions for Terms Related to On-Road Motor Vehicle Automated Driving Systems, provides a
comprehensive set of definitions and classifications for various levels of automation within
automated driving systems. It outlines specific terminology and categories to facilitate
clear communication and understanding of autonomous driving technology, assisting in
the development and deployment of safe and standardized autonomous vehicles.

Both standards play vital roles in defining the safety and functionality of autonomous
vehicles, with ISO 26262-2018 focusing on safety processes and risk management for
electronic systems and J3016C offering standardized definitions for automation levels.
However, both standards do not give a quantifiable definition of safety or risk.

Most approaches we mentioned rely on imposing substantial costs or assigning negative
rewards for violations of safety constraints, particularly in Reinforcement Learning (RL)
applications. However, Shalev-Shwartz et al.[41] have introduced an innovative paradigm
termed Responsibility-Sensitive Safety, which focuses on limiting penalties to only the
faults of the ego agent, loosening up the safety constraints. Going further, Huang et
al.[23] have introduced risk-conditioned neural networks. These networks introduce an
input parameter that specifies the allowable risk, replacing the need for large negative
rewards or costs for risky actions.

Two predominant approaches have emerged to quantify safety within autonomous racing
scenarios. The first approach involves assigning high costs or substantial negative rewards
for unsafe behaviors, discouraging the system from engaging in risky actions. The second
approach delegates the task of risk estimation to the controller, conditioning it to ensure
that the system never exceeds a predefined risk threshold. Another interesting takeaway
is that instead of enforcing safety constraints, it is possible to adopt a more lenient
strategy by penalizing only the risky actions of the ego agent.

2.3 Attention & Self-Attention
As attention is a pivotal component of this thesis, we also surveyed the topic of attention
and attention mechanisms in ANNs. Our exploration examines biological attention,
seeking insights from nature’s selective focus mechanisms. We then delve into work
dedicated to working with biological processes to facilitate imitating attention in ANNs.
Finally, we explore self-attention and its versatile applications in controller architectures,
unveiling its potential for enhancing decision-making and information processing within
autonomous systems.

In their seminal work, Attention: Theory and Practice Johnson and Proctor[27] offer a
comprehensive exploration of attention, delving into the intricate mechanics of biological
attention and its underlying principles. Their detailed insights shed light on how attention
functions, providing a valuable foundation for understanding this fundamental cognitive
process. Preceding this work, Kastner and Ungerleider’s[28] research addressed the
nuances of visual attention, distinctly categorizing it into bottom-up and top-down

10

2.3. Attention & Self-Attention

mechanisms. Their discussions on visual attention, which forms a central focus in
our thesis, offer invaluable insights into the factors that shape our visual perceptual
experiences and the interplay between involuntary and voluntary attention.

In the literature, researchers commonly describe visual attention as a process that involves
directing our gaze to various points of interest through rapid eye movements known as
saccades. These saccades are task-dependent, and researchers can track them as they
move across different locations. As a result, the ROI consists of several points visited in
quick succession. This dynamic necessitates a nuanced and fuzzy approach to handling
ROIs, mirroring similar challenges encountered in other biological tasks for ANNs. Gros
et al.[19] introduce a noteworthy technique for interpreting Magnetic Resonance Imaging
(MRI) scans using an approach they call soft segmentation. Their approach employs
¸Adaptive Wing Loss[50] and a U-Net[38] architecture to handle fuzzy borders between
relevant and non-relevant segments in MRI scans.

A similar method to top-down attention is a novel construct in ANNs called self-attention.
Self-attention is a mechanism that allows ANNs to analyze input data while considering the
relationships between different elements within the data. Initially introduced by Vaswani
et al.[47] in natural language processing, self-attention has since found wide application
in various domains. This higher-level cognitive processing capability enables networks to
identify correlations and dependencies in data, leading to significant advancements in
modern applications. Prominent examples include models like Generative Pre-trained
Transformers (GPT), which have real-world applications such as ChatGPT[34], where
self-attention enhances the understanding and generation of natural language text.

Beyond natural language processing, self-attention mechanisms have found relevance in
various domains. In computer vision, Han et al.[20] offer a comprehensive survey of current
applications of Vision Transformers, underscoring the versatility and expanding role of
self-attention in processing visual data. Furthermore, Jaegle et al. present an innovative
model known as the Perceiver[26, 25], which is grounded in the transformer architecture
and offers a multi-modal input framework. This versatile model can effectively process
different types of sensory inputs, highlighting the potential for incorporating various
input modalities into transformer-based architectures.

Chen et al.[10] present the Decision Transformer, a novel control network based on the
architecture of GPT. This innovative model employs multiple tokens per time step to
encode essential information, including the state, reward-to-go, and actions for each time
step. It subsequently generates tokens from these input modalities, predicting future
outputs. Notably, in their study, the model is exclusively tasked with predicting actions
while receiving ground truth data for the other modalities. They assess the efficacy of
this approach through testing in both control tasks and Atari games.

While self-attention mechanisms are prevalent, there are relatively few approaches that
leverage alternative forms of attention. Peng et al.[35] adopt an attention mechanism rem-
iniscent of self-attention, complemented by 3D convolutions to tackle emotion recognition
in speech data, effectively enhancing the model’s ability to capture complex emotional

11

2. Related Work

cues. On a different note, Yu et al.[53] introduce a unique approach by employing a
separate network for attention, enabling their trajectory planning network to focus on
the most pertinent surrounding vehicles selectively. In both cases, these approaches draw
inspiration from simplified versions of biological attention mechanisms, aiming to refine
their predictions and optimize their models for specific tasks.

In this survey of attention and self-attention, we found that there are only so many
existing methodologies that use attention mechanisms in a way that aligns with the
objectives of this thesis. While self-attention has gained prominence, it predominantly
serves as a high-level method, endowing networks with the capacity to recognize and model
correlations between input elements. However, the exploration of the effects of human
attention on ANNs remains an area with limited prior research despite its potential to
offer valuable insights into optimizing network performance based on human-like attention
mechanisms.

12

CHAPTER 3
General Approach

13

3. General Approach

This chapter describes the methodologies employed within this thesis, ascribing the
specific challenges the research effort addresses. The all-encompassing challenge is to
show that achieving convergence in ANNs is possible using focused and reduced input
data. Convergence in the context of ANNs refers to the network’s ability to reach a
stable state where it can effectively learn and adapt its parameters to solve a given task.
The fundamental difficulty lies in the unpredictability of this convergence process, with
instances where it proves elusive or unattainable.

When ANNs encounter convergence issues, modifying the dataset is a common strategy
to address the problem. The assumption is that providing more data can overcome these
convergence challenges. To achieve this, ANNs receive more input modalities, sometimes
even components of the unobservable state or extensive sensor readings. However, using
extensive inputs for ANNs usually results in more complex networks that require more
computational power, making them difficult to deploy on embedded platforms. Conversely,
some approaches use less input data or simpler networks with similar prediction results,
offering a potential solution. This observation prompts the following intriguing question:

Could ANNs achieve convergence with a reduced, more focused dataset?

In this thesis, we propose to answer this question by providing the ROIs within the input
data relevant to an ANN. However, the ROIs require prior knowledge or an understanding
of the information’s significance for the model. A potential solution to this dilemma lies
in biology, where biological systems employ attention mechanisms. These mechanisms
naturally guide the system’s focus to pertinent information, effectively simulating selective
data preprocessing. It may be possible to replicate this biologically inspired strategy
by incorporating attention mechanisms into ANNs, enabling the network to discern and
emphasize crucial elements within the input data.

This thesis explores the possibilities of employing an a priori attention mechanism with a
state-of-the-art controller for a non-trivial control problem. First, it describes the process
of recording and imitating task-specific human attention with an ANN. Then, this thesis
introduces a control approach, based on the existing controller, used for the underlying
control problem and the novel integration of the Human Attention Imitation into the
new approach.

3.1 Human Attention Recording & Imitation
Incorporating attention mechanisms into autonomous systems necessitates the creation
of a standalone attention component. During the training phase, the need for such a
component may appear less pressing, mainly when datasets tailored to the specific task
allow the training of both the ANN and the attention mechanism. However, the practical
challenge arises when deploying or employing these systems in RL settings. In these
scenarios, prerecording human attention for all possible settings becomes an infeasible

14

3.1. Human Attention Recording & Imitation

Figure 3.1: VPS19 Smart Unit (left) and eye-tracking glasses (right) used for eye-tracking
in this thesis. This eye-tracking device records the wearer’s gaze and a video stream from
the center of the field of view (light circle in the middle of the glasses).

task, rendering a standalone attention mechanism a crucial element to ensure the system’s
robustness and adaptability in real-world environments.

This thesis operates under the fundamental assumption that attention is inherently task-
specific, tailoring its focus according to the requirements of the given task. To effectively
explore the concept of attention, selecting a task in which some form of attention can be
accurately recorded and analyzed is imperative. In this regard, the thesis confines its
scope to the domain of visual attention, specifically delving into identifying and tracking
ROIs within input images.

Capturing visual attention constitutes a pivotal aspect of this study. To ensure the
effectiveness of the data collection process, it is imperative that human subjects can
perform the designated task with minimal deviation from their typical performance,
thereby preserving the naturalness of their responses. In addition to eye-tracking data,
recording sensor data and human control inputs is essential for further machine-learning
tasks. Furthermore, the data collection setup design should facilitate the reconstruction
of pertinent information from the recorded sensor data.

The objective regarding this thesis’s Human Attention Imitation component is the devel-
opment of a task-specific attention mechanism derived from human attention recordings,
intending to utilize it in subsequent downstream tasks. It is critical to underscore that
the developed approach is a proof of concept. Consequently, expectations concerning
its performance should remain tempered. The proposed approach will utilize ANNs
to generate attention maps for input images akin to image segmentation. Through

15

3. General Approach

this exploration, the thesis aims to validate the feasibility and potential effectiveness of
leveraging attention mechanisms to improve the training and prediction performance of
ANNs in various application domains.

3.1.1 Image Segmentation as Basis for Human Attention Imitation
Assigning values or classes to individual pixels is no new problem but has been researched
extensively. There are two main approaches to processing images and creating different
maps of values or classifications. Image segmentation aims to divide an image into
meaningful segments or regions, and heatmap regression focuses on predicting the
likelihood or confidence of the presence of specific objects or key points within the
image. In some literature, people use heatmap regression and image segmentation
interchangeably because heatmap regression can be considered a continuous specialization
of image segmentation with only one class.

Image segmentation usually creates a mapping between pixels and classifications, resulting
in a segmentation of the input, hence the name. Many applications rely on understanding
the spatial layout of objects within an image. Medical imaging, autonomous vehicles,
and object recognition are just a few examples of such applications. Implementations
commonly output an image with N channels per pixel to indicate the classification score
per pixel. The goal is to train the model to indicate only one class per pixel.

Heatmap regression, on the other hand, is a technique for localizing or detecting objects
within an image by predicting a heatmap that highlights the ROIs. It focuses on predicting
the likelihood or confidence of the presence of an object at each pixel. The output is a
heatmap where higher values correspond to regions where the model believes an object is
present. Many applications, such as human pose estimation, facial keypoint detection,
and object localization, use heatmap regression. Implementations usually provide an
output map with only a single channel per pixel to indicate the probability that a pixel
contains the target.

As mentioned, the two approaches are similar, with the number of output channels
per pixel and continuous and discrete outputs as the main difference. Therefore, ANN
architectures for image segmentation are generally usable for heatmap regression. Soft
segmentation[19] is an approach that uses this similarity, as it uses an architecture
traditionally used for image segmentation to perform heatmap regression. This approach
nevertheless needs adaptations to the training process to achieve the continuous probability
scores desired in heatmap regression.

3.2 Autonomous Racing as Case Study
Autonomous driving and especially autonomous racing are currently at a level where
elementary tasks, such as lane keeping or following a trajectory, even with error correction,
are already well-researched. Currently, interactions with other vehicles, such as overtaking
or even just driving on the same stretch of track, have become the research focus in these

16

3.2. Autonomous Racing as Case Study

areas. Most approaches rely on reactive methods to drive alongside another vehicle or to
overtake it.

While these approaches show commendable results, they are often subject to indecision,
especially in scenarios where the approaches have to decide between two seemingly equal
options. In those cases, an approach may pick one fixed approach or oscillate between
the two options with each execution of the control logic. While the first solution might
yield suboptimal results, the latter can result in crashes when the algorithm does not
decisively execute one option. This indecisiveness in controllers highlights the need for a
high-level decision-making component.

The unresolved problem of high-level decision-making and the fast-paced environment
of autonomous racing make it an interesting case study for our proposed approach.
Performing timely decision-making on constrained hardware is a task that could benefit
from the reduced complexity of ANNs with fewer input data.

At the same time, the task of autonomous racing provides a straightforward opportunity
for the recording of human attention and decision-making processes. Instead of full-sized
vehicles, this thesis employs a smaller platform to reduce the high costs associated
with operating and adapting conventional cars. In this thesis, we use the F1Tenth
platform[16], which offers a scaled-down yet highly functional alternative to full-sized cars.
It encompasses a complete software and hardware stack, making the platform conducive
to experimental research in autonomous racing. Furthermore, the ease of integration
for remote control systems simplifies developing and testing autonomous algorithms and
recording human driving behavior.

Additional sensors, such as cameras, can be seamlessly incorporated into the F1Tenth
software and hardware stack. Integrating cameras into the platform allows for establishing
camera streams directed to remote locations where human drivers can remotely control
the vehicle, facilitating the recording of human attention during autonomous racing
experiments. The F1Tenth platform offers flexibility regarding control mechanisms, as it
accommodates both joypad-based control interfaces and more immersive setups, such as
steering wheels and pedals.

Many simulators exist for autonomous racing and driving scenarios. Given the research
objective of employing RL for racing control, leveraging simulation environments becomes
an imperative strategy. Simulated environments facilitate the development and training
of RL-based racing controllers and provide a controlled and reproducible setting for exper-
imentation. Extensive literature and resources are available in the broader autonomous
driving and racing field, offering valuable insights and established methodologies.

A substantial body of literature on autonomous driving emphasizes the utility of lane-
based information for dynamic driving decisions. Autonomous driving algorithms in this
literature adhere to predefined lanes and make agile decisions based on them, such as
evasive or overtaking maneuvers. This thesis intends to employ a hierarchical approach
to decision-making, recognizing that more intricate and context-aware decisions may
not meet the timing requirement of a fast-paced domain like autonomous racing. It

17

3. General Approach

Figure 3.2: F1Tenth racing car from Vienna Technical Universities team used at the 11th
F1Tenth Grand Prix at ICRA 2023 in London. The car performs all calculations with
the onboard computation unit and uses LIDAR and inertial sensors for navigation.

Figure 3.3: Simulated RGB camera image of an F1Tenth car in the simulator maintained
by Brunnbauer and Berducci[6].

18

3.2. Autonomous Racing as Case Study

will use a hierarchical planner, with a high-level planning module orchestrating complex
decision-making processes and a low-level controller responsible for lane adherence.

Initially, the technical approach in this study involves the implementation of a pre-
existing state-of-the-art control methodology tailored for autonomous racing applications.
Subsequently, this thesis augments the established control framework by integrating a
Human Attention Imitation component. A randomized control approach is employed
for comparative analysis to assess Human Attention Imitation’s impact on autonomous
racing systems’ performance. Specifically, this thesis compares the outcomes of the
autonomous racing system with Human Attention Imitation against a control scenario
with randomized attention allocation.

The primary emphasis of this thesis centers on conducting a qualitative comparison
rather than quantitative analysis, with a particular focus on eschewing traditional metrics
such as lap times. Instead, the thesis seeks to establish a compelling proof of concept,
highlighting the feasibility of using a selection mechanism to train and operate ANNs on
reduced input data.

19

CHAPTER 4
Human Attention Imitation

21

4. Human Attention Imitation

This chapter describes the development of the Human Attention Imitation used in
simulation tasks to approximate human attention. We describe the data recording
process for the human attention data and then detail the architecture and loss function
used for training the neural network.

In the section about the recording process, we also discuss the pre-processing steps
undertaken to enable the Human Attention Imitation to train on the recorded data. This
discussion includes details about transformations and synchronization of different data
streams and statistics about the recorded data. Finally, we also describe the attention
aggregation used to derive ROIs from the recordings of gaze traces.

While discussing the ANN architecture used for the Human Attention Imitation we also
describe the loss function employed during training for this model. We also include a
short comparison and rationale for why we selected this loss function as the loss function
used for this model.

4.1 Human Attention Measurement Setup
We asked human drivers to drive remotely controlled model cars on different tracks to
record attention data for our imitation of human attention, further referred to as the
Human Attention Imitation. The drivers steer an F1Tenth car with a camera mounted
at the front while an eye-tracking device records their gaze.

Software Stack F1Tenth[16] is a racing series for autonomous racing cars at the 1:10
scale. The cars are based on the chassis of the Traxxas Slash Ultimate and use an NVIDIA
Jetson Xavier NX [44] computing unit for autonomous control. Additional sensors, such
as a Hokuyo UST-10LX LIDAR[46] sensor and two inertial measurement units, can be
used for autonomous control.

The F1Tenth software stack utilizes the open Robot Operating System (ROS)[39] as its
foundation. ROS organizes various components into nodes that communicate through
message-passing over named channels known as topics. ROS uses the same communication
channels to realize service calls (a request message followed by a response message) and
actions (similar to a service call, but with messages sent during the processing).

On top of the Inter-Process Communication (IPC) framework, ROS provides an extensive
standard library with common tools used in robotics. The standard library includes
handling log messages, diagnostics, a transformation tree implementation that handles
static and dynamic transformation between physical frames, and many other packages.

The nodes can issue static or updates to dynamic transformations via ROS messages.
The transformation tree library listens to these messages and builds the transformation
tree in each component that requires it.

The base software stack, developed at the University of Pennsylvania, implements the
nodes for communication with standard sensors and input devices. It also contains

22

4.1. Human Attention Measurement Setup

Watches

Camera recording

Driving
Commands

Gaze
Recording

Sensor
data

Figure 4.1: Recording setup used for human attention data recordings. A human driver,
wearing an eye-tracking device, remotely controls the 1:10 scale F1Tenth car and watches
a transmitted camera stream from the car.

low-level actuator controllers and primitive safety features like a deadman switch. We
implemented control and planning nodes as part of this thesis or used existing implemen-
tations if they existed.

Setup Figure 4.1 shows the setup of the human attention recording process. A human
driver is seated in front of a table with a screen, a steering wheel, and pedals. The drivers
can control the car using either the steering wheel or a Gamepad. At the same time, the
screen shows the live camera feed from the car’s mounted camera.

We used a laptop as a central device to control all connected devices via WLAN. This
laptop sends the steering commands from the steering commands and pedals or the
gamepad to the motor controller on the car. In turn, it receives and displays the video
stream from the front camera of the car. To minimize bandwidth usage and potential
packet loss, the Jetson Xavier NX encodes the video stream before transmitting it over
the network. The encoding step uses NVIDIA’s hardware-accelerated video encoder to
reduce the latency and size of the video stream.

Another critical aspect that we needed to address is the latency of the transmitted
control inputs and the video stream. Brunnström et al.[7] have shown that even slight
delays of 20ms, in addition to the intrinsic system delays, can cause decreased operator
performance or even nausea in remote control tasks. During initial tests, we noticed that
the latency was generally in acceptable ranges but sometimes exceeded the mark of 20ms.
These exceedances happened, for example, when the car was driving fast or something
obscured the line of sight between the WLAN Access Point and the car.

23

4. Human Attention Imitation

Recorded
Data

Format Storage Time Frame Spatial Frame

Driver’s View MKV/MP4 VPS 19 VPS 19 Driver’s View
Gaze points TSV VPS 19 VPS 19 Driver’s View
Car’s Video MP4 Jetson Xavier NX Car Camera Car Camera
Depth Video rosbag Jetson Xavier NX Car ROS Car Camera
Driving controls rosbag Jetson Xavier NX Car ROS N/A
LIDAR scans rosbag Jetson Xavier NX Car ROS Car Lidar
IMU 0 rosbag Jetson Xavier NX Car ROS Car IMU 0
IMU 1 rosbag Jetson Xavier NX Car ROS Car IMU 1
Raw motor com-
mands & Diag-
nostics

rosbag Jetson Xavier NX Car ROS N/A

Table 4.1: Recorded data streams with storage location and spatial and temporal frames.
This table lists each recorded stream with the storage file format, where it is stored, and
the temporal and spatial frame of the data.

To cope with these occasional high-latency transmissions or packet drops, which negatively
impacted the human driver’s ability to control the vehicle, we upgraded the networking
hardware to a Netgear WAX630E access point. This tri-band enterprise access point
offered the necessary bandwidth and signal strength to achieve low-latency transmissions
for the whole area of the track.

Gaze Recording A VPS 19 System[48] eye-tracking device records the gaze of the
human drivers and their view while driving. Simultaneously, the Jetson Xavier NX on
the car records the driving inputs of the human driver, the transmitted video stream, a
depth video stream, and sensor data from inertial measurement units.

Table 4.1 shows the data streams recorded on the two devices used for recording with
their respective time and spatial frames. According to its documentation, the VPS 19
System data (driver’s view & gaze points) are synchronized and use the same spatial
frame for recording, as they use the same sensor.

Similarly, data recorded by the ROS data recording utility rosbag has a timestamp
based on the same clock since all software components are running on the same physical
device. We added all sensors to the ROS transformation tree, including their static
transformations in the recorded data. The transformation tree includes the spatial frame
of the mounted camera, and the time frames of the car’s video stream and the depth
video stream should be the same.

Recording Variations We recorded data in different rooms with different lighting
conditions and floors for higher variation in recorded data. Using different rooms also
allowed us to vary the layout and complexity of the track. All these variations led to

24

4.1. Human Attention Measurement Setup

changes in recording quality. While some recordings only had limited use due to lighting
conditions, some tracks proved too tricky to drive for collecting reliable attention data, as
the drivers moved too much and the recorded images of the driver’s view became blurry.

In this study, we selected a small set of drivers and tried to keep the entry requirements
as minimal as possible to record a dataset with diverse skill levels. Each driver had at
least one year of driving experience and some experience in racing setups, such as kart
racing or car racing games.

Simulators The F1Tenth community commonly adopts a simulator for multi-agent
racing, which can simulate most vehicle sensors in real-time. However, it cannot provide
visual inputs or the 2D depth measurements we planned to use in this thesis. For this
reason, we do not use it in this thesis. Brunnbauer et al.[6] maintain another simulator
based on PyBullet[8], a faithful physics simulation library. This simulator can simulate
visual inputs and 2D depth measurements at the cost of real-time capabilities, which
makes recording with this simulator infeasible.

As there was no feasible way to record simulated data with human attention, and large-
scale RL tasks are infeasible on real-world cars, the attention filter needs the capability
to predict human attention in simulated and real-world recordings.

4.1.1 Data Synchronization
Since we use the onboard computing unit and VPS 19 System to record the data and
both systems record in different time and spatial frames, the time and spatial frames of
the individual data streams are different as well. Before the downstream tasks could use
the recorded data, we needed to synchronize the data and define the transformations
between the different spatial frames.

In order to synchronize the data streams, which consist of gaze points, driver’s view from
the eye-tracking device, video stream, and sensor recordings (including the depth video
stream), we have incorporated synchronization points into the recording or used distinct
points in the existing recordings.

For visual recordings, we used a small traffic light with a simple sequence of lights to find
the matching frames in both the eye-tracking system recording and the video stream from
the car’s camera. An FPGA with a high-frequency quartz oscillator generated the light
sequence on a small LED traffic light. Each sequence element was active for precisely
the time of two frames, and the camera sensors recorded them in a maximum of three
frames. The frames with the sequence in each video stream mark the synchronization
points between the car’s stream and the driver’s view.

We used a similar technique for the sensor readings and the video stream from the car’s
camera. Instead of the traffic light, we used the first jerk of the car when the driver
started driving. This motion is visible on the video stream, and the inertial measurement
units observe it as an acceleration peak. Since we recorded all sensor measurements in

25

4. Human Attention Imitation

(a) Front camera on car. (b) Drivers view.

Figure 4.2: Frames of a synchronization point between the driver’s view and the recording
from the camera on the car. The traffic light displays a light sequence to synchronize the
data streams.

one synchronized data stream, we matched the peak’s timestamp with the motion’s frame
to synchronize those streams.

4.1.2 Gaze-Point Transformation
To determine the transformation from the driver’s view to the car’s stream displayed
on the screen, we placed eight ArUco[18] markers around the video stream. We used
OpenCV’s[22] objdetect library to detect the markers in the driver’s view recorded by
the VPS 19 System. It then estimates a pose of the car’s video frame in that recording,
determining the perspective transformation between the two video frames. Finally, it
transforms the gaze points from the VPS frame to the car’s video frame.

OpenCV’s objdetect library allows defining ArUco boards, patterns of individual ArUco
markers. Each marker encodes its ID, and the board defines the location of each marker.
The library can perform pose estimation on boards using the correspondences of image
pixels and the board’s definition using OpenCV’s Perspective-N-Point solver. Detecting
a whole board provides more stability for pose estimation than individual markers,
especially if not all markers are visible.

Perspective-N-Point Problem
Input: A set of 3D points, their 2D projection correspondences in an image and

the calibration parameters of the camera that took the image
Output: Estimated pose of the 3D points in the frame of the camera

Figure 4.3 shows the process of video processing and gaze point transformation. ArUco
marker detection finds the individual ArUco markers in the driver’s view video, and

26

4.1. Human Attention Measurement Setup

(a) Driver’s view with individ-
ual markers

(b) Board in the VPS 19 Sys-
tem’s video stream

(c) Individual gaze points in
the car’s video

Figure 4.3: Video alignment and transformation process. The alignment process detects
the ArUco markers in the driver’s view and then calculates the transformation between
the car’s video and the driver’s view to transform the recorded gaze points.

pose estimation estimates the board’s orientation in the frame. Based on the estimated
pose, we transform the recorded gaze points into the car’s frame with the perspective
transform.

4.1.3 Post-Processing and Data Aggregation
In this section, we outline the steps involved in preparing the collected data for training
purposes. Our first step is to eliminate sections of the video recording that do not contain
driving or footage of drivers crashing. For crashes, we remove a more extended part of
the recording before the collision to prevent models from training on crashes. Our second
step is to discard frames that do not contain any usable data.

We filter out irrelevant data in our system by discarding frames and associated data if
the transformed gaze points lie outside the scope of the recorded video or if there are no
gaze points to be tracked, such as when the driver is blinking. We also discard frames
that contain visible compression artifacts or show transmission errors, as they can affect
the accuracy of our attention filter.

Even if the artifacts do not appear in the recorded stream of the car’s video, they can still
impact the driver’s reaction and potentially lead to undesired behavior in the attention
filter.

We ensured that there was sufficient data available for different track sections by cat-
egorizing each recording based on the track type. The classification included straight
sections, left or right sweepers (curves), left or right hairpins, and chicanes. Figure
4.4 shows an exemplary classification for the track used in other tasks in this thesis.
Generally, we consider primarily straight sections, even when they contain slight bends,
as straight sections. We identify corners with a right angle or below as sweepers, and we
identify corners above a right angle as hairpin curves. Chicanes are a combination or
sequence of curves.

These classifications are never definite, and the classification of this dataset also depends
on when the driver starts to maneuver for a specific type of corner. It is also debatable

27

4. Human Attention Imitation

Figure 4.4: Track with colored section types. The classification is not definite, especially
since the border between two sections is often debatable.

Section Type Total Frames Frames with Gaze Points Usability Rate
Straight 21,111 13,144 62.26%
Sweeper 19,467 10,847 55.72%
Hairpin 16,456 7,279 44.23%
Chicane 5,904 1,475 24.98%
Total 62,938 32,745 52.03%

Table 4.2: Recorded frames in different track types and the frames per type with gaze
points. The usability rate gives the rate of frames with gaze points compared to the total
frames.

whether a set of corners is simply close to each other or if it is a chicane. We, therefore,
focused more on the distribution of straight sections, sweepers, and hairpins as they show
different types of behavior over the time horizons considered in this thesis.

Table 4.2 shows the number of frames in the relevant sections of the video recordings,
the number of frames with estimated gaze points that our tool could transform into the

28

4.1. Human Attention Measurement Setup

Figure 4.5: Typical focus points when looking at a human face, commonly known as
saccades. These movements are rapid movements that move the fovea, the area of the
eye with the highest resolution, to watch one specific point in the field of view.[11]

car’s video stream, and the rate of usable frames with gaze points. As it is possible to
mirror images to obtain a left sweeper image from an image of a right sweeper, this table
shows the aggregated numbers for sweepers and hairpins.

Human eyes can only focus on one narrow point at a time. Therefore, for human brains
to see an object as a whole, the eyes focus on many different points of a single object.
The movements the focal points of the eyes make are called saccades.[11] Figure 4.5 shows
typical saccades for analyzing a human face, which shows that the individual points the
eyes are looking at vary greatly in location, even though only one region of interest, the
face, exists in the image.

To achieve smoother changes between frames and, by doing so, obtain more straightforward
training data, we construct attention maps for each frame. In this map, pixels get assigned
higher values if they are visited more often. The VPS 19 System eye-tracking device also
visualizes the saccades this way.

AHMt = (4.1)
15

t′=0
Blur (Circles (GPt−t′ , 5) , 25) + (4.2)

5

t′=1
Blur (Circles (GPt+t′ , 5) , 25) (4.3)

AHMt =Norm(AHMt) (4.4)

Equations 4.1 to 4.4 explain how we generate the attention heatmap for a frame from

29

4. Human Attention Imitation

(a) Gaze points for the cur-
rent frame.

(b) All gaze points consid-
ered.

(c) Resulting attention
heatmap.

Figure 4.6: Gaze point aggregation steps to obtain attention fields. We aggregate the
sets of gaze points for 15 time steps in the past and 5 in the future, apply Gaussian blur,
and normalize the result to generate attention heatmaps.

the set of gaze points GPt, which gives the set of gaze points at time t or an empty set if
t is smaller than 0 or greater than the number of frames. The function Circles draws a
circle for a set of points with the radius given in the second argument on an image the
size of the original video stream. We then apply a Gaussian blur with the function Blur
to soften the generated heatmaps.

For each time step, we aggregate 15 frames from the past and 5 frames from the future
and add them together. By doing so, we intend to train the Human Attention Imitation
to anticipate future changes in the ROIs. In the final step, we normalize the aggregated
weights AHM to get the resulting normalized attention heatmap AHM.

Figure 4.6 shows the aggregation process for a single frame. We start with the gaze
points for a single frame, as shown in Figure 4.6a, and then add the other sets of gaze
points in the second step, displayed in Figure 4.6b. The last figure, Figure 4.6c, shows
the result of aggregation and normalization. The network can now train to focus on the
vehicle instead of predicting one specific point that changes rapidly.

4.2 Human Attention Imitation Architecture
We consider the problem of generating attention values for individual pixels in an image
as a variation of heatmap regression. To represent attention maps, we use normalized
heatmaps with values between 0 and 1. A value of 0 indicates low relevance of the
pixel, and a value of 1 indicates high relevance. In contrast to segmentation, heatmap
generation generates values between the boundaries, representing continuous relevance
values between low and high relevance.

Gros et al.[19] developed SoftSeg, a soft segmentation approach, to achieve continuous
segmentation distributions for medical imaging. The network for predicting attention
uses a model similar to their approach. Instead of using binary masks as labels, the
network trains on continuous attention heat maps, constructed as described in section
4.1.3. SoftSeg uses the U-Net architecture, a network architecture commonly used for
image segmentation.

30

4.2. Human Attention Imitation Architecture

When dealing with time series data, most use some form of Recurrent Neural Networks
(RNNs), for example, Long Short-Term Memorys (LSTMs). Those networks process all
frames of the time series to predict the result for the last frame while they maintain some
form of internal state or feed their output back in as additional input. This recurrence
allows RNNs to track the state over multiple frames, which, to guarantee stability, needs
to have a damping factor applied in each iteration.

This damping factor has the effect that the information for the first frame has only
limited influence on the final prediction. Especially during optimization, this problem
leads to minor or no changes for earlier frames, as their respective gradients can become
too small due to floating point representation issues. This problem is known as the
vanishing gradient problem in RNNs.

In this thesis, we mitigate the vanishing gradient problem by employing a single-shot
approach that predicts an attention heatmap based only on a single frame. To achieve
this, we train the Human Attention Imitation on the aforementioned aggregated attention
heatmaps. As the aggregated heatmaps already contain additional temporal information,
the model needs no additional frames to predict relevant data. An additional benefit is
that due to the constructed similarities between two adjacent frames, the network trains
on less erratic training data.

4.2.1 U-Net neural network architecture
Ronneberger et al.[38] first introduced U-Net as an architecture for medical image
segmentation. It consists of three stages: a downsampling stage, an intermediary
convolutional stage, and an upsampling stage. The downsampling stage decreases the
image size while increasing the feature size with convolution. In the upsampling stage,
up-convolution layers decrease the number of features and increase the image’s size back
to the original size.

The downsampling stage consists of N downsampling sub-stages. Each substage con-
sists of three convolutional layers with Rectified Linear Unit (ReLU) activation. The
downsampling sub-stages feed their output to the next sub-stage through a max-pool
layer.

The last downsampling stage feeds its output into the intermediary1 stage. This stage
consists of three convolutional layers with ReLU activation. The last convolutional layer
feeds its output to the first upsampling sub-stage.

The upsampling stage consists of N sub-stages. Each sub-stage consists of three convolu-
tional layers with ReLU activation. In addition to the output of the prior sub-stage, each
sub-stage also uses the output of its corresponding downsampling stage. Up-convolution
layers connect the individual sub-stages. After the last up-sampling sub-stage, a 1x1
convolution layer constructs the segmentation map.

1Some literature also calls this the bottleneck stage, as it is the stage of the architecture with the
smallest size but with the most features.

31

4. Human Attention Imitation

Figure 4.7: Architecture of the U-Net neural network architecture for image segmenta-
tion.[38]

For the U-Net architecture, the number N represents the so-called depth of the architec-
ture. The architecture is, by design, symmetrical, such that the outputs and the inputs of
the corresponding sub-stages of the down- and upsampling stages match. Figure 4.7 shows
the standard U-Net architecture with a depth of 4 initially proposed by Ronneberger et
al..

Table 4.3 contains the hyperparameters used for the architecture of the Human Attention
Imitation. The network uses a depth of four and accepts images with one channel. After
the first encoder block, the architecture uses 64 features, followed by increases of a factor
of 2 in each downsampling stage. The bottleneck block uses 512 input and 1024 output
features. The decoder blocks then decrease the feature size again by a factor of 2, and
the final classifier block collapses the 64 features into one final feature.

4.2.2 Loss Function

In this section, y denotes the ground truth, and ŷ denotes the prediction made by a
network. All operations are scalar or element-wise operations, and loss functions sum
pairwise over the elements of the ground truth and prediction vectors.

CrossEntropy(y, ŷ) = −y ∗ log(ŷ) (4.5)

32

4.2. Human Attention Imitation Architecture

Depth 4
Input Dimension 128 x 256 x 1
Downsampling Stages 64

128
256
512

Bottleneck In: 512, Out: 1024
Upsampling Stages 1024

512
256
128

Classifier 128, 64, 1
Output Dimension 128 x 256 x 1

Table 4.3: Hyperparameters of the Human Attention Imitation architecture used in this
thesis. The depth is the number of down- and upsampling stages and the input and
output dimensions state the size of the input and output frames, respectively. The other
entries give the number of features at each point in the architecture.

Ronneberger et al. used cross-entropy loss for training the standard U-Net architecture
in their work. Cross-entropy loss is a loss function usually used for classification problems.
Equation 4.5 shows the definition of cross-entropy loss. Assuming that y, ŷ ∈ [0, 1], the
function will give a zero loss for all cases where the target label is 0 and a logarithmic
error value for the class that that pixel represents.

This loss function is undesirable for heatmap regression, as it generally does not give
zero losses for identical values. Take y = 0.5, ŷ = 0.5 as an example. The loss for these
identical values is 0.346574 and, therefore, non-zero. We, therefore, need to look into
other loss functions that result in zero loss values for equal values while retaining the
classification ability that cross-entropy offers.

Faced with a similar problem in detecting brain tumors in MRI scans, Gros et al.[19]
experimented with different standard loss functions. To detect brain tumors in MRI
scans, they used U-Net and tried loss functions, such as cross-entropy or dice score. Due
to the MRI’s limited resolution, the cells at the edges of the tumors show up as a mixture
of cancerous and healthy cells, which is difficult to discern in binary segmentation maps.
They noticed that the sharp borders learned with those functions fail to represent those
overlapping areas. Similarly, attention heatmaps should give continuous values for the
relevance of each pixel in an image.

To avoid those sharp edges, they use Adaptive Wing Loss (AWL), first proposed by
Wang et al.[50], to achieve smoother predicted areas. AWL is an adaptation of wing loss
to improve the learning of heat maps. Feng et al.[17] proposed wing loss for landmark
localization. Its gradient is smooth and continuous in the case of |y − ŷ| = ω but not if
y − ŷ = 0, where the gradient reaches a high magnitude, making training difficult.

33

4. Human Attention Imitation

Equation 4.6 defines wing loss. It uses a threshold ω to differentiate between the case of
pixels with significant errors and pixels with low errors. The function uses the value ϵ
and the constant C = ω − ω ln(1 + ω/ϵ) to assure continuity of the gradient at |y − ŷ| = ω.
Feng et al. used ϵ = 2 in their experiments, as a too-low value of ϵ can lead to the issue
of an exploding gradient.

Wing(y, ŷ) =

ω ln

1 + y−ŷ

ϵ

if |y − ŷ| < ω

|y − ŷ| − C otherwise
(4.6)

AWL mitigates the discontinuity at y − ŷ = 0 by including the target value to scale
the loss value in the foreground case, making the loss function continuous and smooth
for y − ŷ = 0. It also treats the case of minor errors differently, depending on whether
the pixel is a foreground (high value) or background (small value) pixel. To scale the
influence of foreground pixels, the case where |y − ŷ| < ω is augmented by an exponential
term α − y.

AWing(y, ŷ) =

ω ln

1 + y−ŷ

ϵ

α−y

if |y − ŷ| < θ

A|y − ŷ| − C otherwise
(4.7)

Equation 4.7 shows the function used for AWL. The values α, ω, ϵ and θ are positive
values. AWL uses θ as an additional threshold to switch between the two cases of
the loss function. α is a value slightly larger than 22 and ω and θ are values between
0 and 1. The terms A = ω(1/(1 + (θ/ϵ)(α − y)))(α − y)((θ/ϵ)(α − y − 1))(1/ϵ) and
C = (θA − ω ln(1 + (θ/ϵ)α − y)) assure continuity of the gradient for y − ŷ = θ.

The exponential term of the first case makes the gradient continuous in the case of
y − ŷ = 0 as the exponent is always greater than one, which means that the error
converges fast to 0. The exponential term will be more significant for y → 0, reducing
the error even more.

As AWL is state-of-the-art for heatmap regression, this thesis uses it for training the
attention filter.

2For details see the rationale in Wang et al. [50]

34

CHAPTER 5
Racing Controller

35

5. Racing Controller

This chapter illustrates the implementation details of the racing controller ANN used
in this thesis. It delves into the autonomous racing system, exploring the intricate
details of the racing controller. It begins by providing an overview of the simulation
environment and the foundational lane-based low-level controller, Pure Pursuit, the
algorithm controlled by the high-level controller.

Before describing the network architecture of the high-level controller, this chapter
presents the dataset generated for Offline RL training. It includes insights into its
creation, state-action distribution, and formulation of the reward function that guides
the learning process.

After introducing the prerequisites for the training process, this chapter characterizes the
neural network model used in the high-level controller, discussing its architecture and
characteristic components. This chapter also discusses the adaptations and enhancements
implemented to include human-like attention in the model to reduce complexity and
improve performance.

5.1 Simulation Environment & Low-Level Controller
Brunnbauer et al.[6] developed the simulation environment used in this study, which
uses the Bullet[14] physics simulator. Bullet is a physics simulation engine focusing on
faithful mechanical simulation and sensor emulation. The environment closely emulates
the real-world behavior of F1Tenth cars at the expense of real-time simulation. It
allows replicating scenarios involving single or multiple agents, allowing up to four cars
simultaneously.

A necessary extension to the simulator is the generation of depth images because all
components in this thesis require them. Leveraging the capabilities of the Bullet sim-
ulator to generate depth images, this addition required minimal modifications to the
existing simulation environment. Nevertheless, creating depth images is computationally
expensive, further degrading simulation performance.

Figure 5.1 depicts the track layout employed within the simulation environment. The
arrow indicates the direction of travel. This track layout offers diverse challenges, featuring
corners of varying difficulty levels in both directions. This thesis uses the track segment
classification definitions used by Bhargav et al.[3].

Specifically, corners 1, 7, and 8 are conventional right sweepers, requiring precise control
during high-speed turns. Corners 2 and 3 are classified as hairpins, demanding sharp
and careful maneuvering. Corners 4, 5, and 6 collectively form a chicane, testing the
controller’s ability to navigate a sequence of quick directional changes.

An essential step to achieve comparable visual inputs between simulated data and real-
world recording involved adapting the camera parameters to align with those of the
original cameras. The field of view and the maximum depth are crucial parameters for
this thesis. By ensuring that these parameters closely match those of the real-world

36

5.1. Simulation Environment & Low-Level Controller

1

2

3
4

5

4

6

7

8

Figure 5.1: Track layout used in the simulation environment for all tasks in this thesis.
The red arrow indicates the driving direction, and the numbers denote the relevant
corners.

cameras, the simulation environment achieves a more faithful representation of the real
world.

Figure 5.2a presents an RGB image, while Figure 5.2b showcases the corresponding depth
image captured from a different virtual camera but in the same position on the car. By
already providing the depth image at the size required in downstream tasks, the system
optimizes computational efficiency, as the computation of depth images is comparably
expensive.

Table 5.1 on the observation space of the simulation environment provides a comprehensive
insight into the measurements beyond the cameras provided by the simulation environment.
The simulation environment derives the measurements in the observation space from the
internal simulation state by adding small amounts of noise. In addition to the already
mentioned visual inputs, it provides the controller with the car’s pose, velocity, and
acceleration. The simulation environment employs ray marching, the same technique
used to calculate the depth image, to create the lidar scan measurement.

37

5. Racing Controller

(a) RGB image (b) Depth image

Figure 5.2: Visual inputs provided by the simulation environment. Both pictures show
the same scene but with slightly different fields of view, and the depth image in each
pixel shows the distance from the sensor to the first solid object. In the depth image,
lighter values indicate higher distances.

Key Description
pose Holds the position (‘x‘, ‘y‘, ‘z‘) and the orientation (‘roll‘,

‘pitch‘, ‘yaw‘) in that order.
velocity Holds the ‘x‘, ‘y‘ and ‘z‘ components of the translational

and rotational velocity.
acceleration Holds the ‘x‘, ‘y‘ and ‘z‘ components of the translational

and rotational acceleration.
lidar Lidar range scans.
rgb_camera RGB image of the front camera.
hd_camera High-definition RGB image of the front camera.
depth_camera Depth image of the front camera.

Table 5.1: Complete observation space of the simulation environment.[6]

Key Description
motor Throttle command. If negative, the car accelerates backwards.
speed Normalized target speed.
steering Normalized steering angle.

Table 5.2: Action space of the simulation environment. The environment accepts either
motor or speed actions and always requires a steering action.[6]

38

5.1. Simulation Environment & Low-Level Controller

Table 5.2, describing the action space of the simulator, provides a comprehensive overview
of the available control actions of the simulator. The table outlines the available actions
to the controller, including motor control, either throttle (acceleration) or speed control,
and steering inputs. Using either speed or acceleration control at a time is possible.
Normalized for the action values signifies that each control output uses a standardized
scale where the maximum value corresponds to 1.0, and the minimum value corresponds
to -1.0.

The environment simulates 50 time steps per simulated second, providing a high-frequency
environment. The controllers in this thesis primarily process information from a subset
of sensors: pose, velocity, and the images from depth_camera. We use the additionally
added hd_camera measurement for visualization tasks that use the high-resolution
images from this sensor.

5.1.1 Low-level Controller
The high-level controller oversees the vehicle’s navigation by assigning it to one of
three lanes and dynamically adjusting the low-level controller’s Lookahead Distance and
Speed Factor. At the core of the low-level controller lies the Pure Pursuit algorithm, a
lane-tracking algorithm. With the Speed Factor, the high-level controller can scale the
reference speeds from the trajectories used by the low-level controller.

Pure Pursuit[49, 13] is a fundamental algorithm in autonomous vehicle navigation designed
to achieve accurate path tracking. In this method, a vehicle selects the closest point
outside the Lookahead Distance along the reference trajectory, known as the Lookahead
Point, and navigates to the Lookahead Point. Depending on the Lookahead Distance,
the vehicle might skip intermediate points and cut corners or try to navigate to a point
that is too close and overshoot that point, leading to oscillations. This thesis uses the
implementation by Zheng[54] in the simulation environment.

Despite its effectiveness in many scenarios, Pure Pursuit has some drawbacks. One
limitation is its sensitivity to changes in the path’s curvature, as it may struggle to
accurately track highly curved or sharp turns, leading to overshooting or undershooting the
desired path. Additionally, conventional Pure Pursuit uses a fixed Lookahead Distance,
which may only be suitable for some situations, as it can result in difficulties when
navigating through complex environments with changes in the path. Therefore, while
Pure Pursuit is a valuable path-tracking technique, its limitations necessitate considering
alternative control algorithms in particularly complex and dynamic environments.

Here, the high-level controller plays a critical role in utilizing the tracking capabilities of
the Pure Pursuit algorithm while adding a layer of adaptability. This controller ensures
the vehicle can navigate without over- or undershooting by dynamically controlling
variables such as the Lookahead Distance, selected Lane, and Speed Factor. Adjusting the
Lookahead Distance allows the system to anticipate and react to changes in the makeup
of the track. Moreover, the high-level controller’s control over the Speed Factor enables
the system to adapt seamlessly to varying track layouts.

39

5. Racing Controller

 Left
 Center
 Right

Figure 5.3: Lanes available to the high-level controller on the simulated track.

The Pure Pursuit algorithm operates using three lanes, as shown in Figure 5.3. It
maintains a constant velocity within each lane, simplifying the control process. We apply
a fixed offset in their respective directions to derive the left and right lanes from the
centerline.

In steep corners, the individual waypoints of the inner lane are in the wrong order. This
reordering happens when the normals from the centerline intersect at a point closer to the
centerline than the offset. This reordering can lead to undesirable results for some control
strategies, such as MPC. However, in the case of Pure Pursuit, since the points affected
by the reordering are close together, the selection of the waypoints is only marginally
influenced.

5.2 Dataset
Offline RL requires a set of experiences of the system to learn from. These experiences
usually consist of traces recorded in the target environment, either based on an already
established strategy or using a random strategy to explore the state and action space.

40

5.2. Dataset

The distribution of states and actions is essential, as, in contrast to conventional RL, no
additional exploration of the environment is possible in pure Offline RL.

This thesis investigates two possible dataset generation approaches to ensure a diverse
state-action distribution. One approach is pure random generation, and the other uses
an expert reference line with some noise to generate the dataset.

The Random generation changes the current strategy with a 5% chance. It picks the
lane, Lookahead Distance and Speed Factor with uniform distributions; apart from the
lanes, the distributions range from 0.0 to 2.0. This randomization leads to many crashes,
especially in corners. This strategy records four cars on the track, potentially capturing
evasive maneuvers and overtaking. The four cars start randomly on the track to ensure
that exploration covers the whole track equally.

Expert dataset generation uses a reference trajectory optimized by the minimum curvature
optimization implementation by Heilmeier et al.[21]. During driving, it uses the lane
closest to the nearest point on the reference trajectory and normally distributed Speed
Factor and Lookahead Distance. The distribution for the Lookahead Distance has a mean
of 0.6, a standard deviation of 0.3, and the Speed Factor a mean of 0.5 and a standard
deviation of 0.2. The car starts at the beginning of the lap for this generation strategy,
as crashes in corners are rare.

Both strategies terminate after the car collides with a wall for a second or 50 simulation
steps or if it finishes a lap. Each dataset consists of 250 traces generated by either
strategy. Traces generated by the random strategy generate four different trace files for
each simulation, one for each of the four cars.

5.2.1 State-Action Distribution
In Offline RL, the effectiveness of learned policies depends on the distribution of the
underlying dataset. Based on the strategies for generating the datasets, it is unsurprising
that the datasets derived from random exploration and expert demonstrations exhibit
divergent distributions in general. As expected, the Lane distribution in the Expert
strategy favors the left lane before the others, matching the distribution of the expert
trajectory.

Figure 5.4a visually illustrates that the Random generation strategy effectively explores
a significant portion of the track area. In contrast, Figure 5.4b shows that the Expert
dataset adheres to the reference minimum curvature trajectory.

It is important to note that while the Random generation approach explores more states
compared to the Expert approach, individual traces within this dataset might encounter
early terminations due to collisions. Conversely, although exploring less track area, the
Expert generation strategy shows robust exploration along the reference line.

Figure 5.5a shows the action distributions derived from the Random generation strategy.
As expected from uniformly generated data, all values show almost uniform distributions,

41

5. Racing Controller

(a) Traces of Random dataset. (b) Traces of Expert dataset with expert line.

Figure 5.4: All traces of both generation strategies plotted on the track used in the
simulation. The red line in the Expert dataset indicates the reference trajectory.

Lane

Left Center Right

Speed Factor

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Lookahead Distance

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(a) Distribution of Random dataset.

Lane

Left Center Right

Speed Factor

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Lookahead Distance

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

(b) Distribution of Expert dataset.

Figure 5.5: Action distributions of both generated datasets. The selected lanes are
discrete values, while Lookahead Distance and Speed Factor are continuous values, only
shown in discrete buckets for visualization purposes.

except for singular peaks, which represent the starting configurations in the randomized
generation strategies.

However, a stark contrast emerges in the Expert dataset, as shown in Figure 5.5b. The
Expert dataset demonstrates a different Lane selection behavior, with approximately
two-thirds of its actions using the left lane, closely aligning with the reference line. The
other control values exhibit normalized distributions, again with slight peaks in the initial
states of the simulation.

42

5.2. Dataset

Random Expert
Traces 250 250
Total Steps 169, 513 189, 736
Speed Factor Distribution µ = 1.00, σ = 0.57 µ = 0.50, σ = 0.20
Lookahead Dist. Distribution µ = 1.09, σ = 0.52 µ = 1.00, σ = 0.30
Strategy Distribution L = 32.5% L = 62.6%

C = 35.0% C = 22.8%
R = 32.5% R = 14.6%

Best Lap Time N/A 1:33.62 min

Table 5.3: Distributions and statistics for both generated datasets.

Table 5.3 provides a comprehensive summary of statistics of the two distinct datasets,
Random and Expert, each containing 250 traces. These traces contain many recorded
steps, with the Random dataset totaling 169, 513 steps and the Expert dataset 189, 736.
Notably, the two datasets exhibit different distributions in all parameters.

The Random dataset displays a higher mean Speed Factor of 1.00 with a standard
deviation of 0.57. The Expert dataset has a lower mean Speed Factor of 0.50 with a
standard deviation of 0.20. Regarding Lookahead Distance, the Random dataset has a
mean of 1.09 with a standard deviation of 0.52, while the Expert dataset exhibits a mean
of 1.00 with a standard deviation of 0.30.

The distribution of driving strategies in both datasets differs significantly, with Expert
traces predominantly following the left lane (62.6%) compared to the more evenly
distributed strategies in the Random dataset (32.5% left, 35.0% center, and 32.5% right).

The Random dataset initiates its traces from random starting positions to cover the
entire length of the track, as the randomized driving commands lead to frequent collisions.
These frequent collisions result in the absence of completed laps and the inability to
establish a comparable best lap time, as no full trace exists in the Random dataset from
the starting point used in the Expert dataset to the finish line. Conversely, the Expert
dataset comprises mostly full traces, enabling the determination of a trace with the best
complete lap time of 1:33.62 minutes.

After initial tests with both datasets and considering that the original implementation of
the racing controller ANN performed better with an Expert dataset, this thesis continued
work with the Expert dataset and discarded the Random dataset for further tasks.
Training on the Random dataset led to policies that either produced a trivial solution
(fixed lane and low-level controller parameters) or policies with high variance that did
not converge.

5.2.2 Reward Function
Reinforcement Learning (RL) iteratively updates a policy model, possibly represented by
a neural network, using a reward function. This function returns a numerical value rt

43

5. Racing Controller

after the agent takes an action in the environment, which signals how good the agent’s
action was. The cumulative, possibly discounted sum of all rewards over one series of
interactions with length T in an environment for time t is called the return Rt.

Rt =
T

t′=t

γt′
rt′ (5.1)

With γ = 1.0 the cumulative sum is undiscounted, and the return function is the sum
over all future rewards. In this case, the function is called return to go R̂t. Unlike the
reward, which only represents local results, the return contains all possible penalties
and rewards, making it a valuable tool for environments with sparse rewards and long
sequences.

R̂t =
T

t′=t

rt′ (5.2)

To design a reward function for an autonomous agent, achieving a balance that incentivizes
the desired behavior while penalizing undesirable actions is essential. In autonomous
racing, finishing a lap without colliding with a wall constitutes the desired behavior; thus,
the reward function should assign positive rewards for this achievement.

Conversely, crashing into a wall, representing undesirable behavior, should result in
significant penalties to discourage such actions. However, each time step without collision
should also incur a slight penalty to encourage efficient and speedy performance. This
subtle penalty for inactivity helps motivate the agent to complete laps quickly. By
carefully designing the reward function, we can guide the agent to learn the optimal
racing behavior that balances speed, accuracy, and safety.

Contrary to common practice, we set the reward-to-go to a fixed value when the vehicle
collides with a wall or another vehicle. Without this adaptation, the learning process
would rarely achieve a sensible policy. As every trace ends once the vehicle crosses the
finish line, the reward-to-go also effectively assumes a constant value for states where the
vehicle finishes a lap. It is possible to define the reward-to-go function used in this thesis
as a recursive function instead of an undiscounted sum of rewards.

R̂t =

1.000 if finished
−5.000 on collision
R̂t+1 − 1 otherwise

(5.3)

Equation 5.3 shows the recursive definition of the reward-to-go function for each time step.
When the controller has finished a lap or crashed, the reward in the terminal conditions
is a constant value. Since trace generation does not necessarily stop when the agent
collides with the wall, leaving in traces that contain touching, short contact with the wall,

44

5.3. Decision Transformer

which the agent can recover from, allows the controller to learn recovery while including
undesirable outcomes and the events leading up to those events. As mentioned earlier,
each step that does not end in a terminal condition is penalized with a low penalty to
incentivize the learning of a faster controller.

This reward-to-go function is comparably simple and derives the reward values from the
traces in the dataset and the planned control frequency of the high-level controller. The
fastest-finishing traces take approximately 5, 000 time steps at a control frequency of
10 Hz and a simulation frequency of 50 Hz. It, therefore, takes the agent approximately
1000 control steps to finish a lap. Given that each control step without collision or
finishing a lap has a penalty of −1, a fast lap would result in an episode return of 0.
The collision penalty is an arbitrary negative value, lower than minus the maximum
achievable reward, so no amount of reward can nullify the penalty of a collision.

5.3 Decision Transformer

Decision Transformers (DTs), first introduced by Chen et al.[10], represent an exciting
advancement in artificial intelligence and RL, offering a novel approach to complex
control problems. This concept leverages the power of GPTs by encoding various
system modalities and feeding them to the transformer to predict control actions. These
modalities encapsulate various aspects of the system and consist of reward-to-go, state,
and action tuples. By doing so, DTs aim to synthesize the actions to achieve a specific
target return.

This innovation draws from the transformer’s ability to process sequential data efficiently.
Each modality is assigned a single token, allowing DTs to simultaneously handle and
fuse multiple information streams. This fusion enables the model to maintain a holistic
understanding of the system’s state, its ongoing pursuit of rewards, and the actions it has
taken in the past. It is worth noting that having access to multiple time steps is crucial
for making informed decisions, particularly in environments with long time horizons and
intricate inter-modality dependencies.

DTs operate over multiple time steps, including temporal and inter-modal dependencies
in the decision-making process. This consideration of history enables them to forecast
subsequent actions while striving to maximize the expected return. They have the
potential for applications across various domains, from robotics and autonomous systems
to game-playing and autonomous driving.

The training process for DTs resembles a supervised learning paradigm more than
traditional RL. This disparity stems from the fact that, while the training conditions the
network on the reward signal, it employs a loss function to guide the training process,
optimizing the predictions made by the network. By employing ample training data, the
idea is that the generative capabilities in GPT-based architectures will enable DTs to
extrapolate behavior for previously unseen situations.

45

5. Racing Controller

The DT architecture encapsulates each trace as a series of reward-to-go, state, action
tuples, forming a structured representation. These trace tuples are subsequently passed
as tokens to the transformer, serving as the input for the transformer’s processing. This
representation enables the DT to make informed decisions based on the contextual
information contained within the sequence of tuples.

τ =

R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT

(5.4)

The DT architecture uses a flat representation of the trace to encode the modalities for
processing with the underlying transformer. Equation 5.4 defines the representation for
a trace τ with length T .

Figure 5.6 illustrates the general architecture of DTs. The trace undergoes embedding,
with each modality receiving its dedicated and temporal embedding. The underlying
causal transformer then processes the input tokens and produces a series of output
tokens. This architecture only uses the action tokens of the generated output tokens
after post-processing them with a linear layer.

5.3.1 Hyperparameters
Along with traditional hyperparameters, such as the size and depth of linear or convolu-
tional network components, transformers and the DT architecture introduce two new
relevant hyperparameters. The first is the Context Length, which defines how long the
sequence of input tokens is, and the second is the Embedding Size, which defines the size
of the internal token representation.

In the context of GPT and similar transformer-based models, Context Length refers to
the number of previous tokens or words the model considers when generating predictions
for the next token in a sequence. It represents the extent of the model’s memory or the
historical context it uses to understand and generate coherent and contextually relevant
output. As the DT architecture uses 3-tuples to represent each time step, the context
length is three times the number of time steps the DT considers.

Embedding Size, in turn, refers to the dimensionality or size of the embeddings used to
represent words, tokens, or subword units in the model’s vocabulary. The transformer
maps each token in the input sequence to a dense vector in a high-dimensional space,
and the Embedding Size determines the length or dimension of these vectors.

5.3.2 Adaptions for Autonomous Racing
In order to apply the DT architecture to autonomous racing, several modifications are
necessary to meet the demands of this domain. In this thesis, a significant difference
from the original architecture lies in the action space. While the original paper uses
only continuous or discrete actions, our action space consists of one discrete and two
continuous actions. Those actions are the parameters for the low-level Pure Pursuit

46

5.3. Decision Transformer

Causal Transformer

R̂

a

s a R̂ s a

a

t-1 t-1 t-1

t-1

t t t

t

384
& Pose
& Velocity

Lane
Lookahead
 Distance
Speed Factor

Figure 5.6: Architecture of DT used in this thesis.

controller. Moreover, the state space consists of a depth image and data about the
vehicle’s pose and velocity.

Figure 5.6 visualizes the adapted structure of the DT for autonomous racing. As already
mentioned, certain key elements remain consistent with the original framework. The
reward-to-go, denoted as R̂, remains unchanged. Changes exist in the state representation,
which now encompasses a depth image and essential data on the vehicle’s pose and velocity.
Furthermore, the action space, used as input and output, now contains a selected Lane
(left, center, or right), the Lookahead Distance, and Speed Factor.

These significant changes in the autonomous racing adaptation also necessitate rethinking
how to encode information for the DT architecture. Figure 5.7 shows how the implemen-
tation transforms the values obtained from the simulation into tokens to process with
the GPT backend. Since the DT is an autoregressive transformer, we feed the generated
tokens back into the transformer for inference.

Just as in the original DT architecture, linear layers transform the return-to-go value into
a vector as wide as the Embedding Size of the DT. The mixed action space, on the other
hand, needs more differentiated handling. A linear layer processes the continuous actions,
Lookahead Distance and Speed Factor. The discrete action signals undergo embedding of
the numerical Lane value and then Hyperbolic Tangent (TanH) activation. We employ a
three-layer CNN with Rectified Linear Unit (ReLU) activation for depth images, followed
by a linear layer and TanH activation.

The encoding network adds timestamp embeddings to the embedded values to obtain the
input tokens. We also add the differently embedded modalities together for the actions
and observations. This way, we stick with the three-token-per-time-step layout while
including more than three modalities.

The DT produces action tokens, which subsequently serve as inputs for two separate

47

5. Racing Controller

Timestamps

Return to Go

Sensors

Velocity

Acceleration

Lane

Lookahead Dist.
Speed FactorA

ct
io

n

Depth Image

Embedding

Linear

Linear

Linear

Embedding TanH

CNN + ReLU TanHLinear

+

+

+

R̂

a

s

Figure 5.7: Embedding strategies for the individual modalities passed into the DT. The
left shows the different values obtained from the simulator, and the middle part visualizes
the different layers to process the input values and obtain the tokens for the underlying
GPT network.

networks responsible for predicting discrete and continuous actions. The ReLU activation
function transforms the outputs of both sub-networks to the individual action predictions.
Other tokens generated by the transformer, which would correspond to predicted returns-
to-go and state predictions, remain unused in this implementation.

In contrast to the original implementation, the approach for autonomous racing diverges
from absolute time embeddings, opting for a strategy where time embeddings are purely
relative, assigning time 0 the first time step the DT receives and time context_length/3−1
to the most recent step. Doing so encourages the model to focus on temporal relationships
between modalities rather than the embedded time values. The time values for all three
tokens of a time step are the same.

5.4 Decisions Transformer with Human Attention

In order to reduce the size of the DT while maintaining or even improving network
performance, this thesis uses smaller images as input to the network. Instead of scaling
the images to a smaller size, the network operates on small parts of the image chosen by
a selection policy. The selection policy must either provide all the essential information
to the network or the DT must be able to perform comparable inferences with reduced
data, possibly deducing missing information from the whole provided time frame.

This thesis uses a 4-by-2-grid of the depth image generated by the simulation environment
as a basis for the selection strategy. Selection strategies provide grid coordinates in each
frame as the partial image for usage in the DT. Figure 5.8 shows the grid on top of a
depth image.

48

5.4. Decisions Transformer with Human Attention

Figure 5.8: Selection grid placed over a depth image from the simulator.

(a) Human attention prediction
on depth image.

(b) Partial grid over human at-
tention prediction.

(c) Selected area of the depth
image, selected by the policy.

Figure 5.9: Illustration of the Human Attention Imitation-based selection policy for
partial images.

The reduction in the size of the input image has two effects on the complexity of the
network. Firstly, we can reduce the complexity of the CNNs for image embedding, a
reduction that applies tenfold, once for each considered time step. We can also use a
smaller Embedding Size for the tokens, as the partial images contain less information
than the full image.

One of the selection policies we use a selection policy guided by the Human Attention
Imitation, introduced in Chapter 4. With this policy, we incorporate human attention
into the network. The attention-based selection policy identifies the grid element within
the input image with the highest cumulative attention score. Even though predicting
the attention map for each input image introduces additional overhead in the inference
process, this thesis only compares the complexity and size of the task-specific network,
not the whole stack’s inference time, to investigate the influence of human attention in
ANNs.

Figure 5.9 shows how the Human Attention Imitation-based selection policy determines
the partial image for inference. In subfigure 5.9a, the top 25% of the attention heatmap

49

5. Racing Controller

is displayed over the depth image. Subfigure 5.9b provides a visual depiction of the
selection grid on top of the attention scores. Subfigure 5.9c highlights the selected grid
element based on the attention-driven selection policy. It is worth noting that, owing
to the fixed nature of the grid, the selected grid elements often fail to contain all ROIs
within the input data, which is a limitation of the selection process.

To verify that the Human Attention Imitation-based selection policy benefits the ANN
architecture and not simply profits from the correlative properties of self-attention in
the GPT backend, we use a random selection policy as a baseline. We use the same
Embedding Size and similar hyperparameters to train the network with both selection
policies for good comparison results. Only the approach without a selection policy, which
uses the entire depth image, uses a different Embedding Size.

This thesis refers to the Human Attention Imitation-based selection policy as attention
(att) and the random policy as random (rand). The network using the full images is
referred to as none, as the network operates without any selection policy.

50

CHAPTER 6
Training & Evaluation

51

6. Training & Evaluation

This chapter delves into the critical aspects of training regimes and evaluation strategies
for the networks presented in the preceding chapters. The exploration encompasses the
Human Attention Imitation, trained using supervised learning, and the DT architectures,
which use Offline RL. In the case of supervised networks, training and evaluation phases
were performed in lock-step to gauge the training progress during the training process.
The Offline RL DT networks operate in a fundamentally different but technically similar
paradigm. It uses methods commonly used in supervised learning but evaluates network
performance differently than supervised learning by running simulations with the current
model to determine its performance.

To evaluate the performance of the high-level control networks, we undertake a quantita-
tive and qualitative analysis, comparing the behaviors of models trained using the two
different partial image selection policies and investigating the impact of these policies on
network performance and the stability of their outputs. This chapter aims to provide
valuable insights into the influence of the different partial image selection strategies on
these networks’ training progress and evaluation performance, contributing to a deeper
understanding of their capabilities and limitations.

6.1 Human Attention Imitation
The Human Attention Imitation developed in this thesis uses a supervised learning
approach to optimize the network. In a supervised approach, following each training
epoch, an evaluation epoch evaluates the network’s performance by testing the current
model against a subset of the dataset distinct from the data used for training. This step
plays a crucial role in gauging the network’s progress, helping to ascertain the point at
which it operates effectively without falling prey to overfitting. Overfitting, a common
issue, is often indicated by the training loss decreasing while the evaluation loss increases.
This continual assessment ensures that the network maintains a robust and generalizable
performance.

As the network uses real-world data to train but finds application in simulation envi-
ronments, this section also contains an informal argument that the Human Attention
Imitation can perform adequately in simulation. We have outlined the reasons for not
recording in simulation in Chapter 4. However, the absence of labels in simulation makes
providing a more formal or analytical argument challenging.

6.1.1 Training
Table 6.1 is a reference for the training parameters and hyperparameters utilized during
the development of the model. The training process spans 30 epochs, with each epoch
processing data in batches of 16. We use dataset partitioning to ensure robust model
performance by evaluating the network on data previously unseen, with 80% of the
data allocated for training and the remaining 20% for evaluation purposes. The model
optimization process uses the AWL function, detailed in Section 4.2.2.

52

6.1. Human Attention Imitation

Learning Rate 1 · 10−6

Epochs 30
Batch Size 16
Training Partition 80% (26, 667 frames)
Loss Function Adaptive Wing Loss

Table 6.1: Training parameters for the Human Attention Imitation network.

The training process for our network uses a dataset containing a total of 33, 334 usable
frames, resulting in a training partition with 26, 667 frames. We use an AMD Ryzen
1800X machine with an NVidia GTX1080 graphics card and 64 GB of memory for
training. To enhance the efficiency of both the training and evaluation phases, we used
CUDA[15] hardware acceleration, leveraging the power of GPU parallelism. Our network
implementation uses the PyTorch[37] framework and builds upon Nikhil Tomar’s U-Net
implementation[40].

Figure 6.1 visualizes the progression of the training loss during training. Each epoch’s
performance is represented by error bars, illustrating the maximum, minimum, and
mean loss values achieved during that training phase. A notable observation is that,
after approximately ten epochs, the training loss exhibits only marginal decreases. This
behavior is a significant indicator that the network has achieved convergence.

6.1.2 Evaluation

Following each training epoch, we evaluate the network against a separate evaluation
dataset, maintaining consistency with the training batch size to achieve comparable loss
values. The evaluation process centers around monitoring the evaluation loss, a metric
for gauging the selection of the loss function and the network’s performance. In addition
to the numeric metric of the loss value, visual comparisons offer valuable qualitative
insights to verify that the loss function matches the problem and that the model predicts
desirable results.

Figure 6.1 represents the relationship between the evaluation loss and training loss
throughout the network’s training process. As a general guideline, when the training
loss steadily decreases while the evaluation loss rises, checking if the network starts to
overfit becomes necessary. After approximately 10 epochs, the evaluation loss closely
aligns with the training loss, indicating a good balance between the network’s capacity
to fit the training data and its generalization abilities.

In the subsequent epochs, the evaluation loss remains relatively stable, with only slight
fluctuations. However, a small spike in the evaluation loss is evident in the final epoch,
suggesting a potential early indication of overfitting. To verify that the network is not
overfitting, we visually compared labels from the evaluation dataset with the predictions
from the network.

53

6. Training & Evaluation

Lo
ss

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30

Training
Evaluation

Figure 6.1: Training and evaluation losses of the Human Attention Imitation network.
The elements in the figure mark the maximum (top bar), minimum (bottom bar), and
mean (center circle) loss values for each epoch. The training (yellow) and evaluation
(blue) loss values show early convergence of the network after about ten epochs.

In Figure 6.2, we present four representative samples from the evaluation dataset. The
top row of the figure shows the RGB images; even though the network operates on the
corresponding depth images, the RGB images are more accessible to interpret than their
depth counterparts. The second row consists of the aggregated attention maps used as
labels during the training process. Lastly, the third row shows the network’s predictions,
offering a direct visual comparison between the predicted attention maps and the actual
labels.

We additionally conduct visual comparisons of dataset labels and network predictions.
These comparisons focus on whether the peaks observed in the labels are visible in the
predictions and whether any additional peaks are close to those labeled. Lastly, we check
that the predictions accurately indicate the most pronounced areas in the ground-truth
data. For instance, samples 1 and 2 in the evaluation exemplify well-matching instances
where the predictions closely align with the labeled peaks. Sample 3 provides an example
where not all labeled peaks appear in the prediction as pronounced as in the labels.
In the case of sample 4, the prediction demonstrates a notable shortfall, rendering it
unusable due to its inability to effectively capture ROIs in the input.

54

6.1. Human Attention Imitation
R

G
B

Im
ag

e
La

be
l

Pr
ed

ic
tio

n

Sample 1 Sample 2 Sample 3 Sample 4

Figure 6.2: Predictions by the Human Attention Imitation. For each sample, we show
the RGB image (top) corresponding to the input depth image, the ground truth heatmap
(middle) from the dataset, and the prediction(bottom). While samples 1, 2 and 3 represent
good predictions, sample 4 shows a failure case.

We perform a systematic visual categorization for 50 randomly sampled elements drawn
from the evaluation dataset. We consider 27 samples as Matching, denoting instances
where the model’s predictions meet all evaluation criteria, exemplified by the well-
matching samples 1 and 2. Fifteen samples are considered part of the Not Exactly
category, representing cases where the model’s predictions slightly differ from the desired
outcomes, as seen in sample 3. Additionally, six samples provide unusable results, which
result in them ending up in the Unusable category, such as in sample 4. Notably, two
samples are labeled as Not Applicable as they lacked ground truth labels for evaluation.
We must highlight that we conservatively employ classification, resulting in 42/50 (87.5%
of applicable samples) samples providing acceptable results.

The evaluation of the Human Attention Imitation network has affirmed its satisfactory
performance. The convergence of loss values between the training and evaluation sets
indicates that the network has reached a stable point, and visual verification has shown
that it can generate reliable predictions. Visual comparisons underscore the suitability of
the selected loss function for effectively addressing the problem at hand, further validating
the network’s effectiveness in imitating human attention.

6.1.3 Real-to-Sim Gap

The final challenge for the Human Attention Imitation lies in bridging the gap between
real-world data used for training and the simulated environment used by the racing
controller. It is crucial to ensure that the prediction capabilities of the imitation network
can translate to the simulated environment.

55

6. Training & Evaluation

R
ea

lW
or

ld
Si

m
ul

at
io

n

RGB Images Depth Image Attention Predictions

Figure 6.3: Similarity between real-world (top) and simulated (bottom) driving scenarios,
associated sensor data, and predicted attention heatmaps. Despite the differences in
inputs, both predictions focus on the inner track boundary.

To verify this, We visually compare predictions of similar situations in simulated and
real-world data to provide an informal argument that the attention filter also works with
simulated data. Most of the predictions used for the comparison are close to attention
heatmaps in recorded data for similar situations. Even with noise added to the sensor
data by the simulation environment, the simulated data is more precise and has fewer
measurement artifacts. There are also some slim deviations in the setup of the tracks,
especially the height of the track boundaries.

Figure 6.3 presents analogous driving scenarios in real-world and simulated data, high-
lighting the network’s ability to generalize to simulation. The situations used for the
comparison differ in some key aspects, but the Human Attention Imitation provides
comparable predictions. In the real-world example, the vehicle is closer to the corner
when compared to the simulated frame. The figure showcases three key elements: the
RGB image, the depth image, and the prediction generated by the Human Attention
Imitation.

While depth images for real-world and simulated data have a broader field of view than
the RGB image, the predictions mostly align. Both predictions highlight areas at the top
of or slightly extend over the inner boundary. This consistent behavior observed across
many randomly picked scenarios verifies the ability of the attention imitation model to
transfer well to simulation.

6.2 Overtaking Controller

In contrast to the Human Attention Imitation, the racing controller adopts a RL framework
for training. RL traditionally interacts with the environment to record traces with reward
scores and optimizes the network to achieve the highest reward scores. This method faces

56

6.2. Overtaking Controller

data collection and evaluation challenges with possibly unsafe policies for some physical
systems, mainly if used at their physical limits.

This thesis employs two key measures to work around these challenges. First, simulation
for RL training removes the need to record real-world data, provided that the simulation
accurately emulates real-world dynamics and scenarios. Second, we employ Offline RL,
allowing data to be generated once and subsequently loaded, which significantly eases
the computational burden, especially when employing resource-intensive simulations.

Chen et al.[10] employ a novel approach to perform Offline RL to condition the GPT-
based DT on the return-to-go parameter. In this approach, training relies on a loss
function to guide the learning process instead of traditional RL methods that use rewards
or episode returns for optimization. This approach is closer to supervised learning than
RL.

Despite the deviations from traditional RL in the training process, the evaluation phase
relies on conventional RL techniques. Following each training epoch, a simulation
environment evaluates the network’s performance using the network as the control policy.
The system records key performance indicators during those evaluation runs to determine
the performance of the current policy.

Possible metrics in autonomous racing include the progress made on the track before
any potential crashes occur and the lap times achieved. Additionally, the variance in
the control outputs generated by the trained policy is an essential comparative measure,
ensuring that the network’s decision-making remains consistent and reliable across diverse
scenarios.

This section describes the training regime for the racing controller implementation and
the deviations for the two implementations based on partially selected sub-images. It
also describes the different combinations of training and hyperparameters used to get
the complete image-based DT to work. After details about training, the section gives an
overview of the evaluation process and the results obtained from the evaluation.

6.2.1 Training

Unlike traditional Offline RL methodologies, the DT adopts a supervised learning ap-
proach. The primary objective of this training process is to condition the network to
predict actions that will yield a specific return-to-go outcome in a given state. Supervised
learning approaches require a loss function to guide the optimization process. This loss
function requires careful selection to facilitate effective training.

The state space of the DT in this thesis incorporates two distinct action types: discrete
Lane selection and continuous parameters for low-level controller adjustments. We employ
a hybrid loss function to train the model, utilizing Cross-Entropy (CE) loss for the discrete
actions and Mean Squared Error (MSE) loss for the continuous actions. Equation 6.1
formally defines this hybrid loss function. In this equation, a denotes the ground truth

57

6. Training & Evaluation

Training Parameters
Learning Rate 5 · 10−9

Weight Decay 6 · 10−6

Epochs 15
Steps per Epoch 1, 000
Warmup Steps 2, 000
Batch Size 32

Hyperparameters
Context Length 30
Embedding Size 2048
Execution Frequency 10 Hz
Partial Image Size N/A
Image Embedding Layers 256x128x1 → 31x63x32 →

14x30x64 → 12x28x64
Trainable Parameters 195.297.452

Table 6.2: Training parameters and hyperparameters for the full-image DT network.

actions and â the predicted actions, ac and âc denote the continuous actions, ad and âd

the discrete actions.

L(a, â) := CrossEntropy(ad, âd) + MSE(ac, âc) (6.1)

Typical use cases for CE loss include classification problems in which it calculates the loss
between a one-hot encoded prediction with a reference class index. This thesis uses the
PyTorch implementation of the cross-entropy loss function. In addition to working well
with the rest of the framework, the PyTorch implementation offers the option to assign
different weights to each class, which helps when dealing with unbalanced datasets.

The assigned weights help prevent the model from overly fixating on a single class,
ensuring a more balanced and accurate learning process if the class distribution in the
dataset is unbalanced. We chose the class weights as the inverse of the class distribution
within the dataset. The weights assigned to the left, center, and right lane classes are
1.0
62.6 , 1.0

22.8 , and 1.0
14.6 , respectively.

For the CE loss function, classes refer to the different categories or labels the model
predicts. This loss function offers the flexibility to assign different weights to each class,
which proves particularly valuable when dealing with unbalanced datasets. The assigned
weights help prevent the model from overly fixating on a single class, ensuring a more
balanced and accurate learning process. In this specific implementation, we chose the
class weights as the inverse of the class distribution within the dataset. For instance,
the weights assigned to the left, center, and right lane classes are 1.0

62.6 , 1.0
22.8 , and 1.0

14.6 ,
respectively.

58

6.2. Overtaking Controller
Lo

ss

Training Steps

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000

Discrete Loss
Continuous Loss
Total Loss

(a) Trace that managed 70.86% of a lap.

Lo
ss

Training Steps

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000

Discrete Loss
Continuous Loss
Total Loss

(b) Trace that managed 65.51% and had a
lower projected lap time.

Figure 6.4: Training losses for the full-image DT models. The total loss (gray) is the
sum of the loss values for the continuous (blue) and discrete actions (yellow).

Table 6.2 presents an overview of the training parameters used for the full-image DT
model. It shows various hyperparameters for training and fine-tuning the model. These
parameters include the learning rate, weight decay, number of epochs, warmup steps,
context length, batch size, and Embedding Size. The learning rate is 5 · 10−9, indicating
the step size for optimization during training. Weight decay, which controls regularization,
is 6 · 10−6.

The model undergoes training for 15 epochs, with a warmup phase spanning 2,000 steps.
The context length is 30, determining the historical data considered in each training
sub-trace, while a batch size of 32 defines the number of sub-traces processed in each
training iteration. Lastly, the Embedding Size is 2048, which impacts the size of the
embedded representations used by the model.

Since the simulation environment runs at 50 Hz, but the network operates at only 10
Hz, inference only uses every fifth frame from the dataset. This choice gives the model a
temporal window of 10 frames, equivalent to 1 second. Each time step uses three tokens
for encoding, so the network must process 30 tokens, requiring a context length of 30.
The dataset has 1,164,448 recorded frames, translating to 232,988 decision steps used
for training. In each training epoch, the 1,000 training steps result in training on 32,000
traces. The warmup phase, during which the learning rate steadily increases, persists for
two epochs, allowing the optimizers to collect statistical information and yield better
optimization results.

Figure 6.4 shows the training loss dynamics for two full-image DT networks, which
are the ones used in the evaluation. One of the networks manages to drive 70.86% of
the track but takes considerable time (Fig. 6.4a). The other trace is faster but only
manages 65.51% (Fig. 6.4b). The figure shows the total loss and the loss split into two
distinct components: the loss associated with discrete and continuous actions. While

59

6. Training & Evaluation

rand att
Training Parameters

Learning Rate 1 · 10−8 5 · 10−9

Weight Decay 6 · 10−6 6 · 10−6

Epochs 15 15
Warmup Steps 2, 000 2, 000
Steps per Epoch 1, 000 1, 000
Batch Size 32 32

Hyperparameters
Context Length 30 30
Embedding Size 512 512
Execution Frequency 10 Hz 10 Hz
Partial Image Size 64 64
Image Embedding Layers 64x64x1 →

15x15x32 → 7x7x64
64x64x1 →
15x15x32 → 7x7x64

Trainable Parameters 12.743.884 12.743.884

Table 6.3: Training parameters for the partial-image DT networks. Both networks use a
smaller Embedding Size, resulting in a smaller CNN for embedding the input images and
fewer trainable parameters. The learning rate is the only difference in training parameters
between the two networks indicated in bold.

the continuous loss values show an initial relatively fast convergence, the losses for the
discrete actions only decrease slightly, and the noise even increases over time.

The different behavior of the loss functions, observable in both traces, indicate the
challenges in optimizing mixed action spaces. As no evaluation phase checks the loss
values for a separate dataset, it is challenging to detect overfitting or other issues
with training. Interestingly, this behavior is observable in both loss histories, possibly
indicating structural problems with this thesis’s mixed action space approach.

Table 6.3 provides an overview of the training parameters for both partial-image DT
models, with Human Attention Imitation-based and the random selection policy. Most
parameters for training are equal for both implementations; only the learning rate is
different for the approaches. The Human Attention Imitationapproach uses a learning
rate of 5 · 10−9 while the model with the random selection policy uses a slightly higher
learning rate of 1 · 10−8. Both use an Embedding Size of 512 and partial images of size 64
x 64. The CNN to embed the images uses two layers with size transitions progressing
from 64x64x1 to 15x15x32 and ultimately to 7x7x64. The remaining parameters are the
same as in the full-image DT.

Figure 6.5 shows the training losses for two partial-image DT networks using the random
selection policy. The network that managed to drive a full lap exhibits an initial higher
training loss of 0.5 that gradually converges to an approximate loss of 0.1. The faster
network starts with a lower loss value of about 0.35 but similarly converges to a loss of

60

6.2. Overtaking Controller
Lo

ss

Training Steps

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000 12000 14000

Discrete Loss
Continuous Loss
Total Loss

(a) Trace that managed a full lap.

Lo
ss

Training Steps

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000

Discrete Loss
Continuous Loss
Total Loss

(b) Trace that managed 89.55% of the track in
a faster projected lap time than the full lap.

Figure 6.5: Training losses for the partial DT models with random sub-image selection.
The total loss (gray) is the sum of the loss values for the continuous (blue) and discrete
actions (yellow).

approximately 0.1. Both networks converge at a comparable loss level, suggesting they
reach a similar state during training.

The continuous action loss, in the same fashion as for the full-image DT, plays a dominant
role in the total loss throughout training. Again, the discrete action loss remains relatively
stable and consistent across the training process. This continued discrepancy in loss
trends might indicate that combining different action spaces requires different optimizers
or a joint loss function that can deal with discrete and continuous values.

For the final network configuration, Figure 6.6 shows the training losses of the network
that managed to drive a full lap while simultaneously driving the fastest lap time with the
Human Attention Imitation-based sub-image selection policy. The losses for continuous
and discrete action values are similar to the other network configurations, with the discrete
loss values remaining constant with considerable noise and the continuous loss values
converging after approximately 7000 training steps. Like the random selection policy
network that can drive a whole lap, the continuous loss values start at approximately
0.35 and converge to 0.1.

The consistently low final loss value of approximately 0.1 and the converging trend
observed in the training process signal that the networks have undergone effective
training, successfully adapting to their respective tasks. The small changes to the discrete
action loss values indicate that the employed hybrid loss function is suboptimal, and
other solutions might yield better results. However, it is worth noting that identifying
overfitting is difficult without evaluation losses.

61

6. Training & Evaluation

Lo
ss

Training Steps

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000

Discrete Loss
Continuous Loss
Total Loss

Figure 6.6: Training losses for the partial DT model with Human Attention Imitation-
based sub-image selection policy. The total loss (gray) is the sum of the loss values for
the continuous (blue) and discrete actions (yellow).

6.2.2 Evaluation
We conduct a systematic evaluation to determine which approach is the most effective
among the three different ones we propose. Six models are trained for these three
approaches, with prior fine-tuning of the training parameters to ensure optimal learning
conditions.

We systematically choose two representative runs from each pre-processing approach
from the various training attempts conducted. One is selected based on its ability to
complete a full lap, indicating the model’s capacity for safe driving, and the other for its
speed.

Within each selection policy, we carefully pick one attempt that manages to produce the
fastest run that completes a lap. Additionally, we select the quickest run that reached
significant progress, at least 50%, for the speed-oriented selection. We used the projected
lap time, calculated as run time

progress , to determine the speed of traces unable to complete laps.

Table 6.4 shows the selected runs used in the comparison. Under the att selection policy,
the fastest network also completes a whole lap. We, therefore, selected only one trace to
represent this selection policy. Notably, most of the more successful runs of all selection

62

6.2. Overtaking Controller

Name Sel. Policy Att. Epoch Progress Time Proj. Time
Best att 6 1 100% 2:03.06 min 2:03.06 min
Furthest none 1 11 70.86% 2:46.82 min 3:55.41 min
Fast none 4 7 65.51% 2:07.70 min 3:14.92 min
Full rand 2 9 100% 4:05.40 min 4:05.40 min
Fast rand 5 3 89.55% 2:36.96 min 2:55.27 min

Table 6.4: Selected evaluation runs for the comparison. The Selection Policy, Attempt,
and Epoch uniquely identify each trace. Each evaluation run has a Name for identification
unique per Selection Policy. Progress and Time give the maximum progress and the
running time the evaluation run achieved. Projected Time is the estimated lap time used
for traces that failed to finish a lap. Bold values, if present, indicate the best value in
each column.

policies exhibit the best performance after only a few training epochs, with a total of 15.

None of the six networks trained on full images accomplished a whole lap. We suspect
the causes might be diverse, ranging from too little Embedding Size to overfitting.
Consequently, we use the runs that achieve the most progress, providing a basis for
comparison with runs that achieved complete laps.

This section of the thesis focuses on evaluating and comparing the performance of
individual selection policies. It delves into a detailed analysis of their respective outcomes
and offers a comparative assessment. The comparison uses three metrics: relative progress,
driven path, and the variance of control outputs.

In our performance discussion, we undertake a detailed analysis of the model’s actions,
encompassing three primary components: the selected Lane, Lookahead Distance, and
Speed Factor. These actions are crucial in determining the high-level controller’s behavior
and decision-making. To gain deeper insights into the actual behavior of the controller,
we also investigate the effective actions. The high-level controller derives the effective
Lane by applying argmax to the continuously valued output vector. Comparing these
values provides a more accurate representation of the controller’s choices as it represents
the selected Lane.

Full image Decision Transformer

None of the six networks trained on full images demonstrates the capability to complete
whole laps over a wide array of different attempts at hyperparameter configurations.
These attempts involved experimenting with Embedding Sizes of 1024 and 2048; however,
we did not pursue further exploration of larger Embedding Sizes to avoid excessive model
sizes. We tested an array of learning rates, including 1 · 10−6, 1 · 10−7, 6 · 10−8, 5 · 10−8,
1 · 10−8, 5 · 10−9, 1 · 10−9, and 1 · 10−10, to optimize the network, but neither of them
yielded a policy able to complete a whole lap. Additionally, we tried variations in epoch

63

6. Training & Evaluation

Lane

0.0

0.2

0.4

0.6

0.8

0 s 50 s 100 s 150 s

Progress

20 %

40 %

60 %

Left
Center
Right

Lookahead Distance

0.0

0.5

1.0

0 s 50 s 100 s 150 s

Speed Factor

0.0

0.5

1.0

0 s 50 s 100 s 150 s

Progress

20 %

40 %

60 %

(a) Evaluation actions for the trace with the
furthest progress.

Lane

0.0

0.2

0.4

0.6

0.8

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

Left
Center
Right

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress20 %

40 %

60 %

(b) Evaluation actions for the trace with the
fastest progress.

Figure 6.7: Action outputs by the full-image DT implementation. The upper graph shows
the continuous outputs for the selected Lane (yellow: left, blue: center, gray: right) over
the progress on the track (black). The lower left plot shows the Lookahead Distance, and
the lower right shows the Speed Factor in each evaluation run.

sizes, the presence or absence of weight decay, and different configurations for warmup
steps to find possibly working configurations.

Among the various configurations evaluated, the settings outlined in Table 6.2 emerged
as the most successful in terms of both progress and projected lap time. Five of the
six runs accomplish more than 50% of a lap, with two successfully navigating the most
challenging section of the track, the steepest corner, where the other policies crash. It is
worth noting, however, that even the network that achieves the most progress crashes at
the second left corner. Similarly, the swiftest run terminates at the first left corner after
a collision.

Figure 6.7 shows the continuous output action values generated by the networks, with 6.7a
showcasing the trace with the most progress, denoted as Furthest, and 6.7b featuring the
fastest trace, in the following called Fast. Notably, the Furthest trace exhibits a notable
behavior where it initially employs the left (yellow) lane and subsequently switches to
the right (gray) lane. This behavior contrasts with the Fast trace, which predominantly
adheres to the right lane. A noteworthy observation is that, in the Furthest trace, the
continuous output actions for Lane selection consistently display relatively high values
for the center lane despite not being utilized due to the higher values for the right lane.

The values predicted for the center lane might indicate that the network would prefer to
drive in the middle between the right and the center (blue) lane, with a slight preference
for the right lane. The action space allowing driving between lanes would require a
different design - continuous instead of discrete - to drive in the middle of multiple lanes
but could warrant further exploration.

64

6.2. Overtaking Controller

Lane

L

C

R

0 s 50 s 100 s 150 s

Progress

20 %

40 %

60 %

Lookahead Distance

0.0

0.5

1.0

0 s 50 s 100 s 150 s

Speed Factor

0.0

0.5

1.0

0 s 50 s 100 s 150 s

Progress

20 %

40 %

60 %

(a) Effective evaluation actions for the Furthest
trace.

Lane

L

C

R

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress20 %

40 %

60 %

(b) Effective evaluation actions for the Fast
trace.

Figure 6.8: Effective action outputs by the full-image DT implementation. The controller
uses the argmax function to determine the effective Lane used in the low-level controller.
The upper half shows the currently selected Lane over time and the track progress (black).
The lower plots show the Lookahead Distance and Speed Factor.

The Lookahead Distance for both traces remains relatively constant, while the Speed
Factor of the Furthest trace experiences a minor initial increase, followed by modest
fluctuations. In contrast, the fast trace demonstrates an early rise in the Speed Factor,
with subsequent fluctuations similar to those of the Furthest trace.

The observed values in both traces exhibit relatively low variance, and the Lane selection
values within both traces demonstrate distinct responses to corners, reflected by transient
flat sections in the black progress line. Even though the continuous values show reactions
to approaching corners, the selected Lane remains the same. This behavior is further
illuminated in Figure 6.8, highlighting the values effectively employed by the low-level
controller. Here, a prominent preference for the right lane becomes evident.

The behavior exhibited by the Furthest trace before encountering the first corner is
promising. It initiates in the outer (left) lane with a lower speed and subsequently
transitions to the right lane, accelerating as it navigates out of the corner. This behavior
closely aligns with the outcome of minimum curvature optimization, but after the corner,
the model changes to a constant policy after this corner. The initial good driving suggests
that the network could achieve better results through further refinements in the network
structure and training strategies.

While the full-image DT demonstrates promising behavior in one of the challenging
corners, its inability to generalize and complete a full lap throughout this thesis suggests
the presence of potential limitations. These issues could arise from insufficient Embedding
Size or other training complexities. However, it is noteworthy that the model displays
low variance in its control outputs, indicating its capacity to learn a stable and consistent
decision-making policy.

65

6. Training & Evaluation

Lane

0.0

0.5

1.0

0 s 50 s 100 s 150 s 200 s

Progress

20 %

40 %

60 %

80 %

100 %

Left
Center
Right

Lookahead Distance

0.0

0.5

1.0

0 s 50 s 100 s 150 s 200 s

Speed Factor

0.0

0.5

1.0

0 s 50 s 100 s 150 s 200 s

Progress

20 %

40 %

60 %

80 %

100 %

(a) Evaluation actions for the Full trace.

Lane

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s 140 s

Progress

20 %

40 %

60 %

80 %

Left
Center
Right

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s100 s120 s140 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s100 s120 s140 s

Progress

20 %

40 %

60 %

80 %

(b) Evaluation actions for the Fast trace.

Figure 6.9: Action outputs by the partial-image DT implementation using rand. The
upper graph shows the continuous outputs for the selected Lane (yellow: left, blue:
center, gray: right) over the progress on the track (black). The lower left plot shows the
Lookahead Distance, and the lower right shows the Speed Factor in each evaluation run.

Random Selection Policy

Among the networks trained using the random sub-image selection policy, 5 out of 6
demonstrated the ability to navigate more than 50% of the track. Three of these networks
navigate over 80% of the course, while 2 out of the six networks encounter crashes
in the last corner. Remarkably, one network excels, completing a full lap, while the
fastest network drives 89.55% of the track. During the dial-in phase, we explored various
training parameter configurations, and while some did yield complete laps driven, the
configuration detailed in Table 6.3 consistently produces good training results.

Figure 6.9 shows the output actions of the networks with 6.9a illustrating the trace that
completed a full lap and 6.9b depicting the fastest trace. Both networks prefer the center
(blue) lane as their primary choice. Nevertheless, there is a shared minor peak in the
right (gray) continuous Lane output towards the end of the trace, while neither network
uses the left (yellow) lane much.

The Lookahead Distance and Speed Factor exhibit similar behavior in both traces,
adjusting dynamically to changes in trajectory. While the Speed Factor for the faster
trace remains consistently higher than that for the full lap, it drops at the end of the
trace, where the fast trace effectively halts. The Lookahead Distance decreases as both
networks approach corners, utilizing more dynamic driving behavior in the low-level
controller, and increases on straight sections, enabling more stable driving.

The high variance in the control outputs complicates discerning which Lane is active.
However, Figure 6.10 presents the effective actions and provides a clearer view of the
currently used Lane. Surprisingly, it reveals that both traces spend a substantial amount
of time in the left lane. Transitions between lanes also exhibit considerable noise, making

66

6.2. Overtaking Controller

Lane

L

C

R

0 s 50 s 100 s 150 s 200 s

Progress

20 %

40 %

60 %

80 %

100 %

Lookahead Distance

0.0

0.5

1.0

0 s 50 s 100 s 150 s 200 s

Speed Factor

0.0

0.5

1.0

0 s 50 s 100 s 150 s 200 s

Progress

20 %

40 %

60 %

80 %

100 %

(a) Effective evaluation actions for the Full
trace.

Lane

L

C

R

0 s 20 s 40 s 60 s 80 s 100 s 120 s 140 s

Progress

20 %

40 %

60 %

80 %

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s100 s120 s140 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s100 s120 s140 s

Progress

20 %

40 %

60 %

80 %

(b) Effective evaluation actions for the Fast
trace.

Figure 6.10: Effective action outputs by the partial-image DT implementation using
rand. The upper half shows the currently selected Lane over time and the track progress
(black). The lower plots show the Lookahead Distance and Speed Factor.

the network’s Laneswitching behavior somewhat erratic. The full lap trace displays
higher noise during Lane changes, while the fast trace demonstrates shorter noise during
transitions between lanes.

The unexpectedly high use of the left lane stems primarily from the implementation
details of the PyTorch argmax function. This implementation returns the index of the
first occurrence of the maximum value, which, in the case of an all-zero vector, is the
index 0, resulting in the left lane, which uses index 0 in this thesis’ implementation.

Despite the high variance in the control outputs, the action trend remains remarkably
consistent. This consistency underscores the effectiveness of the context-aware GPT
architecture employed by the DT. Despite the high variance in individual actions, the
network’s ability to maintain a cohesive overall course showcases the robustness and
adaptability of this approach.

Random sub-image selection emerges as a viable tool to reduce the complexity of the DT
architecture, enabling the learning of fast and effective policies capable of driving complete
laps. Despite the inherently random nature of the inputs, consistent trends in output
actions point to the DT’s capacity to establish meaningful temporal connections. This
ability is showcased in the network’s learned policy for controlling Lookahead Distance
and Speed Factor, which aligns closely with the intuitive behavior exhibited by human
drivers, exemplifying the adaptability and decision-making capabilities of the DT.

Human-Attention Imitation Selection Policy

Among the networks trained with Human Attention Imitation-based sub-image selection,
4 out of 6 can navigate more than 50% of the track. However, 2 out of the six networks

67

6. Training & Evaluation

Lane

0.0

0.2

0.4

0.6

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

80 %

100 %

Left
Center
Right

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

80 %

100 %

(a) Evaluation actions for the trace using the
att selection policy.

Lane

L

C

R

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

80 %

100 %

Lookahead Distance

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Speed Factor

0.0

0.5

1.0

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Progress

20 %

40 %

60 %

80 %

100 %

(b) Effective evaluation actions for the trace
using the att selection policy.

Figure 6.11: Output and effective output actions for the partial-image DT network using
the att selection policy. The upper graph shows the continuous outputs for the selected
Lane (yellow: left, blue: center, gray: right) over the progress on the track (black). The
lower left plot shows the Lookahead Distance, and the lower right shows the Speed Factor
in each evaluation run.

fail to initiate driving, while another two encounter crashes at the steepest corner of the
track. 2 of the six networks complete a full lap. One of these successful laps achieves
remarkable speed, outperforming the other full trace by 66 seconds. Consequently, we
consider only the fastest network that drives an entire lap for comparison, denoted as
Best.

Figure 6.11a presents the output actions of the attention-based network, showing distinct
Lane selection outputs. The trace begins by driving on the left (yellow) lane and
subsequently transitions to the center (blue) of the track, maintaining this central lane for
most of the course, with a brief return to the left lane towards the end. The Lookahead
Distance is consistently low, even on straight sections, resulting in some oscillation on
straight sections. At the same time, the Speed Factor exhibits a slight reduction before
corners yet consistently remains high for most of the track, decreasing during the final
few corners and increasing at the end of the trace.

The network consistently generates low-variance outputs, even after just one training
episode, underlining its stability and reliability in decision-making. Figure 6.11b shows the
effective actions executed by the low-level controller. Compared to the random selection
policy, the intervals marked by noise during Lane changes are shorter, highlighting the
network’s more precise Laneswitching behavior. Even though this model achieves the
fastest lap times of all trained models, its outputs differ from the values in the minimum
curvature trajectory.

The network achieves fast lap times despite driving a trajectory different from the expert
dataset. The low variances observed in its control outputs indicate that the network has

68

6.2. Overtaking Controller
Re

la
tiv

e
Pr

og
re

ss

Time

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Attention
Random
None

(a) Relative progress for the traces of complete
laps.

Re
la

tiv
e

Pr
og

re
ss

Time

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 s 20 s 40 s 60 s 80 s 100 s 120 s

Attention
Random
None

(b) Relative progress for the traces that drive
fast and manage considerable progress.

Figure 6.12: Relative progress comparisons between att (black), rand (yellow), and none
(blue) evaluation runs.

successfully learned a stable and reliable policy. Furthermore, as evidenced by the Lane
output changes, the network’s adaptive behavior during corners suggests that it reacts to
visual inputs.

Comparative Analysis

We conduct a comprehensive evaluation across different criteria to determine the effec-
tiveness of the three selection policies for partial image inputs to a network. In this
evaluation, we compare relative progress values among evaluation traces to assess their
performance. Visual comparisons of the paths driven by different policies offer valuable
insights into their decision-making and ability to react to visual cues. Furthermore, we
analyze the variance in the output behaviors of different networks to assess their stability.

Calculating relative progress involves setting a baseline trace as a reference, in this case,
the Best trace from the Human Attention Imitation-based network. For the other two
approaches, we divide the reported progress by the reported progress of the baseline at
each time step. If the resulting value is less than 1, it signifies that the other trace is
slower than the baseline trace, and conversely, if it is greater than 1, it indicates that the
other trace is faster.

Figure 6.12 compares the Human Attention Imitation-based trace with the traces that
completed a lap, as shown in Figure 6.12a, and the fast traces, shown in Figure 6.12b. In
both comparisons, the attention-based trace consistently outperforms the others, finishing
its laps before the other traces either complete a lap or encounter simulation terminations.
These premature terminations occur primarily due to crashes or the car stopping to drive.

The full-image DT starts slower when comparing complete laps, while the random
selection-based network quickly reaches a level of performance close to the baseline. This

69

6. Training & Evaluation

behavior changes as the random approach slowly falls more and more behind the baseline.
At the same time, the full-image approach catches up with the random approach and
eventually overtakes it. Despite this, the full-image DT maintains only a slight lead, with
approximately 55% at the end, over the random approach, which reaches about 50% by
the time the attention-based approach finishes.

This pattern slightly changes when comparing the fastest traces. Both the random
selection and full-image networks show an initial dip in progress. While the full-image
DT initially manages to catch up to the random selection network, the random approach
continuously drives slightly faster than the full-image approach. The full-image DT
manages around 65% of the track, while the random selection policy achieves 75% before
the attention-based approach finishes the lap.

The comparison of relative progress among different selection strategies shows that the
attention-based sub-image selection policy yields the fastest full lap, showcasing its
usefulness in autonomous racing. In contrast, the random sub-image selection drives
slower and with more variance in the output values, likely due to the higher variance
in the input images. Given that the full-image approach manages to catch up with
the random selection network in the full-lap comparison, improving the architecture’s
performance appears possible.

In autonomous racing, the pursuit of speed must go hand in hand with safety. We
investigate the trajectories that the various networks drive to assess the safety of the
driving behavior. By examining these paths alongside the actions the networks execute,
we gain valuable insights into their ability to control the low-level controller effectively.
Behaviors like oscillating, overshooting, or cutting corners are undesirable while driving
through corners with as little way traveled as possible, and smooth steering is desirable.

Figure 6.13 shows the paths driven by the models under comparison. Figure 6.13a
illustrates the paths of the networks completing total laps, while Figure 6.13b showcases
the paths of the fastest traces. The attention-based trace (blue) is the same in both
plots, as it was both the fastest and the trace that completed a whole lap. It drives with
little overshooting and follows the selected Lane closely. However, oscillations in the path
occur in two areas, notably after the steepest corner and between the final two corners.
These oscillations stem from the low lookahead values of the network outputs in these
areas.

In the case of complete laps, the random (yellow) strategy closely adheres to the lanes
with minimal overshooting or corner-cutting and without oscillations. In stark contrast,
this category’s full-image (gray) DT network tends to overshoot significantly. This
overshooting behavior eventually results in a crash towards the middle of the track. We
attribute these issues to a high Speed Factor and a low Lookahead Distance.

In the comparison of the fastest laps, a similar pattern is visible. The random Fast
trace demonstrates Lane adherence but slightly cuts corners, even more so than the
random Full trace. On the other hand, the full-image DT continues to exhibit an
overshooting tendency, eventually leading to a crash. This observation underscores a key

70

6.2. Overtaking Controller

 Attention
 Random
 None

(a) Models that drive full laps or the furthest
for their respective selection policy.

 Attention
 Random
 None

(b) Models that drive fast lap times and a
significant portion of the track.

Figure 6.13: Traces of evaluation runs plotted on a track map. The recording for the att
(blue) trace is the same, as this trace was the fastest recorded and completed a whole lap.

point—high speed is not always advantageous, as safety and stability are also paramount
in autonomous racing scenarios.

The comparison of the paths taken by the networks yields several notable findings. While
the attention-based network may exhibit impressive speed, it oscillates significantly,
behavior generally considered undesirable. In contrast, the random selection network
demonstrates an ability to closely follow the lanes on the track and react to changes in
the track. On the other hand, the full-image DT encounters challenges in learning a
dynamic and adaptive strategy, possibly due to an inadequate Embedding Size to process
the complete image or issues stemming from the training process.

We suspect the underlying GPT network combines an internal representation of the
entire image based on the random snippets it receives. Even though this representation
would have a coarse temporal resolution, with this internal representation, a model could
interpret the whole scene without receiving it as input.

Finally, we compare the output variances of the networks under comparison. This
comparison provides valuable insights into the stability of the network’s policy. We
compute the variance about a moving average µi over 50 time steps (equivalent to 10
control steps). To calculate the variance of a set of values, we use the following formula:

Variance σ2 = 1
N

N

i=1
(xi − µi)2 (6.2)

where N represents the length of the trace, xi are individual data values, and µi signifies
the moving average.

71

6. Training & Evaluation

att rand none
full fast furthest fast

Left Lane 1.87 · 10−3 9.97 · 10−5 8.01 · 10−5 1.92 · 10−4 1.24 · 10−3

Center Lane 3.47 · 10−3 1.75 · 10−2 5.40 · 10−3 4.09 · 10−5 0.00
Right Lane 1.07 · 10−4 1.78 · 10−3 8.50 · 10−4 8.44 · 10−5 8.87 · 10−4

Lookahead Dist. 2.07 · 10−3 1.31 · 10−2 9.94 · 10−3 3.11 · 10−5 7.89 · 10−4

Speed Factor 4.19 · 10−3 1.51 · 10−2 1.74 · 10−2 5.02 · 10−5 1.51 · 10−3

Table 6.5: Variance for action output values in the evaluation runs under comparison.
As the Lane selection values for some traces are 0.0 for long stretches, variances of those
selection values are less informative.

Table 6.5 presents the variance values for each action output, providing insights into the
stability of each network’s policy. The variance comparison predominantly focuses on
the Lookahead Distance and Speed Factor. While the variance for the Lane actions is
less informative. As both random approaches output zero values for the action output
values for the left lane, the resulting zero variance influences the averaging in the variance
calculation.

The analysis of variance values reveals notable differences between the various sub-image
selection policies. While the random selection policy demonstrates similar variance values
for the Lookahead Distance and Speed Factor, the faster full-image DT displays higher
variance in the Lookahead Distance than in the Speed Factor. Furthermore, the Speed
Factor variance in the fastest full-image DT is approximately 2.5 orders higher than that
of the furthest trace.

The variance values of the attention-based network are roughly an order of magnitude
smaller than those of the random selection network. Additionally, the full-image DT
exhibits smaller variance values than the Human Attention Imitation-based network,
underscoring the differences in the stability and adaptability of these sub-image selection
policies.

The recorded att trace, captured after a single training epoch, stands out for its lower
variance than the random networks trained over 3 and 9 epochs. This observation
highlights the attention-based network’s capability to learn a more stable policy early
in its training process. Nevertheless, we expected the increased variance in the random
networks, given that they inherently receive more variable inputs due to the random
selection of sub-images. Furthermore, the full-image DT employed more training epochs
(7 and 11) to achieve comparable variance.

The lower variance in the att trace, captured after a single training epoch, compared to
the variance of the random networks trained over 3 and 9 epochs, shows the influence of
Human Attention Imitationon a network’s capability to learn a more stable policy early
in its training process. Nevertheless, we expected the increased variance in the random
networks, given that they inherently receive more variable inputs due to the random

72

6.2. Overtaking Controller

selection of sub-images. Furthermore, the full-image DT employed more training epochs
(7 and 11) to achieve comparable variance.

One intriguing conclusion we dare to draw is that the attention-based network exhibits a
variance profile akin to that of the full-image DT trained over seven episodes. This insight
underscores the potential of Human Attention Imitationto enhance network performance,
presenting an avenue for further exploration and development in the domain of ANNs.

73

CHAPTER 7
Conclusion

75

7. Conclusion

In this chapter, we summarize the contributions made in this thesis. We develop a
novel architecture inspired by human attention for Reinforcement Learning (RL). The
proposed approach developed within this thesis consists of two major components: an
ANN designed to replicate human attention patterns, called Human Attention Imitation,
and a GPT-based racing controller. The Human Attention Imitation predicts ROIs in
depth images. The racing controller leverages the Decision Transformer (DT) architecture
to control the vehicle. In the experimental section, we evaluate the advantages and
limitations of each approach, considering different pre-processing approaches for selecting
either partial or complete images as inputs.

To imitate human attention, we train an ANN on real-world data recorded from human
drivers’ remote-controlling F1Tenth miniature cars in single and multi-agent scenarios
with obstacles on the track. The racing controller, trained instead in simulation, produces
control predictions based on depth images, vehicle state, return-to-go signal, and prior
actions. To train it, we designed a reward to prioritize minimum lap time without
explicitly encouraging smoothness in control. In fact, the racing agent achieves impressive
lap times by executing precise, though occasionally counterintuitive, control actions.

To assess the influence of the selected portion of the input image, we compare three
distinct pre-processing strategies: we consider the complete image as input, we select a
random portion of the image, and we use the Human Attention Imitation to select the
relevant portion. During training, we observed that the full-image approach exhibits
convergence after fewer training steps than the partial-image strategies. The partial-image
methods, owing to their smaller network size, require significantly less computational
time for training but need more iterations to converge. They also learn more intricate
policies than the full-image approach, which predominantly learns rudimentary strategies.
In contrast, despite exhibiting slower driving performance, the random approach showed
better performance in high-level control, allowing more effective tracking of available
lanes. Apart from the random approach driving slower, we also suspect that this
observation suggests that the underlying GPT architecture can effectively reconstruct
essential elements of the complete image over multiple time steps, facilitating a broader
understanding of the entire scene.

This thesis successfully demonstrates the feasibility of training a driving agent by leverag-
ing a human-inspired attention model. Applying this imitation model achieves comparable
and often superior performance to several baselines, suggesting that a more selected
attention mechanism has a large potential for learning control applications.

7.1 Future Work
The findings of this thesis open up further avenues for scientific exploration. These either
focus on further exploring the architectures and methods used in the thesis or on new
concepts and understandings gained from those architectures.

Exploring additional mechanisms to provide ROIs to ANNs would be interesting. These

76

7.1. Future Work

mechanisms could utilize properties of the network, such as saliency, or be outputs of
the same network or a different network, trained in tandem. It would also be interesting
to try different approaches for the DT approach, including different methods to tokenize
data or changes in hyperparameters. Interpreting inter-modal correlations could offer
valuable insights into the inner workings of the network, and using a separate evaluation
dataset to interpret the training progress better.

In addition, we intend to investigate if the randomized images lead to an internal
representation of the scene in the random selection approach. Further, we would like to
find out if supplying a low-resolution overview image and a high-resolution partial image
of the ROI would benefit the system even more. The low-resolution overview would then
correspond to low-resolution areas in human eyes, which enable reflexive reactions, also
called bottom-up attention, while the high-resolution smaller image would match the
concept of the fovea, the high-resolution area of our eye, which is used for task-specific
attention.

77

List of Figures

3.1 VPS19 Smart Unit and eye-tracking glasses used for eye-tracking in this thesis. 15
3.2 F1Tenth racing car from Vienna Technical Universities team used at the 11th

F1Tenth Grand Prix at ICRA 2023 in London. 18
3.3 Simulated RGB camera image of an F1Tenth car in the simulator maintained

by Brunnbauer and Berducci. 18

4.1 Recording setup used for human attention data recordings. 23
4.2 Frames of a synchronization point between the driver’s view and the recording

from the camera on the car. 26
4.3 Video alignment and transformation process. 27
4.4 Track with colored section types. 28
4.5 Typical focus points when looking at a human face, commonly known as

saccades. 29
4.6 Gaze point aggregation steps to obtain attention fields. 30
4.7 Architecture of the U-Net neural network architecture for image segmentation. 32

5.1 Track layout used in the simulation environment for all tasks in this thesis. 37
5.2 Visual inputs provided by the simulation environment. 38
5.3 Lanes available to the high-level controller on the simulated track. 40
5.4 All traces of both generation strategies plotted on the track used in the

simulation. 42
5.5 Action distributions of both generated datasets. 42
5.6 Architecture of Decision Transformer used in this thesis. 47
5.7 Embedding strategies for the individual modalities passed into the Decision

Transformer. 48
5.8 Selection grid placed over a depth image from the simulator. 49
5.9 Illustration of the Human Attention Imitation-based selection policy for partial

images. 49

6.1 Training and evaluation losses of the Human Attention Imitation network. 54
6.2 Predictions by the Human Attention Imitation. 55
6.3 Similarity between real-world and simulated driving scenarios, associated

sensor data, and predicted attention heatmaps. 56
6.4 Training losses for the full-image Decision Transformer models. 59

79

6.5 Training losses for the partial Decision Transformer models with random
sub-image selection. 61

6.6 Training losses for the partial Decision Transformer model with Human
Attention Imitation-based sub-image selection policy. 62

6.7 Action outputs by the full-image Decision Transformer implementation. . 64
6.8 Effective action outputs by the full-image Decision Transformer implementa-

tion. 65
6.9 Action outputs by the partial-image Decision Transformer implementation

using rand. 66
6.10 Effective action outputs by the partial-image Decision Transformer implemen-

tation using rand. 67
6.11 Output and effective output actions for the partial-image Decision Transformer

network using the att selection policy. 68
6.12 Relative progress comparisons between att, rand, and none evaluation runs. 69
6.13 Traces of evaluation runs plotted on a track map. 71

80

List of Tables

4.1 Recorded data streams with storage location and spatial and temporal frames. 24
4.2 Recorded frames in different track types and the frames per type with gaze

points. 28
4.3 Hyperparameters of the Human Attention Imitation architecture used in this

thesis. 33

5.1 Complete observation space of the simulation environment. 38
5.2 Action space of the simulation environment. 38
5.3 Distributions and statistics for both generated datasets. 43

6.1 Training parameters for the Human Attention Imitation network. 53
6.2 Training parameters and hyperparameters for the full-image Decision Trans-

former network. 58
6.3 Training parameters for the partial-image Decision Transformer networks. 60
6.4 Selected evaluation runs for the comparison. 63
6.5 Variance for action output values in the evaluation runs under comparison. 72

81

Acronyms

ANN Artificial Neural Network. ix, xi, 2–4, 6, 8–12, 14–17, 19, 22, 36, 43, 49, 50, 73, 76

AWL Adaptive Wing Loss. 11, 33, 34, 52

CE Cross-Entropy. 57, 58

CNN Convolutional Neural Network. 2, 47, 49, 60

CPS Cyber-Physical System. 2

DT Decision Transformer. ix, xi, xiii, 11, 45–48, 52, 57–73, 76, 77, 79–81

GPT Generative Pre-trained Transformers. ix, xi, 11, 45–48, 50, 57, 67, 71, 76

IPC Inter-Process Communication. 22

LSTM Long Short-Term Memory. 31

MPC Model Predictive Control. 7, 8, 40

MPCC Model Predictive Contouring Control. 7

MRI Magnetic Resonance Imaging. 11, 33

MSE Mean Squared Error. 57

Offline RL Offline Reinforcement Learning. ix, xi, 4, 36, 40, 41, 52, 57

QP Quadratic Programming. 8

ReLU Rectified Linear Unit. 31, 47, 48

RL Reinforcement Learning. 10, 14, 17, 25, 41, 43, 45, 56, 57, 76

RNN Recurrent Neural Network. 31

83

ROI Region of Interest. 3, 11, 14–16, 22, 30, 50, 54, 76, 77

ROS Robot Operating System. 22, 24

TanH Hyperbolic Tangent. 47

84

Bibliography

[1] ISO/TC 22/SC 32. ISO_26262-1:2018. Dec. 2018. url: https://effects.
austrian-standards.at/action/effectsDownload/648953/4/ISO_
26262-1_2018_2018_12_17_en.pdf (visited on 01/04/2022).

[2] Stanley Bak et al. “Stress Testing Autonomous Racing Overtake Maneuvers with
RRT”. In: arXiv:2110.01095 [cs] (Oct. 3, 2021). arXiv: 2110.01095. url: http:
//arxiv.org/abs/2110.01095 (visited on 12/16/2021).

[3] Jayanth Bhargav et al. “Track based Offline Policy Learning for Overtaking Ma-
neuvers with Autonomous Racecars”. In: arXiv:2107.09782 [cs] (July 20, 2021).
arXiv: 2107.09782. url: http://arxiv.org/abs/2107.09782 (visited on
12/16/2021).

[4] Tom B. Brown et al. Language Models are Few-Shot Learners. July 22, 2020.
doi: 10.48550/arXiv.2005.14165. arXiv: 2005.14165[cs]. url: http:
//arxiv.org/abs/2005.14165 (visited on 08/08/2023).

[5] Tim Brüdigam et al. “Gaussian Process-based Stochastic Model Predictive Control
for Overtaking in Autonomous Racing”. In: arXiv:2105.12236 [cs] (May 25, 2021).
arXiv: 2105.12236. url: http://arxiv.org/abs/2105.12236 (visited on
12/16/2021).

[6] Axel Brunnbauer and Luigi Berducci. racecar_gym. Version 0.0.1. original-date:
2020-08-15T08:26:44Z. Oct. 5, 2023. url: https://github.com/axelbr/
racecar_gym (visited on 10/07/2023).

[7] Kjell Brunnström et al. “Latency impact on Quality of Experience in a virtual
reality simulator for remote control of machines”. In: Signal Processing Image
Communication 89 (Nov. 1, 2020), p. 116005. doi: 10.1016/j.image.2020.
116005.

[8] Bullet Real-Time Physics Simulation | Home of Bullet and PyBullet: physics
simulation for games, visual effects, robotics and reinforcement learning. Mar. 21,
2022. url: https://pybullet.org/wordpress/ (visited on 11/05/2023).

[9] Runqi Chai et al. “Multiobjective Overtaking Maneuver Planning for Autonomous
Ground Vehicles”. In: IEEE Transactions on Cybernetics 51.8 (Aug. 2021). Confer-
ence Name: IEEE Transactions on Cybernetics, pp. 4035–4049. issn: 2168-2275.
doi: 10.1109/TCYB.2020.2973748.

85

https://effects.austrian-standards.at/action/effectsDownload/648953/4/ISO_26262-1_2018_2018_12_17_en.pdf
https://effects.austrian-standards.at/action/effectsDownload/648953/4/ISO_26262-1_2018_2018_12_17_en.pdf
https://effects.austrian-standards.at/action/effectsDownload/648953/4/ISO_26262-1_2018_2018_12_17_en.pdf
https://arxiv.org/abs/2110.01095
http://arxiv.org/abs/2110.01095
http://arxiv.org/abs/2110.01095
https://arxiv.org/abs/2107.09782
http://arxiv.org/abs/2107.09782
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165 [cs]
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2105.12236
http://arxiv.org/abs/2105.12236
https://github.com/axelbr/racecar_gym
https://github.com/axelbr/racecar_gym
https://doi.org/10.1016/j.image.2020.116005
https://doi.org/10.1016/j.image.2020.116005
https://pybullet.org/wordpress/
https://doi.org/10.1109/TCYB.2020.2973748

[10] Lili Chen et al. Decision Transformer: Reinforcement Learning via Sequence Mod-
eling. June 24, 2021. doi: 10.48550/arXiv.2106.01345. arXiv: 2106.
01345[cs]. url: http://arxiv.org/abs/2106.01345 (visited on 03/16/2023).

[11] OpenStax College. Illustration from Anatomy & Physiology, Connexions Web site.
http://cnx.org/content/col11496/1.6/, Jun 19, 2013. url: https://commons.
wikimedia.org/wiki/File:1607_Saccadic_Movements.jpg (visited on
07/19/2023).

[12] Serdar Coskun. “Autonomous overtaking in highways: A receding horizon trajectory
generator with embedded safety feature”. In: Engineering Science and Technology,
an International Journal 24.5 (Oct. 1, 2021), pp. 1049–1058. issn: 2215-0986. doi:
10.1016/j.jestch.2021.02.005. url: https://www.sciencedirect.
com/science/article/pii/S2215098621000343 (visited on 12/16/2021).

[13] R Craig Coulter. “Implementation of the Pure Pursuit Path Tracking Algorithm”.
In: (Jan. 1992).

[14] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation
for games, robotics and machine learning. 2016. url: http://pybullet.org.

[15] CUDA Toolkit - Free Tools and Training. NVIDIA Developer. url: https://
developer.nvidia.com/cuda-toolkit (visited on 10/19/2023).

[16] F1TENTH. url: https://f1tenth.org/ (visited on 07/18/2023).
[17] Zhen-Hua Feng et al. “Wing Loss for Robust Facial Landmark Localisation with

Convolutional Neural Networks”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Salt Lake City, UT, USA: IEEE, June 2018,
pp. 2235–2245. isbn: 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00238.
url: https://ieeexplore.ieee.org/document/8578336/ (visited on
07/30/2023).

[18] Sergio Garrido-Jurado et al. “Automatic generation and detection of highly reliable
fiducial markers under occlusion”. In: Pattern Recognition 47 (June 1, 2014),
pp. 2280–2292. doi: 10.1016/j.patcog.2014.01.005.

[19] Charley Gros, Andreanne Lemay, and Julien Cohen-Adad. “SoftSeg: Advantages of
soft versus binary training for image segmentation”. In: Medical Image Analysis
71 (July 1, 2021), p. 102038. issn: 1361-8415. doi: 10.1016/j.media.2021.
102038. url: https://www.sciencedirect.com/science/article/
pii/S1361841521000840 (visited on 07/30/2023).

[20] Kai Han et al. “A Survey on Vision Transformer”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 45.1 (Jan. 2023). Conference Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 87–110. issn:
1939-3539. doi: 10.1109/TPAMI.2022.3152247.

86

https://doi.org/10.48550/arXiv.2106.01345
https://arxiv.org/abs/2106.01345 [cs]
https://arxiv.org/abs/2106.01345 [cs]
http://arxiv.org/abs/2106.01345
https://commons.wikimedia.org/wiki/File:1607_Saccadic_Movements.jpg
https://commons.wikimedia.org/wiki/File:1607_Saccadic_Movements.jpg
https://doi.org/10.1016/j.jestch.2021.02.005
https://www.sciencedirect.com/science/article/pii/S2215098621000343
https://www.sciencedirect.com/science/article/pii/S2215098621000343
http://pybullet.org
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://f1tenth.org/
https://doi.org/10.1109/CVPR.2018.00238
https://ieeexplore.ieee.org/document/8578336/
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.media.2021.102038
https://doi.org/10.1016/j.media.2021.102038
https://www.sciencedirect.com/science/article/pii/S1361841521000840
https://www.sciencedirect.com/science/article/pii/S1361841521000840
https://doi.org/10.1109/TPAMI.2022.3152247

[21] Alexander Heilmeier et al. “Minimum curvature trajectory planning and control
for an autonomous race car”. In: Vehicle System Dynamics 58.10 (Oct. 2, 2020).
Publisher: Taylor & Francis, pp. 1497–1527. issn: 0042-3114. doi: 10.1080/
00423114.2019.1631455. url: https://www.tandfonline.com/doi/
full/10.1080/00423114.2019.1631455 (visited on 10/07/2023).

[22] Home. OpenCV. url: https://opencv.org/ (visited on 07/18/2023).
[23] Xin Huang et al. “Risk Conditioned Neural Motion Planning”. In: 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-
0866. Sept. 2021, pp. 9057–9063. doi: 10.1109/IROS51168.2021.9636201.

[24] J3016C: Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles - SAE International. url: https://www.
sae.org/standards/content/j3016_202104/ (visited on 11/03/2021).

[25] Andrew Jaegle et al. Perceiver IO: A General Architecture for Structured Inputs
& Outputs. Mar. 15, 2022. doi: 10.48550/arXiv.2107.14795. arXiv: 2107.
14795[cs,eess]. url: http://arxiv.org/abs/2107.14795 (visited on
04/11/2023).

[26] Andrew Jaegle et al. Perceiver: General Perception with Iterative Attention. June 22,
2021. doi: 10.48550/arXiv.2103.03206. arXiv: 2103.03206[cs,eess].
url: http://arxiv.org/abs/2103.03206 (visited on 04/11/2023).

[27] Addie Johnson and Robert W. Proctor. Attention: Theory and Practice. Google-
Books-ID: YTAoEX4LiAUC. SAGE, 2004. 489 pp. isbn: 978-0-7619-2761-7.

[28] S. Kastner and L. G. Ungerleider. “Mechanisms of visual attention in the human
cortex”. In: Annual Review of Neuroscience 23 (2000), pp. 315–341. issn: 0147-006X.
doi: 10.1146/annurev.neuro.23.1.315.

[29] Mathias Lechner et al. “Neural circuit policies enabling auditable autonomy”. In: Na-
ture Machine Intelligence 2.10 (Oct. 2020). Bandiera_abtest: a Cg_type: Nature Re-
search Journals Number: 10 Primary_atype: Research Publisher: Nature Publishing
Group Subject_term: Computer science;Information technology;Software;Statistics
Subject_term_id: computer-science;information-technology;software;statistics, pp. 642–
652. issn: 2522-5839. doi: 10.1038/s42256-020-00237-3. url: https://
www.nature.com/articles/s42256-020-00237-3 (visited on 11/03/2021).

[30] Nan Li et al. “Autonomous racecar control in head-to-head competition using
Mixed-Integer Quadratic Programming”. In: (2021), p. 6.

[31] Liangkai Liu et al. “Computing Systems for Autonomous Driving: State of the Art
and Challenges”. In: IEEE Internet of Things Journal 8.8 (Apr. 2021). Conference
Name: IEEE Internet of Things Journal, pp. 6469–6486. issn: 2327-4662. doi:
10.1109/JIOT.2020.3043716.

87

https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1631455
https://opencv.org/
https://doi.org/10.1109/IROS51168.2021.9636201
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://doi.org/10.48550/arXiv.2107.14795
https://arxiv.org/abs/2107.14795 [cs, eess]
https://arxiv.org/abs/2107.14795 [cs, eess]
http://arxiv.org/abs/2107.14795
https://doi.org/10.48550/arXiv.2103.03206
https://arxiv.org/abs/2103.03206 [cs, eess]
http://arxiv.org/abs/2103.03206
https://doi.org/10.1146/annurev.neuro.23.1.315
https://doi.org/10.1038/s42256-020-00237-3
https://www.nature.com/articles/s42256-020-00237-3
https://www.nature.com/articles/s42256-020-00237-3
https://doi.org/10.1109/JIOT.2020.3043716

[32] B. Mashadi and M. Majidi. “Global optimal path planning of an autonomous
vehicle for overtaking a moving obstacle”. In: Latin American Journal of Solids
and Structures 11.14 (2014), pp. 2555–2572. issn: 1679-7825. doi: 10.1590/
S1679- 78252014001400002. url: http://www.scielo.br/scielo.
php?script=sci_arttext&pid=S1679-78252014001400002&lng=en&
tlng=en (visited on 12/16/2021).

[33] Nikolce Murgovski and Jonas Sjöberg. “Predictive cruise control with autonomous
overtaking”. In: 2015 54th IEEE Conference on Decision and Control (CDC). 2015
54th IEEE Conference on Decision and Control (CDC). Dec. 2015, pp. 644–649.
doi: 10.1109/CDC.2015.7402302.

[34] OpenAI. GPT-4 Technical Report. Mar. 27, 2023. doi: 10.48550/arXiv.2303.
08774. arXiv: 2303.08774[cs]. url: http://arxiv.org/abs/2303.
08774 (visited on 08/08/2023).

[35] Zhichao Peng et al. “Speech Emotion Recognition Using 3D Convolutions and
Attention-Based Sliding Recurrent Networks With Auditory Front-Ends”. In: IEEE
Access 8 (2020). Conference Name: IEEE Access, pp. 16560–16572. issn: 2169-3536.
doi: 10.1109/ACCESS.2020.2967791.

[36] Plamen Petrov and Fawzi Nashashibi. “Modeling and Nonlinear Adaptive Con-
trol for Autonomous Vehicle Overtaking”. In: IEEE Transactions on Intelligent
Transportation Systems 15.4 (Aug. 2014). Conference Name: IEEE Transactions
on Intelligent Transportation Systems, pp. 1643–1656. issn: 1558-0016. doi: 10.
1109/TITS.2014.2303995.

[37] PyTorch. url: https://www.pytorch.org (visited on 10/19/2023).
[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-

works for Biomedical Image Segmentation. Number: arXiv:1505.04597. May 18,
2015. doi: 10.48550/arXiv.1505.04597. arXiv: 1505.04597[cs]. url:
http://arxiv.org/abs/1505.04597 (visited on 11/02/2022).

[39] ROS: Home. url: https://www.ros.org/ (visited on 07/19/2023).
[40] Semantic-Segmentation-Architecture/PyTorch/unet.py at main · nikhilroxtomar/Semantic-

Segmentation-Architecture · GitHub. url: https://github.com/nikhilroxtomar/
Semantic-Segmentation-Architecture/blob/main/PyTorch/unet.
py (visited on 10/19/2023).

[41] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a Formal Model
of Safe and Scalable Self-driving Cars”. In: arXiv:1708.06374 [cs, stat] (Oct. 27,
2018). arXiv: 1708.06374. url: http://arxiv.org/abs/1708.06374
(visited on 02/28/2022).

[42] T. Shamir. “How should an autonomous vehicle overtake a slower moving vehicle:
design and analysis of an optimal trajectory”. In: IEEE Transactions on Automatic
Control 49.4 (Apr. 2004). Conference Name: IEEE Transactions on Automatic
Control, pp. 607–610. issn: 1558-2523. doi: 10.1109/TAC.2004.825632.

88

https://doi.org/10.1590/S1679-78252014001400002
https://doi.org/10.1590/S1679-78252014001400002
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014001400002&lng=en&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014001400002&lng=en&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014001400002&lng=en&tlng=en
https://doi.org/10.1109/CDC.2015.7402302
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774 [cs]
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ACCESS.2020.2967791
https://doi.org/10.1109/TITS.2014.2303995
https://doi.org/10.1109/TITS.2014.2303995
https://www.pytorch.org
https://doi.org/10.48550/arXiv.1505.04597
https://arxiv.org/abs/1505.04597 [cs]
http://arxiv.org/abs/1505.04597
https://www.ros.org/
https://github.com/nikhilroxtomar/Semantic-Segmentation-Architecture/blob/main/PyTorch/unet.py
https://github.com/nikhilroxtomar/Semantic-Segmentation-Architecture/blob/main/PyTorch/unet.py
https://github.com/nikhilroxtomar/Semantic-Segmentation-Architecture/blob/main/PyTorch/unet.py
https://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1708.06374
https://doi.org/10.1109/TAC.2004.825632

[43] TUM-Institute of Automotive Technology. Introduction. original-date: 2019-05-
21T08:29:33Z. Nov. 1, 2023. url: https://github.com/TUMFTM/global_
racetrajectory_optimization (visited on 11/02/2023).

[44] The World’s Smallest AI Supercomputer. NVIDIA. url: https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/jetson-xavier-
nx/ (visited on 07/18/2023).

[45] Ghumman Usman and Faraz Kunwar. “Autonomous vehicle overtaking- an online
solution”. In: 2009 IEEE International Conference on Automation and Logistics.
2009 IEEE International Conference on Automation and Logistics. ISSN: 2161-816X.
Aug. 2009, pp. 596–601. doi: 10.1109/ICAL.2009.5262854.

[46] UST-10LX :: Sentek Hokuyo. url: https://hokuyo-usa.com/products/
lidar-obstacle-detection/ust-10lx (visited on 07/18/2023).

[47] Ashish Vaswani et al. “Attention is All you Need”. In: 31st Conference on Neural
Information Processing Systems (NIPS 2017), Long Beach, CA, USA, p. 11.

[48] VPS 19 – the simplest Smart Glasses in the World. VIEWPOINTSYTEM. url:
https://viewpointsystem.com/en/products/ (visited on 07/18/2023).

[49] Richard Wallace et al. “First Results in Robot Road-Following.” In: Jan. 1, 1985,
pp. 1089–1095.

[50] Xinyao Wang, Liefeng Bo, and Li Fuxin. Adaptive Wing Loss for Robust Face
Alignment via Heatmap Regression. May 19, 2020. doi: 10.48550/arXiv.1904.
07399. arXiv: 1904.07399[cs]. url: http://arxiv.org/abs/1904.
07399 (visited on 07/30/2023).

[51] Trent Weiss, Varundev Suresh Babu, and Madhur Behl. “Be‘zier Curve Based
End-to-End Trajectory Synthesis for Agile Autonomous Driving”. In: (), p. 10.

[52] Moritz Werling et al. “Optimal trajectory generation for dynamic street scenarios
in a Frenét Frame”. In: 2010 IEEE International Conference on Robotics and
Automation. 2010 IEEE International Conference on Robotics and Automation.
ISSN: 1050-4729. May 2010, pp. 987–993. doi: 10.1109/ROBOT.2010.5509799.
url: https://ieeexplore.ieee.org/document/5509799 (visited on
11/02/2023).

[53] Jian Yu et al. “A Dynamic and Static Context-Aware Attention Network for
Trajectory Prediction”. In: ISPRS International Journal of Geo-Information 10.5
(May 2021). Number: 5 Publisher: Multidisciplinary Digital Publishing Institute,
p. 336. doi: 10.3390/ijgi10050336. url: https://www.mdpi.com/2220-
9964/10/5/336 (visited on 12/16/2021).

[54] Billy Zheng. f1tenth_planning. original-date: 2021-05-26T16:10:43Z. Sept. 6, 2023.
url: https://github.com/f1tenth/f1tenth_planning (visited on
10/07/2023).

89

https://github.com/TUMFTM/global_racetrajectory_optimization
https://github.com/TUMFTM/global_racetrajectory_optimization
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://doi.org/10.1109/ICAL.2009.5262854
https://hokuyo-usa.com/products/lidar-obstacle-detection/ust-10lx
https://hokuyo-usa.com/products/lidar-obstacle-detection/ust-10lx
https://viewpointsystem.com/en/products/
https://doi.org/10.48550/arXiv.1904.07399
https://doi.org/10.48550/arXiv.1904.07399
https://arxiv.org/abs/1904.07399 [cs]
http://arxiv.org/abs/1904.07399
http://arxiv.org/abs/1904.07399
https://doi.org/10.1109/ROBOT.2010.5509799
https://ieeexplore.ieee.org/document/5509799
https://doi.org/10.3390/ijgi10050336
https://www.mdpi.com/2220-9964/10/5/336
https://www.mdpi.com/2220-9964/10/5/336
https://github.com/f1tenth/f1tenth_planning

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Structure

	Related Work
	Autonomous Racing Approaches
	Safety in Autonomous Operations
	Attention & Self-Attention

	General Approach
	Human Attention Recording & Imitation
	Autonomous Racing as Case Study

	Human Attention Imitation
	Human Attention Measurement Setup
	Human Attention Imitation Architecture

	Racing Controller
	Simulation Environment & Low-Level Controller
	Dataset
	dt
	Decisions Transformer with Human Attention

	Training & Evaluation
	Human Attention Imitation
	Overtaking Controller

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

