
A Time-Series Classification
Approach to Error Prediction in
Hybrid Fiber-Coaxial Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Mag.phil. Thassilo Gadermaier, BSc
Matrikelnummer 00507477

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser
Mitwirkung: Dipl.Ing. Dr. techn. Georg Heiler, BSc

Wien, 14. März 2023
Thassilo Gadermaier Peter Filzmoser

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Time-Series Classification
Approach to Error Prediction in
Hybrid Fiber-Coaxial Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Mag.phil. Thassilo Gadermaier, BSc
Registration Number 00507477

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser
Assistance: Dipl.Ing. Dr. techn. Georg Heiler, BSc

Vienna, 14th March, 2023
Thassilo Gadermaier Peter Filzmoser

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit
Mag.phil. Thassilo Gadermaier, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich
die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen
sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Wien, 14.03.2023

Thassilo Gadermaier

i

Kurzfassung
Die vorliegende Arbeit behandelt die Vorhersagbarkeit gewisser Fehler in Hy-
brid Fiber-Coaxial (HFC)-Datennetzen, welche in weiten Teilen Österreichs für
Internetzugänge genutzt werden. Diese Fehler betreffen überwiegend den Kanal
von den Modems der Kunden zum Provider. Die für diese Netze genutzten
Kabelmodems sammeln für den Betrieb notwendige die Übertragungsqualität
betreffende Daten welche beim Provider zusammenlaufen (Telemetrie).

Die Vorhersage von Fehlern soll dem Betreiber des Netzes ermöglichen, Res-
sourcen für die Wartung von Netzwerkkomponenten besser planen zu können.

Ausgehend von den Telemetriedaten der Modems (multivariate Zeitreihen)
soll die zeitliche Entwicklung einer dieser Variablen, die als Proxy für die Über-
tragungsqualität und Abwesenheit von Fehlern dient, vorhergesagt werden. Als
Vereinfachung des Problems wird nicht der eigentliche zeitliche Verlauf selbst,
sondern das Überschreiten eines Schwellwertes vorhergesagt, was einer binären
Klassifikation entspricht. Dafür werden dem Stand der Technik entsprechende
Modelle des maschinellen Lernens für die Klassifikation von multivariaten Zeit-
reihen auf die Daten angewandt. Dabei handelt es sich um zwei auf Zeitreihen
spezialisierte tiefe künstliche neuronale Netze und ein Modell welches zufällig
generierte Faltungskerne zur Ableitung von Merkmalen aus den Daten mit
klassischen Klassifizierungsmodellen kombiniert.

Ein wichtiger Aspekt ist das in den Daten stark vorherrschende Ungleich-
gewicht zwischen den beiden Klassen, der Abwesenheit und Anwesenheit der
Fehlerfälle, welches sich stark negativ auf die Leistungsfähigkeit von Klassifi-
zierungsmodellen auswirken kann. Daher werden Methoden zur Behandlung
des Ungleichgewichts zunächst theoretisch beleuchtet und dann in praktischen
Experimenten angewandt.

Eine Serie von Experimenten überprüft die Eignung der genannten Modelle
für die vorliegende Klassifizierungsaufgabe, unter Anwendung weitreichender
automatischer Anpassung von Hyper-Parametern sowie Methoden der Regular-
isierung. Es zeigt sich eine prinzipielle Eignung der Modelle für die Vorhersage
von Fehlerfällen, wobei eine weitere Steigerung des positiven Vorhersagewertes
(Precision) wünschenswert wäre. Für eine abschließende Beurteilung, welche im
Rahmen dieser Arbeit nicht durchgeführt wird, ist die Kenntnis von Kosten für
die Fehlerfälle notwendig.

iii

Abstract
This thesis investigates the suitability of machine learning methods for predicting
specific types of errors in Hybrid Fiber-Coaxial (HFC)-networks that are used
throughout Austria for access to the internet. These errors occur mostly in the
upstream path, from customer’s modems towards the provider. The modems
gather data related to the transmission quality required for the network operation,
these are collected further up the network.

Predicting errors aims at enabling the network operator to schedule resources
for the (future) maintenance of network components.

Among the telemetry data collected from the modems is one variable that
serves as proxy for the network transmission quality. The temporal evolution,
especially the exceeding of a threshold, of the proxy variable is of particular
interest. The problem is thus formulated as a binary classification problem,
where exceeding the threshold is the target event to be predicted. To this end,
state of the art machine learning models for the classification of multivariate
time-series are employed. In particular, two deep-learning models specialized
to the time-series classification task are applied, in addition to a model that
generates random convolution kernels for generating features from the data,
combined with classical classifiers.

An important property of the data is the strong imbalance between the two
classes that are the presence or absence of errors. Strong class imbalance can
lead to catastrophically bad performance of classifier models. Thus, methods for
treating class imbalance are discussed and applied during experiments.

A series of experiments investigates the suitability of the mentioned models
for the given binary classification task, employing extensive automatic tuning of
hyper-parameters as well as methods for regularization. The experiments reveal
that the models are in general suitable for the task of predicting error cases, but
a further improvement of precision is desirable. A final evaluation, requiring
concrete cost factors for the error cases, is beyond the scope of this thesis.

v

Contents
Kurzfassung iii

Abstract v

1. Introduction 1
1.1. Scenario and Problem Statement 1
1.2. Decisions and Costs . 3
1.3. Challenges . 5
1.4. Thesis Organization . 6

2. Hybrid Fiber-Coaxial (HFC)-Networks 9
2.1. Network Structure . 9
2.2. Transmission . 10
2.3. Upstream Errors . 12

3. Data 13
3.1. Raw and Aggregated Data . 13

3.1.1. Notation . 14
3.1.2. Raw and Aggregated Data 15

3.2. Target Variable . 19
3.3. Data Availability . 20

3.3.1. Temporal Extent of Data 21
3.3.2. Missing Onsets . 23

3.4. Distributions . 23
3.4.1. All-Zero Values . 26

3.5. Class Imbalance Ratio . 26

4. Class Imbalance 31
4.1. Data Level . 32

4.1.1. Undersampling . 33
4.1.2. Oversampling . 33
4.1.3. Synthetic Oversampling 33

4.2. Model Level . 34
4.2.1. Types of Models . 35

vii

Contents

4.2.2. Loss Functions and Weights 36
4.2.3. Choosing Weights . 39
4.2.4. Equivalence of Approaches 40

4.3. Processing Model Output and Decision Rules 41
4.3.1. Decision Rule . 41
4.3.2. Threshold Method . 42
4.3.3. Calibrated Probabilities 43

4.4. Evaluation Metrics . 45
4.4.1. Types of Metrics . 45
4.4.2. Receiver Operating Characteristic (ROC) 47
4.4.3. Precision-Recall-Curve (PR-C) 48
4.4.4. Relationships between ROC- and PR-curve 49

5. Preprocessing 51
5.1. Removing Data . 51

5.1.1. Incomplete Data . 51
5.1.2. Missing Onsets . 52
5.1.3. All-Zero Values or Zero Standard Deviation 52

5.2. Transformations . 52
5.2.1. Suggested Transformations 53
5.2.2. Standardization . 54
5.2.3. Skewness . 54

5.3. Windowing . 54
5.4. Assigning Class Labels . 57
5.5. Class Labels and Network State 58
5.6. Reshaping Data . 59

5.6.1. 3D-Arrays . 60
5.7. Data Splitting . 60
5.8. Class Imbalance Ratio after Preprocessing 62

5.8.1. Class Imbalance Ratios 62
5.8.2. Number of Instances . 64
5.8.3. Number of Instances in Target Class 64

5.9. Processing Pipeline . 64

6. Models 67
6.1. Time-Series Classification (TSC) 67
6.2. Deep Neural Networks (DNNs) 68

6.2.1. Convolutional Neural Networks (CNNs) 68
6.3. Convolutional Neural Networks (CNNs) for Time-Series Classifi-

cation . 71
6.3.1. InceptionTime . 73
6.3.2. FCN-MLSTM . 76
6.3.3. ROCKET . 79

viii

Contents

6.4. Training CNNs . 82
6.4.1. Regularization . 85

6.5. Gradient Boosted Decision Trees (GBDT) 86
6.5.1. Gradient-Boosting . 88
6.5.2. Regularization . 88
6.5.3. XGBoost . 89

6.6. Model Selection . 90
6.7. Hyper-Parameters . 91

7. Experiment Settings 93
7.1. Computers . 93
7.2. Experimental Conditions . 94

7.2.1. Models . 94
7.2.2. Loss Functions . 94
7.2.3. Windowing . 95
7.2.4. Experiment Labels . 95

7.3. Additional Settings . 95
7.3.1. Addressing Class Imbalance 96
7.3.2. Class Weights . 96
7.3.3. Regularization . 96
7.3.4. Transformations . 96

7.4. Hyper-parameter Tuning . 97
7.4.1. Deep Neural Networks (DNNs) 97
7.4.2. XGBoost . 98

8. Results and Discussion 101
8.1. Model Selection: Best Ranked Results 101

8.1.1. Best Ranked Results Across all Experimental Settings . . 103
8.1.2. Insights from Model Selection 103
8.1.3. Best Ranked Results per Windowing Setting 105

8.2. ROC-AUC and Precision-Recall-AUC 105
8.3. Example: Detailed Evaluation 107
8.4. Summary and Outlook . 109

A. Additional Plots and Insights 113
A.1. Best Ranked Results For each Experimental Setting 113

A.1.1. InceptionTime with Cross-entropy (ITXE) 113
A.1.2. InceptionTime with Focal Loss (ITFL) 113
A.1.3. FCN-MLSTM with Cross-entropy (MLXE) 113
A.1.4. FCN-MLSTM with Focal Loss (MLFL) 113
A.1.5. XGBoost Classifier with ROCKET Features, 4000 Kernels 118
A.1.6. XGBoost Classifier with ROCKET Features, 10000 Kernels118
A.1.7. Discussion of XGBoost Results 118

A.2. ROC-AUC and Precision-Recall-AUC per Model Family 118

ix

Acronyms 125

Glossary 127

Bibliography 129

x

CHAPTER1
Introduction

Hybrid Fiber-Coaxial (HFC) networks are part of Wide-Area telecommunication
Networks (WAN) throughout the world. They were originally designed for TV
broadcast service (“Cable TV”), i.e., a one-way service from content deliverer to
the customer. Later, these networks were adapted to be additionally used for
internet access, that is, as two-way connections. The Data Over Cable Service
Interface Specification (DOCSIS) standards are the most widely used for such
networks, at least in Europe and the USA. There are different generations of the
DOCSIS standard available, some of their aspects will very briefly be discussed
where necessary.

As the name suggests, Hybrid Fiber-Coaxial (HFC) networks consist of a
part built from fiber-optic components (“glass fibers” and suitable amplifiers, as
required) and a part built from electrical components, specifically using coaxial
cables, and again suitable amplifiers. More details about the network structure,
to a level useful for this thesis, are given later in Chapter 2.

1.1. Scenario and Problem Statement
Network links can fail from time to time, for various possible reasons, at several
different nodes present in the network. Naturally, high availability of connections
is desired by customers. In case of hardware problems, swift detection of faulty
network components by the network operator is required, and subsequently
servicing or even replacing them as quickly as possible to avoid major service
disruptions. Interruptions may range from “bad performance” from a subscriber’s
perspective, to total outages.

Hardware (network equipment) failures typically forces dispatched service
technicians to manually check several devices on-site until the offending device

1

Chapter 1. Introduction

is (or devices are) found. Only then remedying actions can be taken, such as
replacing a broken link cable, a faulty amplifier, or other components. The
devices to be checked may be spread out over several different locations, possibly
increasing travel times considerably.

In existing networks that have monitoring systems in place, it is to a certain
extent possible to narrow done which components might be at fault when errors
occur, thus decreasing the time spent for checking components by field personnel.
Identifying regions experiencing bad connection quality, and preferably narrowing
down regions so much as to be able to identify broken devices remotely from
logging data, is a big problem in its own right. This is not covered in this thesis.
Instead, the approach taken here is trying to predict when a certain region will
exhibit bad performance in a near future, so as to allocate resources (technicians,
test equipment) towards checking and maintenance of network components before
the problem actually occurs or becomes more severe. Basing decisions about
how to handle future events on given or collected information, that is encoded
in data in one way or another, is often called predictive modeling, see e.g. Kuhn
et al. (2013, pp. 1 f).

In essence, the goal for the scenario here is to predict whether a target variable
that serves as a proxy for connection quality (quality of service / fidelity), will
cross a certain threshold within a certain amount of hours into the future. This
can in principle be achieved in several ways. Two possible options are:

1. Predict the target variable’s values for a given amount of time into the
future and check whether a crossing of the threshold (one or several) occurs.
This is essentially a regression task, with predicting values into the future.

2. Predict whether a the target variable will cross the threshold (at least
once) within a given time frame into the future. This is a classification
task, here with binary classes (threshold exceeded: yes or no).

The second option can be viewed as a simplified version of the first: the prediction
of the actual values into the future is not of interest, but only whether the target
variable will cross the threshold or not, which should simplify the problem. The
setup in option 2) above allows for the use of supervised classification methods.
Lakshmanan et al. (2020, pp. 80 ff) refer to this re-formulation of a problem as
re-framing and discuss reasons for applying this method.

The problem of predicting bad performance of (a segment of) the network is
thus framed as a binary Time-Series Classification (TSC) task. Classification
here amounts to assigning to a given unlabeled time-series a class label from
a fixed, finite set of class labels (Esling et al. 2012, p. 8). Instead of attaching
only a class label to a given unlabeled time-series, it is also possible to obtain a
prediction of the probability distribution over the possible classes (Ruiz et al.
2021, p. 402). These different approaches and possible benefits are discussed in
Chapter 4.

2

1.2. Decisions and Costs

In general, unsupervised machine learning methods may be suitable as well to
solve the problem addressed in this thesis. In the context of anomaly detection,
a somewhat related problem where typically few instances of the class(es) of
interest are available, Aggarwal (2017, p. 26) state that whenever labels are
available, it is better to use supervised instead of unsupervised methods. This
serves as an additional motivation to approach the problem as a supervised
classification task.

1.2. Decisions and Costs
As always when implementing a system, or applying a method to a problem,
the question of “how good is it doing?” arises. At a low level, the problem
addressed in this thesis is framed as a binary decision (classification) problem:
will the network exhibit bad performance (as defined in some way) or not? A
confusion matrix is often used to evaluate the performance of binary classifiers
(see e.g. Kuhn et al. (2013, p. 254), He et al. (2013, p. 191)). Table 1.2.1 shows
an example.

Table 1.2.1.: Confusion matrix for the binary decision problem. See text for
details.

Predicted Actual
Event Non-Event

Event TP FP
Non-Event FN TN

The terms occurring in such a table are briefly described now. The two possible
classes are:

• Event: refers to the occurrence of an incident of bad performance in the
network in a certain time frame. While the occurrence of the Event class
is a bad thing (bad network performance), it is the class of interest here,
often called the positive class.

• Non-Event means the absence of such an incident in a certain time frame.

When an instance of class Event occurs, the classifier will predict it to be either of
the class Event or Non-Event, and the same holds for the other class, Non-Event.
There are thus four different cases to be distinguished, as shown in the table:

• True Positive (TP): True class is Event (the positive class), and it was
correctly predicted

• False Positive (FP): True class was Non-Event, but Event was predicted

3

Chapter 1. Introduction

• False Negative (FN): True class was Event, but Non-Event was predicted

• True Negative (TN): True class Non-Event, correctly predicted

These quantities can be computed by evaluating the (previously trained) classifier
on any given data set and recording for each example its true class and the
predicted class. A perfect classifier would have zero FP and zero FN cases.

Two more metrics for evaluating the performance of a model, related to the
ones just explained above, are Precision and Recall:

• Precision: ratio of the number of TP to the number of instances predicted
as class “Event”. High precision means that most instances predicted as
class “Event” are indeed from this class and not the alternative. For our
case this would mean that most predicted cases of bad performance are
indeed bad performance in the network that need further investigation.
Low precision means that a too large amount of cases, more than truly
occurring, are predicted as upcoming bad performance.

• Recall: ratio of the number of TP to the number of instances that are
truly of the class “Event”. High recall means that most of the instances of
the class “Event” are detected. For our case this would mean that most
occurrences of bad performance are correctly detected (in advance). Low
recall means that too many upcoming cases of bad performance are not
detected, delaying allocation of resources for mitigating the problem.

In the context of the scenario described above, the occurrence of an event
would trigger the allocation of resources to mitigate the impact of bad network
performance. This could e.g. be the closer monitoring of certain sections of
the network, either remotely or on-premise by technicians, and search for and
replacement of broken components. Knowing about occurring problems in
advance can lead to better planning and allocation of resources.

There are certain costs Cm (m as in maintenance) associated with the actions
to mitigate performance problems. A falsely predicted occurrence of the Event
class would thus cost Cm, without gain.

Not detecting bad performance would mean delayed allocation of resources
and possibly longer periods of bad performance until mitigating actions can
be taken. There are costs associated with this case as well, say Cuc (uc as
in unhappy customer), for e.g. increased call volume to customer service, up
to losing customers in the worst case. A falsely predicted occurrence of the
Non-Event class would thus cost Cuc.

While it may not be possible to precisely estimate such costs properly, it
can still be useful to incorporate them into decision processes facilitated by a
classifier. Assigning different costs can trade-off between the different error cases.

Table 1.2.2 shows a cost matrix for the binary decision problem in a general
form. Similar to the four cases in the confusion matrix, there are four cases here.

4

1.3. Challenges

Table 1.2.2.: Cost matrix for the binary decision problem.
Predicted Actual

Event Non-Event
Event C11 C10

Non-Event C01 C00

Note that the costs C11 and C00 for correct classifications can be absorbed in the
costs of misclassification C01 and C10, or assumed to be zero (Fernández et al.
2018, p. 65).

Two alternative versions of cost matrices are shown in Table 1.2.3. The
costs for correct classifications are set to zero, the other cost factors are given
meaningful names for different contexts.

Table 1.2.3.: Cost matrices for the binary decision problem with zero costs for
correct classifications. Left: the cost factors are named after the associated
error cases. Right: the cost factors are named after the cases described in the
maintenance scenario described in the text.

Predicted Actual
Event Non-Event

Event 0 CFP
Non-Event CFN 0

Predicted Actual
Event Non-Event

Event 0 Cm
Non-Event Cuc 0

A benefit of the possibility to apply costs for the different actions is that they
can not only be applied during the modeling process, but also post-modeling, i.e.
after training a classifier on labeled data (supervised machine learning setting).
This means that a trained model can still be used in an environment with
changing conditions (and costs), and can be adapted by applying changes to
the costs to shift decisions in one direction or the other. Similarly, if costs were
applied during training, but were found afterwards not to be correctly estimated,
or not reflecting the true costs properly, different costs can be applied to improve
the decisions. As the left matrix in Table 1.2.3 shows, the cost factors can tune
between the error cases False Positive (FP) and False Negative (FN).

1.3. Challenges
From a machine learning perspective, several challenges can be stated that need
to be addressed to solve the problem at hand:

• Highly imbalanced classes. There are many more data points available for
error-free cases than for error-cases. This simply means that the network is

5

Chapter 1. Introduction

working properly most of the time. In general, special care must be taken
in case of imbalanced classes, and even more so in the somewhat extreme
imbalance found in the data analyzed in this thesis. The imbalance impacts
the choice of models, how to train them in the first place, and secondly
how to evaluate their performance. The imbalance present in the data
is investigated in Sections 3.5 and 5.8, and the impacts on models and
possible approaches to mitigate them are discussed in Chapter 4.

• Large amount of data. While the dimensionality itself is not very high,
the data cover a very large time-span, a large spatial area, and thus there
are very large amounts of data points. Chapter 3 gives a detailed overview
of the data and its extent. If lots of data is available, undersampling,
i.e. removing parts of the data, can be a way to mitigate this challenge.
Chapter 4 discusses a few points of re-sampling data.

• Heterogeneity of the data that results most likely from the heterogeneity of
network components, as well as the different number of users per network
segment, and possibly other unknown factors. The heterogeneity is briefly
looked at in Sections 3.1 and 3.4.

1.4. Thesis Organization
This thesis is organized as follows: Chapter 2 gives a short overview of HFC-
networks, their structure, and typical errors occurring in such a network.

Chapter 3 discusses the data used in this thesis in-depth. An overview is given
on how the spatially aggregated data used for the experiments were generated
and how they are structured. The extent of the data is shown, missing values
discussed, class distributions and statistical properties are investigated.

Chapter 4 describes the problems associated with class imbalance in the data
and reviews solutions suggested in the literature. Problems due to class imbalance
occur at the level of the data, the models used, and how the performance may be
evaluated. Possible methods applying leverage at each of this levels are discussed.

Next, the preprocessing of the data as necessary for the experiments is treated
in Chapter 5. Besides typical preprocessing, such as standardization (z-scoring),
the processing of the data as necessary for applying Time-Series Classification
(TSC) methods is described. This amounts to creating short segments and
assigning class labels, thus creating a data set for the task.

Suitable models for the TSC task under the condition of strong class imbalance
are discussed in Chapter 6. Basic structure of the models and some aspects of
training them are presented. Strategies for model selection and tuning hyper-
parameters are addressed as well.

Finally, the experiments conducted are documented in Chapter 7. The most
important parameters tested during the experiments are discussed, as are the
hyper-parameters used by each model.

6

1.4. Thesis Organization

The results of the experiments are then summarized, visualized and discussed
in Chapter 8. Insights from the model selection are discussed and an exemplary
further, more in-depth evaluation of a specific model is shown. Furthermore,
some outlook for potential future work is given.

Additional plots and insights across a larger range of settings and models are
presented in Appendix A.

7

CHAPTER2
Hybrid Fiber-Coaxial

(HFC)-Networks
This thesis deals with data obtained at nodes of a Hybrid Fiber-Coaxial (HFC)-
network. This network is owned by an Internet Service Provider (ISP) that will be
referred to as AnonISP throughout this thesis. Since the structure of the network
imposes a certain structure on the data, an is thus important for understanding
the data, we shall take a brief look at the network and some of its components.
As the name suggests, an HFC-network is a hybrid of two technologies: optical
and electrical telecommunication components, where fiber-optics and coaxial
cables serve as bearers of signals.

• Fiber optic cabling: transmission is carried out with electromagnetic waves
in the optical frequency range.

• Coaxial cabling: transmission is carried out with electromagnetic waves
below the optical frequency range.

The specification of the fundamental technical components (the physical layer in
the OSI-nomenclature) used in an HFC-network is documented in (CableLabs
2017).

2.1. Network Structure
Figure 2.1 shows a schematic overview of an HFC network. In general, such a
network exhibits a tree structure when considering a hub as the root node. At
the end, the leaf nodes are customers’ Cable Modems (CM). Cables reaching
CMs are branching off at splitter devices. Occasional line amplifiers may be

9

Chapter 2. Hybrid Fiber-Coaxial (HFC)-Networks

Line RF Amplifiers

Fiber Node
Trunk RF
Amplifier

Distribution HubHeadend

Transport Ring

Distribution Hub

Fiber Node

Fiber Node

Fiber Node

Fiber-optic
connection

Hub

Fiber Node
Service Area

Fiber Node
Service Area

Figure 2.1.: Structure of an HFC network. Each fiber node serves a certain area
and thus number of customers (neighborhood). See text for details. Figure
adapted from (Unforgettable fan et al. 2009).

installed within the cable network. The trunk lines serving a neighborhood have
a trunk amplifier at their head. Each trunk’s electrical cable is finally connected
to a fiber node, converting between electrical and optical signals. Several fiber
nodes are connected to a hub, containing a Cable Modem Termination System
(CMTS). Hubs (and thus CMTS) are connected to the ISP’s backbone network.
Each fiber node serves a certain region or area, and thus a certain neighborhood
of customers. Such a region is often referred to as fiber node area (FNA). Fiber
node areas can be considered separate entities for the purposes of this thesis, and
this has consequences for handling the data, as is discussed later in Chapter 3
below.

Customers may leave and enter the network through time, terminating or
entering contracts with the ISP. Thus, FNAs are not entirely fixed over time.
However, for the purposes of this thesis, they will be considered static over time.
This assumption is strengthened by aggregating over entities in an FNA, see
also Section 3.1 below for further details.

To give an impression of the size of the network, Figure 2.2 shows a pixel map
representing the hubs and fiber node areas (FNAs) of AnonISP’s network.

2.2. Transmission
Internet connections require two-way communication, preferably simultaneously
for both directions. This is usually termed full-duplex. There is thus a channel
(in an abstract sense) from customer to service provider, called upstream (US)
in HFC-terminology. The channel in the reverse direction, from provider to

10

2.2. Transmission

HFC-Network: Hubs and FNAs

Figure 2.2.: Schematic map of the HFC-network. Each colored pixel represents
one fiber node area (FNA), containing potentially hundreds of customers. Each
block of pixels represents one hub. Placement of hubs very coarsely follows their
spatial locations in AnonISP’s country.

customer, is called downstream (DS).
HFC-networks typically use the DOCSIS standards that exist in several

generations. Currently, DOCSIS 3.0 and 3.1 are the most recent versions
deployed in existing networks. These specify all kinds of parameters of the
transmission systems. The upstream and downstream signals are allocated
to dedicated frequency bands to allow full-duplex operation. This method of
separating the two directions is usually called Frequeny-Domain Duplex (FDD).
Typical frequency bands for upstream and downstream channels are given in
(CableLabs 2017, p. 29) and are shown in Table 2.2.1 below. Different regions of
the world might employ slightly different frequency ranges used for upstream
and downstream (Large et al. 2009, p. 217).

Table 2.2.1.: Typical frequency ranges for upstream and downstream directions
in HFC-networks (CableLabs 2017, p. 29).

Frequency ranges in MHz
Upstream Downstream

5 - 30 54 - (300 to 1002)
5 - 42 54 - (300 to 1002)
5 - 85 108 - (300 to 1002)

Further protocols are employed to define how a single modem (CM) can access

11

Chapter 2. Hybrid Fiber-Coaxial (HFC)-Networks

the shared medium. More details are beyond the scope of this thesis and will
not be given here.

2.3. Upstream Errors
Transmission of electromagnetic waves in optical fibers, or along electrical cables,
in general suffers from different types of noise and interference, to varying degrees.
In HFC networks in particular, the electrical part of the network (closer to the
leaf nodes, the Cable Modem (CM)), and here the upstream direction, typically
is the most cumbersome part. Note that “upstream direction” here refers to
the signals traveling from the leaf nodes upwards the network on the electrical
cabling that is also used for the downstream signals; as was stated above, these
occupy different frequency bands but use the same physical cable.

Noise on the upstream (or return) path in Hybrid Fiber-Coaxial (HFC) net-
works needs dedicated treatment e.g. on the level of the network components,
see for example Chapter 8 in (Large et al. 2009).

One example of noise in the upstream path is Common Path Distortion (CPD).
It originates from inter-modulation of downstream and upstream signals, most
often caused by corroded contact surfaces of connectors that then act as nonlinear
transmission elements due to the corrosion (Large et al. 2009, pp. 249 f). The
inter-modulation products generated can occur as comb-like spectrum in both
the upstream and the downstream frequency bands, disturbing the actual signal
occupying the same regions. The grid-spacing of the combs’ components follows
the channel-spacing of 6 MHz, 7 MHz or 8 MHz (the grid-spacing depends on the
specification typical to the part of the world the system is used in) (Keller 2011,
p. 282), (Large et al. 2009, p. 249).

Too strong noise can impact transmission signals such that transmission
symbols are detected incorrectly, thus leading to errors in the transmitted
data. The Signal-to-Noise Ratio (SNR) is usually used to indicate the state of
the transmission (among other figures of merit), and sufficiently high SNR is
required for (effectively) error-free transmission. Typically, several thousand
transmission symbols together form a transmission codeword. Too many errors in
a codeword can lead to seemingly slower connection speeds (because of frequent
re-transmissions of erroneous messages) or bad quality of media streams (video,
audio content) due to too much corrupted data. The Codword Error Rate (CER)
can be used to measure the performance of the transmission at the codeword
level.

Since disturbances originating in the upstream path can influence the network
performance strongly, it is important to monitor the corresponding signals
appropriately. This is the reason why the upstream signals are given a greater
focus in this thesis as well, especially when their behavior is used as proxy for
the current overall network state and transmission quality, see Section 3.2 and
Sections 5.4 and 5.5.

12

CHAPTER3
Data

This chapter gives an overview of the data used in this thesis. From the structure
of the network briefly discussed above follows a certain structure of the data.

Each cable modem (CM) in the network described above records certain data
related to the transmission of signals in the network, and these are fed back
to nodes higher up in the network, where they are accessible to the network
operator AnonISP.

The derivation of the data used in this thesis, multivariate time series (MTS)
sampled on an hourly basis, from the “raw” data recorded from the modems, is
described in the following.

The structure of the network shown in Figure 2.1 is depicted again in Figure 3.1,
but in a more abstracted fashion more relevant to the understanding of the
structure of the data. The fiber node areas (FNA), a collection of modems served
from one single fiber node, are depicted as single blob in this figure. The data
recorded from all modems within an FNA are (spatially) aggregated to reduce
the amount of data to process. The aggregation on the basis of fiber nodes is
not just an arbitrary choice, but informed from the functioning of the network:
a typical error case in an HFC-network is common path distortion (CPD) that
typically affects many or all modems connected to a fiber-node. Typically, more
and more modems are affected the longer the error persists.

The next section describes the process of spatially aggregating the per-modem
data to per-FNA data.

3.1. Raw and Aggregated Data
This section is meant to describe the data in a more formal way.

13

Chapter 3. Data

Network
Backbone

Hub

Hub

H1

HN

F1

F5

F11

F24

F63

F13

...

Fiber Node Area

Figure 3.1.: Schematic network hierarchy: Each hub is associated with several
fiber node areas. Each fiber node area (FNA) represents data of several (up to
thousands of) customers. This Figure should be compared to Figure 2.1.

3.1.1. Notation
The data used in this thesis are discrete-time time series. It is common to denote
these as sequences {x}t, here with index t ∈ Z. The data used here are of finite
duration: {x}t = x0, x1, . . . , xN−1. While xt is used to denote a single value for
fixed t, say x5 at t = 5, this will also be used as a shorter notation for the whole
time series, as is common in the literature. It should be clear from the context
what is denoted by xt in each case. Figure 3.2 shows the interpretation of the
data as a signal, with a horizontal orientation along a time-axis, and alternatively
as a column vector. Both ways to view the data will be used throughout this
thesis. While the data are discrete-time, they will be depicted using continuous
line-plots in some places.

t

xt

. . .
x0

x2

x1 x =

���
x0

x1

x2

...

���
Figure 3.2.: Discrete-time (t ∈ Z) time series depicted as signal (left) and as
column vector (right).

Throughout this thesis, vectors are columns when notated using bold serif
typeface:

x = (x0, x1, . . . , xN−1)T. (3.1)

When dealing with multivariate time series (MTS), a single variable (univariate

14

3.1. Raw and Aggregated Data

time series) will be denoted with a superscript index:

x(1) =
�
x

(1)
0 , x

(1)
1 , . . . , x

(1)
N−1

T
. (3.2)

A multivariate time series can be written as a matrix X:

X =

�����
x

(1)
0 x

(2)
0 . . . x

(P)
0

x
(1)
1 x

(2)
1 . . . x

(P)
1

...
x

(1)
N−1 x

(2)
N−1 . . . x

(P)
N−1

����� =

����
x0
x1
...

xN−1

���� =
�
x(1), x(2), . . . , x(P)

. (3.3)

Note that the “time-axis” is in the vertical dimension, along the rows of the
matrix X.

Since we have P many variables, we can look at a multivariate (row) vector at
any given point in time t (as shown in the equation above):

xt =
�
x

(1)
t , x

(2)
t , . . . , x

(P)
t

. (3.4)

Row vectors are written using bold upright sans-serif typeface throughout this
thesis.

The data matrix X thus represents a multivariate (dimension P) time series:

X = (x0, x1, . . . , xN−1)T , (3.5)

as above.

3.1.2. Raw and Aggregated Data
This section gives a brief overview of the gestation process of the data that
are used in this thesis. The aggregation of the raw data described below was
not carried out by the author; the data were handed over in this form for
processing during the experiments documented in this thesis. Nevertheless, a
short description shall be given to get a better idea of the aggregated data and
their structure.

Each fiber node area (FNA) can contain up to a few thousand cable modems
(CM). To reduce the amount of data to process, aggregated values are computed
across all K devices in an FNA, for each FNA separately. The amount of devices
K per FNA varies between different FNAs. Thus, more strictly, the number of
devices K should be indexed by the respective FNA, e.g. K(F1) for FNA F1. To
not clutter the notation too much, this will be refrained from mostly, but should
be kept in mind, and will be mentioned again where important.

The process of spatial aggregation across all devices in an FNA on a per-
timestamp basis is schematically illustrated in Figure 3.3. This figure should be
compared to the Figures 2.1 and 3.1 showing the network structure.

15

Chapter 3. Data

Tx

Rx

CM1

Tx

Rx

CMK

US

US

DS

DS

Hub H1

v
(1)
t

w
(1)
t

v
(K)
t

w
(K)
t

FNA F1

x
(F1)
t =

�
a
(F1)
t ,b

(F1)
t

�

FNA FM

Hub HN

raw data aggregated data

FNAs

x
(FM)
t =

�
a
(FM)
t ,b

(FM)
t

�

Figure 3.3.: Raw and aggregated data. The raw data are multivariate time series
(signals) per cable modem (CM) (Tx: transmitter, Rx: receiver components),
separate for upstream (US) and downstream (DS). Several CMs are grouped
in each FNA. The aggregated data x(Fi)

t used in this thesis result from the raw
data through spatial aggregation on a per-FNA level.

16

3.1. Raw and Aggregated Data

Table 3.1.1.: Variables and functions involved in spatial aggregation of the raw
data. K . . . number of Cable Modem (CM) per FNA. See text for details.

Upstream Downstream
Unit Variable Dimension Variable Dimension

Cable Modem vt 1 × J wt 1 × L
FNA Vt K × J Wt K × L

Single agg. function f (mean) K × J → 1 × J g(mean) K × L → 1 × L
Agg. function f K × J → 1 × DJ g K × L → 1 × EL

FNA, single agg. a(mean)
t 1 × J b(mean)

t 1 × L
FNA at 1 × DJ bt 1 × EL

Unit Variable Dimension
FNA, US & DS xt = (at, bt) 1 × (DJ + EL)

Table 3.1.1 summarizes the involved variables, functions and their dimensions.
The description of the process will in the following focus on the upstream
direction, the extension to the downstream is straightforward given the table.

Each modem (CM) logs several quantities at an hourly rate, both for the
upstream (US) and the downstream (DS) direction separately. The quantities
considered in this thesis are (upstream and downstream, with one exception):

• Signal-to-Noise Ratio (SNR)

• Transmit Signal Power (only US)

• Receive Signal Power

• Codword Error Rate (CER)

• Corrected Codword Error Rate (CCER)

• Micro-reflections
The respective value of each quantity at time t is then, for upstream and
downstream, collected in a separate row vector vt and wt, respectively. For the
upstream path, per CM, at time t, this is:

vt = (SNRt,US, TxPowert,US, CERt,US, . . .) , dimension: 1 × J, (3.6)
and similar for the downstream path. The row vectors wt for the downstream
are of dimension 1 × L. For collecting all vectors vt and wt for all devices in an
FNA, the matrices Vt (upstream) are introduced:

Vt =

�����
v(1)

t

v(2)
t
...

v(K)
t

����� , dimension: K × J, (3.7)

17

Chapter 3. Data

and similarly Wt (dimension K × L) for the downstream.
Note that while J and L (dimensions of vt and wt, respectively) are the same

for all modems, the number of devices per FNA K varies from FNA to FNA.
This means that aggregations may not be carried out across the same number of
devices for different FNAs, respectively.

A simple example for an aggregation function f (d)
agg : RK×J → R1×J is the

mean:

a(mean)
t = f (mean)

agg (Vt) = 1
K

1T
K

�����
v(1)

t

v(2)
t
...

v(K)
t

����� , (3.8)

where 1K is a column vector of all 1s of dimension K × 1.
With d = 1, 2, . . . , D many different aggregation functions like the mean, the

standard deviation, or functions like the maximum, minimum, and so on, the
component functions f (d)

agg can be composed to an overall aggregation function
fagg : RK×J → R1×DJ .

The resulting aggregates are then collected in a single vector at of dimension
1 × DJ :

at =
�
a(mean)

t , a(stddev)
t , . . . , a(D)

t

, (3.9)

and similar for the downstream. In short, for the upstream:

at = fagg (Vt) . (3.10)

The aggregates of upstream and downstream data are finally stacked horizon-
tally into a single vector:

xt = (at, bt) , (3.11)
of dimension 1 × (DJ + EL).

For the experiments conducted in this thesis, only the following spatial aggre-
gations were used (out of several others provided):

• mean,

• standard deviation.

Vectors xt as in Equation (3.11), stacked vertically for consecutive timestamps,
form the data matrix X (with P = (DJ + EL)):

X =

�����
x

(1)
0 x

(2)
0 . . . x

(P)
0

x
(1)
1 x

(2)
1 . . . x

(P)
1

...
x

(1)
N−1 x

(2)
N−1 . . . x

(P)
N−1

����� =

����
x0
x1
...

xN−1

���� =
�
x(1), x(2), . . . , x(P)

. (3.12)

The aggregated data just described are the outset for further processing and
experiments in this thesis.

18

3.2. Target Variable

H1

H2

HK

F1

F2

FD

x
(1)
0 , x

(1)
1 , . . . , x

(1)
N−1

x
(2)
0 , x

(2)
1 , . . . , x

(2)
N−1

x
(P)
0 , x

(P)
1 , . . . , x

(P)
N−1

...

...

...

several
hubs

hub HK ,
several FNAs

FNA FD,
multivariate time-series,
length N , dimension P

XT =

Figure 3.4.: Structure of the data: nested relationship. Each hub is the parent
element of several FNAs, and each FNA represents data spatially aggregated
across it (compare Figures 3.1 and 3.3), a multivariate time series. Conceptually,
each FNA corresponds to a data-matrix X.

At this point, the hierarchical network structure as discussed in Section 2 and
the spatial aggregations to a multivariate time series per FNA, as described
above and shown in Figure 3.3, can be consolidated. From the hierarchical
structure of the network, as shown in Figure 3.1, follows a nested structure of
the data, as shown in Figure 3.4.

3.2. Target Variable
As established before, the data are multivariate time series (MTS) with compo-
nent time series x

(i)
t , i = 1, 2 . . . , P . One of the variables, say x

(j)
t , is considered

the target variable whose evolution is to be predicted for a certain amount of
time into the future. As input data for the prediction model, the target variable’s
past values, as well as the other variables’ past values, i.e. the variables x

(i)
t ,

with i = {1, . . . , P} − {j}, can be used. The target variable will be referred to
as τt throughout in the following.

Figure 3.5 illustrates the situation. The target variable was identified from
previous work at AnonISP and is assumed to be a suitable proxy for network
state, and ultimately customer experience.

A simplified version of the problem is not concerned with directly predicting the

19

Chapter 3. Data

t

prediction

γq

0

1

t

τt

x
(1)
t

x
(2)
t

x
(3)
t

predictionpast values

τt

x
(1)
t

x
(2)
t

x
(3)
t

ct

Figure 3.5.: Time series x
(i)
t and target variable τt. Of interest are future values

of the target variable (blue line, top), to be predicted from its own, as well as
the other time series’, past values. The other variables’ future values are not of
interest. In a simplified version, not the target signal’s future is of interest, but
only that of a quantized version ct ∈ {0, 1}, using threshold γq.

target variable τt, but rather a quantized version ct ∈ {0, 1}. The quantization
uses a threshold γq. This threshold was identified as well by previous work at
AnonISP.

Figure 3.6 shows a plot of the target variable for a single FNA’s target variable
τt as well as the quantized version ct. Whenever the target variable reaches
or crosses the threshold γq, the quantized target ct gets assigned the value 1,
which is to be understood as marking the “event” class. This is the first step
of assigning class labels for the data, more details are given in Section 5.4 and
Section 5.5.

Note that the label 1 is assigned to the class “event”, i.e. the class of interest
for the scenario treated here. As was briefly mentioned in Section 1.2, the class
of interest is called the positive class, and it is customary to assign the higher
class label (1 vs. 0 for the binary class problem) to the class of interest.1

3.3. Data Availability
The data considered have a maximum temporal extent from 21st of January
2021, 23:00, to 28th of June 2021, 21:00, the overall first and last time-stamps
tstart and tend, respectively. This is a time-span of 157 days and 22 hours, or
more than 22 weeks, or more than 5 months. This period is denoted by T in
the following. However, not for all hubs and their associated (nested) FNAs, the
available data cover this whole extent.

The data for the network consists of 21 hubs with 2220 FNAs in total. The
smallest hub serves 4, the largest roughly 600 FNAs. In total, there are 8 148 975
data points available in the aggregated data.

1More specifically, for example the well known library scikit-learn (Pedregosa et al. 2011)
follows this convention, as do many others.

20

3.3. Data Availability

2021-02 2021-03 2021-04 2021-05 2021-06 2021-07
time

0.0

2.5

5.0

7.5

10.0

12.5

Target variable

target variable

threshold

2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

target variable

threshold

0.0

0.2

0.4

0.6

0.8

1.0
quantized target

Figure 3.6.: Temporal evolution of the target variable for an FNA. The lower
plot shows a zoomed in version of the range marked with a gray bar in the upper
plot, with the quantized target variable plotted on top.

3.3.1. Temporal Extent of Data
A schematic representation of the data availability is shown in Figure 3.7. A
FNA’s data may start or end before the overall start and end time-stamps, and
data may be missing in between.

In a first step, all FNAs whose data span less than 80% of T , i.e. for which
TF = tend − tstart < 0.8 T holds, were excluded. The reason for this is that the
data are split into several parts along the time-axis for cross-validation (CV)
procedures, and each part should hold about the same amount of data. See
Section 5.7 for further details on data splitting.

Strictly executed, missing data points in between start and end dates should
be taken into account, but analyses revealed that typically only few data points
are missing for FNAs, so that using FNA’s TF is sufficient for deciding which
data to exclude.

A concrete example for a hub’s data is shown in Figure 3.8. As can be seen
in this example, three FNAs have a later starting date than the rest. Two of
those had enough data to be kept, while one (marked in black) was removed
from further processing. Several FNAs have a few missing data points, marked
by red markers. A red marker here indicates that any variable may be missing;
however, it was found that typically, all variables are missing and the gap in the
data is detected from discontinuities in the time-stamps. The reasons for missing
data points are not known to the author. The depicted hub’s data exhibit the
largest amount of missing data points in the whole data set (but not the most
completely excluded FNAs).

21

Chapter 3. Data

maximal duration T

TF

Hub 1

Hub 2

Hub 3

Hub 4

Figure 3.7.: Schematic representation of data availability. The maximal extent
of data (first to last occurring in the data) T is used as reference value. Each
line (blue or orange) represents an FNA’s data. FNAs whose data duration (TF)
is less than 80% of T are excluded and not used for the experiments (orange).
Even a whole hub’s data may be excluded (hub 4 in this example).

2021-02 2021-03 2021-04 2021-05 2021-06
Time

Hub: 15, removed 1/312 FNAs (= 0.3 %)

Figure 3.8.: Overview of available data for a single hub (compare to Figure
3.7). Start dates of records are marked by orange diamonds. End of records are
marked with brown diamonds (same end date for all records here). There are 3
FNAs that have records starting later than the rest. FNAs excluded are shown
in black: there is a single FNA whose data are excluded here due to the short
duration (see text). Red markers indicate single data points that are missing.
Several FNAs exhibit shorter periods of time where data is missing in between
start and end dates. The missing data points occur at similar times for different
FNAs, hinting at a common source of error.

22

3.4. Distributions

Since relatively few data points are missing, and enough data is available
overall, it was decided against using methods to impute missing values, but to
simply ignore portions of missing data. The handling of missing values, in the
form of omitting portions of the data with missing values, is discussed in more
detail in Section 5.3.

3.3.2. Missing Onsets
Some FNAs’ data show a particular pattern: data is missing a short time before
or directly at that time-span where the target variable reaches or crosses the
quantization threshold γq (marking bad performance). The part of the data
that potentially marks the beginning of a problem and may be crucial for the
prediction of overshooting the threshold is missing. This makes the usefulness of
data that exhibit this pattern more than questionable.

Figure 3.9 illustrates an example of this pattern, where the temporal evolution
of the target variable exhibits missing values just before a strong increase, and
eventual overshoot of the threshold.

2021-02 2021-03 2021-04 2021-05 2021-06 2021-07
time

0.0

0.5

1.0

1.5

2.0

2.5

Target variable: missing onset

target variable

Figure 3.9.: Target variable with the missing onset pattern. See text for details.

3.4. Distributions
This section takes a look at some aspects of the distributions of the variables.
Because of the considerable number of variables (20) involved, and especially the
large amount of FNAs (2200), extensive and in-depth analysis of the distributions
did not seem too meaningful. Furthermore, as will be outlined in Section 5.2,
the models chosen (discussed in Chapter 6) do not require specific preprocessing
of the data and thus no detailed knowledge of the variables’ distributions or
relationships. It was therefore deemed sufficient to investigate the following
temporal (i.e., computed along the time-axis) summary statistics:

23

Chapter 3. Data

• mean,

• standard deviation,

• skewness.

This is meant to give at least a coarse understanding of the possible heterogeneity
of the data collected from the different FNAs, effectively from different parts of
the large (country-wide) network.

Figures 3.10 (mean), 3.11 (standard deviation) and 3.12 (skewness) give an
overview of the distribution of the aforementioned quantities for all 2200 FNAs.
Each dot in one of the plots represents one FNA. Recall that the terms “mean”
and “standard deviation” in the variable names refer to the spatial aggregation
described in Section 3.1.2.

cc
er

_u
p_

m
ea

n

cc
er

_u
p_

st
dd

ev

ce
r_

up
_m

ea
n

ce
r_

up
_s

td
de

v

rx
po

w
er

_u
p_

m
ea

n

rx
po

w
er

_u
p_

st
dd

ev

sn
r_

up
_m

ea
n

sn
r_

up
_s

td
de

v

tx
po

w
er

_u
p_

m
ea

n

tx
po

w
er

_u
p_

st
dd

ev

cc
er

_d
n_

m
ea

n

cc
er

_d
n_

st
dd

ev

ce
r_

dn
_m

ea
n

ce
r_

dn
_s

td
de

v

m
re

fle
ct

io
n_

dn
_m

ea
n

m
re

fle
ct

io
n_

dn
_s

td
de

v

rx
po

w
er

_d
n_

m
ea

n

rx
po

w
er

_d
n_

st
dd

ev

sn
r_

dn
_m

ea
n

sn
r_

dn
_s

td
de

v

0

20

40

60

80

100
Temporal mean values

Figure 3.10.: Mean value (computed along the time-axis) of the time-series for
each variable. Each FNA is represented by a single dot. The range of values
shown on the y-axis is clipped to 100. The variable mreflection dn stddev has
many instances reaching about 1000, with the largest value around 2500.

As is evident from Figure 3.10, most variables have moderate means, and the
values are somewhat grouped closely, except for the variable mreflection.

A similar pattern can be seen for the temporal standard deviations in Figure
3.11, except that the variable cer up stddev has a slightly larger spread than
other variables. For mreflection dn stddev, there seem to two separate groups.

Figure 3.12 shows the skewness. The variables related to CER and CCER
show considerable spread in their right skew, as do the variables related to
the micro-reflections. The other variables are less skewed and in general more
concentrated for the different FNAs.

24

3.4. Distributions

cc
er

_u
p_

m
ea

n

cc
er

_u
p_

st
dd

ev

ce
r_

up
_m

ea
n

ce
r_

up
_s

td
de

v

rx
po

w
er

_u
p_

m
ea

n

rx
po

w
er

_u
p_

st
dd

ev

sn
r_

up
_m

ea
n

sn
r_

up
_s

td
de

v

tx
po

w
er

_u
p_

m
ea

n

tx
po

w
er

_u
p_

st
dd

ev

cc
er

_d
n_

m
ea

n

cc
er

_d
n_

st
dd

ev

ce
r_

dn
_m

ea
n

ce
r_

dn
_s

td
de

v

m
re

fle
ct

io
n_

dn
_m

ea
n

m
re

fle
ct

io
n_

dn
_s

td
de

v

rx
po

w
er

_d
n_

m
ea

n

rx
po

w
er

_d
n_

st
dd

ev

sn
r_

dn
_m

ea
n

sn
r_

dn
_s

td
de

v

0

5

10

15

20
Temporal stdandard deviation values

Figure 3.11.: Standard deviation value (computed along the time-axis) of the
time-series for each variable. Each FNA is represented by a single dot. The range
of values shown on the y-axis is clipped to 20. The variable mreflection dn stddev
has many instances reaching about 400, with the largest value around 1000. The
horizontal line marks a standard deviation of 1.

cc
er

_u
p_

m
ea

n

cc
er

_u
p_

st
dd

ev

ce
r_

up
_m

ea
n

ce
r_

up
_s

td
de

v

rx
po

w
er

_u
p_

m
ea

n

rx
po

w
er

_u
p_

st
dd

ev

sn
r_

up
_m

ea
n

sn
r_

up
_s

td
de

v

tx
po

w
er

_u
p_

m
ea

n

tx
po

w
er

_u
p_

st
dd

ev

cc
er

_d
n_

m
ea

n

cc
er

_d
n_

st
dd

ev

ce
r_

dn
_m

ea
n

ce
r_

dn
_s

td
de

v

m
re

fle
ct

io
n_

dn
_m

ea
n

m
re

fle
ct

io
n_

dn
_s

td
de

v

rx
po

w
er

_d
n_

m
ea

n

rx
po

w
er

_d
n_

st
dd

ev

sn
r_

dn
_m

ea
n

sn
r_

dn
_s

td
de

v

50

25

0

25

50

Temporal skew values

Figure 3.12.: Skewness value (computed along the time-axis) of the time-series
for each variable. Each FNA is represented by a single dot.

25

Chapter 3. Data

3.4.1. All-Zero Values
When taking a closer look at the standard deviations computed across time for
the FNAs, some showed values of exactly zero for one or more of the following
variables:

• CER, both upstream (US) and downstream (DS)

• CCER, US and DS

The Codword Error Rate (CER) reflects the amount of transmitted codewords
that contain errors that can be detected at the receiver (it may be that not all
errors can be detected, this depends on the code used), and is thus a measure
for the quality of the transmission. The Corrected Codword Error Rate (CCER)
has a similar meaning, it reflects the amount of codewords whose errors could be
corrected after detection (it may be that not all detected errors can be corrected,
again depending on the code used).

Both these quantities are non-negative, and spatial means thus would be
non-negative as well. It is extremely unlikely that all devices in an FNA have not
a single codeword error in 5 months, and far more likely that there is an error in
the data. It furthermore is extremely unlikely that these variables exhibit no
variability over time, thus having standard deviations of zero, especially as they
are spatial means or standard deviations. Therefore, it was assumed that rather
there was an issue with the data, and the respective FNAs where removed from
the data used for training the models.

Instead of removing the instances (of the affected FNAs), alternatively, the
variables could have been removed for the whole data set, keeping the respective
instances. However, the amount of FNAs with these cases is only about 13 % of
all available FNAs (for more concrete numbers see Section 5.1.3), and furthermore
both variables are expected to be in close relationship to the target variable.
Under such circumstances, it is favorable to remove instances rather then variables
(predictors) (Kuhn et al. 2020, p. 196).

3.5. Class Imbalance Ratio
This section investigates the distribution of classes in the aggregated data (as
delivered), i.e. the proportions of instances considered events and non-events.
One possible measure to describe the imbalance of classes in the data for two-class
problems is the Imbalance Ratio (IR) (Fernández et al. 2018, p. 20). It is defined
as the ratio of the number of instances (labeled as) belonging to the negative
class (class of no interest) to the number of instances belonging to the positive
class (the class of interest).

Figure 3.13 shows for all 2200 FNAs the number of occurring events. As
described in Section 3.2 and shown in Figures 3.5 and 3.6, an event is defined
by the target variable τt reaching or crossing the threshold γq. The FNA with

26

3.5. Class Imbalance Ratio

the most events has about 2500 (out of 3790 data points) events, about 65 % of
the data points. 128 FNAs show more than 5% of events. 1302 FNAs have no
occurrences of events.

1044
2154

1205
0238

1332
1245

1521
2173

1777
0411

0499
0263

0986
0757

0887

FNAs

0

500

1000

1500

2000

2500

#
 a

b
o
v
e
 t

h
re

s
h
o
ld

count

1044
2087

0296
1104

1893
0767

1930
0291

1327
0089

0025
0247

0056
0748

0120
1840

1083

FNAs

0

500

1000

1500

2000

2500

#
 a

b
o
v
e
 t

h
re

s
h
o
ld

Number of events per FNA. Top 128 FNAs (ranked by %)

count

0

20

40

60

%
 a

b
o
v
e
 t

h
re

s
h
o
ld

Number of events per FNA. Gray area: top 128 FNAs (ranked by %)

%

0

20

40

60

%
 a

b
o
v
e
 t

h
re

s
h
o
ld

%

Figure 3.13.: Number and percentage of events per FNA. The lower subplot
shows the top 128 (ranked by percentage) FNAs. This corresponds to the area
marked in gray in the top subplot. All other of the 2200 FNAs have less than
5% of events.

Figure 3.14 shows the distribution of events over time for all FNAs. This
figure is meant to give a rough impression of the overall occurrence of events
over time across the whole network.

In absolute numbers, there are 116 857 events in 8 148 975 data points across
all FNAs. Averaged across all FNAs, 1.43 % of the data points are of the class
“event”. This results in an Imbalance Ratio (IR) of about 70:1 for classes “non-
event” (0) to “event” (1). There is thus a quite large imbalance between events
and non-events in the data, and there are quite few examples for the minority
class “event” in total.

Class imbalance ratios will be revisited in Section 5.8, after preprocessing the
data, which changes the IR considerably for the worse. The whole next chapter
is dedicated to the discussion of the impact of this strong imbalance.

Figure 3.15 shows the total number of events per time-stamp, as obtained
by summing over all FNAs. This plot is interesting as it can give an idea of
the proportion of events per fixed time-span, say a month. This will be further

27

Chapter 3. Data

2021-02 2021-03 2021-04 2021-05 2021-06
time

Events over time, all FNAs

Figure 3.14.: Occurrence of events over time (as indicated by target variable),
for all of the 2200 FNAs. Each row of pixels corresponds to one FNA.

discussed below in the context of splitting the data into training, validation and
test parts.

Johnson et al. (2019, p. 4) state that besides the Imbalance Ratio (IR), the
absolute number of examples in the minority class can be important. There may
be simply too few instances of a class in the (labeled training) data to learn the
“concept” of the respective class. This case is referred to as absolute rarity in
the literature (He et al. 2013, p. 20), as opposed to the relative rarity that is
quantified by the IR.

28

3.5. Class Imbalance Ratio

2021-02 2021-03 2021-04 2021-05 2021-06

time

20

30

40

50

ta
rg

e
t

Sum of events over all FNAs

target

mean

mean+/-std

Figure 3.15.: Total number of events per time-stamp, sum over all of the 2200
FNAs. The blue curve is the sum along the vertical axis of Figure 3.14. While
there is change over time, the sum does not deviate strongly from the mean ±
one standard deviation (orange horizontal line, gray area) most of the time.

29

CHAPTER4
Class Imbalance

As the exploratory analysis of the data showed (Chapter 3), the distribution
of the classes among the instances is severely imbalanced. Class imbalance is
a problem that impacts several points of a machine learning pipeline. It is a
well known problem occurring in many real-world data sets and applications
that deal with rare events (Johnson et al. 2019). Learning in the presence of
imbalanced classes is a research field of its own, see e.g. (Fernández et al. 2018),
(He et al. 2013), (Branco et al. 2016).

Johnson et al. (2019) state that the problems of imbalanced learning, and
methods to address it, have been researched thoroughly over the last two decades
for classical machine learning, but that research in the field of deep learning
methods has not progressed very far.

This chapter will briefly look at the problems caused by class imbalance and
discuss at which points in a machine learning pipeline mitigating actions can be
taken to alleviate them.

There are three important points where leverage can be applied to combat
(severe) class imbalance (Fernández et al. 2018), (He et al. 2013):

1. At the level of the data, i.e., applying certain kinds of processing to the
data, before using them for training a model.

2. At the level of the models and algorithms used.

3. At the level of the decision rules or thresholds, after fitting a model to
data.

These approaches are not mutually exclusive but may be used in combination,
however, not all three approaches are applicable to every model. The following
sections will take a brief look at these approaches and how they can be applied
to the problem at hand.

31

Chapter 4. Class Imbalance

In some publications, there is another point mentioned as being very impor-
tant, namely the choice of the evaluation metric(s) used to measure a model’s
performance, see e.g. (He et al. 2013). The choice of metric is discussed at the
end of this chapter in Section 4.4.

It shall be noted that Krawczyk (2016) uses a slightly different list of methods,
namely points 1 and 2 as above, but states that a combination of both can be
considered a third method. Point 3 from the list above is included in point 2 in
(Krawczyk 2016).

Yet another slightly different categorization of methods to combat class im-
balance is given in (Branco et al. 2016, p. 12), again by and large covering the
above mentioned methods.

4.1. Data Level
Approaches to treat class imbalance at the data level are mostly based on re-
sampling the data. Typically, the training data are modified, while other parts
of the data used as holdout sets (validation and test sets) are kept as-is. Popular
options are (Fernández et al. 2018, p. 80):

• Undersampling the majority class, i.e., reducing the number of instances
labeled as the majority class (the class of no interest) in the training data.
There are several ways for choosing the instances to be removed.

• Oversampling the minority class, i.e., sampling with replacement from the
minority class (the class of interest). Again, several ways for how to choose
instances are possible.

• Creating artificial (also termed synthetic) data points for the minority
class, either based on existing instances or randomly.

These methods are not mutually exclusive, for example applying both oversam-
pling the minority as well as undersampling the majority class is a common
method. Some simple possible approaches will be briefly discussed in the follow-
ing. In general, there is a vast amount of different re-sampling methods treated
in the literature, see e.g. (Fernández et al. 2018) for an overview and discussion.

In general, it is important that the data used for evaluating the quality of the
model, i.e. validation and test sets, resemble the distributions of minority and
majority cases found “in the world” (Kuhn et al. 2013, p. 427), and thus are not
subjected to re-sampling at all for the experiments conducted.

Sampling methods have been shown to mitigate the impact of class imbalance,
but there is not one best method among the various available approaches (Kuhn
et al. 2013, p. 429).

Furthermore, the optimal amount of re-sampling, in other words the target
Imbalance Ratio (IR), may not be clear in advance (Branco et al. 2016, p. 16)
and should thus be treated as a hyper-parameter and estimated during the model

32

4.1. Data Level

selection process. This may, however, lead to unacceptably high additional
computational effort.

4.1.1. Undersampling
There are several different ways to apply undersampling to the instances of the
majority class. A simple version is to randomly select majority class instances
to be dropped from the training data (Branco et al. 2016, p. 16).

Undersampling can have several advantages (Aggarwal 2017, 228f):

• Training on smaller data sets requires less power and is faster.

• Only instances of the class of no interest are removed, and the model can
focus on the important instances from the class of interest.

• Due to the improved efficiency, using ensemble methods (i.e., fitting multiple
models of the same type and combine output) becomes more feasible.

Reducing the number of instances can be a drawback if there is relatively few
data to begin with. Furthermore, there is the risk that instances important for
the learning process may be removed (Branco et al. 2016, p. 16).

4.1.2. Oversampling
Again, there exist several methods for oversampling the minority class, such as
the simple case of random oversampling by sampling with replacement from the
instances of the minority class. There is some agreement that this increases the
chance of overfitting (Fernández et al. 2018, p. 80), (Branco et al. 2016, p. 16).
As overfitting was found to be a problem during early experiments, already
without any alteration of the data, random oversampling was not considered
further.

An important point is that random oversampling is not able to mitigate the
problem of absolute rarity (He et al. 2013, p. 29). Absolute rarity means that
the absolute number of instances of the target class is low, besides a possibly
high IR.

Oversampling in general increases the data set size, thus leading to higher
effort during training (but this could easily be compensated by undersampling
the majority class, if applicable).

4.1.3. Synthetic Oversampling
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) is a
popular method for creating synthetic examples for the minority class.

Preliminary experiments were conducted with the SMOTE method, but it
was found to be extremely time-consuming: just processing one single fold would

33

Chapter 4. Class Imbalance

take several hours of computing on a powerful machine (Machine G, see Section
7.1). Processing time for five folds (and one single setting for SMOTE, e.g. for
the number of neighbors used) was estimated to be between 20 h and 30 h. Since
this would have to be done for each of the five folds, and for each of the several
different windowing settings (see Chapter 5), and possibly for different settings
(parameters) for the chosen SMOTE method, the necessary processing time
was considered to be too much by far for the scope of this thesis. Kuhn et al.
(2020, p. 55) state that resampling of data to influence the class distribution and
imbalance should be included inside a cross-validation scheme (or other methods
that resample data to create training and validation splits), as opposed to doing
it outside the scheme, before splitting the data.

Furthermore, the literature suggests that the original SMOTE algorithm has
some drawbacks (Fernández et al. 2018, p. 100), and the number of available
extensions was considered too vast for screening for alternatives for this thesis:
Fernández et al. (2018) lists more than 90 published extensions to the original
SMOTE.

Krawczyk (2016, p. 224) state that in cases of extreme class imbalance (they
categorize this as imbalance ratios between 1000:1 and 5000:1), the minority
class may often be poorly represented in terms of its structure (this relates to
the notion of absolute rarity mentioned above). This can lead to decreased
performance in classification settings when using methods such as SMOTE, as
well as random re-sampling methods.

Johnson et al. (2019, p. 35) argue for the use of model-level (algorithm-level)
methods (treated in the next section) in favor of data-level methods due to the
increased computational costs of the latter when dealing with large amounts of
data.

Due to the points briefly mentioned above (danger of overfitting, computational
cost, necessity to include re-sampling methods into hyper-parameter tuning and
model selection process), no re-sampling (data level) methods were used in the
experiments (see Chapter 7), except for random undersampling where necessary
to avoid memory problems with certain models.

4.2. Model Level
Two prominent approaches for dealing with class imbalances at the algorithmic
level are:

1. Cost-sensitive learning (Aggarwal 2017, p. 223), (Fernández et al. 2018,
p. 63). Several different methods exist under this umbrella, here the case of
weights associated with classes is of interest (Fernández et al. 2018, pp. 64 f).
The general idea is to include different weights for the different classes
directly into the loss function used for training a model. An advantage
here is that only changes to the loss functions are necessary, and the rest
of the model can be used without any changes (Aggarwal 2017, p. 222).

34

4.2. Model Level

2. Ensemble methods such as bagging and boosting (Fernández et al. 2018),
(He et al. 2013, pp. 66 f). Aggarwal (2017, p. 230) specifically mentions
boosting methods. In general, for the case of ensembles, either the base
models, the combination scheme, or both together can be geared towards
alleviating class imbalance. In this thesis, only the first version will
be addressed, more concretely combining base learners sequentially via
boosting, where the base learner models are themselves equipped with
ways to deal with class imbalance.

In the remainder of this section, only cost-sensitive learning with weights applied
on a per-class basis will be discussed further. The boosting models used are
discussed in Section 6.5.

4.2.1. Types of Models
Classification models can be distinguished by the way they arrive at, or rather
emit, class labels for given input data instances. Following the ideas of Bayesian
decision theory (see e.g. (Bishop 2006), (Duda et al. 2001)), some types of
classifiers model the posterior probabilities P (Cj|x) of the nC possible classes Cj

with j = 0, 1, . . . nC − 1, given a datum (instance) x. The model than produces
as a prediction a “soft” label score that can be interpreted as a probability for
the respective class. A soft label score can be quantized to a “hard” label by
applying a decision rule (see Section 4.3 below). Other models directly emit
“hard” class labels (e.g. 0 or 1) without the intermediate step of a probability
score. An overview of these different types of models is given in (Bishop 2006,
pp. 42 ff):

1. Generative models. These model the joint probabilities P (Cj, x) of the
classes Cj and data x. The posterior probabilities P (Cj|x) can then be
derived from the joint probabilities. An example of such a model is Linear
Discriminant Analysis (LDA).

2. Discriminative models are directly modeling the posterior probabilities
P (Cj|x). Among the models belonging to this category are logistic regres-
sion, decision tree classifiers and neural networks (with sigmoid or softmax
output).

3. Models that directly yield a class label only, by learning a discriminative
function that maps a datum x to a class label directly.

Classifiers of types 1 and 2 are sometimes referred to as scoring classifiers or
probabilistic classifiers, models of type 3 as discrete classifiers (see e.g. (Fawcett
2006), (Bishop 2006)). For the experiments conducted here, models of the type
2 are used, see also Chapter 6.

Using models of type 2, resulting in the availability of the predicted posterior
probabilities, has several advantages (Bishop 2006, pp. 44 f). One of them is

35

Chapter 4. Class Imbalance

that costs (also called weights in some settings) can be applied to the predicted
posterior probabilities in a decision rule that finally assigns (hard) class labels
to data. The decision for a class label ŷ can be viewed as a post-processing step
after predicting the posterior probabilities P (Cj|x) for a given instance. This is
further discussed in Section 4.3.

4.2.2. Loss Functions and Weights
During training a classifier in a supervised setting, a loss function (or cost
function) L is used to compute the overall loss L across all presented data
instances x of a training data set, where each datum has an associated ground
truth label y, for the current state of the classifier. The goal of the training
procedure is to adapt the model’s parameters θ, representing the state of the
model, such that the overall loss incurred on the training set is minimized.1

For each datum xi of i = 1, . . . , N elements in a data set D, with corresponding
binary ground-truth class labels yi ∈ {0, 1}, a classifier produces (finally) a
predicted label ŷi ∈ {0, 1}, where 1 is again considered the label for the class of
interest (target class). We set C1 to correspond to y = 1 and C0 to correspond
to y = 0. Probability scores emitted by discriminative models (type 2 above)
represent the modeled posterior probabilities P (C(i)

j |xi) that are eventually
quantized to a hard predicted label ŷi using a decision rule (the index i will often
be omitted in the following for brevity).

For the binary case treated here, the two posterior probabilities are related
as P (1|x) + P (0|x) = 1. For convenience, we introduce the following simplified
notation:

P (C1|x) = P (1|x) = pt, (4.1)
P (C0|x) = P (0|x) = 1 − pt. (4.2)

Many different loss functions suitable for classification can be found in the
literature, in many different formulations. The notations may also depend on
the concrete model the respective function is used in.

Not all loss functions allow for cost-sensitive training. For example, Fernández
et al. (2018, p. 64) state that the 0-1 loss (misclassification loss) is not a good
loss function for imbalanced problems, as it does not allow to give different costs
to different misclassification cases. Rather, it assigns a loss of 1 to mis-classified
examples, and 0 to correctly classified.

A loss function that is widely used for classification problems and does allow
for cost-sensitive training is the cross-entropy loss. For the cross-entropy loss
(also log loss, deviance) (see e.g. (Bishop 2006, p. 206)), we adopt (mostly) the

1Note however that the minimization procedure may be stopped at a certain point to avoid
overfitting the model to the training set. This is discussed further in Section 6.4.

36

4.2. Model Level

notation in Lin et al. (2017, p. 3):

CE(pt, y) =
− log(pt), if y = 1,

− log(1 − pt), if y = 0.
(4.3)

For the class labels y ∈ {0, 1} used here, the cross-entropy can also be written
as:

CE(pt, y) = −y log(pt) − (1 − y) log(1 − pt), (4.4)

and all of the loss functions presented in the following can be written in this
form as well. The overall loss L for a given data set is then computed across all
examples, i = 1, . . . , N (see e.g. (Bishop 2006, p. 206)):2

L =
N�

i=1
CE(pt,i, yi) =

N�
i=1

−yi log(pt,i) − (1 − yi) log(1 − pt,i). (4.5)

Note that the overall loss L depends on the data set D, via the data x and labels
y, as well as the state of the model (defined by parameters θ), via the predicted
probability scores pt computed from the data x.

Multiplicative weights, one scalar weight factor wj for each class Cj across all
respective instances, can be used to modify the losses for each class separately
(Lin et al. 2017, p. 3):

CEw(pt, y) =
−w1 log(pt), if y = 1,

−w0 log(1 − pt), if y = 0,
(4.6)

where weights are suggested to be related as w1 = α and w0 = 1 − α in (Lin et al.
2017). Note, however, that in general, class weights for different classes need not
be related to each other, see e.g. (Buja et al. 2005, p. 13). By specifying higher
weights to increase the losses for a certain class, a model can be tuned towards
making less mistakes for that class (see also below).

The weights wj introduced here may or may not be directly related to the costs
Ckj discussed in Section 1.2, and hence the different term “weights” instead of
“costs” is used here. The application of per-class weights in Eq. (4.6) essentially
corresponds to the case shown in Table 1.2.3 (left), where only weights for the
error cases are used. However, here, the weights are first and foremost meant
to increase the performance of the model during training and may not reflect
an actual cost situation describing the overall decision problem; the costs may
in any case not be known at all, or precisely enough, at this stage of tackling
the problem. Furthermore, it may be the case that the same trained model is to
be used in different contexts requiring different cost structures. This is further
discussed in Section 4.2.3.

2Some authors average the loss accumulated across the respective data set, by dividing the
sum of the losses by the number of instances N , see e.g. (Buja et al. 2005, p. 5).

37

Chapter 4. Class Imbalance

Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár
Facebook AI Research (FAIR)

0 0.2 0.4 0.6 0.8 1

probability of ground truth class

0

1

2

3

4

5

lo
s
s

 = 0
 = 0.5

 = 1
 = 2

 = 5

well-classified
examples

well-classified
examples

CE(pt) = − log(pt)

FL(pt) = −(1− pt)
γ log(pt)

Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 − pt)

γ to the standard cross entropy criterion.
Setting γ > 0 reduces the relative loss for well-classified examples
(pt > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors. Code is at:
https://github.com/facebookresearch/Detectron.

50 100 150 200 250
inference time (ms)

28

30

32

34

36

38

C
O

C
O

 A
P

B C

D

E

F

G

[A] YOLOv2† [27] 21.6 25
[B] SSD321 [22] 28.0 61
[C] DSSD321 [9] 28.0 85
[D] R-FCN‡ [3] 29.9 85
[E] SSD513 [22] 31.2 125
[F] DSSD513 [9] 33.2 156
[G] FPN FRCN [20]
RetinaNet-50-500 32.5 73
RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198
†Not plotted ‡Extrapolated time

Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [28] system from [20].
We show variants of RetinaNet with ResNet-50-FPN (blue circles)
and ResNet-101-FPN (orange diamonds) at five scales (400-800
pixels). Ignoring the low-accuracy regime (AP<25), RetinaNet
forms an upper envelope of all current detectors, and an improved
variant (not shown) achieves 40.8 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 28, 20, 14], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [21].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [26, 27] and SSD [22, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the
state-of-the-art COCO AP of more complex two-stage de-

1

ar
X

iv
:1

70
8.

02
00

2v
2

 [c
s.C

V
]

7
Fe

b
20

18

Figure 4.1.: Loss curves for the focal loss for different values of the focusing
parameter γ. For γ = 0, the cross-entropy loss is obtained. With γ > 0, the
loss for higher values pt (more confidence in the prediction) is discounted as γ
increases. Figure from (Lin et al. 2017).

As an extension to the cross-entropy loss, Lin et al. (2017) introduce the focal
loss (FL):

FL(pt, y) =
−(1 − pt)γ log(pt), if y = 1,

−pγ
t log(1 − pt), if y = 0,

(4.7)

including the so-called modulating factors (1 − pt)γ and pγ
t , respectively. The

scalar parameter γ ≥ 0 is termed the focusing parameter, and suggested to be
in [0, 5], where γ = 0 falls back to the cross-entropy loss.

A version with weights is introduced in (Lin et al. 2017) as well:

FLw(pt, y) =
−w1 (1 − pt)γ log(pt), if y = 1,

−w0 pγ
t log(1 − pt), if y = 0,

(4.8)

where what was said above for the weights holds here as well.
The modulating factor (together with the focusing parameter) is designed to

scale the loss with the confidence of the prediction, the magnitude of pt, such
that instances that are easier to classify will yield lower loss than instances that
are harder to classify. This is visualized in Figure 4.1. For higher values of the
focusing parameter γ, the loss curves decrease stronger for higher values of pt.
Thus, a higher value of pt = P (1|x) for a given instance x, interpreted as higher
confidence in the prediction, will decrease the loss incurred for this instance.

Lin et al. (2017, p. 3) state an interesting aspect of focal loss: it is designed to
down-weight “inliers”, referring here to easy to classify instances. This is the
opposite behavior of robust loss functions that aim at reducing the influence of
outliers by down-weighting them.

38

4.2. Model Level

4.2.3. Choosing Weights
As was stated above, the goal of cost-sensitive learning (with per-class associated
costs) is making a classifier focus on classes having higher misclassification costs
already during training (Fernández et al. 2018, p. 64). Several ways exist to
set the weights for the different classes. This sections is mostly concerned with
choosing weights used during training (in a loss function) and not choosing costs
for the decision stage (used in a decision rule). However, some of the points
mentioned here concern that latter case (see Section 4.3) as well.

Fernández et al. (2018, pp. 66 f) point out the importance of choosing the
weights appropriately for the effectiveness of training a model and state two
ways for obtaining concrete values for weights (costs):

1. Weights provided by domain experts, based on the problem at hand. This
could be some estimate of true financial costs associated with the error
cases of the problem. In such cases, the weights used for training might
conceptually mirror the costs that would otherwise be applied only at the
decision stage.

2. Weights estimated from training data. One possibility is to directly apply
the Imbalance Ratio (IR) estimated from the training data as weight factors
during the training process.

For the problem addressed in this thesis, no such expert knowledge as mentioned
in 1), and thus and no cost estimates, was available at the stage of model
development. Furthermore, the application of actual financial costs seems much
more practically relevant at the decision stage, as we assume that the costs can
change over time and with the location of application of the model.

Choosing weights directly based on the Imbalance Ratio (IR) (in the training
data) as suggested in 2) may be problematic due to the following reason: the
class imbalance may not be the only property of the problem (or data) making
the learning of patterns in the data hard; other properties such as noisiness of the
data and possible overlap of the classes may add to the difficulties (Fernández
et al. 2018, p. 67).

Due to the points just discussed, it was decided to include the selection of
methods to assign weights, and assigning concrete weight values, into the model
selection process (see Section 6.6). In fact, choosing weights for the classes was
included in the hyper-parameter optimization process, see Chapter 7 and Section
7.4 in particular for the methods used for assigning weights. Choosing weights
based on the class imbalance was one method, randomly choosing a weight factor
for the target class from a given range was another.

Finally, it shall be noted that weights can also be assigned on a per-instance
basis, e.g. to increase the influence of certain instances in a data set on the
estimated model parameters. This is referred to as case weights in Kuhn et al.
(2013, p. 426). Assigning weights to single instances would most likely need

39

Chapter 4. Class Imbalance

careful inspection of the data if to be done manually, or some automatic method;
note that the focal loss cost function discussed above (Eq. (4.7)) can be viewed
as such a method, as it assigns different loss to individual instances based on
how high the confidence in their class association is. Besides the use of focal loss,
this approach was not further considered in this thesis.

4.2.4. Equivalence of Approaches
Branco et al. (2016, p. 16) state the interesting fact that for classification
problems, changing the Imbalance Ratio (IR) of the data (e.g. by re-sampling)
is equivalent to adjusting the costs for misclassification for the different classes.
This is pointed out as well in (Aggarwal 2017, p. 222), where they consider
re-sampling as treated in Section 4.1 as an indirect form of cost-sensitive learning,
since presenting an increased number of examples (in relation to the original
ratio) of a certain class will raise the overall losses incurred by this class during
training. This can be understood from Equation (4.5) (sum of losses of the
data instances encountered during training) and Equation (4.6) (the weighted
cross-entropy loss): increasing the number of instances of the minority class
(oversampling) will increase the summed costs due to this class; the same effect
can be achieved by applying higher weights (costs) to the instances of this class.
Similar relations hold for other re-sampling methods.

Branco et al. (2016, pp. 26 f) additionally state that besides re-sampling and
changing costs, tuning the quantization threshold for obtaining class labels from
posterior probabilities (discussed in the next section) will yield classifiers of the
same performance. However, an important point to consider here is the stage at
which the respective method is applied:

1. Re-sampling the data is done earliest, before even training a model, or
possibly on the fly during training. Some implications of such methods
and the possible risk of overfitting were discussed above.

2. Incorporating weights into loss functions is done during model training,
and may be necessary to even make a model pick up relevant patterns in
the data.

3. At the latest stage, after training a model (of type 1 or 2 as mentioned
above), it is still possible to influence the quantization of the estimated
posterior probabilities to class labels that is done by the decision rule, or
using a threshold (cutoff). This post-processing of the model outputs can
incorporate costs to tune the quantization.

For points 1 and 2 above, the model is fixed after training and changes to either
the class (im-)balance or weights for the classes are no longer possible. Of course,
the model may be re-trained with a changed setting if affordable. Using a method
following point 3, however, changes can be applied quite flexible once a trained

40

4.3. Processing Model Output and Decision Rules

model was obtained. If all of these three methods are able to achieve the same
performance, point 3 offers the most flexibility. Note again, however, that the
approaches discussed in this chapter are not mutually exclusive. In fact, at least
approaches 2 and 3 as listed above were used in all models here.

4.3. Processing Model Output and Decision Rules
As was pointed out above, the output of a discriminative model (type 2), the
posterior probabilities of class membership for each data instance, need to be
processed further to arrive at actual class labels.

In the last section (Section 4.2.4), it was stated that this post-processing step
allows for a flexible tuning of the decision by incorporating costs. This flexibility
is viewed as an asset as it can handle cases of changing environment (costs for
error cases) and changing application scenarios and locations (Provost et al.
2001).

This section will take a brief look at how to arrive at class labels given the
output of a discriminative model (type 2).

4.3.1. Decision Rule
Models of type 2 (discriminative), as discussed above in Section 4.2.1, yield as
their output the posterior probabilities for the classes. A method or rule that
quantizes the posterior probability to a class label Cj ∈ {0, 1} (for the binary
case) is called a decision rule.

Following the ideas of Bayesian decision theory, the well known Bayes decision
rule can be derived using the conditional risk (Duda et al. 2001, p. 25):

R(Ĉk|x) =
nC−1�
j=0

Ckj P (Ĉj|x) (4.9)

with both k and j = 0, . . . , nC − 1 and nC the number of classes. R(Ĉk|x) is the
expected cost for deciding for class label Ck for given datum x; the notation Ĉk

is meant to show that this is a predicted probability. Clearly, Eq. (4.9) involves
the costs as discussed in Section 1.2 as factors for the posterior probabilities
(that are the outputs of a discriminative model here).

For the binary case, Eq. (4.9) yields (for k and j = 0, 1):

R(Ĉ0|x) = C00 P (Ĉ0|x) + C01 P (Ĉ1|x), (4.10)
R(Ĉ1|x) = C10 P (Ĉ0|x) + C11 P (Ĉ1|x). (4.11)

Ignoring the costs Ckk (for correct decisions), and deciding for the class label
that minimizes the conditional risk, the Bayes decision rule can then be written
as (Duda et al. 2001, pp. 24 f, 63):

decide for class 1 if C01 P (1|x) > C10 P (0|x), else for class 0. (4.12)

41

Chapter 4. Class Imbalance

Here, C10 and C01 are the costs for mis-classifying true class 0 as class 1, and
vice-versa, respectively. The costs C00 and C11 for correct classification can be
omitted or assumed to be absorbed into the costs C10 and C01 (it is assumed
that the costs Ckk are smaller than the costs Ckj). This was briefly discussed in
Section 1.2, see especially Tables 1.2.2 and 1.2.3.

With the alternative notations for the cost factors shown in Table 1.2.3 (left)
(and the shorthand notation for the probability for the target class), the decision
rule can be written in a form that more clearly references the error types:

decide for class 1 if CFN pt > CFP (1 − pt), else for class 0. (4.13)

Thus, this decision rule can be used to incorporate costs for errors into the
decision. Note that the posterior probabilities are obtained from a trained model,
and the actual quantization to class labels can be influenced at any point after
training in this way. In particular, the behavior of the overall decision system
can be adapted to changes in the environment the system operates in, such as
changing costs. Furthermore, it could be the case that one model is used in
different spatial contexts (at the same time) where costs vary by location. In
the scenario of this thesis, this could reflect different costs of maintenance for
different parts of Austria, caused e.g. by a varying spatial density of network
nodes, and thus a different number of possible components to screen in case of
errors.

4.3.2. Threshold Method
In general, as an alternative to using a decision rule, the quantization of posterior
probabilities can also be achieved using simple thresholding, involving a decision
threshold (cutoff) γc:

decide 1 if P (1|x) = pt > γc, (4.14)
decide 0 if P (0|x) = 1 − pt ≤ γc. (4.15)

This allows to tune between False Positive (FP) and False Negative (FN) error
cases by varying the threshold γc.

Rearranging the Bayes decision rule, Eq. (4.13), repeated here for convenience:

decide for class 1 if CFN pt > CFP (1 − pt), else for class 0,

an equivalent formulation with a threshold based on the costs can be obtained
(Fernández et al. 2018, pp. 65 f):

decide 1 if pt >
CFP

CFP + CFN
= γc,Bayes, else for class 0. (4.16)

Trivially, for equal costs, the optimal threshold is 0.5 – carefully note however
that this assumes that the (predicted) probabilities are properly calibrated (see
next Subsection 4.3.3).

42

4.3. Processing Model Output and Decision Rules

It shall be noted that choosing different thresholds does not improve the
classifier itself (Kuhn et al. 2013, pp. 425, 431), (Johnson et al. 2019, p. 32) –
it is done after the model is already trained, after all – but rather is useful for
trading off between the different error cases (FN and FP). When looking at the
confusion matrix (see Table 1.2.1), changing the threshold moves case counts
between the rows, but not from the diagonal to the off-diagonals of the confusion
matrix (Kuhn et al. 2013, 425f).

In case a threshold is to be selected independent of costs, this should be done
based on a separate data set (such as the validation set and not the training or
test data), otherwise bias may be introduced (Kuhn et al. 2013, pp. 262, 425).

Visualizations (plots) can be used for guiding the selection of a threshold, in
addition to e.g. the confusion matrix, such as the ROC curve plot (see below in
Section 4.4) or the discrimination diagram (see (Prati et al. 2011)), as well as
the mosaic plot of the confusion matrix (see e.g. (Kuhn et al. 2020, p. 44)).

An interesting possibility is offered when using the threshold method where
two thresholds are used instead of just one, the so-called reject option (Bishop
2006, p. 42). Here, a “don’t know” region is inserted between the two actual
classes, where the classifier can signify that it cannot make a decision with
sufficient confidence:

decide 1 if pt > γup, (4.17)
decide “don’t know” if pt ≤ γup and 1 − pt > γlo, (4.18)

decide 0 if 1 − pt ≤ γlo. (4.19)

The inclusion of costs for the decisions is possible as well (Bishop 2006, p. 42).
This concept was not further explored in this thesis, but could be potentially

useful for practical applications.

4.3.3. Calibrated Probabilities
We shall briefly mention the notion of calibrated probabilities in relation to
discriminative classifier models.

There exists a visualization useful for qualitatively examining the calibration
of the classifier model, the so called calibration plot (or calibration curve) (see
e.g. (Kuhn et al. 2013, pp. 249 ff)). The process of creating such a plot is
instructive for understanding the concept, hence the construction is described in
the following: For a set of data instances xi with a ground-truth (class labels yi)
available, such as a validation or a test set, predict the posterior probabilities
P (C(i)

1 |xi) for the target class 1, in short pt,i. The predicted probabilities are
then ranked in ascending order; each pt,i has an associated xi whose true class
label yi is known. Next, the predicted probabilities are binned and the mid-point
of each of the k = 1, . . . , K bins is taken, say p̄t[k], where [k] is meant to denote
the respective bin of values. Finally, the xi[k] corresponding to the pt,i values in
bin [k] are taken and the rate of true events (number of true class 1 cases in the

43

Chapter 4. Class Imbalance

bin divided by the number of elements in the bin) is computed, say rC1[k]. The
calibration plot now displays the midpoints on the x-axis and the corresponding
rates rC1[k] on the y-axis. A model that emits well calibrated probabilities would
display the points on a 45° line (Kuhn et al. 2013, p. 249).

Well calibrated probabilities can be helpful for interpreting the model output,
if the raw predicted probabilities are used directly, and can be useful for other
reasons, see e.g. Guo et al. (2017) for a brief discussion. Furthermore, for being
able to choose a decision threshold (as discussed in the previous section) in
a meaningful way, (somewhat) well calibrated probabilities can be beneficial,
or might even be necessary. Different classification algorithms have their own
respective typical shapes of distortion of calibration curves. Several methods exist
to remove these distortions, among them is fitting a function to the calibration
curve such that the distortion is removed and the predicted probabilities are
equalized (Kuhn et al. 2013, pp. 249 ff), (Niculescu-Mizil et al. 2005, pp. 625 f),
(Guo et al. 2017).

Figure 4.2 shows examples of calibration plots for different classifiers applied
to synthetic data of a binary classification problem, along histograms over the
predicted scores (that can be interpreted as posterior probabilities for some
of the models shown). The plots are also meant to illustrate the distortions
introduced by the different models.

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability (Positive class: 1)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
p
o
s
it

iv
e
s
 (

P
o
s
it

iv
e
 c

la
s
s
:

1
)

Calibration plots

Perfectly calibrated

Logistic

Naive Bayes

SVC

Random forest

0.0 0.5 1.0

Mean predicted probability

0

10000

20000

30000

C
o
u
n
t

Logistic

0.0 0.5 1.0

Mean predicted probability

0

10000

20000

30000

40000
C

o
u
n
t

Naive Bayes

0.0 0.5 1.0

Mean predicted probability

0

5000

10000

15000

C
o
u
n
t

SVC

0.0 0.5 1.0

Mean predicted probability

0

5000

10000

15000

20000

C
o
u
n
t

Random forest

Figure 4.2.: Calibration plots (left) and corresponding histograms of the predicted
scores (right) for four different classifiers to illustrate the notion of calibrated
probabilities. Perfectly calibrated probabilities would follow the dashed line.
Classifiers: Logistic Regression, Naive Bayes, Random Forest, SVC is a Linear
Support Vector Classifier. Figure produced with code adapted from (Metzen
2023).

No method for calibrating the predicted probabilities was applied to the output

44

4.4. Evaluation Metrics

of the models used in this thesis.

4.4. Evaluation Metrics
Choosing a suitable evaluation metric for quantifying model performance is
especially crucial for the case of imbalanced classes. It is well known that
for example classification accuracy is not a good measure for classification
performance when dealing with data having imbalanced classes (He et al. 2013,
p. 20), (Aggarwal 2017, p. 26). Evaluating a model’s performance is necessary at
several points in a machine learning pipeline, and one or several suitable metric(s)
should be used at each point. An evaluation of performance is necessary at
several stages, including:

• Monitoring for signs of overfitting during training with iterative methods
such as gradient descent, and stopping training early to avoid overfitting.3

• Model selection, i.e., choosing between different feature sets, model archi-
tectures, etc.

• Hyper-parameter tuning, i.e., choosing values for parameters that can not
be learned directly from the data.

• Reporting final model performance on a test (holdout) set, to evaluate
generalization behavior.

As can be seen from the list above, development and evaluation of a model are
tightly coupled, and thus using the right evaluation metric is very important
(see also Aggarwal (2017, p. 222)).

The catalog of available metrics for a certain model depends on the type of
model, i.e., the type of predictions it can create. Models of types 2 (probabilis-
tic classifiers, see Section 4.2.1) can output scores that can be interpreted as
probabilities for class membership. Hence, a brief discussion of metrics and their
relation to the case of imbalanced classes is conducted next.

4.4.1. Types of Metrics
He et al. (2013, p. 189) name three different types (or families) of evaluation
metrics used for classification:

1. Threshold metrics

2. Ranking methods and metrics
3Early stopping is often done by monitoring the loss computed on a validation set and

compared to the loss computed on the training data; however, it is also possible to use
other metrics such as the ROC-AUC instead of the loss. See Section 6.4.1 for a discussion
of early stopping.

45

Chapter 4. Class Imbalance

3. Probabilistic metrics
The first two will be briefly discussed in the following.

Threshold Metrics
The first type of metrics above require model output in the form of hard class
labels, as e.g. obtained from predicted probabilities fed to a decision rule involving
a threshold (that must be fixed at this point). The predicted class labels can
then be compared to the true class labels (for e.g. a training set), yielding the
four fundamental cases (TP, FP, FN, TN) for the binary classification problem
that make up the elements of the confusion matrix (Table 1.2.1, repeated here
for convenience as Table 4.4.1), as discussed in Section 1.2.

Table 4.4.1.: Confusion matrix for the binary decision problem.
Predicted Actual

Event Non-Event
Event TP FP

Non-Event FN TN

The entries of the confusion matrix are counts and can directly be used to
compute threshold metrics, such as Precision, Recall (also called Sensitivity) and
Specificity (the former two were described in Section 1.2).

Precision and Recall are defined as (see for example (He et al. 2013, pp. 192 f)):

Precision = TP
TP + FP , (4.20)

Recall = TP
TP + FN . (4.21)

He et al. (2013, pp. 490 f) distinguish between metrics that focus on all classes or
a single class, and consider Precision and Recall to be metrics that focus on the
positive class only (as they employ relations of the true positives TP to other
quantities). Metrics that focus on a single class are more suitable for problems
with imbalanced classes when geared towards the target class.

Ranking Methods and Metrics
These metrics allow the evaluation of models independent of a threshold and/or
class imbalance ratios and/or error costs (He et al. 2013, pp. 196 f), (Fawcett
2006, pp. 864, 867). They are thus viewed as especially suitable for the case of
imbalanced classes.

The most important metrics in this category are:
• Receiver Operating Characteristic (ROC)

• Precision-Recall-curve (PR-curve)
These are briefly discussed in the following sections.

46

4.4. Evaluation Metrics

4.4.2. Receiver Operating Characteristic (ROC)
For obtaining the ROC, the quantities True Positive Rate (TPR) and False
Positive Rate (FPR) are needed. These are defined as (see for example (He et al.
2013, p. 197)):

TPR = TP
TP + FN = Recall, (4.22)

FPR = FP
FP + TN . (4.23)

These metrics are again dependent on a threshold. For constructing a ROC
curve, both metrics are first computed for a range of different thresholds, and
then for each threshold the pair (TPR, FPR) is plotted as a point of the ROC
curve in a plane (Fawcett 2006, p. 866) (see Figure 4.3 for examples). Therefore,
the performance of a classifier can be demonstrated for different thresholds,
which reflects the behavior for different levels of class-imbalance as well (He et al.
2013, p. 197). The ROC curve is thus a representation of the performance of a
classifier decoupled from thresholds and errors costs (Provost et al. 2001, p. 207).

The ROC curve can then for example be used to choose a threshold for
classification (assigning hard class labels by a decision rule) for a specific trade-
off between TPR and FPR, see e.g. (Kuhn et al. 2013, p. 263).

Area Under the Curve (AUC)
As a means to reduce the ROC curve to a scalar value metric, it is customary to
use the area under the ROC curve, called ROC-AUC. The value for ROC-AUC
is in [0, 1], however, any meaningful classifier should have a value > 0.5 (Fawcett
2006, p. 868). The ROC-AUC for different settings of a classifier, or for different
classifiers, can be used to rank them against each other (He et al. 2013, p. 202).
In fact, the use of ROC-AUC is recommended by many authors for comparing
classifiers in the case of imbalanced data, e.g. in (He et al. 2013), (Kuhn et al.
2020). However, this recommendation is not unanimous. Fernández et al. (2018,
p. 55) mentions that in the case of absolute rarity (small amount of members
of the minority class, see also Sections 3.5 and 4.1), the Precision-Recall-curve
may be more suitable. He et al. (2013, p. 202) mention some criticism warning
against the use of ROC-AUC, for example as it cannot reveal the case of ROC
curves crossing each other: a classifier with a higher ROC-AUC can perform
worse than another classifier with a lower ROC-AUC in specific regions of the
ROC-plane (Fawcett 2006, p. 868). This can be the case when one ROC curve is
below another in some region(s), but above it in other region(s), while covering
a larger area in total. This case of crossing ROC curves is illustrated in Figure
4.3.4

In general, ROC curves are not strongly restricted in their shape. As Duda
et al. (2001, p. 50) note, the ROC curve in the general case (arbitrary, possibly

4For a further discussion of more properties of the ROC curve and a statistical interpretation
see (Fawcett 2006) and (He et al. 2013).

47

Chapter 4. Class Imbalance
198 ASSESSMENT METRICS FOR IMBALANCED LEARNING

0

0.1

0.2

0.2

0.3

0.4

0.4

0.5

0.6

0.6

0.7

0.8

0.8

0.9

1

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

f1

f2

Figure 8.1 The ROC curves for two hypothetical scoring classifiers f1 and f2.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.80 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

f1

f2

Figure 8.2 The ROC curves for two hypothetical scoring classifiers f1 and f2, in which
a single classifier is not strictly dominant throughout the operating range.

0

0.1

0.2

0.2 0.4 0.6 0.8 1

False positive rate

Figure 8.1 The ROC curves for two hypothetical scoring classifiers f1 and f2.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.80 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

f1

f2

Figure 8.2 The ROC curves for two hypothetical scoring classifiers f1 and f2, in which
a single classifier is not strictly dominant throughout the operating range.Figure 4.3.: ROC curves for two (hypothetical) classifiers f1 and f2. Left: ROC-

AUCf1 > ROC-AUCf2 , classifier f1 dominates f2. Right: The ROC curves cross,
neither classifier dominates the other. While ROC-AUCf1 may be larger than
ROC-AUCf2 , f2 shows better performance (higher TPR) than f1 in regions of
low FPR (below about 0.25). Figure from (He et al. 2013, p. 198).

multivariate distributions of the data x) need neither be symmetric nor concave
downwards (as is e.g. the case in the right part of Figure 4.3). It may thus be
beneficial to inspect plots of the ROC curves when comparing models by their
ROC-AUC.

4.4.3. Precision-Recall-Curve (PR-C)

Evaluating Precision and Recall (Equations (4.20) and (4.21)) for different
thresholds, similar as for the ROC curve, yields the Precision-Recall-curve (PR-
C). Like the ROC curve, the PR-curve as well can be summarized by the area
below it, leading to the area under the Precision-Recall-curve PR-AUC.

While it is possible to compare models based on PR-AUC, and optimize for
it during model selection, the literature used suggests this only for the case of
absolute rarity (as stated above). Furthermore, (He et al. 2013, p. 203) state
that PR-AUC is more sensitive to changes in class-imbalance than ROC-AUC.
Thus, optimizing for the former may lead to selecting a model that is more
sensitive to changes in class-imbalance and may be less robust to changes in the
environment the model is used in after training.

Similar to the ROC curve, the PR-curve is not strongly restricted in its
shape. For example, (Aggarwal 2017, p. 27) mentions that the PR-curve is not
necessarily monotonic and my thus be less intuitive to interpret visually.

There exist certain relationships between the ROC curve and the Precision-
Recall-curve.

48

4.4. Evaluation Metrics

4.4.4. Relationships between ROC- and PR-curve
A discussion of the relationships between ROC- and PR-curves (for one specific
classifier and data set) is given in (Davis et al. 2006), some insights are listed
below:

• It is possible to construct the one curve from the other, and identify points
on either curve on the other.

• If a classifier dominates another (see Figure 4.3) in either curve, it dominates
in the other curve as well.

• Optimizing for ROC-AUC does not necessarily optimize for PR-AUC.

The last point suggests that optimizing for ROC-AUC and PR-AUC jointly, if
possible, may be an even better strategy than optimizing for either of the two
alone. This path was not followed in this thesis, however.

Section 8.2 briefly explores the actual relationships found for the evaluated
experiments by means of visualizations.

49

CHAPTER5
Preprocessing

Chapter 3 discussed the data and showed some of their properties. This chapter
is concerned with preprocessing the data as necessary for feeding them to suitable
models (to be discussed later, Chapter 6) and conducting the experiments. As
was stated in the beginning already (Section 1.1), the problem to be solved is
framed as a supervised time-series classification task, and the processing steps
discussed in the following aim at preparing the data for this task.

5.1. Removing Data
Many models cannot deal with missing data, and using them requires to either
remove missing values or fill their spots, e.g. using some form of imputation.
Kuhn et al. (2020, p. 196) discuss several aspects of removing data. They
distinguish between removing instances (rows) and predictors (columns) when
data are missing. Here, however, only removing instances is considered, see
below.

5.1.1. Incomplete Data
As was discussed in Section 3.3, for some FNAs, too little data were available
when compared to the overall extent of data. In these cases, the whole FNA’s
data were excluded from further processing. Furthermore, several test-devices
not used for actual service of customers were present in the data, and these
were completely removed as well. As was already stated in Section 3.3, 2220
FNAs and 21 hubs were present in the data. These numbers already exclude the
test-devices.

In total, 66 FNAs’ data were removed due to too little data being available.

51

Chapter 5. Preprocessing

This includes a complete hub with 4 FNAs, where only roughly 1 month (vs.
more than 5 in total) of data were available.

5.1.2. Missing Onsets
As discussed in Section 3.3.2, some FNAs exhibit a pattern where the onset of an
increase of the target variable is missing. In total, 69 FNAs exhibit this pattern,
however, only 3 of those are not already contained in the 66 with too little date
as mentioned in the previous section. These 3 additional FNAs were removed as
well.

5.1.3. All-Zero Values or Zero Standard Deviation
293 FNAs have all-zero values for the variables CER and CCER, or standard
deviation zero across time, as was discussed in Section 3.4.1. These were also
excluded, in addition to the 69 excluded for reasons stated above.

In total, after removing data of 362 FNAs, 1838 out of 2200 FNAs (83.5 %)
were kept for further processing, and ultimately for training and evaluating
models. Table 5.1.1 summarizes the numbers and reasons for removal of FNAs’
data.

Table 5.1.1.: Summary of removed FNAs’ data. In total, 362 FNAs’ data were
removed.

Removed Reason
66 too little data
3 missing onset

293 all-zero values
362

5.2. Transformations
In general, certain (machine learning) models assume or require certain properties
of the data, and certain transformations may be necessary to bring the data to
meet these requirements. Typical transformations applied to data include some
forms of normalization, i.e. compressing the data range to a certain interval,
or centering the data and dividing by some (estimate of a) measure of scale.
This is covered in the next section under the heading of standardization. Scaling
data of all variables to a certain similar range can for example be beneficial
for models that use gradient descent methods and can decrease time needed to
fit a model, see e.g. (Lakshmanan et al. 2020, pp. 22 f), and can improve the
numerical stability of calculations (Kuhn et al. 2013, p. 30).

52

5.2. Transformations

Other transformations could be removing skewness in the data, or shaping
the data such that their distribution becomes more similar to e.g. a (standard)
normal distribution. Yet another class of transformations aims at inducing
stationarity, a property related to the evolution and change (or lack thereof) of
statistical properties of data over time, see e.g. Mills (2019, pp. 20 ff). While more
“classical” models applied to time-series data (such as those from the ARIMA
family) may more or less strongly rely on assumptions about stationarity and
related properties, the models used in this thesis do not require anything related
to such properties, and hence they are not further discussed.

As was shown in Section 3.4, the temporal means, standard deviations and
skewness differ for the different FNAs, to varying degrees. The following subsec-
tions will briefly discuss the necessity to equalize these differences, especially for
the models to be applied, as well as methods to achieve this.

In general, care must be taken that parameters used for transforming the data
are estimated on training data only, and then applied to all splits of the data,
typically the training data itself, validation and test data. This prevents leakage
of information from the training data to validation and test data.

5.2.1. Suggested Transformations
In general, some (types of) models may require certain preprocessing steps,
others may not. We shall briefly anticipate the (types of) models later used
for approaching the Time-Series Classification (TSC) task (see Chapter 6 in
particular), to review the suggested or necessary transformations:

• InceptionTime, a Deep Neural Network (DNN): Ismail Fawaz et al. (2020,
p. 9) mentions that z-scoring, i.e. subtracting the mean and dividing
by the standard deviation, was applied to all time-series data used in
their experiments. They cite Bagnall et al. (2017) as suggesting this as a
best-practice approach to preprocessing for time-series classification.

• Fully Convolutional Network (FCN)-Long Short-Term Memory (LSTM),
a DNN: Karim et al. (2019) used only z-scoring as transformation of the
data in their experiments (Karim et al. 2019, p. 9).

• RandOm Convolutional KErnel Transform (ROCKET), the feature ex-
traction part of a DNN: Dempster et al. (2020, p. 1462) state that they
assume the input time-series to be standardized to zero mean and standard
deviation of one.

• Decision trees: Hastie et al. (2017, p. 352) state that decision trees are in-
variant under strictly monotone features transformations, including scaling.
Furthermore, they are not affected by irrelevant variables, as they perform
feature selection as part of their algorithm. A form of boosted regression
trees is used together with the ROCKET features.

53

Chapter 5. Preprocessing

Note that the last two models mentioned above operate on the output of the third
model (ROCKET), so the standardization (z-scoring) is meant to be applied to
its output features before feeding them to the classifiers.

5.2.2. Standardization
Summarizing the suggestions for the models used, it is clear that standardization
(z-scoring) is a suitable transformation for the data. Thus, z-scoring was applied
to all variables across the data set, where the parameters mean and standard
deviation were estimated on the respective training part of the data set on a
per-FNA level, aiming at removing differences between data stemming from
different FNAs.

5.2.3. Skewness
According to Kuhn et al. (2020, p. 31), a skewness of 20 can be considered
significant. As can be seen from Figure 3.12 in Section 3.4, several variables
exhibit skewness of this magnitude or beyond. Several transformation exist that
can remove the skewness in variables, others even aim at shaping a variable’s
distribution towards another distribution such as the standard normal. The Box-
Cox and Yeo-Johnson transformations (see e.g Kuhn et al. (2020)) are examples
of the former, while the quantile-transformation is an example of the latter.
However, as none of the used models specifically names any such transformation
as a requirement, none was applied to the data.

5.3. Windowing
When working with long signals (time series), it is common to split them into
smaller segments (blocks, windows) and process them one at a time. Figure
5.1 shows this schematically. This is e.g. very common in signal processing
applications. Various terminology is used throughout different communities,
such as signal processing, machine learning, time series analysis and statistics,
for naming quantities involved in windowing. We will adopt the terms “window
length” for the extent of the segments and “stride” for the number of values
skipped between two consecutive windows.

The task is to predict the target variable for a certain horizon into the future,
given the past of a multivariate time series, as was shown in Figure 3.5 above.
This is approached in such a way that the long time series is split into segments,
as just described, where each segment is then again split into past values (the
state) and the values to be predicted (possibly for the simplified, quantized
signal), see the following Figure 5.2. A further simplification is achieved when
not the quantized target signal (a simplification from the actual signal) is to

54

5.3. Windowing

t

window length

stride

missing values

Figure 5.1.: Splitting a long signal into short segments (windows) for processing
them one at a time. Parameters involved are the length of the window and the
stride, i.e. the amount of values that are skipped between two consecutive win-
dows (here stride = 3). For a stride smaller than the window length, consecutive
windows overlap (here 1/4 of the window length). It may not be possible to
cover the whole signal with completely filled segments: the rightmost window
(gray) is not complete and omitted here; then, values of the signal (three in this
example) are left out. Any window containing missing values is ignored.

state length l prediction length p

window length w

τt
ct

x
(1)
t

x
(P−1)
t

...
...

Figure 5.2.: Windows are split into state (considered past values) and prediction
parts (values to be predicted). τt is the target variable, ct the quantized version
(compare to Figure 3.5). In the example shown, for one time-stamp the target
signal is above the threshold.

55

Chapter 5. Preprocessing

be predicted, but only whether it crosses the threshold γ at least once in the
prediction length p part. This is further discussed and explained in Section 5.4.

The fundamental parameters for the windowing process are thus:

• state length l

• prediction length p

• window length w (sum of the two above)

• stride s

When no periodic structures are present in the data, which we assume to be the
case here, using non-overlapping windows may miss important structure in the
data (Esling et al. 2012, p. 7), and thus the stride s is always chosen such that
two consecutive windows overlap. More concretely, a stride s smaller than half
the state length l is used.

The splitting into windows as shown in Figure 5.1 is applied to each FNA’s
data separately. As described in Section 3.3, data may be missing. The splitting
into windows is done such that only completely filled windows are used, and
portions of the data with missing values are left out. Again, refer to Figure 5.1
for an illustration.

Depending on the choice of the parameters state length, stride, and prediction
length, different cases need to be distinguished, as shown in Figure 5.3.

. . .

. . .

. . .

. . .

. . .

. . .

stride = prediction length stride < prediction length stride > prediction length

stride

prediction
length

state
length

Figure 5.3.: Different relations between stride and prediction length lead to
different overlap of prediction parts and covering of the data. See text for details.
The leftmost case is used for splitting an FNAs signals so as to cover the whole
range of data (except for missing portions and window(s) at the very end).

With appropriate choices of stride and prediction length, the whole extent
of a FNA’s data can be covered with predictions. This is true for the cases in
the left and in the middle of Figure 5.3, where the latter case has overlapping
prediction windows.

56

5.4. Assigning Class Labels

5.4. Assigning Class Labels
As was already mentioned in Section 3.2, among the recorded variables, one is
considered to be a reliable indicator for bad network performance, leading to
customer dissatisfaction. Whenever this target variable τt reaches or crosses a
certain threshold γq, bad network performance is to be expected. Figure 5.4
shows a short snippet of the temporal evolution of this variable, for one FNA.
Overlaid is the quantized target variable that has value 1 whenever the target
variable reaches or crosses the threshold, and is 0 otherwise.

2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

target variable

threshold

0.0

0.2

0.4

0.6

0.8

1.0

Target variable

quantized target

Figure 5.4.: Temporal evolution of the target variable for an FNA, and quantized
target variable using a certain threshold. (This Figure is identical to the lower
part of Figure 3.6 and is repeated here for convenience.)

The temporal evolution of the target variable in each window’s prediction part
is used to assign a class label to the corresponding state part. This is illustrated
in Figure 5.5. Whenever the quantized target variable ct has a value of 1 at

τt
ct

τstate τpred

τwindow

τt
ct

τstate τpred

τwindow

assign label: 1 assign label: 0

Figure 5.5.: Windows and label assignment. Assigning class labels for the state
part of the window based on the quantized target signal ct. Left: class Event,
label is 1. Right, class Non-Event, label 0.

least once in a prediction part, the class label 1 (“event”) is assigned to the
state block, otherwise class label 0 (“non-event”) is assigned. More formally,

57

Chapter 5. Preprocessing

if τpred ∈ Rp is the prediction part of a window of variable x
(j)
t = τt, then the

function f : Rp → {0, 1} is:

f(τpred) =
1, if max(τpred) ≥ γq,

0, otherwise.
(5.1)

One consequence of this function, more specifically using max(·), means that
one occurrence of the target reaching or crossing the threshold is enough for
assigning class label 1, and that multiple occurrences make no difference for the
label assignment. This should be compared to Figures 5.6 and 5.7. The reason
for this particular choice is briefly discussed in the next section.

5.5. Class Labels and Network State
When comparing the windows of data to the target signal τt, or rather the
quantized version ct, several different cases are possible. These are schematically
illustrated in Figure 5.6. Events of ct crossing the threshold can occur in
neither the state nor the prediction horizon, in either of both, or in both. The
occurrence of one super-threshold event is sufficient to be considered a “hit”
(and consequently assigned class label 1), but several such events may occur in
either portion of a window. The task here is to predict the occurrence of such

Figure 5.6.: Windows and (quantized) target signal ct. The occurrence of (at
least) one supra-threshold event is marked with a red X. Four cases are possible
with respect to the possible occurrence of an event in either the state, the horizon,
or both.

an event in the future, i.e., in the prediction part of a window. We are thus not
interested in cases C and D: Case C has an event occurring in the state part; we
should have predicted this already when the event was in the prediction part of
a previous block. Case D has an event occurring in the prediction part, but also
in the state part, and what applies to case C applies here as well. For further

58

5.6. Reshaping Data

processing and usage of data for training of models, only windows of cases A
and B are kept, the others discarded.

This choice is meant to put emphasis on detecting the onsets of periods of
bad network performance, and ignoring the ability to predict the prolonging of a
state of bad network performance by the models to be applied. Furthermore,
after some periods of bad performance, mitigating actions may be taken and the
network will return to a state of good performance. Since the data used in this
thesis contain no information about possible interventions to return the network
to a good state, e.g. by maintenance, it did not seem meaningful to keep any
windows of case C as shown above; it would not be clear what caused the return
to good state.

An example of splitting a time series into windows and the cases discussed
above occurring due to quantized the target signal ct is shown in Figure 5.7.

Figure 5.7.: Windows and (quantized) target signal ct. The occurrence of a supra-
threshold event is marked with a red line. This example shows the splitting
of data into overlapping windows and occurrences of the four cases shown in
Figure 5.6.

5.6. Reshaping Data
The windowing process produces overlapping windows for all settings of win-
dowing parameters used here. While it would be possible to generate windows
on the fly, it was decided to prepare the data in advance in appropriate shapes
such that the can be loaded and fed directly to the models, without any further
processing. This creates redundant data, since overlapping parts of windows
are stored at least twice, if not multiple times (depending on the settings). The
trade-off here is between time needed for processing the data on the fly and
disk space, and eventually longer loading times. Since several different models
use the same data, it was decided to include this in preprocessing and store the
reshaped data to disk.

59

Chapter 5. Preprocessing

5.6.1. 3D-Arrays
For certain models, it is necessary to arrange the windowed data in a certain
shape. The multivariate data, depicted as a matrix in Equation (3.3), are
windowed as described above and illustrated in Figure 5.2. Each window is itself
a matrix.

The windows are arranged into a 3-dimensional array of shape N × p × l,
where n is the number of completely filled windows obtained as discussed in
Section 5.3, p is the number of variables, the dimensionality of the data, and l is
the length of the state part of a window, i.e. the number of data points in that
part. The resulting data structure is schematically depicted in Figure 5.8.

τt x
(1)
t x

(p−1)
t

. . .

. . .

. . .

. . .

. . .

l

N

p

�����������

y0
y1

...

yN−1

�����������

. . .

data array

class labels

data

windows

1 instance

t

Figure 5.8.: 3D-array structure used for the data after windowing. The associated
class labels are collected in a column vector of dimension N × 1. The windowing
of the data is shown in Figure 5.3.

The data were stored in this form after all processing was applied. While
this requires additional storage capacity due to the redundancy caused by the
overlapping windows, it is convenient for the training process, as was mentioned
above.

5.7. Data Splitting
Several different ways of splitting data are common for conducting machine
learning experiments. Typical approaches are for example splitting the available

60

5.7. Data Splitting

data into training, validation and test sets, or using some form of Cross-Validation
(CV), possibly with a dedicated test set. k-fold CV is a commonly used method
in machine learning, where k usually is chosen as 5 or 10. Splitting data multiple
times (as CV does), as opposed to a single splitting, can lead to better performing
models (Kuhn et al. 2013, pp. 62, 67) and is thus to favor over a single splitting
into training, validation and test sets. A downside of multiple splits is the
increased computational effort, as multiple models are fitted and evaluated.

Goodfellow et al. (2016) suggests that CV is useful mostly for smaller data sets
(with less than hundreds of thousands of examples), as a performance estimate
from a smaller test set implies more statistical uncertainty (Goodfellow et al.
2016, p. 122). Due to the strong imbalance, and a relatively small absolute
number of instances of the target class (absolute rarity), the data set used can
be considered small, despite the overall larger number of instances. Numbers for
instance count and class imbalance are given in Section 5.8 below.

For model selection (see Section 6.6) and tuning of hyper-parameters (see
Section 7.4), a 5-fold Cross-Validation (CV) scheme was adopted for the experi-
ments conducted, with an additional dedicated test set split from the data before
creating the CV splits. This was mostly a pragmatic choice, balancing between
having multiple splits and acceptable computational effort. The splitting of the
data is schematically illustrated in Figure 5.9. This figure should be compared
to Figures 3.14 and 3.15, showing the number of cases of occurrence of class 1
events over time.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Val.

Val.

Val.

Val.

Val.

Training Test

Data

Figure 5.9.: Schema of the data splitting used. The overall range of available
data (gray block, top) was split into a block of length 80 % (purple). This part
was used for model selection with 5-fold CV, as well as training each final model,
respectively. The light blue blocks form the training set, the orange blocks the
validation parts of each fold, respectively. The remaining 20 % (brown block)
were used as test set for each of the finally selected models.

Depending on the structure of the data, it may be necessary to take precautions

61

Chapter 5. Preprocessing

when splitting them into the different subsets. For the case of imbalanced data, He
et al. (2013, p. 188) state that care must be taken when using CV to ensure that
different folds don’t have extremely different Imbalance Ratio (IR). If different
folds exhibit strongly different IR, performing the splitting with stratification by
the target variable can achieve folds that are (more) balanced with respect to
the number of instances of the target in each fold (Kuhn et al. 2013, p. 70).

It was not deemed necessary to use any stratification by the target variable
for creating the folds. The folds created for the experiments are examined with
respect to this in Section 5.8 below, in particular see Figures 5.11 and 5.10.

5.8. Class Imbalance Ratio after Preprocessing

In Section 3.5, the class Imbalance Ratio (IR) was found to be about 70:1 (class
0 to class 1). The windowing and class label assignment, especially the part
incorporating the network state, see Section 5.5, increases (thus worsens) the
IR significantly. The settings used for creating the windows have an influence
on the number of class 1 events retained in the data: the longer the prediction
length, the more occurrences of class 1 events will be lumped into a single class
label if they are in sufficient temporal proximity.

5.8.1. Class Imbalance Ratios

Figure 5.10 shows the imbalance ratios for each of the 5 folds generated for the
different window size and stride settings. The IR has worsened considerably,
from an average 70:1 for the whole data set, to between 500:1 and 1000:1 for
the training folds, depending on the windowing settings. Although there doesn’t
seem to be a consensus on grades or classes of imbalance in the literature, He
et al. (2013, p. 15) consider ratios of 1000:1 as extremely imbalanced, as does
Krawczyk (2016, p. 224).

There is some spread of the IR for the different folds. When revisiting Figure
3.14 and especially Figure 3.15, the reason is evident: the time-based CV-splitting
shown in Figure 5.9 causes the folds to contain quite different amounts of class 1
events. Since the validation parts of the folds have much fewer instances than
the training parts (see next section), the spread of count of class 1 instances is
larger for the former than for the latter. Furthermore, the median ratio is larger,
with the smallest ratio of any validation fold about as large as the smallest ratio
of any training fold.

The variability of the IR between the folds is expected to give a good idea of
model performance for the obviously variable amount of class 1 events over time,
more than a single training, validation and test data split could.

62

5.8. Class Imbalance Ratio after Preprocessing

1 2 3 4 5 test

Folds (CV)

0

200

400

600

800

1000

1200

1400

ra
ti

o
 #

 c
la

s
s
 0

 t
o
 c

la
s
s
 1

Ratio of # instances class 0 to class 1. (36, 4, 4)

train

val

test

train val

Data set part

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 test

Folds (CV)

0

100

200

300

400

500

600

700

ra
ti

o
 #

 c
la

s
s
 0

 t
o
 c

la
s
s
 1

Ratio of # instances class 0 to class 1. (36, 8, 8)

train

val

test

train val

Data set part

0

100

200

300

400

500

600

700

1 2 3 4 5 test

Folds (CV)

0

100

200

300

400

500

600

700

800

ra
ti

o
 #

 c
la

s
s
 0

 t
o
 c

la
s
s
 1

Ratio of # instances class 0 to class 1. (48, 8, 8)

train

val

test

train val

Data set part

0

100

200

300

400

500

600

700

800

1 2 3 4 5 test

Folds (CV)

0

100

200

300

400

500

600

700

800

ra
ti

o
 #

 c
la

s
s
 0

 t
o
 c

la
s
s
 1

Ratio of # instances class 0 to class 1. (72, 8, 8)

train

val

test

train val

Data set part

0

100

200

300

400

500

600

700

800

Figure 5.10.: Class imbalance ratios for the different settings, per fold, for training
and validation parts as well as the test set split.

63

Chapter 5. Preprocessing

5.8.2. Number of Instances
Figure 5.11 shows the number of instances (windows) for each of the 5 folds
generated for the different window size and stride settings. As is evident from
the plots, the number of instances is mostly influenced by the stride parameter
of the windowing process. With smaller stride, more windows are generated for
the same time-span (compare the top two plots in Fig. 5.11).

The number of instances does not differ strongly between the folds in each
case.

5.8.3. Number of Instances in Target Class
Figure 5.12 shows the number of instances (windows) of the target class (label 1)
for each of the 5 folds generated for the different window size and stride settings.
The number of instances of the target class does not differ strongly between the
folds in each case, and is in a similar range for the different window settings,
with roughly at least 1000 instances in each case.

5.9. Processing Pipeline
The processing of the data from the aggregated data discussed in Section 3.1 to
the final data set used for the experiments is summarized in the following:

1. Specify session window parameters: state length l, prediction length p and
stride s

2. Determine fold boundaries for the folds for 5-fold CV, for each FNA

3. For each fold, determine the windows to be assigned to the training and
validation portions, respectively, and extract the windows

4. For the training and validation portions of each fold, estimate the values for
mean µi and standard-deviation σi for each variable x

(i)
t from the training

part.

5. Standardize the training and validation windows

6. Reshape data as necessary and save data to disk

Additionally, the test set part was processed accordingly.

64

5.9. Processing Pipeline

1 2 3 4 5 test

Folds (CV)

0.00

0.25

0.50

0.75

1.00

#
 i
n
s
ta

n
c
e
s

×106 Number of instances. (36, 4, 4)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

1

2

3

4

5

#
 i
n
s
ta

n
c
e
s

×105 Number of instances. (36, 8, 8)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

1

2

3

4

5

#
 i
n
s
ta

n
c
e
s

×105 Number of instances. (48, 8, 8)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

1

2

3

4

5

#
 i
n
s
ta

n
c
e
s

×105 Number of instances. (72, 8, 8)

train

val

test

Figure 5.11.: Number of instances (windows) for the different settings, per fold,
for training and validation parts as well as the test set split.

65

Chapter 5. Preprocessing

1 2 3 4 5 test

Folds (CV)

0

250

500

750

1000

1250

#
 i
n
s
ta

n
c
e
s

Number of instances in target class. (36, 4, 4)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

250

500

750

1000

1250

#
 i
n
s
ta

n
c
e
s

Number of instances in target class. (36, 8, 8)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

250

500

750

1000

1250

#
 i
n
s
ta

n
c
e
s

Number of instances in target class. (48, 8, 8)

train

val

test

1 2 3 4 5 test

Folds (CV)

0

250

500

750

1000

1250

#
 i
n
s
ta

n
c
e
s

Number of instances in target class. (72, 8, 8)

train

val

test

Figure 5.12.: Number of instances (windows) of the target class for the different
settings, per fold, for training and validation parts as well as the test set split.

66

CHAPTER6
Models

This chapter discusses models suitable for the Time-Series Classification (TSC)
task applied to the data described in previous chapters, as well as procedures for
training the models, selecting suitable model parameters and hyper-parameters.

Some general requirements for the models used for the given task are given
below. The models need to be:

• suitable for time series classification (TSC)

• suitable for multivariate time-series data

• able to handle large amounts of data, thus have acceptable complexity and
training time on affordable hardware1

• able to work with (heavily) imbalanced classes

• known for good expected classification performance

6.1. Time-Series Classification (TSC)
TSC is the mapping of a given time-series instance to either one class label from
a finite set of labels, or to a probability distribution over the classes.

In the literature, often a distinction is made between models tackling clas-
sification of univariate time-series or multivariate time-series. The latter case
is often explicitly named Multivariate Time-Series Classification (MTSC). In
the univariate case, an important aspect is the similarity of the data with itself
along the time-axis, as e.g. expressed in the auto-correlation function. In the

1“Affordable hardware” is a bit of a clumsy term. See a discussion of the hardware used for
the experiments in Section 7.1.

67

Chapter 6. Models

multivariate case, additional complexity can arise from the (possible) relation-
ships of the component individual univariate time-series among each other (Ruiz
et al. 2021, p. 403), as e.g. captured by cross-correlation functions.

Not all models are suitable for multivariate time-series data. However, many
models designed for univariate data can be adapted to multivariate data. A
simple approach to Multivariate Time-Series Classification (MTSC) is to use an
algorithm suited to (univariate) TSC and apply it to each variable separately,
afterwards combining outputs to an ensemble classifier (Ruiz et al. 2021, p. 401).
This approach, however, assumes independence between the component uni-
variate time-series (Ruiz et al. 2021, p. 403) and may thus discard information
relevant to the classification task.

Since the data used in this thesis are multivariate, models capable of handling
these (preferably per design) are necessary. Many “classical” machine learning
methods for Time-Series Classification (TSC) exist. However, most of the classical
models showing state of the art performance have very high training complexity.
One example is the HIVE-COTE algorithm that has training complexity O(n2 l4),
where n is the number of training instances and l the length of the time-series
of the instances (Ismail Fawaz et al. 2020, p. 1939). This complexity can be
prohibitively large for big data sets, long time-series, and especially when tuning
of hyper-parameters is necessary.

6.2. Deep Neural Networks (DNNs)
In recent years, Deep Neural Networks (DNNs) have shown to be able to beat
the previous state of the art in many fields of machine learning. This is also
the case for time-series classification tasks, see e.g. (Ismail Fawaz et al. 2020),
(Karim et al. 2018). A part of the success of such networks was the availability
(or rather, development) of software to utilize commodity Graphics Processing
Units (GPUs) for the computations involved.

The most important type of DNN are Convolutional Neural Network (CNN),
discussed in the following section.

6.2.1. Convolutional Neural Networks (CNNs)
The typical structure of a CNN used for image classification2 is shown in Fig-
ure 6.1. The lower part of the network is responsible for feature learning (during
training) and extraction (after training, for inference). The top part, built from
a Multi-Layer Perceptron (MLP), functions as a (linear) classifier.

At the heart of Convolutional Neural Networks (CNNs) is the convolution
of input data with a (possibly large) number of kernels (often also referred

2We mention CNN as applied to image classification here as they were at the forefront of
the modern deep learning revolution, and many models used in other domains, including
Time-Series Classification (TSC), were at least in part derived from these.

68

6.2. Deep Neural Networks (DNNs)

Figure 6.1.: Basic structure of a Convolutional Neural Network (CNN) for image
classification. Figure from (Mathworks 2022)

to as filters). Kernels are sequences (vectors) in the case of one-dimensional
data, matrices in the two-dimensional case, or n-dimensional arrays (often called
tensors) in more general settings.

For example, the discrete time 1-dimensional convolution operation of a time-
series xt (input data) and a (causal) kernel sequence kt of finite length lk is:

(x ∗ k)(t) =
lk−1�
j=0

xt−j kj =
lk−1�
j=0

xt kt−j = (k ∗ x)(t). (6.1)

Usually, further operations are applied to the result of the convolution, such as
adding a bias value, and then passing this result through a so-called activation
function, e.g. a Rectified Linear Unit (ReLU) in the example in Figure 6.1.
The outcome final is often referred to as a feature map (Goodfellow et al. 2016,
p. 332).

Typically, a so-called convolution (or convolutional) layer, that is viewed as
a building block of a CNN, applies several (e.g. as many as 256) kernels of
the same dimension to a given input, resulting in many feature maps (one per
kernel). In Figure 6.1, this is shown by depicting the convolution layers (marked
“Convolution + ReLU”) as boxes. The dimension perpendicular to the input
image plane (the input image is the car symbol on the far left) represents the
number of feature maps resulting from the convolutions with several kernels.
Note that the boxes deeper in the network (when going from input, left, to
output, right) get smaller in their front surface area, but gain depth, i.e., have
more feature maps. This is not uncommon for CNN architectures.

It shall be noted that the terminology and jargon used for describing the
architecture of Convolutional Neural Network (CNN) doesn’t seem to be very
consistent throughout the literature. As Goodfellow et al. (2016, pp. 339 ff)
point out, for example, what is considered a convolutional layer of a CNN can
vary, where some may view convolution, an activation function and pooling
operation as three separate layers, while others refer to these as stages of a single
convolutional layer. Yet, in Figure 6.1, convolution and activation function are
considered a convolution layer and pooling a separate layer (or stage).

69

Chapter 6. Models

In general, the concrete implementation and the parametrization of the convo-
lution operations may be more involved than is shown in Equation (6.1), as the
range over which the products are summed may differ (padding of the edges), as
may the stride, i.e. amount of values the kernel “hops” when moving between
values of the input data. A very good overview of convolution arithmetic as used
in Convolutional Neural Networks (CNNs) is given in (Dumoulin et al. 2018)
with many excellent graphical representations. See also the corresponding code
repository (Dumoulin et al. 2019).

The convolution operation is commutative in the sense shown in Equation 6.1.
As stated by Goodfellow et al. (2016, pp. 332 f), this commutativity is usually not
important for the implementation of CNNs, and thus, often the cross-correlation
is used, and can be found in the literature instead of convolution.

Finally, convolution operations can be implemented using products between
tensors (as a generalization of vectors and matrices). The one-dimensional
convolution shown in Equation (6.1) for example can be implemented as a
product between a vector and a matrix of special structure, a Toeplitz matrix,
see e.g. (Goodfellow et al. 2016, p. 333).

The key idea of CNNs is to learn the kernels (i.e., the entries of vectors or
matrices) during supervised training, together with the weights and biases in
the layers of the MLP classifier. The convolution of the kernels (whose values
are fixed after training) with the input data is, together with possible further
operations, and passing results through activation functions, considered as a
form of feature extraction.

This built-in feature extraction, or rather the feature learning during super-
vised training, is viewed as a major advantage of Deep Neural Networks (DNNs):
hand-crafted features and feature selection strategies are not longer necessary,
as the features relevant to the task can be learned from the input data directly.
Furthermore, the complete process of estimating kernel parameters for feature
extraction from raw input data, as well as training a classifier on top of the
features, can be optimized together during training. This is usually achieved by
using the back-propagation algorithm with a form of gradient descent optimiza-
tion in a supervised manner (see e.g. (Goodfellow et al. 2016)). Typically, this
requires large amounts of labeled training data.

We shall briefly review some more important terms related to a Convolutional
Neural Network (CNN) that occur in Figure 6.1:

• Rectified Linear Unit (ReLU), a type of activation function. Activation
functions are often applied to the output of a layer, here to the output of
a convolution operation. Many activation functions used in deep learning
models are nonlinear functions, and the non-linearity is in fact crucial to
the performance (see for example (Goodfellow et al. 2016, p. 226)).

• Pooling: a pooling operation computes a summary statistic of its input.
As the figure shows, the pooling operation summarizes a certain volume,

70

6.3. CNNs for Time-Series Classification

or neighborhood, (a part of the 3D-array) into a single value. This sum-
marization is meant to make learned representations of the input data
invariant to translations (shifts) in one or several dimensions. For images,
this relates to positions of (parts of) objects in an image, in the time-series
case this relates to shifts of a pattern along the time-axis. Typical statistics
employed are taking the max (max pooling) or the mean (average pooling)
(Goodfellow et al. 2016, pp. 339 ff). Note that while pooling is crucial for
CNNs used in the image domain, mainly for computational reasons, they
can be hindering in the domain of time-series (Ismail Fawaz et al. 2020,
p. 1940).

• Flatten: this is an operation that reshapes a multidimensional array into a
one-dimensional array (a vector), such that it can be fed into a Multi-Layer
Perceptron (MLP).

• Fully Connected: this refers to the layers of an MLP network (serving as a
classifier here), where all units are interconnected.

• Softmax: this is a generalization of the logit function. Softmax can be
thought of as a special version of the arg max function, where the word
“soft” refers to the fact that the softmax is continuous and differentiable
(Goodfellow et al. 2016, p. 187).

6.3. CNNs for Time-Series Classification
The basic structure and ideas shown in Figure 6.1 are also valid for, and applicable
to, 1-dimensional input data such as time-series, and extensions to multivariate
time-series are possible. Figure 6.2 shows in a schematic way the general structure
of a Deep Neural Network (DNN) that uses the (possibly) multivariate time-series
directly as input.

An advantage that models for time-series have over those for image processing
is that convolutions need to be carried out only over one dimension instead
of two, which can either save computational power or allow for more complex
models given a certain amount of computational power budget. The decreased
complexity due to the lower-dimensional convolution allows for removing pooling
operations, which benefits performance in TSC tasks (Ismail Fawaz et al. 2020,
p. 1940).

Several DNN architectures, i.e. the way how layers are organized and stacked to
create the network, have been proposed specifically for Time-Series Classification
(TSC) and Multivariate Time-Series Classification (MTSC) tasks. Recent models
that yield good performance can be found in the literature, see e.g. (Ruiz
et al. 2021), (Ismail Fawaz et al. 2019) for reviews that include quite recent
deep learning models and compare their performances on various data sets.

71

Chapter 6. Models
Deep learning for time series classification: a review 921

input
multivariate
time series

non-linear
transformations

of the input
time series

M
s

n
oi

s
n

e
mi

d

X1

X2

X3

probability
distribution

over K classes

XM

time series
length

univariate
input time

series

Fig. 1 A unified deep learning framework for time series classification

2 Background

In this section, we start by introducing the necessary definitions for ease of under-
standing. We then follow by an extensive theoretical background on training DNNs
for the TSC task. Finally we present our proposed taxonomy of the different DNNs
with examples of their application in various real world data mining problems.

2.1 Time series classification

Before introducing the different types of neural networks architectures, we go through
some formal definitions for TSC.

Definition 1 A univariate time series X = [x1, x2, . . . , xT] is an ordered set of real
values. The length of X is equal to the number of real values T .

Definition 2 An M-dimensional MTS, X = [X1, X2, . . . , X M] consists of M differ-
ent univariate time series with X i ∈ RT .

Definition 3 A dataset D = {(X1, Y1), (X2, Y2), . . . , (X N , YN)} is a collection of
pairs (X i , Yi) where X i could either be a univariate or multivariate time series with
Yi as its corresponding one-hot label vector. For a dataset containing K classes, the
one-hot label vector Yi is a vector of length K where each element j ∈ [1, K] is equal
to 1 if the class of X i is j and 0 otherwise.

The task of TSC consists of training a classifier on a dataset D in order to map from
the space of possible inputs to a probability distribution over the class variable values
(labels).

2.2 Deep learning for time series classification

In this review, we focus on the TSC task (Bagnall et al. 2017) using DNNs which are
considered complex machine learning models (LeCun et al. 2015). A general deep
learning framework for TSC is depicted in Fig. 1. These networks are designed to
learn hierarchical representations of the data. A deep neural network is a composi-
tion of L parametric functions referred to as layers where each layer is considered a
representation of the input domain (Papernot and McDaniel 2018). One layer li , such

1 3

Figure 6.2.: General schematic structure of a Deep Neural Network (DNN)
for Time-Series Classification (TSC). On the left, the input data instance is
a multivariate time-series (in the general case) (compare to the shape of the
data in Figure 5.8). The data are subject to non-linear transformations, and the
output is a probability (score) distribution over the possible classes. Figure from
(Ismail Fawaz et al. 2019, p. 921).

Bagnall et al. (2017) covers recent “classical” models for TSC and compares
their performances.

The list of possibly useful architectures for TSC and MTSC is quite long
when including classical models, but not many deep learning architectures for
(multivariate) Time-Series Classification (TSC) exist yet. The following models
were on the one hand chosen based on their performance, as documented in
(Ruiz et al. 2021), and the respective publications introducing the models (see
list below), and the availability of implementations of these networks on the
other hand:3

• InceptionTime (Ismail Fawaz et al. 2020), an adaptation of the concepts
of Inception networks and Residual networks to time-series data.

• Fully Convolutional Network (FCN) with (Multivariate) Long Short-Term
Memory (LSTM) (Karim et al. 2018) and (Karim et al. 2019).

• RandOm Convolutional KErnel Transform (ROCKET) (Dempster et al.
2020), an architecture used for feature extraction using 1-dimensional
kernels, to be used with a separate classifier.

Each of these models will be briefly discussed in the following, to give an idea of
how the data are processed. However, no deeper discussion of the architectures
is given, as the models were basically used “as-is” from the respective library
(implementation), and only a few hyper-parameters were optimized during
training (see Section 7.4).

3The models were already briefly mentioned in Section 5.2.1 in the context of necessary
preprocessing.

72

6.3. CNNs for Time-Series Classification

6.3.1. InceptionTime
The InceptionTime architecture was introduced in Ismail Fawaz et al. (2020). It
follows the ideas of the so-called Inception architectures, and builds on the ideas
of Residual Network (ResNet) architectures. Inception architectures are built
from (typically several) so-called Inception modules that apply convolutions with
kernels of different sizes. A discussion of Inception architectures (for the image
recognition domain) and their combination with residual connections can be
found in (Szegedy et al. 2016).

The basic architecture of the InceptionTime model is shown in Figure 6.3. TheInceptionTime: Finding AlexNet for time series classification 1941

Fig. 1 Our Inception network for time series classification

light flux of a region in space as an input MTS for the network (Brunel et al. 2019).
However, the authors limited the conception of their Inception architecture to the one
proposed by Google for ImageNet (Szegedy et al. 2017). In our work, we explore
much larger filters than any previously proposed network for TSC in order to reach
state-of-the-art performance on the UCR benchmark.

3 InceptionTime: an accurate and scalable time series classifier

In this section, we start by describing the proposed architecture we call InceptionTime
for classifying time series data. Specifically, we detail the main component of our
network: the Inception module. We then present our proposed model InceptionTime
which consists of an ensemble of 5 different Inception networks initialized randomly.
Finally, we adapt the concept of Receptive Field for time series data.

3.1 Inception Network: a novel architecture for TSC

The composition of an Inception network classifier contains two different residual
blocks, as opposed to ResNet, which is comprised of three. For the Inception net-
work, each block is comprised of three Inception modules rather than traditional fully
convolutional layers. Each residual block’s input is transferred via a shortcut linear
connection to be added to the next block’s input, thus mitigating the vanishing gradient
problem by allowing a direct flow of the gradient (He et al. 2016). Following these
residual blocks, we employed a Global Average Pooling (GAP) layer that averages
the output multivariate time series over the whole time dimension. At last, we used a
final traditional fully-connected softmax layer with a number of neurons equal to the
number of classes in the dataset. Figure 1 depicts an Inception network’s architecture
showing 6 different Inception modules stacked one after the other.

As for the Inception module, Fig. 2 illustrates the inside details of this operation. Let
us consider the input to be an MTS with M dimensions. The first major component of
the Inception module is called the “bottleneck” layer. This layer performs an operation

1 3

Figure 6.3.: Basic structure of the InceptionTime architecture. See text for
description. Figure from (Ismail Fawaz et al. 2020)

model contains several Inception modules specialized for time-series data. The
model shown contains six such modules (labeled with “inception”), where three
modules form an Inception block. Between each block of Inception modules, a
residual connection is placed. These residual connections were introduced to
combat the vanishing gradient problem that occurs in very deep networks with
many layers (Ismail Fawaz et al. 2020, pp. 1941 ff). Following the Inception
blocks, Global Average Pooling (GAP) is applied which averages the multivariate
time-series (the output of the last Inception module) along the time-axis, but
keeps the other dimension. The last element in the architecture again is a single
fully connected layer, with as many output neurons as there are classes necessary
for the problem. Together with a softmax function, this allows to model the
distribution over classes (see discussion in Section 4.2.1 about discriminative
models) (Ismail Fawaz et al. 2020, p. 1941).

Inception Module

The Inception Module is the core part of the model, as was shown in Figure 6.3.
The details of an Inception module are depcited in Figure 6.4. A brief explanation

73

Chapter 6. Models

of the module and its components as described in Ismail Fawaz et al. (2020,
pp. 1941 ff) is given in the following:4

• Input data: the input is a multivariate time-series of some length l and
with M components. Note that this is the very first inception module
in the network, as shown in the figure; for the other modules, the input
Multivariate Time Series (MTS) is of a different dimension, given by the
output of the previous module or block.

• Bottleneck: m filters of length 1 are applied to the input MTS, with stride
1, thus covering the whole MTS along the time-axis. Each filter yields
one of m component time-series. For m ≪ M , this amounts to a (strong)
dimensionality reduction. See also Figure 6.5 for an additional depiction
of the bottleneck layer.

• To each of the m components, 3 kernels of different lengths (per default: 10,
20, and 40 values) are applied, each forming a new time-series component.
Including kernels of different sizes into the module is meant to allow the
network to extract features at different time scales, thereby enabling the
handling of input time-series of different lengths (Ismail Fawaz et al. 2020,
p. 1937).

• In parallel to the bottleneck and following convolutions just described, a
sliding window of length 3 with a MaxPooling operation (taking the maxi-
mum value of the values within the window) is applied to the input MTS.
This is followed by another (different) bottleneck layer, and a convolution
with a kernel of length 1, again yielding a component time-series.

• As can be seen in the figure, for each component m, the 3 output time-
series (obtained by applying 3 different kernels) are stacked together with
the result of the MaxPooling and convolution operation, thus yielding 4
component time-series for each of the m components.

For their experiments, Ismail Fawaz et al. (2020) used an ensemble of five
InceptionTime models. This is partially due to the small data set sizes (in
relation to what is commonly used for deep learning methods) they used to
show the performance of their model (Ismail Fawaz et al. 2020, p. 1943). Their
ensemble was created from applying the same architecture to the same data with
different initializations. In this thesis, however, no ensemble but only a single
instance of the InceptionTime architecture is used, justified by the larger data
set size.

To very briefly summarize the network architecture (mostly the part relevant
for feature learning and extraction):

4The reader is encouraged to compare Figures 1 and 2 in (Crocker et al. 2021) for additional
visualizations of a concrete example of an InceptionTime network.

74

6.3. CNNs for Time-Series Classification

1942 H. I. Fawaz et al.

Fig. 2 Inside our Inception module for time series classification. For simplicity we illustrate a bottleneck
layer of size m = 1

of sliding m filters of length 1 with a stride equal to 1. This will transform the time series
from an MTS with M dimensions to an MTS with m � M dimensions, thus reducing
significantly the dimensionality of the time series as well as the model’s complexity
and mitigating overfitting problems for small datasets. Note that for visualization pur-
poses, Fig. 2 illustrates a bottleneck layer with m = 1. Finally, we should mention
that this bottleneck technique allows the Inception network to have much longer fil-
ters than ResNet (almost ten times) with roughly the same number of parameters to be
learned, since without the bottleneck layer, the filters will have M dimensions com-
pared to m � M when using the bottleneck layer. The second major component of the
Inception module is sliding multiple filters of different lengths simultaneously on the
same input time series. For example in Fig. 2, three different convolutions with length
l ∈ {10, 20, 40} are applied to the input MTS, which is technically the output of the
bottleneck layer. Additionally, in order to make our model invariant to small perturba-
tions, we introduce another parallel MaxPooling operation, followed by a bottleneck
layer to reduce the dimensionality. The output of sliding a MaxPooling window is
computed by taking the maximum value in this given window of time series. Finally,
the output of each independent parallel convolution/MaxPooling is concatenated to
form the output MTS. The latter operations are repeated for each individual Inception
module of the proposed network.

By stacking multiple Inception modules and training the weights (filters’ values) via
backpropagation, the network is able to extract latent hierarchical features of multiple
resolutions thanks to the use of filters with various lengths. For completeness, we
specify the exact number of filters for our proposed Inception module: 3 sets of filters
each with 32 filters of length l ∈ {10, 20, 40} with MaxPooling added to the mix,
thus making the total number of filters per layer equal to 32 × 4 = 128 = M -
the dimensionality of the output MTS. The default bottleneck size value was set to
m = 32.

1 3

Figure 6.4.: Structure of one Inception module of the InceptionTime architecture.
In the center, the bottleneck layer reduces the dimensionality of the input
(dimensionality M) to m ≪ M , here m = 1 in particular. Note the three kernels
of size 10, 20 and 40, respectively, as well as the second bottleneck followed by a
convolution of size 1 that is applied to a max pooled sliding window of length 3.
See text for further details, and compare to Figure 6.5 for an illustration of the
bottleneck layer for m > 1. Figure from (Ismail Fawaz et al. 2020).

...

...

M

m
1

input: multivariate
time-series

bottleneck layer

Figure 6.5.: Detail of the bottleneck layer of the Inception module (first stage,
acting on the input data). There are m filters, yielding m component time-series.
For illustrative purposes, two (of m) filters are shown at different positions along
the time-axis. Compare to Figure 6.4.

75

Chapter 6. Models

• Dimensionality reduction by using bottleneck layers.

• Multiple kernels of different lengths (inside the Inception modules) to allow
for input time-series of different lengths, as well as to capture patterns of
different temporal extent.

• Residual connections to prevent the vanishing gradient problem to occur.

• Output of probability distribution over classes for each instance.

Implementation

The implementation used in this thesis was taken from the library tsai (Oguiza
2020a), where the InceptionTimePlus variant was used (Oguiza 2020c).

6.3.2. FCN-MLSTM
The Fully Convolutional Network (FCN) with Multivariate Long Short-Term
Memory (MLSTM) model was introduced in (Karim et al. 2018) for univariate
data, (Karim et al. 2019) brought its multivariate extension.

An important difference of a Fully Convolutional Network (FCN) to other
Convolutional Neural Networks (CNNs) is that the former do not contain any
pooling layers (Ismail Fawaz et al. 2019, p. 933). As was briefly mentioned above,
pooling layers can actual hinder the performance of CNNs when applying them
to time-series data, and hence, FCNs were developed (Ismail Fawaz et al. 2020,
p. 1940).

The architecture is depicted in Figure 6.6. The most important components240 F. Karim, S. Majumdar, H. Darabi et al. / Neural Networks 116 (2019) 237–245

Fig. 1. The MLSTM-FCN architecture. LSTM cells can be replaced by Attention LSTM cells to construct the MALSTM-FCN architecture.

Fig. 2. The computation of the temporal squeeze-and-excite block.

to LSTM-FCN, as it incorporates learned self-attention to the
inter-correlations between multiple variables at each time step,
which was inadequate with the LSTM-FCN.

In addition, the multivariate time series input is passed
through a dimension shuffle layer (explained more in Section 3.2),
followed by the LSTM block. The LSTM block is identical to the
block from the LSTM-FCN or ALSTM-FCN models (Karim et al.,
2017), comprising either an LSTM layer or an Attention LSTM
layer, which is followed by a dropout layer.

3.2. Network input

Depending on the dataset, the input to the fully convolutional
block and LSTM block vary. The input to the fully convolutional
block is a multivariate variate time series with Q time steps
having M distinct variables per time step. If there is a time series
with M variables and Q time steps, the fully convolutional block
will receive the data as such. Variables are defined as the channels
of interconnected data streams.

In addition, the input to the LSTM can vary depending on the
application of dimension shuffle. The dimension shuffle trans-
poses the temporal dimension of the input data. If the dimension
shuffle operation is not applied to the LSTM path, the LSTM
will require Q time steps to process M variables at each time
step. However, if the dimension shuffle is applied, the LSTM will
require M time steps to process Q variables per time step. In
other words, the dimension shuffle improves the efficiency of the
model when the number of variables M is less than the number
of time steps Q.

After the dimension shuffle, at each time step t , where 1 ≤ t ≤
M , M being the number of variables, the input provides the LSTM
the entire history of that variable (data of that variable over all

Figure 6.6.: Overview of the architecture of the Multivariate Long Short-Term
Memory (MLSTM) - Fully Convolutional Network (FCN) network. See text for
description of the elements. Figure from (Karim et al. 2019).

76

6.3. CNNs for Time-Series Classification

will be briefly described, following (Karim et al. 2019). As can be seen, the
network is formed from two separate branches that are combined before a final
softmax layer:

1. The upper branch with the dimension shuffle element and an LSTM with
dropout regularization (see Section 6.4.1 for a short description of dropout).

2. The lower branch holds several blocks, each consisting of a convolution layer
followed by a Batch Normalization (BN) layer and a squeeze and excite
block (see below and Figure 6.7). Note the absence of the squeeze and
excite block from the very last block of layers. Following the convolution
blocks is a Global Average Pooling (GAP) layer.

We shall take a closer look at some of these elements, first from the upper branch
(Karim et al. 2019):

• Dimension shuffle: this block simply transposes the multivariate time-series
input instance (that is a matrix in the multivariate case). This means that
each component time-series while be fed as a whole to the LSTM layer,
exposing each component’s temporal history to the layer at once, and it is
stated that this reduces the computational effort.

• LSTM: the concept of Long Short-Term Memory was introduced by Hoch-
reiter et al. (1997). It was designed to improve Recurrent Neural Network
(RNN), specifically to combat the vanishing gradient problem in these
networks (Karim et al. 2019, p. 238). RNN are special networks designed
and used for sequence modeling, but can be costly to train (Goodfellow
et al. 2016, pp. 373, 381). No further details are given here, but suffice
to say that LSTM can learn temporal dependencies in time-series data,
but only to a certain extent (Karim et al. 2019, p. 238). While an RNN
with LSTM can be used as a standalone network for time-series data, it is
applied as only a small part of a larger network in this architecture.

The elements from the lower branch are:

• Convolutional layer followed by a Batch Normalization (BN) layer and
Rectified Linear Unit (ReLU) activation function. The convolutional layers
apply convolutions along the time-axis, and have different kernel sizes of
8, 5, and 3 values, respectively. In each of the convolutional layers, 128
or 256 kernels of the respective length are used (thus leading to as many
feature maps). The convolutional layers again serve as feature extraction
stages (Karim et al. 2019, p. 239).

• Squeeze-and-Excite (SaE)5 block. See Figure 6.7 for an overview. The
general description of this concept can be found in (Hu et al. 2020),

5Note that Hu et al. (2020), the authors who introduced this concept, call this squeeze-and-
excitation block.

77

Chapter 6. Models

the specialization to time-series data as in (Karim et al. 2019) is briefly
described in the following.
Consider the element labeled U in Figure 6.7, it represents feature maps
that are the results of convolution operations. The dimensions are T , the
length of the time-series, C the number of feature maps (number of kernels),
the third dimension representing the components of the multivariate time-
series is unlabeled in the figure.6

The operation Fsq(·) (squeeze) averages each feature map separately over
the dimension T , the result is a vector z of dimension 1 × C (this is a
form of average pooling). This vector is subjected to the excite operation
Fex(·, W) that looks like this:

s = Fex(z, W) = σ(W2 δ(W1z
T)), (6.2)

where σ(·) is the sigmoid-function, δ(·) is a ReLU-function; W1 ∈ RC/r×C

reduces the dimension to C/r, whereas W2 ∈ RC×C/r expands the dimen-
sion to C again.7 The scalar r is called the reduction ratio. Both matrices
W1 and W2 are learned during training.
The output s of Fex(z, W) is finally used to scale U channel-wise (operation
Fscale(·, ·)) to produce �X, the output of the Squeeze-and-Excite (SaE)
block.
While somewhat complex structures, the goal of these SaE blocks is simply
to apply learned weights to the different feature maps that were extracted
by the previous convolutional layers. This enables the network to put more
attention on some features over others. As Karim et al. (2019, pp. 239 f)
state, the introduction of SaE blocks into this architecture was essential
for achieving good performance on multivariate time-series data.

To again summarize this architecture in a few points:

• Combination of dedicated sequence model (LSTM) with convolutional
layers.

• Kernels of different lengths to cover different temporal contexts.

• Squeeze-and-Excite blocks for enabling the network to put more attention
on certain feature maps over others. This improves the performance for
multivariate time-series data.

• Output of probability distribution over classes for each instance.
6It is not made explicitly clear in (Karim et al. 2019, pp. 239 f) what the third dimension here

is; in fact, from the formulations it is likely that they demonstrate the squeeze-and-excitation
concept for a univariate time-series.

7Note that (Karim et al. 2019) state dimension C/r × C for W2 as well, but this would not
match with W1.

78

6.3. CNNs for Time-Series Classification
Fig. 1. The MLSTM-FCN architecture. LSTM cells can be replaced by Attention LSTM cells to construct the MALSTM-FCN architecture.

Fig. 2. The computation of the temporal squeeze-and-excite block.

to LSTM-FCN, as it incorporates learned self-attention to the
inter-correlations between multiple variables at each time step,
which was inadequate with the LSTM-FCN.

In addition, the multivariate time series input is passed
through a dimension shuffle layer (explained more in Section 3.2),
followed by the LSTM block. The LSTM block is identical to the
block from the LSTM-FCN or ALSTM-FCN models (Karim et al.,
2017), comprising either an LSTM layer or an Attention LSTM
layer, which is followed by a dropout layer.

3.2. Network input

Depending on the dataset, the input to the fully convolutional
block and LSTM block vary. The input to the fully convolutional
block is a multivariate variate time series with Q time steps
having M distinct variables per time step. If there is a time series
with M variables and Q time steps, the fully convolutional block
will receive the data as such. Variables are defined as the channels
of interconnected data streams.

In addition, the input to the LSTM can vary depending on the
application of dimension shuffle. The dimension shuffle trans-
poses the temporal dimension of the input data. If the dimension
shuffle operation is not applied to the LSTM path, the LSTM
will require Q time steps to process M variables at each time
step. However, if the dimension shuffle is applied, the LSTM will
require M time steps to process Q variables per time step. In
other words, the dimension shuffle improves the efficiency of the
model when the number of variables M is less than the number
of time steps Q.

After the dimension shuffle, at each time step t , where 1 ≤ t ≤
M , M being the number of variables, the input provides the LSTM
the entire history of that variable (data of that variable over all

Q time steps). Thus, the LSTM is given the global temporal infor-
mation of each variable at once. As a result, the dimension shuffle
operation reduces the computation time of training and inference
without losing accuracy for time series classification problems. An
ablation test is performed to show the performance of a model
with the dimension shuffle operation is statistically the same as
a model without using it (further discussed in Section 4.4).

The proposed models take a total of 13 h to process the
MLSTM-FCN and a total of 18 h to process the MALSTM-FCN
on a single GTX 1080 Ti GPU. While the time required to train
these models is significant, one can note their inference time is
comparable with other standard models.

4. Experiments

MLSTM-FCN and MALSTM-FCN have been tested on 35
datasets, in Section 4.2. The optimal number of LSTM cells for
each dataset was found via grid search over 3 distinct choices -
8, 64 or 128, and all other hyper parameters are kept constant.
The FCN block is comprised of 3 blocks of 128-256-128 filters
for all models, with kernel sizes of 8, 5, and 3 respectively,
comparable with the original models proposed by Wang et al.
(2017). Additionally, the first two FCN blocks are succeeded
by the squeeze-and-excitation block. We consistently chose 16
as the reduction ratio r for all squeeze-and-excitation blocks, as
suggested by Hu et al. (2017). During the training phase, we set
the total number of training epochs to 250 unless explicitly stated
and the dropout rate is set to 80% to mitigate overfitting. Each
of the proposed models is trained using a batch size of 128. The
convolution kernels are initialized by the Uniform He initialization
scheme proposed by He, Zhang, Ren, and Sun (2015), which
samples from the uniform distribution U ∈

(
−

√
6
d ,

√
6
d

)
, where

d is the number of input units to the weight tensor. For datasets

Figure 6.7.: Squeeze-and-Excite (SaE) block of the FCN-LSTM architecture. See
text for description. Figure from (Karim et al. 2019).

Implementation

The implementation for this model was taken from tsai as well, where the class
MLSTM FCN (Oguiza 2020b) was used.

6.3.3. ROCKET
The RandOm Convolutional KErnel Transform (ROCKET) model was intro-
duced in (Dempster et al. 2020). It is, like CNNs, based on the convolution of
kernel functions (sequences) kt with data input sequences as a means of feature
extraction.

Architecture

ROCKET is not a complete CNN as shown in Figure 6.1, and is not quite following
the structure shown there. The model basically consists only of the lower part
used for feature extraction, and more specifically only a single convolutional
layer, with an unusually large number of kernels (Dempster et al. 2020, p. 1461).
Another important difference is that the kernel parameters of this convolutional
layer are in fact not estimated during a training phase, but rather randomly
initialized once and then used as-is. The idea of using randomly created kernels
for feature extraction has been used in the past successfully (Dempster et al.
2020, p. 1459).

The features generated from convolving the randomly created kernels wit the
input data are then used to train a separate classifier in a supervised fashion.

The fact that kernels are not learned during training makes the model itself,
used as a pure feature extractor, computationally cheap overall. Furthermore,
there are no hyper-parameters to tune for this model, except for the number of
kernels to generate (Dempster et al. 2020, p. 1460).

Besides the simple structure mentioned above, and how it differs from more

79

Chapter 6. Models

“typical” Convolutional Neural Networks (CNNs), there are a few more things
that distinguish ROCKET (Dempster et al. 2020, p. 1461):

• There are no activation functions applied to the output of the convolutions,
in particular no non-linear ones (like ReLU).

• There are no connections between layers (as there is only one).

• There are no kernels with shared parameters (at least not by design), as
each kernel is instantiated randomly (see below for details).

• Besides global max pooling, i.e. taking the maximum value of the feature
maps (the outputs of the convolutional layers), a newly introduced version
of pooling is applied in parallel, namely the proportion of positive values
(ppv). This is the average number of positive values in the respective feature
map (Dempster et al. 2020, p. 1463). Dempster et al. (2020, pp. 1461,
1475) claim that this additional new pooling operation is crucial to the
performance of ROCKET.

• A special variant of the convolution operation, the dilated convolution,
is used, see next subsection. While other networks use this as well, they
typically have a more structured way of selecting the dilation parameter
(see below) than choosing it randomly, as ROCKET does.

Dilated Convolution

The feature extraction makes use of the dilated convolution operation · ∗d ·
(Dempster et al. 2020) (Yu et al. 2016):

(x ∗d k)(t) =
lk−1�
j=0

xt−j d kj, (6.3)

where xt is a data sequence, kt is a kernel sequence of length lk, and d is the
dilation parameter. Not shown here is the bias b that is added to the result of
the convolution operation. The dilation parameter (or dilation rate) d controls
the amount of values of xt omitted from the convolution operation: for d > 1,
every d-th value of the input sequence xt is skipped, this amounts essentially
to a sub-sampling of the input data. For d = 1, the standard discrete time
convolution as shown in Equation (6.1) is obtained. Dilated convolution can
be used for capturing patterns over different scales (time here) (Dempster et al.
2020, p. 1458).

It shall be noted that Yu et al. (2016) explicitly state that not the kernel is
dilated, but the data sequence, and differentiate their definition from the case
where the kernel (or filter) is dilated (Yu et al. 2016, p. 2). It would appear that
the operation in Equation 6.3 is no longer commutative in the sense shown in
Equation 6.1 for d > 1.

80

6.3. CNNs for Time-Series Classification

Dempster et al. (2020) state that applying dilated convolution, with different
kernels and multiple levels of dilation per kernel, can be viewed as being similar
to several other methods used for extraction of features from time-series for
classification:

• Frequency selective features: these represent only certain aspects of the
data, e.g. slowly evolving patterns of lower frequency. Random convolution
kernels as well allow for a form of frequency selective features, similar
to what is used in “classical” approaches. Larger dilation corresponds to
selectivity towards lower frequencies, and the opposite for smaller dilation
(Dempster et al. 2020, p. 1458).

• Shapelets: shapelets are (sub-)sequences often extracted from the input
data (or obtained from other sources). Shapelets are meant to represent
patterns in the data that can discriminate between classes, and instances
are related to them by means of a distance or similarity measure (Dempster
et al. 2020, p. 1460). Discriminative shapelets would ideally exhibit for
example high similarity to instances of one class, but not the other(s). The
convolution of data with a kernel will yield higher output if the pattern in
the data more closely matches the kernel (Dempster et al. 2020, p. 1458),
which is conceptually quite similar.

Kernels

The kernels employed in the convolutions are generated randomly, where the
following parameters are used for ROCKET (Dempster et al. 2020, p. 1462):

• Length lk of the kernel: taken from {7, 9, 11} with equal probability.

• Weights, i.e. the values of the respective kernel sequence: each value is
sampled from a standard normal distribution N (0, 1). The resulting kernel
sequence is mean-centered afterwards.

• Bias b: sampled from the uniform distribution U(−1, 1).

• Dilation d: for length lx of data sequence xt, the dilation is computed
as d = ⌊2m⌋ where m is sampled from U(0, A) with A = log2

lx−1
lk−1 . This

ensures that the kernel sequence is at most as long as the dilated (down-
sampled) input data sequence.

• Padding: a random decision with equal probability is taken for each kernel
whether no padding or zero padding is applied. The former variant puts
more emphasis on the center part of the respective input data sequence,
whereas the latter variant also takes the edges into account, as the center
part of the kernel is applied to them with appropriate padding.

• Stride: fixed to a value of 1.

81

Chapter 6. Models

Per default, Dempster et al. (2020) suggest to create nk = 10 000 kernels
randomly. Per kernel, two scalar values are emitted as feature values, one
following from max pooling, and one from the pooling computing the proportion
of positive values (ppv), so that in total 2 nk feature values are computed for
each data instance.

The huge number of kernels, and the even larger number of resulting features,
can be (much) larger than the number of instances in the training data for
smaller data sets. Interestingly, Dempster et al. (2020, p. 1464) report good
performance of the ROCKET method in these cases as well, where they used a
classifier based on ridge regression.

Implementation

The original version of ROCKET is only applicable to univariate time-series
(Dempster et al. 2020, p. 1466). However, there are extensions for the multivariate
case available, as implemented in the software libraries sktime (sktime 2022),
(Löning et al. 2019) and tsai (Oguiza 2020d), the latter of which was used for
the experiments conducted for this thesis.

Classifiers

For the linear classifier that operates on the features generated using the random
kernels, Dempster et al. (2020, p. 1464) suggest to use:

• logistic regression with gradient descent for larger data sets,

• ridge regression for smaller data sets, especially when the number of
instances is smaller than the number of features.

They furthermore stress the importance of applying regularization when training
the classifiers.

For the experiments conducted here, instead of the ones suggested by Dempster
et al. (2020), a Gradient Boosted Decision Trees (GBDT) classifier was used, the
concrete implementation being XGBoost (dmlc 2021), (Chen et al. 2016). This
combination was used in (Silva et al. 2022) for time-series classification tasks
and showed better performance than using a ridge classifier. See Section 6.5 for
a brief discussion of Gradient Boosted Decision Trees (GBDT) and XGBoost.

6.4. Training CNNs
Typically, training a neural network, i.e. estimating the parameters involved in
computing the output for given input data, is done using some form of gradient
descent optimization of a cost function (such as those discussed in Section 4.2.2).
However, not only neural networks make use of gradient descent optimization,
in fact all models that allow estimating parameters involving a cost function can

82

6.4. Training CNNs

be trained this way. This is also the case for the other models used in this thesis,
see Section 6.5.

Consider a training data set D = {(x1, y1), (x2, y2), . . . (xN , yN)}, consisting
of pairs of data instances xi and corresponding class labels yi.

The discriminative model shown above in Section 4.2.1 can be written as:

(P (C0|x), P (C1|x), . . . , P (CnC−1|x)) = f(x; θ), (6.4)

where f(x; θ) represents the model whose behavior is defined by the parameters
θ, producing the conditional probability of each class Cj for a given datum x.
For our binary case this simplifies to:

(P (0|x), P (1|x)) = f(x; θ), (6.5)

and, using the notation shown in Equation (4.1), further to:

(1 − pt, pt) = f(x; θ). (6.6)

A loss function L(D; θ), as discussed in Section 4.2.2, can be used to evaluate
the state of the model (defined by its parameters θ) on the given set of data D.
Gradient descent methods are iterative procedures, i.e., there is a sequence of
steps k = 1, . . . , K, where at each step the loss function L(D; θk), defined by
the current set of parameters θk, is used to compute a value of the loss Lk(D; θ).
Thus, updating the model parameters θ step-wise by some amount ∆θ,

θk+1 = θk + ∆θ;k, (6.7)

leads to a step-wise change of the loss L by some amount ∆L:

Lk+1 = Lk + ∆L;k. (6.8)

The goal is to find parameters θ corresponding to a (possibly only local) minimum
of the loss function and thus overall loss computed on the given data set. This
can be achieved by updating the parameters such that the loss is minimized
step-wise (Bishop 2006, p. 240):

θk+1 = θk − η ∇θ L(θk), (6.9)

where ∇θ is the gradient in the parameter space and η > 0 is the learning
rate, used to scale the update of the parameters (Bishop 2006, p. 236). More
concretely, for θ ∈ RJ , the gradient is defined as:

∇θ =
�

∂

∂ θj

�J

j=1
. (6.10)

In Equation 6.9, the parameters are updated by moving a certain amount into
the direction of the negative gradient, i.e. a direction of steepest descent.

83

Chapter 6. Models
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0 00.

0 05.

0 10.

0 15.

0 20.

L
o
ss

(n
eg

a
ti

v
e

lo
g
-l

ik
el

ih
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure for an example of this7.3
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Figure 6.8.: Learning curves: loss values per data set (training and validation), for
each epoch, during the training process. Other quantities (performance metrics,
such as accuracy) can be used for monitoring the training process. Figure from
(Goodfellow et al. 2016, p. 246).

Many different versions and variants of the gradient descent approach exist.
One way to categorize them is by the number of instances x processed before the
trainable parameters θ8 are updated (see e.g. Goodfellow et al. (2016, pp. 151 ff,
177 ff, 277 ff), Bishop (2006, pp. 240 ff)):

• Stochastic Gradient Descent (SGD) performs an update step as in Equation
(6.9) for each datum (instance) x.

• Batch Gradient Descent performs an update only after processing the
whole data set D (this is called an epoch).

• Mini-Batch Gradient Descent is between the two above, and performs an
update after processing a certain number nB of instances Di:i+nB

, where
nB is called the batch-size of the mini-batch.

Learning curves, as shown in Figure 6.8, can be used to monitor the training
process. One epoch corresponds to processing the whole training data set (all
instances) once. Typically, training lasts at least several, sometimes hundreds
of epochs. Evaluating the loss function L on both the training as well as the
validation set yields a value for the loss for the respective set (for the current step
k). The training set loss should decrease during training, while the validation
set loss should decrease as well. Typically, the validation set loss will start to
increase again at some point. This typically means that the model is starting
to overfit to the training data (Goodfellow et al. 2016, p. 246), (Bishop 2006,
p. 259).

8With an abuse of notation, the trainable parameters are not distinguished here from other
parameters of the respective model that can still influence its performance; these are the
hyper-parameters, discussed in Section 6.7.

84

6.4. Training CNNs

6.4.1. Regularization
Regularization (for machine learning models) aims at low errors on test data sets,
or any other (new) data set not used during the training process for estimating
model parameters, in addition to low errors on the training data set (i.e. good
model fit) (Goodfellow et al. 2016, p. 228). In other words, regularization is
meant to prevent overfitting of a model to the training data. Several different
approaches and methods exist for most machine learning models, and two
important methods often applied to machine learning models in general, and
neural networks in particular, (and used in the experiments) are briefly described.

Early Stopping
Early stopping is closely tied to observing the training curves (see Figure 6.8)
during training with a gradient descent method. As was stated above, an increase
in loss computed on the validation set during training is a sign of overfitting.

The method of early stopping monitors a metric computed on the validation
set (e.g. the loss) and stops training of the model (network), i.e. updating the
model parameters, when this metric starts to increase or even stops to decrease
(again, as in the case of the loss). This should yield a model that is not overfit
to the training data and offers good generalization capabilities (Bishop 2006,
p. 259).

Different evaluation metrics may require different criteria, e.g. accuracy is a
metric to be maximized rather than minimized, as is the ROC-AUC. Ideally, the
model is stored in its current version at e.g. every (n-th) epoch, or whenever the
respective metric being optimized changes, and the best version identified by
early stopping can directly be used (Goodfellow et al. 2016, 246f)

As learning curves can be quite “rough” (and much less smooth than the ones
shown in Figure 6.8), it can pay off to wait for a few epochs before making the
decision to stop the training. This number of epochs to wait is usually referred
to as patience (Goodfellow et al. 2016, p. 247)

Dropout
Dropout can be viewed as an approximation to an ensemble of several neural
networks, more specifically bagging. Bagging is an ensemble method where
several different models are trained on the same data, and whose predictions on
the same test (or evaluation) data are then combined (Goodfellow et al. 2016,
p. 258).

An illustration of dropout is shown in Figure 6.9. The basic idea is to remove
certain units from the network randomly to create a sub-network. This selection
of units to drop can e.g. be taken anew before each epoch. Instead of training
multiple different networks, dropout then leads to training different networks in
sequence, epoch after epoch.

Dropout can for example by used for the fully connected layers used as the
top part of Deep Neural Networks (DNNs), acting as a classifier. See e.g. the
fully connected layers in the classification part of the CNN in Figure 6.1, as well

85

Chapter 6. Models

x1 x2

h1 h2

y

x1 x2

h2

x2

h1 h2

x1 x2

h1

x1

h1

y y y y

Figure 6.9.: Illustration of dropout. On the left is a very simple Feed Forward
Neural Network (FFNN) with two inputs (x1, x2) and two hidden units (h1, h2).
The four subplots to the right show four different subnets resulting from erasing
(dropping) one or multiple units from the original network. Figure inspired by
Figure 7.6 in (Goodfellow et al. 2016, p. 260).

as the fully connected part of the InceptionTime network in Figure 6.3.
However, dropout can be used for other layers as well, e.g. convolutional layers

in Convolutional Neural Networks (CNNs).

6.5. Gradient Boosted Decision Trees (GBDT)
Tree-based methods (or trees for short) are well known and quite simple models
that allow for regression as well as classification applications. They have in
general a number of desirable properties (only some of which are relevant to the
problem at hand) (Hastie et al. 2017, p. 352), (Kuhn et al. 2020, p. 221):

• Trees are invariant under strictly monotone transformations of the pre-
dictors (inputs). This was briefly mentioned earlier in Section 5.2 when
looking at necessary transformations of the data.

• Tree-based methods can deal with highly correlated data.

• They perform feature selection internally, and can thus deal with the
inclusion of (many) irrelevant predictor variables.

The last point mentioned above is of course useful when applying a tree-based
classifier to the ROCKET features, as there is a very large number of them, and
not all may be relevant or discriminative.

Decision Trees
The main idea of tree-based methods is to partition the input data (feature) space
along each dimension (say each of p dimensions for x ∈ Rp) at certain values (split
points) into disjoint regions Rj , j = 1, . . . , J , and approximate the response (say,
y) in each region in some way, where the splitting and approximation procedure
can be done recursively to more and more “fine-grained” regions. Regions that
are not split anymore are called terminal nodes or leaves and contain at least
one datum. Other nodes besides the root node are called inner nodes. This

86

6.5. Gradient Boosted Decision Trees (GBDT)

partitioning can be depicted in a binary tree, hence the name (Hastie et al. 2017,
pp. 305 ff, 353). The number J of terminal regions, and thus leaves of the tree, is
called the size or depth of the tree and is a hyper-parameter (Hastie et al. 2017,
pp. 307 f).

During supervised training, for each previously created partition, first the split
point at some value of the respective variable (dimension) of the data has to be
found to form new regions. Afterwards, the respective value γ that represents
(approximates) the response y in each of these new regions has to be estimated.
For classification, this representation can for example be the label of the class
having the majority in the respective region, or the proportion of the examples
belonging to a class of all examples in the region. The procedure of choosing
splits and approximating the responses describes a combinatorial optimization
problem, and typically a greedy approximation is used to solve it (Hastie et al.
2017, pp. 309, 356).

A single tree is parameterized as follows in (Hastie et al. 2017, p. 356):

T (x; θ) =
J�

j=1
γj I(x ∈ Rj) (6.11)

where I(·) is the indicator function and γj is the respective value associated
with (estimated within) the region Rj, and θ = {(R1, γ1), . . . , (RJ , γJ)} is the
sequence of regions and values. Thus, T (x; θ) is an approximation of the response
across the regions of the whole input data space. The last pair in θ, (RJ , γJ),
represents the leaves (terminal nodes) of the tree.

However, a single tree alone is often not the best possible model for a given
body of data, in terms of e.g. classification accuracy or other figures of merit.
Gradient Boosted Decision Trees, also referred to as Gradient Boosted Models
(GBM) (see e.g. Hastie et al. (2017)), are a certain type of additive models where
the functions of the input data that are added to form the output (a predicted
class label for classification), are trees (Chen et al. 2016, p. 786). GBDT can
yield drastically improved performance over trees (Hastie et al. 2017, p. 352).

Additive Tree Model
The additive model combining M trees (the approximations T (x; θ)) can be
written as (Hastie et al. 2017, p. 356):

fM(x) =
M�

m=1
T (x; θm), (6.12)

where M is the number of trees to combine, and typically is a hyper-parameter
to tune. While each tree could have a different size Jm, it is suggested to use a
single value Jm = J ∀m (Hastie et al. 2017, p. 362). The value chosen for size J
doesn’t seem to be very critical when restricted to a range of 4 to 8 (Hastie et al.
2017, p. 363).

87

Chapter 6. Models

The training of a GBDT model starts from a single tree and iteratively adds
a new tree until (at most) M trees are obtained, at each step using a greedy
strategy to add the currently best possible new tree (Hastie et al. 2017, pp. 361 f),
according to a specified criterion. That is, after step m − 1, a new tree T (x; θm)
is added in step m:

fm−1(x) + ν T (x; θm), (6.13)
where the factor ν can be used to scale the contribution of each added tree, but
can also be interpreted as a form of learning rate (see next section).

Constructing (learning) a tree representation as in Equation (6.11) requires
for each split twice the application of a loss function: for getting a new set of
regions and for getting the approximation of the response in the newly formed
regions (Hastie et al. 2017, pp. 356 f). The cross-entropy loss function as shown
in Equation (4.4) for example is a suitable choice for these procedures.

6.5.1. Gradient-Boosting
Boosting methods are additive models, where, as just described, new base
learners are added in sequence with the goal that each additional learner instance
improves the performance of the ensemble built up so far. This is achieved by
applying a new set of instance weights to the training data at each additive
step, where the weights are related to the performance of the current ensemble.
Instances that were mis-classified before are given greater weight in the next step
to make the model focus more strongly on classifying them correctly, instances
that were classified correctly get their weights decreased (Bishop 2006, pp. 657 ff),
(Hastie et al. 2017, pp. 337 ff).

A special form of this concept is gradient boosting. It is a way to implement
the greedy selection of a new tree for the additive model in Equation (6.12), thus
the update step of the additive model. This update step, adding a new tree, can
be viewed as being similar to a step in a gradient descent algorithm, but here
the new tree approximates the negative gradient of the loss function, where the
partial derivatives are taken with respect to the function (the tree) to be added
(Hastie et al. 2017, pp. 359 f).

Equation (6.13), showing the update of the additive model by an additional
tree, can be seen as similar to Equation (6.9), updating the model parameters.
Both updates change the behavior of the respective model such that the loss
function is minimized successively (until some stopping criterion is reached).

A more detailed discussion is beyond the scope of this thesis, the reader is
referred to (Friedman 2001) and (Hastie et al. 2017).

6.5.2. Regularization
Several methods for regularization are available for GBDT models, aiming at
decreasing the possibility of overfitting to the training data. An overview shall
be given, following (Hastie et al. 2017, pp. 364 ff):

88

6.5. Gradient Boosted Decision Trees (GBDT)

• Monitoring loss on a validation set, effectively again an early stopping
strategy, limiting the number of trees (and thus boosting iterations) M .

• Shrinkage, by scaling the contribution of each newly added tree by some
constant ν ∈ [0, 1] (see Equation (6.13)). This can be considered as an
additional hyper-parameter.

• Subsampling (undersampling) the training data instances, without replace-
ment. The amount of subsampling η ∈ [0, 1] (ratio of undersampling) is
another hyper-parameter that can also be interpreted as a learning rate.

In general, increasing M increases the model and thus the computational load.
There is a trade-off between the shrinkage parameter ν and the number of trees
(boosting rounds) M . Friedman (2001, pp. 1203 f) suggests that both parameters
should be be optimized in a model selection scheme, and this advice was indeed
followed in the experiments conducted.

There is another point to be added the above list not mentioned by Hastie
et al. (2017), that is subsampling the variables (dimensions) of the data (Chen
et al. 2016, p. 787), where the amount of subsampling again is a hyper-parameter.
This regularization approach is implemented in the software library XGBoost
that is briefly discussed next.

6.5.3. XGBoost
xgboost is a software library implementing Gradient Boosted Decision Trees
(GBDT) models (dmlc 2021), (Chen et al. 2016). It was chosen for its offering of
computation on GPUs, and its known good performance as a classifier in general
(see Chen et al. (2016)).

Model
Besides gradient descent methods that employ the gradient ∇L(θ) of the cost
function, other optimization schemes exist that additionally incorporate higher
order partial derivatives. For the case of the second derivatives, this leads to the
use of the Hessian matrix H (or approximations of it).

XGBoost employs the gradient as well as the Hessian of the respective cost
function used for learning the model parameters from a set of training data
(Chen et al. 2016, pp. 786 f), following the concept of the gradient boosting
method described above. A more detailed discussion of the XGBoost model is
beyond the scope of this thesis, but some properties will be discussed below
for the case of handling imbalanced data. Furthermore, the hyper-parameters
(including methods for regularization and handling class imbalance) used for the
model are listed in Section 7.4.2.

Handling Imbalanced Data
Note that XGBoost, being an ensemble method, can itself already be considered
a model-level approach to alleviate the problems of imbalanced data (as was

89

Chapter 6. Models

mentioned in Section 4.2).
Additionally, XGBoost offers two approaches specifically addressing imbalanced

data (dmlc 2022a):
1. Specifying class weights, thus offering cost-sensitive learning, a model level

approach.

2. Limiting the values of the leaf weights in the update step. The leaf weights
correspond to the values γ

(m)
J representing the terminal regions of the tree

to be added at step m (compare Equations (6.13) and (6.11); for more
details the reader is referred to Section 2.2 in Chen et al. (2016)). The
parameter for influencing the update limit is named max delta step in
the XGBoost library (see (dmlc 2022b)).

Applying class weights (option 1), however, no longer makes it possible to
interpret (and use) the model output as posterior probabilities for the classes
(dmlc 2022a). This becomes evident in particular when inspecting calibration
curves for models where class weights were used during training. The models
trained in this way are usable as classifiers, but meaningfully choosing a threshold
or applying costs in the decision step may no longer be possible.

Both methods for handling class imbalance mentioned above were tested
during the experiments, see Section 7.4.2 for a description of the inclusion of the
methods into the hyper-parameter tuning.

6.6. Model Selection
During the model selection phase, several different models, i.e. algorithms,
architectures, versions, variants, etc., are trained on the same training data set
and validated on the same validation data set, at least as much as possible; after
all, different models may require different preprocessing methods.

Besides estimating the actual model parameters that can be learned during the
training process, the selection of values for the hyper-parameters happens during
this phase as well. Hyper-parameters are parameters of a model (or algorithm)
that influence its performance, but cannot be learned directly from the data (see
e.g. Goodfellow et al. (2016, p. 120), and the next section for a discussion).

The goal of model selection is to choose the best model according to some
specified criterion, e.g. a certain validation metric. This process can be viewed
as being two-fold (Kuhn et al. 2013, p. 26): first, there is a selection within
a certain (type of) model, where the combination of hyper-parameters giving
best performance, as just described, can be chosen. Second, the best model, e.g.
neural network architecture such as InceptionTime, can be chosen among the
evaluated models.

As was illustrated in Section 5.7, a 5-fold Cross-Validation (CV) scheme was
used for the model selection process. For each model, the procedure was as
follows:

90

6.7. Hyper-Parameters

1. Before any training starts, set the values for each hyper-parameter that
defines the respective model.

2. Take for fold j with j = 1, . . . , 5 the associated training and validation set
parts.

3. Train the model on the training part, and evaluate on the validation part,
store the evaluation metrics computed on both parts (the values computed
for the validation part are the more relevant ones here).

4. After all folds are completed, compute the average of each evaluation metric
across the folds and store this average metrics for comparing models.

5. Repeat all above steps for a specified number of times (possibly many)
to find a set of hyper-parameters that yields good performance of the
respective model.

All models trained and evaluated using this procedure can than be ranked against
each other, e.g. by the average of the evaluation metric(s) across the folds. A
secondary sorting criterion could e.g. be the required training time, or model
complexity.

Kuhn et al. (2020, p. 45) suggest to use the ROC-AUC metric to find a good
model first, then afterwards tune the cutoff between the two classes (or the
decision rule) to achieve specific precision and recall values, possibly incorporating
costs in the tuning process. This is the strategy followed here for model selection
and hyper-parameter tuning comparing models (see Chapter 8 for the results of
the model selection).

The best set of hyper-parameters for each model, thus the one obtained from
the within-model selection, can then be used to e.g. retrain on the whole training
part across all folds (see Figure 5.9). Alternatively, the model from the fold
with best score on the validation part can be used directly without the need for
retraining. The latter choice sacrifices a small amount of data for retraining, but
will yield a model with known performance across folds. This is the approach
chosen here.

6.7. Hyper-Parameters
As was just stated above, hyper-parameters are parameters of a model (or
algorithm) that influence its performance, but cannot be learned directly from
the data. Typical examples are quantities that influence the regularization of
the model, or parameters that control the scaling of updates in gradient descent
algorithms (learning rate), among many others.

Hyper-parameters can be set either manually, which requires (possibly quite
in-depth) knowledge about the model at hand and its behavior, or they can
be selected automatically (Goodfellow et al. 2016, pp. 427 f, 432). Automatic

91

Chapter 6. Models

methods obtain good or optimal values for hyper-parameters by repeatedly
training and evaluating (on a separate data set) a model, and choosing the values
giving best performance.

If there are several different hyper-parameters that influence the model, and
each can take on different values, possibly from a continuous range, the amount
of possible combinations can explode very fast. Thus, tuning hyper-parameters
is a problem of its own.

Several approaches exist for automatic tuning of hyper-parameters (Goodfellow
et al. 2016, pp. 432 ff):

• Grid search: for each hyper-parameter, a set of several values is specified,
and taking the Cartesian product forms a “grid” of tuples of values. Each
tuple is used to specify a model that is then trained and evaluated. Suitable
values have to be taken from e.g. the literature or educated guesses. For m
hyper-parameters with n values each, the complexity is O(nm) (Goodfellow
et al. 2016, p. 434) and can become prohibitively.

• Random search: rather than specifying concrete values, typically a range
of values or even a (marginal) probability distribution for each hyper-
parameter is supplied from which values are randomly sampled. This
again creates tuples of values for the respective hyper-parameters. Random
search has been found to be much more effective than grid search, reducing
the validation set error in fewer trials (Goodfellow et al. 2016, p. 435).

• Bayesian optimization, a type of model-based hyper-parameter optimiza-
tion: these create a model of the expected value of the validation set error
and associated uncertainty. This allows for a tradeoff between exploring dif-
ferent values for parameters with high uncertainty (according to the model)
and suggesting similar values for parameters that have performed well in
previous trials seen so far (Hastie et al. 2017, pp. 435 f). This approach
thus in a sense allows successive trials to use the information from previous
trials about good values for (at least some of) the hyper-parameters.

Note that setting the ranges of values to choose from, or the distributions to
sample values from for the respective hyper-parameter, can again be seen as
hyper-parameters of the tuning method itself (Goodfellow et al. 2016, p. 432).
However, it may be easier to choose these ranges and distributions from past
experiments reported in the literature (for at least similar problems, for example)
or from suggestions in the documentation of the respective software package.

92

CHAPTER7
Experiment Settings

This chapter discusses the experiments carried out with the data processed
according to Chapter 5, and the models and specificities for their training
described in Chapter 6.

7.1. Computers
In order to illustrate the compute capabilities used for this thesis, a brief
description of the 2 mostly used computers is given below in Table 7.1.1.

Table 7.1.1.: Overview of the compute capabilities used for the experiments.
Machine CPU RAM GPU OS

Type #Cores Freq. Type RAM CUDA
cores

V 4 x Intel Xeon
Gold 6138

20
(each) 2 GHz 384 GB 2 x NVIDIA

Quadro P2200
5 GB
(each)

1280
(each) Windows

G AMD
EPYC 7343 16 3.9 GHz 512 GB NVIDIA A40 48 GB 10 752 Linux

The machines were used mostly for the following tasks:
• Machine V was used for data exploration, preprocessing and preliminary

tests of models.

• Machine G was used almost exclusively for training and evaluating models.
The strong GPU in this machine was very beneficial for carrying out
experiments in shorter time.

Both machines were shared with other users, and exclusive use of resources was
most of the time not possible.

93

Chapter 7. Experiment Settings

7.2. Experimental Conditions
The most important conditions were (see next section for additional settings):

• Windowing: 4 different settings

• Models: 3 different models:
– InceptionTime
– FCN-MLSTM
– XGBoost classifier with RandOm Convolutional KErnel Transform

(ROCKET) features

• Loss functions

7.2.1. Models
The models used were discussed in Chapter 6, Sections 6.3.1 to 6.3.3 and 6.5.3.
Table 7.2.1 shows the combinations of models, loss functions and settings for the
ROCKET features (where applicable).

Table 7.2.1.: Combinations of models, loss functions and feature settings (for
ROCKET) used in the experiments. The experiment labels are used in many
tables and plots in the following.

Experiment
Label Model Loss

Function Features # Kernels

ITFL InceptionTime focal loss - -
ITXE InceptionTime cross-entropy - -
MLFL FCN-MLSTM focal loss - -
MLXE FCN-MLSTM cross-entropy - -

ROXG04k XGBoost cross-entropy ROCKET 4000
ROXG10k XGBoost cross-entropy ROCKET 10 000

7.2.2. Loss Functions
As was shown in Table 7.2.1, different loss functions were used. More concretely:

• Deep Neural Network (DNN) models, InceptionTime and FCN-MLSTM
used:

– cross-entropy (CE), with and without class weights
– focal loss (FL), with and without class weights

• GBDT model (XGBoost): Cross-entropy (CE)

94

7.3. Additional Settings

7.2.3. Windowing
The parameters involved in the windowing process (see Figure 5.2) are state
length l, prediction length p, and stride s. Table 7.2.2 shows the four different
settings used for generating windows.

Table 7.2.2.: Windowing settings used (numbers are durations in hours).
ID state length l prediction length p stride s

3644 36 4 4
3688 36 8 8
4888 48 8 8
7288 72 8 8

7.2.4. Experiment Labels
In the following Table 7.2.3, the experiment labels for all 24 combinations of
models, loss functions, feature settings and windowing settings are shown. Each
of these 24 combinations was subjected to a model selection and hpyer-parameter
tuning session.

Table 7.2.3.: Overview of all 24 combinations and the respective experiment
labels.

InceptionTime FCN-MLSTM XGBoost
+ ROCKET

Windowing
Settings

ITFL 3644 MLFL 3644 ROXG04k 3644 3644
ITFL 3688 MLFL 3688 ROXG04k 3688 3688
ITFL 4888 MLFL 4888 ROXG04k 4888 4888
ITFL 7288 MLFL 7288 ROXG04k 7288 7288
ITXE 3644 MLXE 3644 ROXG10k 3644 3644
ITXE 3688 MLXE 3688 ROXG10k 3688 3688
ITXE 4888 MLXE 4888 ROXG10k 4888 4888
ITXE 7288 MLXE 7288 ROXG10k 7288 7288

7.3. Additional Settings
Settings used in addition to the main ones described above are listed in this
section. All parameters discussed in the following were used as hyper-parameters.

95

Chapter 7. Experiment Settings

7.3.1. Addressing Class Imbalance
An overview is given of the methods employed to address the class imbalance
problem for each model (refer to Chapter 4 for a discussion). Table 7.3.1 shows
which approach for combating class imbalance was used with which model.

Table 7.3.1.: Strategies applied for handling the class imbalance. Refer to
Chapter 4 for dicussion. (*): undersampling (of the majority class) was primarily
done here to make the model and data fit into the GPU RAM of machine G.

Model Implementation Library Addressing Imbalance Level

InceptionTime InceptionTimePlus tsai class weights,
loss function model

FCN-MLSTM MLSTM FCN tsai class weights,
loss function model

ROCKET +
XGBoost

ROCKET,
XGBClassifier

tsai,
xgboost

class weights,
boosting,

undersampling(*)

model,
data

7.3.2. Class Weights
For the cost-sensitive training setting, with weight factors applied to the classes
during training, several different methods for choosing the weights were used and
included into the hyper-parameter tuning (and model selection). See Section 7.4
below for more details, especially refer to Tables 7.4.1 and 7.4.2.

Some aspects of the methods for choosing weights were discussed in Section
4.2, see especially Section 4.2.3.

7.3.3. Regularization
Several regularization methods were applied to each of the models to decrease
the risk of overfitting. Some aspects of the respective regularization methods
were subject to hyper-parameter tuning, see Section 7.4 below. For an overview
of the regularization methods used refer to Tables 7.4.1 and 7.4.2.

7.3.4. Transformations
For all experiments, the data were standardized by subtracting the mean and
dividing by the standard deviation, for each variable (dimension) separately.
Both quantities were always estimated on the respective training data part and
applied to all parts (training, validation, test).

96

7.4. Hyper-parameter Tuning

7.4. Hyper-parameter Tuning
Hyper-parameters and the necessity to tune them were discussed in Section 6.7.

For tuning the models’ hyper-parameters, a Bayesian approach was chosen, and
the library optuna was used (Akiba et al. 2019), (optuna 2021) for conducting
the parameter search.

Training a model for search of hyper-parameter values is called a study in
optuna’s terminology. Each study consists of several trials, where one trial equals
one combination of suggested values for all involved hyper-parameters. The time
budget for the whole study, and the maximum number of trials in a study, can
be specified for the parameter search. The library offers the possibility to prune
trials, i.e. abandon the current trial (and the chosen hyper-parameter values)
early on when the performance is much worse then what was seen in other trials
before. This can save considerable amounts of time during search and allows to
use the given time-budget more effectively.

The training scheme was such that at the start of a trial, a concrete value
for each hyper-parameter was established (“suggested” in the terminology of
optuna). These are then used to define the model for each of the 5 folds used in
the Cross-Validation (CV) process. The respective model was then trained on
each fold’s training part and evaluated on the evaluation part. After each fold was
completed, the average ROC-AUC score across folds was computed and stored
to rank the different trials and their associated combination of hyper-parameters
after the study was completed. Note that regularization strength, and for some
models the method used for regularization, were considered hyper-parameters as
well and included into the tuning procedure.

7.4.1. Deep Neural Networks (DNNs)
Table 7.4.1 gives an overview of the hyper-parameters used for the models Incep-
tionTime and FCN-MLSTM. The first block shows hyper-parameters common
to both models, the following blocks show specific paramters for each of the two
models.

The inclusion of regularization methods (see Section 6.4.1) into the hyper-
parameter tuning scheme is a natural choice, the same holds for the batch size.
Including the quantity for monitoring the early stopping regularization should
enable the models to obtain good results while ensuring that no overfitting
occurs; preliminary experiments showed that using ROC-AUC for monitoring
can lead to overfitting. However, for the different models and settings, there
was not a clear enough picture to completely exclude the usage of this metric
for monitoring early stopping. ROC-AUC was in all cases still used as overall
metric to rank the trials against each other.

A similar scenario occurred for the class weights: preliminary experiments
did not paint a very clear picture on which method to use for establishing class
weights would yield the best results. Thus, several methods were included in the

97

Chapter 7. Experiment Settings

Table 7.4.1.: Hyper-parameters for InceptionTime and FCN-MLSTM models.
Model Category Type/Variable Value(s)/Case(s) Data Set

Gradient Descent Batch Sizes

Regularization Early Stopping
Monitoring ROC-AUC or Loss Validation

Estimation from
class distribution
Randomly chosen
for minority class

InceptionTime
and

FCN-MLSTM Class Imbalance
(data) Class Weights

Equal weights

Training

Regularization Dropout Convolutional Layers
Regularization Dropout Fully Connected LayersInceptionTime
Architecture # of Filters in Conv. Layers

Regularization Dropout RNN Layers
Regularization Dropout Fully Connected Layers

Architecture Size of Hidden Layers
in FC Network

FCN-MLSTM

Architecture # of RNN Layers

hyper-parameter tuning scheme.
While the inclusion of these parameters allows for greater flexibility of the

models on the one hand, it comes at the cost of increased training time (given
the fixed amount of compute power here) on the other hand.

7.4.2. XGBoost
The most important hyper-parameters involved in Gradient Boosted Decision
Trees (GBDT) in general and for XGBoost in particular were discussed in
Section 6.5.2. Table 7.4.2 holds the hyper-parameters used for the XGBoost
models working on the ROCKET features.

For XGBoost, regularization methods (and the coefficients for tuning the
amount of regularization applied) were included as well. Model coefficients were
shrunk by either limiting their sum by the l1- or l2-norm where the amount
of shrinkage was a hyper-parameter as well. Note that subsampling at several
different points of the model was applied, such as subsampling data instances
(rows of the data) as well as subsampling variables (columns).

XGBoost offers two different approaches for handling class imbalance at the
model level: including class weights (not in the loss function), and applying
weights to the updates in the additive model building process. It was a-priori
not clear which of both methods would work better, and again preliminary
experiments did not reveal a pattern. Thus, both methods were included (as
mutually exclusive options) into the hyper-parameter tuning scheme. Again, the
method for choosing class weights was included into the tuning.

98

7.4. Hyper-parameter Tuning

Table 7.4.2.: Hyper-parameters used for XGBoost with ROCKET features. (*)
Choosing an initial score seems to have helped to speed up training in the first
few iterations. The influence of this choice on the model is decreased after a few
boosting rounds. (**) The use of Class weights or weighted updates was mutually
exclusive and the choice was a hpyer-parameter itself. (***) Undersampling was
mainly carried to fit the data and model into the GPU RAM.

Model Category Type/Variable Value(s)/Case(s) Data Set
Architecture Booster Tree or Dart

Regularization Coefficients l-Norm l1 or l2
Regularization Subsampling Data instances Training

Columns by Tree
Columns by LevelRegularization Subsampling
Columns by Node

Training

Regularization Early Stopping
Monitoring ROC-AUC or Loss Validation

Class Imbalance
(model) (*)

Initial Score
for Classification
Estimation from
class distribution
Randomly chosen
for minority class

Class Imbalance
(model) (**) Class Weights

Equal weights

Training

Class Imbalance
(model) (**) Weighted Update Max. Delta Step

XGBoost
Classifier

Class Imbalance
(data) (***) Subsampling Undersampling of

majority class Training

ROCKET Architecture # of Kernels 4000 or 10000

99

Chapter 7. Experiment Settings

As for the DNN models, the choice of the metric used for monitoring early
stopping was included as well.

Additionally to the parameters listed in Table 7.4.2, the learning rate was
tuned as a hyper-parameter (see discussion about the interpretation of the
learning rate for additive tree models in Section 6.5).

As preliminary experiments showed, the full training data set (and model)
would not fit into the RAM of the GPU of machine G. Thus, to enable the use
of these models, random undersampling of the majority class of the training
data was included. This was different for the cases of 4000 or 10 000 kernels for
the ROCKET features: for the 10 000 kernel case, decreasing the data size was
mandatory, thus different ratios of undersampling were included into the tuning.
For the 4000 kernels case, whether random undersampling was applied at all was
hyper-parameter itself, and if chosen the undersampling ratio as well.

100

CHAPTER8
Results and Discussion

This chapter shows results of the experiments conducted in forms of tables and
plots and discusses the outcomes.

Figure 8.1 shows the number of completed trials for each experimental setting.
For each setting, the time budget for the hyper-parameter tuning (using Optuna)
was fixed to a certain amount such that at least 10 trials would be completed.
The time budget was estimated by extrapolating from running a few preliminary
trials in each case. Some cases achieved many more completed trials than others
due to inaccurate estimates on the one hand; on the other hand, the machine for
running the experiments was not available exclusively at all times, thus leading
to possibly longer trial durations. The number of completed trials for a fixed
time-budget in each case can reveal a rough estimate of the mean duration
of a trial, but due to the fact that the machine was not exclusively available,
a comparison of the models based on runtime (and thus consumed compute
resources) is not really meaningfully possible. Since for all settings at least 10
trials where completed, the top 10 trials for each setting will be looked at in a
bit more detail below. The sorting for better vs. worse trials was done based on
the ROC-AUC achieved on the validation set.

8.1. Model Selection: Best Ranked Results

Here, the results of the model selection procedure will be shown and discussed.
As was described in Section 6.6, for each model, several hyper-parameters were
subjected to automatic tuning with a given time-budget. Each specific setting
of hyper-parameters (a set of concrete values) is called a trial.

101

Chapter 8. Results and Discussion

IT
X
E
_3

6
4
4
_2

4
h

IT
X
E
_3

6
8
8
_2

4
h

IT
X
E
_4

8
8
8
_2

4
h

IT
X
E
_7

2
8
8
_2

4
h

IT
F
L_

3
6
4
4
_2

4
h

IT
F
L_

3
6
8
8
_2

4
h

IT
F
L_

4
8
8
8
_2

4
h

IT
F
L_

7
2
8
8
_2

4
h

M
LX

E
_3

6
4
4
_2

4
h

M
LX

E
_3

6
8
8
_1

2
h

M
LX

E
_4

8
8
8
_8

h

M
LX

E
_7

2
8
8
_8

h

M
LF

L_
3
6
4
4
_2

4
h

M
LF

L_
3
6
8
8
_1

2
h

M
LF

L_
4
8
8
8
_8

h

M
LF

L_
7
2
8
8
_8

h

R
O
X
G

0
4
k
_3

6
4
4
_1

2
h

R
O
X
G

0
4
k
_3

6
8
8
_1

2
h

R
O
X
G

0
4
k
_4

8
8
8
_8

h

R
O
X
G

0
4
k
_7

2
8
8
_8

h

R
O
X
G

1
0
k
_3

6
4
4
_2

4
h

R
O
X
G

1
0
k
_3

6
8
8
_2

4
h

R
O
X
G

1
0
k
_4

8
8
8
_1

8
h

R
O
X
G

1
0
k
_7

2
8
8
_1

8
h

experiment key

0

10

20

30

40

50

#
 c

o
m

p
le

te
d
 t

ri
a
ls

Number of completed Optuna trials.

IT, XE

IT, FL

ML, XE

ML, FL

XG, R04k

XG, R10k

Figure 8.1.: Number of completed hyper-parameter tuning trials using Optuna,
per experimental setting (see Tables 7.2.3, 7.2.2 and 7.2.1 for an explanation of
the experiment keys). Each trial is one set of values for the respective model’s
hyper-parameters. IT = InceptionTime, ML = FCN-MLSTM. XE = cross-
entropy, FL = focal loss. XG = XGBoost, R04k = ROCKET with 4000 kernels,
R10k = ROCKET with 10 000 kernels.

102

8.1. Model Selection: Best Ranked Results

8.1.1. Best Ranked Results Across all Experimental Settings
This is a ranking of results at the level of single trials, i.e., specific settings of
hyper-parameters for a model, across all models’ trials.

Table 8.1.1 lists the best 10 models, ranked by the mean ROC-AUC across
the 5 folds achieved on the validation set.

Table 8.1.1.: Models, windowing parameters and ROC-AUC values for the 10
best results (ranked by mean ROC-AUC on validation set). IT = InceptionTime,
ML = FCN-MLSTM. XE = cross-entropy, FL(γ) = focal loss, γ is the focusing
parameter. Compare Figure 8.2 for a graphical comparison of the ROC-AUC
values for all settings presented here.

Model Loss
Function

AUC
Validation

AUC
Training

AUC
Test

State
(h)

Stride
(h)

Pred.
(h)

Optuna
time

Trial
Nr.

IT FL(1) 0.75 0.95 0.73 36 4 4 24h 14
IT FL(1) 0.74 0.9 0.71 36 4 4 24h 17
IT FL(1) 0.74 0.92 0.69 36 4 4 24h 4
IT FL(2) 0.73 0.9 0.66 72 8 8 24h 3
IT FL(2) 0.72 0.85 0.68 48 8 8 24h 75
ML FL(2) 0.72 0.9 0.64 36 4 4 24h 1
IT XE 0.72 0.87 0.65 72 8 8 24h 3
ML XE 0.72 0.87 0.67 36 4 4 24h 1
IT FL(5) 0.71 0.84 0.67 48 8 8 24h 1
IT XE 0.71 0.86 0.64 72 8 8 24h 1

Figure 8.2 shows for each of the trials listed in Table 8.1.1 the ROC-AUC for
the training, validation and test sets, for each of the 5 folds, as well as the mean
value that was used for ranking.

8.1.2. Insights from Model Selection
• As is evident from Table 8.1.1, as well as from Figure 8.2, the overwhelming

majority of the best cases shows the combination of the InceptionTime
model with the focal loss loss function. Mostly small values of the focusing
parameter γ (∈ [1, 5] for the experiments) occur, suggesting that too
much influence of hard to classify examples (caused by larger values of the
focusing parameter) is not useful.

• The FCN-MLSTM model has two entries with comparable performance,
here the loss function does not seem to make a difference. It may be
necessary to look at more cases to get an idea of the influence of the loss
function for this model.

• The XGBoost GBDT classifier using ROCKET features does not occur
anywhere near the top results. The outcomes for the XGBoost models are

103

Chapter 8. Results and Discussion

IT
F
L_

3
6
4
4
_2

4
h
 (
1
4
)

IT
F
L_

3
6
4
4
_2

4
h
 (
1
7
)

IT
F
L_

3
6
4
4
_2

4
h
 (
4
)

IT
F
L_

7
2
8
8
_2

4
h
 (
3
)

IT
F
L_

4
8
8
8
_2

4
h
 (
7
5
)

M
LF

L_
3
6
4
4
_2

4
h
 (
1
)

IT
X
E
_7

2
8
8
_2

4
h
 (
3
)

M
LX

E
_3

6
4
4
_2

4
h
 (
1
)

IT
F
L_

4
8
8
8
_2

4
h
 (
1
)

IT
X
E
_7

2
8
8
_2

4
h
 (
1
)

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Top 10 results (by validation set ROC-AUC)

Training Validation Test

Figure 8.2.: Top 10 best results, ranked by ROC-AUC on the validation set
(mean across folds). This plot is the graphical representation of Table 8.1.1.
Lines connect mean ROC-AUC values (computed across the respective folds) for
each experimental setting / trial (trial number in parenthesis, compare Table
8.1.1). Error-bars show the standard error of the mean. Additionally, each fold’s
ROC-AUC is plotted as a point for each setting to visualize the spread around
the mean. Note that the y-axis is cut below 0.45. IT = InceptionTime, ML =
FCN-MLSTM. XE = cross-entropy, FL = focal loss.

104

8.2. ROC-AUC and Precision-Recall-AUC

shown in more detail in the Appendix in Sections A.1.5 and A.1.6 and
discussed in Section A.1.7.

• The windowing setting occurring most often is the (36, 4, 4) hour type.
All cases with a prediction length of 8 hours have state length of more
than 36 hour setting, i.e., the (36, 8, 8) hour setting does not occur among
the top results. This suggests that a state of 36 hours may be to short for
predicting more than 4 hours into the future with this high performance
(as measeured with ROC-AUC). For the 8 hour prediction length, a state
of 48 hours seems to be enough (vs. 72 hours).

• There is a considerable drop in performance from the training data set to
the evaluation data set, hinting at possible overfitting. However, there is
much less difference in performance between the evaluation and the test
set, suggesting that performance on unseen data is to be expected in the
range shown here.

8.1.3. Best Ranked Results per Windowing Setting
Figure 8.3 presents the best 10 results per windowing setting. This facilitates
the comparison of model trials specific for each windowing setting. Similar to
the results shown in Figure 8.2, the performance achieved on the validation set
does not differ strongly for the best results, i.e., similar performance can be
achieved for a few different models and hyper-parameter settings. For the (72, 8,
8) hour setting, two settings for ROCKET (with 10 000 kernels) occur in the
list of best results. While the performance appears acceptable on the validation
set, there is a large gap between the the training set and validation set, and a
large drop from the validation set to the test set performance. This hints at the
strong overfitting that occurs for these models, see Sections A.1.5 and A.1.6 for
further details.

8.2. ROC-AUC and Precision-Recall-AUC
While the performance metric ROC-AUC is suitable for selecting the models
based on their performance on the validation set, for the predictive capabilities
different metrics may be more insightful.

This section will give an overview of the relation of the achieved values for
the ROC-AUC metric and the corresponding value for PR-AUC. For a short
discussion of the general relationship between ROC-AUC and PR-AUC see also
Section 4.4.4.

Figure 8.4 shows plots revealing the relationship between ROC-AUC and
PR-AUC, lumped together for all of the top-ranked trials for each experiment
setting, with 5 folds each, separately for the training, validation and test sets.

105

Chapter 8. Results and Discussion

ITFL_3
644_2

4h (1
4)

ITFL_3
644_2

4h (1
7)

ITFL_3
644_2

4h (4
)

MLFL_3
644_2

4h (1
)

MLXE_3
644_2

4h (1
)

ITXE_3
644_2

4h (1
)

ITFL_3
644_2

4h (0
)

MLFL_3
644_2

4h (0
)

ITFL_3
644_2

4h (3
)

ITXE_3
644_2

4h (3
)

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Windowing setting: 3644

Training Validation Test

MLFL_3
688_1

2h (1
)

ITFL_3
688_2

4h (2
)

ITFL_3
688_2

4h (1
)

ITXE_3
688_2

4h (1
6)

ITFL_3
688_2

4h (2
1)

ITXE_3
688_2

4h (1
7)

MLFL_3
688_1

2h (2
)

ITFL_3
688_2

4h (3
3)

ITXE_3
688_2

4h (2
1)

ITFL_3
688_2

4h (4
)

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Windowing setting: 3688

Training Validation Test

ITFL_4
888_2

4h (7
5)

ITFL_4
888_2

4h (1
)

ITFL_4
888_2

4h (4
)

MLXE_4
888_8

h (4
)

MLXE_4
888_8

h (0
)

ITFL_4
888_2

4h (9
1)

ITXE_4
888_2

4h (7
)

ITFL_4
888_2

4h (9
2)

MLXE_4
888_8

h (1
58)

MLFL_4
888_8

h (2
2)

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Windowing setting: 4888

Training Validation Test

ITFL_7
288_2

4h (3
)

ITXE_7
288_2

4h (3
)

ITXE_7
288_2

4h (1
)

ITFL_7
288_2

4h (1
)

MLXE_7
288_8

h (1
)

MLFL_7
288_8

h (5
)

MLFL_7
288_8

h (1
7)

ITXE_7
288_2

4h (3
2)

ROXG10k_7
288_1

8h (2
3)

ROXG10k_7
288_1

8h (3
1)

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Windowing setting: 7288

Training Validation Test

Figure 8.3.: Best trials per windowing setting.

106

8.3. Example: Detailed Evaluation

The y-axis of the plots is logarithmically scaled as the PR-AUC values are
relatively small.

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC)

Figure 8.4.: ROC-AUC vs. PR-AUC (area under the Precision-Recall curve).
This figure lumps together for each of the 24 settings their top ranked trials,
each point in the plot corresponds to 1 single fold (of 5 folds per trial). The plot
is meant to show the overall relation between ROC-AUC and PR-AUC for the
training, validation and test sets. Note the logarithmically scaled vertical axis.
The red vertical line at ROC-AUC = 0.5 corresponds to the no-skill classifier.

In general, there is a monotonic relationship between the ROC-AUC and
the PR-AUC metrics. As mentioned in Section 4.4.4, according to (Davis
et al. 2006), maximizing ROC-AUC does not necessarily maximize PR-AUC.
Joint maximization for both metrics may still be a useful strategy for future
experiments, despite the relationship shown for the models used here.

The spread of the values achieved, as well as the disparity of the performance
on the different sets (training, validation and test) seen here should also be
compared to Figure 8.2.

Section A.2 in the Appendix shows the relationships as depicted in Figure 8.4
for each model family separately.

8.3. Example: Detailed Evaluation
As an example for more detailed evaluation of the performance of a specific
model, the ITFL 3644 24h (14) setting is used here, the overall best ranked
model and trial (see Figure 8.2 and Table 8.1.1). More concretely, the model
corresponding to fold 5 is used, as it shows the smallest gap between training
set and evaluation set performance.

Figure 8.5 shows the calibration plot for the model (see Section 4.3.3), for all
three data set parts. The model appears not well calibrated, and the distortion
away from the line showing perfect calibration is different for the different data
set parts. Compensating based on the training data would potentially worsen
the situation for the other data set parts, and unseen data in general. Especially

107

Chapter 8. Results and Discussion

striking is the small range of predicted probabilities, roughly only for the range
[0, 0.4] instead of [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n
 o

f
p
o
s
it

iv
e
s

Calibration plot

Perfectly calibrated

Training

Validation

Test

Figure 8.5.: Calibration plot for all three data set parts. Evidently, the model
does not properly use the range [0, 1] of probabilities, besides a distortion away
from the line showing perfect calibration. Interestingly, the curves differ strongly
for the different data sets.

Niculescu-Mizil et al. (2005) state that neural networks predict well calibrated
probabilities, but do not specify any details about the networks used for their
experiments; very likely, these are only rather simple feed-forward networks and
not more complex networks such as CNNs. Thus, it is questionable that this
statement holds for more general and complex neural networks, as the results
here suggest (similarly bad calibration was observed for most results obtained
from the experiments). In fact, Guo et al. investigated more recent deep neural
networks (and CNNs in particular) with respect to their calibration and found
them to be not well calibrated (Guo et al. 2017, p. 1322) and suggest methods
calibrating the outputs.

In general, it may be beneficial to calibrate the outputs of the models used
in this thesis, as they are envisioned to be used in a decision system where
further processing would be applied to the predicted probabilities (be it only for
quantization to class labels, involving costs for the decisions).

Figure 8.6 shows two plots: on the left, for all examples of the training data
set, the predicted probabilities are shown, where the true class as well as the
predicted class are shown. A threshold was set for quantizing the predicted
probabilities to class labels. The right part shows the corresponding confusion
matrix with the counts for the four fundamental cases. Both plots clearly reveal
that the separation of the classes is not well pronounced for this model.

Figure 8.7 shows the ROC plot (left) and the Precision-Recall curve (right)

108

8.4. Summary and Outlook

Figure 8.6.: Left: Plot showing the predicted probabilities for the target class
for all examples of the training data set. The true class is given by the vertical
position, the predicted class by color. Quantization from predicted probability
to class label is done using a threshold. Examples quantized to the target class
are to the right of the threshold. Right: Confusion matrix, showing the counts
for the four fundamental cases.

for all three data set parts. The operating points corresponding to the threshold
chosen and used in Figure 8.6 are marked on the respective curves. Note the
operating points on the far left in the ROC curve plot. The PR curve shows the
rather low values for precision and recall in the range of a few percent, see Table
8.3.1 for details.

Table 8.3.1.: Resulting numbers corresponding to the operating points shown in
Figure 8.7, using the threshold shown in Figure 8.6. TPR = True Positive Rate,
FPR = False Positive Rate.

Data Precision Recall (TPR) FPR
Training 0.158 0.223 0.001

Validation 0.05 0.096 0.001
Test 0.044 0.054 0.002

8.4. Summary and Outlook
In the following, a few aspects of the results obtained and shown above are
discussed, as are some points to be addressed in future investigations related to
the overarching scenario of this thesis, i.e. predicting errors in Hybrid Fiber-
Coaxial (HFC) networks to facilitate better planning of resources for network
maintenance.

109

Chapter 8. Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e
 P

o
s
it

iv
e
 R

a
te

 (
T
P
R

)

Test ROC-AUC: 0.77

Training ROC-AUC: 0.93

Validation ROC-AUC: 0.81

ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0

Recall (TPR)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
re

c
is

io
n

Test PR-AUC: 0.011

Training PR-AUC: 0.11

Validation PR-AUC: 0.015

Precision-Recall Curve

Figure 8.7.: Left: ROC plot for all three data set parts. The points marked on
each curve correspond to the specific threshold also used in Figure 8.6. Right:
Precision-Recall curve for all three data set parts. The drop in performance from
training to validation and test set parts appears more pronounced in this plot.

Model Performance
In general, the model performance based on the ranking using the ROC-AUC
seems acceptable at first sight. More detailed evaluation with metrics like
Precision and Recall reveal rather poor performance. However, the exemplary
evaluation for a specific model shown above should be taken with a grain of salt,
as the concrete cost factors are not known and would need to be involved for
evaluating the concrete usefulness of the models in a decision system. This is
discussed next.

In general, the results suggest that overfitting might be a problem across all
models used, despite several methods for regularization employed during model
training for all models.

Scenario and Costs, Revisited
We shall briefly return to the overarching scenario as described in Section 1.1.
The costs discussed there, Cm for maintenance (these are the costs for FP, CFP)
and Cuc (uc as in unhappy customer) (these are the costs for FN, CFN), could
depend on the network segment (location):

• Recall that the network segments, the fiber node areas (FNAs), have
different numbers of Cable Modems (CMs) (leaf nodes, customers), see
Sections 2.1 and 3.1.2. Thus, errors occurring in larger FNA would lead to
a larger number of unhappy customers.

• Larger FNAs typically cover larger spatial regions, this may result in
increased distances to travel between the devices to check, besides the
larger amount of devices present in such FNAs.

110

8.4. Summary and Outlook

Thus, evaluating the results further based on costs was decided to be far beyond
the scope of this thesis; this is a task that would need be carried out with an
actual implementation in an existing network with appropriate monitoring and
appropriate in-situ evaluation.

Performance Ceiling
Kuhn et al. (2013, p. 79) mention the notion of a performance ceiling for
a given data set, manifesting as a number of different models (or different
hyper-parameter settings of a specific model) that show similar or equivalent
performance. Revisiting Figure 8.2 (and Table 8.1.1), it seems that the model
selection carried out established such a performance ceiling for the data set, or
data sets, when considering the different windowing settings with the respective
(pre-) processing applied. This of course does not exclude the possibility that
better performance can be achieved, with either more tuning, different models,
different preprocessing or a completely different approach starting from the the
aggregated or even the raw data.

Region-Specific Models and Data
As was shown in Chapter 3, the data show some heterogeneity that is related
to the different (spatial) network segments. Potentially, it would make sense to
use several different models, where each one covers only a certain spatial region
of more coherent network state. However, as Sections 5.8 and especially 5.8.3
showed, the number of instances of the positive class is quite low for the data
used that span all available regions; when using region specific data, a (much)
longer time-span of data would be necessary to cover a sufficient number of
positive class cases for meaningfully training models.

111

APPENDIXA
Additional Plots and Insights
A.1. Best Ranked Results For each Experimental

Setting
In the following, for each of the 24 settings shown in Table 7.2.3, a figure similar
to Figure 8.2 is shown. Here, the figures show for each setting the top ranked
trials (according to ROC-AUC on the validation set) for only this setting, i.e.,
the (top ranked) results of the model selection per setting.

Lines connect the mean values computed across folds, points show the respec-
tive value for each fold. Each trial corresponds to a certain set of values for the
hpyer-parameters.

A.1.1. InceptionTime with Cross-entropy (ITXE)
See Figure A.1.

A.1.2. InceptionTime with Focal Loss (ITFL)
See Figure A.2.

A.1.3. FCN-MLSTM with Cross-entropy (MLXE)
See Figure A.3.

A.1.4. FCN-MLSTM with Focal Loss (MLFL)
See Figure A.4.

113

Appendix A. Additional Plots and Insights

1 3 32 6 42 28 44 31 33 35

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITXE_3644_24h

Training Validation Test

16 17 21 23 5 1 20 22 19 13

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITXE_3688_24h

Training Validation Test

7 22 4 51 25 3 1 54 94 83

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITXE_4888_24h

Training Validation Test

3 1 32 5 22 34 23 21 2 26

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITXE_7288_24h

Training Validation Test

Figure A.1.: InceptionTime with Cross-entropy (ITXE)

114

A.1. Best Ranked Results For each Experimental Setting

14 17 4 0 3 2 51 27 7 18

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITFL_3644_24h

Training Validation Test

2 1 21 33 4 61 35 62 72 74

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITFL_3688_24h

Training Validation Test

75 1 4 91 92 21 81 61 89 42

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITFL_4888_24h

Training Validation Test

3 1 52 36 24 51 23 15 48 28

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ITFL_7288_24h

Training Validation Test

Figure A.2.: InceptionTime with Focal Loss (ITFL)

115

Appendix A. Additional Plots and Insights

1 170 234 52 115 41 310 220 165 281

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLXE_3644_24h

Training Validation Test

0 21 3 2 1 42 34 71 44

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLXE_3688_12h

Training Validation Test

4 0 158 153 128 25 1 24 163 82

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLXE_4888_8h

Training Validation Test

1 44 3 0 35 50 83 13 82 43

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLXE_7288_8h

Training Validation Test

Figure A.3.: FCN-MLSTM with Cross-entropy (MLXE)

116

A.1. Best Ranked Results For each Experimental Setting

1 0 74 29 98 53 61 104 4 5

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLFL_3644_24h

Training Validation Test

1 2 41 4 21 103 26 42 85 3

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLFL_3688_12h

Training Validation Test

22 95 25 4 114 1 24 87 21 20

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLFL_4888_8h

Training Validation Test

5 17 18 23 20 15 2 9 19 4

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

MLFL_7288_8h

Training Validation Test

Figure A.4.: FCN-MLSTM with Focal Loss (MLFL)

117

Appendix A. Additional Plots and Insights

A.1.5. XGBoost Classifier with ROCKET Features, 4000
Kernels

See Figure A.5.

A.1.6. XGBoost Classifier with ROCKET Features, 10000
Kernels

See Figure A.6.

A.1.7. Discussion of XGBoost Results
The results for the combination of the ROCKET features and the XGBoost
GBDT classifier shown in Figures A.5 and A.6 (see also Figure A.9) reveal severe
overfitting to the training data. Especially for the version with 4000 kernels, the
performance on the test set is worse than random guessing (as is evident from
the ROC-AUC being below 0.5). The situation is only marginally better for the
10 000 kernel setting, only for the (72, 8, 8) hour setting there are a handful of
trials that show ROC-AUC above 0.5 and thus any skill.

Several methods for regularization were applied to prevent overfitting, see
Sections 6.5.2 and 7.4.2 for a discussion of the available options and the methods
used, respectively. It is at present not known why overfitting of this magnitude
occurred; inspection of the actual values for the amount of regularization applied
did not reveal any clear patterns that would seem to prevent or cause the
overfitting behavior. Additional inspection of the (hyper-) parameters relevant
to the handling of the class imbalance (class weights, limiting upgrade steps or
undersampling; see Sections 6.5.3 and 7.4.2) did also not reveal any systematic
relationship between these settings and overfitting.

It is not clear whether a different strategy for ranking the models would
reveal more successful cases, such as incorporating the performance gap between
training and validation set performance instead of only ranking by the validation
set ROC-AUC.

Potentially, different settings for the generation of the random kernels could
increase the performance and decrease the overfitting here; this would require
(possibly extensive) tuning that was beyond the scope of this thesis.

A.2. ROC-AUC and Precision-Recall-AUC per
Model Family

In the following, the relationships between ROC-AUC and PR-AUC are shown
for each model group separately, these plots should also be compared to the
figures in Section A.1, showing the top-ranked trials per model group.

118

A.2. ROC-AUC and Precision-Recall-AUC per Model Family

15 6 10 12 11 14 13 8 1

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG04k_3644_12h

Training Validation Test

36 31 16 13 23 34 32 25 21 14

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG04k_3688_12h

Training Validation Test

16 4 9 17 0 12 2 14 3 19

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG04k_4888_8h

Training Validation Test

12 15 13 10 5 14

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG04k_7288_8h

Training Validation Test

Figure A.5.: XGBoost Classifier with ROCKET Features, 4000 Kernels

119

Appendix A. Additional Plots and Insights

16 22 21 14 15 17 24 23 7 11

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG10k_3644_24h

Training Validation Test

1 19 21 15 14 24 5 12 23 2

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG10k_3688_24h

Training Validation Test

7 15 13 6 16 5 14 12 10 2

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG10k_4888_18h

Training Validation Test

23 31 30 17 33 24 6 19 12 4 27

trial_nr

0.5

0.6

0.7

0.8

0.9

1.0

ro
c
_
a
u
c

ROXG10k_7288_18h

Training Validation Test

Figure A.6.: XGBoost Classifier with ROCKET Features, 10 000 Kernels

120

A.2. ROC-AUC and Precision-Recall-AUC per Model Family

Figure A.7 shows the plots for the InceptionTime models, with cross-entropy
and focal loss loss functions. Figure A.8 shows the plots for the FCN-MLSTM
models, with cross-entropy and focal loss loss functions.

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), ITXE models

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), ITFL models

Figure A.7.: InceptionTime (ITXE and ITFL) models. Color is per trial.

Figure A.9 shows the plots for the XGBoost models using ROCKET features.
As can be seen, the disparity between both metrics’ values achieved on the training
and validation sets is striking for these models, hinting at severe overfitting. The
test set shows values similar to the validation set.

121

Appendix A. Additional Plots and Insights

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), MLXE models

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), MLFL models

Figure A.8.: FCN-MLSTM (MLXE and MLFL) models. Color is per trial.

122

A.2. ROC-AUC and Precision-Recall-AUC per Model Family

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), ROXG04k models

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100

P
R

-A
U

C

Training

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Validation

0.4 0.6 0.8 1.0

ROC-AUC

10 3

10 2

10 1

100
Test

ROC-AUC vs. log(PR-AUC), ROXG10k models

Figure A.9.: XGBoost models with ROCKET features. Color is per trial. For
these models, there is a much larger difference between the scores achieved on
the training set as compared to the validation and test sets, hinting at severe
overfitting.

123

Acronyms
ARIMA Auto-Regressive Integrated Moving Average. 53

AUC Area Under the Curve. 45, 47–49, 85, 91, 103, 105, 107, 110, 118

BN Batch Normalization. 77

CCER Corrected Codword Error Rate. 17, 24, 26, 52

CER Codword Error Rate. 12, 17, 24, 26, 52

CM Cable Modem. 9, 11–13, 15–17, 110

CMTS Cable Modem Termination System. 10

CNN Convolutional Neural Network. viii, ix, 68–71, 73, 75–77, 79–83, 85, 108

CPD Common Path Distortion. 13

CV Cross-Validation. 61, 62, 90, 97

DNN Deep Neural Network. 53, 68, 71, 72, 94, 100

DOCSIS Data Over Cable Service Interface Specification. 1, 11

DS Downstream. 11, 16, 17, 26

FCN Fully Convolutional Network. viii, 53, 72, 76, 79, 94, 97, 98, 102–104, 121

FDD Frequeny-Domain Duplex. 11

FFNN Feed Forward Neural Network. 86

FN False Negative. 4, 5, 42, 43, 46, 110

FNA Fiber Node Area. See also fiber node area. 10, 11, 13–29, 51–54, 56, 57,
64, 110

FP False Positive. 3–5, 42, 43, 46, 110

125

Acronyms

FPR False Positive Rate. 47, 48, 109

GAP Global Average Pooling. 73, 77

GBDT Gradient Boosted Decision Trees. ix, 82, 86–89, 94, 98, 103, 118

HFC Hybrid Fiber-Coaxial. iii, v, vii, 1, 6, 9–13, 109

IR Imbalance Ratio. 26–28, 32, 33, 39, 40, 62

ISP Internet Service Provider. 9, 10

LSTM Long Short-Term Memory. 53, 72, 77–79

MLP Multi-Layer Perceptron. 68, 70, 71

MLSTM Multivariate Long Short-Term Memory. viii, 76, 94, 97, 98, 102–104,
121

MTS Multivariate Time Series. 13, 14, 19, 74

MTSC Multivariate Time-Series Classification. 67, 68, 71, 72

PR Precision-Recall. viii, 48, 49, 105, 107, 109, 118

ReLU Rectified Linear Unit. 69, 70, 77, 78, 80

RNN Recurrent Neural Network. 77

ROC Receiver Operating Characteristic. viii, 43, 45–49, 85, 91, 103, 105, 107–
110, 118

ROCKET RandOm Convolutional KErnel Transform. 53, 54, 72, 79–82, 86, 94,
98–100, 102, 103, 105, 118, 121

SaE Squeeze-and-Excite. 77–79

SMOTE Synthetic Minority Oversampling Technique. 33, 34

SNR Signal-to-Noise Ratio. 12, 17

TN True Negative. 4, 46

TP True Positive. 3, 4, 46

TPR True Positive Rate. 47, 48, 109

TSC Time-Series Classification. viii, 2, 6, 53, 67, 68, 71–73, 75, 77, 79, 81

US Upstream. 10, 16, 17, 26

WAN Wide-Area Network. 1

126

Glossary
fiber node Also fiber optical node. A unit within an HFC-network that converts

between optical and electrical signals. Interfaces to fiber optic and coaxial
cables. 10

fiber node area Also fiber node service area. The area (neighborhood) served
by a fiber node within an HFC network. 10, 110, 125

micro-reflections Reflections with very short temporal distance between main
signal and reflection (on the order of 1 µs). These can occur in the down-
stream as well as the upstream direction and have a detrimental effect on
the transmission. For details see (CableLabs 2017, p. 22). 17, 24

127

Bibliography
Aggarwal, Charu C. (2017). Outlier Analysis. 2nd ed. Cham: Springer Inter-

national Publishing. doi: 10.1007/978- 3 - 319- 47578- 3. url: http:
//link.springer.com/10.1007/978-3-319-47578-3 (cit. on pp. 3, 33–35,
40, 45, 48).

Akiba, Takuya et al. (2019). “Optuna: A Next-generation Hyperparameter
Optimization Framework.” In: Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 2623–
2631. doi: 10.1145/3292500.3330701. arXiv: 1907.10902. url: https:
//github.com/pfnet/optuna (cit. on p. 97).

Bagnall, Anthony et al. (2017). “The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances.” In: Data
Mining and Knowledge Discovery 31, pp. 606–660. doi: 10.1007/s10618-
016-0483-9 (cit. on pp. 53, 72).

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Springer (cit. on pp. 35–37, 43, 83–85, 88).

Branco, Paula, Lúıs Torgo, and Rita P. Ribeiro (Aug. 2016). “A Survey of
Predictive Modeling on Imbalanced Domains.” In: AACM Computing Surveys
49.2. issn: 0360-0300. doi: 10.1145/2907070 (cit. on pp. 31–33, 40).

Buja, Andreas, Werner Stuetzle, and Yi Shen (2005). “Loss Functions for Binary
Class Probability Estimation and Classification: Structure and Applications.”
In: url: http://stat.wharton.upenn.edu/˜buja/PAPERS/paper-proper
-scoring.pdf (last visited on 2022-04-24) (cit. on p. 37).

CableLabs (2017). Data-Over-Cable Service Interface Specifications DOCSIS 3.0.
Version C01. Cable Television Laboratories. url: https://www.cablelabs.
com/specifications/CM-SP-PHYv3.0 (last visited on 2022-01-07) (cit. on
pp. 9, 11, 127).

Chawla, Nitesh V. et al. (2002). “SMOTE: Synthetic Minority Over-sampling
Technique.” In: Journal of Artificial Intelligence Research 16, pp. 321–357
(cit. on p. 33).

129

https://doi.org/10.1007/978-3-319-47578-3
http://link.springer.com/10.1007/978-3-319-47578-3
http://link.springer.com/10.1007/978-3-319-47578-3
https://doi.org/10.1145/3292500.3330701
https://arxiv.org/abs/1907.10902
https://github.com/pfnet/optuna
https://github.com/pfnet/optuna
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1145/2907070
http://stat.wharton.upenn.edu/~buja/PAPERS/paper-proper-scoring.pdf
http://stat.wharton.upenn.edu/~buja/PAPERS/paper-proper-scoring.pdf
https://www.cablelabs.com/specifications/CM-SP-PHYv3.0
https://www.cablelabs.com/specifications/CM-SP-PHYv3.0

Bibliography

Chen, Tianqi and Carlos Guestrin (2016). “XGBoost: A Scalable Tree Boosting
System.” In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: ACM, pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. url: http://doi.acm.org/10.1145/2939672.2939785
(cit. on pp. 82, 87, 89, 90).

Crocker, Harry J. and Aaron W. Costall (2021). “An InceptionTime-Inspired
Convolutional Neural Network to Detect Cardiac Abnormalities in Reduced-
Lead ECG Data.” In: Computing in Cardiology (CinC) 2021 48, pp. 1–4
(cit. on p. 74).

Davis, Jesse and Mark Goadrich (2006). “The Relationship between Precision-
Recall and ROC Curves.” In: Proceedings of the 23rd International Conference
on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery, pp. 233–240. doi: 10.1145/1143844.1143874.
url: https://doi.org/10.1145/1143844.1143874 (cit. on pp. 49, 107).

Dempster, Angus, François Petitjean, and Geoffrey I. Webb (Sept. 2020). “ROC-
KET: Exceptionally Fast and Accurate Time Series Classification Using
Random Convolutional Kernels.” In: Data Minining and Knowledge Discovery
34.5, pp. 1454–1495. issn: 1384-5810. doi: 10.1007/s10618-020-00701-z.
url: https://doi.org/10.1007/s10618-020-00701-z (cit. on pp. 53, 72,
79–82).

dmlc (2021). XGBoost - eXtreme Gradient Boosting. url: https://github.
com/dmlc/xgboost (last visited on 2023-03-04) (cit. on pp. 82, 89).

dmlc (2022a). XGBoost - Parameter Tuning - Handle Imbalanced Dataset. url:
https : / / xgboost . readthedocs . io / en / stable / tutorials / param _
tuning.html#handle-imbalanced-dataset (last visited on 2023-03-04)
(cit. on p. 90).

dmlc (2022b). XGBoost - Parameters - max delta step. url: https://xgboost.
readthedocs.io/en/stable/parameter.html#parameters-for-tree-
booster (last visited on 2023-03-04) (cit. on p. 90).

Duda, Richard O., Peter E. Hart, and David G. Stork (2001). Pattern classifica-
tion. 2nd ed. Wiley (cit. on pp. 35, 41, 47).

Dumoulin, Vincent and Francesco Visin (Mar. 2018). “A guide to convolution
arithmetic for deep learning.” In: ArXiv e-prints. eprint: 1603.07285. url:
https://arxiv.org/abs/1603.07285 (cit. on p. 70).

Dumoulin, Vincent and Francesco Visin (2019). Github Repository: Convolution
arithmetic. url: https://github.com/vdumoulin/conv_arithmetic (last
visited on 2022-05-28) (cit. on p. 70).

130

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1007/s10618-020-00701-z
https://doi.org/10.1007/s10618-020-00701-z
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/stable/tutorials/param_tuning.html#handle-imbalanced-dataset
https://xgboost.readthedocs.io/en/stable/tutorials/param_tuning.html#handle-imbalanced-dataset
https://xgboost.readthedocs.io/en/stable/parameter.html#parameters-for-tree-booster
https://xgboost.readthedocs.io/en/stable/parameter.html#parameters-for-tree-booster
https://xgboost.readthedocs.io/en/stable/parameter.html#parameters-for-tree-booster
1603.07285
https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic

Esling, Philippe and Carlos Agon (Dec. 2012). “Time-Series Data Mining.” In:
ACM Comput. Surv. 45.1. issn: 0360-0300. doi: 10.1145/2379776.2379788.
url: https://doi.org/10.1145/2379776.2379788 (cit. on pp. 2, 56).

Fawcett, Tom (2006). “An introduction to ROC analysis.” In: Pattern Recognition
Letters 27, pp. 861–874 (cit. on pp. 35, 46, 47).

Fernández, Alberto et al. (2018). Learning from Imbalanced Data Sets. Cham:
Springer. isbn: 9783319980744. doi: 10.1007/978-3-319-98074-4 (cit. on
pp. 5, 26, 31–36, 39, 42, 47).

Friedman, Jerome H. (2001). “Greedy Function Approximation: A Gradient
Boosting Machine.” In: The Annals of Statistics 29.5, pp. 1189–1232. issn:
00905364. url: http://www.jstor.org/stable/2699986 (last visited on
2022-11-26) (cit. on pp. 88, 89).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.
http://www.deeplearningbook.org. MIT Press (cit. on pp. 61, 69–71, 77,
84–86, 90–92).

Guo, Chuan et al. (2017). “On Calibration of Modern Neural Networks.” In:
Proceedings of the 34th International Conference on Machine Learning -
Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, pp. 1321–1330
(cit. on pp. 44, 108).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2017). The Elements
of Statistical Learning. Data Mining, Inference, and Prediction. 2nd ed. New
York: Springer (cit. on pp. 53, 86–89, 92).

He, Haibo and Yunqian Ma, eds. (2013). Imbalanced Learning. Foundations,
Algorithms, and Applications. Wiley. isbn: 9781118646106 (cit. on pp. 3, 28,
31–33, 35, 45–48, 62).

Hochreiter, Sepp and Jürgen Schmidhuber (Nov. 1997). “Long Short-Term
Memory.” In: Neural Computation 9.8, pp. 1735–1780. issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/neco.
1997.9.8.1735 (cit. on p. 77).

Hu, Jie et al. (2020). “Squeeze-and-Excitation Networks.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 42.8, pp. 2011–2023. doi:
10.1109/TPAMI.2019.2913372 (cit. on p. 77).

Ismail Fawaz, Hassan et al. (July 2019). “Deep Learning for Time Series Clas-
sification: A Review.” In: Data Mining and Knowledge Discovery 33 (4),
pp. 917–963. issn: 1384-5810. doi: 10.1007/s10618-019-00619-1. url:
https://doi.org/10.1007/s10618-019-00619-1 (cit. on pp. 71, 72, 76).

Ismail Fawaz, Hassan et al. (2020). “InceptionTime: Finding AlexNet for time
series classification.” In: Data Mining and Knowledge Discovery 34 (6),

131

https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1007/978-3-319-98074-4
http://www.jstor.org/stable/2699986
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1

Bibliography

pp. 1936–1962. doi: 10.1007/s10618-020-00710-y (cit. on pp. 53, 68,
71–76).

Johnson, Justin M. and Taghi M. Khoshgoftaar (2019). “Survey on deep learning
with class imbalance.” In: Journal of Big Data 6, pp. 1–54 (cit. on pp. 28,
31, 34, 43).

Karim, Fazle et al. (2018). “LSTM Fully Convolutional Networks for Time Series
Classification.” In: IEEE Access 6, pp. 1662–1669. doi: 10.1109/ACCESS.
2017.2779939 (cit. on pp. 68, 72, 76).

Karim, Fazle et al. (2019). “Multivariate LSTM-FCNs for time series classifi-
cation.” In: Neural Networks 116, pp. 237–245. doi: https://doi.org/10.
1016/j.neunet.2019.04.014 (cit. on pp. 53, 72, 76–79).

Keller, Andreas (2011). Breitbandkabel und Zugangsnetze. 2nd ed. Berlin: Springer-
Verlag (cit. on p. 12).

Krawczyk, Bartosz (Nov. 2016). “Learning from imbalanced data: open challenges
and future directions.” In: Progress in Artificial Intelligence 5.4, pp. 221–
232. issn: 2192-6360. doi: 10.1007/s13748-016-0094-0. url: https:
//doi.org/10.1007/s13748-016-0094-0 (cit. on pp. 32, 34, 62).

Kuhn, Max and Kjell Johnson (2013). Applied Predictive Modeling. New York:
Springer. doi: 10.1007/978-1-4614-6849-3 (cit. on pp. 2, 3, 32, 39, 43,
44, 47, 52, 61, 62, 90, 111).

Kuhn, Max and Kjell Johnson (2020). Feature Engineering and Selection. A
Practical Approach for Predictive Models. New York: Chapman and Hall/CRC.
doi: 10.1201/9781315108230 (cit. on pp. 26, 34, 43, 47, 51, 54, 86, 91).

Lakshmanan, Valliappa, Sara Robinson, and Michael Munn (2020). Machine
Learning Design Patterns. Solutions to Common Challenges in Data Prepa-
ration, Model Building, and MLOps. O’Reilly. isbn: 9781098115784 (cit. on
pp. 2, 52).

Large, David and James Farmer (2009). Broadband Cable Access Networks. The
Morgan Kaufmann Series in Networking. Burlington, MA: Morgan Kaufmann.
doi: 10.1016/B978-0-12-374401-2.X1000-5 (cit. on pp. 11, 12).

Lin, Tsung-Yi et al. (2017). “Focal Loss for Dense Object Detection.” In: 2017
IEEE International Conference on Computer Vision (ICCV). Venice, Italy:
IEEE, pp. 2999–3007. doi: 10.1109/ICCV.2017.324 (cit. on pp. 37, 38).

Löning, Markus et al. (2019). “sktime: A Unified Interface for Machine Learning
with Time Series.” In: doi: 10.48550/ARXIV.1909.07872. url: https:
//arxiv.org/abs/1909.07872 (cit. on p. 82).

Mathworks (2022). Basic Structure of a Convolutional Neural Network. url:
https://www.mathworks.com/discovery/convolutional-neural-netwo
rk-matlab.html (last visited on 2022-03-26) (cit. on p. 69).

132

https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1201/9781315108230
https://doi.org/10.1016/B978-0-12-374401-2.X1000-5
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.48550/ARXIV.1909.07872
https://arxiv.org/abs/1909.07872
https://arxiv.org/abs/1909.07872
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

Metzen, Jan Hendrik (2023). Comparison of Calibration of Classifiers. url:
https://scikit- learn.org/stable/auto_examples/calibration/
plot_compare_calibration.html (last visited on 2023-03-05) (cit. on
p. 44).

Mills, Terence C. (2019). Applied Time Series Analysis. Academic Press. isbn:
9780128131183 (cit. on p. 53).

Niculescu-Mizil, Alexandru and Rich Caruana (2005). “Predicting Good Proba-
bilities with Supervised Learning.” In: Proceedings of the 22nd International
Conference on Machine Learning. ICML ’05. Bonn, Germany: Association
for Computing Machinery, pp. 625–632. isbn: 1595931805. doi: 10.1145/
1102351.1102430. url: https://doi.org/10.1145/1102351.1102430
(cit. on pp. 44, 108).

Oguiza, Ignacio (2020a). tsai - A state-of-the-art deep learning library for time
series and sequential data. url: https://github.com/timeseriesAI/tsai
(last visited on 2023-03-04) (cit. on p. 76).

Oguiza, Ignacio (2020b). tsai - FCN-MLSTM model. url: https://timese
riesai.github.io/tsai/models.rnn_fcn#mlstm_fcn (last visited on
2023-02-25) (cit. on p. 79).

Oguiza, Ignacio (2020c). tsai - InceptionTimePlus model. url: https://times
eriesai.github.io/tsai/models.inceptiontimeplus.html (last visited
on 2023-02-25) (cit. on p. 76).

Oguiza, Ignacio (2020d). tsai - ROCKET feature extractor. url: https://
timeseriesai.github.io/tsai/models.rocket_pytorch.html (last
visited on 2023-02-25) (cit. on p. 82).

optuna (2021). Optuna: A hyperparameter optimization framework. url: https:
//github.com/optuna/optuna (last visited on 2023-03-04) (cit. on p. 97).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12, pp. 2825–2830 (cit. on p. 20).

Prati, Ronaldo C., Gustavo E. A. P. A. Batista, and Maria Carolina Monard
(2011). “A Survey on Graphical Methods for Classification Predictive Perfor-
mance Evaluation.” In: IEEE Transactions on Knowledge and Data Engi-
neering 23.11, pp. 1601–1618. doi: 10.1109/TKDE.2011.59 (cit. on p. 43).

Provost, Foster and Tom Fawcett (2001). “Robust Classification for Imprecise
Environments.” In: Machine Learning 42.3, pp. 203–231. issn: 1573-0565.
doi: 10.1023/A:1007601015854. url: https://doi.org/10.1023/A:
1007601015854 (cit. on pp. 41, 47).

Ruiz, Alejandro Pasos et al. (2021). “The great multivariate time series classifi-
cation bake off: a review and experimental evaluation of recent algorithmic
advances.” In: Data Mining and Knowledge Discovery 35 (2), pp. 401–449. doi:

133

https://scikit-learn.org/stable/auto_examples/calibration/plot_compare_calibration.html
https://scikit-learn.org/stable/auto_examples/calibration/plot_compare_calibration.html
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://github.com/timeseriesAI/tsai
https://timeseriesai.github.io/tsai/models.rnn_fcn#mlstm_fcn
https://timeseriesai.github.io/tsai/models.rnn_fcn#mlstm_fcn
https://timeseriesai.github.io/tsai/models.inceptiontimeplus.html
https://timeseriesai.github.io/tsai/models.inceptiontimeplus.html
https://timeseriesai.github.io/tsai/models.rocket_pytorch.html
https://timeseriesai.github.io/tsai/models.rocket_pytorch.html
https://github.com/optuna/optuna
https://github.com/optuna/optuna
https://doi.org/10.1109/TKDE.2011.59
https://doi.org/10.1023/A:1007601015854
https://doi.org/10.1023/A:1007601015854
https://doi.org/10.1023/A:1007601015854

Bibliography

10.1007/s10618-020-00727-3. url: https://doi.org/10.1007/s10618-
020-00727-3 (cit. on pp. 2, 68, 71, 72).

Silva, Aldomar Pietro Santana et al. (2022). “Machine learning for noisy multi-
variate time series classification: a comparison and practical evaluation.” In:
Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional
(ENIAC 2022) (cit. on p. 82).

sktime (2022). sktime - A unified framework for machine learning with time
series. url: https://github.com/alan-turing-institute/sktime (last
visited on 2023-03-04) (cit. on p. 82).

Szegedy, Christian et al. (2016). “Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning.” In: doi: 10.48550/ARXIV.1602.
07261. url: https://arxiv.org/abs/1602.07261 (cit. on p. 73).

Unforgettable fan and Jffner (2009). HFC Network Diagram. url: https://
en.wikipedia.org/wiki/Hybrid_fiber-coaxial#/media/File:HFC_
Network_Diagram.svg (last visited on 2022-01-04) (cit. on p. 10).

Yu, Fisher and Vladlen Koltun (2016). “Multi-Scale Context Aggregation by
Dilated Convolutions.” In: 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. url: http:
//arxiv.org/abs/1511.07122 (cit. on p. 80).

134

https://doi.org/10.1007/s10618-020-00727-3
https://doi.org/10.1007/s10618-020-00727-3
https://doi.org/10.1007/s10618-020-00727-3
https://github.com/alan-turing-institute/sktime
https://doi.org/10.48550/ARXIV.1602.07261
https://doi.org/10.48550/ARXIV.1602.07261
https://arxiv.org/abs/1602.07261
https://en.wikipedia.org/wiki/Hybrid_fiber-coaxial#/media/File:HFC_Network_Diagram.svg
https://en.wikipedia.org/wiki/Hybrid_fiber-coaxial#/media/File:HFC_Network_Diagram.svg
https://en.wikipedia.org/wiki/Hybrid_fiber-coaxial#/media/File:HFC_Network_Diagram.svg
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122

	Kurzfassung
	Abstract
	Introduction
	Scenario and Problem Statement
	Decisions and Costs
	Challenges
	Thesis Organization

	hfc-Networks
	Network Structure
	Transmission
	Upstream Errors

	Data
	Raw and Aggregated Data
	Notation
	Raw and Aggregated Data

	Target Variable
	Data Availability
	Temporal Extent of Data
	Missing Onsets

	Distributions
	All-Zero Values

	Class Imbalance Ratio

	Class Imbalance
	Data Level
	Undersampling
	Oversampling
	Synthetic Oversampling

	Model Level
	Types of Models
	Loss Functions and Weights
	Choosing Weights
	Equivalence of Approaches

	Processing Model Output and Decision Rules
	Decision Rule
	Threshold Method
	Calibrated Probabilities

	Evaluation Metrics
	Types of Metrics
	roc
	Precision-Recall-Curve (pr-C)
	Relationships between ROC- and PR-curve

	Preprocessing
	Removing Data
	Incomplete Data
	Missing Onsets
	All-Zero Values or Zero Standard Deviation

	Transformations
	Suggested Transformations
	Standardization
	Skewness

	Windowing
	Assigning Class Labels
	Class Labels and Network State
	Reshaping Data
	3D-Arrays

	Data Splitting
	Class Imbalance Ratio after Preprocessing
	Class Imbalance Ratios
	Number of Instances
	Number of Instances in Target Class

	Processing Pipeline

	Models
	tsc
	Deep Neural Networks(DNNs)
	Convolutional Neural Networks(CNNs)

	cnn for tsc
	InceptionTime
	fcn-mlstm
	ROCKET

	Training cnn
	Regularization

	gbdt
	Gradient-Boosting
	Regularization
	XGBoost

	Model Selection
	Hyper-Parameters

	Experiment Settings
	Computers
	Experimental Conditions
	Models
	Loss Functions
	Windowing
	Experiment Labels

	Additional Settings
	Addressing Class Imbalance
	Class Weights
	Regularization
	Transformations

	Hyper-parameter Tuning
	Deep Neural Networks(DNNs)
	XGBoost

	Results and Discussion
	Model Selection: Best Ranked Results
	Best Ranked Results Across all Experimental Settings
	Insights from Model Selection
	Best Ranked Results per Windowing Setting

	ROC-AUC and Precision-Recall-AUC
	Example: Detailed Evaluation
	Summary and Outlook

	Additional Plots and Insights
	Best Ranked Results For each Experimental Setting
	InceptionTime with Cross-entropy (ITXE)
	InceptionTime with Focal Loss (ITFL)
	FCN-MLSTM with Cross-entropy (MLXE)
	FCN-MLSTM with Focal Loss (MLFL)
	XGBoost Classifier with ROCKET Features, 4000 Kernels
	XGBoost Classifier with ROCKET Features, 10000 Kernels
	Discussion of XGBoost Results

	ROC-AUC and Precision-Recall-AUC per Model Family

	Acronyms
	Glossary
	Bibliography

