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Abstract
The existence of global nonnegative martingale solutions to cross-diffusion systems of
Shigesada–Kawasaki–Teramoto type with multiplicative noise is proven. The model
describes the stochastic segregation dynamics of an arbitrary number of population
species in a bounded domain with no-flux boundary conditions. The diffusion matrix
is generally neither symmetric nor positive semidefinite, which excludes standard
methods for evolution equations. Instead, the existence proof is based on the entropy
structure of the model, a novel regularization of the entropy variable, higher-order
moment estimates, and fractional time regularity. The regularization technique is
generic and is applied to the population systemwith self-diffusion in any space dimen-
sion and without self-diffusion in two space dimensions.
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1 Introduction

Shigesada, Kawasaki, and Teramoto (SKT) suggested in their seminal paper [37]
a deterministic cross-diffusion system for two competing species, which is able to
describe the segregation of the populations. A random influence of the environment
or the lack of knowledge of certain biological parameters motivate the introduction of
noise terms, leading to the stochastic system for n species with the population density
ui of the i th species:

dui − div

( n∑
j=1

Ai j (u)∇u j

)
dt =

n∑
j=1

σi j (u)dW j (t) in O, t > 0, i = 1, . . . , n,(1)

with initial and no-flux boundary conditions

ui (0) = u0
i in O,

n∑
j=1

Ai j (u)∇u j · ν = 0 on ∂O, t > 0, i = 1, . . . , n, (2)

and diffusion coefficients

Ai j (u) = δi j

(
ai0 +

n∑
k=1

aikuk

)
+ ai j ui , i, j = 1, . . . , n, (3)

where O ⊂ R
d (d ≥ 1) is a bounded domain, ν is the exterior unit normal vector to

∂O, (W1, . . . , Wn) is an n-dimensional cylindrical Wiener process, and ai j ≥ 0 for
i = 1, . . . , n, j = 0, . . . , n are parameters. The stochastic framework is detailed in
Sect. 2.

The deterministic analog of (1)–(3) generalizes the two-species model of [37] to an
arbitrary number of species. The deterministic model can be derived rigorously from
nonlocal population systems [19, 35], stochastic interacting particle systems [8], and
finite-state jump Markov models [2, 13]. The original system in [37] also contains a
deterministic environmental potential and Lotka–Volterra terms, which are neglected
here for simplicity.

We call ai0 the diffusion coefficients, aii the self-diffusion coefficients, and ai j for
i �= j the cross-diffusion coefficients. We say that system (1)-(3) is with self-diffusion
if ai0 ≥ 0, aii > 0 for all i = 1, . . . , n, and without self-diffusion if ai0 > 0, aii = 0
for all i = 1, . . . , n.

The aim of thiswork is to prove the existence of global nonnegativemartingale solu-
tions to system (1)–(3) allowing for large cross-diffusion coefficients. The existence of
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a local pathwise mild solution to (1)–(3) with n = 2 was shown in [30, Theorem 4.3]
under the assumption that the diffusion matrix is positive definite. Global martingale
solutions to a SKT model with quadratic instead of linear coefficients Ai j (u) were
found in [18]. Besides detailed balance, this result needs a moderate smallness condi-
tion on the cross-diffusion coefficients. We prove the existence of global martingale
solutions to the SKT model for general coefficients satisfying detailed balance. This
result seems to be new.

There are two major difficulties in the analysis of system (1). The first difficulty is
the fact that the diffusion matrix associated to (1) is generally neither symmetric nor
positive semidefinite. In particular, standard semigroup theory is not applicable. These
issues have been overcome in [9, 10] in the deterministic case by revealing a formal
gradient-flow or entropy structure. The task is to extend this idea to the stochastic
setting.

In the deterministic case, usually an implicit Euler time discretization is used [24].
In the stochastic case, we need an explicit Euler scheme because of the stochastic Itô
integral, but this excludes entropy estimates. An alternative is the Galerkin scheme,
which reduces the infinite-dimensional stochastic system to a finite-dimensional one;
see, e.g., the proof of [32, Theorem 4.2.4]. This is possible only if energy-type (L2)
estimates are available, i.e. if ui can be used as a test function. In the present case,
however, only entropy estimates are available with the test function log ui , which is
not an element of the Galerkin space.

In the following, we describe our strategy to overcome these difficulties.We say that
system (1) has an entropy structure if there exists a function h : [0,∞)n → [0,∞),
called an entropy density, such that the deterministic analog of (1) can be written in
terms of the entropy variables (or chemical potentials) wi = ∂h/∂ui as

∂t ui (w) − div

( n∑
j=1

Bi j (w)∇w j

)
= 0, i = 1 . . . , n, (4)

where w = (w1, . . . , wn), ui is interpreted as a function of w, and B(w) =
A(u(w))h′′(u(w))−1 with B = (Bi j ) is positive semidefinite. For the deterministic
analog of (1), it was shown in [11] that the entropy density is given by

h(u) =
n∑

i=1

πi
(
ui (log ui − 1) + 1

)
, u ∈ [0,∞)n, (5)

where the numbersπi > 0 are assumed to satisfyπi ai j = π j a ji for all i, j = 1, . . . , n.
This condition is the detailed-balance condition for the Markov chain associated to
(ai j ), and (π1, . . . , πn) is the corresponding reversible stationary measure [11]. Using
wi = πi log ui in (4) as a test function and summing over i = 1, . . . , n, a formal
computation shows that

d

dt

∫
O

h(u)dx + 2
∫
O

n∑
i=1

πi

(
2ai0|∇√

ui |2 + 2aii |∇ui |2 +
∑
j �=i

ai j |∇√
ui u j |2

)
dx = 0.

(6)
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A similar expression holds in the stochastic setting; see (29). It provides L2 estimates
for ∇√

ui if ai0 > 0 and for ∇ui if aii > 0. Moreover, having proved the existence
of a solution w to an approximate version of (1) leads to the positivity of ui (w) =
exp(wi/πi ) (and nonnegativity after passing to the de-regularization limit).

To define the approximate scheme, our idea is to “regularize” the entropy variable
w. Indeed, instead of the algebraic mapping w �→ u(w), we introduce the mapping
Qε(w) = u(w) + εL∗Lw, where L : D(L) → H with domain D(L) ⊂ H is a
suitable operator and L∗ its dual; see Sect. 3 for details. The operator L is chosen
in such a way that all elements of D(L) are bounded functions, implying that u(w)

is well defined. Introducing the regularization operator Rε : D(L)′ → D(L) as the
inverse of Qε : D(L) → D(L)′, the approximate scheme to (1) is defined, written in
compact form, as

dv(t) = div
(
B(Rε(v))∇ Rε(v)

)
dt + σ

(
u(Rε(v))

)
dW (t), t > 0. (7)

The existence of a local weak solution vε to (7) with suitable initial and bound-
ary conditions is proved by applying the abstract result of [32, Theorem 4.2.4]; see
Theorem 13. The entropy inequality for wε := Rε(v

ε) and uε := u(wε),

E sup
0<t<T ∧τR

∫
O

h(uε(t))dx + ε

2
E sup

0<t<T ∧τR

‖Lwε(t))‖2L2(O)

+ E sup
0<t<T ∧τR

∫ t

0

∫
O

∇wε(s) : B(wε(s))∇wε(s)dxds ≤ C(u0, T ),

up to some stopping time τR > 0 allows us to extend the local solution to a global one
(Proposition 16).

For the de-regularization limit ε → 0, we need suitable uniform bounds. The
entropy inequality provides gradient bounds for uε

i in the case with self-diffusion and
for (uε

i )
1/2 in the case without self-diffusion. Based on these estimates, we use the

Gagliardo–Nirenberg inequality to prove uniform bounds for uε
i in Lq(0, T ; Lq(O))

with q ≥ 2. Such an estimate is crucial to define, for instance, the product uε
i uε

j .
Furthermore, we show a uniform estimate for uε

i in the Sobolev–Slobodeckij space
W α,p(0, T ; D(L)′) for some α < 1/2 and p > 2 such that α p > 1. These estimates
are needed to prove the tightness of the laws of (uε) in some sub-Polish space and to
conclude strong convergence in L2 thanks to the Skorokhod–Jakubowski theorem.

For the uniform estimates, we need to distinguish the cases with and without self-
diffusion. In the former case, we obtain an L2(0, T ; H1(O)) estimate for uε

i , such
that the product uε

i ∇uε
j is integrable, and we can pass to the limit in the coeffi-

cients Ai j (uε
i ). Without self-diffusion, we can only conclude that (uε

i ) is bounded
in L2(0, T ; W 1,1(O)), and products like uε

i ∇uε
j may be not integrable. To overcome

this issue, we use the fact that

div

( n∑
j=1

Ai j (u
ε)∇uε

j

)
= 


(
uε

i

(
ai0 +

n∑
j=1

ai j u
ε
j

))
(8)
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and write (1) in a “very weak” formulation by applying the Laplace operator to the test
function. Since the bound in L2(0, T ; W 1,1(O)) implies a bound in L2(0, T ; L2(O))

bound in two space dimensions, products like uε
i uε

j are integrable. In the determin-

istic case, we can exploit the L2 bound for ∇(uε
i uε

j )
1/2 to find a bound for uε

i uε
j in

L1(0, T ; L1(O)) in any space dimension, but the limit involves an identification that
we could not extend to the martingale solution concept.

On an informal level, we may state our main result as follows. We refer to Sect. 2
for the precise formulation.

Theorem 1 (Informal statement) Let ai j ≥ 0 satisfy the detailed-balance condition,
let the stochastic diffusion σi j be Lipschitz continuous on the space of Hilbert–Schmidt
operators, and let a certain interaction condition between the entropy and stochastic
diffusion hold (see Assumption (A5) below). Then there exists a global nonnegative
martingale solution to (1)–(3) in the case with self-diffusion in any space dimension
and in the case without self-diffusion in at most two space dimensions.

We discuss examples for σi j (u) in Sect. 7. Here, we only remark that an admissible
diffusion term is

σi j (u) = δi j u
α
i

∞∑
k=1

ak(ek, ·)U , i . j = 1, . . . , n, (9)

where 1/2 ≤ α ≤ 1, δi j is the Kronecker symbol, ak ≥ 0 decays sufficiently fast, (ek)

is a basis of the Hilbert space U with inner product (·, ·)U .
We end this section by giving a brief overview of the state of the art for the determin-

istic SKT model. First existence results for the two-species model were proven under
restrictive conditions on the parameters, for instance in one space dimension [26], for
the triangular system with a21 = 0 [33], or for small cross-diffusion parameters, since
in the latter situation the diffusion matrix becomes positive definite [17]. Amann [1]
proved that a priori estimates in the W 1,p(O) norm with p > d are sufficient to con-
clude the global existence of solutions to quasilinear parabolic systems, and he applied
this result to the triangular SKT system. The first global existence proof without any
restriction on the parameters ai j (except nonnegativity) was achieved in [22] in one
space dimension. This result was generalized to several space dimensions in [9, 10]
and to the whole space problem in [21]. SKT-type systems with nonlinear coefficients
Ai j (u), but still for two species, were analyzed in [15, 16]. Global existence results for
SKT-type models with an arbitrary number of species and under a detailed-balance
condition were first proved in [11] and later generalized in [31].

This paper is organized as follows. We present our notation and the main results
in Sect. 2. The operators needed to define the approximative scheme are introduced
in Sect. 3. In Sect. 4, the existence of solutions to a general approximative scheme is
proved and the corresponding entropy inequality is derived. Theorems 4 and 5 are
shown in Sects. 5 and 6, respectively. Section7 is concerned with examples for σi j (u)

satisfying our assumptions. Finally, the proofs of some auxiliary lemmas are presented
in Appendix A, and Appendix B states a tightness criterion that (slightly) extends [5,
Corollary 2.6] to the Banach space setting.
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2 Notation andmain result

2.1 Notation and stochastic framework

Let O ⊂ R
d (d ≥ 1) be a bounded domain. The Lebesgue and Sobolev spaces

are denoted by L p(O) and W k,p(O), respectively, where p ∈ [1,∞], k ∈ N, and
Hk(O) = W k,2(O). For notational simplicity,wegenerally donot distinguish between
W k,p(O) and W k,p(O;Rn). We set Hm

N (O) = {v ∈ Hm(O) : ∇v · ν = 0 on ∂O} for
m ≥ 2. If u = (u1, . . . , un) ∈ X is some vector-valued function in the normed space
X , we write ‖u‖2X = ∑n

i=1 ‖ui‖2X . The inner product of a Hilbert space H is denoted
by (·, ·)H , and 〈·, ·〉V ′,V is the dual product between the Banach space V and its dual
V ′. If F : U → V is a Fréchet differentiable function between Banach spaces U and
V , we write DF[v] : U → V for its Fréchet derivative, for any v ∈ U .

Given two quadratic matrices A = (Ai j ), B = (Bi j ) ∈ R
n×n , A : B =∑n

i, j=1 Ai j Bi j is the Frobenius matrix product, ‖A‖F = (A : A)1/2 the Frobenius
norm of A, and tr A = ∑n

i=1 Aii the trace of A. The constants C > 0 in this paper
are generic and their values change from line to line.

Let (�,F ,P) be a probability space endowed with a complete right-continuous
filtration F = (Ft )t≥0 and let H be a Hilbert space. Then L0(�; H) consists of all
measurable functions from � to H , and L2(�; H) consists of all H -valued random
variables v such that E‖v‖2H = ∫

�
‖v(ω)‖2HP(dω) < ∞. Let U be a separable

Hilbert space and (ek)k∈N be an orthonormal basis ofU . The space of Hilbert–Schmidt
operators from U to L2(O) is defined by

L2(U ; L2(O)) =
{

F : U → L2(O) linear, continuous :
∞∑

k=1

‖Fek‖2L2(O)
< ∞

}
,

and it is endowed with the norm ‖F‖L2(U ;L2(O)) = (
∑∞

k=1 ‖Fek‖2L2(O)
)1/2.

Let W = (W1, . . . , Wn) be an n-dimensional U -cylindrical Wiener process, taking
values in the separable Hilbert space U0 ⊃ U and adapted to the filtration F. We can
write W j = ∑∞

k=1 ek W k
j , where (W k

j ) is a sequence of independent standard one-

dimensional Brownian motions [12, Section 4.1.2]. Then W j (ω) ∈ C0([0,∞); U0)

for a.e. ω [32, Section 2.5.1].

2.2 Assumptions

We impose the following assumptions:

(A1) Domain: O ⊂ R
d (d ≥ 1) is a bounded domain with Lipschitz boundary. Let

T > 0 and set QT = O × (0, T ).
(A2) Initial datum: u0 = (u0

1, . . . , u0
n) ∈ L∞(�; L2(O;Rn)) is a F0-measurable

random variable satisfying u0(x) ≥ 0 for a.e. x ∈ O P-a.s.
(A3) Diffusion matrix: ai j ≥ 0 for i = 1, . . . , n, j = 0, . . . , n and there exist

π1, . . . , πn > 0 such that πi ai j = π j a ji for all i, j = 1, . . . , n (detailed-
balance condition).
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(A4) Multiplicative noise: σ = (σi j ) is an n × n matrix, where σi j : L2(O;Rn) →
L2(U ; L2(O)) isB(L2(O;Rn))/B(L2(U ; L2(O)))-measurable andF-adapted.
Furthermore, there exists Cσ > 0 such that for all u, v ∈ L2(O;Rn),

‖σ(u) − σ(v)‖L2(U ;L2(O)) ≤ Cσ ‖u − v‖L2(O),

‖σ(v)‖L2(U ;L2(O)) ≤ Cσ (1 + ‖v‖L2(O)).

(A5) Interaction between entropy and noise: There exists Ch > 0 such that for all
u ∈ L∞(O × (0, T )),

{ ∫ t

0

∞∑
k=1

n∑
i, j=1

( ∫
O

∂h

∂ui
(u(s))σi j (u(s))ekdx

)2

ds

}1/2

≤ Ch

(
1 +

∫ t

0

∫
O

h(u(s))dxds

)
,

∫ t

0

∞∑
k=1

∫
O
tr

[
(σ (u)ek)

T h′′(u)σ (u)ek
]
(s)dxds

≤ Ch

(
1 +

∫ t

0

∫
O

h(u(s))dxds

)
,

where h is the entropy density defined in (5).

Remark 2 (Discussion of the assumptions)

(A1) The Lipschitz regularity of the boundary ∂O is needed to apply the Sobolev and
Gagliardo–Nirenberg inequalities.

(A2) The regularity condition on u0 can be weakened to u0 ∈ L p(�; L2(O;Rn)) for
sufficiently large p ≥ 2 (only depending on the space dimension); it is used to
derive the higher-order moment estimates.

(A3) The detailed-balance condition is also needed in the deterministic case to reveal
the entropy structure of the system; see [11].

(A4) The Lipschitz continuity of the stochastic diffusion σ(u) is a standard condition
for stochastic PDEs; see, e.g., [36].

(A5) This is the most restrictive assumption. It compensates for the singularity of
(∂h/∂ui )(u) = πi log ui at ui = 0. We show in Lemma 34 that

σi j (u)(·) = uiδi j

1 + u1/2+η
i

∞∑
k=1

ak(ek, ·)U

satisfies Assumption (A5), where η > 0 and (ak) ∈ �2(R). Taking into account
the gradient estimate from the entropy inequality (see 6), we can allow for more
general stochastic diffusion terms like (9); see Lemma 35.
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Remark 3 (Reaction terms) It is possible to include additional nonlinear, continuous
reaction terms f : Rn → R

n satisfying

∫ t

0

n∑
i=1

∫
O

fi (u)
∂h

∂ui
dxds ≤ C f

(
1 +

∫ t

0

∫
O

h(u(s))dxds

)
.

A prominent choice are the so-called Lotka-Volterra source terms

fi (u) =
(

bi0 −
n∑

j=1

bi j u j

)
ui , i = 1, 2,

where bi j ≥ 0 for i = 1, . . . , n, j = 0, 1, . . . , n. Considering the entropy density h
given by (5), it is easy to see that this reaction term even improves the integrability of
the solution, due to bounds for terms of the form u2

i log(ui ), i = 1, . . . , n.

2.3 Main results

Let T > 0, m ∈ N with m > d/2 + 1, and D(L) = Hm
N (O).

Definition 1 (Martingale solution) A martingale solution to (1)–(3) is the triple
(Ũ , W̃ , ũ) such that Ũ = (�̃, F̃ , P̃, F̃) is a stochastic basis with filtration F̃ = (F̃t )t≥0,
W̃ is an n-dimensional cylindrical Wiener process, and ũ = (̃u1, . . . , ũn) is a contin-
uous D(L)′-valued F̃-adapted process such that ũi ≥ 0 a.e. in O × (0, T ) P̃-a.s.,

ũi ∈ L0(�̃; C0([0, T ]; D(L)′)) ∩ L0(�̃; L2(0, T ; H1(O))), (10)

the law of ũi (0) is the same as for u0
i , and for all φ ∈ D(L), t ∈ (0, T ), i = 1, . . . , n,

P̃-a.s.,

〈̃ui (t), φ〉D(L)′,D(L) = 〈̃ui (0), φ〉D(L)′,D(L) −
n∑

j=1

∫ t

0

∫
O

Ai j (̃u(s))∇ũ j (s) · ∇φdxds

+
n∑

j=1

∫
O

( ∫ t

0
σi j (̃u(s))dW̃ j (s)

)
φdx . (11)

Our main results read as follows.

Theorem 4 (Existence for the SKT model with self-diffusion) Let Assumptions (A1)–
(A5) be satisfied and let aii > 0 for i = 1, . . . , n. Then (1)–(3) has a global nonneg-
ative martingale solution in the sense of Definition 1.

Theorem 5 (Existence for the SKT model without self-diffusion) Let Assumptions
(A1)–(A5) be satisfied, let d ≤ 2, and let a0i > 0 for i = 1, . . . , n. We strengthen
Assumption (A4) slightly by assuming that for all v ∈ L2(O;Rn),

‖σ(v)‖L2(U ;L2(O)) ≤ Cσ (1 + ‖v‖γ

L2(O)
),
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where γ < 1 if d = 2 and γ = 1 if d = 1. Then (1)–(3) has a global nonnegative
martingale solution in the sense of Definition 1 with the exception that (10) and (11)
are replaced by

ũi ∈ L0(�̃; C0([0, T ]; D(L)′)) ∩ L0(�̃; L2(0, T ; W 1,1(O)))

and, for all φ ∈ D(L) ∩ W 2,∞(O),

〈̃ui (t), φ〉D(L)′,D(L) = 〈̃ui (0), φ〉D(L)′,D(L)

−
∫ t

0

∫
O

ũi (s)

(
ai0 +

n∑
j=1

ai j ũ j (s)

)

φdxds

+
n∑

j=1

∫
O

(∫ t

0
σi j (̃u(s))dW̃ j (s)

)
φdx .

Theweak formulation for the SKT systemwithout self-diffusion is weaker than that
one with self-diffusion, since we have only the gradient regularity ∇ũi ∈ L1(O), and
Ai j (̃u) may be nonintegrable. However, system (1) can be written in Laplacian form
according to (8), which allows for the “very weak” formulation stated in Theorem 5.
The condition on γ if d = 2 is needed to prove the fractional time regularity for the
approximative solutions.

Remark 6 (Nonnegativity of the solution) The a.s. nonnegativity of the population
densities is a consequence of the entropy structure, since the approximate densities uε

i
satisfy uε

i = ui (Rε(v
ε)) = exp(Rε(v

ε)/πi ) > 0 a.e. in QT . This may be surprising
since we do not assume that the noise vanishes at zero, i.e. σi j (u) = 0 if ui = 0.
This condition is replaced by the weaker integrability condition for σi j (u) log ui in
Assumption (A5). A similar, but pointwise condition was imposed in the deterministic
case; seeHypothesis (H3) in [25, Section 4.4]. The examples in Sect. 7 satisfy σi j (u) =
0 if ui = 0. ��

3 Operator setup

In this section, we introduce the operators needed to define the approximate scheme.

3.1 Definition of the connection operator L

Wedefine anoperator L that “connects” twoHilbert spacesV and H satisfyingV ⊂ H .
This abstract operator allows us to define a regularization operator that “lifts” the dual
space V ′ to V .

Proposition 7 (Operator L) Let V and H be separable Hilbert spaces such that the
embedding V ↪→ H is continuous and dense. Then there exists a bounded, self-adjoint,
positive operator L : D(L) → H with domain D(L) = V . Moreover, it holds for L
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and its dual operator L∗ : H → V ′ (we identify H and its dual H ′) that, for some
0 < c < 1,

c‖v‖V ≤ ‖L(v)‖H = ‖v‖V , ‖L∗(w)‖V ′ ≤ ‖w‖H , v ∈ V , w ∈ H . (12)

We abuse slightly the notation by denoting both dual and adjoint operators by A∗.
The proof is similar to [27, Theorem 1.12]. For the convenience of the reader, we
present the full proof.

Proof We first construct some auxiliary operator by means of the Riesz representation
theorem. Let w ∈ H . The mapping V → R, v �→ (v,w)H , is linear and bounded.
Hence, there exists a unique element w̃ ∈ V such that (v, w̃)V = (v,w)H for all
v ∈ V . This defines the linear operator G : H → V , G(w) := w̃, such that

(v,w)H = (v, G(w))V for all v ∈ V , w ∈ H .

The operator G is bounded and symmetric, since ‖G(w)‖V = ‖w̃‖V = ‖w‖H and

(G(w), v)H = (G(w), G(v))V = (w, G(v))H for all v,w ∈ H . (13)

This means that G is self-adjoint as an operator on H . Choosing v = w ∈ H in
(13) gives (G(v), v)H = ‖G(v)‖2V ≥ 0, i.e., G is positive. We claim that G is also
one-to-one. Indeed, let G(w) = 0 for somew ∈ H . Then 0 = (v, G(w))V = (v,w)H

for all v ∈ V and, by the density of the embedding V ↪→ H , for all v ∈ H . This
implies that w = 0 and shows the claim.

The properties on G allow us to define � := G−1 : D(�) → H , where D(�) =
ran(G) ⊂ V and D(�) denotes the domain of �. By definition, this operator satisfies

(v,�(w))H = (v,w)V for all v ∈ V , w ∈ D(�).

Hence, for all v,w ∈ D(�), we have (v,�(w))H = (v,w)V = (�(v),w)H , i.e.,
� is symmetric. Since G = G∗, we have D(�∗) = ran(G∗) = ran(G) = D(�)

and consequently, � is self-adjoint. Moreover, � is densely defined (since V ↪→ H
is dense). As a densely defined, self-adjoint operator, it is also closed. Finally, � is
one-to-one and positive:

C‖�(v)‖H ‖v‖V ≥ ‖�(v)‖H ‖v‖H ≥ (�(v), v)H = (v, v)V = ‖v‖2V ≥ 0

for all v ∈ D(�) and some C > 0 and consequently, ‖�(v)‖H ≥ C−1‖v‖V .
Therefore, we can define the square root of �, �1/2 : D(�1/2) → H , which is

densely defined and closed. Its domain can be obtained by closing D(�) with respect
to

‖�1/2(v)‖H = (�1/2(v),�1/2(v))
1/2
H = (�(v), v)

1/2
H = (v, v)

1/2
V = ‖v‖V (14)

for v ∈ D(�1/2). In particular, the graph norm ‖ · ‖H + ‖�1/2(·)‖H is equivalent to
the norm in V . We claim that D(�1/2) = V . To prove this, let w ∈ V be orthogonal
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to D(�1/2). Then (w, v)V = 0 for all v ∈ D(�1/2) and, since D(�) ⊂ D(�1/2),
in particular for all v ∈ D(�). It follows that 0 = (w, v)V = (w,�(v))H for
v ∈ D(�). Since � is the inverse of G : H → V , we have ran(�) = H , and it holds
that (w, ξ)H = 0 for all ξ ∈ H , implying that w = 0. This shows the claim.

Finally, we define L := �1/2 : D(L) = V → H , which is a positive and self-
adjoint operator. Estimate (14) shows that ‖L(v)‖H = ‖v‖V for v ∈ V . We deduce
from the equivalence between the norm in V and the graph norm of L that, for some
C > 0 and all v ∈ V ,

‖v‖V ≤ C(‖L(v)‖H + ‖v‖H ) = C(‖L(v)‖V + ‖L−1L(v)‖H )

≤ C(1 + ‖L−1‖)‖L(v)‖H ,

which proves the lower bound in (12). The dual operator L∗ : H → V ′ is bounded
too, since it holds for all w ∈ H that

‖L∗(w)‖V ′ = sup
‖v‖V =1

|(w, L(v))H | ≤ sup
‖v‖V =1

‖w‖H ‖v‖V = ‖w‖H .

This ends the proof. ��
We apply Proposition 7 to V = Hm

N (O) and H = L2(O), recalling that Hm
N (O) =

{v ∈ Hm(O) : ∇v · ν = 0 on ∂O} and m > d/2+ 1. Then, by Sobolev’s embedding,
D(L) ↪→ W 1,∞(O). Observe the following two properties that are used later:

‖L∗L(v)‖V ′ ≤ ‖v‖V , ‖L∗(w)‖V ′ ≤ ‖w‖H for all v ∈ V , w ∈ H . (15)

The following lemma is used in the proof of Proposition 16 to apply Itô’s lemma.

Lemma 8 (Operator L−1) Let L−1 : ran(L) → D(L) be the inverse of L and let
D(L−1) := D(�) be the closure of D(�) with respect to ‖L−1(·)‖H . Then D(L)′ is
isometric to D(L−1). In particular, it holds that (L−1(v), L−1(w))H = (v,w)D(L)′
for all v, w ∈ D(L)′.

Proof The proof is essentially contained in [27, p. 136ff] and we only sketch it. Let
F ∈ D(L−1)′. Then |F(v)| ≤ C‖L−1(v)‖H for all v ∈ D(�) and, as a consequence,
|F(Lu)| ≤ C‖u‖H for u = L−1(v) ∈ D(L). The density of L−1(D(�)) in H
guarantees the unique representation F(Lu) = (u, w)H for some w ∈ H , and we can
represent F in the form F(v) = (L−1v,w)H = (v, L−1w)H , where L−1w ∈ D(L).
This shows that every element of D(L−1)′ can be identified with an element of D(L).

Conversely, if w ∈ D(L), we consider functionals of the type v �→ (v,w)H for
v ∈ D(�), which are bounded in ‖L−1(·)‖H . These functionals can be extended by
continuity to functionals F belonging to D(L−1)′. The proof in [27, p. 137] shows
that ‖F‖D(L−1)′ = ‖w‖D(L). We conclude that D(L−1)′ is isometric to D(L). Since
Hilbert spaces are reflexive, D(L−1) is isometric to D(L)′. ��
Lemma 9 (Operator u) The mapping u := (h′)−1 from D(L) to L∞(O) is Fréchet
differentiable and, as a mapping from D(L) to D(L)′, monotone.
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Proof Let w ∈ D(L) ↪→ L∞(O) (here we use m > d/2). Then u(w) = (x �→
u(w(x))) ∈ L∞(O), showing that u : D(L) → L∞(O) = (L1(O))′ ↪→ D(L)′ is
well defined. It follows from the mean-value theorem that for all w, ξ ∈ D(L),

‖u(w + ξ) − u(w) − u′(w)ξ‖L∞(O) ≤ C‖ξ‖2D(L)

∥∥∥∥
∫ 1

0
(1 − s)u′′(w + sξ)ds

∥∥∥∥
L∞(O)

.

Since u′′ maps bounded sets to bounded sets, the integral is bounded. Thus, u :
D(L) → L∞(O) is Fréchet differentiable. For the monotonicity, we use the con-
vexity of h and hence the monotonicity of h′:

〈u(v) − u(w), v − w〉D(L)′,D(L) = (u(v) − u(w), v − w)L2(O)

= (u(v) − u(w), h′(u(v)) − h′(u(w)))L2(O) ≥ 0

for all v, w ∈ D(L). This proves the lemma. ��

3.2 Definition of the regularization operator Rε

First, we define another operator, denoted by Qε, that maps D(L) to D(L)′. Its inverse
is the desired regularization operator.

Lemma 10 (Operator Qε) Let ε > 0 and define Qε : D(L) → D(L)′ by Qε(w) =
u(w) + εL∗Lw, where w ∈ D(L). Then Qε is Fréchet differentiable, strongly mono-
tone, coercive, and invertible. Its Fréchet derivative DQε[w](ξ) = u′(w)ξ + εL∗Lξ

for w, ξ ∈ D(L) is continuous, strongly monotone, coercive, and invertible.

Proof The mapping Qε is well defined since w ∈ D(L) ↪→ L∞(O) implies that
u(w) ∈ L∞(O) and hence, ‖u(w)‖D(L)′ ≤ C‖u(w)‖L1(O) is finite. We show that Qε

is strongly monotone. For this, let v, w ∈ D(L) and compute

〈Qε(v) − Qε(w), v − w〉D(L)′,D(L)

= (u(v) − u(w), v − w)H + ε〈L∗L(v − w), v − w〉D(L)′,D(L)

≥ ε〈L∗L(v − w), v − w〉D(L)′,D(L) = ε‖L(v − w)‖2H ≥ εc‖v − w‖2D(L)

(16)

where we used the monotonicity of w �→ u(w) and the lower bound in (12). The
coercivity of Qε is a consequence of the strong monotonicity:

〈Qε(v), v〉D(L)′,D(L) = 〈Qε(v) − Qε(0), v − 0〉D(L)′,D(L) + 〈Qε(0), v〉D(L)′,D(L)

≥ εc‖v‖2D(L) + (u(0), v)H ≥ εc‖v‖2D(L) − C |u(0)| ‖v‖D(L)

for v ∈ D(L). Based on these properties, the invertibility of Qε now follows from
Browder’s theorem [20, Theorem 6.1.21].
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Next, we show the properties for DQε. The operator DQε[w] : D(L) → D(L)′ is
well defined for all w ∈ D(L), since

‖u′(w)ξ‖D(L)′ ≤ C‖u′(w)ξ‖L2(O) ≤ C‖u′(w)‖L2(O)‖ξ‖L∞(O)

≤ C‖u′(w)‖L2(O)‖ξ‖D(L)

for all ξ ∈ D(L) ↪→ L∞(O). The strong monotonicity of DQε[w] for w ∈ D(L)

follows from the positive semidefiniteness of u′(w) = (h′′)−1(u(w)) and the lower
bound in (12):

〈DQε[w](ξ) − DQε[w](η), ξ − η〉D(L)′,D(L)

= (u′(w)(ξ − η), ξ − η)H + ε〈L∗L(ξ − η), ξ − η〉D(L)′,D(L)

≥ ε‖L(ξ − η)‖2H ≥ εc‖ξ − η‖2D(L)

for ξ , η ∈ D(L). The choice η = 0 yields immediately the coercivity of DQε[w]. The
invertibility of DQε[w] follows again from Browder’s theorem. ��

Lemma 10 shows that the inverse of Qε exists. We set Rε := Q−1
ε : D(L)′ →

D(L), which is the desired regularization operator. It has the following properties.

Lemma 11 (Operator Rε) The operator Rε : D(L)′ → D(L) is Fréchet differentiable
and strictly monotone. In particular, it is Lipschitz continuous with Lipschitz constant
C/ε, where C > 0 does not depend on ε. The Fréchet derivative is also Lipschitz
continuous with the same constant and satisfies

DRε[v] = (DQε[Rε(v)])−1 = (u′(Rε(v)) + εL∗L)−1 for v ∈ D(L)′,

and it is Lipschitz continuous with constant C/ε, satisfying ‖DRε[v](ξ)‖D(L) ≤
ε−1C‖ξ‖D(L)′ for v, ξ ∈ D(L)′.

Proof We show first the Lipschitz continuity of Rε. Let v1, v2 ∈ D(L)′. Then there
exist w1, w2 ∈ D(L) such that v1 = Qε(w1), v2 = Qε(w2). Hence, using (12) and
(16),

‖Rε(v1) − Rε(v2)‖2D(L) = ‖w1 − w2‖2D(L) ≤ C‖L(w1 − w2)‖2H
≤ ε−1C〈Qε(w1) − Qε(w2), w1 − w2〉D(L)′,D(L)

≤ ε−1C‖Qε(w1) − Qε(w2)‖D(L)′ ‖w1 − w2‖D(L)

= ε−1C‖v1 − v2‖D(L)′ ‖Rε(v1) − Rε(v2)‖D(L),

proving that Rε is Lipschitz continuous with Lipschitz constant C/ε. The Fréchet
differentiability is a consequence of the inverse function theorem and DRε[v] =
(DQε[Rε(v)])−1 for v ∈ D(L)′.
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We verify the strict monotonicity of Rε. Let v, w ∈ D(L)′ with v �= w. Because
of the strong monotonicity of Qε, we have

〈v − w, Rε(v) − Rε(w)〉D(L)′,D(L) = 〈Qε(Rε(v)) − Qε(Rε(w)), Rε(v)

− Rε(w)〉D(L)′,D(L)

≥ ε−1c‖Rε(v) − Rε(w)‖2D(L) > 0,

and the right-hand side vanishes only if v = w, since Rε is one-to-one.
Next, we show that DRε[v] is Lipschitz continuous. Let w1, w2 ∈ D(L). By

Lemma 10, DQε[w] is strongly monotone. Thus, for any w ∈ D(L),

εc‖w1 − w2‖2D(L) ≤ 〈DQε[w](w1) − DQε[w](w2), w1 − w2〉D(L)′,D(L)

≤ ‖DQε[w](w1) − DQε[w](w2)‖D(L)′ ‖w1 − w2‖D(L).

Let v1 = DQε[w](w1) and v2 = DQε[w](w2). We infer that

‖(DQε[w])−1(v1) − (DQε[w])−1(v2)‖D(L) = ‖w1 − w2‖D(L)

≤ ε−1C‖DQε[w](w1) − DQε[w](w2)‖D(L)′ = ε−1C‖v1 − v2‖D(L)′ ,

showing the Lipschitz continuity of (DQε[w])−1 and DRε[v] = (DQε[Rε(v)])−1.
Finally, choosing w = Rε[v] and v2 = 0, ‖DRε[v](v1)‖D(L) ≤ ε−1C‖v1‖D(L)′ . ��

4 Existence of approximate solutions

In the previous section, we have introduced the regularization operator Rε : D(L)′ →
D(L). The entropy variable w is replaced by the regularized variable Rε(v) for v ∈
D(L)′. Setting v = u(Rε(v)) + εL∗L Rε(v), we consider the regularized problem

dv = div
(
B(Rε(v))∇ Rε(v)

)
dt + σ

(
u(Rε(v))

)
dW (t) in O, t ∈ [0, T ∧ τ), (17)

v(0) = u0 in O, ∇ Rε(v) · ν = 0 on ∂O, t > 0, (18)

recalling that B(w) = A(u(w))h′′(u(w))−1 for w ∈ R
n .

We clarify the notion of solution to problem (17)–(18). Let T > 0, let τ be an
F-adapted stopping time, and let v be a continuous, D(L)′-valued, F-adapted process.
We call (v, τ ) a local strong solution to (17) if

v(ω, ·, ·) ∈ L2([0, T ∧ τ(ω)); D(L)′) ∩ C0([0, T ∧ τ(ω)); D(L)′)

123



Stoch PDE: Anal Comp

for a.e. ω ∈ � and for all t ∈ [0, T ∧ τ),

v(t) = v(0) +
∫ t

0
div

(
B(Rε(v(s)))∇ Rε(v(s))

)
ds +

∫ t

0
σ
(
u(Rε(v(s))

)
dW (s),

(19)

∇ Rε(v) · ν = 0 on ∂O P-a.s. (20)

It can be verified that Rε is strongly measurable and, if v is progressively measurable,
also progressively measurable. Furthermore, if w is progressively measurable then so
does u(w), and if v ∈ C0([0, T ]; D(L)′), we have Rε(v) ∈ C0([0, T ]; D(L)) and
u(Rε(v)) ∈ L∞(QT ). Finally, if v ∈ L0(�; L p(0, T ; D(L)′)) for 1 ≤ p ≤ ∞,
then div(B(u(Rε(v)))∇ Rε(v)) ∈ L0(�; L p(0, T ; D(L)′))). Therefore, the integrals
in (19) are well defined. The local strong solution is called a global strong solution
if P(τ = ∞) = 1. Given t > 0 and a process v ∈ L2(�; C0([0, t]; D(L)′)), we
introduce the stopping time

τR := inf{s ∈ [0, t] : ‖v(s)‖D(L)′ > R} for R > 0.

The stopping time τR is P-a.s. positive. Indeed, by Chebychev’s inequality, it holds
for δ > 0 that

P(τR > δ) ≥ P

(
sup

0<t<δ

‖v(t ∧ τR)‖D(L)′ ≤ R
)

≥ 1 − 1

R2E sup
0<t<δ

‖v(t ∧ τR)‖2D(L)′ .

Then, inserting (19) and using the properties of the operators introduced in Sect. 3, we
can show that P(τR > δ) ≥ 1 − C(δ), where C(δ) → 0 as δ → 0, which proves the
claim.

We impose the following general assumptions.

(H1) Entropy density: Let D ⊂ R
n be a domain and let h ∈ C2(D; [0,∞)) be such

that h′ : D → R
n and h′′(u) ∈ R

n×n for u ∈ D are invertible and there exists
C > 0 such that |u| ≤ C(1 + h(u)) for all u ∈ D.

(H2) Initial datum: u0 = (u0
1, . . . , u0

n) ∈ L∞(�; L2(O;Rn)) is F0-measurable sat-
isfying u0(x) ∈ D for a.e. x ∈ O P-a.s.

(H3) Diffusion matrix: A = (Ai j ) ∈ C1(O;Rn×n) grows at most linearly and the
matrix h′′(u)A(u) is positive semidefinite for all u ∈ D.

Remark 12 (Discussion of the assumptions)Hypothesis (H1) and the positive semidef-
initeness condition of h′′(u)A(u) in (H3) are necessary for the entropy structure of the
general cross-diffusion system. The entropy density (5) with D = (0,∞)n satisfies
Hypothesis (H1), and the diffusionmatrix (3) fulfills (H3). The differentiability of A is
needed to apply [32, Prop. 4.1.4] (stating that the assumptions of the abstract existence
Theorem 4.2.2 are satisfied) and can be weakened to continuity, weak monotonicity,
and coercivity conditions. The growth condition for A is technical; it guarantees that
the integral formulation associated to (1) is well defined. Hypothesis (H2) guarantees
that h(u0) is well defined. ��
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We consider general approximate stochastic cross-diffusion systems, since the exis-
tence result for (17) may be useful also for other stochastic cross-diffusion systems.

Theorem 13 (Existence of approximate solutions) Let Assumptions (A1)–(A2), (A4)–
(A5), (H1)–(H3) be satisfied and let ε > 0, R > 0. Then problem (17)–(18) has a
unique local solution (vε, τR).

Proof We want to apply Theorem 4.2.4 and Proposition 4.1.4 of [32]. To this
end, we need to verify that the operator M : D(L)′ → D(L)′, M(v) :=
div(B(Rε(v))∇ Rε(v)), is Fréchet differentiable and has at most linear growth,
DM[v] − cI is negative semidefinite for all v ∈ D(L)′ and some c > 0, and σ

is Lipschitz continuous.
By the regularity of the matrix A and the entropy density h, the operator D(L) →

D(L)′,w �→ div(B(w)∇w), is Fréchet differentiable. Then the Fréchet differentiabil-
ity of Rε (see Lemma 11) and the chain rule imply that the operator M is also Fréchet
differentiable with derivative

DM[v](ξ) = div
(
DB[Rε(v)](DRε[v](ξ))∇ Rε(v)

) + div
(
B(Rε(v))∇DRε[v](ξ)

)
,

where v, ξ ∈ D(L)′.We claim that this derivative is locally bounded, i.e. if ‖v‖D(L)′ ≤
K then ‖DM[v](ξ)‖D(L)′ ≤ C(K )‖ξ‖D(L)′ . For this, we deduce from the Lipschitz
continuity of Rε (Lemma 11) and the property u(Rε(v)) ∈ L∞(O) for v ∈ D(L)′
that

‖B(Rε(v))‖L∞(O) + ‖DB[Rε(v)]‖L∞(O) ≤ C(1 + ‖Rε(v)‖D(L))

≤ C(ε)(1 + ‖v‖D(L)′),

where DB[Rε(v)] is interpreted as a matrix. Recalling from Lemma 11 that

‖DRε[v](ξ)‖D(L) ≤ C(ε)‖ξ‖D(L)′ for all ξ ∈ D(L)′,

we obtain for ‖v‖D(L)′ ≤ K and ξ ∈ D(L)′:

‖DM[v](ξ)‖D(L)′ ≤ C
∥∥DB[Rε(v)](DRε[v](ξ))∇ Rε(v)

+ B(Rε(v))∇DRε[v](ξ)
∥∥

L1(O)

≤ C‖DB[Rε(v)](DRε[v](ξ))‖L∞(O)‖∇ Rε(v)‖L1(O)

+ C‖B(Rε(v))‖L∞(O)‖∇DRε[v](ξ)‖L1(O)

≤ C‖DB[Rε(v)]‖L∞(O)‖DRε[v](ξ)‖D(L)‖Rε(v)‖D(L)

+ C‖B(Rε(v))‖L∞(O)‖DRε[v](ξ)‖D(L)

≤ C(ε)(1 + ‖v‖D(L)′)‖ξ‖D(L)′ ≤ C(ε, K )‖ξ‖D(L)′ .

This proves the claim. Thus, if ‖v‖D(L)′ ≤ K , there exists c > 0 such that

(ξ,DM[v](ξ) − cξ)D(L)′ ≤ 0 for ξ ∈ D(L)′.
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Moreover, by Lemma 11 again,

‖M(v)‖D(L)′ ≤ C‖B(Rε(v))∇ Rε(v)‖L1(O) ≤ C‖∇ Rε(v)‖L1(O)

≤ C‖Rε(v)‖D(L) ≤ ε−1C(1 + ‖v‖D(L)′).

It follows from Assumption (A4) and Lemma 9 that for v, v̄ ∈ D(L)′ with ‖v‖D(L)′ ≤
K and ‖v̄‖D(L)′ ≤ K ,

‖σ(u(Rε(v))) − σ(u(Rε(v̄)))‖L2(U ;D(L)′) ≤ C‖σ(u(Rε(v)))

− σ(u(Rε(v̄)))‖L2(U ;L2(O))

≤ C(K )‖u(Rε(v))) − u(Rε(v̄))‖L2(O)

≤ C(K )‖Rε(v) − Rε(v̄)‖D(L) ≤ C(ε, K )‖v − v̄‖D(L)′ ,

where C(K ) also depends on the L∞(O) norms of u′(Rε(v)) and u′(Rε(v̄)).
These estimates show that the assumptions of [32, Theorem 4.2.4] are satisfied in

the ball {v ∈ D(L)′ : ‖v‖D(L)′ ≤ K }. An inspection of the proof of that theorem,
which is based on the Galerkin method and Itô’s lemma, shows that local bounds are
sufficient to conclude the existence of a local solution v up to the stopping time τR .
The boundary conditions follow from Rε(v) ∈ D(L) = Hm

N (O) and the definition of
the space Hm

N (O). ��
For the entropy estimate we need two technical lemmas whose proofs are deferred

to Appendix A.

Lemma 14 Let w ∈ D(L), a = (ai j ) ∈ L1(O;Rn×n), and b = (bi j ) ∈ D(L)n×n

satisfying DRε[w](a) = b. Then

∫
O

a : bdx ≤
∫
O
tr[aT u′(w)−1a]dx .

Lemma 15 Let v0 ∈ L p(�; L1(O)) for some p ≥ 1 satisfies E
∫
O h(v0)dx ≤ C.

Then
∫
O

h(u(Rε(v
0)))dx + ε

2
‖L Rε(v

0)‖2L2(O)
≤

∫
O

h(v0)dx .

We turn to the entropy estimate.

Proposition 16 (Entropy inequality) Let (vε, τR) be a local solution to (17)–(18) and
set vR(t) = vε(ω, t ∧ τR(ω)) for ω ∈ �, t ∈ (0, τR(ω)). Then there exists a constant
C(u0, T ) > 0, depending on u0 and T but not on ε and R, such that

E sup
0<t<T ∧τR

∫
O

h(uε(t))dx + ε

2
E sup

0<t<T ∧τR

‖Lwε(t)‖2L2(O)

+ E sup
0<t<T ∧τR

∫ t

0

∫
O

∇wε(s) : B(wε(s))∇wε(s)dxds ≤ C(u0, T ),
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where uε := u(Rε(v
R)) and wε := Rε(v

R).

Proof The result follows from Itô’s lemma using a regularized entropy.More precisely,
we want to apply the Itô lemma in the version of [29, Theorem 3.1]. To this end, we
verify the assumptions of that theorem. Basically, we need a twice differentiable func-
tion H on a Hilbert space H , whose derivatives satisfy some local growth conditions
on H and V , where V is another Hilbert space such that the embedding V ↪→ H is
dense and continuous. We choose V = H = D(L)′ and the regularized entropy

H(v) :=
∫
O

h(u(Rε(v)))dx + ε

2
‖L Rε(v)‖2L2(O)

, v ∈ D(L)′. (21)

Recall that Rε(v) = h′(u(Rε(v))) for v ∈ D(L)′, since u = u(w) is the inverse of
h′. Then, in view of the regularity assumptions for h and Lemma 11, H is Fréchet
differentiable with derivative

DH[v](ξ) =
∫
O

(
h′(u(Rε(v)))u′(Rε(v))DRε[v](ξ) + εLDRε[v](ξ) · L Rε(v)

)
dx

= 〈
(u′(Rε(v)) + εL∗L)DRε[v](ξ), Rε(v)

〉
D(L)′,D(L)

= 〈
DQε[Rε(v)]DRε[v](ξ), Rε(v)

〉
D(L)′,D(L)

= 〈ξ, Rε(v)〉D(L)′,D(L),

where v, ξ ∈ D(L)′. In other words, DH[v] can be identified with Rε(v) ∈ D(L). In
a similar way, we can prove that DH[v] is Fréchet differentiable with

D2H[v](ξ, η) = 〈ξ,DRε[v](η)〉D(L)′,D(L) for v, ξ, η ∈ D(L)′.

We have, thanks to the Lipschitz continuity of Rε and DRε[v] (see Lemma 11) for all
v, ξ ∈ D(L)′ with ‖v‖D(L)′ ≤ K for some K > 0,

|DH[v](ξ)| ≤ ‖Rε(v)‖D(L)‖ξ‖D(L)′ ≤ C(ε)(1 + ‖v‖D(L)′)‖ξ‖D(L)′

≤ C(ε, K )‖ξ‖D(L)′ ,

|D2H[v](ξ, ξ)| ≤ ‖DRε[v](ξ)‖D(L)‖ξ‖D(L)′ ≤ C(ε)‖ξ‖2D(L)′ .

Finally, for any η ∈ D(L)′, we need an estimate for the mapping D(L)′ → R,
v �→ DH[v](η). We have identified DH[v] with Rε(v) ∈ D(L), but we need an
identification in D(L)′. As in Lemma 8, the operator L can be constructed in such
a way that the Riesz representative in D(L)′ of a functional acting on D(L)′ can be
expressed via the application of L∗L to an element of D(L). Indeed, for F ∈ D(L)

and ξ ∈ D(L)′, we infer from Lemma 8 that

〈ξ, F〉D(L)′,D(L) = (L−1ξ, L F〉D(L)′,D(L) = ((L L−1)L−1ξ, L F)L2(O)

= (L−1ξ, L−1L∗L F)L2(O) = (L∗L F, ξ)D(L)′ .
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Hence, we can associate DH[v] with L∗L Rε(v) ∈ D(L)′. Then, by the first estimate
in (15) and the Lipschitz continuity of Rε,

‖L∗L Rε(v)‖D(L)′ ≤ C‖Rε(v)‖D(L) ≤ C‖Rε(v) − Rε(0)‖D(L) + C‖Rε(0)‖D(L)

≤ C(ε)(1 + ‖v‖D(L)′) for all v ∈ D(L)′,

giving the desired estimate for DH[v] in D(L)′. Thus, the assumptions of the Itô
lemma, as stated in [29], are satisfied.

To simplify the notation, we set uε := u(Rε(v
R)) and wε := Rε(v

R) in the
following. By Itô’s lemma, using DH[vR] = h′(uε), D2H[vR] = DRε(v

R), we have

H(vR(t)) = H(v(0)) +
∫ t

0

〈
div

(
B(wε)∇h′(uε(s))

)
, wε(s)

〉
D(L)′,D(L)

ds

+
∞∑

k=1

n∑
i, j=1

∫ t

0

∫
O

∂h

∂ui
(uε(s))σi j (u

ε(s))ekdxdW k
j (s)

+ 1

2

∞∑
k=1

∫ t

0

∫
O
DRε[vR(s)](σ(uε(s))ek

) : (
σ(uε(s))ek

)
dxds. (22)

Lemma 15 shows that the first term on the right-hand side can be estimated from above
by

∫
O h(u0)dx . Using wε = Rε(v

R) = h′(uε) and integrating by parts, the second
term on the right-hand side can be written as

∫ t

0

〈
div

(
B(wε)∇h′(uε(s))

)
, wε(s)

〉
D(L)′,D(L)

ds

= −
∫ t

0

∫
O

∇wε(s) : B(wε)∇wε(s)dxds ≤ 0.

The boundary integral vanishes because of the choice of the space D(L) = Hm
N (O).

The last inequality follows from Assumption (A3), which implies that B(wε) =
A(u(wε))h′′(u(wε))−1 is positive semidefinite.. We reformulate the last term in (22)
by applying Lemma 14 with a = σ(uε)ek and b = DRε[v](σ (uε)ek):

∫
O
DRε[vR](σ(uε)ek

) : (
σ(uε)ek

)
dx

≤
∫
O
tr

[
(σ (uε)ek)

T u′(wε)−1σ(uε)ek
]
dx .
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Taking the supremum in (22) over (0, TR), where TR ≤ T ∧ τR , and the expectation
yields

E sup
0<t<TR

∫
O

h(uε(t))dx + ε

2
E sup

0<t<TR

‖Lwε‖2L2(O)

+ E sup
0<t<TR

∫ t

0

∫
O

∇wε(s) : B(wε)∇wε(s)dxds − E

∫
O

h(u0)dx

≤ E sup
0<t<TR

∞∑
k=1

n∑
i, j=1

∫ t

0

∫
O

∂h

∂ui
(uε(s))σi j (u

ε(s))ekdxdW k
j (s)

+ 1

2
E sup

0<t<TR

∞∑
k=1

∫ t

0

∫
O
tr

[
(σ (uε(s))ek)

T u′(wε(s))−1σ(uε(s))ek
]
dxds

=: I1 + I2. (23)

We apply the Burkholder–Davis–Gundy inequality [32, Theorem 6.1.2] to I1 and use
Assumption (A5):

I1 ≤ CE sup
0<t<TR

{∫ t

0

∞∑
k=1

n∑
i, j=1

(∫
O

∂h

∂ui
(uε(s))σi j (u

ε(s))ekdx

)2

ds

}1/2

≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫
O

h(uε(s))dxds

)
.

Also the remaining integral I2 can be bounded from above by Assumption (A5):

I2 ≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫
O

h(uε(s))dxds

)
.

Therefore, (23) becomes

E sup
0<t<TR

∫
O

h(uε(t))dx + ε

2
E sup

0<t<TR

‖Lwε‖2L2(O)

+ E sup
0<t<TR

∫ t

0

∫
O

∇wε(s) : B(wε)∇wε(s)dxds − E

∫
O

h(u0)dx

≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫
O

h(uε(s))dxds

)

≤ C + CE

∫ TR

0

∫
O

sup
0<s<t

h(uε(s))dxdt . (24)
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We apply Gronwall’s lemma to the function F(t) = sup0<s<t

∫
O h(uε(s))dx to find

that

E sup
0<t<TR

∫
O

h(uε(t))dx ≤ C(u0, T ).

Using this bound in (24) then finishes the proof. ��

The entropy inequality allows us to extend the local solution to a global one.

Proposition 17 Let (vε, τR) be a local solution to (19)–(20), constructed in Theo-
rem 13. Then vε can be extended to a global solution to (19)–(20).

Proof With the notation uε = u(Rε(v
ε)) and wε = Rε(v

ε), we observe that vε =
Qε(Rε(v

ε)) = u(Rε(v
ε)) + εL∗L Rε(v

ε) = uε + εL∗Lwε. Thus, we have for TR ≤
T ∧ τR ,

E sup
0<t<TR

‖vε(t)‖D(L)′ ≤ E sup
0<t<TR

‖uε‖D(L)′ + εE sup
0<t<TR

‖L∗Lwε(t)‖D(L)′

≤ CE sup
0<t<TR

‖uε‖L1(O) + εE sup
0<t<TR

‖L∗Lwε(t)‖D(L)′ .

We know from Hypothesis (H1) that |uε| ≤ C(1 + h(uε)). Therefore, taking into
account the entropy inequality and the second inequality in (15),

E sup
0<t<TR

‖v(t)‖D(L)′ ≤ CE sup
0<t<TR

‖h(uε(t))‖L1(O)

+εC sup
0<t<TR

‖Lwε(t)‖L2(O) ≤ C(u0, T ).

This allows us to perform the limit R → ∞ and to conclude that we have indeed a
solution vε in (0, T ) for any T > 0. ��

5 Proof of Theorem 4

We prove the global existence of martingale solutions to the SKT model with self-
diffusion.

5.1 Uniform estimates

Let vε be a global solution to (19)–(20) and set uε = u(Rε(v
ε)). We assume that

A(u) is given by (3) and that aii > 0 for i = 1, . . . , n. We start with some uniform
estimates, which are a consequence of the entropy inequality in Proposition 16.
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Lemma 18 (Uniform estimates) There exists a constant C(u0, T ) > 0 such that for
all ε > 0 and i, j = 1, . . . , n with i �= j ,

E‖uε
i ‖L∞(0,T ;L1(O)) ≤ C(u0, T ), (25)

a1/2
i0 E‖(uε

i )
1/2‖L2(0,T ;H1(O)) + a1/2

i i E‖uε
i ‖L2(0,T ;H1(O)) ≤ C(u0, T ),

a1/2
i j E‖∇(uε

i uε
j )
1/2‖L2(0,T ;L2(O)) ≤ C(u0, T ). (26)

Moreover, we have the estimate

εE‖L Rε(v
ε)‖2L∞(0,T ;L2(O))

+ E‖vε‖2L∞(0,T ;D(L)′) ≤ C(u0, T ). (27)

Proof Let vε be a global solution to (19)–(20). We observe that Rε(v
ε) =

h′(u(Rε(v
ε))) = h′(uε) implies that ∇ Rε(v

ε) = h′′(uε)∇uε. It is shown in [11,
Lemma 4] that for all z ∈ R

n and u ∈ (0,∞)n ,

zT h′′(u)A(u)z ≥
n∑

i=1

πi

(
a0i

z2i
ui

+ 2aii z
2
i

)
+ 1

2

n∑
i, j=1, i �= j

πi ai j

(√
u j

ui
zi +

√
ui

u j
z j

)2

.

Using B(Rε(v
ε)) = A(uε)h′′(uε)−1 and the previous inequality with z = ∇uε, we

find that

∇ Rε(v
ε) : B(Rε(v

ε))∇ Rε(v) = ∇uε : h′′(uε)
(

A(uε)h′′(uε)−1)h′′(uε)∇uε

= ∇uε : h′′(uε)A(uε)∇uε

≥
n∑

i=1

πi
(
4a0i |∇(uε)1/2|2 + 2aii |∇uε|2) + 2

∑
i �= j

πi ai j |∇(uε
i uε

j )
1/2|2.

(28)

Therefore, the entropy inequality in Proposition 16 becomes

E sup
0<t<T

∫
O

h(uε(t))dx + E sup
0<t<T

ε

2
‖L R(vε(t))‖2L2(O)

+ E

∫ T

0

∫
O

n∑
i=1

πi
(
4a0i |∇(uε)1/2|2 + 2aii |∇uε|2)dxds

+ 2E
∫ T

0

∫
O

∑
i �= j

πi ai j |∇(uε
i uε

j )
1/2|2dxds ≤ C(u0, T ).

(29)

This is the stochastic analog of the entropy inequality (6). By Hypothesis (H1), we
have |u| ≤ C(1 + h(u)) and consequently,

E sup
0<t<T

‖uε(t)‖L1(O) ≤ CE sup
0<t<T

∫
O

h(uε(t))dx + C ≤ C(u0, T ),
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which proves (25). Estimate (26) then follows from the Poincaré–Wirtinger inequality.
It remains to show estimate (27). We deduce from the second inequality in (15) that

‖vε(t)‖D(L)′ = ‖Qε(Rε(v
ε(t)))‖D(L)′ = ‖u(Rε(v

ε(t))) + εL∗L Rε(v
ε(t))‖D(L)′

≤ C‖u(Rε(v
ε(t)))‖L1(O) + ε‖L∗L Rε(v

ε(t))‖D(L)′

≤ C‖uε(t)‖L1(O) + εC‖L Rε(v
ε(t))‖L2(O).

This shows that

E sup
0<t<T

‖vε(t)‖D(L)′ ≤ CE sup
0<t<T

‖uε‖L1(O) + εCE sup
0<t<T

‖L Rε(v
ε(t))‖L2(O)

≤ C(u0, T ),

ending the proof. ��
We also need higher-order moment estimates.

Lemma 19 (Higher-order moments I) Let p ≥ 2. There exists a constant C(p, u0, T ),
which is independent of ε, such that

E‖uε‖p
L∞(0,T ;L1(O))

≤ C(p, u0, T ), (30)

a p/2
i0 E‖(uε

i )
1/2‖p

L2(0,T ;H1(O))
+ a p/2

i i E‖uε
i ‖p

L2(0,T ;H1(O))
≤ C(p, u0, T ), (31)

a p/2
i j E‖∇(uε

i uε
j )
1/2‖p

L2(0,T ;L2(O))
≤ C(p, u0, T ). (32)

Moreover, we have

E

(
ε sup
0<t<T

‖L Rε(v
ε(t))‖2L2(O)

)p

+ E

(
sup

0<t<T
‖vε(t)‖D(L)′

)p

≤ C(p, u0, T ).(33)

Proof Proceeding as in the proof of Proposition 16 and taking into account identity
(22) and inequality (28), we obtain

H(vε(t)) +
∫ T

0

∫
O

n∑
i=1

πi
(
4ai0|∇(uε)1/2|2 + 2aii |∇uε|2)dxds

+ 2E
∫ T

0

∫
O

∑
i �= j

πi ai j |∇(uε
i uε

j )
1/2|2dxds

≤ H(vε(0)) +
∞∑

k=1

n∑
i, j=1

∫ t

0

∫
O

πi log uε
i (s)σi j (u

ε(s))ekdxdW k
j (s)

+ 1

2

∞∑
k=1

∫ t

0

∫
O
tr

[
(σ (uε(s))ek)

T h′′(uε(s))σ (uε(s))ek
]
dxds,
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recalling Definition 21 of H(vε). We raise this inequality to the pth power, take the
expectation, apply the Burkholder–Davis–Gundy inequality (for the second term on
the right-hand side), and use Assumption (A5) to find that

E

(
sup

0<t<T

∫
O

h(uε(t))dx + ε sup
0<t<T

‖L Rε(v
ε(t))‖2L2(O)

)p

+ CE

( ∫ T

0

∫
O

n∑
i=1

πi ai0|∇(uε
i (s))

1/2|2dxds

)p

+ CE

( ∫ T

0

∫
O

n∑
i=1

πi aii |∇uε
i (s)|2dxds

)p

+ CE

( ∫ T

0

∫
O

∑
i �= j

πi ai j |∇(uε
i uε

j )
1/2|2dxds

)p

≤ C(p, u0) + CE

(∫ T

0

∞∑
k=1

n∑
i, j=1

( ∫
O
log uε

i (s)σi j (u
ε(s))ekdx

)2

ds

)p/2

+ CE

( ∫ T

0

∞∑
k=1

∫
O
tr

[
(σ (uε(s))ek)

T h′′(uε(s))(σ (uε(s))ek)
]
dxds

)p

≤ C(p, u0) + CE

(∫ T

0

∫
O

h(uε(s))dxds

)p

. (34)

We neglect the expression ε‖L Rε(v
ε(t))‖2

L2(O)
and apply Gronwall’s lemma. Then,

taking into account the fact that the entropy dominates the L1(O) norm, thanks to
Hypothesis (H1), and applying the Poincaré–Wirtinger inequality, we obtain estimates
(30)–(32). Going back to (34), we infer that

E

(
ε sup
0<t<T

‖L Rε(v
ε(t))‖2L2(O)

)p

≤ C(p, u0) + C(p, T )E

∫ T

0

( ∫
O

h(uε(s))dx

)p

ds

≤ C(p, u0, T ).

Combining the previous estimates and arguing as in the proof of Lemma 18, we have

E

(
sup

0<t<T
‖vε(t)‖D(L)′

)p

= E

(
sup

0<t<T
‖uε(t) + εL∗L Rε(v

ε(t))‖D(L)′
)p

≤ CE

(
sup

0<t<T
‖uε(t)‖L1(O)

)p

+ CE

(
ε2 sup

0<t<T
‖L Rε(v

ε(t))‖2L2(O)

)p/2

≤ C(p, u0, T ).

This ends the proof. ��
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Using the Gagliardo–Nirenberg inequality, we can derive further estimates. We
recall that QT = O × (0, T ).

Lemma 20 (Higher-order moments II) Let p ≥ 2. There exists a constant C(p, u0, T )

> 0, which is independent of ε, such that

E‖uε
i ‖p

L2+2/d (QT )
≤ C(p, u0, T ), (35)

E‖uε
i ‖p

L2+4/d (0,T ;L2(O))
≤ C(p, u0, T ). (36)

Proof We apply the Gagliardo–Nirenberg inequality:

E

(∫ T

0
‖uε

i ‖s
Lr (O)dt

)p/s

≤ CE

( ∫ T

0
‖uε

i ‖θs
H1(O)

‖uε
i ‖(1−θ)s

L1(O)
dt

)p/s

≤ CE

(
‖uε

i ‖(1−θ)s
L∞(0,T ;L1(O))

∫ T

0
‖uε

i ‖2H1(O)
dt

)p/s

≤ C
(
E‖uε

i ‖2(1−θ)p
L∞(0,T ;L1(O))

)1/2(
E‖uε

i ‖4p/s
L2(0,T ;H1(O))

)1/2 ≤ C,

where r > 1 and θ ∈ (0, 1] are related by 1/r = 1− θ(d +2)/(2d) and s = 2/θ ≥ 2.
The right-hand side is bounded in view of estimates (30) and (31). Estimate (35)
follows after choosing r = s, implying that r = 2 + 2/d, and (36) follows from the
choice s = 2 + 4/d, implying that r = 2. ��

Next, we show some bounds for the fractional time derivative of uε. This result is
used to establish the tightness of the laws of (uε) in a sub-Polish space. Alternatively,
the tightness property can be proved by verifying the Aldous condition; see, e.g., [18].
We recall the definition of the Sobolev–Slobodeckij spaces. Let X be a vector space and
let p ≥ 1, α ∈ (0, 1). Then W α,p(0, T ; X) is the set of all functions v ∈ L p(0, T ; X)

for which

‖v‖p
Wα,p(0,T ;X)

= ‖v‖p
L p(0,T ;X)

+ |v|p
Wα,p(0,T ;X)

=
∫ T

0
‖v‖p

Xdt +
∫ T

0

∫ T

0

‖v(t) − v(s)‖p
X

|t − s|1+α p
dtds < ∞.

With this norm, W α,p(0, T ; X) becomes a Banach space. We need the following
technical lemma, which is proved in Appendix A.

Lemma 21 Let g ∈ L1(0, T ) and δ < 2, δ �= 1. Then

∫ T

0

∫ T

0
|t − s|−δ

∫ t∨s

s∧t
g(r)drdtds < ∞. (37)

We obtain the following uniform bounds for uε and vε in Sobolev–Slobodeckij
spaces.
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Lemma 22 (Fractional time regularity) Let α < 1/2. There exists a constant
C(u0, T ) > 0 such that, for p := (2d + 4)/d > 2,

E‖uε‖p
Wα,p(0,T ;D(L)′) ≤ C(u0, T ),

ε p
E‖L∗L Rε(v

ε)‖p
Wα,p(0,T ;D(L)′) + E‖vε‖p

Wα,p(0,T ;D(L)′) ≤ C(u0, T ). (38)

Since p > 2, we can choose α < 1/2 such that α p > 1. Then the continuous
embedding W α,p(0, T ) ↪→ C0,β([0, T ]) for β = α − 1/p > 0 implies that

E‖uε‖p
C0,β ([0,T ];D(L)′) ≤ C(u0, T ). (39)

Proof First, we derive the W α,p estimate for vε and then we conclude the estimate for
uε from the definition vε = uε + εL∗L Rε(v

ε) and Lemma 20. Equation (17) reads in
terms of uε as

dvε
i = div

( n∑
j=1

Ai j (u
ε)∇uε

j

)
dt +

n∑
j=1

σi j (u
ε)dW j , i = 1, . . . , n.

We know from (33) that E‖vε‖p
L∞(0,T ;D(L)′) is bounded. Thus, to prove the bound for

the second term in (38), it remains to estimate the following seminorm:

E|vε
i |p

W α,p(0,T ;D(L)′ = E

∫ T

0

∫ T

0

‖vε
i (t) − vε

i (s)‖p
D(L)′

|t − s|1+α p
dtds

≤ E

∫ T

0

∫ T

0
|t − s|−1−α p

∥∥∥∥
∫ t∨s

s∧t
div

n∑
j=1

Ai j (u
ε(r))∇uε

j (r)dr

∥∥∥∥
p

D(L)′
dtds

+ E

∫ T

0

∫ T

0
|t − s|−1−α p

∥∥∥∥
∫ t∨s

s∧t

n∑
j=1

σi j (u
ε(r))dW j (r)

∥∥∥∥
p

D(L)′
dtds

=: J1 + J2.

We need some preparations before we can estimate J1. We observe that

∥∥∥∥
n∑

j=1

Ai j (u
ε)∇uε

j

∥∥∥∥
L1(O)

=
∥∥∥∥
(

ai0 + 2
n∑

j=1

ai j u
ε
j

)
∇uε

i +
∑
j �=i

ai j u
ε
i ∇uε

j

∥∥∥∥
L1(O)

≤ C‖∇uε
i ‖L1(O) + C‖uε‖L2(O)‖∇uε‖L2(O).
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It follows from the embedding L1(O) ↪→ D(L)′ that

J1 ≤ E

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t

∥∥∥∥ div
n∑

j=1

Ai j (u
ε(r))∇uε

j (r)

∥∥∥∥
D(L)′

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t

∥∥∥∥
n∑

j=1

Ai j (u
ε(r))∇uε

j (r)

∥∥∥∥
L1(O)

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t
‖∇uε(r)‖L2(O)dr

)p

dtds

+ CE

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t
‖uε(r)‖L2(O)‖∇uε(r)‖L2(O)dr

)p

dtds

=: J11 + J12.

We use Hölder’s inequality and fix p = (2d + 4)/d to obtain

J11 ≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p|t − s|p/2

( ∫ t∨s

s∧t
‖∇uε(r)‖2L2(O)

dr

)p/2

dtds.

In view of estimate (31) and (37), the right-hand side is finite if 1 + α p − p/2 < 2
or, equivalently, α < (d + 1)/(d + 2), and this holds true since α < 1/2. Applying
Hölder’s inequality again, we have

J12 ≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t
‖uε(r)‖2L2(O)

dr

)p/2( ∫ t∨s

s∧t
‖∇uε(r)‖2L2(O)

dr

)p/2

dtds

≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p|t − s|p/(d+2)

( ∫ t∨s

s∧t
‖uε(r)‖(2d+4)/d

L2(O)
dr

)pd/(2d+4)

×
( ∫ t∨s

s∧t
‖∇uε(r)‖2L2(O)

dr

)p/2

dtds

≤ C

{
E

( ∫ T

0

∫ T

0
|t − s|−1−α p+p/(d+2)

( ∫ t∨s

s∧t
‖uε(r)‖(2d+4)/d

L2(O)
dr

)
dtds

)2}1/2

×
{
E

( ∫ T

0
‖∇uε(r)‖2L2(O)

dr

)p}1/2

.

Because of estimates (31), (36), and (37), the right-hand side of is finite if 1 + α p −
p/(d + 2) < 2, which is equivalent to α < 1/2.

To estimate J2, we use the embedding L2(O) ↪→ D(L)′, the Burkholder–Davis–
Gundy inequality, the linear growth of σ from Assumption (A4), and the Hölder
inequality:
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J2 ≤ C
∫ T

0

∫ T

0
|t − s|−1−α p

E

∥∥∥∥
∫ t∨s

s∧t

n∑
j=1

σi j (u
ε(r))dW j (r)

∥∥∥∥
p

L2(O)

dtds

≤ C
∫ T

0

∫ T

0
|t − s|−1−α p

E

( ∫ t∨s

s∧t

∞∑
k=1

n∑
j=1

‖σi j (u
ε(r))ek‖2L2(O)

dr

)p/2

dtds

≤ C
∫ T

0

∫ T

0
|t − s|−1−α p+(p−2)/2

∫ t∨s

s∧t
E

n∑
j=1

(
1 + ‖uε

j (r)‖p
L2(O)

)
drdtds.

By (36) and (37), the right-hand side is finite if 1 + α p − (p − 2)/2 < 2, which is
equivalent to α < (3d+2)/(2d+4), and this is valid due to the condition α < 1/2.We
conclude that (vε) is bounded in L p(�; W α,p(0, T ; D(L)′)) with p = (2d + 4)/d.

Next, we derive the uniform bounds for uε. By definition of vε and the W α,p

seminorm,

E|uε|p
Wα,p(0,T ;D(L)′) = E|vε − εL∗L Rε(v

ε)|p
Wα,p(0,T ;D(L)′)

≤ CE

∫ T

0

∫ T

0

‖vε(t) − vε(s)‖p
D(L)′

|t − s|1+α p
dtds

+ CE

∫ T

0

∫ T

0

ε p‖L∗L Rε(v
ε(t)) − L∗L Rε(v

ε(s))‖p
D(L)′

|t − s|1+α p
dtds.

It follows from (15) and the Lipschitz continuity of Rε (Lemma 11) that

‖L∗L Rε(v
ε(t)) − L∗L Rε(v

ε(s))‖D(L)′ ≤ ‖Rε(v
ε(t)) − Rε(v

ε(s))‖L2(O)

≤ ε−1C‖vε(t) − vε(s)‖D(L)′ .

Then we find that

E|uε|p
Wα,p(0,T ;D(L)′) ≤ CE

∫ T

0

∫ T

0

‖vε(t) − vε(s)‖p
D(L)′

|t − s|1+α p
dtds

= CE|vε|Wα,p(0,T ;D(L)′),

which finishes the proof. ��

5.2 Tightness of the laws of (uε)

We show that the laws of (uε) are tight in a certain sub-Polish space. For this, we
introduce the following spaces:

• C0([0, T ]; D(L)′) is the space of continuous functions u : [0, T ] → D(L)′ with
the topology T1 induced by the norm ‖u‖C0([0,T ];D(L)′) = sup0<t<T ‖u(t)‖D(L)′ ;

• L2
w(0, T ; H1(O)) is the space L2(0, T ; H1(O)) with the weak topology T2.
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We define the space

Z̃T := C0([0, T ]; D(L)′) ∩ L2
w(0, T ; H1(O)),

endowed with the topology T̃ that is the maximum of the topologies T1 and T2. The
space Z̃T is a sub-Polish space, since C0([0, T ]; D(L)′) is separable and metrizable
and

fm(u) =
∫ T

0
(u(t), vm(t))H1(O)dt, u ∈ L2

w(0, T ; H1(O)), m ∈ N,

where (vm)m is a dense subset of L2(0, T ; H1(O)), is a countable family ( fm) of
point-separating functionals acting on L2(0, T ; H1(O)). In the following, we choose
a number s∗ ≥ 1 such that

s∗ <
2d

d − 2
if d ≥ 3, s∗ < ∞ if d = 2, s∗ ≤ ∞ if d = 1. (40)

Then the embedding H1(O) ↪→ Ls∗
(O) is compact.

Lemma 23 The set of laws of (uε) is tight in

ZT = Z̃T ∩ L2(0, T ; Ls∗
(O))

with the topologyT that is the maximum of T̃ and the topology induced by the L2(0, T ;
Ls∗

(O)) norm, where s∗ is given by (40).

Proof We apply Chebyshev’s inequality for the first moment and use estimate (39)
with β = α − 1/p > 0, for any η > 0 and δ > 0,

sup
ε>0

P

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t) − uε(s)‖D(L)′ > η

)

≤ sup
ε>0

1

η
E

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t) − uε(s)‖D(L)′
)

≤ δβ

η
sup
ε>0

E

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t) − uε(s)‖D(L)′

|t − s|β
)

≤ δβ

η
sup
ε>0

E‖uε‖C0,β ([0,T ];D(L)′))

≤ C
δβ

η
.

This means that for all θ > 0 and all η > 0, there exists δ > 0 such that

sup
ε>0

P

(
sup

s,t∈[0,T ], |t−s|≤δ

‖uε(t) − uε(s)‖D(L)′ > η

)
≤ θ,

123



Stoch PDE: Anal Comp

which is equivalent to the Aldous condition [5, Section 2.2]. Applying [38, Lemma
5, Theorem 3] with the spaces X = H1(O) and B = D(L)′, we conclude that (uε)

is precompact in C0([0, T ]; D(L)′). Then, proceeding as in the proof of the basic
criterion for tightness [34, Chapter II, Section 2.1], we see that the set of laws of (uε)

is tight in C0([0, T ]; D(L)′).
Next, by Chebyshev’s inequality again and estimate (26), for all K > 0,

P
(‖uε‖L2(0,T ;H1(O)) > K

) ≤ 1

K 2E‖uε‖2L2(0,T ;H1(O))
≤ C

K 2 .

This implies that for any δ > 0, there exists K > 0 such that P(‖uε‖L2(0,T ;H1(O)) ≤
K ) ≤ 1 − δ. Since closed balls with respect to the norm of L2(0, T ; H1(O)) are
weakly compact, we infer that the set of laws of (uε) is tight in L2

w(0, T ; H1(O)).
The tightness in L2(0, T ; Ls∗

(O)) follows from Lemma 37 in Appendix B with
p = q = 2 and r = 2 + 4/d. ��
Lemma 24 The set of laws of (

√
εL∗L Rε(v

ε)) is tight in

YT := L2
w(0, T ; D(L)′) ∩ L∞

w∗(0, T ; D(L)′)

with the associated topology TY .

Proof Weapply theChebyshev inequality and use the inequality ‖L∗L Rε(v
ε)‖D(L)′ ≤

C‖L Rε(v
ε)‖L2(O) and estimate (27):

P
(√

ε‖L∗L Rε(v
ε)‖L2(0,T ;D(L)′) > K

) ≤ ε

K 2E‖L∗L Rε(v
ε)‖2L2(0,T ;D(L)′) ≤ C

K 2

for any K > 0. Since closed balls in L2(0, T ; D(L)′) are weakly compact, the set of
laws of (

√
εL∗L Rε(v

ε)) is tight in L2
w(0, T ; D(L)′). The second claim follows from

an analogous argument. ��

5.3 Convergence of (uε)

Let P(X) be the space of probability measures on X . We consider the space ZT ×
YT × C0([0, T ]; U0), equipped with the probability measure με := με

u × με
w × με

W ,
where

με
u(·) = P(uε ∈ ·) ∈ P(ZT ),

με
w = P(

√
εL∗L Rε(v

ε) ∈ ·) ∈ P(YT ),

με
W (·) = P(W ∈ ·) ∈ P(C0([0, T ]; U0)),

recalling the choice (40) of s∗. The set of measures (με) is tight, since the set
of laws of (uε) and (

√
εL∗L Rε(v

ε)) are tight in (ZT ,T) and (YT ,TY ), respec-
tively. Moreover, (με

W ) consists of one element only and is consequently weakly
compact in C0([0, T ]; U0). By Prokhorov’s theorem, (με

W ) is tight. Hence, ZT ×
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YT ×C0([0, T ]; U0) satisfies the assumptions of the Skorokhod–Jakubowski theorem
[6, Theorem C.1]. We infer that there exists a subsequence of (uε,

√
εL∗L Rε(v

ε)),
which is not relabeled, a probability space (�̃, F̃ , P̃) and, on this space, (ZT ×
YT × C0([0, T ]; U0))-valued random variables (̃u, w̃, W̃ ) and (̃uε, w̃ε, W̃ ε) such
that (̃uε, w̃ε, W̃ ε) has the same law as (uε,

√
εL∗L Rε(v

ε), W ) on B(ZT × YT ×
C0([0, T ]; U0)) and, as ε → 0,

(̃uε, w̃ε, W̃ ε) → (̃u, w̃, W̃ ) in ZT × YT × C0([0, T ]; U0) P̃-a.s.

By the definition of ZT and YT , this convergence means P̃-a.s.,

ũε → ũ strongly in C0([0, T ]; D(L)′),
ũε⇀ũ weakly in L2(0, T ; H1(O)),

ũε → ũ strongly in L2(0, T ; Ls∗
(O)),

w̃ε⇀w̃ weakly in L2(0, T ; D(L)′),
w̃ε⇀w̃ weakly* in L∞(0, T ; D(L)′),

W̃ ε → W̃ strongly in C0([0, T ]; U0).

We derive some regularity properties for the limit ũ. We note that ũ is a ZT -Borel
random variable, since B(ZT ×YT ×C0([0, T ]; U0)) is a subset of B(ZT )×B(YT )×
B(C0([0, T ]; U0)). We deduce from estimates (25) and (26) and the fact that uε and
ũε have the same law that

sup
ε>0

Ẽ‖ũε‖p
L2(0,T ;H1(O))

+ sup
ε>0

Ẽ‖ũε‖p
L∞(0,T ;D(L)′) < ∞.

We infer the existence of a further subsequence of (̃uε) (not relabeled) that
is weakly converging in L p(�̃; L2(0, T ; H1(O))) and weakly* converging in
L p(�̃; C0([0, T ]; D(L)′)) as ε → 0. Because ũε → ũ in ZT P̃-a.s., we conclude
that the limit function satisfies

Ẽ‖ũ‖p
L2(0,T ;H1(O))

+ Ẽ‖ũ‖p
L∞(0,T ;D(L)′) < ∞.

Let F̃ and F̃ε be the filtrations generated by (̃u, w̃, W̃ ) and (̃uε, w̃ε, W̃ ), respectively.
By following the arguments of the proof of [7, Proposition B4], we can verify that
these new random variables induce actually stochastic processes. The progressive
measurability of ũε is a consequence of [4,AppendixB]. Set W̃ ε,k

j (t) := (W̃ ε(t), ek)U .

We claim that W̃ ε,k
j (t) for k ∈ N are independent, standard F̃t -Wiener processes. The

adaptedness is a direct consequence of the definition; the independence of W̃ ε,k
j (t)

and the independence of the increments W̃ ε,k(t) − W̃ ε,k(s) with respect to F̃s are
inherited from (W (t), ek)U . Passing to the limit ε → 0 in the characteristic function,
by using dominated convergence,wefind that W̃ (t) are F̃t -martingaleswith the correct
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marginal distributions. We deduce from Lévy’s characterization theorem that W̃ (t) is
indeed a cylindrical Wiener process.

By definition, uε
i = ui (Rε(v

ε)) = exp(Rε(v
ε)) is positive in QT a.s. We claim that

also ũi is nonnegative in O a.s.

Lemma 25 (Nonnegativity) It holds that ũi ≥ 0 a.e. in QT P̃-a.s. for all i = 1, . . . , n.

Proof Let i ∈ {1, . . . , n}. Since uε
i > 0 in QT a.s., we have E‖(uε

i )
−‖L2(0,T ;L2(O)) =

0, where z− = min{0, z}. The function uε
i is ZT -Borel measurable and so does its

negative part. Therefore, using the equivalence of the laws of uε
i and ũε

i in ZT and
writing με

i and μ̃ε
i for the laws of uε

i and ũε
i , respectively, we obtain

Ẽ‖(̃uε
i )

−‖L2(QT ) =
∫

L2(QT )

‖y−‖L2(QT )dμ̃
ε
i (y)

=
∫

L2(QT )

‖y−‖L2QT )dμ
ε
i (y) = E‖uε

i ‖L2(QT ) = 0.

This shows that ũε
i ≥ 0 a.e. in QT P̃-a.s. The convergence (up to a subsequence)

ũε → ũ a.e. in QT P̃-a.s. then implies that ũi ≥ 0 in QT P̃-a.s. ��
The following lemma is needed to verify that (̃u, W̃ ) is a martingale solution to

(1)–(2).

Lemma 26 It holds for all t ∈ [0, T ], i = 1, . . . , n, and all φ1 ∈ L2(O) and all
φ2 ∈ D(L) that

lim
ε→0

Ẽ

∫ T

0

(̃
uε

i (t) − ũi (t), φ1
)

L2(O)
dt = 0, (41)

lim
ε→0

Ẽ
〈̃
uε

i (0) − ũi (0), φ2
〉
D(L)′,D(L)

= 0, (42)

lim
ε→0

Ẽ

∫ T

0

〈√
εw̃ε

i (t), φ2
〉
D(L)′,D(L)

dt = 0, (43)

lim
ε→0

Ẽ〈√εw̃ε
i (0), φ2〉D(L)′,D(L) = 0, (44)

lim
ε→0

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

∫
O

(
Ai j (̃u

ε(s))∇ũε
j (s) − Ai j (̃u(s))∇ũ j (s)

) · ∇φ2dxds

∣∣∣∣dt = 0,

(45)

lim
ε→0

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

(
σi j (̃u

ε(s))dW̃ ε
j (s) − σi j (̃u(s))dW̃ j (s), φ1

)
L2(O)

∣∣∣∣
2

dt = 0.

(46)

Proof The proof is a combination of the uniform bounds and Vitali’s convergence
theorem. Convergences (41) and (42) have been shown in the proof of [18, Lemma
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16], and (43) is a direct consequence of (38) and

Ẽ

( ∫ T

0
〈√εw̃ε

i (t), φ2〉D(L)′,D(L)dt

)p

≤ ε p/2
Ẽ

( ∫ T

0
‖w̃ε

i (t)‖D(L)′ ‖φ2‖D(L)dt

)p

≤ ε p/2C .

Convergence (44) follows from w̃ε
i ⇀w̃i weakly* in L∞(0, T ; D(L)′). We establish

(45):

∣∣∣∣
∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

∫
O

(
Ai j (̃u

ε(s))∇ũε
j (s) − Ai j (̃u(s))∇ũ j (s)

) · ∇φ2dxds

∣∣∣∣

≤
∫ T

0
‖Ai j (̃u

ε(s)) − Ai j (̃u(s))‖L2(O)‖∇ũε
j (s)‖L2(O)‖∇φ2‖L∞(O)ds

+
∣∣∣∣
∫ T

0

∫
O

Ai j (̃u(s))∇ (̃uε(s) − ũ(s)) · ∇φ2dxds

∣∣∣∣ =: I ε
1 + I ε

2 .

By the Lipschitz continuity of A and the uniform bound for ∇ũε, we have I ε
1 → 0

as ε → 0 P̃-a.s. At this point, we use the embedding D(L) ↪→ W 1,∞(O). Also
the second integral I ε

2 converges to zero, since Ai j (̃u)∇φ2 ∈ L2(0, T ; L2(O)) and
∇ũε

j⇀∇ũ j weakly in L2(0, T ; L2(O)). This shows that P̃-a.s.,

lim
ε→0

∫ T

0

∫
O

Ai j (̃u
ε(s))∇ũε

j (s) · ∇φ2dxds =
∫ T

0

∫
O

Ai j (̃u(s))∇ũ j (s) · ∇φ2dxds.

A straightforward estimation and bound (31) lead to

Ẽ

∣∣∣∣
∫ T

0

∫
O

Ai j (̃u
ε(s))∇ũε

j (s) · ∇φ2dxds

∣∣∣∣
p

≤ ‖∇φ2‖p
L∞(O)

Ẽ

(∫ T

0

∥∥∥∥
n∑

j=1

Ai j (̃u
ε(s))∇ũε

j (s)

∥∥∥∥
L1(O)

ds

)p

≤ C,

Hence, Vitali’s convergence theorem gives (45).
It remains to prove (46). By Assumption (A4), P̃-a.s.,

∫ T

0
‖σi j (̃u

ε(s)) − σi j (̃u(s))‖2L2(U ;L2(O))
ds ≤ Cσ ‖ũε − ũ‖L2(0,T ;L2(O)) → 0.

This convergence and W̃ ε → W̃ in C0([0, T ]; U0) imply that [14, Lemma 2.1]

∫ T

0
σi j (̃u

ε)dW̃ ε →
∫ T

0
σi j (̃u)dW̃ in L2(0, T ; L2(O)) P̃-a.s.
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By Assumption (A4) again,

Ẽ

( ∫ T

0
‖σi j (̃u

ε(s)) − σi j (̃u(s))‖2L2(U ;L2(O))
ds

)p

≤ C + CẼ

(∫ T

0

(‖ũε(s)‖2L2(O)
+ ‖ũ(s)‖2L2(O)

)
ds

)p

≤ C .

We infer from Vitali’s convergence theorem that

lim
ε→0

Ẽ

∫ T

0
‖σi j (̃u

ε(s)) − σi j (̃u(s))‖2L2(U ;L2(O))
ds = 0.

The estimate

Ẽ

∣∣∣∣
( ∫ T

0
σi j (̃u

ε(s))dW̃ ε
j (s) −

∫ T

0
σi j (̃u(s))dW̃ j (s), φ1

)
L2(O)

∣∣∣∣
2

≤ C‖φ1‖2L2(O)
Ẽ

∫ T

0

(‖σi j (̃u
ε(s))‖2L2(U ;L2(O))

+ ‖σi j (̃u(s))‖2L2(U ;L2(O))

)
ds

≤ C‖φ1‖2L2(O)

{
1 + Ẽ

( ∫ T

0

(‖ũε(s)‖2L2(O)
+ ‖ũ(s)‖2L2(O)

)
ds

)}
≤ C

for all φ1 ∈ L2(O) and the dominated convergence theorem yield (46). ��

To show that the limit is indeed a solution, we define, for t ∈ [0, T ], i = 1, . . . , n,
and φ ∈ D(L),

�ε
i (̃u

ε, w̃ε, W̃ ε, φ)(t) := 〈̃ui (0), φ〉 + √
ε〈w̃ε(0), φ〉

−
n∑

j=1

∫ t

0

∫
O

Ai j (̃u
ε(s))∇ũε

j (s) · ∇φdxds

+
n∑

j=1

( ∫ t

0
σi j (̃u

ε(s))dW̃ ε
j (s), φ

)
L2(O)

,

�i (̃u, w̃, W̃ , φ)(t) := 〈̃ui (0), φ〉 −
n∑

j=1

∫ t

0

∫
O

〈Ai j (̃u(s))∇ũ j (s) · ∇φdxds

+
n∑

j=1

( ∫ t

0
σi j (̃u(s))dW̃ j (s), φ

)
L2(O)

.

The following corollary is a consequence of the previous lemma.
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Corollary 27 It holds for any φ1 ∈ L2(O) and φ2 ∈ D(L) that

lim
ε→0

∥∥(̃uε
i , φ1)L2(O) − (̃ui , φ1)L2(O)

∥∥
L1(�̃×(0,T ))

= 0,

lim
ε→0

‖�ε
i (̃u

ε,
√

εw̃ε, W̃ ε, φ2) − �i (̃u, 0, W̃ , φ2)‖L1(�̃×(0,T )) = 0.

Since vε is a strong solution to (17), it satisfies for a.e. t ∈ [0, T ] P-a.s., i =
1, . . . , n, and φ ∈ D(L),

(vε
i (t), φ)L2(O) = �ε

i (u
ε, εL∗L Rε(v

ε), W , φ)(t)

and in particular,

∫ T

0
E

∣∣(vε
i (t), φ)L2(O) − �ε

i (u
ε, εL∗L Rε(v

ε), W , φ)(t)
∣∣dt = 0.

We deduce from the equivalence of the laws of (uε, εL∗L Rε(v
ε), W ) and

(̃uε,
√

εw̃ε, W̃ ) that

∫ T

0
Ẽ

∣∣(̃uε
i (t) + √

εw̃ε
i , φ

)
L2(O)

− �ε
i

(̃
uε,

√
εw̃ε, W̃ ε, φ

)
(t)

∣∣dt = 0.

By Corollary 27, we can pass to the limit ε → 0 to obtain

∫ T

0
Ẽ

∣∣(̃ui (t), φ)L2(O) − �i (̃u, 0, W̃ , φ)(t)
∣∣dt = 0.

This identity holds for all i = 1, . . . , n and all φ ∈ D(L). This shows that

∣∣(̃ui (t), φ)L2(O) − �i (̃u, 0, W̃ , φ)(t)
∣∣ = 0 for a.e. t ∈ [0, T ] P̃-a.s., i = 1, . . . , n.

We infer from the definition of �i that

(̃ui (t), φ)L2(O) = (̃ui (0), φ)L2(O) −
n∑

j=1

∫ t

0

∫
O

Ai j (̃u(s))∇ũ j (s) · ∇φdxds

+
n∑

j=1

( ∫ t

0
σi j (̃u(s))dW̃ j (s), φ

)
L2(O)

for a.e. t ∈ [0, T ] and all φ ∈ D(L). Set Ũ = (�̃, F̃ , P̃, F̃). Then (Ũ , W̃ , ũ) is a
martingale solution to (1)–(3).

6 Proof of Theorem 5

We turn to the existence proof of the SKT model without self-diffusion.
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6.1 Uniform estimates

Let vε be a global solution to (19)–(20) and set uε = u(Rε(v
ε)). We assume that A(u)

is given by (3) and that ai0 > 0, aii = 0 for i = 1, . . . , n. The uniform estimates
of Lemmas 18 and 19 are still valid. Since aii = 0, we obtain an H1(O) bound for
(uε

i )
1/2 instead of uε

i , which yields weaker bounds than those in Lemma 20.

Lemma 28 Let p ≥ 2 and set ρ1 := (d + 2)/(d + 1). Then there exists a constant
C(p, u0, T ) > 0, which is independent of ε, such that

E‖uε
i ‖p

L2(0,T ;W 1,1(O))
≤ C(p, u0, T ), (47)

E‖uε
i ‖p

L1+2/d (QT )
≤ C(p, u0, T ), (48)

E‖uε
i ‖p

L4/d (0,T ;L2(O))
≤ C(p, u0, T ), (49)

E‖uε
i ‖p

Lρ1 (0,T ;W 1,ρ1 (O))
≤ C(p, u0, T ). (50)

Proof The identity ∇uε
i = 2(uε

i )
1/2∇(uε

i )
1/2 and the Hölder inequality show that

E‖∇uε
i ‖p

L2(0,T ;L1(O))
≤ CE

( ∫ T

0
‖(uε

i )
1/2‖2L2(O)

‖∇(uε
i )

1/2‖2L2(O)
dt

)p/2

≤ CE

(
‖uε

i ‖L∞(0,T ;L1(O))

∫ T

0
‖∇(uε

i )
1/2‖2L2(O)

dt

)p/2

≤ C
(
E‖uε

i ‖p
L∞(0,T ;L1(O))

)1/2(
E‖∇(uε

i )
1/2‖2p

L2(0,T ;L2(O))

)1/2
.

Because of (30) and (31), the right-hand side is bounded. Using (30) again, we infer
that (47) holds. Estimate (48) is obtained from the Gagliardo–Nirenberg inequality
similarly as in the proof of Lemma 20:

E

( ∫ T

0
‖(uε

i )
1/2‖s

Lr (O)

)p/s

≤ C
(
E‖(uε

i )
1/2‖2(1−θ)p

L∞(0,T ;L2(O))

)1/2
× (

E‖(uε
i )

1/2‖4p/s
L2(0,T ;H1(O))

)1/2 ≤ C,

where s = 2/θ ≥ 2 and 1/r = 1/2− θ/d = 1/2−2/(ds). Choosing r = (2d +4)/d
gives s = r , and r = 4 leads to s = 8/d; this proves estimates (48) and (49). Finally,
(50) follows from Hölder’s inequality:

‖uε
i ‖Lρ1 (QT ) = 2‖(uε

i )
1/2∇(uε

i )
1/2‖Lρ1 (QT )

≤ 2‖(uε
i )

1/2‖L(2d+4)/d (QT )‖∇(uε
i )

1/2‖L2(QT )

≤ 2‖uε
i ‖1/2L1+2/d (QT )

‖(uε
i )

1/2‖L2(0,T ;H1(O))

and taking the expectation and using (48) and (31) ends the proof. ��
The following lemma is needed to derive the fractional time estimate.
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Lemma 29 Let p ≥ 2 and set ρ2 := (2d + 2)/(2d + 1). Then it holds for any
i, j = 1, . . . , n with i �= j :

E‖uε
i uε

j‖p
Lρ2 (0,T ;W 1,ρ2 (O))

≤ C(p, u0, T ). (51)

Proof The Hölder inequality and (30) immediately yield

E‖(uε
i uε

j )
1/2‖p

L∞(0,T ;L1(O))
≤ C,

and we conclude from the Poincaré–Wirtinger inequality, estimate (32), and the pre-
vious estimate that

E‖(uε
i uε

j )
1/2‖p

L2(0,T ;H1(O))
≤ C . (52)

By the Gagliardo–Nirenberg inequality, with θ = d/(d + 1),

∫ T

0
‖(uε

i uε
j )
1/2‖2(d+1)/d

L2(d+1)/d (O)
dt

≤ C
∫ T

0
‖(uε

i uε
j )
1/2‖2θ(d+1)/d

H1(O)
‖(uε

i uε
j )
1/2‖2(1−θ)(d+1)/d

L1(O)
dt

≤ C‖(uε
i uε

j )
1/2‖2(1−θ)(d+1)/d

L∞(0,T ;L1(O))

∫ T

0
‖(uε

i uε
j )
1/2‖2H1(O)

dt

= C‖(uε
i uε

j )
1/2‖2/d

L∞(0,T ;L1(O))
‖(uε

i uε
j )
1/2‖2L2(0,T ;H1(O))

.

Taking the expectation and applying the Hölder inequality, we infer that

E‖(uε
i uε

j )
1/2‖p

L2(d+1)/d (QT )
≤ C . (53)

Finally, the identity ∇(uε
i uε

j ) = 2(uε
i uε

j )
1/2∇(uε

i uε
j )
1/2 and Hölder’s inequality lead

to

∫ T

0
‖∇(uε

i uε
j )‖ρ2

Lρ2 (O)
dt ≤ C

∫ T

0
‖(uε

i uε
j )
1/2‖2L2(d+1)/d (O)

‖∇(uε
i uε

j )
1/2‖2L2(O)

dt

≤ C

( ∫ T

0
‖(uε

i uε
j )
1/2‖2(d+1)/d

L2(d+1)/d (O)
dt

)1−ρ2/2(∫ T

0
‖∇(uε

i uε
j )
1/2‖2L2(O)

dt

)ρ2/2

.

The bounds (52)–(53) yield, after taking the expectation and applying Hölder’s
inequality again, the conclusion (51). ��

We show now that the fractional time derivative of uε is uniformly bounded.

Lemma 30 (Fractional time regularity) Let d ≤ 2. Then there exist 0 < α < 1, p > 1,
and β > 0 such that α p > 1 and

E‖uε‖p
Wα,p(0,T ;D(L)′) + E‖uε‖p

C0,β ([0,T ];D(L)′) ≤ C . (54)
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Proof We proceed similarly as in the proof of Lemma 22. First, we estimate the
diffusion part, setting

g(t) =
∫ t

0

∥∥∥∥ai0∇uε
i +

∑
j �=i

ai j∇(uε
i uε

j )

∥∥∥∥
L1(O)

dr .

Then, using D(L) ⊂ W 1,∞(O) (which holds due to the assumption m > d/2 + 1),

E

∫ T

0

∫ T

0
|t − s|−1−α p

∥∥∥∥
∫ t∨s

s∧t
div

n∑
j=1

Ai j (u
ε(r))∇uε

j (r)dr

∥∥∥∥
p

D(L)′
dtds

≤ C
∫ T

0

∫ T

0
|t − s|−1−α p

(∫ t∨s

s∧t

∥∥∥∥ai0∇uε
i +

∑
j �=i

ai j∇(uε
i uε

j )

∥∥∥∥
L1(O)

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0

|g(t) − g(s)|p

|t − s|1+α p
dtds ≤ CE‖g‖p

Wα,p(0,T ;R)
.

The embedding W 1,p(0, T ;R) ↪→ W α,p(0, T ;R) and estimates (51) and (50) show
that for 1 ≤ p ≤ ρ1 = (d + 2)/(d + 1),

E‖g‖p
Wα,p(0,T ;R)

≤ CE‖g‖p
W 1,p(0,T ;R)

= CE‖∂t g‖p
L p(0,T ;R)

+ CE‖g‖p
L p(0,T ;R)

≤ CE

∫ T

0

∥∥∥∥ai0∇uε
i (t) +

∑
j �=i

ai j∇(uε
i uε

j )(t)

∥∥∥∥
p

L1(O)

dt

+ CE

∫ T

0

∫ t

0

∥∥∥∥ai0∇uε
i (r) +

∑
j �=i

ai j∇(uε
i uε

j )(r)

∥∥∥∥
p

L1(O)

drdt ≤ C .

Next, we consider the stochastic part, using the Burkholder–Davis–Gundy inequality,
Hölder’s inequality, and the sublinear growth condition in the statement of the theorem:

E

∫ T

0

∫ T

0
|t − s|−1−α p

∥∥∥∥
∫ t∨s

s∧t

n∑
j=1

σi j (u
ε(r))dW j (r)

∥∥∥∥
p

L2(O)

dtds

≤ CE

∫ T

0

∫ T

0
|t − s|−1−α p

( ∫ t∨s

s∧t

n∑
j=1

‖σi j (u
ε(r))‖2L2(U ;L2(O))

dr

)p/2

dtds

≤ C
∫ T

0

∫ T

0
|t − s|−1−α p+p/2−1

E

∫ t∨s

s∧t

n∑
j=1

‖σi j (u
ε(r))‖p

L2(U ;L2(O))
drdtds

≤ C
∫ T

0

∫ T

0
|t − s|−1−α p+p/2−1

E

∫ t∨s

s∧t

n∑
j=1

(1 + ‖uε(r)‖γ p
L2(O)

)drdtds ≤ C .

The last step follows fromestimate (49) (assuming that 1 ≤ γ p ≤ 4/d) andLemma21,
since 1 + α p − p/2 + 1 < 2 if and only if α < 1/2. We conclude that the second
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term of the right-hand side of

vε(t) = vε(0) +
∫ t

0
div(A(uε(s))∇uε(s))ds +

∫ t

0
σ(uε(s))dW (s)

is uniformly bounded inE| · |Wα,p(0,T ;D(L)′) for α < 1 and p ≤ (d +2)/(d +1), while
the third term is uniformly bounded in that norm for α < 1/2 and p ≤ 4/(γ d). In both
cases, we can choose α such that α p > 1. At this point, we need the condition γ < 1
if d = 2. (The result holds for any space dimension if γ < 2/d.) Taking into account
(33), (vε) is bounded in W α,p(0, T ; D(L)′). The embedding W α,p(0, T ; D(L)′) ↪→
C0,β([0, T ]; D(L)′) for β = α − 1/p > 0 implies that (vε) is bounded in the latter
space.

We turn to the estimate of uε in the W α,p(0, T ; D(L)′) norm:

E‖uε‖p
Wα,p(0,T ;D(L)′) ≤ C

(
E‖vε‖p

Wα,p(0,T ;D(L)′) + εE‖L∗L Rε(v
ε)‖p

Wα,p(0,T ;D(L)′)
)
.

It remains to consider the last term. In viewof estimate (15) and theLipschitz continuity
of Rε with Lipschitz constant C/ε, we obtain

E|εL∗L Rε(v
ε)|p

Wα,p(0,T ;D(L)′)

= ε p
E

∫ T

0

∫ T

0
|t − s|−1−α p‖L∗L Rε(v

ε(t)) − L∗L Rε(v
ε(s))‖p

D(L)′dtds

≤ ε pCE

∫ T

0

∫ T

0
|t − s|−1−α p‖Rε(v

ε(t)) − Rε(v
ε(s))‖p

D(L)dtds

≤ ε pCE

∫ T

0

∫ T

0
|t − s|−1−α p C

ε p
‖vε(t) − vε(s)‖p

D(L)′dtds

= CE‖vε‖p
Wα,p(0,T ;D(L)′) ≤ C .

Moreover, by (15) and the Lipschitz continuity of Rε again,

‖εL∗L Rε(v
ε)‖p

L p(0,T ;D(L)′) ≤ ε pC‖Rε(v
ε)‖p

L p(0,T ;D(L))

≤ ε pC‖vε‖p
L p(0,T ;D(L)′) ≤ C,

where we used estimate (33). This finishes the proof. ��

6.2 Tightness of the laws of (uε)

The tightness is shown in a different sub-Polish space than in Sect. 5.2:

Z̃T := C0([0, T ]; D(L)′) ∩ Lρ1
w (0, T ; W 1,ρ1(O)),

endowedwith the topology T̃ that is themaximumof the topologyofC0([0, T ]; D(L)′)
and the weak topology of Lρ1

w (0, T ; W 1,ρ1(O)), recalling that ρ1=(d +2)/(d +1)>1.
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Lemma 31 The family of laws of (uε) is tight in

ZT := Z̃T ∩ L2(0, T ; L2(O))

with the topology that is the maximum of T̃ and the topology induced by the
L2(0, T ; L2(O)) norm.

Proof The tightness in L2(0, T ; Lq(O)) for q < d/(d − 1) = 2 is a consequence
of the compact embedding W 1,1(O) ↪→ Lq(O) as well as estimates (47) and (54).
In fact, we can extend this result up to q = 2 because of the uniform bound of
uε

i log uε
i in L∞(0, T ; L1(O)), which originates from the entropy estimate. Indeed,

we just apply [3, Prop. 1], using additionally (26) with ai0 > 0. Then the tightness in
L2(0, T ; L2(O)) follows from Lemma 37. Finally, the tightness in Z̃T is shown as in
the proof of Lemma 23 in Appendix B. ��

In three space dimensions, we do not obtain tightness in L2(0, T ; L2(O)) but in the
larger space L4/3(0, T ; L2(O)). This follows similarly as in the proof of Lemma 23
taking into account the compact embedding W 1,ρ1(O) ↪→ L2(O), which holds as
long as d ≤ 3, as well as estimates (50) and (54). Unfortunately, this result seems
to be not sufficient to identify the limit of the product ũε

i ũε
j . Therefore, we restrict

ourselves to the two-dimensional case.
The following result is shown exactly as in Lemma 24.

Lemma 32 The family of laws of (
√

εL∗L Rε(v
ε)) is tight in YT = L2

w(0, T ; D(L)′)∩
L∞

w∗(0, T ; D(L)′).

Arguing as in Sect. 5.3, the Skorokhod–Jakubowski theorem implies the exis-
tence of a subsequence, a probability space (�̃, F̃ , P̃), and, on this space, (ZT ×
YT × C0([0, T ]; U0))-valued random variables (̃uε, w̃ε, W̃ ε) and (̃u, w̃, W̃ ) such
that (̃uε, w̃ε, W̃ ε) has the same law as (uε,

√
εL∗L Rε(v

ε), W ) on B(ZT × YT ×
C0([0, T ]; U0)) and, as ε → 0 and P̃-a.s.,

(̃uε, w̃ε, W̃ ε) → (̃u, w̃, W̃ ) in ZT × YT × C0([0, T ]; U0).

This convergence means that P̃-a.s.,

ũε → ũ strongly in C0([0, T ]; D(L)′),
∇ũε⇀∇ũ weakly in Lρ1(QT ),

ũε → ũ strongly in L2(QT ),

w̃ε⇀w̃ weakly in L2(0, T ; D(L)′),
w̃ε⇀w̃ weakly* in L∞(0, T ; D(L)′),

W̃ ε → W̃ strongly in C0([0, T ]; U0).

The remainder of the proof is very similar to that one of Sect. 5.3, using slightly
weaker convergence results. The most difficult part is the convergence of the nonlinear
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term ∇ (̃uε
i ũε

j ), since the previous convergences do not allow us to perform the limit
ũε

i ∇ũε
j because of ρ1 < 2. The idea is to consider the “very weak” formulation by

performing the limit in ũε
i ũε

j
φ instead of ∇ (̃uε
i ũε

j ) · ∇φ for suitable test functions

φ. Indeed, let φ ∈ L∞(0, T ; C∞
0 (O)). Since ũε

i → ũ strongly in L2(0, T ; L2(O))

P̃-a.s., we have

∫ T

0

∫
O

∇ (̃u j
i ũε

j ) · ∇φdxdt = −
∫ T

0

∫
O

ũε
i ũε

j
φdxdt → −
∫ T

0

∫
O

ũi ũ j
φdxdt .

It follows from the equivalence of the laws that

Ẽ

( ∫ T

0

∫
O

ũε
i ũε

j
φdxdt

)2

≤ C,

and we conclude from Vitali’s theorem that

Ẽ

∣∣∣∣
∫ T

0

∫
O

(̃
uε

i ũε
j − ũi ũ j

)
(t)
φdxdt

∣∣∣∣ → 0 as ε → 0.

By density, this convergence holds for all test functions φ ∈ L∞(0, T ; W 2,∞(O))

such that ∇φ · ν = 0 on ∂O. This ends the proof of Theorem 5.

Remark 33 (Three space dimensions) The three-dimensional case is delicate since uε
i

lies in a space larger than L2(QT ).Wemay exploit the regularity (51) for∇(uε
i uε

j ), but
this leads only to the existence of random variables η̃ε

i j and η̃i j with i, j = 1, . . . , n

and i �= j on the space XT = Lρ2
w (0, T ; Lρ2(O)) such that η̃ε

i j and uε
i uε

j have the
same law on B(XT ) and, as ε → 0,

η̃ε
i j⇀η̃i j weakly in XT .

Similar arguments as before lead to the limit

Ẽ

∣∣∣∣
∫ T

0

∫
O

∇ (̃ηε
i j − η̃i j )(t) · ∇φ(t)dxdt

∣∣∣∣ → 0,

but we cannot easily identify η̃i j with ũi ũ j . ��

7 Discussion of the noise terms

We present some examples of admissible terms σ(u). Recall that (ek)k∈N is an
orthonormal basis of U .

Lemma 34 The stochastic diffusion

σi j (u) = δi j s(ui )

∞∑
�=1

a�(e�, ·)U , s(ui ) = ui

1 + u1/2+η
i
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satisfies Assumption (A5) for η > 0 and (a�) ∈ �2(R).

Proof With the entropy density h given by (5), we compute (∂h/∂ui )(u) = πi log ui

and (∂2 h/∂ui∂u j )(u) = (πi/ui )δi j . Therefore, by Jensen’s inequality and the ele-

mentary inequalities |ui log ui | ≤ C(1+ u1+η
i ) for any η > 0 and |u| ≤ C(1+ h(u)),

J1 :=
{ ∫ T

0

∞∑
k=1

n∑
i, j=1

( ∫
O

∂h

∂ui
(u)σi j (u)ekdx

)2

ds

}1/2

=
{ ∞∑

k=1

a2
k

∫ T

0

n∑
i=1

(∫
O

πi
ui log ui

1 + u1/2+η
i

dx

)2

ds

}1/2

≤ C

{ n∑
i=1

∫ T

0

( ∫
O

1 + u1+η
i

1 + u1/2+η
i

dx

)2

ds

}1/2

≤ C

{ n∑
i=1

∫ T

0

∫
O

(
1 + u1+η

i

1 + u1/2+η
i

)2

dxds

}1/2

≤ C

{ n∑
i=1

∫ T

0

∫
O

(1 + ui )dxds

}1/2

≤ C

(
1 +

∫ T

0

∫
O

h(u)dxds

)
.

The second condition in Assumption (A5) becomes

J2 :=
∫ T

0

∞∑
k=1

∫
O
tr

[
(σ (u)ek)

T h′′(u)σ (u)ek
]
dxds

=
∞∑

k=1

a2
k

n∑
i=1

∫ T

0

∫
O

πi ui

(1 + u1/2+η
i )2

dxds ≤ C(O, T ).

Thus, Assumption (A5) is satisfied. ��
The proof shows that J1 can be estimated if s(ui )

2 log(ui )
2 is bounded from above

byC(1+h(u)). This is the case if s(ui ) behaves like uα
i withα < 1/2. Furthermore, J2

can be estimated if s(ui )
2/ui is bounded,which is possible if s(ui ) = uα

i withα ≥ 1/2.
Thus, to both satisfy the growth restriction and avoid the singularity at ui = 0, we
have chosen σi j as in Lemma 34. This example is rather artificial. To include more
general choices, we generalize our approach. In fact, it is sufficient to estimate the
integrals in inequality (23) in such a way that the entropy inequality of Proposition 16
holds. The idea is to exploit the gradient bound for ui for the estimatation of J1 and
J2.

Consider a trace-class, positive, and symmetric operator Q on L2(O) and the space
U = Q1/2(L2(O)), equipped with the norm ‖Q1/2(·)‖L2(O). We will work in the
following with an U -cylindrical Wiener process W Q . This setting is equivalent to a
spatially colored noise on L2(O) in the form of a Q-Wiener process (with Q �= Id).
The latter viewpoint provides, in our opinion, a more intuitive insight. In particular, the
operator Q is constructed from the eigenfunctions and eigenvalues described below.

123



Stoch PDE: Anal Comp

Let (ηk)k∈N be a basis of L2(O), consisting of the normalized eigenfunctions of
the Laplacian subject to Neumann boundary conditions with eigenvalues λk ≥ 0, and
set ak = (1 + λk)

−ρ for some ρ > 0 such that
∑∞

k=1 a2
k ‖ηk‖2L∞(O)

< ∞. Since

λk ≤ Ck2/d [28, Corollary 2] and ‖ηk‖L∞(O) ≤ Ck(d−1)/2 [23, Theorem 1], we
may choose ρ > (d/2)2. Considering a sequence of independent Brownian motions
(W k

1 , . . . , W k
n )k∈N, we assume the noise to be of the form W Q = (W Q

1 , . . . , W Q
n ),

where

W Q
j (t) =

∞∑
k=1

akek W k
j (t), j = 1, . . . , n, t > 0,

and (ek)k∈N = (akηk)k∈N is a basis of U = Q1/2(L2(O)).

Lemma 35 For the SKT model with self-diffusion, let σi j (u) = δi j uα
i for 1/2 ≤ α ≤ 1,

i, j = 1, . . . , n, interpreted as a map from L2(O) to L2(Hβ(O); L2(O)), where
β > ρ. Then the entropy inequality (29) holds, i.e., σi j is admissible for Theorem 4.

Proof We can write inequality (23) for 0 < T < TR as

E sup
0<t<T

∫
O

h(uε(t))dx + ε

2
E sup

0<t<T
‖Lwε(t)‖2L2(O)

+ E sup
0<t<T

∫ t

0

∫
O

∇wε(s) : B(wε)∇wε(s)dxds − E

∫
O

h(u0)dx

≤ E sup
0<t<T

{∫ t

0

∞∑
k=1

n∑
i, j=1

(∫
O

πi log uε
i (s)σi j (u

ε(s))ekdx

)2

ds

}1/2

+ 1

2
E sup

0<t<T

∞∑
k=1

n∑
i=1

∫ t

0

∫
O

(σi i (u
ε)ek

πi

uε
i
σi i (u

ε)ekdxds

=: J3 + J4, (55)

recalling that wε = Rε(v
ε) and uε = u(wε). We simplify J3 and J4, using the

definition ek = akηk :

J3 = E sup
0<t<T

{ ∞∑
k=1

a2
k

∫ t

0

n∑
i=1

π2
i

( ∫
O

uε
i (s)

α log uε
i (s)ηkdx

)2

ds

}1/2

≤ CE sup
0<t<T

{ ∞∑
k=1

a2
k

∫
O

η2kdx
∫ t

0

n∑
i=1

∫
O

(uε
i (s)

α log uε
i (s))

2dxds

}1/2

≤ C
n∑

i=1

E‖(uε
i )

α log uε
i ‖L2(0,T ;L2(O)),

J4 =
∞∑

k=1

a2
kE sup

0<t<T

n∑
i=1

πi

∫ t

0

∫
O

(uε
i )

2α(uε
i )

−1η2kdxds
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≤ C
∞∑

k=1

a2
k ‖ηk‖2L∞(O)

n∑
i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O))

≤ C
n∑

i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O)).

The last inequality follows from our assumption on (ak). By (28), we can estimate the
integrand of the third integral on the left-hand side of (55) according to

∇wε : B(wε)∇wε ≥ 2
n∑

i=1

πi aii |∇uε|2.

Hence, because of |u| ≤ C(1 + h(u)), we can formulate (55) as

E sup
0<t<T

‖h(uε(t))‖L1(O) + ε

2
E sup

0<t<T
‖Lwε(t)‖2L2(O)

+ CE‖∇uε(s)‖2L2(0,T ;L2(O))

≤ C + C
n∑

i=1

E‖(uε
i )

α log uε
i ‖L2(0,T ;L2(O)) + C

n∑
i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O)).

It is sufficient to continue with the case α = 1, since the proof for α < 1 follows from
the case α = 1. Then, using |uε| ≤ C(1 + h(uε)),

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))

+ εE‖Lwε‖2L∞(0,T ;L2(O))
+ E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C
n∑

i=1

E‖uε
i log uε

i ‖L2(0,T ;L2(O)) + CE‖uε‖L1(0,T ;L1(O)).x (56)

Now, we use the following lemma which is proved in Appendix A.

Lemma 36 Let d ≥ 2and letv ∈ L2(0, T ; H1(O)) satisfyv log v ∈ L∞(0, T ; L1(O)).
Then for any δ > 0, there exists C(δ) > 0 such that

‖v log v‖L2(0,T ;L2(O))

≤ δ
(‖v log v‖L1(0,T ;L1(O)) + ‖v‖L∞(0,T ;L1(O)) + ‖∇v‖2L2(0,T ;L2(O))

)
+ C(δ)‖v‖L1(0,T ;L1(O)).
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It follows from (56) that, for any δ > 0,

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))

+ εE‖Lwε‖2L∞(0,T ;L2(O))
+ E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C(δ)E‖uε‖L1(0,T ;L1(O)) + δC
n∑

i=1

E‖uε
i log uε

i ‖L1(0,T ;L1(O))

+ δC
(
E‖uε‖L∞(0,T ;L1(O)) + E‖∇uε‖2L2(0,T ;L2(O))

)
.

For sufficiently small δ > 0, the last terms on the right-hand side can be absorbed by
the corresponding terms on the left-hand side, leading to

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))

+ εE‖Lwε‖2L∞(0,T ;L2(O))
+ E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C
∫ T

0
‖uε‖L∞(0,t;L1(O))dt for all T > 0.

Gronwall’s lemma ends the proof. ��
In the case without self-diffusion, we have an H1(O) estimate for (uε

i )
1/2 only,

and it can be seen that stochastic diffusion terms of the type δi j uα
i for α > 1/2 are

not admissible. However, we may choose σi j (u)ek = δi j uα
i (1 + (uε

i )
β)−1akηk for

1/2 ≤ α < 1 and β ≥ α/2.
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Appendix A. Proofs of some lemmas

A.1. Proof of Lemma 14

The operator equation DRε[w](a) = b can be written as a = DQε[w](b) = u′(w)b+
εL∗Lb. Hence,

∫
O

a : bdx =
∫
O

u′(w)b : bdx + ε

∫
O

Lb : Lbdx . (57)

The matrix u′(w) = (h′′)−1(u(w)) is symmetric and positive semidefinite (since h is
convex). Thus, the square root operator

√
u′(w) exists and is symmetric. This shows
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that

u′(w)b : b = √
u′(w)

√
u′(w)b : b = tr

[(√
u′(w)

√
u′(w)b

)T
b
]

= tr
[(√

u′(w)b
)T (√

u′(w)b
)] = ∥∥√

u′(w)b
∥∥2

F .

Furthermore, by the Cauchy–Schwarz inequality tr[AT B] ≤ tr[AT A] tr[BT B] and
the property tr[AB] = tr[B A] for matrices A and B,

a : b = tr
[
aT

√
u′(w) −1

√
u′(w)b

]
≤ tr

[(√
u′(w)b

)T √
u′(w)b

]1/2 tr [(aT
√

u′(w) −1)T
aT

√
u′(w) −1]1/2

≤ 1

2
tr

[(√
u′(w)b

)T √
u′(w)b

] + 1

2
tr

[(√
u′(w) −1a

)(
aT

√
u′(w) −1)]

= 1

2

∥∥√
u′(w)b

∥∥2
F + 1

2
tr

[(
aT

√
u′(w) −1)(√u′(w) −1a

)]

= 1

2

∥∥√
u′(w)b

∥∥2
F + 1

2
tr[aT u′(w)−1a].

Inserting these relations into (57) leads to

∫
O

‖√u′(w)b‖2Fdx + ε

∫
O

Lb : Lbdx =
∫
O

a : bdx

≤ 1

2

∫
O

‖√u′(w)b‖2Fdx + 1

2

∫
O
tr[aT u′(w)−1a]dx (58)

and consequently,

∫
O

‖√u′(w)b‖2Fdx ≤
∫
O
tr[aT u′(w)−1a]dx .

Together with (58) we obtain the statement.

A.2 Proof of Lemma 15

It follows from the convexity of h that

h(v0) ≥ h(u(Rε(v
0))) + (

v0 − u(Rε(v
0))

) · h′(u(Rε(v
0))).

Since Rε and Qε are inverse to each other, we can replace v0 by Qε(Rε(v
0)) =

u(Rε(v
0)) + εL∗L Rε(v

0):

h(v0) ≥ h(u(Rε(v
0))) + 〈

u(Rε(v
0)) + εL∗L Rε(v

0)

− u(Rε(v
0)), h′(u(Rε(v

0)))
〉
D(L)′,D(L)

= h(u(Rε(v
0))) + ε〈L∗L Rε(v

0), Rε(v
0)〉D(L)′,D(L).
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We find after an integration that

∫
O

h(v0)dx ≥
∫
O

h(u(Rε(v
0)))dx + ε

∫
O

L Rε(v
0) · L Rε(v

0)dx,

which yields the statement.

A.3 Proof of Lemma 21

We show that

I :=
∫ T

0

∫ T

0
|t − s|−δ

∫ t∨s

s∧t
g(r)drdtds < ∞.

A change of the integration domain and an integration by parts lead to

I = 2
∫ T

0

∫ T

s
(t − s)−δ

( ∫ t

s
g(r)dr

)
dtds

= − 2

1 − δ

∫ T

0

∫ T

s
(t − s)1−δg(t)dtds + 2

1 − δ

∫ T

0
(T − s)1−δ

∫ t

s
g(r)drds,

(59)

observing that limt→s(t − s)1−δ
∫ t

s g(r)dr = 0 for 1− δ > −1, since the integrability
of g implies that limt→s(t − s)−1

∫ t
s g(r)dr = g(s) for a.e. s. The result follows as

the integrals on the right-hand side of (59) are finite.

A.4 Proof of Lemma 36

We use the interpolation inequality with 1/2 = θ1 + (1 − θ1)/(2p) and some 1 <

p < d/(d − 2) (and p > 1 if d = 2) as well as the Young inequality with δ > 0:

‖v log v‖L2(0,T ;L2(O)) ≤
( ∫ T

0
‖v log v‖2θ1

L1(O)
‖v log v‖2(1−θ1)

L2p(O)
dt

)1/2

≤
(

C(δ)2
∫ T

0
‖v log v‖2L1(O)

dt + δ2
∫ T

0
‖v log v‖2L2p(O)

dt

)1/2

≤ C(δ)‖v log v‖L2(0,T ;L1(O)) + δ‖v log v‖L2(0,T ;L2p(O)). (60)

The first term on the right-hand side is estimated in a similar way as before, where
η > 0:

‖v log v‖L2(0,T ;L1(O)) ≤ ‖v log v‖1/2
L∞(0,T ;L1(O))

‖v log v‖1/2
L1(0,T ;L1(O))

≤ η‖v log v‖L∞(0,T ;L1(O)) + C(η)‖v log v‖L1(0,T ;L1(O)).

(61)
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For the second term on the right-hand side of (60), we introduce the function g(v) =
max{2, v log v} for v ≥ 0. Then g ∈ C1([0,∞)). (The function v �→ v log v is not
C1 at v = 0, therefore we need to truncate.) We use the Sobolev inequality:

‖v log v‖L2(0,T ;L2p(O)) ≤ ‖g(v)‖L2(0,T ;L2p(O)) ≤ C‖g(v)‖L2(0,T ;W 1,q (O))

≤ C
(‖g(v)‖L2(0,T ;Lq (O)) + ‖∇g(v)‖L2(0,T ;Lq (O))

)
,

where q = 2dp/(d +2p). The condition p < d/(d −2) guarantees that q < 2, while
d ≥ 2 yields q > 1; thus q ∈ (1, 2). Applying the Gagliardo–Nirenberg inequality,
combinedwith thePoincaré–Wirtinger inequality,with θ2 = d(q−1)/(d(q−1)+q) ≤
1, and then the Young inequality, we find that

‖g(v)‖Lq (O) ≤ C‖∇g(v)‖θ2
Lq (O)

‖g(v)‖1−θ2
L1(O)

+ ‖g(v)‖L1(O)

≤ ‖∇g(v)‖Lq (O) + C‖g(v)‖L1(O)

≤ ‖∇g(v)‖Lq (O) + C
(
1 + ‖v log v‖L1(O)

)
.

This yields

‖v log v‖L2(0,T ;L2p(O)) ≤ C + C‖∇g(v)‖L2(0,T ;Lq (O)) + C‖v log v‖L2(0,T ;L1(O)).

(62)

The last term is estimated as in (61).We consider the norm of∇g(v) = 1{v log v>2}(1+
log v)∇v. For this, we observe that 1{v log v>2} log v ≤ C(1 + vγ ) for some 0 < γ <

(2 − q)/(2q) and use the Hölder inequality:

‖∇g(v)‖Lq (O) ≤ ‖(1 + vγ )∇v‖Lq (O) ≤ (
1 + ‖vγ ‖L2q/(2−q)(O)

)‖∇v‖L2(O)

≤ C
(
1 + ‖v‖(2−q)/(2q)

L1(O)

)‖∇v‖L2(O),

since the property 2γ q/(2 − q) < 1 gives v2γ q/(2−q) ≤ C(1 + v) for v ≥ 0.
Consequently, by Young’s inequality,

‖∇g(v)‖Lq (O) ≤ C
(
1 + ‖v‖(2−q)/q

L1(O)
+ ‖∇v‖2L2(O)

)
,

and an integration over time gives

‖∇g(v)‖L2(0,T ;Lq (O)) ≤ C
(
1 + ‖v‖(2−q)/q

L∞(0,T ;L1(O))
+ ‖∇v‖2L2(0,T ;L2(O))

)
≤ C

(
1 + ‖v‖L∞(0,T ;L1(O)) + ‖∇v‖2L2(0,T ;L2(O))

)
,

where we used (2 − q)/q < 1. Thus, (62) becomes

‖v log v‖L2(0,T ;L2p(O)) ≤ C + C‖∇v‖2L2(0,T ;L2(O))
+ C‖v‖L∞(0,T ;L1(O))

+ C‖v log v‖L2(0,T ;L1(O)).
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It remains to insert (61) and the previous estimate into (60) to conclude that

‖v log v‖L2(0,T ;L2(O)) ≤ ηC(δ)‖v log v‖L∞(0,T ;L1(O))

+ C(δ, η)‖v log v‖L1(0,T ;L1(O))

+ δC
(‖∇v‖2L2(0,T ;L2(O))

+ ‖v‖L∞(0,T ;L1(O))

)
.

Choosing first δ > 0 and then η > 0 sufficiently small finishes the proof.

Appendix B. Tightness criterion

Lemma 37 (Tightness criterion) Let O ⊂ R
d (d ≥ 1) be a bounded domain with

Lipschitz boundary and let T > 0, p, q, r ≥ 1, α ∈ (0, 1) if r ≥ p and α ∈
(1/r − 1/p, 1) if r < p. Let s ≥ 1 be such that the embedding W 1,q(O) ↪→ Ls(O)

is compact, and let Y be a Banach space such that the embedding Ls(O) ↪→ Y is
continuous. Furthermore, let (un)n∈N be a sequence of functions such that there exists
C > 0 such that for all n ∈ N,

E‖un‖L p(0,T ;W 1,q (O)) + E‖un‖Wα,r (0,T ;Y )) ≤ C .

Then the laws of (un) are tight in L p(0, T ; Ls(O)) if q ≤ d and in L p(0, T ; C0(O))

if q > d. If p = ∞, the space L p(0, T ; ·) is replaced by C0([0, T ]; ·).
Proof By Theorem 3 and Lemma 5 of [38], the set

BR = {
un ∈ L p(0, T ; W 1,q(O)) ∩ W α,r (0, T ; Y ) :

‖un‖L p(0,T ;W 1,q (O)) ≤ R and ‖un‖Wα,r (0,T ;Y ) ≤ R
}

is relatively compact in L p(0, T ; Ls(O)). We deduce from Chebyshev’s inequality
that

P(Bc
R) ≤ P(‖un‖L p(0,T ;W 1,q (O)) > R) + P(‖un‖Wα,r (0,T ;Y ) > R)

≤ 1

R

(
E‖un‖L p(0,T ;W 1,q (O)) + E‖un‖Wα,r (0,T ;Y )

) ≤ C

R
.

The definition of tightness finishes the proof. ��
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