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Abstract
The interest in proton beam therapy for the treatment of tumorous diseases has
increased due to the unique energy deposition properties of protons, which allows
to reduce dose exposition of healthy tissue. To fully utilize the potential of proton
therapy, emphasis has to be put on treatment planning, which includes measuring
the energy deposition per unit length (stopping power) of the tissue to be treated.
Therefore, a 3D map of the stopping power of the affected tissue must be generated.
Currently, this stopping power (SP) map is extrapolated from Hounsfield units (HU)
as determined form x-ray computed tomography (CT) images, thus introducing
conversion errors. By making use of proton computed tomography (pCT), the SP is
measured directly [1].
Difficulties arise as the particle trajectories deviate from straight lines due to multiple
Coulomb scattering (MCS). Therefore the algorithms for image reconstruction com-
monly used in x-ray CT have to be adapted accordingly. For most implementations,
this is done by introducing path estimates which account for the non-linear trajectory.
Several methods have been introduced, including the most likely path (MLP) and
cubic spline (CS) approximation [2]. One of the main drawbacks introduced by the
path estimates is the additional computational effort that has to be dealt with. As the
reconstruction by itself is already computationally expensive, the need to calculate
path estimates for pCT additionally increases computing time. One common ap-
proach to improve performance in scientific computing is to parallelize computations
within the problem set. Since the computations in pCT image reconstruction are
well suited to be executed in parallel, this approach has also gained momentum for
application to pCT [3].
In this thesis, the proton paths are estimated by a cubic spline, with the paths being
used for generating improved radiographies as input for image reconstruction [4]. The
performance of the computations is increased by conducting parts of the calculations
in parallel on a GPGPU (general purpose graphic processing unit). As the improved
radiographies can be used as input for well established x-ray CT reconstruction
methods, the software written in the process is used to expand the open source x-ray
CT image reconstruction framework TIGRE [5]. Once implemented, the framework
is used to perform image reconstruction for simulation data of several phantoms.
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Zusammenfassung
Das Interesse an Protontherapie zur Behandlung maligner Tumorerkrankungen nimmt
aufgrund der vorteilhaften Dosisdeposition von Protonen stetig zu. Das charakteris-
tische Dosisprofil geladener Teilchen in Materie ermöglicht eine Bestrahlungstherapie
mit verringerter Dosis für den Tumor umgebendes Gewebe. Um das volle Potential
der Teilchentherapie zu nutzen, muss die Therapieplanung verbessert werden. Dazu
wird die 3D-Verteilung des relativen Bremsvermögens, genannt ”Relative Stopping
Power” (RSP), des zu bestrahlenden Gewebes aus den Daten einer Computertomogra-
phie (CT) berechnet. Durch Verwendung von Protonencomputertomographie (pCT)
können Umrechnungsfehler die bei der Konvertierung von Hounsfield units, welche
bei der bisherigen Therapieplanung durch X-Ray CT, in relatives Bremsvermögen
induziert werden, vermieden werden [1].
Aufgrund mehrfacher Coulombstreuung kann die Trajektorie der Protonen im Rah-
men der Bildrekonstruktionsverfahren, welche von der konventionellen X-Ray Com-
putertomographie bekannt sind, nicht ohne Adaptionen verwendet werden. Deshalb
werden verschiedene Algorithmen zur Approximation des stochastischen Protonpfades
verwendet. In dieser Arbeit wird ein phänomenologischer Ansatz für einen kubischen
Spline für die Trajektorieapproximation verwendet [2]. Da in der Protonencomputer-
tomographie für jedes detektierte Proton eine solche Pfadapproximation durchgeführt
werden muss, steigt der Bedarf an Rechenressourcen der Bildrekonstruktion erheblich.
Um die Laufzeit der Berechnungen in einer für die klinische Anwendung interessanten
Größenordnung zu gewährleisten, wird versucht einen Großteil der Berechnungen die
im Rahmen der Algorithmen der Protonencomuptertomographie ausgeführt werden,
zu parallelisieren [6]. In dieser Arbeit werden die Rechenschritte zur Erstellung
verbesserter Radiographien nach Collins-Fekete et al. [4] durch Ausführung der
parallelisierbaren Programmteile auf einer Grafikkarte (GPU) beschleunigt. Da die
verbesserten Radiographien bereits die Pfadabschätzung beinhalten, können konven-
tionelle Rekonstruktionsalgorithmen, die aus dem X-Ray CT bekannt sind, verwendet
werden. Daher werden die in dieser Arbeit entwickelten Programme in Form einer
Erweiterung des bereits etablierten X-Ray Rekonstruktionsframework TIGRE [5]
implementiert. Anschließend wird die Erweiterung dazu verwendet, Bildrekonstruk-
tionen für verschiedene Phantome durchzuführen.
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1. Introduction
Radiation therapy takes up a crucial part in the treatment of malign cancerous
diseases [7]. Since the breakthrough of conventional x-ray therapy in cancer treatment,
the dose deposition in healthy tissue surrounding the tumor region has been a
significant concern [8]. Proton therapy offers the opportunity to reduce the dose to
healthy tissue (see figure 1) due to the characteristic energy deposition of protons,
reaching its maximum energy deposition per unit path length at the end of the
particle’s path through a material (Bragg peak) [9]. Therefore, the range of the
protons in the patient has to be known so that the region of maximum energy loss
can be aligned with the position of the tumor. To deliver a spatially constant dose
to the whole tumor region (spread-out Bragg peak, SOBP), either the proton beam
energy is modulated passively, or the energy is adapted while raster scanning tumor
slices with a pencil beam [10].

Figure 1. Dose delivery to the tumor region for x-rays (left) and protons (right).
To deliver high doses (red) to the tumor region in x-ray therapy, the patient has to
be irradiated from several angles. In proton therapy, less irradiation directions are
necessary to deliver the same dose to the tumor, which leads to reduced overall dose
delivered to healthy tissue [11].

The relative stopping power (RSP), which is the stopping power of a material
relative to the stopping power of water at the same energy, of the region to be
irradiated has to be known with high precision for accurate treatment planning.
Currently, for treatment planning, the RSP is obtained by measuring the mass
attenuation coefficient of the material with x-ray computed tomography (CT) and
successively converting the attenuation coefficient to RSP via conversion tables [1].
Converting the Hounsfield units obtained from x-ray CT to RSP introduces errors
concerning the range of the particles in the material. Proton computed tomography
(pCT) aims to reduce these errors by directly measuring the three-dimensional RSP
map, instead of extrapolating from Hounsfield units from an x-ray CT. Additionally,
while gathering the necessary material characteristics for particle therapy, the overall
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dose deposited in the patient can be crucially reduced using pCT [3]. Since the
physics of charged particles traversing matter differs from the physics of x-rays,
image reconstruction techniques known to be applicable in x-ray CT have to be
adapted for the pCT reconstruction problem. A charged particle’s path deviates
from a straight line between the entry and exit point of the patient due to multiple
Coulomb scattering (MCS). Because of that, path estimates have to be introduced
to account for the curved path in image reconstruction (see section 2.2.5). Several
path estimates were already developed, showing different results in accuracy and
computational effort [2]. The data acquisition in pCT is based on tracking single
protons by measuring their entry and exit positions as well as their residual energy
for several projection angles. Due to a varying number of collisions along the proton
path through the sample and the stochastic nature of the energy transfer to atomic
electrons, an initially monoenergetic proton beam yields an energy distribution at
the rear tracking detector. This is referred to as energy straggling (see section 2.1.5)
[12]. To reduce the influence of energy straggling on the measurement, a reasonable
number of particles have to be detected. For typical image sizes in medical imaging,
e.g., 512 x 512 pixels [13], this leads to a number of tracked particles in the range of
a few million to a few ten million particles per projection angle. As path estimation
has to be performed for every single particle and several particles contribute to one
pixel of the detector, the additional computational effort exceeds the expenditure
known from conventional x-ray CT drastically. Since image reconstruction in x-ray
CT is already a computationally demanding task [6], pCT requires a special focus
on computational implementation to generate high-quality images in a reasonable
amount of time.

Structurally, this thesis is subdivided into two parts. In the first part of this thesis,
the method for generating improved radiographies developed by Collins-Fekete et
al. [4] is implemented using the CUDA framework to accelerate the computation
by utilizing Graphics Processor Units (GPU) for data processing. These improved
radiographies can be used as input for conventional x-ray reconstruction algorithms.
Therefore, the implementation is provided in the form of a toolbox that is intended
to be used with the x-ray image reconstruction toolbox TIGRE [5]. In the second
part of the thesis, the implemented algorithm is used in combination with the already
implemented reconstruction algorithms within the TIGRE framework to perform
image reconstructions from simulated data. Khellaf et al. [14] provided a performance
comparison of direct image reconstruction techniques for pCT. Their study also
featured the method developed by Collins-Fekete et al. [4], which is combined with a
filtered-back projection (FBP) algorithm for image reconstruction. In this work, the
improved radiographies are used in combination with various iterative reconstruction
algorithms and the FBP algorithm. Therefore, Geant4 simulations are performed
through GATE for two phantoms, which are based on the ones shown in Khellaf
et al. [14]. Measures of spatial resolution and RSP accuracy are calculated for the
images generated within this thesis and compared to the findings in their study (and
among each other). Possible performance improvements obtained by using iterative
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algorithms instead of the direct reconstruction approach are discussed.
Section 2 contains the physical and mathematical background of this thesis. This

includes the nature of the interaction of charged particles with matter, the principles of
x-ray and proton computed tomography, and path estimation methods and measures
to deal with the stochastic proton paths in image reconstruction. Section 3 describes
the software frameworks used for Monte Carlo simulations of the pCT imaging
setup, the CUDA programming model, the TIGRE toolbox and the reconstruction
algorithms used within this thesis, and the theory on the image quality metrics used
to evaluate the reconstruction results. In section 4, the computation time of the GPU
accelerated code extension is discussed, and reconstructed images are shown and
analyzed in terms of spatial resolution and RSP accuracy. Conclusively, section 5
summarizes the findings and gives an outlook on further steps.

3





2. Physical and mathematical
background

The aim of this section is to give an overview of the physical background of proton
computed tomography and the techniques that are implemented in the scope of this
thesis.

2.1. Interactions of ions with matter
The different properties of proton imaging in comparison to conventional x-ray
imaging methods originate from the different interaction of photons and charged
particles with matter. The following sections focus on the interaction mechanisms of
charged particles.

2.1.1. Interaction mechanisms
To discuss the interaction of charged particles with matter in the scope of proton
therapy and proton imaging, it is important to consider the energy range of the inter-
acting particles, as the cross sections of certain interactions are energy dependent. For
example, the substructure of protons, consisting of quarks and gluons, does not have
to be considered in the clinical energy range. The interaction mechanisms dominating
in the energy range of clinical application are shown in figure 2. Figure 2 (a) shows
inelastic Coulomb interaction with the atomic electrons, which is the main interaction
responsible for the continuous energy loss of the penetrating charged particle. If the
incident proton passes close by the atomic nuclei of a material (figure 2 (b)), the
proton experiences a repulsive elastic Coulomb interaction. Due to the large mass
of the atomic nuclei this kind of interaction is mainly responsible for the lateral
deflection of the incident charged particle. When protons pass through a material,
they undergo a high number of these interactions (MCS). For thin materials, the
resulting angular distribution can be described by the Highland formula [9]. In
addition to the already discussed interaction processes, inelastic nuclear interactions
between the initial particles and the atomic nuclei have to be considered. Inelastic
nuclear interactions lead to reduction of the initial proton flux and generate secondary
particles like photons, neutrons or secondary protons. These proton induced nuclear
reactions have a small but non-negliable effect on the spatial dose distribution in the
patient [9].
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Figure 2. Dominant interactions for charged particles at clinical energies: (a) inelastic
Coulomb scattering of the incoming proton with atomic electrons, (b) deflection of
the proton trajectory by elastic Coulomb scattering with the nucleus, (c) removal
of primary protons with successive liberation of secondary particles via non-elastic
nuclear interaction [9].

2.1.2. Stopping power
The mean energy deposition per unit length, referred to as stopping power (SP), can
be described with the Bethe-Bloch equation [10]

S = −dE

dx
= 4π2 ρNAe4

mc2
Z

A

Z2
p

β2 ln 2mec
2γ2β2

I
− β2 − δ

2 − C

Z
, (2.1)

where ρ describes the material density, NA is Avogadro’s number, Z and A the
atomic number and the mass number. C represents the shell correction term and δ
the density correction term, m is the mass of the electron, Zp is the charge of the
projectile and

γ =
1

1 − β2
with β =

v

c
, (2.2)

where v is the velocity of the proton and c is the speed of light. The energy loss
of the projectile is proportional to the inverse square of the velocity and to to the
square of the projectile’s charge whereas the mass of the projectile does not occur in
equation (2.1). For biological tissues the main contributions come from the varying
mass density which lead to changes in SP of about three orders of magnitude due to
the variety of different tissues in the human body and the ion velocity which alters
the SP by a factor of 60 for energies in the range of 1 MeV to 250 MeV [9]. The largest
contributions to the uncertainty of the SP are introduced by the mean excitation
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energy I [15]. A simplified expression for the SP found by Bragg and Kleeman [16]
which delivers accurate results for clinical energies and can be described as

− dE

dx
= −E1−p

pα
, (2.3)

with p being a constant the defining the dependence of the energy loss on the particles
velocity and α being a material constant.

2.1.3. Bragg curve
Due to the energy loss rate described in the previous section, charged particles
deposit most of their energy per unit path length at the end of their path, resulting
in the characteristic dose-depth curve, also referred to as Bragg curve (see figure 3).
In the following, the characteristic regions of the Bragg peak are described in detail
based on [9].

Figure 3. Characteristic depth dose profile for ions in matter [9]. zBP describes the
position of the peak of the depth-dose profile (Bragg peak) whereas zd80 and zd20
describe the distance where the dose deposited is reduced to 20% and 80 % of the
peak value respectively.

Electronic buildup region The electronic build up can be observed in a small
region near the surface, where the proton beam first enters the absorber. High-
energy protons can liberate delta-rays (recoil electrons) which can travel up to a few
millimeters. Under certain circumstances, the dose can therefore increase with depth
for this region. Effects that influence the charge equilibrium at the surface of the
absorber may cause a reduction or a complete disappearance of this effect.
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Protonic buildup region The protonic build up can be observed near the surface
of the absorber. The absorbed dose increases with depth due to secondary protons
originating from non-elastic nuclear interactions.

Sub-peak region The sub-peak region extends from the surface of the absorber
close to the depth of the Bragg peak. The dominating physical processes in this
region are the SP’s dependence of the inverse square of the protons velocity, the
attenuation of the proton flux due to nuclear interactions, the liberation of secondary
particles and the accumulation of lateral deflections caused by MCS.

Bragg peak region The Bragg peak is the maximum dose deposited near the end of
a proton’s path. The position of the Bragg peak is governed mainly by the material’s
SP and the energy straggling of the protons (see section 2.1.5).

Distal fallof region The distal fallof region extends from depths greater than that
the Bragg peak’s location. The width of this region is not restricted but can be
truncated at the depth where the dose falls below 1% of the Bragg peaks dose
maxima.

2.1.4. Range
From the SP of a material, the range R, where on average half of the initial protons
are at rest, can be calculated

R =

0

Ein

dE
dE
dx

. (2.4)

As there are small variations in energy loss for single protons the range given
by equation (2.4) is an inherently average quantity. The range can be calculated
numerically from equation (2.4)

R ≈
Ein

0

dE

dx

−1
ΔE . (2.5)

This approach for calculating the range is not suitable for applications where compu-
tation time is crucial. Therefore, the numerical approach is not feasible for application
to proton imaging. Consequently, an analytical model describing the charged parti-
cle’s energy loss has to be found. Using equation (2.3) together with (2.4) yields for
the initial energy E0

R(E0) = αEp
0 . (2.6)

The limitations to using this formula is their limited energy intervall of applicability,
i.e. 10 - 200 MeVu−1 [17]. For samples large enough to completely stop the particle,
the Bragg-Kleeman model seems to break down for the biologically relevant interval
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below 10 MeVu−1 [17]. Donahue et. al [17] propose a model applicable for an energy
interval of 1 keVu−1 - 450 MeVu−1. Using this model the range is given by

R(E) =
u

κ
αEp + βEq +

h

g
(exp(−gE) + gE − 1) with κ = 2πr2

0nec
2z2

1 , (2.7)

where h, g, α, β, p and q are fitting parameters, u is the atomic mass number, r0 is
the classical electron radius, me is the mass of the electron, c is the speed of light, z1
is the charge of the projectile and ne is the electron density of the material.

2.1.5. Energy and range straggling
The accumulation of stochastic differences in energy loss of single particles along
their trajectory is referred to as energy straggling. Therefore, not all particles do
have the same range which ultimately leads to a change in the shape and the
location of the Bragg peak. In figure 4, the energy loss probability density functions
(PDF) for protons traversing bulks of water with varying thickness are depicted. A

Figure 4. Relative energy loss probability density functions for different water absorber
thicknesses. Due to a varying number of interactions along the proton’s path and the
stochastic nature of the energy loss of protons, caused by inelastic scattering with
atomic electrons, a monoenergetic proton beam will show an energy distribution after
passing the absorber. For larger sample thicknesses the energy loss distribution is
approximately Gaussian, whereas for thin samples the energy distribution shows a tail
towards larger energy losses. For thin absorbers the energy loss can be modelled by
Vavilov’s or Landau’s theory [9].
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larger sample thickness leads to an increased number of energy loss events along the
trajectory of the protons. as the total energy loss is expected to be an accumulation
the single stochastic energy loss events, the Gaussian form of the energy loss PDF is
expected due to the central limit theorem. Within pCT measurements, besides the
energy distribution of the beam and the uncertainty of the energy detector, energy
straggling is the main contributor to noise and a limiting factor for the accuracy of
the reconstructed RSP [12].

2.1.6. Multiple Coulomb scattering
Protons passing nearby positively charged nuclei are elastically scattered due to
the Coulomb interaction. The energy transfer in such interaction is negligible for
the traversing particle, but the lateral displacement can be of utter importance.
Generally, Coulomb scattering is classified by the number of successive scattering
events that are expected. For a single scattering event the interaction is best described
by Rutherfords scattering formula [18]. In Multiple Coulomb scattering (MCS), the
combined influence of 20 or more such single scattering events has to be accounted
for [9]. Since the number of possible scattering events is inherently coupled to the
thickness of the observed sample, MCS only appears for samples that are thick
enough for this amount of scattering events [9]. The most complete theory known
to date is Molieres theory [19], where the probability function of a net deflection
angle is modelled. Approximations to Molieres theory done by Highland [20] yield
the following expression for the distribution width of the net angle

σθ =
14.1
βpc

Zp
l

X0
1 + 0.038 · ln l

X0
, (2.8)

where X0 is the radiation length, l the thickness of the sample, and p is the momentum
of the incident particle. c is the speed of light and β can be calculated by equation
(2.2). As a single proton path is affected by successive stochastic scattering, the path
of the proton can not be modelled exactly. For image reconstruction in CT it is
necessary to have knowledge about the particle’s path to perform the inversion of
the path integral in the tomographic equation (see section 2.2.4). In fact, MCS is the
most limiting factor in terms of spatial resolution in proton imaging [21]. Therefore,
MCS has to be considered by introducing path estimates which are discussed in more
detail in section 2.2.5.
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Figure 5. Lateral displacement by net angle θ, due to multiple Coulomb scattering
events [9].

2.1.7. Water equivalent thickness
Water is known to behave similar to human tissue in terms of energy loss and MCS.
Therefore, it is common to calculate the water equivalent path length (WEPL),
describing the travelled distance of a proton in a water reference medium with initial
energy Ein and residual energy Eout [22]. The WEPL can be calculated by

WEPL =

Eout

Ein

dE
dE
dx H2O

. (2.9)

Another relevant quantity in the scope of proton therapy and imaging is water-
equivalent-thickness (WET), which is closely related to WEPL. In contrast to WEPL,
WET is a quantity which is assigned as property to the target material. A proton
beam with initial energy Ein gradually loses energy while propagating through matter
and in consequence, leaves the target with the final energy Eout. WET is now defined
as the length of a water absorber yielding the exact same energy loss as the initial
target when penetrated with a proton beam at energy Ein. This can be written as

WET =
ρmSm
ρwSw

tm, (2.10)

where tm is the thickness of the material, ρm the density of the material, ρw the
density of water and Sm and Sm are the respective mean SPs.
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Figure 6. Schematic representation of the concept of WET and how it can be obtained
from knowledge of the depth of the proton Bragg curve in a water tank (figure adapted
from [9]).

2.2. Principles of proton radiography and proton
computed tomography

In this section, the fundamentals of CT with protons are described, with emphasis
being laid on the differences to conventional x-ray CT. Furthermore, the image
reconstruction algorithms used within this thesis and path estimation methods
accounting for MCS of the charged particles are discussed.

2.2.1. X-ray computed tomography
In principal, the aim of CT is to obtain a 3-dimensional image of the human body
[23]. For x-ray beams, the quantity defining the image contrast is hereby the mass
attenuation coefficient µ(x, y). In CT, images of cross sections are obtained by
assigning a gray value proportional to the mass attenuation coefficient to the pixels
of the image. This values are referred to as CT numbers and are given in Hounsfield
units (HU)

HU =
µmat − µwater

µwater
× 1000, (2.11)

where µmat and µwater are the attenuation coefficients of water and the sample
material. To perform a CT scan, multiple radiographies are obtained by measuring
the attenuation of x-rays along a large number of lines from different angles ϕ (see
figure 7) [23]. X-ray attenuation for photons traversing matter along straight lines is
governed by Beer-Lambert’s law

I = I0 exp µ(x, y)ds , (2.12)

where µ(x, y)ds is the integration of the attenuation coefficient of the cross section
along a straight line, I is the measured intensity of the x-rays that passed through
the sample and I0 is the intensity obtained from a calibration measurement where
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Figure 7. Measurement of the attenuation of x-rays along straight lines for entry
angle ϕ [24].

the sample is removed from the beam’s path. Therefore projection values can be
obtained by

Rµ(r, φ) = dsµ(x, y)|r=x cos(ϕ)+y sin(ϕ) ≈ ln I

I0
. (2.13)

Measuring the attenuation of the x-rays therefore corresponds to the summation over
the material’s mass attenuation coefficient along a straight line. These measurements
are repeated from many different angles ϕ, where each set of the line integrals is called
a projection. The collection of the projections for all angles ϕ are called sinograms and
are mathematically described by the Radon transform (equation (2.13)). A sinogram
for a simple example is depicted in figure 8. Equation (2.13) is the tomographic

Figure 8. Simple example of the sinogram of a line [24]. The abscissa of the sinogram
is the orthogonal distance r to the center and the ordinate is the projection angle ϕ
[24].

equation of x-ray CT. Inverting the tomographic equation is summarized as image
reconstruction and is discussed further in section 2.2.4.
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2.2.2. Proton computed tomography
In pCT images of cross sections can be obtained in a similar fashion. Cormack
first introduced the idea of using the energy loss of charged particles for imaging
purposes [25]. In pCT, the residual energy of charged particles is measured while the
initial energy characteristics of the beam are known. The counterpart to the Radon
transformation in x-ray CT is obtained by integrating equation (2.1)

−
Eout

Ein

dE

Swater(E)
= dx RSP(x), (2.14)

where Ein is the initial energy, Eout is the residual energy and RSP = Smaterial/Swater.
Swater is the SP of water and Smaterial is the SP of the material the particle propagates
through. It has to be mentioned that the RSP is approximately constant over a wide
energy range [26]. Therefore, the RSP values obtained from pCT can be used for
treatment planning although the beam energies differ for imaging and therapy.

2.2.3. pCT imaging set-up
Since protons undergo multiple scattering events while traversing matter, estimating
the proton paths as straight lines as done for photons in x-ray CT is not sufficient to
produce images of high spatial resolution. To account for MCS, the imaging setup
in pCT is extended in contrast to x-ray CT, to gather vital information for path
estimation. A typical pCT imaging setup is depicted in figure 9 [27]. This set-up is
called ”single-tracking” setup as it collects information about the particle trajectories
for each proton individually. The spatial information is gathered using the position
sensitive detectors (PSD) upstream and downstream of the patient/phantom where
the detector technology is based on silicium strip detectors (SSD) in the typical single
tracking setup [27]. To not only obtain information on the entry and exit particle
positions but also the directions, two detector planes per tracker are necessary. For
detecting the residual energy, various approaches were already proposed: The residual
energy range detector (RERD) can be designed as range telescope [28] which directly
measures the WEPL of the particle, as calorimeter based on scintillator technology
[29] or using time-of-flight measurements [30]. The data obtained from single-tracking
pCT setups are referred to as list-mode data, since information is collected for each
proton individually. These list-mode data obtained are used to generate appropriate
path estimates that are used in reconstruction to reduce the negative effect of MCS
on spatial resolution (see section 2.2.5).
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Figure 9. Single tracking pCT system consisting of two position sensitive detectors
(PSD) upstream and downstream the patient and a residual energy range detector
(RERD) [26].

2.2.4. Image reconstruction
The main objective of image reconstructions algorithms is to provide an approxi-
mation to the mass attenuation coefficient µ(x, y) in x-ray CT or the RSP in pCT,
given sinogram data stemming either from measurements or simulations. These
reconstruction algorithms can be sub-divided into two categories: direct and iterative
reconstruction, which are discussed in the following.

2.2.4.1. Filtered back projection

The most popular algorithm for image reconstruction due to its computational
efficiency is the FBP algorithm, which represents a direct reconstruction technique.
This algorithm makes use of the projection slice theorem which connects the Fourier
transform to the Radon transform [24]. For a function f and projection angle ϕ = 0,
the projection slice theorem reads as

f̂(k, 0) = Rf (0, ·)(k). (2.15)
The theorem states that taking the slice at s = 0 of the 2D Fourier transformation
of a real valued function f̂(k, 0) is equivalent to performing the Radon transform of
the function f(x, y) and subsequent computation of the Fourier transform, yielding
Rf (0, ·)(k). Figure 10 illustrates the Fourier slice theorem for a simple function f .

It has been shown in [23], that using equation (2.15), the function of interest
f(x, y) can be obtained by

f(x, y) =
1

2π

2π

0

 1√
2π

∞

−∞
Rf (ϕ, ·)(r)|r| exp (ir (x cos ϕ + y sin ϕ)) dr

 dϕ, (2.16)

where the term in the brackets is the inverse Fourier transform of Rf (ϕ, ·)(r)|r|, r is
the distance of the point (x, y) from the origin and ϕ is the projection angle. Since
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Figure 10. Fourier slice theorem for a simple function f . Taking the slice s = 0
of the two-dimensional Fourier transform of f is equivalent to performing the one
dimensional Fourier transform of the Radon transform of f [24].

in practice, projections are available only for a finite number of angles,the expression
within the brackets has to be evaluated for every angle ϕi yielding an approximation
to the original function

f(x, y) ≈ 1
2π

N

i=1
Rf (ϕi, ·) |r|(ti), (2.17)

where ti is the orthogonal distance of the line of the ith projection going through the
point (x, y) (see figure 11). The summand Rf (ϕi, ·) |r|(ti) contributes to all points

Figure 11. Orthogonal distance ti of lines li intersecting the point (x, y) [24].

intersected by the line li with orthogonal distance ti. To evaluate the expression in
(2.17) efficiently, the summands Rf (ϕi, ·) |r|(ti) are smeared along the lines li with
corresponding orthogonal distance ti. This operation is called back projection, which
is usually highly optimized in recent image reconstruction frameworks [5, 6, 31].
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2.2.4.2. Iterative reconstruction

A different approach for image reconstruction consists of assuming that an image
slice consists of an array of unknowns, and then setting up the algebraic equations
for the unknowns with respect to the measured projection data. Recording energy
measurements for N different protons and discretizing the irradiated volume into M
voxels, the tomographic equation for pCT can be rewritten as

N

j=0
= Aijxj = bi, (2.18)

where Aij is the system matrix, with its elements describing the length of the
intercept of the ith proton with the jth pixel. The M -dimensional vector x contains
the RSP of the voxels and b is the N -dimensional vector containing the proton’s
WEPL calculated from the energy measured at the rear detector. The dimensions of
the system matrix are large, as the number of proton histories N for all projection
angles are found to be in the magnitude of at least a few hundred millions and
the number of voxels M is of the order of a few million for typical medical image
sizes (512 × 512 × 512 [13]). The goal of iterative reconstruction is to solve the linear
system of equations for x, yielding a three-dimensional map of the volume’s RSP.
Since the system of equations is overdetermined (N M), conventional matrix
inversion methods can not be applied to solve for x. Solutions to equation (2.18) can
be found in the following form

x̂i = argmin Aijxj − bi +R(xi). (2.19)

R(xi) describes a regularizer function that allows for adding prior knowledge [13].
For these types of systems of linear equations, the iterative projection based methods
first introduced by Karczmarz [32] can be utilized for finding a reasonable solution.
Algorithms based on Karczmarz [32] are often referred to as Algebraic Reconstruction
Techniques (ART). The basic idea is to successively project the solution vector onto
the hyperplanes defined by the equations in (2.18). This principle is illustrated for a
trivial example in figure 12. The ART algorithm yields

xk+1
i = xk

i + λk
b − ai, xk

ai
2 aT

i , (2.20)

where ai denotes the ith row of the system matrix and ., . is the scalar product. The
ART approach has an significant disadvantage as for the image xk+1 the previous
image has to be updated i times each iteration. This introduces uncertainties, as pixels
altered by the ith equation contribute to the update based on the (i + 1)th equation
[33]. This further amplifies the salt and pepper noise originally introduced by the
inconsistencies in the measured projection data. In practice, the direct computation
of the system matrix is not possible since it would not fit into the main memory of a
CPU . Therefore, the matrix product operations Ax (forward projection) and AT b
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Figure 12. Trivial example illustrating the basic principle behind the projection
based ART algorithm [3]. Starting from an arbitrary RSP vector (star), the vector is
successively projected onto the hyperplanes (lines). Each line represents a line of a
system of linear equations such as (2.18). If the hyperplanes do have an intersection
the successive projection converges to the solution vector [32].

(back projection) are implemented instead [13]. The forward projection, Ax, describes
the summation of the RSP along the proton paths, whereas the back projection
can be understood as smearing a detector pixel’s value over the voxels intersected
by the path of the detected proton. Using this interpretation, equation (2.20) can
be understood as updating the voxel values by backprojecting the difference of the
measured projection values and the forward projection of the current voxel values.
The iterative algorithms used within this thesis are based on the ART algorithm
with certain adoptions introduced to overcome the infirmities of standard ART. In
this thesis, the SART [34], the SIRT [34], the OS-SART [35] and the ASD-POCS
[36] algorithm are used for image reconstruction.

2.2.5. Path estimates and image reconstruction for pCT
As the path of charged particles traversing through matter is affected by multiple
scattering events (see section 2.1.6), assuming their trajectories as straight lines is
not sufficient as the path discrepancies limit spatial resolution [37]. Considering that
these scattering events are of stochastic nature implies that the path of a proton can
not be calculated exactly. However, the proton paths can be estimated with the most
common approaches discussed in more detail in the following subsections. In figure 13,
the performance of the path estimation formalism is depicted. The most likely path
(MLP) formalism shows the smallest deviation from the reference path. However, the
cubic spline used for the fit depicted in figure 13 represents a standard implementation,
not the optimized approach by Collins-Fekete et al. [38] that is used within this
thesis. By improving the the cubic spline estimation the performance gap to the MLP
method can be reduced (see section 2.2.5.2) [38]. Additionally, the evaluation of the
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Figure 13. Deviation of the path estimates from the reference trajectory obtained
by Monte Carlo simulation [2]. The most likely path (MLP) estimation has the best
performance and is the Gold standard of path estimation in pCT.

MLP is computationally expensive. The cubic spline estimation delivers comparable
results in terms of estimation performance but can be implemented computationally
less demanding. Therefore, the cubic spline estimation delivers a reasonable trade-off
between predicting accuracy and computational efficiency [38].

2.2.5.1. Most likely path

Several authors have introduced a mathematical formalism to describe the MLP
of protons traversing a single tracking setup [39, 40, 41, 42]. In the following, the
approach of Schulte et al. [40] is described in more detail. The variables needed for
the derivation of the MLP formalism are depicted in the schematic representation of
a pCT scanner geometry shown in figure 14. Since scattering in lateral and vertical
direction are assumed to be independent processes [40], the ideas behind the MLP
derivation are shown in 2D-space. The variable u describes the depth in direction of
the proton beam whereas t describes the lateral displacement. The angle θ describes
the direction in the u − t plane at a given depth u. For any depth u the location and
the direction can be summarized as parameter vector yi = (ui). The MLP formalism
provides an expression for the most likely yi given prior knowledge from the tracking
measurements. A proton that enters the tracking volume at yin undergoes MCS and
passes y1 before it leaves the tracking volume at yout. Using Bayes theorem, the
joint likelihood L(y1, yout|yin) of the particle traversing y1 and yout when the particle
entered the volume at yin can be written as

L(y1, yout|yin) = L(yout|y1; yin) · L(y1|yin), (2.21)
where L(yout|y1; yin) describes the probability of a proton being scattered from y1 to
yout and L(y1|yin) is the likelihood of being scattered from the entry point yin to y1.
The transport from one point yi to the successive point yj is goverened by MCS. As

19



Figure 14. Geometry of the pCT scanner used for the derivation of the MLP
formalism [40].

large angle scattering events typically are cut out by applying 3σ cuts [40], MCS can
be modelled by the Gaussian approximation to the Fermi-Eyges scattering model
[43]. Since the distributions of both, the scattering angle and the lateral deflection
are assumed to be Gaussian the likelihood functions can be modelled as bivariate
Gaussians respectively.

The MLP is then obtained by solving

∇y1L(y1|yin) · L(yout|y1) |yMLP
!
= 0. (2.22)

2.2.5.2. Cubic spline

Another approach to account for the curved path of the protons is by approximating
the trajectory by a cubic spline, using entry and exit information gathered by the
single-tracking setup for parametrization. In this thesis, the path is approximated
by a cubic spline based on the phenomenological fitting procedure suggested by
Collins-Fekete in [38]. The protons trajectories are approximated by

S(t) = (2t3 − 3t2 + 1)X0 +(t3 − 2t2 + t)P0 +(−2t3 + 3t2)X1 +(t3 − t2)P1, (2.23)

where S(t) represents the position vector as function of the temporal parameter
t ∈ [0, 1]. Within this description the first tracking detector is located at t = 0. X0
and X1 are the entry and the exit position vectors whereas P0 and P1 represent
optimized entry and exit direction vectors of a proton

P0 = P̂0Λ0 | X1 − X0 |
P1 = P̂1Λ1 | X1 − X0 |, (2.24)

where Λi are optimization parameters and P̂i are the normalized direction vectors.
Both of these quantities can be measured using two detectors upstream and another
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two detectors downstream. Analyzing the spline coefficients in equation (2.23), it
can be seen, that for small direction magnitudes Pi the spline converges to a straight
line as the coefficients for higher orders in t tend to cancel out. Since the maximal
deflection of the protons trajectory increases with the WET crossed by the particle,
[38] suggests to parametrize the direction vectors P0 and P1 in dependence of the
WET passed. This is done by introducing the optimization factors Λ1 and Λ2.
The parameters are modelled as functions of the initial energy Ein and the WET
crossed by the particle. The WET is calculated by integrating equation (2.14) for the
measured energy loss, whereas the initial energy is converted to range in water via

Rw = aEb
in, (2.25)

where a = 0.00244 and b = 1.75 are the material dependent parameters for water
[44, 38]. The optimization parameters Λi are modelled as

Λ0,1 = A + B · X2 with X =
Rw

WEPL, (2.26)

where A and B are two-dimensional fitting parameters. The first entry of the
fitting vectors describes the optimization parameter Λ0, whereas the second entry
describes Λ1. In [38] this approach has been used to minimize the root-mean-square
error of splines deviation from the reference path obtained by Monte Carlo (MC)
simulations.The optimized parameter is obtained by [38]

Λopt
0,1 = Aopt + Bopt · X2 with Aopt =

1.01
0.99 and Bopt =

0.43
−0.46 . (2.27)

2.2.6. Improved radiographies
Several approaches for improving the results of image reconstruction by considering
the curved paths of the protons were proposed in the last years [45, 46, 47]. In this
thesis, the maximum likelihood approach for the generation of improved radiographies
developed by Collins-Fekete et al. [4] is implemented and described in the following.
In this method, the space between front detector and rear detector is discretized
into channels (see figure 15). S(t) describes the trajectory of an individual proton
obtained from a path estimation, lk,n is the length the nth proton travelled inside
the kth channel. The approach aims for determining the most likely WET that can
be assigned to a channel k, by maximizing the likelihood of the proton energy [4].
Therefore, the error measure vk,n, which describes the difference between WETk of
the kth channel and the WEPLn of the nth is introduced as

vk,n = WETk − WEPLn. (2.28)
The error vk,n will yield smaller values for protons that travel longer distances lk,n
inside a specific channel k. To retrieve the dependence of vk,n on lk,n the corrected
measure k,n is proposed as [4]

k,n =
lk,n
Ln

(WETk − WEPLn) , (2.29)
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Figure 15. Illustration of the idea behind the Maximum likelihood formalism
enabling the generation of improved radiographies [4].

where lk,n is the length a proton n has spent in channel k, and Ln is the length
between entry and exit detectors. Furthermore it is assumed, that k,n is a single
realization of a distribution k specific to channel k. Under the assumption that the
k,n follow a normal distribution

N ( k; 0, σ2
k) =

1
2πσ2

k

exp
− lk,n√

2Lnσk

2
(WEPLn − WETk)

2
 , (2.30)

the total likelihood can be written as

L =
N

n=1
N ( k,n0, σk,n). (2.31)

Maximizing the likelihood for the WET, the most likely WET for a specific channel
k can be calculated by

WETk =
N
n=1

lk,n
Ln

2
WEPLn

N
n=1

lk,n
Ln

2 . (2.32)

Improved 2D radiographies can be obtained by assigning the WET of the kth channel
to a pixel defined by the extension of the channel to the rear detector plane. These
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improved radiographies can be used in combination with x-ray image reconstruction
techniques. This is due to the fact, that the contribution of a proton travelling on a
curved path is assumed to consist of several weighted straight line contributions to
multiple pixels (see figure 15).
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3. Materials and methods

3.1. Software frameworks
3.1.1. ROOT
ROOT [48] is a C++ based software framework mainly used in particle physics
and data analysis. It was developed to match the increasing demand for a data
analysis tool being capable of dealing with growing data sets from simulations and
experiments. ROOT provides many data structures, like the TTree, which perfectly
match the requirements for a data container from simulation frameworks like Geant4.
The structures allow storing physical properties on an event-to-event basis. This
thesis used the software framework for storing Geant4/GATE simulation data in the
sophisticated data structures embedded within the framework [48].

3.1.2. CUDA
CUDA, short for Compute Unified Device Architecture, is a parallel computing
platform or programming model developed by NVIDIA that leverages the parallel
computing engine in NVIDIA’s Graphics Processing Units (GPU) [49]. CUDA enables
the utilization of typical programming languages, like C/C++ or Fortran, to program
NVIDIA GPUs. In general, GPUs provide a much higher throughput and memory
bandwidth than CPUs. While the CPU is designed to excel at executing sequential
operations as fast as possible, the GPU enables the execution of thousands of
operations in parallel [49]. Hardware-wise, this is accomplished by using a large
number of processing units, referred to as streaming processors. These processors
are grouped into multiprocessors, which, compared to CPUs, have relatively small
clock speeds. However, devoting many processors to a task that would require a
large amount of queuing if executed on a CPU can drastically improve the overall
performance.

Programs designed with CUDA are executed in a Single Instruction Multiple Data
(SIMD) fashion [6]. A special function called kernel is launched with N copies on
the GPU, where each copy is referred to as a thread. These threads are grouped
into blocks, which are then enumerated and executed on the multiprocessors. In the
CUDA programming model, the threads are enumerated with a three-dimensional
thread index based on the illustration in figure 18. The index i of a vectorized loop
can be assigned to a thread index

i = blockIdx.x · blockdim.x + threadIdx.x. (3.1)

Since all threads contained within one block are executed on a single multiprocessor,
the size of the block is physically limited to 1024 threads per block [49].
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Figure 16. Compared to the CPU architecture, on a GPU, more transistors are
devoted to data processing than flow control [49].

Figure 17. Comparison of the execution of a vectorizable loop on the CPU and the
GPU [6].

In figure 17, the difference between executing a program on a CPU and a GPU
is highlighted. Each iteration of the loop is executed within one of the threads on
the GPU. Another difference to conventional CPU computation can be found in
the memory hierarchy of the GPU. Each thread has access to local memory, which
is realized in the form of registers on a single processing unit. Additionally, each
streaming processor has access to shared memory, which allows for sharing memory
within a thread block [49]. Furthermore, there is global memory which is analogous
to the CPUs RAM on the GPU. Data stored in global memory can be accessed from
all processors and is therefore available for every thread.

Performance limitations Although GPU computing promises a significant boost
in computing performance, the executed program must be modeled appropriately
to fully utilize the GPU acceleration. If the problem set can not be converted into
an algorithm compatible with the SIMD model, executing the program on a GPU
will yield no benefit [6]. However, even if the algorithm solving the problem set of
interest is compliant with the SIMD model, GPU code can be inefficient if designed
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Figure 18. Organization of thread indices [49].

improperly. One key element limiting efficiency is thread divergence. If the kernel
implementing the algorithm needs many control operations for execution, resulting in
program sections of different lengths, efficiency decreases. This is due to the fact that
GPUs are not designed to excel in control flow operations and some threads may have
to wait for the thread with the largest execution time caused by thread divergence [6].
The memory hierarchy of GPUs also has an impact on program efficiency. Depending
on the type of memory the kernel needs to access, the program encounters different
memory bandwidths. The data transfer between the CPUs RAM and the GPUs
global memory, as well as the individual threads access, are governed by low memory
band width. These operations have to be minimized in efficient GPU code. Although
GPU code optimization can improve performance by an order of magnitude or more
[6], the underlying problem set the code is developed for ultimately determines the
efficiency of the optimization efforts.

3.1.3. TIGRE
TIGRE, short for Tomographic Iterative GPU-based Reconstruction toolbox, is a
Matlab/CUDA based toolbox originally developed for image reconstruction of cone-
beam x-ray CT. The toolbox is created to provide an open-source tool for iterative
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image reconstruction that emphasizes flexibility in the geometry of typical x-ray CT
setups. The geometry is based on the illustration in figure 19. The distance between

Figure 19. Geometry of the imaging setup in TIGRE [5].

particle source and origin (center of rotation) is referred to as distance source-origin
(DSO) in the plot. The TIGRE toolbox also supports helical CT and parallel beam
geometries in addition to the cone-beam geometry shown in figure 19. As all the
elements shown in figure 19 can be shifted and rotated, the toolbox provides maximal
flexibility for the imaging setup, allowing to consider uncertainties introduced by
mechanical misalignment in the imaging setup.

TIGRE’s design philosophy is based on reducing the gap between image recon-
struction research and the end-users of tomographic imaging [13]. This philosophy is
recapitulated in the layered software architecture of the TIGRE toolbox, which can
be seen in figure 20. The top layer contains the user scripts and the algorithms which

Figure 20. Abstraction of the software architecture of the TIGRE framework [5].

are implemented in Matlab. This allows the end-user to use a high-level scripting
language to perform image reconstructions within a few lines of code. To boost
image reconstruction performance in terms of computing time, the computationally
demanding operations,i.e., forward projection and back projection, are implemented
within the CUDA framework. This allows for launching computationally demanding
tasks on the GPU, which reduces the computation time immensely [5]. The interface
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between the CUDA implementations and the Matlab top layer is provided by Mex
functions. Due to TIGRE’s modular structure, implementing new CUDA accelerated
modules is possible without changing the source code of the toolbox. Therefore, an
extension to the TIGRE toolbox for pCT can be implemented. TIGRE introduces
four main reconstruction families: the filtered-back projection family, the SART
family, the Kryvlov subspace method family, and the total variation regularization
family [5]. Except for the Kryvlov subspace method family, algorithms from each
family are used for image reconstruction within this thesis. For a more detailed
description of the algorithms used within this thesis, see section 2.2.4.2.

3.1.4. Monte Carlo simulations with Geant4 and GATE
Researchers rely on Monte Carlo (MC) particle transport calculations to simulate
the effects of the stochastic deflection events a proton undergoes while traveling
through matter. MC simulations provide a useful tool to investigate the influence
of different tracking geometries. The influences of different tracking and energy
measurement setups and the influence of the choice of the reconstruction algorithm
on image quality can be studied without having access to a pCT scanner [37]. Particle
transport simulations are fundamentally based on MC methods. Usually, in MC
methods, mathematical or physical problems are solved by setting up stochastic
models using random numbers that fit the problem of interest, e.g., particle transport
[50]. A particle traversing matter is influenced by a large number of events E1, ...En,
such as scattering or particle decay. Depending on the type of particle, different
scattering or decay events Ei have to be taken into account. Assigning probabilities
p1, ..., pn to the events E1, ..., En affecting the particle, a particular event Ei can be
represented by a random number ξ 1 if

p1 + ... + pi−1 ξ < p1 + ... + pi with
n

i=0
pi = 1. (3.2)

The probability of the events pi is governed by the underlying physics and can be
obtained by

pi =
σi

σt
with σt =

n

i=1
σi, (3.3)

where σi is the cross section of the interaction assigned to event Ei and σt is the
total cross section. Based on this stochastic model, the physics affecting the particle
transport, such as electromagnetic or hadronic interactions can be modelled. In the
following sections, the MC software frameworks used within this thesis are described.
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3.1.4.1. GEANT4

Geant4 [51] is a C++ software toolkit developed by research groups at CERN and
KEK (High Energy Accelerator Research Organization). At the core, the simulation
toolkit consists of a collection of physics models that describe the interaction of
particles with matter over a wide energy range. Geant4 provides several physics
lists yielding different levels of abstraction to interactions mechanisms, depending
on particle type and energy range. By choosing an appropriate physics list, the user
decides in which level of detail certain aspects of physics are modeled. The physics
list mostly used for pCT studies is the QGSPC BIC HP model [37]. In this thesis,
the QGSPC BIC model is used instead. The QGSPC BIC HP model only extends
the former by modelling thermal neutrons more accurately, whose influence on this
work is neglected [52].

In the following, elements of the Geant4 simulation framework which are crucial
to understand the simulation toolchain are highlighted. Emphasis will not be laid
on software details but the software’s representation of physical actions. Therefore,
the transport of a single particle from its origin until the end of tracking and the
representation of the underlying processes by the software are summarized in the
following. The event (G4Event) is the main unit of the simulation. It provides an
abstract interface to the physics event generators for the generation of primary
particles. At the beginning of every event, primary tracks (G4Track) are generated.
Tracks resemble ”snapshots” of particles that contain current information like energy,
position, and momentum. In Geant4, particle propagation is invoked via processes
(G4Process). Each interaction that is contained in the physics model of the particle
propagated proposes a physical step length, where the smallest of these steps is
used to propagate the particle. A process is the only instance that can change
the properties of a track. Necessary transient information of the updated track is
contained in the step class (G4Step), which contains spatial information for the
starting and the endpoint as well as the change in track properties (momentum,
energy, etc...). The physical information of the step instance can be accessed via the
hit class. The hit class represents the snapshot of the data of the G4Step class if the
step occurred in a volume that is assigned with a so-called ”sensitive detector”.

Generally, all volumes where particle information has to be extracted are there-
fore modeled as sensitive detectors. For example, in a pCT simulation, this would
correspond to tracking detectors and the calorimeter. For each event, the sensitive
detectors obtain a collection of hits. By processing the collection of hits at the end
of each event, single-particle tracking information can be extracted at the location
of the tracking detectors. In this way, the list-mode data gathered from a single
tracking pCT imaging setup can be generated.

3.1.4.2. GATE

GATE, short for Geant4 Application for Tomographic Emission, encapsulates Geant4
libraries to achieve a modular, scripted simulation toolkit optimized for the field of
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nuclear medicine [53]. MC simulations can be performed in an intuitive matter as an
extension to the native Geant4 command line interpreter is embedded within GATE.
The simulation of whole imaging setups can be conducted by supplying GATE with
a few macros containing GATE command line instructions. The simulation of a pCT
imaging setup in GATE can be done in eight steps [53]:

I. Setting up the geometry of the pCT scanner
II. The geometry of the phantom has to be described.

III. The data acquisition system has to be described. In GATE, ”actors” are tools for
collecting information during the simulation. GATE provides several actors that
allow to extract different types of information, for example, dose deposition.

IV. The time parameters have to be set. In GATE, the time-slice for which the
simulation is assumed to be static can be set. The simulation’s geometry is
updated after each time-slice, which enables simulating dynamic objects, i.e.,
moving detector geometries.

V. The data output format has to be chosen. GATE provides several output
formats for storing the collected data with the default formats being ROOT
[48] and ASCII.

VI. The physics governing he simulation has to be determined via choosing an
appropriate physics list.

VII. The properties of the particle source have to defined in terms of shape and
energy profile.

VIII. The level of verbosity has to be set.
Although some flexibility is lost by switching from Geant4 to GATE for particle
transport simulation, GATE’s simplicity imposes an advantage for the purpose of
simulating a pCT imaging set-up.

3.2. Simulation of the experimental setup
The experimental set-ups which are simulated with GATE are based on the common
single particle tracking pCT scanner discussed in section 2.2.3. However, idealized
conditions are assumed:

• infinite energy resolution of the tracking detectors
• infinite spatial resolution of the tracking detectors
• monoenergetic parallel proton beam
• energy measurement is conducted within the last tracking detector which cancels

uncertainties which would be introduced through additional scattering or energy
straggling within the calorimeter. Additionally, the result is independent of the
technology used for the energy measurement.

For all simulations conducted within this thesis, 3 σ cuts are applied to eliminate the
contribution of secondary particles on the path estimation [40]. In the scope of the
simulation’s post-processing, the WEPL for each proton is calculated by computing
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the difference of range in water given the initial energy and the measured residual
energy using equation (2.7).

The geometry of the pCT imaging setup for all simulations conducted within
this thesis is based on figure 21. The particle source is chosen to be monoenergetic
with a rectangular cross section. The physics model used for the simulation is the
QGSP BIC model which is recommended for medical physics. The distances between

Figure 21. Geometry of the pCT scanner simulated within this thesis. The spiral phantom
depicted in this figure acts as place holder for arbitrary samples.

the components of the experimental setup are the same for all simulations, with the
only variable being the size of the particular phantom and the initial energy.

3.2.1. Phantoms
In this section, the phantoms which are used in the MC simulations of the pCT
setup are described.

Water phantom
Since the pCT TIGRE toolbox has to be calibrated for biological samples of varying
thickness, Geant4 simulations of water blocks, approximating human tissue, are
conducted (see section 3.3.2). As the range of protons in water depends on the initial
energy, adoptions to the initial energy have to be done to ensure that a large amount
of particles can reach the rear detectors if the sample size is increased. The initial
energies chosen for the respective water absorber thickness twater are depicted in
table 1.
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twater / cm Ein / MeV
0 150
10 200
20 250
30 300
40 350
50 400

Table 1. Parameters for pCT calibration experiment.
twater... phantom thickness, Ein... initial energy

Gammex phantom
The Gammex 467 tissue characterization phantom consists of a cylinder made of
water which has a diameter of 33 cm and several tissue inserts embedded within the
cylinder. As Khellaf et al. [14] use the same phantom for characterizing the RSP
accuracy, the results of this thesis and their findings can be compared. Therefore,
the material of the tissue inserts is chosen to match their setup. However, not all
of the tissue materials used by Khellaf et al. [14] could be identified. Some tissues
are replaced by standard tissues contained in the GATE material data base. In the
simulations using the Gammex 467 as phantom, the initial beam energy is set to 250
MeV to ensure that the protons reach the rear detector. The phantom can be seen in
figure 22 with the material abbreviations described in table 2.

Abbreviation Material RSPref
AP6 adipose tissue 0.976
SB3 spinal bone 1.341

BR12 brain 1.043
MB7 marrow bone 1.377
LM1 lung moby 0.298
BR breast 1.034
LV liver 1.065

MB5 marrow bone 1.285
LN5 lung 0.505
LM2 lung moby 0.298
CT cortical bone 1.094
RB rib bone 1.723

Table 2. Abbreviations and RSP reference values RSPref for the Gammex 476
tissue inserts obtained from the R80 measurement (see section 3.5.1).
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Figure 22. The Gammex 467 tissue characterization phantom consists of a 33 cm
solid water disk approximating the average size of a pelvis [54]. Sixteen holes with a
diameter of 28 mm enable inserting various interchangeable tissue or other biological
probes. Within the simulations the solid water is approximated by a cylinder of liquid
water. The inner inserts are located on a circle with a diameter of 11 cm whereas the
outer insertions reside on a circle with a diameter of 21 cm.

Spiral phantom
To characterize the spatial resolution, a phantom typically used in literature is the
spiral phantom [14, 45, 46] as it allows to evaluate the spatial resolution for several
inserts in dependence of the distance to the phantom center. The phantom shown
in figure 23 consists of a cylinder of water with a diameter of 14 cm, representing
human tissue, and several aluminium inserts. Compared to the spiral phantom used
in the literature, the phantom in this thesis consists of a reduced set of inserts. The
furthest insert of each spiral arm is removed to downsize the phantom, improving
the computing time of the MC simulation. The energy of the proton beam is set to
150 MeV in the MC simulations.
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Figure 23. The phantom consists of a cylinder of water with 2 mm diameter
aluminium inserts. Since there are inserts all over the cross section, the influence of
the depth-dependent uncertainty of the path estimation can be evaluated.

3.3. TIGRE pCT toolbox

The field of proton therapy and proton imaging is multidisciplinary and therefore
contains research from several disciplines such as medicine, mathematics, physics, and
biology. To make pCT and proton imaging more applicable and more accessible for
researchers with different expertise in scientific computing, it is necessary to reduce
the programming overhead. Therefore, the development of a user-friendly software
framework is beneficial. For this purpose, a collection of CUDA-based files with a
Matlab header (following the structure of the TIGRE toolbox [5]), further referred to
as pCT toolbox, is created [5]. The methods embedded in the pCT toolbox generate
improved proton radiographies from data obtained either by MC simulations or by
experiment.

For the development of the pCT toolbox the same design principles as in the
TIGRE framework are applied. The application code is implemented in Matlab,
and the computationally demanding but parallelizable calculations are implemented
in C++ utilizing CUDA. Within the algorithms used in the pCT toolbox, the
path estimation of the proton paths is done by cubic spline estimation based on
[38], whereas the method for generating improved radiographies from the known
paths of the single particles is based on the findings in Collins-Fekete et al. [4] (see
section 2.2.6). To calculate the weighting factors needed to generate the improved
radiographies, the intercept of the proton path and the channels the proton has
crossed have to be found. Compared to the MLP, the cubic spline approach is
superior in terms of computational efficiency. Additionally, using the optimized cubic
spline estimation proposed by Collins-Fekete et al. [38] further reduces the path
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estimation performance discrepancies. For a single particle trajectory, the cubic
spline coefficients have to be calculated only once, whereas the MLP has to be
re-evaluated at every step. Additionally, finding the intercepts of the estimated path
with the channel boundaries can be done analytically for a third-order polynomial
(see section A). Since the channel intercepts have to be found for every individual
proton, GPU acceleration is utilized to overcome the run time limitations imposed
by the cumulative computational efforts (see section 3.3.1).

Figure 24. Implementation of the complete pCT image reconstruction toolchain
based on improved radiographies [4] and the TIGRE reconstruction framework [5].

3.3.1. Performance considerations
To reduce the influence of noise introduced to the measurements by energy straggling
and to keep the therapeutic dose deposited in the probe as low as possible, the rate
of detected particles per mm3 irradiated volume is suggested to be 100 [22, 55]. This
results in O(100) detected particles per mm2 detector area for pCT. Considering
the spatial dimensions relevant in particle therapy, particle numbers are in the range
of a few million up to a few ten million particles per projection, depending on the
size of the area of interest. Since complex calculations have to be done for all these
particles to generate an improved radiography, performance considerations have to
be made to deal with the computational effort.

As these calculations can be done for each particle separately, the generation of
proton radiographies based on the methods used within this thesis is perfectly fitted
for being executed in parallel as the program’s structure fits into the SIMD scheme
(see section 3.1.2). The algorithm has already been implemented in [56] for sequential
execution. Since calculating the intercepts of particle trajectories and the channel
boundaries is done independently, GPU acceleration can be utilized by distributing
the workload on the GPU’s streaming processors. Since NVIDIA currently has the
largest share in providing add-in GPGPU’s for scientific computing [57], the CUDA
parallel computing platform has been chosen for algorithm development. It enables
the utilization of the hardware provided by NVIDIA. For the implementation of the
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algorithm to be compatible with the CUDA framework, some key changes in the
algorithmic design had to be made, which are described in detail in the following.

Dynamic memory allocation The most significant drawback in algorithmic design
for this specific purpose is, that it is not possible to allocate memory within the threads
local memory dynamically [58]. This makes it impossible to use data structures that
are able to grow dynamically, like the vector of the C++ standard library. Therefore,
only fixed-size arrays can be used as container to store the intercepts of the protons
with the channel boundaries. Consequently, the size of the array already has to be
defined at compile time. As shown in figure 25 for a 30 cm water block as phantom
(see section 3.2.1), the number of channel intercepts ranges up to approximately 200
intercepts varying from particle to particle.

Figure 25. Distribution of the intercept count for a pCT simulation of a 30 cm water block.

Since the parametrized cubic spline in equation (2.23) is described by independent
x and y coordinates, the channel intercepts can be found by solving a cubic equation
for the x and the y component, independently. The decision logic is kept as simple
as possible to avoid thread divergence. Therefore, the intercepts for each coordinate
dimension are stored in the container array in sequence. For the weighting factor lk,n

Ln

(see equation (2.29)) to be calculated correctly, the array has to be sorted beforehand
due to the simplified decision logic. As the performance of sorting an array strongly
depends on the chosen algorithm, emphasis has been put on selecting the optimal
method. Figure 25 shows that if the array size is chosen to contain the intercepts of
every proton, most initialized arrays are filled very sparsely. To reduce the influence
of the sorting process on the runtime, the best performance is expected by using a
partial sort algorithm.
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3.3.2. Intercept number calibration
The pCT toolbox developed in the scope of this thesis is designed in the same
structure as the TIGRE toolbox since its results are intended to be used with this
framework. To reduce the scientific computing overhead, the toolbox should be
provided so that no source code alteration from the user is necessary. Nevertheless,
the size of the array that stores the intercepts has to be defined before compilation
due to the dependence of the number of channel intercepts on the thickness of the
sample, the chosen channel size and the distance between the inner detectors (see
figure 26). As the the focus of this thesis is on improving the performance of image
reconstruction for a clinical context, the pCT toolbox is calibrated for biological
tissues. Therefore, MC simulations of several water blocks with varying thickness
(see section 3.2.1) are performed, since water can be used to approximate biological
tissues. For each water block, the distribution of the number of intercepts is extracted.

Figure 26. Sketch of pCT measurement with discretized channels showcasing the
influence of the chosen pixel size on number of channel intercepts (red) with the
channels being restricted by the inner tracking detectors (grey).

Depending on the thickness of the phantom, the number of intercepts is expected to
increase. The water block thicknesses, as depicted in table 1, are chosen to cover a
range representing typical patient body parts (head, torso). The dependence of the
intercept number on the sample thickness is used to calculate a calibration curve
that is used to define the optimal array size for the user-specified sample thickness.
As the optimized array size also prevents the user from choosing a data container too
large for the problem set, positive effects on runtime are expected but not discussed
in this thesis.

3.4. Reconstruction parameters
In the second part of this thesis, the improved proton radiographies generated with
the pCT toolbox are used to perform image reconstruction on two phantoms. In
Khellaf et al. [14], several direct reconstruction algorithms for pCT are compared.
Improved proton radiographies as they are implemented in the pCT toolbox in this
work, used in combination with the FBP reconstruction algorithm are also analyzed
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within the comparison. Compared to the other algorithms mentioned in the paper, the
method delivers sub-par outcomes in terms of RSP accuracy and spatial resolution
for idealized detectors (infinite energy resolution, infinite spatial resolution). However,
for a realistic detector setup, the difference between the methods is negligible [14]. In
this thesis, the performance of the pCT toolbox is compared to the performance of
the same method [4] as evaluated in Khellaf et al. [14]. Additionally, the influence of
choosing iterative algorithms for image reconstruction is observed. Therefore, RSP
accuracy and spatial resolution of the central slices of the reconstructed images are
compared to Khellaf et al. [14]. The irradiated phantoms and further experimental
details are discussed in the respective sections 3.5.1 and 3.5.2. The algorithms used
within this thesis and the necessary information about their parameters are listed for
the reconstruction of the respective phantom in table 3. The number of iterations for
the SIRT, the SART and the OS-SART algorithm is chosen heuristically. This is done
by increasing the number of iterations until no further performance improvements
can be observed. The ASD-POCS algorithm is only supplied with an upper threshold
regarding the iteration count, as the algorithm is aborted if convergence is reached.
In table 4, the most important parameters for the image reconstruction based on

Algorithms Parameters
Spiral phantom Gammex phantom

FBP - -
SART iterations: 25 iterations: 25

OS-SART iterations: 50 / blocksize: 20 iterations: 50 / blocksize: 20
SIRT iterations: 100 iterations: 100

ASD-POCS iterations: 15 iterations: 15

Table 3. Algorithmic parameters.

the improved radiographies generated for the spiral and the Gammex phantom are
displayed. Additionally, the reconstruction parameters of Khellaf et al. [14] are shown
to highlight the differences to the reconstruction conditions of this thesis. It has to be
mentioned that in this thesis the channel sizes for the optimized radiographies (see
section 2.2.6) are chosen to be equal to the pixel size of the image reconstruction.

Spiral phantom Gammex phantom
this thesis Khellaf et al. [14] this thesis Khellaf et al. [14]

image size [pixels] 600 × 600 1000 × 1000 700 × 700 800 × 800
pixel size [mm] 0.25 0.25 0.5 0.5

Nproj 720 720 90 720

Table 4. The parameters shown in this table, describe the data fed to the reconstruc-
tion algorithms, with Nproj being the number of improved radiographies used for the
reconstruction.
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3.5. Image quality metrics
The purpose of this section is to describe the image quality metrics used to evaluate
the performance of the image reconstruction results obtained within this thesis.
The main performance objectives are the spatial resolution and the RSP accuracy.
These quantities are the most crucial parameters concerning the range uncertainty
in particle therapy based on treatment planning with pCT [59].

3.5.1. RSP accuracy
To evaluate the performance of the image reconstruction in terms of spatial resolution,
reference RSP values for comparison are vital. Therefore, additional Geant4 simu-
lations, where the water equivalent thickness is extracted from R80 measurements
are conducted [60]. R80 describes the range in the falloff region of the Bragg peak
where the dose has reduced to 80 % of its maximum amplitude. These ranges are
measured in water blocks downstream of material blocks consisting of the same
material as the tissue inserts of the Gammex phantom. A reference range without
absorber is obtained by replacing the material block by air. Subsequent subtraction
of the obtained ranges for the tissue materials from the reference range enables the
computation of the WET of the respective tissue. From the WET of the material,
the respective RSP can be calculated by dividing the WET by the thickness of the
material block used in the simulation [61].

For the evaluation of the RSP accuracy the relative RSP error for a region of
interest (ROI) is calculated as

k
rel =

RSPk
mean − RSPk

ref
RSPk

ref
with RSPk

mean =
1
N

N

i=1
RSPk

i , (3.4)

where RSPk
i is the RSP value of the ith pixel in the ROI of insert k, N is the number

of pixels embedded in the ROI, RSPk
mean is the mean RSP of the kth insert and

RSPk
ref is the reference RSP from the material of the kth insert.

3.5.2. Spatial resolution
One of the most comprehensive metrics used to evaluate spatial resolution is the
modulated transfer function (MTF) [62]. The MTF describes how well an imaging
system transfers contrast across spatial-frequencies [63]. Fundamentally, images can
be viewed as a summation of impulses, e.g. scaled and shifted delta functions [64]. The
imaging process itself is referred to as a linear system. In this description, ”system”
refers to any process that produces an output signal in response to an input signal.
The output image G(x, y) of an imaging process is given by the convolution of the
input image f(x, y) with the impulse response, also called point spread function
(PSF), of the system

G(x, y) = f(x − x y − y )PSF(x , y )dx dy , (3.5)
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with the additional constraint

PSF(x, y)dxdy = 1. (3.6)

The PSF describes how much the contrast information contained within one point
of the source material f(x0, y0) is spread spatially through the imaging process (see
figure 27). As the spreading described by the PSF contains all the information on
the spatial resolution, obtaining the PSF from the image would be sufficient for
performance characterization. The MTF ultimately is defined as the modulus of the
2D- Fourier transformation of the PSF. However, the PSF is experimentally hardly
obtainable since it would require the imaging of an infinitesimal small object [63]. A
more convenient method is to is to calculate the MTF with the use of the edge spread
function (ESF). The ESF can be obtained from sharp contrast edges embedded in
the image of interest. In this thesis, these edges are represented by the inserts of
the analyzed phantoms (see section 3.1.4). The connection of the ESF to the PSF is
given by

LSF(x) = PSF(x, y)dy =
∂

∂x
ESF(x). (3.7)

As the line spread function (LSF) is the Radon transform of the PSF, the MTF
can be obtained using the Fourier slice theorem

MTF(f) = 1
N

∂

∂x
ESF(x) exp (−2πifx) dx, (3.8)

where N is the normalization of the LSF and f is the spatial frequency.

Figure 27. Illustration of the PSF in 2 dimensions with the PSF being depicted in
various functional forms (G - Gaussian, E- Exponential, P - pillbox) [64].

In this thesis, the spatial resolution of the reconstructed image is evaluated by
calculating the MTF for the inserts of the spiral phantom. Therefore, the ESF is
calculated by sorting the pixel’s RSP values according to the distance of the pixel
from the center of the insert, as depicted in figure 28. Since the ESF is expected to
look like a smeared step function with the step being located at the radius of the
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Figure 28. Calculating the edge spread function based on [63].

insert, a function mimicking the ESF has to be found so that a nonlinear fit can be
performed. In this thesis, the ansatz as suggested in [14] is used:

ESF(x) ∝ a · erf
− x − b

c

2 + d. (3.9)

The measure to characterize spatial frequency in the literature is the f10% value
which is the spatial frequency where the MTF evaluates to 10 % of its amplitude.
Since the MTF is the Fourier transform of the derivative of the ESF the spatial
frequency f10% can be calculated as

f10% =
1

π · c

ln(10)
2 . (3.10)

Therefore, f10% solely depends on the parameter c, obtained from the nonlinear
fit of the ESF of the reconstructed image. f10% is calculated for all but the two
innermost inserts, considering the RSP values in circular regions of interest with
diameters of 10 mm around the inserts as outlined in figure 23. Consequently, the
spatial resolution of the image can be calculated in dependence on the distance to
the phantom’s isocenter. This methodology is described for a single cylindrical insert
in Appendix B in more detail.
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4. Results and discussion

4.1. CUDA - performance improvements
In this section, the speedup that could be achieved by switching from single-core
computing to GPU accelerated computing is shown. Therefore, the system computing
time for the generation of one improved radiography is compared for different
computing systems (see table 5). For each radiography approximately 1.1 · 107

particles were detected, for the Gammex phantom [54]. One must consider that the

Computing device Computing time Speed up
Intel(R) Xeon(R) E5 - 2650 v4 (CPU) (163.35 ± 0.25) s 1

NVIDIA Quadro K620 (GPU) (18.90 ± 0.1) s 9
NVIDIA RTX 4000 (GPU) (1.25 ± 0.02) s 131

Table 5. Average computation time for the generation improved radiographies.
The speed up in the third column is calculated by computing the fraction of
the single core computing time of the Intel Xeon CPU and the respective GPU
times.

computation time referenced in table 5 is measured for the execution of the algorithm
creating the improved radiographies only, as this is the part of the calculations
executed in parallel on the GPU. For total computing time, latency for reading
the simulation data into memory (data I/O) must also be accounted for. Since the
latency in data I/O depends on the size of the files that have to be fetched into
memory, the number of particle trajectories simulated per projection ultimately
strongly influences the total computation time. In this thesis, the simulation data,
i.e., the detected positions, directions, and the WEPL for each proton, is provided in
the form of plain text files.

For the simulation data of the CATPHAN, which was used for measuring the
performance in table 5, the time needed for fetching the data into memory was
measured to be on average 50 s for all systems. For smaller spatial dimensions
and 225 particles per mm2 detector area, leading to about 106-107 particles per
projection, the data I/O time is in the order of a few seconds. However, for more
extensive simulations, the data I/O is the bottleneck for overall computation time.
Although the speedup achieved by the GPUs is quite remarkable, the CUDA code
can certainly be improved as advanced code optimization techniques have not been
considered within this thesis. For example, no emphasis has been laid on choosing
the optimal type of memory for the data structures embedded in the implemented
algorithm. Storing the arrays containing the simulation data in texture memory
instead of ordinary global memory may improve the speedup additionally.
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4.1.1. Calibration
As discussed in section 3.3.2, the number of intercepts is acquired for several phantom
thicknesses. Figure 30 shows how the mean number of intercepted channel boundaries
evolves with increasing sample thickness. Furthermore, an increase in the variance of
the number of intercepts can be observed. While for a water block with a thickness of
10 cm the standard deviation is given by ≈ 6 intercepts, a water block of a thickness
of 50 cm yields a standard deviation of ≈ 30 intercepts.

(a) (b)

Figure 29. (a) Linear fit of the intercept numbers with function parameters shown in
table 6. The orange dots represent the mean number of intercepts for the corresponding
thickness of the water block, whereas the orange area illustrates the standard deviation
of the number of intercepts. (b) Linear fit of the standard deviation of the intercept
numbers σint.

Parameter Value
a (0.70 ± 0.03) 1

cm
b −0.45 ± 0.90

Table 6. Linear fit of the intercept numbers f (x) = ax + b.
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Figure 30. Distribution of channel intercepts for varying phantom thicknesses.
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Using the fitting data, the optimal array size Nopt is calculated at pre-compile
time using The mean of the intercept numbers and their variance is depicted in figure
29a for each phantom thickness. Figure 30 shows that the variance increases for
larger sample dimensions, therefore it would not be sufficient to choose the optimal
array size by evaluating the obtained calibration function for the mean number of
intercepts as this would results in a truncation of many particles. To choose the array
size optimally, the value obtained by evaluating the calibration function depending on
the sample thickness is increased by three standard deviations (3 σ). As the standard
deviation increases with the sample thickness, there has to be found a functional
dependence as well. The dependence of the variation on the sample thickness is
approximated to be linear (see figure 29b), which is expected to be sufficient for the
calibration purpose. The ideal number of intercepts is then calculated by

Nopt(x) = µ(x) + 3σ(x), (4.1)

with µ(x) being the linear fit of the mean of the intercept numbers, σ(x) the
calibration curve of the standard deviation, and x the sample thickness. Using this
approach for all improved radiographies generated within this thesis, only about 0.2
% of the particles are rejected from the data set due to their number of channel
intercepts exceeding the allowed number Nopt.
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4.2. Image reconstruction
In this section, the central slices of the image reconstructions of the Gammex
467 and the spiral phantom are analyzed in terms of spatial resolution and RSP
accuracy, respectively. In table 7, the computation time of the image reconstruction
algorithms used within this thesis is listed for both phantoms. The input paramters
for the algoithms were already discussed in section 4.2. The computation time

Algorithm Computation time
Spiral phantom Gammex phantom

FBP 2.5 s 1.4 s
SART 12 min 5 s 2 min 39 s

OS-SART 7 min 21 s 39 s
SIRT 2 min 15 s 31 s

ASD-POCS 20 min 2 min 3 s

Table 7. The computation time of the image reconstruction for each algorithm.

of the algorithms is mainly determined by the size of the reconstructed volume
(total number of voxels) and the number of radiographies used for reconstruction.
Comparing the computation times, the reconstruction algorithms are faster for the
Gammex phantom. The large computation time of the iterative algorithms for the
spiral phantom can be explained by the large number of proton radiographies used, as
the difference in reconstructed volume between the spiral and the Gammex phantom
is negligible (see table 4).

4.2.1. RSP accuracy
In figure 31, the central slice of the Gammex phantom obtained with different
reconstruction algorithms is presented. In figures 33 - 34, the mean RSP values of
the tissue inserts obtained from the image reconstructions are compared to their
reference value for the FBP and the ASD-POCS algorithm respectively. For the
SIRT, the SART and the OS-SART algorithm the results can be found in appendix
C. The mean RSP is calculated for a circular ROI with a diameter of 20 mm located
at the center of the corresponding inserts. Although the tissue inserts have diameters
of 26 mm, the circular ROI is chosen to be slightly smaller to assure that the spatial
resolution does not affect the resulting mean RSP. The black bars, depicted in figures
33 - 34, describe the standard deviation of the RSP values in the corresponding
ROI. A small standard deviation indicates better performance in terms of noise. For
further noise analysis, the mean standard deviation is calculated for each algorithm.
As depicted in figure 32, the ASD-POCS algorithm shows the best performance
in terms of noise. This does not come by surprise as the algorithm implements a
regularizer that minimizes the total variation of the RSP image [13].
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Figure 31. Central slice of the Gammex phantom reconstructed with different image
reconstruction algorithms.
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Figure 32. The mean standard deviation is obtained by calculating the mean from
the standard deviations of the corresponding tissue inserts. The iterative algorithms
perform better than the FBP approach.

Figure 33. Comparison of the RSP values obtained from image reconstruction via
FBP algorithm to the corresponding reference values for the tissue inserts. On the
left side the RSP values correspond to the tissue inserts of the inner ring, whereas the
right side depicts the RSP accuracy for the outer ring of the inserts.
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Figure 34. Comparison of the RSP values obtained from image reconstruction via
ASD-POCS algorithm to the corresponding reference values for the tissue inserts. On
the left side the RSP values correspond to the tissue inserts of the inner ring, whereas
the right side depicts the RSP accuracy for the outer ring of the inserts.

In figure 35, the relative RSP error of the inserts is depicted for the image
reconstruction algorithms used in this thesis. For most inserts, the choice of algorithm
seems to be irrelevant, as no significant difference between the relative errors of the
respective algorithms can be observed. However, for the tissue inserts with the largest
errors, the iterative algorithms perform better than the FBP.

Generally, the algorithms show the best performance for inserts with RSP values
close to the RSP of water (RSPwater = 1). Consequently, the largest relative error
can be observed for the lung insert LM1 (RSPref

LM1 = 0.298), ranging from 2.9% for
the SIRT algorithm to 8.2% for the FBP algorithm. The iterative algorithms perform
better on the lung insert than the FBP algorithm. Interestingly, the ASD-POCS
algorithm shows the worst performance on the lung inserts compared to the other
iterative algorithms. Comparing the RSP accuracy of the outer ring and the inner
ring for adipose tissue (AP6) and lungmoby (LM1 and LM2), the distance of insert
to the center seems to have a negligible influence on the result, as nearly the same
relative errors can be observed for the insert pairs.

The RSP values of the lung insert calculated with the FBP algorithm in Khellaf
et al. [14] show the largest relative error compared to the other inserts. The same
behaviour could be observed in this thesis. Although the results in Khellaf et al. [14]
show better RSP accuracy, the performance is still comparable as it shows the same
dependence on the insert material. As mentioned before, the iterative algorithms
perform better on the lung inserts than the FBP. Therefore, the influence of the
insert’s material on the RSP accuracy can be improved by choosing an iterative
algorithm over the FBP. In contrast to the findings for the RSP accuracy in Khellaf
et al. [14], the relative errors of the insert’s RSP in this thesis indicate inferior
accuracy. This is not surprising as many influences are contributing to the observed
discrepancies. First of all, in this thesis, projections have only been generated for 90
angles instead of 360 angles reported in Khellaf et al. [14]. Furthermore, the partly
idealized proton imaging setup simulated in this thesis underlies severely different
idealization assumptions than the setup in their study. In Khellaf et al. [14], the
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Figure 35. Comparison of the relative error of the RSP values within the Gammex
phantom for the different algorithms.

idealized setup consisted of one tracking detector upstream and downstream with
infinite spatial resolution. Contrary, the imaging setup in this thesis consists of two
tracking detectors upstream and downstream with finite spatial dimensions (300
µm). Since the parameters of the cubic spline used to estimate the paths of the
protons depend on the position measurements conducted with the tracking detectors,
additional uncertainties are introduced by the finite extension of the detectors.

Using improved radiographies as suggested by Collins-Fekete et al. [4], the non-
linear path of the particles is considered via redistribution of WET on several pixels
by a weighting factor. The weighting factor ultimately depends on the length of each
particle spent in a channel extending to the respective detector pixel. Therefore,
uncertainties in the path estimate will undoubtedly translate to errors in the WET
of the channels. Although the accuracy of the path estimation affects the estimated
WET of certain channels, limitations on the RSP accuracy due to using improved
radiographies for reconstruction will still prevail. This is due to the fact that particles

51



traversing regions of large stopping power can still contribute to channels with low
WET. This intrinsic bias can not be eliminated by choice of the image reconstruc-
tion algorithm. Additionally, estimating the WEPL by using the approximation
of Donahue, Newhauser, and Ziegler [17] also introduces uncertainties concerning
RSP accuracy. Nevertheless, the choice of algorithm can improve the quality of the
reconstructed image as the results obtained by the iterative algorithms, e.g., the
ASD-POCS algorithm, show clearly better signal-to-noise ratio (figure 33 - figure
34).

4.2.2. Spatial resolution
In figure 36, the central slices of the image reconstructions of the spiral phantom are
depicted. Figure 36 again shows that the image obtained with the FBP approach
suffers the most from noise compared to the reconstruction results obtained with
iterative algorithms. From visual observation the SIRT algorithm seems to generate
less noise which can be observed in the less grainy water hull surrounding the
aluminium inserts. On the other hand, the SIRT algorithm produces the most blurry
inserts as there is no sharp contrast edge observable at the inserts boundaries. Smooth
edges ultimately translate to flat edge spread functions, which is an indicator for poor
spatial resolution. Visually, the SART and the OS-SART algorithm seem to produce
similar outcomes. The most significant observable difference is the more apparent
graininess in the image generated with the SART algorithm. In figure 37, the spatial
resolution, calculated according to equation (3.10), in dependence of the distance
to the center of the phantom is shown. It can be seen that the spatial resolution
increases for the inserts located further away from the phantom’s center. The same
coherence could be observed in Khellaf et al. [14]. This is due to the fact that the
uncertainty of the path estimates is the largest in the center of the phantom which
is shown in Li et al. [2] and Collins-Fekete et al. [38].
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Figure 36. Central slice of the spiral phantom reconstructed with different image
reconstruction algorithms.
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Figure 37. Evolution of the spatial resolution measure in dependence of the distance
to the phantoms center.

The difference in spatial resolution of the images generated with FBP, SART,
ASD-POCS and OS-SART are mostly negligible. As already discussed before, the
image generated by the SIRT algorithm does perform the worst in terms of spatial
resolution. This may be caused by the number of iterations chosen to execute the
SIRT reconstruction as described in table 3. However, the SIRT algorithm is generally
expected to deliver subpar results compared to the SART and the OS-SART algorithm
[13].
Although the results show the same dependence of the spatial resolution on the
distance of the insert to the phantom’s center as the findings in Khellaf et al. [14], the
image reconstruction performance seems to be worse for the spatial resolution as well
due to the reasons already discussed in section 4.2.1. Additional discrepancies may
be introduced by different assumptions in the calculation of the MTF, which includes
background reduction techniques [63] in the implementation of Khellaf et al. [14].
This leads to a reduced overall noise in the obtained projection, which ultimately
results in a less noisy ESF. As the measure for spatial frequency f10% depends solely
on parameter c of equation (3.10), reduced noise significantly impacts the spatial
resolution as reduced RSP uncertainty around the edges of the insert leads to steeper
decrease of the RSP in these areas. Therefore, the results for the spatial frequencies
calculated in this thesis are not directly comparable to the findings in Khellaf et al.
[14] but the spatial frequencies should be of the same magnitude. In this work the
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spatial frequencies for the better performing algorithms (SART, OS-SART, FBP,
ASD-POCS) are ranging from (0.3 − 0.4) lp

mm , which is about the same range that
could be observed in the realistic setup described in Khellaf et al. [14].
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5. Conclusion and outlook
In the scope of this thesis, a collection of CUDA-based files, referred to as pCT
toolbox, that enables GPU accelerated generation of improved radiographies, was
developed. It was designed in the same layered structure as the TIGRE toolbox [5] and
is intended to be used together with the already implemented algorithms within this
framework. Implementational details of the pCT toolbox were discussed in section 3.3.
The performance improvement achieved by utilizing GPUs via CUDA was discussed
in 4.1. The computing time for the generation of improved radiographies could be
reduced drastically by the CUDA utilization as shown in section 4.1. Although the
computing time could be reduced drastically, the overall computing performance can
still be improved by optimizing the data I/O interface.

In this thesis, the simulation data were provided to the pCT toolbox via plain
text files. As the data I/O is implemented in the Matlab header of the pCT toolbox,
a file format more suitable to the Matlab environment could reduce the latency
introduced by reading the simulation data into memory. Redesigning the processing
of the simulation or experimental data to provide the necessary input to the pCT
toolbox in the .mat format, which is optimized for Matlab loading operations, would
be a suitable approach for improving overall computing performance. In section 4.1.1,
the pre-compile process of the pCT toolbox, aiming to reduce source code alteration
by the user, was developed. A calibration function, designed for biological tissues,
that connects the estimated sample thickness with the expected number of channel
intercepts was established in this context. This function is used within the start-up
scripts of the pCT toolbox to provide a workaround for the missing ability of the
algorithm to provide dynamic adjustments of the arrays storing the varying number
of channel intercepts of individual protons. This restriction is ultimately implied by
the CUDA framework, which forbids dynamic memory allocation of local thread
memory [58]. The calibration function sets the size of the arrays storing the intercept
data at the pre-compile time, which ensures that the user of the pCT toolbox will
not receive subpar results. Choosing a small storage size would remove a significant
amount of protons from the path estimation process, whereas an unreasonably large
array size would unnecessarily increase the computing time. The estimating function
found in this thesis can undoubtedly be improved by adding additional parameters
which enable the consideration of further properties of the pCT imaging setup. It has
to be mentioned that the current implementation can only be used for the geometries
equal to the one discussed in this thesis as the approach lacks flexibility in terms of
geometrical changes of the pCT apparatus. The distance of the particle source to the
tracking detectors, the distance between the tracking detectors, and the distance of
the tracking detectors to the sample could be included within the model to further
improve the accuracy of the suggested array size.

In the second part of this thesis, Monte Carlo simulations of the proton imaging
setup were performed with two different phantoms to provide the necessary list mode
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data for image reconstruction (see section 3.1.4). The choice of the phantoms was
based on the image reconstruction quality analysis in Khellaf et al. [14]. Therefore,
the spiral phantom and the Gammex 476 tissue characterization phantom were used
in the simulation of the proton imaging setup. In this context, the spiral phantom
was used to evaluate spatial resolution, whereas the Gammex phantom was used to
evaluate RSP accuracy. The results for the spatial resolution and RSP accuracy can
be found in sections 4.2.1 and 4.2.2. Although the phantoms chosen in this thesis
do match the ones in Khellaf et al. [14], the results found in this thesis can not be
directly compared to the findings in Khellaf et al. [14]. As discussed in sections 4.2.1
and 4.2.2, the performance discrepancy can be mainly explained by the simulation
conditions for the pCT scanner chosen within this thesis (see section 4.2).

However, it could be shown in section 4.2.1 that choosing an iterative algorithm
in combination with the method of Collins-Fekete et al. [4] for image reconstruction
reduces the influence of the material on RSP accuracy. Additionally, RSP accuracy
may be improved by a more sophisticated way of evaluating the left side of equation
(2.14). In this thesis, the evaluation is based on calculating the range difference by
the analytic approximation of Donahue, Newhauser, and Ziegler [17]. Regarding
the spatial resolution, no significant improvements could by achieved by using an
iterative algorithm (see section 4.2.2) since the most substantial limitations on spatial
resolution are imposed by the accuracy of the path estimation [2].

Future improvements of the pCT toolbox include the implementation of a cone
beam geometry in the code. Currently, the pCT toolbox can only deal with parallel
beam geometries. Since parallel beams are only suitable for describing pencil beam
delivery, further adaptions of the algorithms used within the pCT toolbox have to be
made to include, for example, the cone-beam geometry. It has to be mentioned that
the pre-compilation script for estimating the optimal array size developed within
this thesis would have to be redesigned for cone-beam geometry. As for now, the
pCT toolbox is stored in a private repository, but actions are planned to adapt and
refine it to make it available as an actual code extension to the TIGRE toolbox.

To conclude, the computation time for the generation of improved radiographies
could be drastically reduced by the pCT TIGRE toolbox. The obtained high resolution
proton radiographies can be used as input data for any conventional CT algorithm.
Since the implementation of new algorithms to the TIGRE toolbox can be done
modularly, further pCT image reconstruction techniques, which go beyond the scope
of this work, (e.g. [45, 46, 47]), could also be added to the TIGRE image reconstruction
toolbox.
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Appendices

A. General solution of the cubic equation and numerical
implementation

The core task in the generation of the improved radiographies is to find the intercepts of
the particle paths with the shannel boundaries of the discretized volume. As the paths are
represented by a cubic spline and the channel boundaries can ultimately be treated as
constants, the intercepts can be found by solving equation (1)

a · x3 + b · x2 + c · x + d · x3 = dpix, (1)

with dpix being the orthogonal distance between origin and the respective channel boundary
in x and y direction.

The properties of the solutions to algebraic equations are classified by analyzing the
discriminant of the polynomial which is given by

D = a4(r1 − r2)
2(r2 − r3)

2(r3 − r1)
2, (2)

with ri being the roots of the polynomial and a the coefficient of the third-order term in
equation (1). In this section the focus is on the special case N = 3.

D 0 If the roots are real and distinct, the product in equation (2) has to be positive
and therefore hints at three real roots.

D < 0 As complex solutions always occur pairwise, the assumption of for example r1 to
be a real number implies that r2 and r3 are complex conjugates. Therefore (r2 − r3) is
purely imaginary and contributes a negative sign to the expression. But as r2 = r∗

3 and

(r1 − r2) = (r2 − r3)
∗ · (r1 − r2) · (r2 − r3) > 0, (3)

the discriminant D < 0 and therefore the polynomial has only one real root. Evaluating
the discriminant is crucial for developing a program that provides a general solution to
the cubic equation. To simplify the problem, a coordinate transformation x = t − 3b

a
is

introduced and the cubic equation reduces to its ”depressed form”

t3 + pt + q = 0, (4)

with p =
3ac − b2

3a2 and q = 2b3−9abc+27a2d
27a3 . Using this transformation the cubic discriminant

can be written as
D = −(4p3 + 27q2). (5)

Since D can be calculated from the parameters of the depressed cubic using 5 the program
designed to calculate the roots has to consider D > 0 and D < 0.

61



Purely real roots D > 0 For purely real roots Viete [65] suggested to use the trigonmetric
identity

4 cos3 θ − 3 cos θ − cos (3θ) = 0 (6)
and the substitution

t = u cos θ (7)
as an ansatz for finding the roots of the cubic equation. The goal is to bring the depressed
cubic into the same form as equation (6) by choosing p, q accordingly. Rewriting the

depressed cubic by using the suggested substitution and dividing the equation by u3

4 yields

4 cos3 +
4p

u2 cos θ +
4q

u3 = 0. (8)

Comparing the coefficients of equation (6) and (8), choosing u = 2 −p

3 further simplifies
the equation to

4 cos3 −3 cos θ +
3q

2p
−3

p
= 0. (9)

Doing another coefficient comparison yields

cos (3θ) =
3q

2p
−3

p
. (10)

The solution to the angles θ fulfilling equation (10) is given by

θk =
1
3 arccos 3q

2p
−3

p
− 2πk

3 with k = 1, 2, 3..., (11)

since phase shifts cos (θ + 2π) = cos (θ) yield the same value for the cosine. By substituting
equation (11) into equation (7), the real roots can be expressed as

tk = 2 −p

3 cos 1
3 arccos 3q

2p
−3

p
− 2πk

3 with k = 1, 2, 3... . (12)

One real root D < 0 For finding the only real root of the cubic polynomial [66] suggests
a different parametrization of the cubic equation (13)

x3 + ax2 + cx + d = 0. (13)

By choosing Q =
a2 − 3b

9 and R =
2a3 − 9ab + 27c

54 the discriminant criteria for classifica-
tion of the roots is given by R2 < Q2 for three real roots and R2 > Q2 for the other cases.
Following the algorithm in [66], A and B are calculated by

A = −sgn(R) |R| + R2 − Q3
1
3

and B =


Q
A (A = 0)
0 (A = 0)

. (14)

The single real root is then calculated by

x0 = (A + B) − a

3. (15)
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B. Computation of the modulated transfer function for
cylindrical inserts

In section 3.5.2, the modulated transfer function (MTF) is introduced as measure for
the spatial resolution of images. The main quantity, that has to be extracted from the
reconstructed image is the edge spread function (ESF). Therefore, RSP values of the pixels
in a circular ROI (see figure 23) surrounding the centers of the inserts are sorted according
to their distance from the insert’s center. The aligned RSP values in dependence of their
distance to their center can be seen in figure A1.

Figure A1. RSP values of the pixels in dependence of their distance x to the insert’s center.

Since the MTF is obtained by applying a Fourier transformation to the derivative of
the ESF, the RSP values have to be fitted so that equidistant values can be sampled. This
is necessary since numerical Fourier transformations can only be performed for equidistant
sampling points. In principal, the ESF can be fitted by a LOESS (locally estimated
scatterplot smoothing [67]) fit whereas [63] suggests a non-linear fitting procedure based
on the analytic ansatz already shown in equation (3.9). The LOESS fit can be used for
evaluating an estimated ESF at equidistant points. In this thesis, the function obtained
has been observed to suffer from oscillations due to the high degree polynomials necessary
to fit the noisy pCT data. As the derivative of the gaussian error function, yields a
gaussian function the Fourier transformation of the derivative of the ESF can be performed
analytically

∂

∂x
ESF(x) = a

c2 exp
− x − b

c

2 = LSF(x). (16)
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Performing the Fourier transformation of equation (16), further normalizing and taking
it’s modulus yields

MTF(f) = dx LSF(x) exp (2πif)

dx LSF(x) = exp(−2π2c2f2), (17)

where f is the spatial frequency and c a fitting parameter of equation (3.9). The modulated
transfer function is depending solely on the fitting parameter c, which controls the slope
of the ESF at the edge of the insert. The measure of of spatial resolution, used in the
literature [14, 4], is the spatial frequency value for which the MTF is decreased to 10% of
its value at the origin (figure A2). The spatial frequency f10% can be calculated by using
(3.10).

Figure A2. Modulated transfer function - The spatial frequency f10% is obtained by
finding the frequency for which the MTF decreased to 10% of the amplitude at MTF(0).
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C. Relative stopping power accuracy
In this section the relative error RSPerr of the mean RSP within the ROI of a specific
insert is tabulated for different tissue inserts and algorithms. Additionally, the mean RSP
values of the tissue inserts of the Gammex 467 phantom are compared to their reference
values for the SIRT, the SART and the OS-SART algorithm.

Algorithm comparison
In figure A3 - A5, the reconstructed RSP values of the inserts of the Gammex 467 phantom
are depicted for the SIRT, the SART and the OS-SART algorithm respectively.

Figure A3. Comparison of the RSP values obtained from image reconstruction via SIRT
algorithm to the corresponding reference values for the tissue inserts. On the left side the
RSP values correspond to the tissue inserts of the inner ring, whereas the right side depicts
the RSP accuracy for the outer ring of the inserts.

Figure A4. Comparison of the RSP values obtained from image reconstruction via SART
algorithm to the corresponding reference values for the tissue inserts. On the left side the
RSP values correspond to the tissue inserts of the inner ring, whereas the right side depicts
the RSP accuracy for the outer ring of the inserts.
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Figure A5. Comparison of the RSP values obtained from image reconstruction via OS-SART
algorithm to the corresponding reference values for the tissue inserts. On the left side the
RSP values correspond to the tissue inserts of the inner ring, whereas the right side depicts
the RSP accuracy for the outer ring of the inserts.

Outer ring
In table A.1, the relative error of the RSP is shown for the tissue inserts of the outer ring
of the Gammex 467 phantom.

RSPerr
insert ASD-POCS FBP OS-SART SART SIRT
MB5 0.020 ± 0.005 0.023 ± 0.040 0.017 ± 0.011 0.017 ± 0.012 0.017 ± 0.011
LN5 0.018 ± 0.020 0.025 ± 0.093 0.000 ± 0.032 0.010 ± 0.032 0.002 ± 0.030
LM2 0.055 ± 0.057 0.069 ± 0.162 0.009 ± 0.092 0.037 ± 0.086 0.005 ± 0.092
CT 0.015 ± 0.004 0.015 ± 0.047 0.014 ± 0.008 0.013 ± 0.009 0.014 ± 0.008
AP6 0.035 ± 0.004 0.032 ± 0.053 0.035 ± 0.014 0.034 ± 0.015 0.036 ± 0.014
LV 0.013 ± 0.003 0.013 ± 0.049 0.014 ± 0.009 0.014 ± 0.011 0.014 ± 0.009
RB 0.027 ± 0.009 0.031 ± 0.031 0.021 ± 0.016 0.022 ± 0.016 0.021 ± 0.016
W 0.002 ± 0.003 0.003 ± 0.049 0.001 ± 0.010 0.000 ± 0.011 0.002 ± 0.010

Table A.1. Relative error of the RSP RSPerr of the tissue inserts of the outer ring of the
Gammex 476 phantom tabulated for different algorithms.
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Inner ring
In table A.1, the relative error of the RSP is shown for the tissue inserts of the inner ring
of the Gammex 467 phantom.

RSPerr
insert ASD-POCS FBP OS-SART SART SIRT
AP6 0.034 ± 0.002 0.034 ± 0.050 0.036 ± 0.008 0.035 ± 0.012 0.036 ± 0.008
SB3 0.024 ± 0.004 0.025 ± 0.039 0.019 ± 0.009 0.020 ± 0.011 0.019 ± 0.009

BR12 0.023 ± 0.003 0.023 ± 0.049 0.023 ± 0.008 0.022 ± 0.009 0.023 ± 0.008
MB7 0.026 ± 0.004 0.026 ± 0.041 0.021 ± 0.008 0.024 ± 0.010 0.021 ± 0.008
LM1 0.075 ± 0.024 0.082 ± 0.163 0.032 ± 0.062 0.044 ± 0.065 0.029 ± 0.059
W 0.000 ± 0.003 0.002 ± 0.052 0.000 ± 0.009 0.002 ± 0.011 0.000 ± 0.009
BR 0.003 ± 0.002 0.003 ± 0.049 0.002 ± 0.007 0.003 ± 0.008 0.003 ± 0.007
LV 0.059 ± 0.002 0.059 ± 0.049 0.061 ± 0.007 0.061 ± 0.009 0.061 ± 0.008

Table A.2. Relative error of the RSP RSPerr of the tissue inserts of the inner ring ring of
the Gammex 476 phantom tabulated for different algorithms.
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