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Abstract

Many non-Newtonian models assume a non-linear relation between the deviatoric stress
tensor τ and the rate-of-strain tensor ε(u), which is not necessarily given in explicit
form. Therefore the requirement on a finite element method is the capability to capture
the behaviour of the non-linear constitutive relation.
Inspired by the work of [GLS19, GLS20] and assuming incompressible, stationary, isother-
mal, laminar flow, we present a new mixed finite element method by introducing a variable
for the rate-of-strain tensor ε, such that the embedding of a general implicit constitutive
relation of the form G(τ , ε) := 0 is very natural. Thus making it suitable for the simula-
tion of a broader range of non-Newtonian fluids.
We prove solvability of the new discrete variational formulation in a two-dimensional
Newtonian setting by showing continuity of the bilinear forms, coercivity on the kernel
and the discrete Ladyzhenskaya–Babuška–Brezzi condition. By construction our newly
introduced mixed finite element approximates the velocity u in an exactly divergence free
matter. This fact results in a property known as pressure robustness.
Ultimately, we perform some non-Newtonian numerical experiments in a two-dimensional
channel and illustrate the achieved L2-errors in comparison to various other standard
mixed finite elements.



Kurzfassung

Zahlreiche Nichtnewtonsche Modelle gehen von einer nichtlinearen Beziehung zwischen
dem Spannungsdeviator τ und dem Verzerrungsgeschwindigkeitstensor ε(u) aus, die nicht
unbedingt in expliziter Form vorliegt. Aus diesem Grund ist eine Anforderung an die
Finite-Elemente-Methode das Verhalten des nichtlinearen Materialgesetzes zu erfassen.
Angelehnt an die Publikationen [GLS19, GLS20] und unter der Annahme einer inkom-
pressiblen, stationären, isothermen, laminaren Strömung, stellen wir, durch Einführung
einer Variable für den Verzerrungsgeschwindigkeitstensor ε, eine neue gemischte Finite-
Elemente-Methode vor, so dass die Einbindung eines jeglichen Materialgesetzes in im-
pliziter Form G(τ , ε) := 0 sehr einfach realisierbar ist. Damit ist die Methode geeignet
für die Simulation eines breiten Spektrums an Nichtnewtonschen Fluiden.
Lösbarkeit der neuen diskreten Schwachen Formulierung beweisen wir im Fall einer zweidi-
mensionalen Newtonschen Strömung, indem wir Stetigkeit der Bilinearformen, Elliptizität
im Kern und die diskrete Ladyzhenskaya-Babuška-Brezzi -Bedingung zeigen. Konstruk-
tionsbedingt approximiert das neu eingeführte gemischte Finite-Element die Geschwindigkeit
u auf einer exakt divergenzfreien Weise. Diese Tatsache führt zu einer Eigenschaft, die
als Druckrobustheit bekannt ist.
Schließlich führen wir einige Nichtnewtonsche numerische Experimente in einem zweidi-
mensionalen Kanal durch und veranschaulichen die erzielten L2-Fehler im Vergleich zu
anderen üblichen gemischten Finite-Elemente.
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1
Introduction

In many fields, but especially in industrial processes, non-Newtonian fluids are encoun-
tered. Whether for dairy products, cosmetics, drilling muds or waxy crude oils [CR08], the
simulation of such fluids can be very demanding. Primarily because these are described
by non-linear mathematical models and thus require a method capable of capturing this
behaviour, and secondarily because the arising non-linear system requires iterative solu-
tion techniques. In this thesis we present a new mass conserving finite element method
suited for the approximation of a generalized non-Newtonian fluid flow.
To restrict the range of application, for the time being we only consider incompressible,
stationary, isothermal, laminar fluid flows. By these assumptions the conservation of
momentum, mass and angular momentum are given by

−div(τ ) +∇p = f in Ω, (1.1a)

div(u) = 0 in Ω, (1.1b)

τ = τT in Ω, (1.1c)

u = 0 on ∂Ω, (1.1d)

where τ ,u, p,f are the deviatoric stress tensor, the velocity, the mechanical pressure, an
external force respectively, and Ω ⊂ Rd the computational domain in two d = 2 or three
dimensions d = 3. For convenience, we assumed homogeneous boundary conditions, even
though this is not essential. To close upper system of equations, a further relation is
required, namely the connection between the kinematic and the kinetic quantities, which
is usually referred to as constitutive relation.
In 1843 and 1845 Saint-Venant and Stokes respectively, derived for an incompressible,
Newtonian fluid the well-known constitutive relation [Bat00]

τ = 2µε(u), (1.2)

where µ is the dynamic viscosity and ε(u) the symmetric velocity gradient. The system of
equations (1.1)-(1.2) is also known as Stokes equations and the existence of weak solutions
of the corresponding saddle-point problem is well analysed in literature [BBF13, Bre74,
AMS+04]. Although solvability is not inherited from the continuous setting, many stable
finite elements have been found solving the discrete variational formulation

Find uh, ph ∈ Vh, Qh such that

2µ

�
Ω

ε(uh) : ε(uh) dx−
�
Ω

div(uh)ph dx =

�
Ω

ρf · uh dx ∀uh ∈ Vh,

−
�
Ω

div(uh)ph dx = 0 ∀ph ∈ Qh.
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For example the famous two-field Taylor-Hood (T H, 4.1.1) element [TH73] and the Scott-
Vogelius (SV , 4.1.3) element [SV85].

A recently developed four-field mass conserving mixed stress (MCS, 4.3.1) element [GLS19,
GLS20] approximates in a slightly nonconforming matter a similar variational formulation,
namely

Find τh, ph,uh,ωh ∈ Σ⊕
h ×Qh × Uh ×Wh such that

1

2µ

�
Ω

τh : τ h dx+ �div(τ h),uh�+
�
Ω

ωh : τ h dx = 0 ∀τ h ∈ Σ⊕
h ,

�div(τh),uh�+
�
Ω

ωh : τh dx+

�
Ω

div(uh)ph dx = −
�
Ω

ρf · uh dx ∀uh,ωh ∈ Vh ×Wh,�
Ω

div(uh)ph dx = 0 ∀ph ∈ Qh,

where ω is the skew-symmetric velocity gradient, also known as rate-of-rotation tensor.

While the above mentioned finite elements are suitable for simulating Newtonian flows,
they are not for general non-Newtonian flows, whose constitutive law is non-linear in τ
and ε(u). On one hand the two-field discretisations do not approximate the deviatoric
stress tensor τ , thus require an explicit constitutive relation. On the other hand the mass
conserving mixed stress (MCS) method requires by derivation of the weak formulation
the proportionality in the constitutive relation between the deviatoric stress tensor τ and
the rate-of-strain tensor ε(u). Additionally, by the choice of the finite element space uh ∈
Vh ⊂ H0(div,Ω), the symmetric velocity gradient ε(uh), needed in many non-Newtonian
models, is not well defined on Ω. For this reasons upper mentioned finite elements are
not suited to approximate generalized non-Newtonian fluids, whose constitutive relation
is given in implicit form

G(τ , ε(u)) := 0, (1.3)

provided the non-linear weak formulation has an unique solution.

Rajagopal laid the cornerstone of generalized implicit constitutive relations in his papers
[Raj03, Raj06]. He provided a new framework for the formulation of sophisticated con-
stitutive relations in harmony with the second law of thermodynamics. For example the
famous viscoplastic non-Newtonian Bingham model [GW11]τ = 2µε(u) +

τy
|ε(u)|ε(u) if |τ | > τy,

ε(u) = 0 if |τ | ≤ τy,
(1.4)

can be completely written in terms of a continuous implicit relation [GO20]

G(τ , ε(u)) = 2µ
 
τy + (|τ | − τy)

+& ε(u)− (|τ | − τy)
+ τ = 0,

where (|τ | − τy)
+ := max(|τ | − τy, 0).

The embedding of such a generalized implicit constitutive relation is very natural for a
discrete three-field formulation, where the entire implicit constitutive relation gets tested
by functions τ ∈ Σh, independently of its structure.
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Find τh, ph,uh ∈ Σh ×Qh × Uh such that�
Ω

G(τh, ε(uh)) : τ h dx = 0 ∀τ h ∈ Σh,�
Ω

τh : ε(uh) dx−
�
Ω

div(uh)ph dx =

�
Ω

ρf · uh dx ∀uh ∈ Vh,

−
�
Ω

div(uh)ph dx = 0 ∀ph ∈ Qh.

By the discrete stability analysis of the linear Newtonian case, namely

G(τh, ε(uh)) := ε(uh)− 1

2µ
τh = 0,

every two-field conforming finite element augmented with piecewise discontinuous sym-
metric matrix-valued polynomials is an appropriate approximation to the three-field dis-
crete variational formulation (see (T H-S, 4.2.1) and (SV-S, 4.2.2)).
In this thesis we extend the (MCS) discrete variational formulation [GLS19, GLS20] in
a similar way, such that the embedding of a generalized implicit constitutive relation is
self-evident. As the mass conserving mixed stress (MCS) method already approximates
the deviatoric stress tensor τ , we introduce a new variable for the rate-of-rotation tensor
ε, such that the discrete variational formulation becomes

Find uh,ωh, εh, τh, ph,∈ Uh ×Wh × Ξh × Σ⊕
h ×Qh such that�

Ω

G(τh, εh) : εh dx = 0 ∀εh ∈ Ξh,�
Ω

εh : τ h dx+ �div(τ h),uh�+
�
Ω

ωh : τ h dx = 0 ∀τ h ∈ Σ⊕
h ,

�div(τh),uh�+
�
Ω

ωh : τh dx+

�
Ω

div(uh)ph dx = −
�
Ω

ρf · uh dx ∀uh,ωh ∈ Vh ×Wh,�
Ω

div(uh)ph dx = 0 ∀ph ∈ Qh.

We show solvability of the discrete problem for the linear Newtonian case

G(τh, εh) := −2µεh + τh = 0,

by proving kernel ellipticity and the discrete LBB condition.
Similarly to the (MCS) method, by construction div(Vh) ⊂ Qh the new finite element
method is exactly divergence free�

Ω

div(uh)ph dx =

�
Ω

div(uh)div(uh) dx = 0 ∀ph ∈ Qh ⇒ div(uh) = 0,

thus pressure robust. For this reason we give it the designation mass conserving mixed
stress-strain rate method (MCS-S). On the basis of three non-Newtonian numerical
experiments in an usual setting, namely a two-dimensional channel flow [GW11, GO20,
HMST17, GO21], we illustrate the achieved L2(Ω)-finite element errors in comparison to
standard finite elements.
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Although the method approximates 5 quantities, namely uh,ωh, εh, τh, ph, most of them
are defined element locally. From a computational perspective we have the same amount
of coupling degrees of freedom as conventional finite element methods [Led19].

Thesis layout

1. In Chapter 2 we introduce the governing equations describing the motion of a fluid.
Moreover, we discuss the definition of Newtonian fluids, before roughly classifying
non-Newtonian fluids and providing some examples of application. Ultimately, well-
known non-Newtonian constitutive relations are presented.

2. Chapter 3 is dedicated to the introduction of different variational formulations of
Stokes equations.

3. In Chapter 4 we discuss various finite elements approximating the variational for-
mulations listed in Chapter 3, together with a short note on the discrete stability.
In particular we present our new mass conserving mixed stress-strain rate (MCS-S)
finite element method and perform all the necessary proofs to show solvability of
the discrete variational formulation.

4. Chapter 5 is intended to show the achieved results for a series of non-Newtonian
numerical experiments in a well-known setting, namely a flow in a two-dimensional
channel.

5. Ultimately, Chapter 6 summarises and reproduces the significant conclusions of this
thesis, along with an outline for future work.

Notation

�
dx Integral over domain dx ⊂ Rd�
ds Integral over boundary ds ⊂ Rd−1

a lower case latin/greek letters denote a scalar value

a lower case bold latin letters denote a vector

α lower case bold greek letters denote a matrix/tensor

I identity matrix

tr(α) =
/d

i=0(α)ii trace of a matrix

α : β = tr(αβT) Frobenius inner product

sym(α) = 1
2
(α+αT) symmetric part of matrix

skw(α) = 1
2
(α−αT) skew-symmetric part of matrix

dev(α) = α− 1
d
tr(α)I skew-symmetric part of matrix

|α|2 = 1
2
α : α Euclidean Norm of matrix

an = a · n normal component of vector

at = a− ann tangential component of vector

αnn = nTαn normal-normal component of matrix

αnt = αn− αnnn normal-tangential component of matrix

a & b a ≤ cb with c ≥ 0 and independent of mesh size h

a ∼ b a & b and a � b



2
Rheology

In this chapter we shortly introduce the Navier-Stokes equations needed to describe the
motion of a general fluid. Further we make some assumptions on the flow in order to derive
the Stokes equations, which will be used throughout this thesis. Ultimately, an extensive
physical and mathematical modelling insight is given in the constitutive relations linking
the stresses and strain rates.

2.1 Governing equations

Etymologically, the term fluid has become common because under certain thermodynamic
conditions (e.g. in proximity to the critical point) no clear differentiation between a liquid
and a gaseous state of aggregation is possible [Her16, Section 1.1]. Unlike a solid, a fluid
does not deform into a steady state configuration under the influence of a constant force,
but rather flows, which can be viewed as a continuous deformation. This flow property is
mostly described in continuum mechanics from an Eulerian point of view, i.e. a in space
fixed observer

u := u(x, t).

As long as a substance is seen as a continuum, i.e. homogeneous distribution and large
enough flow scales compared to the molecular scales [Pop12, Section 2.1], the motion of
a fluid is described by the well-known Navier-Stokes equations [GO20]

∂ρ

∂t
+ div(ρu) = 0, (2.1a)

∂(ρu)

∂t
+ div(ρu⊗ u) = div(σ) + ρf , (2.1b)

σ = σT , (2.1c)

∂(ρ(e+ 1
2
u · u))

∂t
+ div(ρu(e+ 1

2
u · u)) = div(σu− q) + ρf · u. (2.1d)

The set of equations (2.1a) to (2.1d) are according to listing order the balance of mass,
momentum, angular momentum and energy. To determine whether a process is feasible or
not, the conservation of energy (2.1d) is not sufficient. We must also consider the second
law of thermodynamics [GO20]

σ : ε(u) + pthdiv(u)− 1

T
q · ∇T ≥ 0, (2.2)
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where ε(u) is given as

ε(u) =
1

2

 ∇u+ (∇u)T
&
. (2.3)

The quantities used in (2.1) and (2.2) are

ρ ... Density u ... Velocity field σ ... Cauchy stress tensor

f ... Body forces e ... Internal energy q ... Heat flux

ε(u) ... Rate-of-strain tensor pth ... Thermodynamic pressure T ... Temperature

In this work we will focus on steady ( ∂·
∂t

= 0), incompressible (ρ = const.), isothermal
(T = const.) and laminar (Reynolds number Re � 1) flows.
Note: Incompressibility is a property of the flow and not of the substance, as no fluid
is truly incompressible. For a Mach number Ma < 0.3 it is safe to assume a constant
density [And17, Section 1.10].
With these assumptions the balance of energy (2.1d) decouples from the system of equa-
tions (2.1a) to (2.1d). We obtain Stokes equations

div(u) = 0, (2.4a)

−div(σ) = ρf , (2.4b)

σ = σT , (2.4c)

and the inequality

σ : ε(u) ≥ 0. (2.5)

To close the above system of equations we need a constitutive relation which links the
Cauchy stress tensor σ to a deformation variable. In general one splits the Cauchy stress
tensor σ in an isotropic/spherical part and a deviatoric part

σ =
1

3
tr(σ)I + τ .

The ”mean normal stress”

σ =
1

3
tr(σ)I,

is usually referred as the mechanical pressure

p = −1

3
tr(σ),

or from a mathematical perspective, as the Lagrange multiplier, which enforces the incom-
pressibility constraint (2.4a). By no means are the above mentioned definitions equivalent
in an universal setting for generalised fluids. For a deeper discussion about the equiv-
alence of the ”mean normal stress”, ”mechanical pressure”, ”Lagrange multiplier” and
”thermodynamic pressure” we refer to Rajagopal [Raj15].
In this work we focus on constitutive relations, where non-linearities arise in the deviatoric
stress tensor τ with tr(τ ) = 0, hence it is appropriate to adress to p as a Lagrange
multiplier. Thus we define the Cauchy stress tensor as

σ = −pI + τ .
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2.2 Newtonian fluids

As for many other PDEs, the underlying assumption for the Navier-Stokes equations
is that part of the fluxes are proportional to the primal quantities gradient. For heat
conduction problems we have Fourier’s law which links the heat flux q to the temperature
gradient∇T , while in solid mechanics we have Hooke’s law which relates the Cauchy stress
tensor 0σ1 to the symmetric displacement gradient (strain tensor 0ε). Similarly it follows
for fluids, where following relation can be derived for the deviatoric stress tensor [Bat00,
Section 3.3]

τ = 2µε(u) + λdiv(u)I.

For incompressible flows the Cauchy stress tensor then becomes

σ = −pI + 2µε(u).

We see that inequality 2.5 is automatically fulfilled

σ : ε(u) = (−pI + 2µε(u)) : ε(u) = 2µ |ε(u)|2 ≥ 0.

The constant material property µ is referred to as dynamic viscosity and is characterizing
for Newtonian fluids, as it establishes the linear relationship between stresses and strain
rates. Although the dynamic viscosity is independent of the strain rates and stresses,
it can be both temperature and pressure dependent µ(T, p). Some dynamic viscosities
for common Newtonian fluids are listed in Table 2.1, while in Figure 2.1 the Newtonian
behaviour of water and petrol can be observed.

Fluid Hydrogen Air Petrol Water Lubricating oil Corn syrup

µ [Pa · s] 10−5 2 · 10−5 3 · 10−4 10−3 10−1 103

Table 2.1 – Dynamic viscosities for common fluids at standard conditions [Bar00, Section 5.3]

An additional condition for a fluid to be classified as Newtonian is the constraint for the
normal components of the deviatoric stress tensor [CR08, Section 1.2]:

τii = 0. (2.6)

A fluid which shows a constant viscosity behaviour, but does not fulfil condition (2.6) is
e.g. the constant viscosity Boger fluid [CR08, Section 1.2].

2.3 Non-Newtonian fluids

Pure fluids are rare. Mostly they consist of a mixture of substances with different molec-
ular sizes. As long as homogeneity is given and the continuum hypothesis holds, they
can be considered as single-phase flows with an averaged dynamic viscosity. In general
the stress - strain rate relation is no longer linear, but linked by the non-linear dynamic
viscosity µ(ε(u), τ ). Examples are encountered in everyday life, but especially in many
industrial processes [GW11, CR08]. A glimpse of these substances is given in Table 2.2.

1The Tilde ∼ has been used to avoid a clash of notation
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Figure 2.1 – Newtonian Stress-strain rate behaviour for water and petrol at standard conditions

� Adhesives (wall paper paste, carpet ad-
hesive)

� Foodstuffs (fruit/vegetable purees and
concentrates, sauces, salad dressings, may-
onnaise, jams and marmalades, ice-cream,
soups, ...)

� Ales (beer, liqueurs) � Greases and lubricating oils
� Animal waste slurries from cattle farms � Mine tailings and mineral suspensions
� Biological fluids � Molten lava and magmas
� Bitumen � Paints, polishes and varnishes
� Cement paste and slurries � Paper pulp suspensions
� Chalk slurries � Peat and lignite slurries
� Chocolates � Polymer melts and solutions, reinforced

plastic, rubber
� Coal slurries � Printing colours and ink
� Cosmetics and personal care products
(nail polish, lotions and creams, lipsticks,
shampoos, shaving foams, toothpaste)

� Pharmaceutical products (creams,
foams, suspensions)

� Dairy products and dairy waste streams
(cheese, butter, yogurts, fresh cream,
whey)

� Sewage sludge

� Drilling muds � Wet beach sand
� Fire fighting foams � Waxy crude oils

Table 2.2 – Examples of fluids showing non-Newtonian behaviour [CR08, Section 1.2]

Two applications come to our mind:

1. Painting
Paint clearly shows a so called thixotropic behaviour, which is synonymous to a
time-dependent shear-thinning behaviour. The longer you brush the paint e.g. on
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a wall, the more it liquefies until a certain limit. This relates to a time-dependent
decrease in viscosity. On the other hand, when left at rest, paint becomes thicker
again, preventing it from dripping down the wall.

2. Drilling
In drilling operations cuttings have to be transported from the borehole to the
surface. For this issues special fluids have been conceived so that they are suitable
for drilling operations. The requirements on those fluids are to exhibit enough drag
to transport cuttings to the surface and to prevent their sedimentation at rest. Such
drilling muds can be categorized as viscoplastic fluids, since they show the presence
of a yield stress below which there is no movement of the fluid [GW11].

Roughly, non-Newtonian fluids can be categorized in three subgroups [CR08, Section 1.2]

(I) time-independent fluids, also known as ”generalized Newtonian fluids” (GNF),

(II) time-dependent fluids,

(III) visco-elastic fluids,

although it is possible for real materials to show characteristics of each subgroup.

In regard to the previously made assumptions, in this work we focus solely on time-
independent fluids. This category is further subdivided in

(i) pseudoplastic fluid,

(ii) dilatant fluid,

(iii) viscoplastic

Figure 2.2 depicts the difference in the stress-strain rate curve between the above listed
fluids and a Newtonian fluid.

Figure 2.2 – Stress - strain rate relation for time-independent fluids
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2.3.1 Pseudoplastic fluid

Pseudoplastic or shear-thinning behaviour is one of the most encountered when dealing
with time-independent non-Newtonian fluids. These mixtures are characterised by de-
creasing viscosity with an increase in shear rate, which causes them to liquefy and exert
less drag. An explanation for this effect is given when looking at the micro-structures
of the fluid. At rest and in thermodynamic equilibrium the micro-structures assume a
state of random disorder when Brownian motion dominates [Bar89b, Section 7.1]. By
application of a force the micro-structures arrange or deform in the direction of the flow,
hence exert a lower drag force. Macroscopically, this leads to a reduction in viscosity
[CR08, Section 1.7]. A schematic visualisation of the rearranging and deforming of such
micro-structures can be seen in Figure 2.3 on a single droplet.

Figure 2.3 – Orientation and deformation of micro-structures at rest and in flow [CR08, Section 1.7]

There are other effects that cause shear-thinning behaviour, such as stretching and dis-
integration of micro-structures, disentangled molecules. For more details we refer to
[CR08, Bar89b].
The dynamic viscosity µ is usually constant at low and high shear rates, denoted by µ0

and µ∞ respectively [Bar00, Section 9.1]. This property can be explained by the fact that
microstructures are resistant to their own deformation at low shear rates, while at high
shear rates they reach a point of maximum extent where no longer drag reduction occurs.
An illustrative representation can be seen in Figure 2.4.

Mathematical models

In literature [CR08, Bar00, Bar89a, GO20] one can find various models developed over
the last century. Some of them are based on curve fitting experimental data gained by
measurements, while others are based on statistical mechanics [CR08, Section 1.3].
Probably, the simplest model is the power-law model, usually known as the Ostwald -de
Waele constitutive relation [GO20, Equation 1.7], as it is based on two parameters

τ = 2Kγ̇r−2ε(u) K > 0, 2 > r > 1, (2.7)
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Figure 2.4 – Characteristic viscosity curve of a pseudoplastic fluid

where the generalized shear rate γ̇ is defined as [GW11, Section 3.1]

γ̇ = 2|ε(u)|. (2.8)

Typical values for the consistency value K and the power-law index2 r are given in Ta-
ble 2.3.

Material K [Pa · s] n r |ε(u)| [1/s]
Ball-point pen ink 10 0.85 1.85 100 − 103

Fabric conditioner 10 0.6 1.6 100 − 102

Polymer melt 10000 0.6 1.6 102 − 104

Molten chocolate 50 0.5 1.5 10−1 − 101

Synovial fluid 0.5 0.4 1.4 10−1 − 102

Toothpaste 300 0.3 1.3 100 − 103

Skin cream 250 0.1 1.1 100 − 102

Lubricating grease 1000 0.1 1.1 10−1 − 102

Table 2.3 – Consistency K and power-law index r values for a selection of substances [Bar89a,
Table 2.3]

More sophisticated models take into account the two limiting viscosities µ0 and µ∞. For
example the Carreau-Yasuda constitutive relation [GO20, Equation 1.8]

τ = 2
�
µ∞ + (µ0 − µ∞) (1 + Γγ̇)

r−2
2

�
ε(u) µ0, µ∞,Γ ≥ 0, 2 > r > 1,

or the Sisko constitutive relation [GO20, Equation 1.9]

τ = 2
 
µ∞ + αγ̇r−2

&
ε(u) µ∞, α ≥ 0, 2 > r > 1.

2In rheology and engineering books the letter ”n” is typically used to denote the power-law index, while
in mathematics the letter ”r” can be found for the power-law index. We use latter definition. The
relation between those indices is given by r = n+ 1
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Above mentioned models are only applicable to a certain shear rate range. An illustrative
sketch is shown in Figure 2.5.

Figure 2.5 – Scope of the non-Newtonian pseudoplastic models [Bar00, Section 9.1]

2.3.2 Dilatant fluid

The main characteristic of dilatant fluids compared to pseudoplastic ones is the increase
in apparent viscosity at higher shear rates. For this reason they are also called shear-
thickening fluids. A possible explanation of such behaviour is again provided by taking
into consideration the micro-structures present in the substance. While the fluid has
a lubricating effect on the micro-structures at low shear rates, higher shear rates can
cause the micro-structures to expand and the fluid can no longer fill the void space.
Eventually, the direct contact of the micro-structures and thus friction occurs, which
drastically increases the viscosity by increasing rate of strain [CR08, Section 1.3]. An
illustration of the occurring solid-solid contact is given in Figure 2.6

Mathematical models

Some dilatant fluids may exhibit pseudoplastic behaviour at low shear rates, which makes
the mathematical modelling of such fluids more difficult. However, the power-law model

τ = 2Kγ̇r−2ε(u) K > 0, r > 2,

can be used for the shear-thickening range. For a power-law index r > 2 it is trivial that
the apparent viscosity increases.

2.3.3 Viscoplastic fluid

Viscoplastic fluids are characterised by an internal stiffness that prevents a shear rate from
occurring. However, when a stress threshold is reached, the so-called yield stress τy, they
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Figure 2.6 – Schematic representation of a dilatant fluid at rest and in motion [CR08, Section 1.3]

begin to flow like viscous fluids. The effects of such zero shear rate regions, also known as
unyielded regions, manifest in a rigid body motion, a solid elastic deformation or a very
viscous flow [GW11, Section 1]. Flow regions where the yield stress τy is exceeded, also
known as yielded regions, exhibit either a Bingham or a pseudoplastic behaviour as shown
in Figure 2.2.

From a microscopic point of view, the micro-structures in the fluid offer sufficient resis-
tance for them not to yield to external forces |τ | ≤ τy. When the yield stress is reached
|τ | > τy, these structures collapse and the fluid behaves viscously. For some substances
this process can be reversible. [CR08, Section 1.3].

Historically, due to the low sensitivity of rheometers, making measurements at low shear
rates unreliable, the yield stress τy was introduced after extrapolation of the stress-strain
rate curve to the zero strain rate axis [GW11, Section 1]. Opinions differ as to whether such
a yield stress τy is real, nonetheless such approximation is helpful to model substances,
which do not strain.

Typical values of yield stresses are given in Table 2.4.

Substances Yield stress τy [Pa]

Ketchup and drilling muds ∼ 15
Spaghetti sauce ∼ 25
Mustard and apple sauce ∼ 60
Mayonnaise ∼ 90
Tomato paste ∼ 125

Table 2.4 – Yield stress values for common substances [Bar00, Section 11.3]
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Mathematical models

The simplest model is certainly the Bingham constitutive relation [GW11, Section 3.1]τ = 2µε(u) +
τy

|ε(u)|ε(u) if |τ | > τy,

ε(u) = 0 if |τ | ≤ τy.
(2.9)

Similar to the power-law model, the constitutive relation (2.9) is based on two parameters:
The dynamic viscosity µ and the yield stress τy. It is clear from (2.9) that the curve being
described in the yielded region is linear. To model non-linear behaviour in the yielded
region e.g. shear-thinning/pseudoplastic, a more sophisticated model is needed. One
example is the Herschel-Bulkley model [GW11, Section 3.1]τ = 2Kγ̇r−2ε(u) +

τy
|ε(u)|ε(u) if |τ | > τy,

ε(u) = 0 if |τ | ≤ τy.

By taking a closer look, the model is a combination between the power-law model (2.7)
and the Bingham model (2.9). The generalized shear rate is again given by (2.8).



3
Newtonian Variational Formulations of
Stokes Equations

In this chapter we introduce different variational formulations of Stokes equations. In the
first place we introduce some used notation, theorems and propositions used throughout
this thesis. Secondly, we derive various mixed variational formulations and discuss some
stability aspects in a Newtonian setting.

Framework

Let Ω ⊂ Rd, where d = 2, 3 be an open bounded subset with Lipschitz boundary Γ = ∂Ω.
Further define the subspaces ΓD ⊆ Γ and ΓN ⊆ Γ such that ΓD ∪ ΓN = Γ.
The function space Ck(Ω,R) contains all real-valued k-times differentiable functions on Ω
and accordingly

D(Ω,R) := C∞
0 (Ω,R),

D(Ω,Rd) :=
�
ψ : Ω → Rd |ψi ∈ D(Ω,R)



,

D(Ω,Rd×d) :=
�
ψ : Ω → Rd×d |ψij ∈ D(Ω,R)



,

as the space of infinitely differentiable, compactly supported, real-valued scalar(R)-, vector(Rd)-
and matrix(Rd×d)-valued functions on Ω. The space of distributions is denoted by D�(Ω).
Gradient and divergence operators are defined as

(∇ψ)i =
∂ψ

∂xi

ψ ∈ D�(Ω,R),

(∇ψ)ij =
∂ψi

∂xj

ψ ∈ D�(Ω,Rd),

div(ψ) =
d.

i=1

∂(ψ)i
∂xi

ψ ∈ D�(Ω,Rd),

(div(ψ))i =
d.

j=1

∂(ψ)ij
∂xj

ψ ∈ D�(Ω,Rd×d).

In a two-dimensional setting we define the curl operator of a scalar(R)-valued function as

curl(ψ) =

!
− ∂ψ

∂x1

,
∂ψ

∂x0

'T

∈ D�(Ω,R2) ψ ∈ D�(Ω,R).
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Let V be a Sobolev space, then we denote by (·, ·)V the inner product and by � · �V the
norm of the space. When considering the space of real-valued square integrable functions
on Ω

L2(Ω,R) :=
�
f :

�
Ω

f 2 dx < ∞
�
,

we abbreviate the notion

(f, g) :=

�
Ω

fg dx ∀f, g ∈ L2(Ω,R),

�f� :=
,
(f, f) ∀f, g ∈ L2(Ω,R),

otherwise for a subset Δ ⊂ Ω we add the subscript

(f, g)Δ :=

�
Δ

fg dx ∀f, g ∈ L2(Δ,R),

�f�Δ :=
,
(f, f)Δ ∀f, g ∈ L2(Δ,R).

We introduce the well known Sobolev spaces

H1(Ω,R) :=
�
ψ ∈ L2(Ω,R) : �∇ψ� < ∞


,

H(div,Ω) :=
�
ψ ∈ L2(Ω,Rd) : �div(ψ)� < ∞


,

and the subspaces with homogeneous traces

H1
0 (Ω,R) :=

�
ψ ∈ H1(Ω,R) : ψ = 0 on Γ



,

H0(div,Ω) := {ψ ∈ H(div,Ω) : ψ · n = 0 on Γ} ,

with the corresponding norms

�ψ�2H1 := �ψ�2 + �∇ψ�2,
�ψ�2H(div) := �ψ�2 + �div(ψ)�2.

A dual space V ∗ of all bounded linear forms on V is denoted by a superscript asterisk.
The dual norm is given by

�l�V ∗ := sup
v∈V

l(v)

�v�V ∀ l ∈ V ∗

Every continuous and discrete variational formulations of Stokes equations we are going
to derive have a saddle point structure. In order to guarantee uniqueness and solvability
of such problems we need Brezzis [Bre74] Theorem 1.
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Theorem 1. Consider the following problem:

Find (u, p) ∈ V ×Q such that

a(u,u) + b(u, p) = f(u) ∀u ∈ V,

b(u, p) = 0 ∀p ∈ Q

Assume:
The bilinear forms a(u,u) and b(u, p) are continuous

a(u,u) & �u�V �u�V ,
b(u, p) & �u�V �p�Q.

The bilinear form a(u,u) is coercive(elliptic) on the kernel V0, i.e.

a(u,u) � �u�V ∀u ∈ V0 := {v ∈ V : b(v, p) = 0 ∀p ∈ Q} .

The bilinear form b(u, p) fulfils the LBB (Ladyshenskaya-Babuška-Brezzi) condition

sup
u∈V,u �=0

b(u, p)

�u�V � �p�Q ∀p ∈ Q.

Then the variational problem has an unique solution depending continuously on the
input

�u�V + �p�Q & �f�V ∗ .

The succeeding inequalities are useful to prove the conditions required to fulfil Theorem 1.

Proposition 2. Cauchy-Schwarz inequality
For an inner product space V it holds

|�f, g�V | ≤ �f�V �g�V ∀f, g ∈ V.

Proposition 3. Korn’s inequality [CDD+76]
There exists a constant c > 0 dependent on Ω such that it holds

c�∇u�2H1 ≤ �ε(u)�2 + �u�2 ∀u ∈ H1(Ω,R).

Governing equations

We recall Stokes equations for a Newtonian fluid and incompressible flow with homoge-
neous boundary conditions on ΓD = ∂Ω:

τ = 2µε(u) inΩ, (3.1a)

−div(τ ) = −∇p+ ρf in Ω, (3.1b)

div(u) = 0 inΩ, (3.1c)

u = 0 onΓD. (3.1d)
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The solution to the system of equations (3.1) is unique up to a constant pressure. Choose
p = p̃+ c, then p̃ also solves the momentum equations. To guarantee uniqueness, one can
either fix a pressure value in space, or perform a mathematical gauging�

Ω

p dx = 0.

We will use the latter technique and define the appropriate L2-space with zero mean value

L2
0(Ω,R) :=

�
f ∈ L2(Ω,R) :

�
Ω

f dx = 0

�
.

It is known that every tensor can be split in a symmetric and skew-symmetric part, in
particular

∇u = sym(∇u) + skw(∇u) = ε(u) + ω(u). (3.2)

Above relation, will be constantly used throughout this work. The rate-of-strain tensor
ε(u) has already been introduced in Chapter 2

ε(u) =
1

2

 ∇u+ (∇u)T
&

(3.3)

whereas the rate-of-rotation tensor ω(u) is defined as [Pop12, Section 2.8]

ω(u) =
1

2

 ∇u− (∇u)T
&

(3.4)

3.1 Velocity-pressure formulation

We aim to describe the system of equations (3.1) by two fields i.e. the velocity u and the
pressure p. To form the rate-of-strain tensor ε(u) we require ∇u to be in L2(Ω,Rd×d),
therefore the appropriate space for the velocity is u ∈ V := H1

0 (Ω,Rd). The pressure
suffices p ∈ Q := L2

0(Ω,R).
To derive the weak formulation we multiply (3.1) with suitable test functions denoted by
an overline (·)

−2µ

�
Ω

div(ε(u)) · u dx = −
�
Ω

∇p · u dx+

�
Ω

ρf · u dx,

−
�
Ω

div(u)p dx = 0.

Exploiting the identity of the Frobenius inner product for symmetric matrices

ε(u) : ∇u = ε(u) : ε(u) + ε(u) : ω(u) = ε(u) : ε(u),

and applying integration by parts, we get a symmetric formulation

2µ

�
Ω

ε(u) : ε(u) dx−
�
Ω

div(u)p dx =

�
Ω

ρf · u dx,

−
�
Ω

div(u)p dx = 0.
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The linear form and bilinear forms are redefined as

a(u,u) := 2µ

�
Ω

ε(u) : ε(u) dx, (3.5)

b1(u, p) := −
�
Ω

div(u)p dx, (3.6)

f(u) :=

�
Ω

ρf · u dx. (3.7)

such that variational formulation I is obtained.

Variational Formulation I
Find (u, p) ∈ V ×Q such that

a(u,u) + b1(u, p) = f(u) ∀u ∈ V,

b1(u, p) = 0 ∀p ∈ Q.

Velocity-pressure stability aspects

Continuity of bilinear forms (3.5) and (3.6) is a direct consequence of applying Cauchy-
Schwarz inequality to it

a(u,u) & µ�u�V �u�V ∀u,u ∈ V, (3.8)

b1(u, p) & �u�V �p�Q ∀u ∈ V, p ∈ Q. (3.9)

Ellipticity on V (i.e. also on V0) follows by making use of Korn’s inequality

a(u,u) = 2µ�ε(u)�2 � µ�u�2V ∀u ∈ V.

The LBB condition is also fulfilled for the continuous setting

sup
u∈V
u �=0

|b(u, p)|
�u�V � �p�Q ∀p ∈ Q. (3.10)

We refer to [BBF13, Section 8.2] for a detailed proof.

3.2 Mixed stress formulation

An alternative to the Velocity-pressure formulation is to introduce a third space for the
deviatoric stress tensor τ . We will clarify later, why this choice is very well suited for
Non-Newtonian flows. In the following we illustrate an option where τ is sought in a
L2(Ω,Rd×d)-space. While in the two-field formulation the velocity u was the primal and
the pressure p the dual variable, in the three-field formulation they undergo a role reversal.
The primal variables become (τ , p) ∈ X := Σ×Q and the dual variable u ∈ V . This will
play an important part, when analysing the kernel ellipticity and the LBB condition.
Before deriving the variational formulation, we introduce the symmetric subset of the
matrix-valued L2(Ω,Rd×d)-space.

L2
sym(Ω,Rd×d) :=

�
ψ ∈ L2(Ω,Rd×d) : ψ = ψT



.
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Recall from the angular momentum balance (2.4c) that the deviatoric stress tensor τ
must be symmetric. A suitable function space for this requirement is the above defined
τ ∈ Σ := L2

sym(Ω,Rd×d). Velocity and pressure spaces V,Q can be adopted from the
velocity-pressure formulation 3.1.
With the help of the identity for symmetric matrices,

τ : ∇u = τ : ε(u) + τ : ω(u) = τ : ε(u),

we derive the weak formulation by multiplication with appropriate test functions

− 1

2µ

�
Ω

τ : τ dx+

�
Ω

ε(u) : τ dx = 0,�
Ω

τ : ε(u) dx−
�
Ω

div(u)p dx =

�
Ω

ρf · u dx,

−
�
Ω

div(u)p dx = 0.

Subsequently, the linear form and bilinear forms

a(τ , τ ) := − 1

2µ

�
Ω

τ : τ dx, (3.11)

b1(u, p) := −
�
Ω

div(u)p dx, (3.12)

b2(τ , ε(u)) :=

�
Ω

τ : ε(u) dx, (3.13)

f(u) :=

�
Ω

ρf · u dx. (3.14)

form the variational formulation II.

Variational Formulation II
Find ((τ , p),u) ∈ X × V such that

a(τ , τ ) + b2(τ , ε(u)) = 0 ∀τ ∈ Σ,

b2(τ , ε(u)) + b1(u, p) = f(u) ∀u ∈ V,

b1(u, p) = 0 ∀p ∈ Q.

Notice the solution of variational formulation I and II are identical in this linear setting,
as it holds ε(u) ⊂ Σ and from

a(τ , τ ) + b2(τ , ε(u)) = 0 ∀τ ∈ Σ,

it follows τ = ε(u).

Mixed stress stability aspects

Using Cauchy-Schwarz inequality the continuity of bilinear forms

a(τ , τ ) & 1

µ
�τ�Σ�τ�V ∀τ , τ ∈ Σ,

b2(τ ,u) & �τ�Σ�u�V ∀τ ∈ Σ,u ∈ V,
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can be shown. Note that the continuity of bilinear form (3.12) has already been proven
in (3.9).

Lemma 4. On the kernel X0 bilinear form a is elliptic

a(τ , τ ) � �τ�2Σ + �p�2Q ∀ (τ , p) ∈ X0. (3.15)

Proof: The kernel is given by

X0 := {(τ , p) ∈ X : b2(τ ,u) + b1(u, p) = 0 ∀u ∈ V } .

To proof coercivity on the kernel we need a further estimate. For this recall the LBB
condition from the two-field setting (3.10). With Cauchy-Schwarz’s inequality

�p�Q & sup
u∈V
u �=0

| �
Ω
div(u)p dx|
�u�V = sup

u∈V
u �=0

| �
Ω
τ : ε(u) dx|
�u�V

& sup
u∈V
u �=0

�τ�Σ�ε(u)�
�u�V & �τ�Σ.

With this result it follows

a(τ , τ ) =
1

2µ
�τ�2Σ � 1

4µ
�τ�2Σ +

1

4µ
�p�2Q � 1

µ

 �τ�2Σ + �p�2Q
&
=

1

µ
�(τ , p)�2X .

Lemma 5. The LBB condition holds for any u ∈ V

sup
(τ ,p)∈X

|b2(τ , ε(u)) + b1(u, p)|
�(τ , p)�X � �u�V ∀u ∈ V. (3.16)

Proof : Since (τ , p) are arbitrary, we choose τ := ε(u), p := 0

sup
(τ ,p)∈X

|b2(τ , ε(u)) + b1(u, p)|
�(τ , p)�X � sup

τ∈Σ

|b2(τ , ε(u))|
�τ�Σ ≥ |b2(ε(u), ε(u))|

�ε(u)� = �ε(u)�.

We conclude by Korn’s inequality (3). For a detailed proof of above stability analysis and
additional error estimates consider the paper by Fortin et al. [FP89]

3.3 Mass conserving mixed stress formulation

Compared to the other formulations we aim to increase the regularity of the deviatoric
stress tensor τ . Put into words, we seek a row-wise H(div,Ω)-type space, such that
div(τ ) is well defined. A recently developed formulation [GLS19] for Stokes equations
(3.1) fulfills this prerequisite. Based on the authors findings, the regularity of the velocity
space has been decreased to u ∈ V := H(div,Ω), which is an appropriate space for the
incompressibility constraint, especially in the discrete setting, while the pressure is still
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sought in p ∈ Q := L2
0(Ω,R). The regularity of the deviatoric stress tensor has been

increased to τ ∈ Σsym, where Σsym is given by

H(curl div,Ω) :=
�
ψ ∈ L2(Ω,Rd×d) : div(ψ) ∈ H0(div,Ω)

∗
 ,

Σ := {ψ ∈ H(curl div,Ω) : tr(ψ) = 0} ,
Σsym :=

�
ψ ∈ H(curl div,Ω) : tr(ψ) = 0,ψ = ψT



,

�ψ�2Σ := �ψ�2 + �div(ψ)�2H0(div)∗ .

We start deriving the weak formulation by multiplying (3.1) with suitable test functions

1

2µ

�
Ω

τ : τ dx−
�
Ω

ε(u) : τ dx = 0,

�div(τ ),u�V −
�
Ω

∇pu dx = −
�
Ω

ρf · u dx,�
Ω

div(u)p dx = 0.

Using the identity for a Frobenius inner product with symmetric matrices, integration by
parts and the homogeneous boundary condition we get�

Ω

ε(u) : τ dx =

�
Ω

∇u : τ dx = −�div(τ ),u�V ,

−
�
Ω

∇pu dx =

�
Ω

div(u)p dx.

Therefore in total it results in the symmetric weak formulation

1

2µ

�
Ω

τ : τ dx+ �div(τ ),u�V = 0,

�div(τ ),u�V +

�
Ω

div(u)p dx = −
�
Ω

ρf · u dx,�
Ω

div(u)p dx = 0,

where �·, ·�V denotes the duality pairing on V , see also [Led19].

In terms of bilinear forms and linear form

a(τ , τ ) :=
1

2µ

�
Ω

τ : τ dx, (3.17)

b1(u, p) :=

�
Ω

div(u)p dx, (3.18)

b2(τ ,u) := �div(τ ),u�V , (3.19)

f(u) :=

�
Ω

ρf · u dx. (3.20)

we derived our third variational formulation III
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Variational Formulation III
Find ((τ , p),u) ∈ X × V such that

a(τ , τ ) + b2(τ ,u) = 0 ∀τ ∈ Σ,

b2(τ ,u) + b1(u, p) = −f(u) ∀u ∈ V,

b1(u, p) = 0 ∀p ∈ Q.

Mass conserving mixed stress stability aspects

It follows immediately by Cauchy-Schwarz’s inequality that bilinear form

a(τ , τ ) & 1

µ
�τ�Σ�τ�Σ ∀τ , τ ∈ Σ, (3.21)

is continuous. Continuity of bilinear form b1(u, p) is already known (3.9), whereas for
b2(τ ,u) it follows from

b2(τ ,u) := �div(τ ),u� ≤ �div(τ )�V ∗�u�V ≤ �τ�Σ�u�V ∀τ ∈ Σ,u ∈ V.

Coercivity on the kernel follows similar arguments as in Lemma 4. For the detailed proof
see [Led19, Lemma 9].

Lemma 6. LBB condition is fulfilled

sup
(τ ,p)∈X

|b2(τ ,u) + b1(u, p)|
�(τ , p)�X � �u�V ∀u ∈ V. (3.22)

Proof: Since div(V ) ⊂ Q, choose p := div(u) then it follows

b1(u, p) =

�
Ω

div(u)p dx = �div(u)�2 ∀u ∈ V,

and by definitions of the L2(Ω) and H(div) norms the estimate holds true

�p�Q = �div(u)� ≤ �u�V .

From [Led19, Lemma 12] there further exists for all u ∈ V a τ such that

b2(τ ,u) � �u�2V and �τ�Σ & �u�V .

Combining above estimates we get

sup
(τ ,p)∈X

|b2(τ ,u) + b1(u, p)|
�(τ , p)�X � |b2(τ ,u) + b1(u, p)|

�(τ , p)�X
� �u�2V + �div(u)�2

�τ�Σ + �p�Q � �u�V ∀u ∈ V,

which concludes the proof.
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4
Mixed Finite Elements

In this chapter we introduce some Finite Elements approximating the three derived vari-
ational formulations I-III. As solvability of the discrete setting is by no means inherited
from the continuous inf-sup variational formulation, we give a short comment on that.
Ultimately, we present a new finite element method approximating a similar variational
formulation to III in combination with an extensive discrete stability analysis.

Framework

Consider the domain Ω ⊂ Rd introduced in Chapter 3. We define Th as the partition of
Ω into non overlapping triangles or tetrahedrons with following properties:

1. Th is shape regular

max
T∈Th

diam(T )d

|T | ≤ c1 c1 > 0,∀T ∈ Th,

2. Th is quasi-uniform

diam(T ) ≤ c2h c2 > 0, ∀T ∈ Th.

The mesh size h is defined as

h := max
T∈Th

diam(T ).

An example for a 2- and 3-simplex with the corresponding outer normal unit vector n and
tangential unit vector t is given in Figure 4.1. The set Fh contains all triangulation facets,
where we can further distinguish between interior and exterior facets F int

h ∪ F ext
h = Fh.

The jump of a quantity on a common facet F ∈ Fh is denoted by [[·]].
Further, the space of scalar-valued polynomials on a given element T ∈ Th up to order k
is denoted by Pk(T,R). Respectively, the space of vector- and matrix-valued polynomial
spaces is given by Pk(T,Rd) and Pk(T,Rd×d). On a given triangulation Th we define the
space of polynomials as

Pk(Th,R) :=
+
T∈Th

Pk(T,R),

Pk(Th,Rd) :=
+
T∈Th

Pk(T,Rd),

Pk(Th,Rd×d) :=
+
T∈Th

Pk(T,Rd×d).
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Figure 4.1 – Triangle and Tetrahedron with normal n and tangential vectors t

Ultimately, we introduce the symmetric, skew-symmetric and trace-free matrix-valued
polynomial spaces

Pk
sym(Th,Rd×d) :=

�
ψ ∈ Pk(Th,Rd×d) : ψ|T = ψT|T ∀T ∈ Th



,

Pk
skw(Th,Rd×d) :=

�
ψ ∈ Pk(Th,Rd×d) : ψ|T = −ψT|T , (ψ|T )ii = 0 ∀T ∈ Th



,

Pk
tr(Th,Rd×d) :=

�
ψ ∈ Pk(Th,Rd×d) : tr(ψ|T ) = 0 ∀T ∈ Th



,

Pk
sym,tr(Th,Rd×d) :=

�
ψ ∈ Pk(Th,Rd×d) : ψ|T = ψT|T , tr(ψ|T ) = 0 ∀T ∈ Th



.

4.1 Velocity-pressure approximation

We aim to approximate variational formulation I in means of a finite element method. By
introducing a finite-dimensional subspaces Vh ⊂ V := H1

0 (Ω,Rd) and Qh ⊂ Q := L2
0(Ω,R)

we formulate the following discrete problem

Discrete Variational Formulation IV
Find (uh, ph) ∈ Vh ×Qh such that

a(uh,uh) + b1(uh, ph) = f(uh) ∀uh ∈ Vh,

b1(uh, ph) = 0 ∀ph ∈ Qh.

Recall that the bilinear forms and linear form are defined as in (3.5)-(3.7)

a(uh,uh) := 2µ

�
Ω

ε(uh) : ε(uh) dx,

b1(uh, ph) := −
�
Ω

div(uh)ph dx,

f(uh) :=

�
Ω

ρf · uh dx.

.
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In literature [AMS+04, BBF13] many stable (i.e. the conditions of Brezzi’s Theorem 1 are
fulfilled) velocity-pressure finite elements solving the discrete problem IV can be found.
For the sake of simplicity we will only introduce two of them.

4.1.1 Generalized Taylor-Hood element (T H)

The well-known Taylor-Hood element[TH73] approximates both velocity u and pressure
p in a continuous matter. Respectively, the discrete spaces are given by

Vh :=
�
uh ∈ H1

0 (Ω,Rd) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th



,

Qh :=
�
ph ∈ L2

0(Ω,R) ∩ C0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



.

An example of this mixed element is given for a polynomial order k = 2 in Figure 4.3.

Figure 4.2 – 2-simplex Taylor-Hood element (T H) of polynomial order k = 2

Discrete stability analysis

A proof of the discrete LBB condition can be found in many textbooks. In [AMS+04,
Section 4.2.5] the authors present a proof for tetrahedrons of order k = 2, while in [BBF13,
Section 8.8.2] the authors provide a proof for a 2D triangulation for any polynomial order
k > 2.

4.1.2 Exactly divergence-free property

As discussed in Chapter 2 the incompressibility constraint reads as div(u) = 0. Unfortu-
nately, in general at the discrete level the velocity uh is approximated weakly divergence-
free, since �

Ω

div(uh)ph dx = 0 ∀ph ∈ Qh,

does not imply div(uh) = 0.
One way to obtain exactly divergence-free elements is to choose the discrete spaces such
that div(Vh) ⊂ Qh, then by choosing ph := div(uh) [BBF13, Section 8.9.1] we get�

Ω

div(uh)ph dx =

�
Ω

div(uh)div(uh) dx = 0 ⇒ div(uh) = 0.

The above introduced Taylor-Hood element 4.1.1 is not exactly divergence-free and there-
fore not exactly mass conserving. An element that possesses this quality is introduced in
the next subsection.
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4.1.3 Scott-Vogelius element (SV)
As previously discussed a possibility to force conservation of mass on a discrete level is to
choose the discrete spaces such that div(Vh) ⊂ Qh. Therefore the selection of spaces

Vh :=
�
uh ∈ H1

0 (Ω,Rd) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th



,

Qh :=
�
ph ∈ L2

0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



.

leads to the so called Scott-Vogelius element [SV85]. Unfortunately, this choice is only
stable on barycentric refined triangulations.

Figure 4.3 – 2-simplex Scott-Vogelius element (SV) of polynomial order k = 2

The discrete inf-sup stability of this element is provided in [SV85, BBF13].

4.2 Mixed stress approximation

As in the previous section we aim to approximate variational formulation II by suitable
finite elements. The discrete problem reads as

Discrete Variational Formulation V
Find ((τh, ph),uh) ∈ Xh × Vh such that

a(τh, τ h) + b2(τ h,uh) = 0 ∀τ h ∈ Σh,

b2(τh,uh) + b1(uh, ph) = f(uh) ∀uh ∈ Vh,

b1(uh, ph) = 0 ∀ph ∈ Qh.

with bilinear forms and linear form (3.11)-(3.14).

a(τh, τ h) := − 1

2µ

�
Ω

τh : τ h dx,

b1(uh, ph) := −
�
Ω

div(uh)ph dx,

b2(τh,uh) :=

�
Ω

τh : ε(uh) dx,

f(uh) :=

�
Ω

ρf · uh dx.

Accordingly, we introduced the conforming finite-dimensional subspaces Σh ⊂ Σ :=
L2

sym(Ω,Rd×d), Qh ⊂ Q := L2
0(Ω,R) and Vh ⊂ V := H1

0 (Ω,Rd).
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4.2.1 Generalized Taylor-Hood + stress element (T H-S)
Let us recall the discrete spaces introduced in 4.1.1 and add the space of piecewise dis-
continuous symmetric matrix-valued polynomials

Vh :=
�
uh ∈ H1

0 (Ω,Rd) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th



,

Qh :=
�
ph ∈ L2

0(Ω,R) ∩ C0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



,

Σh :=
�
τh ∈ L2

sym(Ω,Rd×d) : τh|T ∈ Pk−1
sym(T,Rd×d) ∀T ∈ Th



.

An illustration of the degrees of freedom of mixed finite element is shown for a polynomial
order k = 2 in Figure 4.4.

Figure 4.4 – 2-simplex Taylor-Hood element augmented with a piecewise discontinuous approximation
for the stresses (T H-S) of polynomial order k = 2

Discrete stability analysis

The stability of above mixed finite element follows similar to the continuous setting and
from the inf-sup condition of the Taylor-Hood element. Continuity of the bilinear forms
is inherited from the continuous setting.

Lemma 7. On the kernel Xh,0 bilinear form a(τ , τ ) is elliptic

a(τh, τh) � �τh�2Σ + �ph�2Q ∀ (τh, ph) ∈ Xh,0.

Proof: The discrete kernel is defined as

Xh,0 := {(τh, ph) ∈ Xh : b2(τh,uh) + b1(uh, ph) = 0 ∀uh ∈ Vh} .
From the discrete LBB condition of the Taylor-Hood element 4.1.1 it follows

�ph�Q & sup
uh∈Vh

| �
Ω
div(uh)ph dx|
�uh�V = sup

uh∈Vh

| �
Ω
τh : ε(uh) dx|
�uh�V .

By applying Cauchy-Schwarz and Korn’s inequality the next estimate is derived

�ph�Q & sup
uh∈Vh

�τh�Σ�ε(uh)�
�uh�V & �τh�Σ.

The discrete kernel ellipticity is then straightforward

a(τh, τh) =
1

2µ
�τh�2Σ � 1

4µ
�τh�2Σ +

1

4µ
�ph�2Q � 1

µ
�(τh, ph)�2X ∀ (τh, ph) ∈ Xh,0.
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Lemma 8. The discrete LBB condition is fulfilled

sup
(τh,ph)∈Xh

|b2(τh,uh) + b1(uh, ph)|
�(τh, ph)�X � �uh�V ∀uh ∈ Vh.

Proof: The proof follows similar arguments as in the continuous setting. Choose τh := ε(uh)
and ph := 0 with the upper bound �τh�Σ ≤ �ε(uh)�. Then there holds

sup
(τh,ph)∈Xh

|b2(τh,uh) + b1(uh, ph)|
�(τh, ph)�X ≥ |b2(τh,uh) + b1(uh, ph)|

�(τh, ph)�X
≥ �ε(uh)�2

�ε(uh)�
(3)

� �uh�V ∀uh ∈ Vh.

4.2.2 Scott-Vogelius + stress element (SV-S)
In a similar matter as in the previous Subsection 4.2.1 we can add the space of piecewise
discontinuous symmetric matrix-valued polynomials to the Scott-Vogelius element. In this
particular case, we can further impose on the discrete stress tensor τh to be trace-free, as
the discrete velocity uh is pointwise divergence-free and therefore it holds tr(ε(uh)) = 0.
The discrete spaces are then

Vh :=
�
uh ∈ H1

0 (Ω,Rd) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th



,

Qh :=
�
ph ∈ L2

0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



,

Σh :=
�
τh ∈ L2

sym,tr(Ω,Rd×d) : τh|T ∈ Pk−1
sym,tr(T,Rd×d) ∀T ∈ Th



Again, we point out that this mixed element is only stable on barycentric refined trian-
gulations.

Figure 4.5 – 2-simplex Scott-Vogelius element augmented with a piecewise discontinuous approxima-
tion for the stresses (SV-S) of polynomial order k = 2

Discrete stability analysis

The discrete stability of the SV-Selement follows in the same way as the T H-Selement.
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4.3 Mass conserving mixed stress approximation

Recall variational formulation III and the corresponding spaces u ∈ V := H(div,Ω),
p ∈ Q := L2

0(Ω,R) and τ ∈ Σsym :=
�
ψ ∈ H(curl div,Ω) : tr(ψ) = 0,ψ = ψT



. With

the conforming finite-dimensional subspaces Vh ⊂ V , Qh ⊂ Q and Σh ⊂ Σ the discrete
problem reads as

Discrete Variational Formulation VI
Find ((τh, ph),uh) ∈ Xh × Vh such that

a(τh, τ h) + b2(τ h,uh) = 0 ∀τ h ∈ Σh,

b2(τh,uh) + b1(uh, ph) = −f(uh) ∀uh ∈ Vh,

b1(uh, ph) = 0 ∀ph ∈ Qh.

Respectively, the bilinear forms and linear form (3.17)-(3.20)

a(τh, τ h) :=
1

2µ

�
Ω

τh : τ h dx,

b1(uh, ph) :=

�
Ω

div(uh)ph dx,

b2(τh,uh) := �div(τh),uh� ,
f(uh) := −

�
Ω

ρf · uh dx.

Conformity inψ ∈ H(curl div,Ω)-space is given by the continuity of the normal-tangential
component ψnt and the requirement for the normal-normal component ψnn ∈ H1/2(∂T ),
the former being a sufficient condition [GLS19].

4.3.1 Mass conserving mixed stress element (MCS)
In [GLS19] the authors introduced a new finite element MCS, which approximates the
space H(curl div,Ω), but it is slightly non-conforming Σh #⊂ Σsym as the normal-normal
component ψnn continuity at vertices in two and edges in three dimensions is too re-
strictive. Nevertheless, the continuity of the discrete normal-tangential ψnt component is
granted.

Σk−1
h :=

�
τh ∈ Pk−1(Th,Rd×d) : tr(τh|T ) = 0 ∀T ∈ Th, [[(τh)nt]] = 0 ∀F ∈ F int

h



.

On the other hand, Σh is in general not symmetric. To circumvent this, in [GLS20] the
authors applied Stenberg ’s concept [Ste15] of weak-symmetry by introducing an additional
space of skew-symmetric matricesWh ⊂ W := L2

skw(Ω,Rd×d) and by enriching the discrete
stress space Σh with interior Pk-bubbles given by

Bk
h :=

�
τh ∈ Σk

h : (τh)nt = 0


. (4.1)

This technique enforces the L2-orthogonality of the skew-symmetric Pk−1 part of τh ∈ Σh.
Ultimately, we define the discrete space augmented with this interior bubbles as

Σ⊕
h :=

�
τh ∈ Σk

h : (τh)nt ∈ Pk−1(F,Rd−1) ∀F ∈ F int
h



.
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With the decomposition of the rate-of-strain tensor ε(u) in its asymmetric part ∇u and
the skew-symmetric rate-of-rotation tensor ω

ε(uh) = ∇uh − 1

2

 ∇uh − (∇uh)
T
&
= ∇uh − ωh,

we define the new discrete variational formulation

Discrete Variational Formulation VII
Find ((τh, ph), (uh,ωh)) ∈ Xh × Uh such that

a(τh, τ h) + b2h(τ h, (uh,ωh)) = 0 ∀τ h ∈ Σ⊕
h ,

b2h(τh, (uh,ωh)) + b1(uh, ph) = f(uh) ∀ (uh,ωh) ∈ Uh,

b1(uh, ph) = 0 ∀ph ∈ Qh,

where Xh := Σ⊕
h ×Qh and Uh := Vh ×Wh.

The bilinear forms and linear form in VII correspond to the ones of the discrete problem
VI, except for the discrete bilinearform b2h(τh, (uh,ω))

b2h(τh, (uh,ωh)) :=
.
T∈Th

�
T

div(τh) · uh dx+
.
T∈Th

�
T

τh : ωh dx−
.
F∈Fh

�
F

[[(τh)nn]](uh)n ds.

With integration by parts respectively

b2h(τh, (uh,ωh)) := −
.
T∈Th

�
T

τh : (∇uh − ωh) dx+
.
F∈Fh

�
F

(τh)nt[[(uh)t]] ds.

This choice is inspired by the definition of the distributional divergence [GLS20, Eq. 11].

Eventually, we can define the remaining discrete spaces

Vh :=
�
uh ∈ H(div,Ω) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th, [[(uh)n]] = 0 ∀F ∈ F int

h



,

Qh :=
�
ph ∈ L2

0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



,

Wh :=
�
ωh ∈ L2

skw(Ω,Rd×d) : ωh|T ∈ Pk−1
skw (T,R

d×d) ∀T ∈ Th



.

An example of the mass conserving mixed stress finite element of polynomial order k = 2
can be seen in Figure 4.6.

The introduced discrete space Vh for the velocity is also known as the Brezzi-Douglas-
Marini (BDM) space and it contains all polynomials of degree k in contrast to the
alternative Raviart-Thomas space [BBF13, Section 2.3]. Additionally, we see that by
construction div(Vh) ⊂ Qh holds, therefore this mixed finite element is exactly mass
preserving as was pointed out in Subsection 4.1.2.
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Figure 4.6 – 2-simplex mass conserving mixed stress element (MCS) of polynomial order k = 2

Discrete stability analysis

To proof solvability of the discrete problem VII we follow the proof presented in [GLS19,
GLS20]. Following norms are needed

�(uh,ωh)�2Uh
:=

.
T∈Th

�ε(uh)�2T +
.
T∈Th

�ω(uh)− ωh�2T +
.
F∈Fh

1

h
�[[(uh)t]]�2F ,

�(uh,ωh)�2Uh,Π
:=

.
T∈Th

�ε(uh)�2T +
.
T∈Th

�ω(uh)− ωh�2T +
.
F∈Fh

1

h
�Π1

F [[(uh)t]]�2F ,

�(uh,ωh)�2Uh,∗ :=
.
T∈Th

�dev(∇uh)− ωh�2T +
.
F∈Fh

1

h
�Π1

F [[(uh)t]]�2F ,

�(τh, ph)�2Xh
= (�τh�+ �ph�)2 ,

where ε(uh) and ω(uh) have been defined in (3.3) and (3.4) and Π1
Fuh ∈ P1(F, tf ) denotes

a tangential projection tf ⊥ nF on a facet F ∈ Fh, such that (Π1
Fuh, r) = (uh, r) ∀r ∈

P1(F, tF ). Further, we need the norm equivalences derived in [GLS20]

�τh�2L2

[Eq. 26]∼
.
T∈Th

�τh�2T +
.
F∈Fh

h�[[(τh)nn]]�2F ∀τh ∈ Σ⊕
h , (4.2)

�(uh,ωh)�2Uh

[Lemma 9]∼ �(uh,ωh)�2Uh,Π
∀ (uh,ωh) ∈ Uh. (4.3)
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Lemma 9. Bilinear forms a(τh, τ h), b1(uh, ph) and b2h(τh, (uh,ωh)) are continuous
[GLS20, Lemma 22].

a(τh, τ h) & �τh��τ h� ∀τh, τ h ∈ Σ⊕
h ,

b1(uh, ph) & �(uh, 0)�Uh
�ph� ∀uh ∈ Vh, ph ∈ Qh,

b2h(τh, (uh,ωh)) & �τh��(uh,ωh)�Uh
∀τh ∈ Σ⊕

h , (uh,ωh) ∈ Uh.

Proof: Continuity of bilinear form a(τh, τ h) and b1(uh, ph) is inherited from the con-
tinuous setting (3.21), whereas for the discrete bilinear form b2h(τh, (uh,ωh)) it follows
from

b2h(τh, (uh,ωh)) := −
.
T∈Th

�
T

τh : (∇uh − ωh) dx+
.
F∈Fh

�
F

(τh)nt[[(uh)t]] ds,

:= −
.
T∈Th

�
T

τh : [ε(uh) + (ω(uh)− ωh)] dx+
.
F∈Fh

�
F

(τh)nt[[(uh)t]] ds.

By Cauchy-Schwarz 2 and the norm equivalence (4.11) we conclude the proof.

Lemma 10. Bilinear form a(τh, τ h) is elliptic on the kernel Xh,0

a(τh, τh) � �(τh, ph)�2Xh
∀ (τh, ph) ∈ Xh,0.

Proof: The kernel is given as

Xh,0 := {(τh, ph) ∈ Xh : b2h(τh, (uh,ωh)) + b1(uh, ph) = 0 ∀ (uh,ωh) ∈ Uh}
In [LS16, GLS20] the authors state there exists a (uh,ωh) ∈ Uh such that

ωh = ω(uh),

�(uh,ωh)�Uh
& �ph� ∀ph ∈ Qh,

�ph�2 & b1(uh, ph) ∀ph ∈ Qh.

These findings are a direct consequence of considering a two-field discontinuous Stokes
problem. The following estimate then holds true on the kernel Xh,0

�ph�2 & |b1(uh, ph)| = |b2h(τh, (uh,ωh))| & �τh��(uh,ωh)�Uh
& �τh��ph�,

thus

�ph� & �τh� ∀ (τh, ph) ∈ Xh,0.

The discrete kernel ellipticity follows then similar to the (T H-S) element 4.2.1

a(τh, τh) =
1

2µ
�τh�2 � 1

8µ
(�τh�+ �ph�)2 � 1

µ
�(τh, ph)�2Xh

∀ (τh, ph) ∈ Xh,0.

Lemma 11. For all (uh,ωh) the discrete LBB condition

sup
(τh,ph)∈Xh

|b1(uh, ph) + b2h(τh, (uh,ωh))|
�(τh, ph)�Xh

� �(uh,ωh)�Uh
∀ (uh,ωh) ∈ Uh,

holds true.
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Proof: By the L2-orthogonality of trace-free and diagonal matrices in the Frobenius inner
product it holds

�ε(uh)�2T = �dev(ε(uh))�2T +
1

d2
�tr(ε(uh))�2T ,

= �dev(ε(uh))�2T +
1

d2
�div(uh)�2T ,

�∇uh − ωh�2T = �ε(uh)�2T + �ω(uh)− ωh�2T ,
�dev(∇uh)− ωh�2T = �dev(ε(uh))�2T + �ω(uh)− ωh�2T .

Combining the upper results yields the norm equivalences

�ε(uh)�2T ∼ �dev(ε(uh))�2T + �div(uh)�2T ,
�ε(uh)�2T + �ω(uh)− ωh�2T ∼ �dev(∇uh)− ωh�2T + �div(uh)�2T ,

�(uh,ωh)�2Uh,Π
∼ �(uh,ωh)�2Uh,∗ + �div(uh)�2.

In a similar way to [GLS20, Lemma 19] we continue by showing in two dimensions that
there exists a τh ∈ Σ⊕

h such that

b2h(τh, (uh,ωh)) � �(uh,ωh)�Uh,∗�τh� ∀ (uh,ωh) ∈ Uh.

The three dimensional proof is similar. Consider the local element basis matrix functions
ξi := dev(∇λi+1 ⊗ curl(λi+2)), where λi are the barycentric coordinates and the index i
is taken by modulo 3. By the requirement of the discrete space Σ⊕

h for normal-tangential
continuity and trace-free basis functions it is obvious that for every facet F ∈ Fh there
exists a constant basis ξF with the attribute ξF ∈ P0(F, t), �ξFnt�F = 1 and vanishing
normal-tangential component on the remaining facets. Define

τ 0
h :=

.
T∈Th

.
F∈Fh

− �
ξF : dev(∇uh − ωh)

�
λF
T ξ

F ∀ (uh,ωh) ∈ Uh, (4.4a)

τ 1
h :=

.
F∈Fh

1√
h
Π1

F ([[(uh)t]]) ξ
F ∀ (uh,ωh) ∈ Uh, (4.4b)

where λF
T is the barycentric coordinate opposite to the facet F . Note, that τ 0

h ∈ Bk
h as

(λF
T ξ

F )nt = 0 ∀F ∈ Fh and τ 1
h ∈ Σk−1

h . Obviously, by tr(ξF ) = 0 it holds tr(τ 0
h ) =

tr(τ 1
h ) = 0. Now by scaling arguments from the reference element to the physical element

in [GLS19, Eqs. 6.1 and 6.2] and [GLS20, Eq. 10] we get the estimates

�τ 0
h�2 &

.
T∈Th

�dev(∇uh − ωh)�2T ,

�τ 1
h�2 &

.
F∈Fh

1

h
�Π1

F ([[(uh)t]]) �2F .

By a linear combination τh = c1τ
0
h + c2τ

1
h we immediately see τh ∈ Σ⊕

h . Combining above
estimates

�τh�2 &
.
T∈Th

�dev(∇uh − ωh)�2T +
.
F∈Fh

1

h
�Π1

F ([[(uh)t]]) �2F ,
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there holds

�τh� & �(uh,ωh)�Uh,∗ ∀ (uh,ωh) ∈ Uh,

and following the same steps as in [GLS19, Lemma 6.5], there also exist constants c1, c2 #= 0
such that

b2h(τh, (uh,ωh)) �
.
T∈Th

�dev(∇uh)− ωh�2T +
.
F∈Fh

1

h
�Π1

F [[(uh)t]]�2F

= �(uh,ωh)�2Uh,∗ � �(uh,ωh)�Uh,∗�τh� ∀ (uh,ωh) ∈ Uh.

Equipped with this estimates we can now turn to the discrete LBB condition. Choose τh
as in (4.4) and ph := div(uh) as div(Vh) ∈ Qh then it clearly holds

�τh�+ �ph� & �div(uh)�+ �(uh,ωh)�Uh,∗ ∀ (uh,ωh) ∈ Uh.

Inserting above estimates and norm equivalences, we get for all (uh,ωh) ∈ Uh

sup
(τh,ph)∈Xh

|b1(uh, ph) + b2h(τh, (uh,ωh))|
�(τh, ph)�Xh

� |b1(uh, ph) + b2h(τh, (uh,ωh))|
�(τh, ph)�Xh

� �div(uh)�2 + �(uh,ωh)�2Uh,∗

�τh�+ �ph�
� �(uh,ωh)�Uh,∗ + �div(uh)�
∼ �(uh,ωh)�Uh,Π

(4.3)∼ �(uh,ωh)�Uh
.

4.3.2 Mass conserving mixed stress-strain rate element (MCS-S)
After an insight in different stable finite elements for the simulation of Newtonian flows,
we finally turn to the finite element developed during these thesis. It is strongly based on
the previous introduced finite element (MCS) in Subsection 4.3.1 and the Hu-Washizu
principle [Was75] from continuum mechanics, which uses an additional piecewise discon-
tinuous unknown ε for the mechanical strains - in our case the ε denotes the rate-of-strain
tensor. The reason for this special choice is that in the mass conserving mixed stress
method (MCS), the velocity gradient ∇u, which is needed for the construction of the
rate-of-strain tensor ε(u), is not globally defined as for u ∈ H(div,Ω),∇u #∈ L2(Ω). It
is precisely the definiteness of the rate-of-strain tensor ε(u) that is desirable, since many
non-Newtonian models rely on them, as we saw in Chapter 2. According to the frequent
used argument (3.2) it holds

∇u = ε(u) + ω = ε+ ω,

by which we extend the discrete (MCS) variational formulation VII to our new discrete
problem VIII

Discrete Variational Formulation VIII
Find ((εh, (uh,ωh)), (τh, ph)) ∈ Yh ×Xh such that

a(εh, εh) + b3(εh, τh) = 0 ∀εh ∈ Ξh,

b3(εh, τ h) + b2h(τ h, (uh,ωh)) = 0 ∀τ h ∈ Σ⊕
h ,

b2h(τh, (uh,ωh)) + b1(uh, ph) = f(uh) ∀ (uh,ωh) ∈ Uh,

b1(uh, ph) = 0 ∀ph ∈ Qh.
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The approximated system can easily be derived by the standard procedure. Bilinear forms
and linear form are then given as

a(εh, εh) := −2µ

�
Ω

εh : εh dx,

b1(uh, ph) :=

�
Ω

div(uh)ph dx,

b2h(τh, (uh,ωh)) :=
.
T∈Th

�
T

div(τh) · uh dx+
.
T∈Th

�
T

τh : ωh dx−
.
F∈Fh

�
F

[[(τh)nn]](uh)n ds,

b3(εh, τ h) :=

�
Ω

εh : τ h dx,

f(uh) := −
�
Ω

ρf · uh dx.

Note, that in contrast to the (MCS) method our primal variables have become (εh, (uh,ωh)) ∈
Yh := Ξh × Uh and (τh, ph) ∈ Xh := Σ⊕

h × Qh have become dual variables. The discrete
spaces have been chosen equivalently to the previous (MCS) method, namely

Vh :=
�
uh ∈ H(div,Ω) : uh|T ∈ Pk(T,Rd) ∀T ∈ Th, [[(uh)n]] = 0 ∀F ∈ F int

h



,

Σ⊕
h :=

�
τh ∈ Σk

h : (τh)nt ∈ Pk−1(F,Rd−1) ∀F ∈ F int
h



,

Qh :=
�
ph ∈ L2

0(Ω,R) : ph|T ∈ Pk−1(T,R) ∀T ∈ Th



,

Wh :=
�
ωh ∈ L2

skw(Ω,Rd×d) : ωh|T ∈ Pk−1
skw (T,R

d×d) ∀T ∈ Th



.

Recall: For this special choice div(Vh) ⊂ Qh we acquire a mass preserving property as
explained in Subsection 4.1.2. Since in general ε is symmetric, as shown in (3.3), and on
the discrete setting it holds tr(∇uh) = tr(τh) = 0, it is appropriate to choose piecewise
discontinuous trace-free symmetric matrix-valued polynomials as our approximating space

Ξh =
�
εh ∈ L2

sym,tr(Ω,Rd×d) : εh|T ∈ Pk
sym,tr(Ω,Rd×d) ∀T ∈ Th



.

The stability analysis, which is carried out later, suggests a polynomial order of k for the
rate-of-strain tensor εh in order to control the interior stress Pk bubbles Bk

h introduced in
equation (4.1).
As for the previous finite elements we provide an illustration of this newly introduced
mixed finite element (MCS-S) in Figure 4.7 for a polynomial order k = 2.

Discrete stability analysis

We continue by showing the stability of the above introduced finite element. As in the
discrete stability analysis of the mass conserving mixed stress finite element (MCS) we
use a discontinuous Galerkin norm for the velocity uh, while for the remaining quantities
a L2-norm suffices

�(uh,ωh)�2Uh
:=

.
T∈Th

�ε(uh)�2T +
.
T∈Th

�ω(uh)− ωh�2T +
.
F∈Fh

1

h
�[[(uh)t]]�2F ,

�(εh, (uh,ωh))�2Yh
= �εh�2 + �(uh,ωh)�2Uh

,

�(τh, ph)�2Xh
= (�τh�+ �ph�)2 .
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Figure 4.7 – 2-simplex mass conserving mixed stress-strain rate element (MCS-S) of polynomial
order k = 2

Lemma 12. Bilinear forms a(εh, εh), b1(uh, ph), b2h(τh, (uh,ωh)) and b3(εh, τ h)
are continuous

a(εh, εh) & �εh��εh� ∀εh, εh ∈ Ξh,

b1(uh, ph) & �(uh, 0)�Uh
�ph� ∀uh ∈ Vh, ph ∈ Qh,

b2h(τh, (uh,ωh)) & �τh��(uh,ωh)�Uh
∀τh ∈ Σ⊕

h , (uh,ωh) ∈ Uh,

b3(εh, τ h) & �εh��τ h� ∀εh ∈ Ξh, τ h ∈ Σ⊕
h .

Proof: Continuity of b1(uh, ph), b2h(τh, (uh,ωh)) has been shown in Lemma 9, while
continuity of a(εh, εh) and b3(εh, τ h) is straightforward by a Cauchy-Schwarz.

Lemma 13. Bilinear form a(εh, εh) is elliptic on the kernel Yh,0

a(εh, εh) � �(εh, (uh,ωh))�2Yh
∀ (εh, (uh,ωh)) ∈ Yh,0.

Proof: First of all, the kernel is given as Yh,0

Yh,0 := {(εh, (uh,ωh)) ∈ Yh : b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph) = 0 ∀ (τ h, ph) ∈ Xh} .
By the LBB condition Lemma 11 of the standard mass conserving mixed stress approxi-
mation (MCS) there exists a (τh, ph) ∈ Xh such that

|b1(uh, ph) + b2h(τh, (uh,ωh))|
�(τh, ph)�Xh

� �(uh,ωh)�Uh
∀ (uh,ωh) ∈ Uh,

with

�τh�+ �ph� & �(uh,ωh)�Uh
∀ (uh,ωh) ∈ Uh.
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By the continuity of bilinear form b3(εh, τ h) it clearly holds on the kernel

�(uh,ωh)�Uh
& |b1(uh, ph) + b2h(τh, (uh,ωh))|

�(τh, ph)�Xh

=
|b3(εh, τh)|
�(τh, ph)�Xh

& �εh��τh�
�(uh,ωh)�Uh

& �εh� ∀ (εh, (uh,ωh)) ∈ Yh,0.

The proof of kernel ellipticity is then straightforward

a(εh, εh) � 2µ�εh�2 � µ�εh�2 + µ�(uh,ωh)�2Uh
� �(εh, (uh,ωh))�2Yh

∀ (εh, (uh,ωh)) ∈ Yh,0.

Lemma 14. The discrete LBB condition holds for all (τ h, ph) ∈ Xh

sup
(εh,(uh,ωh))∈Yh

|b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph)|
�(εh, (uh,ωh))�Yh

� �(τ h, ph)�Xh
.

Proof: For sake of simplicity we present the proof of the LBB condition in a two-
dimensional setting. Although we did not prove solvability in three dimensions, it should
follow similar steps as presented here. A crucial point of the proof is to bound the skew-
symmetric part of the high order Bk

h-bubbles, defined in (4.1). For this consider the
partition of the deviatoric stress tensor τ h

τ h = sym(τ h) + skw(τ h) = sym(τ h) + skw(ΠBk
hτ h) + skw((id− ΠBk

h)τ h),

where ΠBk
h denotes the projection on the bubbles Bk

h, given by�
T

τ h|T : ψh =

�
T

ΠBk
hτ h|T : ψh ∀ψh ∈ Bk

h(T ). (4.5)

By the definition of Σ⊕
h the highest order polynomials consist only of bubbles Bk

h, therefore
it is clear that

skw((id− ΠBk
h)τ h|T ) ∈ Pk−1

skw (T,R
d×d) ∀T ∈ Th.

Again we exploit the L2-orthogonality in the Frobenius inner product to get the norm

�τ h�2 = �sym(τ h)�2 + �skw(ΠBk
hτ h)�2 + �skw((id− ΠBk

h)τ h)�2.
Of course it holds

�sym(τ h)�2 + �skw((id− ΠBk
h)τ h)�2 ≤ �τ h�2.

As we will control sym(τ h) ∈ Ξh ⊂ Σ⊕
h and skw((id − ΠBk

h)τ h) ∈ Wh ⊂ Σ⊕
h , we need to

bound the remaining quantity skw(ΠBk
hτ h). To do this a closer look at ΠBk

hτ h is needed.

Norm equivalences

Recall the three local normal-tangential basis matrix functions given by the expression
[GLS19, Eq. 5.2]

ξi := dev(∇λi+1 ⊗ curl(λi+2)). (4.6)
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Obviously, the indices are taken by modulo 3 and λi stands for the barycentric coordinates
such that

λi(Vj) = δij ∀ i, j ∈ IVh(T ) λi ∈ P1(T,R),

where the index set of the local vertices Vh(T ) is denoted as IVh(T ) [Led19, Section 5.1].
Any element local normal-tangential bubble β ∈ Bk

h(T ) of a 2-simplex can be constructed
by [GLS19, Lemma 5.2]

β =
.

i∈IVh(T )

µiλiξ
i ∀µi ∈ Pk−1(T ).

A very important property is that by construction it holds

tr(ξi) =
1.

j=0

ξijj = 0, ξijj #= 0, (4.7)

hence ξi is never fully skew-symmetric. This follows from the fact that

tr(∇λi+1 ⊗ curl(λi+2)) = ∇λi+1 · curl(λi+2) #= 0,

as λi+1 #= λi+2, which arises from our assumption of a non overlapping triangulation,
otherwise we would deal with a degenerated 2-simplex.

Proposition 15. Consider the skew-symmetric subset Pb
h(T ) ⊂ Bk

h(T ) of high order
polynomials k ≥ 3 with vanishing component on the boundary ∂T

Pb
h(T ) :=

�
β ∈ Bk

h(T ) : ξλ
l+1
i λm+1

i+1 λn+1
i+2

11l+n+m=k−3

l,n,m≥0
ξ ∈ P0

skw(T,R2×2)
�
.

For any β ∈ Bk
h(T ) such that

�sym(β)�T = 0 and �skw(β)�T #= 0 ⇒ β ∈ Pb
h(T ).

By norm equivalence on finite dimensional spaces it holds

�skw(β)�T & �sym(β)�T ∀β ∈ Bk
h(T ), k < 3,

�skw(β)�T & �sym(β)�T ∀β ∈ (Bk
h(T ) \ P b

h(T )), k ≥ 3.

Proposition 15 follows by exploiting the structure of an arbitrary bubble β ∈ Bk
h(T ).

For this consider an arbitrary non overlapping 2-simplex with the index set IVh(T ) :=
{l,m, n} as shown in Figure 4.8. The bubble β and its corresponding symmetric and
skew-symmetric part are defined as

β =
.

i∈IVh(T )

αiµiλi

!
ai bi
ci −ai

'
∀µi ∈ Pk−1(T ),

sym(β) =
.

i∈IVh(T )

αiµiλi

!
ai 0.5(bi + ci)

0.5(bi + ci) −ai

'
∀µi ∈ Pk−1(T ),

skw(β) =
.

i∈IVh(T )

αiµiλi

!
0 0.5(bi − ci)

0.5(−bi + ci) 0

'
∀µi ∈ Pk−1(T ).
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Figure 4.8 – Arbitrary 2-simplex with index set IVh(T ) := {l,m, n}

The question now is whether there exists a linear combination such that sym(β) vanishes.
In order to meet this specific requirements, it must hold.

i∈IVh(T )

αiµiλiai = 0 ∀µi ∈ Pk−1(T ), (4.8a)

.
i∈IVh(T )

αiµiλi(bi + ci) = 0 ∀µi ∈ Pk−1(T ), (4.8b)

.
i∈IVh(T )

αiµiλi(bi − ci) #= 0 ∀µi ∈ Pk−1(T ), (4.8c)

where αi, ai, bi, ci are arbitrary scalars. From (4.7) we know that ai #= 0, which is auto-
matically a crucial property of our proof. A further necessity is

µlλl = µmλm = µnλn, (4.9)

otherwise it is clear that µlλl, µmλm, µnλn are linearly independent.

Hence for a polynomial order k = 1 it is straightforward from (4.8a) as al, am, an #= 0 and
µlλl #= µmλm #= µnλn that the only admissible choice is αl = αm = αn = 0.

For a polynomial order k = 2 it becomes more intriguing as we have to distinguish between
multiple cases. All arguments presented in the following apply to an arbitrary index IVh(T )

permutation.

1. αl = αm = 0 and αn #= 0.
Likewise to a polynomial order k = 1 by (4.8a) and an #= 0 it follows αn = 0.

2. αl #= 0, αm #= 0 and αn #= 0.
For an arbitrary µ ∈ P1(T ) we can not fulfil condition (4.9). Thus the only admis-
sible choice is αl = αm = αn = 0.

3. αl = 0, αm #= 0 and αn #= 0.
In the 2nd subitem we stated that for an arbitrary µ ∈ P1(T ) we can not fulfil
condition (4.9). There exists one special case, in which we choose αl = 0 and
µmλm = µnλn = µλ. Thus µlλl can be arbitrary as it vanishes anyway. To proof
that αm = αn = 0 we need to explicitly define the coefficients am, an, bm, bn, cm, cn
in terms of the barycentric coordinates λl, λm, λn. By (4.6) the symmetric constant



4.3. Mass conserving mixed stress approximation 42

normal-tangential basis functions are given as

sym(ξm) =
1

2

!−λn,xλl,y − λn,yλl,x λn,xλl,x − λn,yλl,y

λn,xλl,x − λn,yλl,y λn,xλl,y + λn,yλl,x

'
,

sym(ξn) =
1

2

!−λl,xλm,y − λl,yλm,x λl,xλm,x − λl,yλm,y

λl,xλm,x − λl,yλm,y λl,xλm,y + λl,yλm,x

'
.

where for sake of readability the derivative along a spatial coordinate is denoted by
a second subscript. Inserting upper definition of am, an in (4.8a) yields

✚✚µλ����
�=0

.
i∈{m,n}

αiai = αm (λn,xλl,y + λn,yλl,x) + αn (λl,xλm,y + λl,yλm,x) = 0,

αm = −αn
(λl,xλm,y + λl,yλm,x)

(λn,xλl,y + λn,yλl,x)
.

Note, that the property am #= 0, an #= 0 is important, otherwise we could not divide
by am so easily. Now we substitute upper intermediate result for αm into (4.8b),
which results into

✚✚µλ����
�=0

.
i∈{m,n}

αi(bi + ci) = αm (λn,xλl,x − λn,yλl,y) + αn (λl,xλm,x − λl,yλm,y) = 0,

− (λl,xλm,y + λl,yλm,x) (λn,xλl,x − λn,yλl,y)+

(λn,xλl,y + λn,yλl,x) (λl,xλm,x − λl,yλm,y) = 0.

Ultimately, we expand the brackets

−λl,xλm,yλn,xλl,x +✭✭✭✭✭✭✭✭
λl,xλm,yλn,yλl,y −✭✭✭✭✭✭✭✭

λl,yλm,xλn,xλl,x + λl,yλm,xλn,yλl,y+

✭✭✭✭✭✭✭✭
λn,xλl,yλl,xλm,x − λn,xλl,yλl,yλm,y + λn,yλl,xλl,xλm,x −✭✭✭✭✭✭✭✭

λn,yλl,xλl,yλm,y = 0,

and simplify the expression

−λl,xλm,yλn,xλl,x + λl,yλm,xλn,yλl,y − λn,xλl,yλl,yλm,y + λn,yλl,xλl,xλm,x = 0,

(λm,xλn,y − λm,yλn,x)(λ
2
l,x + λ2

l,y) = 0,

(∇λn · curl(λm))(λ
2
l,x + λ2

l,y) = 0.

Which is a contradiction because ∇λn · curl(λm) #= 0, as stated in (4.7), and λ2
l,x +

λ2
l,y #= 0, otherwise λl #∈ P1(T ). Hence the only possible solution is αm = αn = 0.

To summarise we have just proven that it is not possible to construct a skew-
symmetric bubble β ∈ Bk

h(T ), solely by the linear combination of two constant
normal-tangential basis matrix functions ξi.

If we now turn our attention to high order polynomials k ≥ 3 the same arguments as for
the k = 2 cases apply, except for the case αl #= 0, αm #= 0 and αn #= 0 . For this particular
setting we always find a combination µλ such that (4.9)

µλ = µlλl = µmλm = µnλn,

is fulfilled. The system of equations (4.8) can then be expressed in the following form al am an
(bl + cl) (bm + cm) (bn + cn)
(bl − cl) (bm − cm) (bn − cn)


� �� �

A

 αl

αm

αn

 =

 0
0

#= 0

 ,
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where for a unique solution αl, αm, αn the system matrix A has to be invertible, thus
det(A) #= 0. For sake of readability we omit the step by step calculation of the determi-
nant, on the contrary we just present the result

det(A) =λl,xλl,y(λ
2
m,xλ

2
n,y − λ2

m,yλ
2
n,x)+

λm,xλm,y(λ
2
n,xλ

2
l,y − λ2

n,yλ
2
l,x)+

λn,xλn,y(λ
2
l,xλ

2
m,y − λ2

l,yλ
2
m,x).

Eventually, we exploit the property λl + λm + λn = 1 ⇒ ∇λl +∇λm +∇λn = 0 to get

det(A) =(λm,yλn,x − λm,xλn,y)
3 = (∇λm · curl(λn))

3 #= 0,

for the same reason discussed in (4.7). Hence, for a polynomial order k ≥ 3 such that
(4.9) is fulfilled e.g.

k = 3 µλ ∈ {λlλmλn} ,
k = 4 µλ ∈ �

λ2
l λmλn, λlλ

2
mλn, λlλmλ

2
n



,

we always find a linear combination αl #= 0, αm #= 0, αn #= 0 such that sym(β) vanishes.
To recapitulate the insights gained, which are also listed in Proposition 15: For any interior
degree of freedom β ∈ Bk

h(T ) and a polynomial order k < 3, the bubble β becomes never
fully skew-symmetric, thus by norm equivalence on finite dimensional spaces it holds

�skw(β)�T & �sym(β)�T ∀β ∈ Bk
h(T ), k < 3.

On the other hand for a polynomial order k ≥ 3 we found a subset Pb
h(T ) ⊂ Bk

h(T ),

Pb
h(T ) :=

�
β ∈ Bk

h(T ) : ξλ
l+1
i λm+1

i+1 λn+1
i+2

11l+n+m=k−3

l,n,m≥0
ξ ∈ P0

skw(T,R2×2)
�
,

of all skew-symmetric bubbles β. Therefore, by taking the set difference we can state

�skw(β)�T & �sym(β)�T ∀β ∈ (Bk
h(T ) \ P b(T )), k ≥ 3.

Equipped with the found norm equivalences, we can turn back to the proof of the LBB
condition. We present two proofs for a low order case k < 3 and a high order case k ≥ 3.

Low order LBB condition k < 3

Recall the norm partition

�τ h�2 = �sym(τ h)�2 + �skw(ΠBk
hτ h)�2 + �skw((id− ΠBk

h)τ h)�2. (4.10)

By Propositon 15 and the continuity of (4.5), there holds

�skw(ΠBk
hτ h)�2 & �sym(ΠBk

hτ h)�2 ≤ �sym(τ h)�2,

and therefore the norm equivalence

�τ h�2 ∼ �sym(τ h)�2 + �skw((id− ΠBk
h)τ h)�2. (4.11)
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Now select

Ξh ⊂ Σ⊕
h , Wh ⊂ Σ⊕

h , div(Vh) ⊂ Qh,

εh := α sym(τ h), ωh := β skw((id− ΠBk
h)τ h), div(uh) := γ ph,

�εh� ≤ �τ h�, �ωh� ≤ �τ h�, �(uh, 0)�Uh
≤ �ph�,

where the scalars α, β, γ are currently arbitrary. By this special choice it readily follows
for the norms

�(εh, (uh,ωh))�Yh
& �(τ h, ph)�Xh

, (4.12)

and for the bi bilinear forms

b3(εh, τ h) = α�sym(τ h)�2,
b2h(τ h, (uh,ωh)) = β�skw((id− ΠBk

h)τ h)�2 −
.
T∈Th

�
T

τ h : ∇uh dx+
.
F∈Fh

�
F

(τ h)nt[[(uh)t]] ds,

b1(uh, ph) = γ�ph�2.

By Cauchy-Schwarz and Young’s inequality we bound b2h(τ h, (uh,ωh)) from below

b2h(τ h, (uh,ωh)) ≥ β�skw((id− ΠBk
h)τ h)�2 − �τ h�2

2
− �(uh, 0)�2Uh

2

� β�skw((id− ΠBk
h)τ h)�2 − �τ h�2

2
− �ph�2

2
.

Now choose α, β, γ big enough and exploit the norm equivalence (4.11), then it follows

b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph) � �τ h�2 + �ph�2 + �(τ h, ph)�2Xh
. (4.13)

Ultimately, by combining results (4.12) and (4.13) it yields

sup
(εh,(uh,ωh))∈Yh

|b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph)|
�(εh, (uh,ωh))�Yh

� �(τ h, ph)�2Xh

�(τ h, ph)�Xh

= �(τ h, ph)�Xh
∀ (τ h, ph) ∈ Xh.

Therefore we have proven the LBB condition (see Lemma 14) for the low order case k < 3.

High order LBB condition k ≥ 3

For high order methods the norm equivalence (4.11) does not hold anymore, since we have
seen in Proposition 15 that

�skw(ΠBk
hτ h)�2 #& �sym(ΠBk

hτ h)�2,

as there exists some fully skew symmetric bubbles β ∈ Pb
h(T ). To circumvent this problem

we introduce a further projection onto the subset Pb
h(T )�

T

(ΠBk
hτ h|T ) : ψh =

�
T

ΠPb
h(ΠBk

hτ h|T ) : ψh ∀ψh ∈ Pb
h(T ), (4.14)
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and we decompose

�skw(ΠBk
hτ h)�2 = �skw(ΠPb

h(ΠBk
hτ h))�2 + � skw((id− ΠPb

h)(ΠBk
hτ h))� �� �

∈(Bk
h(T )\P b

h(T ))

�2.

By Proposition 15 and continuity of the projections (4.5) and (4.14) it holds now, similarly
to the low order case,

�skw((id− ΠPb
h)(ΠBk

hτ h))�2 & �sym((id− ΠPb
h)(ΠBk

hτ h))�2 ≤ �sym(τ h)�2.
Due to the definition of Pb

h we can omit skw(·) in
�skw(ΠPb

h(ΠBk
hτ h))�2 = �ΠPb

h(ΠBk
hτ h)�2.

In two dimensions, a skew-symmetric matrix ΠPb
h(ΠBk

hτ h|T ) ∈ Pb
h(T ) consists of only one

component with different signs. Let ws denote this scalar component on an arbitrary
element T

ws = cλl+1
i λm+1

i+1 λn+1
i+2

11l+n+m=k−3

l,n,m≥0
,

where c ∈ R. It is clear, that ws(T ) vanishes on the boundary ∂T . For this reason we can
use Poincaré’s inequality [BBF13, Eq.1.2.14]

�ΠPb
h(ΠBk

hτ h|T )�2T = 2�ws�2T ≤ 2h2
T�∇ws�2T .

Since in a two dimensional setting there holds �∇ws�T = �curl(ws)�T , we get that

�ΠPb
h(ΠBk

hτ h|T )�2T = 2�ws�2T ≤ 2h2
T�∇ws�2T = 2h2

T�curl(ws)�2T = 2h2
T�div(ΠPb

h(ΠBk
hτ h|T ))�2T ,

and therefore the upper bound on the domain Ω

�skw(ΠBk
hτ h)�2 & �sym(τ h)�2 + �div(ΠPb

h(ΠBk
hτ h))�2 = �sym(τ h)�2 + �curl(ws)�2,

(4.15a)

�τ h�2 & �sym(τ h)�2 + �curl(ws)�2 + �skw((id− ΠBk
h)τ h)�2. (4.15b)

In comparison to the lower order case (4.11), a new term appeared in the upper bound,
namely �curl(ws)�2, which has to be controlled. A closer look shows that curl(ws) is
divergence-free by definition on every element T , therefore on the whole domain Ω�

T

div(curl(ws)) = 0

Additionally, curl(ws) has also continuous normal component, namely zero�
∂T

curl(ws) · n =

�
∂T

∇ws · t = 0.

Upper property is crucial, as it implies that curl(ws) ∈ Vh. For this reason we construct
uh = uh,1 + uh,2 such that

div(Vh) ⊂ Qh, div(Pb
h) ⊂ Vh,

div(uh,1) := γph, uh,2 := δ curl(ws),

�(uh,1, 0)�Uh
≤ �ph�, �(uh,2, 0)�Uh

≤ �τ h�,
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and chose the remaining quantities εh and ωh as in the lower order case, namely

Ξh ⊂ Σ⊕
h , Wh ⊂ Σ⊕

h ,

εh := α sym(τ h), ωh := β skw((id− ΠBk
h)τ h),

�εh� ≤ �τ h�, �ωh� ≤ �τ h�.
For the time being the scalars α, β, γ, δ ∈ R are arbitrary. Once again, by this choice it
holds

�(εh, (uh,ωh))�Yh
& �(τ h, ph)�Xh

. (4.16)

The bi bilinear forms differ compared to the low order case, because of the linear combi-
nation uh = uh,1 + uh,2

b3(εh, τ h) = α�sym(τ h)�2,
b2h(τ h, (0,ωh)) = β�skw((id− ΠBk

h))�2,
b2h(τ h, (uh,1, 0)) = −

.
T∈Th

�
T

τ h : ∇uh,1 dx+
.
F∈Fh

�
F

(τ h)nt[[(uh,1)t]] ds,

b2h(τ h, (uh,2, 0)) =
.
T∈Th

�
T

div(τ h) : uh,2 dx−
.
F∈Fh

�
F

(τ h)nn [[(uh,2)n]]� �� �
=0

ds,

b1(uh, ph) =

�
Ω

div(uh,1)ph dx+

�
Ω

div(uh,2)� �� �
=0

ph dx = γ�ph�2.

Reusing Cauchy-Schwarz and Young’s inequality we bound b2h(τ h, (uh,1, 0)) from below

b2h(τ h, (uh,1, 0)) ≥ −�τ h�2
2

− �(uh,1, 0)�2Uh

2
≥ −�τ h�2

2
− �ph�2

2
,

while b2h(τ h, (uh,2, 0)) can also bound from below by

b2h(τ h, (uh,2, 0)) = δ
.
T∈Th

�
T

div(τ h) : div(Π
Pb
h(ΠBk

hτ h)) dx

≥ δ �div(ΠPb
h(ΠBk

hτ h))�2 = δ �curl(ws)�2.
By choosing α, β, γ, δ big enough, using the norm equivalence (4.15b) and the expression

b2h(τ h, (uh,ωh)) = b2h(τ h, (uh,1, 0)) + b2h(τ h, (uh,2, 0)) + b2h(τ h, (0,ωh)),

it does hold

b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph) � �τ h�2 + �ph�2 + �(τ h, ph)�2Xh
. (4.17)

In a similar fashion as for the low order case, does the high order LBB condition follow
from the combination of (4.16) and (4.17)

sup
(εh,(uh,ωh))∈Yh

|b3(εh, τ h) + b2h(τ h, (uh,ωh)) + b1(uh, ph)|
�(εh, (uh,ωh))�Yh

� �(τ h, ph)�2Xh

�(τ h, ph)�Xh

= �(τ h, ph)�Xh
∀ (τ h, ph) ∈ Xh.

In summary, we have presented a low and high order proof of the LBB condition (see
Lemma 14) and shown the remaining conditions of Brezzi’s theorem (see Theorem 1). For
this reason the newly introduced mass conserving mixed stress-strain rate finite element
(MCS-S) solves the discrete variational formulation VIII.
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4.4 Non-Newtonian extension

So far, we presented inf-sup stable finite elements suitable for the simulation of Newtonian
flows. We will now discuss the inclusion of a non-linear constitutive relation between the
deviatoric stress tensor τ and the rate-of-strain tensor ε(u). Solvability of the arising
non-linear discrete variational formulation will not be discussed in this work, but only
referenced.
Consider an implicit constitutive relation of the form G(τ , ε(u)) = 0. The governing
equations for a Stokes flow with homogeneous boundary conditions become

G(τ , ε(u)) = 0 inΩ,

−div(τ ) = −∇p+ ρf in Ω,

div(u) = 0, in Ω,

u = 0 onΓD.

In some cases the implicit form G(τ , ε(u)) = 0 can be reformulated in an explicit matter
e.g. for

G(τ , ε(u)) = τ − 2µε(u) = 0

we recover the Newtonian Stokes problem (3.1). In every non-Newtonian model presented
in Chapter 2 the deviatoric stress tensor τ is given explicitly. Consider e.g. the power-law
model (2.7)

τ = 2K (2|ε(u)|)r−2 ε(u) K > 0, 2 > r > 1

For this particular case the finite elements (T H, SV , T H-S, SV-S, MCS, MCS-S) are
all suited to approximate the arising non-linear problem. It starts to become problematic
for the two-field Taylor-Hood (T H) and Scott-Vogelius (SV) element if the deviatoric
stress tensor τ is given implicitly as e.g. for the Ellis model [GO20, Eq. 1.15]

τ =
µ0

1 + α|τ |q−2
ε(u) α > 0, q > 1

Since these velocity-pressure finite elements (T H, SV) do not model stresses, it is impos-
sible for them to resolve such a constitutive relation. Although the (MCS) mixed finite
element is capable to solve the non-linear Stokes problem with an implicit relation for the
stresses, it has a major drawback, namely the requirement for the deviatoric stress tensor
τ to be proportional to the rate-of-strain tensor ε(u). This follows from the splitting of
ε(u) in the derivation of the discrete (non-)linear variational formulation in a asymmetric
and a skew-symmetric part

ε(u) = ∇u− ω

For this reason the integration of more sophisticated models is in general not possible for
the (MCS) method. On the other hand, the inclusion of an arbitrary implicit constitutive
relation of the form G(τ , ε(u)) = 0 is very natural for the (T H-S, SV-S, MCS-S) mixed
finite elements. For these discrete methods, the entire implicit relationship is tested with
piecewise discontinuous symmetric matrix-valued polynomials

(T H-S, SV-S)
�
Ω

G(τh, ε(uh)) : τ h dx = 0 ∀τ h ∈ Σh,

(MCS-S)
�
Ω

G(τh, εh) : εh dx = 0 ∀εh ∈ Ξh



4.4. Non-Newtonian extension 48

without the necessity to reshape the implicit constitutive law in an explicit matter. This
is a big plus.
The cornerstone of implicit constitutive relations was laid by Rajagopal in [Raj03, Raj06].
His concept introduced in these papers provides a new framework for the formulation of
sophisticated constitutive relations in harmony with the second law of thermodynamics.
Such implicit constitutive relation e.g. allow for a pressure i.e. mean normal stress
dependent viscosity [GO20, Eq. 1.17]

G(σ, ε(u)) = σ −
!
2µ(|ε(u)|, 1

d
tr(σ)) +

τy(
1
d
tr(σ))

|ε(u)|
'
ε(u) = 0

The Bingham model (2.9) presented in Chapter 2 can be described very naturally by a
continuous implicit relation [GO20, Eq. 1.13]

G(τ , ε(u)) = 2µ
 
τy + (|τ | − τy)

+& ε(u)− (|τ | − τy)
+ τ = 0

where ψ+ := max(ψ, 0).



5
Non-Newtonian Numerical Experiments

In this chapter we perform non-Newtonian numerical experiments of the steady Stokes
equations (3.1) using the mixed finite elements (T H-S, SV-S, MCS) and the new finite
element (MCS-S) introduced in Chapter 4. In particular we focus on the two-dimensional
simulation of power-law (2.7) and Bingham (2.9) like fluids.

5.1 Experimental setting

All experiments have been carried out using the open-source finite element software NG-
Solve/Netgen (Version 6.2.2102) [Sch97, Sch14] on the local clusterMatrix at the Institute
of Analysis and Scientific Computing, Vienna University of Technology. The cluster con-
sists of two Intel Xeon E5-2670 v3 processors with 30 Mb Cache and in total 48 threads
when Hyper-Threading enabled.
For every numerical experiment we used a unstructured two-dimensional triangulation
Th, even if the geometry would allow for a structured mesh. This decision is motivated
by the intention to consider a more general setting, where a structured triangulation is
not applicable.
To solve the arising non-linear system either Newton’s or a fixed point method has been
implemented following the scheme in operator form

Newton’s method:

xk+1 = xk + d δx

R(x) := f − g(x)

δx = −A−1(xk)R(xk)

Fixed point method:

xk+1 = xk + d δx

R(x) := f − A(xk)x

δx = −A−1(xk)R(xk)

where xk is the solution vector at iteration k, δx the search direction, d a damping pa-
rameter, R(x) the residual vector, A(x) the linearised system matrix, A(x) a suitable
fixed point system matrix, g(x) a non-linear operator and f the right-hand side. In
NGSolve/Netgen the assembly of the linearised system matrix A is done by automatic
differentiation [GSMS20]. Although two Line Search algorithms (L2 Line Search, Back-
tracking Line Search) [BKST15, Alg. 2, Alg. 3] for the damping parameter d have been
implemented, it did not appear to converge any better. For this reason the damping
parameter d has been determined empirically. The solution is deemed to have converged
when the search direction δx is almost orthogonal to the residual R(xk),

|δx · R(xk)| ≤ 10−8
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where in each iteration step the linear system gets solved by the Intel MKL PARDISO
parallel direct sparse solver [SG04]. As an inital guess x0 for the non-linear solution
process, we found it appropriate to use the discrete result from a Newtonian simulation.
To speed up the solution process static condensation was applied such that internal degrees
of freedom are eliminated from the global linear system.

5.2 Newtonian convergence order

Before we focused on the simulation of non-Newtonian flows, all implemented finite el-
ements (T H-S, SV-S, MCS, MCS-S) underwent a Newtonian convergence order test
[GLS19, Section 7]. For this recall Stokes equations in Newtonian setting with homoge-
neous boundary conditions (3.1)

τ = 2µε(u) inΩ, (5.1a)

−div(τ ) = −∇p+ ρf in Ω, (5.1b)

div(u) = 0, in Ω, (5.1c)

u = 0 onΓD (5.1d)

Consider a two-dimensional domain Ω = [0, 1]2 with coordinates x and y. We prescribe
on the unit square a potential φ and a pressure p

φ = x2(1− x)2y2(1− y)2

p = x5 + y5 − 1

3

Note, that the pressure has zero mean value on Ω. The velocity u is determined by curl(φ)

u = curl(φ) =

!
2x2(1− x)2y(1− y)(1− 2y)
−2y2(1− y)2x(1− x)(1− 2x)

'
On the boundary ΓD we see that the homogeneous boundary conditions are fulfilled.
Further, also the incompressibility constraint is trivial, as by construction div(u) =
div(curl(φ)) = 0. The rate-of-strain tensor ε(u) is given as

εxx = 4xy (x− 1) (y − 1) (xy + x (y − 1) + y (x− 1) + (x− 1) (y − 1))

εxy = 5x2y2((x− 1)2 − (y − 1)2)− 4xy(x (x− 1)2 − y (y − 1)2) + (x2 − y2) (x− 1)2 (y − 1)2

εyx = εxy

εyy = −4xy (x− 1) (y − 1) (xy + x (y − 1) + y (x− 1) + (x− 1) (y − 1))

A contour plot of the magnitude of the velocity u and rate-of-strain ε(u) is shown in
Figure 5.1 Consequently, by the constitutive relation (5.1a) the deviatoric stress tensor τ
is then just a multiple of the rate-of-strain tensor ε(u). By substituting τ and the gradient
of the prescribed pressure p into the momentum equation (5.1b) we obtain an expression
for the forcing f , which is our input for the numerical simulation and is omitted for sake
of simplicity.
In [GLS19, FP89, AMS+04] it is proven, that for smooth enough u ∈ H1(Ω,Rd) ∩
Hm(Th,Rd), τ ∈ H1(Ω,Rd)∩Hm−1(Th,Rd) and p ∈ L2

0(Ω,R)∩Hm−1(Th,R) the following
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(a) Velocity magnitude �u� (b) Rate-of-strain magnitude �ε�

Figure 5.1 – Exact solution contour plots of Newtonian benchmark

error estimate holds

�u− uh�V +
ρ

µ
�τ − τh�Σ +

ρ

µ
�p− ph�Q & hs

!
�u�Hs+1 +

ρ

µ
�τ�Hs +

ρ

µ
�p�Hs

'
(5.2)

�u− uh�L2 & hs+1�u�Hs+1 (5.3)

where the quantities {u, τ , ε(u), p} represent the exact solution of the mixed Stokes prob-
lem, while {uh, τh, ε(uh), ph} is the finite element solution and s = min(m−1, k). In order
to avoid a blow up of the errors �ψ −ψh� of non mass-conserving finite elements due to
the viscosity, the dynamic viscosity and density is chosen as µ = 1 and ρ = 1, equiva-
lently the kinematic viscosity ν = 1. As the prescribed quantities in the test case are all
polynomials of some degree, we can safely assume enough regularity of the exact solutions
{u, τ , ε(u), p}, therefore s = k.
In Figure 5.2 we see the obtained errors over different mesh sizes h for a polynomial order
k = 2, which are in good agreement with the error estimate (5.2). Although we have not
provided an error estimate for the finite element (MCS-S), the method recovers the same
order of convergence as (T H-S, SV-S, MCS).

5.3 Non-Newtonian channel flow

Finally, we shall tackle Non-Newtonian flows. To do this we consider a geometry, which is
often used [HMST17, GW11, GO20] for its beneficial properties, namely a two-dimensional
channel. For a steady laminar flow between two plates, it is known that the velocity field
is purely unidirectional. This facilitates the determination of an analytical solution for
non-Newtonian fluids (see Appendix A). Another advantage is the application of boundary
conditions, because all quantities can be regarded as periodic. This means that we do
not have to specify an inlet velocity profile uinlet, but only a forcing term f , which in
our numerical examples is constant e.g. gravity or a pressure drop. Of course, on the
walls we apply the standard homogeneous no-slip boundary condition for the velocity u.
Furthermore, because of the periodic boundary conditions, the computational domain in



5.3. Non-Newtonian channel flow 52

Figure 5.2 – L2-errors of polynomial order k = 2 over mesh size h for Newtonian Stokes flow (see
Table B.1). The expected convergence order from the error estimate (5.2) is represented as a slope
marker

flow direction does not have to be large enough to account for the flow development. The
computational domain Ω = (0,−1)× (1, 1) used for the numerical examples together with
an example of an unstructured mesh is illustrated in Figure 5.3. The above mentioned
properties result in the following governing equations

G(τ , ε(u)) = 0 inΩ, (5.4a)

−div(τ ) = −∇p+ ρf in Ω, (5.4b)

div(u) = 0, in Ω, (5.4c)

u = 0 onΓwall (5.4d)

(·)(x = 1) = (·)(x = 0) onΓperiodic (5.4e)

where G(τ , ε(u)) is an implicit relation as mentioned in 4.4, which depending on the
model can also be specified in an explicit form.
Throughout our numerical experiments we use a normalized density ρ = 1. The prescribed
forcing term f , was chosen such

f =

!
C
0

'
=

!
2
0

'
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(a) Computational domain Ω = (0, 1)× (−1, 1)

with the corresponding boundaries Γ
(b) Unstructured triangulation Th

of size h = 2−4

Figure 5.3 – Domain and illustrative mesh used for Non-Newtonian simulations

The triangulations Th consists of triangles with a maximal mesh size h

h :=
�
2−3, 2−4, 2−5, 2−6, 2−7, 2−8



,

while the polynomial order of the finite elements was fixed to k = 2.

5.3.1 Power-law fluid

Recall the non-linear constitutive relation given by (2.7)

G(τ , ε(u)) = τ − 2Kγ̇r−2ε(u) = 0 K > 0, 2 > r > 1,

γ̇ = 2|ε(u)|

The consistency value K was chosen such that K = 1, while for the power-law index
r we considered two values, namely r = {1.2, 1.4}. The existence of a weak solution
for a power-law-like rheology has been proved in [DKS13]. In the paper, the authors
consider the stationary Navier-Stokes equations and conclude that for exactly divergence-
free elements the existence of a weak solution for r > 2d

d+2
is given, while for discretely

divergence-free elements r > 2d
d+1

must hold. As this restriction comes solely from the
boundedness of the convective term, we conclude that in two-dimensions for a steady
Stokes flow (5.4) there exists a weak solution for r > 1. The exact solutions for a power-
law-like channel flow have been derived in the Appendix A.1

ux := r−1
r

�
C
K

� 1
r−1

 
H
2

& r
r−1

�
1−

�
2|y|
H

% r
r−1

�
, uy := 0,

τxy := −Cy, τxx := τyy := 0,

εxy := −sgn(y)

2

�
|Cy|
K

% 1
r−1

, εxx := εyy := 0,
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Figure 5.4 – Exact power-law velocity profiles ux for some power-law exponents r. The power-law
exponent r = 2 equals a Newtonian fluid

u :=

!
ux

0

'
, τ :=

!
τxx τxy
τxy τyy

'
, ε(u) :=

!
εxx εxy
εxy εyy

'
, p := 0.

Note, that for r = 2 we recover the Newtonian solution. In subsection 2.3.1 we discussed
the scope of the power-law model and identified it as a model for pseudoplastic fluids for
r < 2. This behaviour can be seen particularly well in Figure 5.4, where for a constant
forcing f a smaller power-law exponent r results in less skin friction and therefore in a
higher flow velocity ux.
In Figure 5.5 we see the L2-errors for a power-law exponent r = 1.4, obtained by solving
the non-linear system with Newton’s method. The order of convergence of the velocity
error �uh−u� and the rate-of-strain tensor �ε(uh)−ε(u)� remains unchanged in compar-
ison to the Newtonian simulation Figure 5.2, except for the mass conserving mixed finite
element (MCS), where we lose a power of h. A possible explanation for this behaviour is
the motivation why we introduced a new unknown ε for the rate-of-strain tensor in the
(MCS-S) method in the first place. The velocity gradient ∇u of H(div,Ω)-functions,
which is needed for the construction of the rate-of-strain tensor ε(u), is not globally de-
fined. However, since we explicitly need the rate-of-strain tensor ε(u) for non-Newtonian
models, this may lead to this observed convergence rate loss. The error of the deviatoric
stress tensor �τh − τ� and the pressure �ph − p� seem to have an order of convergence of
O (h1.4∼1.5), but we cannot draw a clear conclusion about it.
Figure 5.6 shows similar L2-errors, but for a power-law exponent r = 1.2. In this setting
we are dealing with a high strain rate at the walls and a almost vanishing strain rate
in the center of the channel (see. Figure 5.4). To solve the arising non-linear system a
fixed point method was used, as it possesses a larger radius of convergence compared to
Newton’s method. Despite this, the mass conserving mixed stress element (MCS) did
not seem to meet the convergence criterion for small mesh sizes h and is therefore not
marked.
Based on the error plots, it can be said that the newly introduced (MCS-S) method
is promising, as it achieved the best results. Only in the case of the pressure error
�ph − p� did the augmented Taylor-Hood element (T H-S) achieve better results. A
possible explanation is that the continuous approximation of the pressure is better suited
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Figure 5.5 – L2-errors of polynomial order k = 2 over mesh size h for non-Newtonian power-law
channel flow with power-law exponent r = 1.4 (see Table B.2)

to approximate the exact constant pressure p = 0 inΩ.

5.3.2 Bingham fluid - explicit constitutive relation

The explicit constitutive relation for a Bingham fluid is given by (2.9)τ = 2µε(u) +
τy

|ε(u)|ε(u) if |τ | > τy,

ε(u) = 0 if |τ | ≤ τy.

In the Appendix A.2 the exact solutions (u, τ , ε, p) for a two-dimensional channel flow
have been derived
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Figure 5.6 – L2-errors of polynomial order k = 2 over mesh size h for non-Newtonian power-law
channel flow with power-law exponent r = 1.2 (see Table B.3)
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u :=

!
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0

'
, τ :=

!
0 −Cy

−Cy 0

'
, ε(u) :=

!
εxx εxy
εxy εyy

'
, p := 0.

We observe (see Figure 2.2) that due to the kink at the yield point the constitutive
relation is non-differentiable. Additionally, below the yield stress the development of the
deviatoric stress tensor τ is not determined. To overcome this difficulties mainly two
computational methods have been elaborated [GW11, Section 4]

(I) Variational inequalities methods

(II) Regularization methods

Our focus lies on the latter. The idea is to smoothen the discontinuous constitutive
relation by means of a regularisation parameter κ, such that the stress-strain rate curve
becomes continuous and differentiable, hence making Newton’s method applicable. From
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a physical perspective it can be interpreted as attributing a very high viscosity to the
unyielded regions, such that they become very rigid in comparison to the yielded regions.
In our numerical simulations we adapted a popular regularisation introduced in [BE80]

τκ :=

�
2µ+

2τy,
κ2 + 4|ε(uκ)|2

�
ε(uκ).

As κ → 0 we hope for (τκ,uκ, ε(uκ), pκ) → (τ ,u, ε(u), p), although there are no general
results that guarantee this convergence [GO21]. In the special case of a unidirectional
pressure-driven pipe flow the convergence uκ → u can be shown [SW17].
Nevertheless, in Figure 5.7 the impact of the regularisation parameter κ is shown by means
of the regularised constitutive law and the velocity profile of a numerical simulation with
yields stress τy = 1 and dynamic viscosity µ = 1.

(a) Regularized Bingham

constitutive relation

(b) Numerical solution of a regularized

Bingham fluid in a channel

Figure 5.7 – Impact of a regularized Bingham constitutive relation with yield stress τy = 1. κ → ∞
denotes the Newtonian solution, while κ → 0 indicates the exact solution

Furthermore, we turn to the numerical approximation of a Bingham fluid with yield stress
τy = 0.2 and normalized dynamic viscosity µ = 1. The aim is to compare the L2-errors
of the finite elements (MCS, MCS-S, T H-S, SV-S) and to illustrate the effect of the
regularisation parameter κ on them. For this we consider following range of regularisation
parameters

κ :=
�
100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8



,

where for sake of simplicity we only show the numerical results of a selection. Every case
has been solved by Newton’s method with a suitable damping parameter. In Figure 5.8
we see the obtained finite element L2-errors for a regularisation parameter κ = 10−4.
Immediately, we observe a stagnation of the velocity L2-error �uκ,h − u� for small mesh
sizes h, while it is partially visible for the rate-of-strain L2-error �ε(uκ,h)− ε(u)�. Such
behaviour is caused by the regularisation parameter κ. On the other hand the deviatoric
stress tensor �τκ,h − τ� and the pressure �pκ,h − p� errors seem to convergence, but do
no shows this mentioned behaviour on the considered mesh sizes h.
In Figure 5.9 we plotted on the same y-axis range as in Figure 5.8 the finite element
L2-errors for a regularisation parameter κ = 10−8. As for the power-law model, the mass
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Figure 5.8 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
explicit constituted Bingham(τy = 0.2, κ = 10−4) flow in a two-dimensional channel (see Table B.4)

conserving mixed finite element (MCS) did not meet the convergence criterion for small
mesh sizes h and is therefore not marked. In this case the velocity �uκ,h − u� and rate-
of-strain �ε(uκ,h)− ε(u)� L2-errors do not stagnate, on the contrary, they seem to show
some convergence order O(hk). Moreover, the stress �τκ,h − τ� and pressure �pκ,h − p�
approximation seem to convergence worse, the smaller the regularisation parameter κ.
This can be illustrated in Figure 5.10, where we plot the L2-errors for a fixed mesh
size h = 2−6 over the regularisation parameter κ. By no means this behaviour has to
be understood in a general sense, as it is only a cause of the specific choice of domain
and boundary conditions. Namely, in a two-dimensional channel with given forcing term
f and periodic boundary, the exact solution of the deviatoric stress tensor τ and the
pressure p remains unchanged, regardless of the constitutive law under consideration. This
follows readily from the momentum equation (5.4b). Hence, the smaller the regularisation
parameter κ the less smooth the numerical results and therefore the less accurate the
approximation of the deviatoric stress tensor τκ,h and the pressure pκ,h.

Backed by the good L2-finite element errors, it can again be said that the newly in-
troduced (MCS-S) method is promising. As for the power-law constitutive law (see
Subsection 5.3.1), only in the case of the pressure L2-error �ph − p� did the stress aug-
mented Taylor-Hood element (T H-S) achieve better results. A possible explanation is
that the continuous approximation of the pressure is better suited to approximate the



59 5. Non-Newtonian Numerical Experiments

Figure 5.9 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
explicit constituted Bingham(τy = 0.2, κ = 10−8) flow in a two-dimensional channel (see Table B.5)

exact constant pressure p = 0 inΩ.

5.3.3 Bingham fluid - implicit constitutive relation

As mentioned in Section 4.4 an important feature of the mixed finite elements (T H-S,
SV-S, MCS-S) is the easy inclusion of an implicit constitutive relation of the form
G(τ , ε(u)), while this does not hold for the mass conserving mixed stress finite element
(MCS) and will therefore be omitted in the following. For this reason we performed some
simulations of a Bingham fluid, where the constitutive relation is given implicitly, namely
[GO21, Eq 4.b]

G(τ , ε(u)) := |ε(u)|τ − (τy + 2µ|ε(u)|) ε(u) = 0.

The exact solutions (u, τ , ε, p) for a two-dimensional channel flow are the identical as for
the explicit constitutive relation
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Figure 5.10 – L2-errors of polynomial order k = 2 over regularisation parameter κ for a regularised
non-Newtonian explicit constituted Bingham(τy = 0.2, h = 2−6) flow in a two-dimensional channel
(see Table B.6)
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u :=
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'
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'
, ε(u) :=
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εxx εxy
εxy εyy

'
, p := 0.

Furthermore, similar to the explicit case, G(τ , ε(u)) is non differentiable, thus a certain
regularisation is needed. In [GO21, Eq 6] the author makes use of a regularised implicit
constitutive law of the form

Gκ(τ , ε(u)) := G(τ − κε(u), ε(u)− κτ ), κ > 0,

in which κ is our previously introduced regularisation parameter. Although the regu-
larised law Gκ(τ , ε(u)) is in general non-differentiable as it inherits the smoothness of the
original constitutive relation [GO21], we observed that for our test case the application of
a Newton solver did not cause any problems. Unlike the explicit case, it was proven that
as κ → 0 the regularised solution (τκ,uκ, ε(uκ), pκ) converges towards the exact solution
→ (τ ,u, ε(u), p) [GO21].
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We turn now to the performed simulations, where a normalized dynamic viscosity µ = 1
is again used. In contrast to the explicit case, we fix the regularisation parameter to
κ = 10−8 and consider two different yield stresses

τy := {0.2, 1} .

Notice that a higher yield stress leads to a greater unyielded region, thus one expects a big-
ger L2-finite element error, since the unyielded regions are the source of non-differentiability
of the constitutive relation.

Figure 5.11 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
implicit constituted Bingham(τy = 0.2, κ = 10−8) flow in a two-dimensional channel (see Table B.7)

In Figure 5.11 the finite element L2-errors for a yield stress τy = 0.2 are shown. They are
very similar, almost identical, to the L2-errors of the explicit constitutive law in Figure 5.9.
Furthermore, in Figure 5.12 the finite element L2-errors for a yield stress τy = 1.0 are
plotted on the same y-axis range. Unfortunately, the newly introduced (MCS-S) finite
element does not converge at a mesh size h = 2−8, but this is caused by the lack of an
appropriate line search algorithm. In both figures the velocity �uκ,h − u� and rate-of-
strain �ε(uκ,h)− ε(u)� L2-errors seem to show some convergence order O(hk), while the
pressure �pκ,h − p� and deviatoric stress tensor �τκ,h − τ� L2-errors seem to convergence
arbitrarily. As in the other test cases, the mass conserving mixed stress-strain rate finite
element (MCS-S) did achieve good results, if not the best.
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Figure 5.12 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
implicit constituted Bingham(τy = 1, κ = 10−8) flow in a two-dimensional channel (see Table B.8)

5.3.4 Remarks on the (MCS-S) finite element

So far in this section we have shown the achieved L2-errors of the discrete solutions relative
to the exact solutions, without further commenting the solution process. This subsection
is intended to reflect the observations made during the simulations.

Damping parameter

As stated, an empirically determined damping parameter d has been used together with
Newton’s method or a fixed point method. While the Taylor-Hood (T H-S) and Scott-
Vogelius (SV-S) elements showed good convergence for large damping parameters d = 1,
the mass conserving mixed methods (MCS) and (MCS-S) required a damping parameter
0.1 ≤ d ≤ 1. Thus, a work in progress is to combine the latter with an efficient Line Search
algorithm, in order to optimise the solution process.

Degrees of freedom

At first sight one could think that the (MCS-S) is from a computational perspective very
expensive as we approximate 5 quantitites, namely uh, τh, ph,ωh, εh, which obviously
increases the number of unknowns drastically. ωh and εh are local degrees of freedom,
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while uh, τh and the lowest order degrees of freedom of ph couple with the adjacent
elements. Using a hybridization technique by introducing a new tangential velocity facet
space

V h :=
�
uh ∈ Pk−1(Fh,Rd−1) : (uh)n = 0 ∀F ∈ Fh



,

and by using a discontinuous stress space

Σ⊕,disc
h :=

�
τh ∈ Pk(Th,Rd×d) : tr(τh|T ) = 0 ∀T ∈ Th, (τh)nt ∈ Pk−1(F,Rd−1) ∀F ∈ F int

h



,

we add to the discrete variational formulation VIII the terms

b4(τ ,uh) := −
.
F∈Fh

�
F

[[(τh)nt]] · uh ds,

b4(τ ,uh) := −
.
F∈Fh

�
F

[[(τ h)nt]] · uh ds.

Therefore, we decoupled the stresses τh. The remaining coupling degrees of freedom are
located in uh,uh and the lowest order of ph. Now we can apply static condensation to the
system as most of the unknowns are element local, while only a few couple. To get an idea
of how many degrees of freedom we are speaking of, consider Table 5.1. While the arising

FEM h local coupling

(MCS) 2−4 14260 5430
2−5 55062 20669

(MCS-S) 2−4 21700 5430
2−5 83790 20669

(T H-S) 2−4 5580 2953
2−5 21546 11096

(SV-S) 2−4 11160 13150
2−5 43092 50532

Table 5.1 – Number of unknowns on unit square of polynomial order k = 2 for two mesh sizes h

linear system of the (MCS-S) finite element has the most unknowns, the largest part is
accounted by local degrees of freedom unlike the (SV-S) finite element. As the matrix
containing these unknowns is block-diagonal, it is cheaply invertible. The (T H-S) finite
element definitely has the least degrees of freedom, but compared to the other methods
it lacks the pointwise divergence free property (see 4.1.2).
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6
Conclusion and Future Work

This chapter is dedicated to the summary of the thesis and to discuss open questions
regarding the mass conserving mixed stress-strain rate finite element (MCS-S), which
will be adressed in the future.

6.1 Summary

Assuming incompressible, stationary, isothermal, laminar flow we introduced in this thesis
a new mixed mass conserving stress-strain rate finite element method (MCS-S, 4.3.2),
by extending the (MCS, 4.3.1) finite element method of the works [GLS19, GLS20] by
an additional variable for the rate-of-strain tensor ε. This enabled us to include an
arbitrary implicit constitutive relation of the form G(τ , ε) := 0 in the discrete variational
formulation, making the method suitable for the simulation of a broader range of non-
Newtonian models.
In a two-dimensional Newtonian setting we proved solvability of the discrete variational
formulation and the discrete LBB condition suggested the space of piecewise discontinu-
ous symmetric trace-free matrix-valued polynomials to approximate the rate-of-strain ten-
sor ε. This seems an adequate choice, since by the conservation of mass it holds tr(ε) = 0
and by construction ε = εT.
For the special choice of a two-dimensional channel as computational domain Ω and
the non-linear constitutive relations (Power-law (2.7), Bingham (2.9)) we found analytic
solutions, thus allowing the computation of L2 errors. On the basis of non-Newtonian nu-
merical experiments the achieved errors of the newly introduced mixed mass conserving
stress-strain rate finite element method (MCS-S) have been compared to standard finite
elements such as the Taylor-Hood (T H-S) and Scott-Vogelius (SV-S) element augmented
with piecewise discontinuous stresses. Almost in every illustrated result the new finite
element method achieved the best approximations of the velocity u, rate-of-strain tensor
ε and the deviatoric stress tensor τ . Only the pressure p has been approximated more ac-
curately by the stress augmented Taylor-Hood (T H-S) element. By these results we come
to the conclusion that the mass conserving mixed stress-strain rate method (MCS-S) is
very promising, although further testing is needed.

6.2 Open Questions

• Regarding the (MCS-S) element, the discrete LBB condition presented in this work
does not hold in a three-dimensional setting. Although it should follow similar ar-
guments, we still need to elaborate the proof. Subsequently, numerical experiments
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in a three-dimensional computational domain Ω e.g. a pipe, are needed to draw a
clearer conclusion about the new finite element method.

• Exactly divergence free and pressure robust finite elements are well suited to ap-
proximate convection dominated problems. For this reason the assessment of the
new mass conserving mixed stress-strain rate finite element in an incompressible
turbulent flow is potentially interesting, especially because the convective trilinear
form can be reformulated as�

Ω

(∇u)u · u dx =

�
Ω

εu · u dx+

�
Ω

ωu · u dx.



AppendixA Exact Solutions Non-Newtonian
Periodic Channel Flow

In this chapter we will derive the exact solutions for incompressible steady Non-Newtonian
laminar flows in a two-dimensional channel. Consider the two-dimensional domain Ω
shown in figure Figure A.1 with the corresponding periodic boundaries Γperiodic and no-
slip boundaries Γwall and the governing equations (5.4).

Figure A.1 – Two-dimensional channel with boundary designation

Mathematically, the assumptions of an incompressible steady laminar uni-directional flow
can be summarised as

uz = uy = 0
∂(·)
∂z

= 0

∂(·)
∂t

= 0 ρ = const

Consider the flow being driven by a constant forcing term f e.g. gravity or a pressure
drop.

fx = C > 0 fy = 0

The governing equations then simplify to

−div(τ ) = −∇p+ f in Ω,

∂ux

∂x
= 0 inΩ,

ux = 0 onΓwall

From the result of the continuity equation, it follows for the rate-of-strain tensor ε(u)

ε(u) =
1

2

�∇u+ (∇u)T
�
=

1

2

# 0
∂ux

∂y
∂ux

∂y
0

)
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A.1 Power-law constitutive relation

The relation between the deviatoric stress tensor τ and ε(u) is given by equation (2.7)

γ̇ = 2|ε(u)|,
τ = 2Kγ̇r−2ε(u)

As the deviatoric stress tensor τ depends explicitly on ε(u), it is easy to see that

τxx = τyy = 0

With the Euclidean Norm for tensors [GW11, Eq. (3.2)]

|ψ| =
-

1

2
ψ : ψ ∀ψ ∈ D(Ω,Rd×d),

ψ : ψ =
n−1.
i=0

m−1.
j=0

ψ2
ij ∀ψ ∈ D(Ω,Rd×d)

we get

γ̇ =

1111∂ux

∂y

1111 ,
τ = K

!1111∂ux

∂y

1111'r−2

# 0
∂ux

∂y
∂ux

∂y
0

)
For sake of simplicity we assume

∂ux

∂y
≥ 0

hence we can omit the absolute value

τ = K

## 0

!
∂ux

∂y

'r−1

!
∂ux

∂y

'r−1

0

))
Next, we focus solely on the x-component of the momentum equation

−K(r − 1)

!
∂ux

∂y

'r−2
∂2ux

∂y2
= −∂p

∂x
+ C

As the left-hand side depends solely on y and the right-hand side solely on x it follows

−∂p

∂x
+ C = const

Our forcing term C is constant and arbitrary. As we applied periodic boundary conditions
the only solution is that the pressure gradient in x vanishes

∂p

∂x
= 0
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Since the velocity ux depends only on y, the partial derivative is equivalent to the total
derivative

∂ux

∂y
=

dux

dy

We continue by transforming the problem in a non-linear system of first-order differential
equations  κ

κr−2dκ

dy

 =


dux

dy
−C

K(r − 1)


With help of a separation ansatz we find a analytic solution for κ�

κr−2 dκ =

� −C

K(r − 1)
dy,

1

(r − 1)
κr−1 =

−Cy

K(r − 1)
+ c1

As a boundary condition we use the fact that in a channel the velocity is maximal in the
center. Mathematically, this translates to

dux

dy

1111
y=0

= κ(y = 0) = 0 = c1

This result yields

κ =
dux

dy
=

!−Cy

K

' 1
r−1

Our initial assumption κ ≥ 0, holds as long as y ≤ 0 for C > 0.
By integrating further we gain an expression for the velocity ux

ux = −r − 1

r
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K

' r
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The integration constant c2 we determine by the no-slip boundary condition at the wall,
namely

ux(y = −H/2) = 0
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By a symmetry argument and the requirement C > 0 we can now define a velocity profile
for the whole channel
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The momentum equation in y-direction yields

∂p

∂y
= fy = 0

This result deduces that the pressure is only a constant. To be more precise, due to the
mathematical gauging

�
Ω
p dx = 0 it follows

p = 0

In summary the exact solutions for a power-law constituted fluid are given by

ux :=
r − 1

r

�
C

K

� 1
r−1

!
H

2

' r
r−1

�
1−

!
2|y|
H

' r
r−1

�
uy := 0

τxy := −Cy τxx := τyy := 0

εxy := −sgn(y)

2

! |Cy|
K

' 1
r−1

εxx := εyy := 0

u :=

!
ux

uy

'
τ :=

!
τxx τxy
τxy τyy

'
ε(u) :=

!
εxx εxy
εxy εyy

'
p := 0

Note, that for a power-law exponent r = 2 we recover the Newtonian solution

A.2 Bingham constitutive relation

For a Bingham fluid the constitutive relation is given by equation (2.9)τ = 2µε(u) +
τy

|ε(u)|ε(u) if |τ | > τy,

ε(u) = 0 if |τ | ≤ τy

Similarly to the power-law model, we have the explicit dependency of the deviatoric stress
tensor τ on ε(u). Hence it holds

τxx = τyy = 0

and due to the momentum equation it follows

τxy = −Cy

The considerations done in the previous section regarding the pressure p hold also for the
Bingham model. Hence

p = 0

Next we determine the threshold value below which rigid body translation occurs

|τ | = |Cy| = τy
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Assume

|Cy| > τy and
dux

dy
≥ 0

such that the fluid is in motion and the velocity gradient is positive. Then the constitutive
relation becomes in one component

−Cy = µ
dux

dy
+ τy

By integrating we find an expression for the velocity ux

ux = −Cy2

2µ
− τyy + c2

The requirement

dux

dy
= −Cy

µ
− τy

µ
> 0

is only fulfilled (for given C > 0) if

y < −τy
C

This implies for the spatial coordinate y

−H

2
< y < −τy

C

whereby the lower limit results from the boundedness of the geometry. By above consid-
erations we apply a no-slip boundary condition on the lower wall y = −H/2

ux(y = −H

2
) = −CH2

8µ
+

τyH

2µ
+ c2

c2 = −τyH

2µ
+

CH2

8µ

Hence the velocity field in the interval −H/2 < y < −τy/C is given by

ux =
C

2µ

!
H2

4
− y2

'
− τy

µ

!
y +

H

2

'
If we further consider the remaining options, namely

|Cy| > τy and
dux

dy
≤ 0,

|Cy| ≤ τy and
dux

dy
= 0

and the continuity of the velocity, we obtain an expression for the entire canal

ux :=

������
C
2µ

�
H2

4
− y2

%
− τy

µ

 
y + H

2

&
, if − H

2
≤ y ≤ −τy

C
,

C
2µ

�
H2

4
−  τy

C

&2%− τy
µ

 − τy
C
+ H

2

&
, if − τy

C
≤ y ≤ τy

C
,

C
2µ

�
H2

4
− y2

%
− τy

µ

 −y + H
2

&
, if τy

C
≤ y ≤ H

2
.
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Respectively, the rate-of-strain tensor ε is

εxy :=
1

2

dux

dy
=

��
− C

2µ
y − τy

2µ
,

0,

− C
2µ
y + τy

2µ
,

εxx = εyy :=

��
0, if − H

2
≤ y ≤ − τy

C
,

0, if − τy
C
≤ y ≤ τy

C
,

0, if τy
C
≤ y ≤ H

2
.

Finally, the exact solutions can be listed

u :=

!
ux

uy

'
τ :=

!
τxx τxy
τxy τyy

'
ε :=

!
εxx εxy
εxy εyy

'
p := 0

Also in this case, if τy equals zero, we obtain the Newtonian solution.



AppendixB Non-Newtonian Numerical
Experiments - Values

In this chapter we list explicitly the finite element errors achieved in Chapter 5.

FEM h �uh − u� �τh − τ� �ε(uh)− ε(u)� �ph − p�
(MCS) 2−3 1.90213 · 10−5 1.47863 · 10−3 1.35104 · 10−3 2.81869 · 10−3

2−4 2.15127 · 10−6 3.43256 · 10−4 3.16204 · 10−4 6.32529 · 10−4

2−5 2.41273 · 10−7 8.31689 · 10−5 7.63686 · 10−5 1.55417 · 10−4

2−6 2.92356 · 10−8 2.04546 · 10−5 1.89154 · 10−5 3.95733 · 10−5

2−7 3.61569 · 10−9 5.04209 · 10−6 4.67663 · 10−6 9.98644 · 10−6

2−8 8.42376 · 10−10 1.25975 · 10−6 1.17053 · 10−6 2.52605 · 10−6

(MCS-S) 2−3 2.05517 · 10−5 1.73757 · 10−3 6.57805 · 10−4 2.79707 · 10−3

2−4 2.28454 · 10−6 3.86764 · 10−4 1.50323 · 10−4 6.27411 · 10−4

2−5 2.53838 · 10−7 9.29537 · 10−5 3.65137 · 10−5 1.54262 · 10−4

2−6 3.06172 · 10−8 2.28053 · 10−5 8.98559 · 10−6 3.93139 · 10−5

2−7 3.77060 · 10−9 5.61245 · 10−6 2.21459 · 10−6 9.92531 · 10−6

2−8 8.57683 · 10−10 1.40140 · 10−6 5.53090 · 10−7 2.51103 · 10−6

(T H-S) 2−3 3.36631 · 10−5 3.05175 · 10−3 1.52588 · 10−3 3.80765 · 10−3

2−4 3.54925 · 10−6 6.89170 · 10−4 3.44585 · 10−4 8.19761 · 10−4

2−5 3.87950 · 10−7 1.62644 · 10−4 8.13221 · 10−5 1.98395 · 10−4

2−6 4.66884 · 10−8 3.99332 · 10−5 1.99666 · 10−5 5.03268 · 10−5

2−7 5.67935 · 10−9 9.84458 · 10−6 4.92229 · 10−6 1.26780 · 10−5

2−8 1.00215 · 10−9 2.46123 · 10−6 1.23062 · 10−6 3.20576 · 10−6

(SV-S) 2−3 5.85754 · 10−5 4.31916 · 10−3 2.15958 · 10−3 7.65096 · 10−3

2−4 5.58276 · 10−6 9.59959 · 10−4 4.79979 · 10−4 1.62506 · 10−3

2−5 6.06796 · 10−7 2.34000 · 10−4 1.17000 · 10−4 3.93745 · 10−4

2−6 7.16205 · 10−8 5.78887 · 10−5 2.89443 · 10−5 9.70207 · 10−5

2−7 8.64926 · 10−9 1.43216 · 10−5 7.16082 · 10−6 2.39544 · 10−5

2−8 1.28866 · 10−9 3.58030 · 10−6 1.79015 · 10−6 5.96998 · 10−6

Table B.1 – L2-errors of polynomial order k = 2 over mesh size h for Newtonian Stokes flow (Fig-
ure 5.2)
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FEM h �uh − u� �τh − τ� �ε(uh)− ε(u)� �ph − p�
(MCS) 2−3 1.32038 · 10−3 8.78333 · 10−3 7.35639 · 10−3 3.42657 · 10−3

2−4 2.97984 · 10−4 2.98392 · 10−3 1.72910 · 10−3 1.17525 · 10−3

2−5 7.18709 · 10−5 1.00163 · 10−3 4.21934 · 10−4 3.88623 · 10−4

2−6 1.76700 · 10−5 3.76282 · 10−4 1.03681 · 10−4 1.42514 · 10−4

2−7 4.37474 · 10−6 1.29909 · 10−4 2.57607 · 10−5 4.96986 · 10−5

2−8 1.08351 · 10−6 4.50095 · 10−5 6.41693 · 10−6 1.73380 · 10−5

(MCS-S) 2−3 1.06067 · 10−4 7.74937 · 10−3 1.93248 · 10−3 2.63806 · 10−3

2−4 1.16177 · 10−5 2.81634 · 10−3 4.34245 · 10−4 1.09265 · 10−3

2−5 1.38090 · 10−6 9.71699 · 10−4 1.04248 · 10−4 4.00706 · 10−4

2−6 1.69745 · 10−7 3.60422 · 10−4 2.58033 · 10−5 1.42302 · 10−4

2−7 2.06756 · 10−8 1.25053 · 10−4 6.33382 · 10−6 5.12562 · 10−5

2−8 2.55423 · 10−9 4.34045 · 10−5 1.56365 · 10−6 1.79564 · 10−5

(T H-S) 2−3 1.89834 · 10−4 2.12691 · 10−2 7.68582 · 10−3 6.56656 · 10−4

2−4 2.03469 · 10−5 7.33263 · 10−3 1.81097 · 10−3 3.22760 · 10−4

2−5 2.38638 · 10−6 2.60270 · 10−3 4.41452 · 10−4 4.04835 · 10−5

2−6 2.91059 · 10−7 9.09193 · 10−4 1.08225 · 10−4 2.04025 · 10−5

2−7 3.54040 · 10−8 3.31790 · 10−4 2.69215 · 10−5 5.50049 · 10−6

2−8 4.37435 · 10−9 1.17407 · 10−4 6.69711 · 10−6 1.72743 · 10−6

(SV-S) 2−3 2.64247 · 10−4 3.65985 · 10−2 1.01084 · 10−2 4.87222 · 10−2

2−4 2.84369 · 10−5 1.27300 · 10−2 2.47372 · 10−3 1.70931 · 10−2

2−5 3.31960 · 10−6 4.59772 · 10−3 6.09543 · 10−4 6.24696 · 10−3

2−6 3.94280 · 10−7 1.61911 · 10−3 1.48050 · 10−4 2.23650 · 10−3

2−7 4.89438 · 10−8 5.86971 · 10−4 3.73691 · 10−5 8.04799 · 10−4

2−8 6.09140 · 10−9 2.07296 · 10−4 9.30756 · 10−6 2.83111 · 10−4

Table B.2 – L2-errors of polynomial order k = 2 over mesh size h for non-Newtonian power-law
channel flow with power-law exponent r = 1.4 (Figure 5.5)
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FEM h �uh − u� �τh − τ� �ε(uh)− ε(u)� �ph − p�
(MCS) 2−3 3.01320 · 10−2 3.93966 · 10−2 1.21350 · 10−1 1.98483 · 10−2

2−4 6.88177 · 10−3 1.21660 · 10−2 2.92039 · 10−2 6.26465 · 10−3

2−5 1.63061 · 10−3 3.86796 · 10−3 7.10518 · 10−3 2.01256 · 10−3

(MCS-S) 2−3 1.69587 · 10−3 2.14399 · 10−2 3.36952 · 10−2 9.27461 · 10−3

2−4 1.96057 · 10−4 7.36999 · 10−3 7.74493 · 10−3 3.34386 · 10−3

2−5 2.32720 · 10−5 2.48338 · 10−3 1.83848 · 10−3 1.16450 · 10−3

2−6 2.81653 · 10−6 9.01096 · 10−4 4.44931 · 10−4 3.82739 · 10−4

2−7 3.47474 · 10−7 2.74958 · 10−4 1.10317 · 10−4 1.16630 · 10−4

2−8 4.53980 · 10−8 5.59742 · 10−4 2.73158 · 10−5 1.17180 · 10−4

(T H-S) 2−3 3.19885 · 10−3 6.52286 · 10−2 1.19210 · 10−1 7.72547 · 10−3

2−4 3.54147 · 10−4 2.35633 · 10−2 2.87678 · 10−2 1.31912 · 10−3

2−5 4.10050 · 10−5 8.59679 · 10−3 6.99370 · 10−3 2.24580 · 10−4

2−6 4.90107 · 10−6 3.01286 · 10−3 1.70929 · 10−3 1.28345 · 10−4

2−7 6.04137 · 10−7 1.10795 · 10−3 4.24368 · 10−4 2.71917 · 10−5

2−8 9.26531 · 10−8 3.92443 · 10−4 1.05588 · 10−4 3.07830 · 10−6

(SV-S) 2−3 4.32434 · 10−3 1.21405 · 10−1 1.37237 · 10−1 1.56732 · 10−1

2−4 4.49538 · 10−4 4.49340 · 10−2 3.38076 · 10−2 5.90568 · 10−2

2−5 4.96667 · 10−5 1.65641 · 10−2 8.32623 · 10−3 2.19770 · 10−2

2−6 5.77596 · 10−6 5.77156 · 10−3 2.02830 · 10−3 7.75360 · 10−3

2−7 7.09904 · 10−7 1.98614 · 10−3 5.06334 · 10−4 2.51397 · 10−3

2−8 1.04256 · 10−7 5.69274 · 10−4 1.25783 · 10−4 6.66623 · 10−4

Table B.3 – L2-errors of polynomial order k = 2 over mesh size h for non-Newtonian power-law
channel flow with power-law exponent r = 1.2 (Figure 5.6)
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FEM h �uκ,h − u� �τκ,h − τ� �ε(uκ,h)− ε(u)� �pκ,h − p�
(MCS) 2−3 1.03965 · 10−4 2.97336 · 10−2 3.52807 · 10−3 1.79785 · 10−2

2−4 2.51485 · 10−5 2.15065 · 10−2 1.46755 · 10−3 1.39818 · 10−2

2−5 6.94404 · 10−6 1.03089 · 10−2 6.00139 · 10−4 6.55596 · 10−3

2−6 2.70773 · 10−6 4.80009 · 10−3 2.34934 · 10−4 2.60950 · 10−3

2−7 2.38510 · 10−6 2.69988 · 10−3 1.10110 · 10−4 1.24398 · 10−3

2−8 3.09216 · 10−6 1.77793 · 10−3 6.38316 · 10−5 7.99341 · 10−4

(MCS-S) 2−3 7.21995 · 10−5 3.00154 · 10−2 2.01677 · 10−3 1.44420 · 10−2

2−4 2.56162 · 10−5 1.30852 · 10−2 8.02172 · 10−4 6.69159 · 10−3

2−5 8.29655 · 10−6 4.31829 · 10−3 2.81455 · 10−4 2.00257 · 10−3

2−6 4.42891 · 10−6 1.84766 · 10−3 1.15777 · 10−4 8.84100 · 10−4

2−7 3.72493 · 10−6 4.53010 · 10−4 6.17368 · 10−5 2.01024 · 10−4

2−8 3.65588 · 10−6 1.10583 · 10−4 5.09433 · 10−5 4.53148 · 10−5

(T H-S) 2−3 1.69424 · 10−4 4.39252 · 10−2 4.46945 · 10−3 4.58327 · 10−3

2−4 4.70873 · 10−5 2.89980 · 10−2 1.71281 · 10−3 4.98736 · 10−3

2−5 1.72887 · 10−5 1.61828 · 10−2 6.59220 · 10−4 1.07445 · 10−3

2−6 6.92208 · 10−6 8.44059 · 10−3 2.65969 · 10−4 5.63551 · 10−4

2−7 4.20673 · 10−6 4.38346 · 10−3 1.19713 · 10−4 1.09933 · 10−4

2−8 3.70530 · 10−6 1.93670 · 10−3 6.71325 · 10−5 2.53970 · 10−5

(SV-S) 2−3 1.98590 · 10−4 7.47575 · 10−2 5.79693 · 10−3 8.68304 · 10−2

2−4 4.63793 · 10−5 4.67935 · 10−2 2.16875 · 10−3 5.66539 · 10−2

2−5 1.53832 · 10−5 2.81496 · 10−2 8.40561 · 10−4 3.46833 · 10−2

2−6 6.01982 · 10−6 1.47216 · 10−2 3.33347 · 10−4 1.78533 · 10−2

2−7 3.97675 · 10−6 7.33488 · 10−3 1.45814 · 10−4 8.65522 · 10−3

2−8 3.67866 · 10−6 3.09925 · 10−3 7.63385 · 10−5 3.65096 · 10−3

Table B.4 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
explicit constituted Bingham(τy = 0.2, κ = 10−4) flow in a two-dimensional channel (Figure 5.8)
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FEM h �uκ,h − u� �τκ,h − τ� �ε(uκ,h)− ε(u)� �pκ,h − p�
(MCS) 2−3 1.04045 · 10−4 3.09136 · 10−2 3.52788 · 10−3 1.88613 · 10−2

2−4 2.45207 · 10−5 2.83537 · 10−2 1.46602 · 10−3 1.87629 · 10−2

2−5 6.33948 · 10−6 2.25067 · 10−2 5.98688 · 10−4 1.50863 · 10−2

2−6 1.63015 · 10−6 1.69685 · 10−2 2.35576 · 10−4 1.12317 · 10−2

(MCS-S) 2−3 7.18251 · 10−5 3.16937 · 10−2 2.01689 · 10−3 1.55931 · 10−2

2−4 2.51097 · 10−5 1.75483 · 10−2 8.02717 · 10−4 9.67964 · 10−3

2−5 6.97184 · 10−6 8.30269 · 10−3 2.79536 · 10−4 4.51718 · 10−3

2−6 2.21923 · 10−6 8.34415 · 10−3 1.10141 · 10−4 4.57656 · 10−3

2−7 6.34195 · 10−7 4.03561 · 10−3 4.18414 · 10−5 2.30229 · 10−3

2−8 1.40470 · 10−7 2.12781 · 10−3 1.49231 · 10−5 1.25554 · 10−3

(T H-S) 2−3 1.69267 · 10−4 5.64582 · 10−2 4.47526 · 10−3 4.91162 · 10−3

2−4 4.64150 · 10−5 3.86842 · 10−2 1.71799 · 10−3 7.40322 · 10−3

2−5 1.58371 · 10−5 2.68549 · 10−2 6.59257 · 10−4 6.24854 · 10−3

2−6 4.82117 · 10−6 2.01189 · 10−2 2.61454 · 10−4 6.28860 · 10−3

2−7 1.44453 · 10−6 1.25254 · 10−2 1.08699 · 10−4 1.41318 · 10−3

2−8 4.09675 · 10−7 7.51298 · 10−3 4.51997 · 10−5 3.44866 · 10−4

(SV-S) 2−3 1.98617 · 10−4 7.63745 · 10−2 5.80703 · 10−3 8.82920 · 10−2

2−4 4.57339 · 10−5 5.67136 · 10−2 2.17912 · 10−3 6.42430 · 10−2

2−5 1.39207 · 10−5 4.64221 · 10−2 8.45434 · 10−4 5.43506 · 10−2

2−6 3.81609 · 10−6 3.55602 · 10−2 3.31603 · 10−4 4.22490 · 10−2

2−7 1.04857 · 10−6 2.37087 · 10−2 1.37080 · 10−4 2.85799 · 10−2

2−8 2.65935 · 10−7 1.43772 · 10−2 5.74848 · 10−5 1.71005 · 10−2

Table B.5 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
explicit constituted Bingham(τy = 0.2, κ = 10−8) flow in a two-dimensional channel (Figure 5.9)
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FEM h �uκ,h − u� �τκ,h − τ� �ε(uκ,h)− ε(u)� �pκ,h − p�
(MCS) 100 5.05825 · 10−2 1.11573 · 10−6 8.51713 · 10−2 3.28702 · 10−7

10−1 4.27329 · 10−3 2.00169 · 10−5 1.98249 · 10−2 5.96624 · 10−6

10−2 3.72516 · 10−4 1.87703 · 10−4 3.16264 · 10−3 5.83602 · 10−5

10−3 3.41941 · 10−5 2.61715 · 10−3 4.05656 · 10−4 1.14634 · 10−3

10−4 2.70773 · 10−6 4.80009 · 10−3 2.34934 · 10−4 2.60950 · 10−3

10−5 1.60753 · 10−6 7.93879 · 10−3 2.35653 · 10−4 4.93492 · 10−3

10−6 1.62827 · 10−6 1.14848 · 10−2 2.35594 · 10−4 7.44179 · 10−3

10−7 1.63004 · 10−6 1.45549 · 10−2 2.35578 · 10−4 9.56404 · 10−3

10−8 1.63015 · 10−6 1.69685 · 10−2 2.35576 · 10−4 1.12317 · 10−2

(MCS-S) 100 5.05825 · 10−2 1.29512 · 10−6 8.51717 · 10−2 3.80847 · 10−7

10−1 4.27358 · 10−3 1.93471 · 10−5 1.98289 · 10−2 5.73817 · 10−6

10−2 3.73581 · 10−4 1.14842 · 10−4 3.17414 · 10−3 3.36135 · 10−5

10−3 3.66585 · 10−5 5.54249 · 10−4 4.22521 · 10−4 1.99049 · 10−4

10−4 4.42891 · 10−6 1.84766 · 10−3 1.15777 · 10−4 8.84100 · 10−4

10−5 2.29086 · 10−6 4.06726 · 10−3 1.09558 · 10−4 2.08368 · 10−3

10−6 2.22030 · 10−6 5.99281 · 10−3 1.10031 · 10−4 3.12141 · 10−3

10−7 2.21963 · 10−6 7.37163 · 10−3 1.10134 · 10−4 3.95559 · 10−3

10−8 2.21923 · 10−6 8.34415 · 10−3 1.10141 · 10−4 4.57656 · 10−3

(T H-S) 100 5.05825 · 10−2 3.64600 · 10−6 8.51717 · 10−2 1.73079 · 10−8

10−1 4.27358 · 10−3 6.36696 · 10−5 1.98290 · 10−2 8.61349 · 10−8

10−2 3.73587 · 10−4 6.13594 · 10−4 3.17618 · 10−3 4.08002 · 10−6

10−3 3.69613 · 10−5 3.82025 · 10−3 4.80570 · 10−4 9.20393 · 10−5

10−4 6.92208 · 10−6 8.44059 · 10−3 2.65969 · 10−4 5.63551 · 10−4

10−5 4.97680 · 10−6 1.21169 · 10−2 2.61645 · 10−4 1.44433 · 10−3

10−6 4.83367 · 10−6 1.53744 · 10−2 2.61476 · 10−4 3.26170 · 10−3

10−7 4.82204 · 10−6 1.81113 · 10−2 2.61454 · 10−4 5.10613 · 10−3

10−8 4.82117 · 10−6 2.01189 · 10−2 2.61454 · 10−4 6.28860 · 10−3

(SV-S) 100 5.05825 · 10−2 7.67495 · 10−6 8.51718 · 10−2 1.27892 · 10−5

10−1 4.27358 · 10−3 1.26987 · 10−4 1.98291 · 10−2 2.09251 · 10−4

10−2 3.73571 · 10−4 1.07208 · 10−3 3.17912 · 10−3 1.57265 · 10−3

10−3 3.67914 · 10−5 6.20311 · 10−3 5.18295 · 10−4 7.77608 · 10−3

10−4 6.01982 · 10−6 1.47216 · 10−2 3.33347 · 10−4 1.78533 · 10−2

10−5 3.97328 · 10−6 2.18379 · 10−2 3.31365 · 10−4 2.66791 · 10−2

10−6 3.82938 · 10−6 2.75893 · 10−2 3.31585 · 10−4 3.38315 · 10−2

10−7 3.81713 · 10−6 3.21911 · 10−2 3.31602 · 10−4 3.93097 · 10−2

10−8 3.81609 · 10−6 3.55602 · 10−2 3.31603 · 10−4 4.22490 · 10−2

Table B.6 – L2-errors of polynomial order k = 2 over regularisation parameter κ for a regularised
non-Newtonian explicit constituted Bingham(τy = 0.2, h = 2−6) flow in a two-dimensional channel
(Figure 5.10)
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FEM h �uκ,h − u� �τκ,h − τ� �ε(uκ,h)− ε(u)� �pκ,h − p�
(MCS-S) 2−3 7.70449 · 10−5 3.13312 · 10−2 2.01678 · 10−3 1.53594 · 10−2

2−4 2.59232 · 10−5 1.74398 · 10−2 8.02592 · 10−4 9.25422 · 10−3

2−5 7.09990 · 10−6 8.18488 · 10−3 2.79639 · 10−4 4.37628 · 10−3

2−6 2.24721 · 10−6 8.80460 · 10−3 1.10209 · 10−4 4.84483 · 10−3

2−7 6.40323 · 10−7 4.99472 · 10−3 4.18128 · 10−5 2.85696 · 10−3

2−8 1.48181 · 10−7 2.70449 · 10−3 1.49251 · 10−5 1.57089 · 10−3

(T H-S) 2−3 1.71452 · 10−4 5.62779 · 10−2 4.42286 · 10−3 4.86206 · 10−3

2−4 4.88253 · 10−5 3.58780 · 10−2 1.66080 · 10−3 5.04102 · 10−3

2−5 1.60294 · 10−5 2.71977 · 10−2 6.57556 · 10−4 5.88371 · 10−3

2−6 4.85453 · 10−6 2.09468 · 10−2 2.61092 · 10−4 6.37322 · 10−3

2−7 1.45460 · 10−6 1.36698 · 10−2 1.08621 · 10−4 1.52218 · 10−3

2−8 4.16820 · 10−7 8.43207 · 10−3 4.51821 · 10−5 3.64562 · 10−4

(SV-S) 2−3 1.96694 · 10−4 7.61350 · 10−2 5.78832 · 10−3 8.75403 · 10−2

2−4 4.57451 · 10−5 5.69211 · 10−2 2.17593 · 10−3 6.17108 · 10−2

2−5 1.39819 · 10−5 4.67325 · 10−2 8.44727 · 10−4 5.29879 · 10−2

2−6 3.82707 · 10−6 3.68067 · 10−2 3.31437 · 10−4 4.26010 · 10−2

2−7 1.05324 · 10−6 2.49938 · 10−2 1.37039 · 10−4 2.95598 · 10−2

2−8 2.70084 · 10−7 1.53739 · 10−2 5.74751 · 10−5 1.80839 · 10−2

Table B.7 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
implicit constituted Bingham(τy = 0.2, κ = 10−8) flow in a two-dimensional channel (Figure 5.11)

FEM h �uκ,h − u� �τκ,h − τ� �ε(uκ,h)− ε(u)� �pκ,h − p�
(MCS-S) 2−3 3.32707 · 10−4 1.39853 · 10−1 2.66704 · 10−3 7.92078 · 10−2

2−4 6.95563 · 10−5 8.32659 · 10−2 8.92861 · 10−4 4.95861 · 10−2

2−5 2.20447 · 10−5 4.84625 · 10−2 3.45441 · 10−4 2.89463 · 10−2

2−6 5.86629 · 10−6 3.32692 · 10−2 1.31949 · 10−4 1.92931 · 10−2

2−7 1.49213 · 10−6 1.47931 · 10−2 4.86311 · 10−5 8.90156 · 10−3

(T H-S) 2−3 7.59530 · 10−4 3.14475 · 10−1 6.14143 · 10−3 1.31983 · 10−1

2−4 1.88834 · 10−4 1.93477 · 10−1 2.20445 · 10−3 2.98604 · 10−2

2−5 5.42623 · 10−5 1.29146 · 10−1 9.11221 · 10−4 7.60756 · 10−3

2−6 1.48671 · 10−5 7.80893 · 10−2 3.76903 · 10−4 6.07447 · 10−3

2−7 4.05607 · 10−6 4.77153 · 10−2 1.64207 · 10−4 1.46491 · 10−3

2−8 1.08358 · 10−6 2.90648 · 10−2 7.15956 · 10−5 8.41194 · 10−4

(SV-S) 2−3 6.24381 · 10−4 4.83952 · 10−1 7.49686 · 10−3 5.38078 · 10−1

2−4 1.45303 · 10−4 3.61695 · 10−1 2.77747 · 10−3 4.20842 · 10−1

2−5 3.74981 · 10−5 2.37107 · 10−1 1.14610 · 10−3 2.79024 · 10−1

2−6 9.09721 · 10−6 1.41064 · 10−1 4.82299 · 10−4 1.63948 · 10−1

2−7 2.28601 · 10−6 8.51863 · 10−2 2.13317 · 10−4 9.77697 · 10−2

2−8 5.78815 · 10−7 4.95745 · 10−2 9.45073 · 10−5 5.63007 · 10−2

Table B.8 – L2-errors of polynomial order k = 2 over mesh size h for a regularised non-Newtonian
implicit constituted Bingham(τy = 1, κ = 10−8) flow in a two-dimensional channel (Figure 5.12)
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